角的8字模型(带练习题)
中考数学几何模型重点突破讲练:专题04 三角形中的8字模型和燕尾模型(教师版)
2 DFB FAB B ,因为 FAB CAD CAB ,即可求得 DFB 的度数;根据三角形外角的性质可得 DGB DFB D ,即可得 DGB 的度数. 【解析】解:∵ ABC≌ ADE , ∴ BAC DAE , B D , ∵ EAB 120 , CAD 10 , B 25 , ∴ D B 25 ,
2 ③解: B D 2P 理由如下: ∵ AP 平分 DAB ,CP 平分 BCD 21 OAD, 23 OCB 由(1)中的结论得: 1 D 3 P, 21 D 23 B 整理得: B D 2P ④解: 2B D 3P 理由如下: 由(1)中的结论得: 2 P 4 B 32 D 34 B 整理得: 2B D 3P
DAE BAC 1 EAB CAD
2
1 120 10
2 55, ∴ DFB FAB B CAD CAB B 10 55 25 90 , ∴ DGB DFB D 90 25 65 . ∴ DFB 90 , DGB 65 . 【例 2】如图 1,已知线段 AB 、CD 相交于点 O,连接 AD 、CB ,我们把形如图 1 的图形称之为“8 字形”.试
解答下列问题:
(1)在图 1 中,请直接写出 A 、ÐB 、 C 、 D 之间的数量关系:________________; (2)如图 2,在图 1 的条件下, DAB 和 BCD 的平分线 AP 和 CP 相交于点 P,并且与 CD 、 AB 分别相交于 M、N.请直接利用(1)中的结论,完成下列各题: ①仔细观察,在图 2 中“8 字形”的个数:___________个; ②若 D 40,B 50 ,试求 P 的度数; ③若 D 和ÐB 为任意角,其他条件不变,试问 P 与 D 、ÐB 之间是否存在一定的数量关系?若存在,请 写出推理过程;若不存在,请说明理由; ④若 D 和ÐB ∠为任意角,DAB 32,DCB 34 ,试问 P 与 D 、ÐB 之间是否存在一定的数量关系? 若存在,请直接写出结论;若不存在,请说明理由. 【答案】(1) A D C B (2)①6② P 45 ③存在(理由见解析)④存在, 2B D 3P 【分析】(1)根据三角形内角和定理以及对顶角相等可得出结论. (2)①分别找到以交点 M、O、N 为顶点的能构成“8 字形”的三角形,避免漏数. ②利用“8 字形”的数量关系并结合角平分线的定义,可求出 P 的度数. ③和②同理 ④利用“8 字形”的数量关系并结合“ DAB 32 , DCB 34 ”即可得出结论. 【解析】(1)解:∵ 在△AOD 中, A D AOD 180 在△COB 中, C B COB 180 ∵ AOD COB (对顶角相等)
8字型和燕尾模型 模型分析 经典例题
OD CBAODCBA模型20 “8”字型模型问题【模型分析】模型1 角的“8”字模型如图所示,AB 、CD 相交于点O 连接AD 、BC结论:∠A +∠D =∠B +∠C模型2 边的“8”字模型如图所示,AC 、BD 相交于点O ,连接AD 、BC 结论:AC +BD >AD +BC【经典例题】例1.(2020·全国九年级模型练习)如图,求∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H +∠I =__【分析】根据多边形的内角和,可得答案 【解析】连EF ,GI ,如图,∵6边形ABCDEFK 的内角和=(6-2)×180°=720° ∵∠A +∠B +∠C +∠D +∠E +∠F =720°-(∠1+∠2) 即∠A +∠B +∠C +∠D +∠E +∠F +(∠1+∠2)=720°∵∠1+∠2=∠3+∠4,∠5+∠6+∠H =180°∴∠A +∠B +∠C +∠D +∠E +∠F ∠H +(∠3+∠4)=900°∵∠A +∠B +∠C +∠D +∠E +∠F (∠3+∠4)+∠5+∠6+∠H =720°+180° ∵∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H +∠I =900°【小结】本题考查了n 边形的内角和定理:n 边形的内角和为(n -2)×180°(n ≥3的整数)例2.(2020·浙江金华市·八年级期末)如图,BP 平分ABC ∠,交CD 于点F ,DP 平分ADC ∠交AB 于点E ,AB 与CD 相交于点G ,42A ∠=︒(1)若60ADC ∠=︒,求AEP ∠的度数 (2)若38C ∠=︒,求P ∠的度数 【分析】(1)根据角平分线的定义可得∠ADP =12ADC ∠ ,然后利用三角形外角的性质即可得解 (2)根据角平分线的定义可得∠ADP =∠PDF ,∠CBP =∠PBA ,再根据三角形的内角和定理可得∠A +∠ADP =∠P +∠ABP ,∠C +∠CBP =∠P +∠PDF ,所以∠A +∠C =2∠P ,即可得解 【解析】(1)∵DP 平分∠ADC ,∵∠ADP =∠PDF =12ADC ∠ ∵60ADC ∠=︒,∵30ADP ∠=︒,∵304272AEP ADP A ∠=∠+∠=︒+︒=︒ (2)∵BP 平分∠ABC ,DP 平分∠ADC ,∵∠ADP =∠PDF ,∠CBP =∠PBA ∵∠A +∠ADP =∠P +∠ABP ,∠C +∠CBP =∠P +∠PDF ,∵∠A +∠C =2∠P ∵∠A =42°,∠C =38°,∵∠P =12(38°+42°)=40° 【小结】本题考查了三角形的内角和定理及三角形外角的性质,角平分线的定义,熟记定理并理解“8字形”的等式是解题的关键.【巩固提升】1.(2020·湖北恩施土家族苗族自治州·八年级期中)如图,将矩形纸片ABCD 沿EF 折叠,点C 落在边AB 上的点H 处,点D 落在点G 处,若111GEF ∠=︒,AHG ∠度数为( )A .42°B .69°C .44°D .32°【分析】根据翻折的性质,及矩形的性质,求出AEG ∠,再利用“8”字模型求解即可 【解析】由图形翻折的性质可知,111GEF DEF ∠=∠=︒180111AEF ∴∠=︒-︒=69︒,1116942AEG GEF AEF ∠=∠-∠=︒-︒=︒ 90A G ∠=∠=︒,利用“8”字模型 42AHG AEG ∴∠=∠=︒,选A【小结】本题考查了矩形翻折问题,能够根据图形翻折的性质推理出AEG ∠是解决问题的关键,熟练运用“8”字模型是求最终结果的关键2.(2020·九年级练习)如图,∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H +∠I +∠K 度数为__【分析】连KF ,GI ,根据n 边形的内角和定理得到7边形ABCDEFK 的内角和=(7-2)×180°=900°,则∠A +∠B +∠C +∠D +∠E +∠F +∠K +(∠1+∠2)=900°,由三角形内角和定理可得到∠1+∠2=∠3+∠4,∠5+∠6+∠H =180°,则∠A +∠B +∠C +∠D +∠E +∠F +∠K +(∠3+∠4)+∠5+∠6+∠H =900°+180°,即可得到∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H +∠I +∠K 的度数 【解析】连KF ,GI ,如图,∵7边形ABCDEFK的内角和=(7-2)×180°=900°∵∠A+∠B+∠C+∠D+∠E+∠F+∠K=900°-(∠1+∠2)即∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠1+∠2)=900°∵∠1+∠2=∠3+∠4,∠5+∠6+∠H=180°∵∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠3+∠4)=900°∵∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠3+∠4)+∠5+∠6+∠H=900°+180°∵∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠K=1080°故∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠K的度数为1080【小结】本题考查了n边形的内角和定理:n边形的内角和为(n-2)×180°(n≥3的整数)3.(2020·全国九年级模型练习)阅读材料:如图1,AB、CD交于点O,我们把∵AOD和∵BOC叫做对顶三角形结论:若∵AOD和∵BOC是对顶三角形,则∠A+∠D=∠B+∠C结论应用举例:如图2:求五角星的五个内角之和,即∠A+∠B+∠ACE+∠ADB+∠E的度数解:连接CD,由对顶三角形的性质得:∠B+∠E=∠1+∠2在∵ACD中,∵∠A+∠ACD+∠ADC=180°即∠A+∠3+∠1+∠2+∠4=180°∵∠A+∠ACE+∠B+∠E+ADB=180°,即五角星的五个内角之和为180°解决问题:(1)如图①,∠A+∠B+∠C+∠D+∠E+∠F=;(2)如图②,∠A+∠B+∠C+∠D+∠E+∠F+∠G=;(3)如图③,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=;(4)如图④,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N=;请你从图③或图④中任选一个,写出你的计算过程.【分析】(1)连接CD,由对顶角三角形可得∠A+∠B=∠BDC+∠ACD,再由四边形的内角和定理得出结论;(2)连接ED,由对顶角三角形可得∠A+∠B=∠BED+∠ADE,再由五边形的内角和定理得出结论;(3)连接B H、DE,由对顶角三角形可知∠EB H+∠B H D=∠H DE+∠BED,再根据五边形的内角和定理得出结论;(4)连接ND、NE,由对顶角三角形可知∠1+∠2=∠N GH+∠E HG,再由六边形的内角和定理得出结论.【解析】(1)连接CD,由对顶角三角形可得∠A+∠B=∠BDC+∠ACD,则∠A+∠B+∠C+∠D+∠E+∠F=360°;(2)连接ED,由对顶角三角形可得∠A+∠B=∠BED+∠ADE,则∠A+∠B+∠C+∠D+∠E+∠F+∠G=540°;(3)连接B H、DE,∵由对顶角三角形可知∠EB H+∠B H D=∠H DE+∠BED,∵∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=五边形CDEF G的内角和+∵AB H的内角和=540°+180°=720°;(4)连接ND、NE,∵由对顶角三角形可知∠1+∠2=∠N GH+∠E HG,∵∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N=六边形BCF GH M的内角和+∵AND的内角和+∵NDE的内角和=(6-2)×180°+360°=1080°.【小结】本题考查的是三角形内角和定理,根据题意作出辅助线,利用∵AOD和∵BOC叫做对顶三角形的性质及多边形的内角和定理解答是解答此题的关键.4.(2020·全国九年级模型练习)如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠K度数.【分析】如图所示,由三角形外角的性质可知:∠A+∠B=∠IJ L,∠C+∠D=∠ML J,∠H+∠K=∠GIJ,∠E+∠F=∠G ML,然后由多边形的内角和公式可求得答案.【解析】如图所示:由三角形外角性质:∠A+∠B=∠IJ L,∠C+∠D=∠ML J,∠H+∠K=∠GIJ,∠E+∠F=∠G ML∵∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠K=∠IJ L+∠ML J+∠G ML+∠G+∠GIJ=(5-2)×180°=3×180°=540°.【小结】本题主要考查的是三角形外角的性质和多边形的内角和公式的应用,利用三角形外角和的性质将所求各角的和转化为五边形的内角和是解题的关键5.(2020·全国九年级练习)如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H六个角的和【分析】根据三角形内角和外角的性质可得:∠G+∠D=∠3,∠F+∠C=∠4,∠E+∠H =∠2,再根据三角形内角和定理可得答案【解析】∵∠G+∠D=∠3,∠F+∠C=∠4,∠E+∠H=∠2∵∠G+∠D+∠F+∠C+∠E+∠H=∠3+∠4+∠2∵∠B+∠2+∠1=180°,∠3+∠5+∠A=180°∵∠A+∠B+∠2+∠4+∠3=360°∵∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=360°【小结】此题主要考查了三角形内角与外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和6.(2019·全国九年级模型练习)如图,在直角ABC ∆中,BD 是ABC ∠的平分线,3BAO OAD ∠=∠,AO 的延长线与BDC ∠的平分线交于点F ,求F ∠的度数.【分析】设OAD x ∠=︒,则3BAO x ∠=︒,452ABO x ∠=︒-︒,22.5ODF x ∠=︒+︒ 根据三角形ABO 与三角形DFO 的内角和相等即可建立方程,整理方程即可得出答案 【解析】设OAD x ∠=︒,则3BAO x ∠=︒ 在直角ABC ∆中,904ABC x ∠=︒-︒ ∵BD 是ABC ∠的平分线 ∵452ABO x ∠=︒-︒在直角DBC ∆中,22.5ODF x ∠=︒+︒∵180OAB OBA AOB ODF F FOD ∠+∠+∠=∠+∠+∠=︒ 又∵AOB FOD ∠=∠∵OAB OBA ODF F ∠+∠=∠+∠ 即345222.5x x x F ︒+︒-︒=︒+︒+∠ ∵22.5F ∠=︒【小结】本题考查了对顶角相等、三角形内角和定理及其推论等知识.根据对顶三角形构建方程是解题的关键模型21 燕尾角模型问题【模型分析】如图所示,有结论:∠D =∠A +∠B +∠C 。
中考必会几何模型:8字模型
8字模型【结论】如图,AC 与BD 相交于点O ,则∠A+∠B=∠C+∠D.【证明】在△ABD 中,∠A+∠B+∠AOB=180°.在△CDO 中,∠C+∠D+∠COD=180°. ∵∠AOB=∠COD, ∴∠A+∠B=∠C+∠D.拓展模型1若BP ,DP 分别是∠ABC ,∠ADC 的平分线,则∠P=12(∠A+∠C).拓展模型2若∠CBP= 13∠ABC,∠CDP= 13∠ADC,则∠P= 13∠A+ 23∠C.名师小技巧看到相交线,就联想到8字模型,利用结论进行解题.8字模型是经典的2换2模型,已知两角之和,可知另两角之和.经典例题典例1如图,∠C=∠D=90°,∠A=20°,则∠COA=______,∠B=____.典例2如图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.典例3(1)如图,五角星的顶点为A,B,C,D,E,则∠A+∠B+∠C+∠D+∠E 的度数为().图①A.90°B.180C.270°D.360°(2)如图②,是由图①中点A向下移动到BE上得到的,∠CAD+∠B+∠E+∠C+∠D五角之和有无变化?证明你的结论;图②(3)如图③,是由②中点C移动到BD上得到的,∠CAD+∠B+∠ACE+∠D+∠E五角之和有无变化?证明你的结论.图③典例4如图,∠A+∠B+∠C+∠D+∠E+∠F=__________.初露锋芒1.如图,已知AB⊥BD,AC⊥CD.∠A=40°,则∠D的度数为().A.40°B.50°C.60°D.70°2.如图是由线段AB,CD,DF,BF,CA组成的平面图形,∠D=28°,则∠A+∠B+∠C+∠F的度数为()A.62°B.152°C.208°D.236°3.如图所示,∠1=60°,则∠A+∠B+∠C+∠D+∠E+∠F=().A.240°B.280°C.360°D.540°4.如图,求:∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=___________.5.已知:如图,BE与CF相交于点G.求证:∠A+∠B+∠C+∠D+∠E+∠F=360°.直击中考1.(2020浙江绍兴中考模拟)如图所示,∠a的度数是().A.10°B.20°C.30°D.40°答案典例1:【答案】70°;20°【解析】∵∠C=90°,∠A=20°,∴∠COA=180°-∠C -∠A=180°- 90°-20°=70°.由8字模型的结论,知∠A+∠C=∠B+∠D.又∵∠C=∠D,∴B=∠A=20°.典例2:【答案】90°;65°【解析】∵△ABC≌△ADE,∴∠DAE=∠BAC= 12(∠EAB-∠CAD)= 12×(120°-10°)=55°.∴∠DFB =∠FAB+∠B =∠FAC+∠CAB+∠B =10°+55°+25°=90°,∴∠DGB =∠DFB-∠D =90°-25°= 65°.典例3:(1)【答案】B【解析】如图,连接CD.由8字模型的结论,知∠B+∠E=∠1+∠2.∵∠A+∠ACD+∠ADC=180°,∠ACD=∠1+∠3,∠ADC=∠2+∠4.∴∠A+∠B+∠ACE+∠ADB+∠E=180°.故选B.(2)【答案】无变化.【解析】根据平角的定义,得出∠BAC+∠CAD+∠DAE=180°.∵∠BAC=∠C+∠E, ∠EAD=∠B+∠D,∴∠CAD+∠B+∠C+∠D+∠E=∠BAC+∠CAD+∠DAE=180°;(3)【答案】无变化.【解析】∵∠ACB=∠CAD+∠D, ∠ECD=∠B+∠E,∴∠CAD+∠B+∠ACE+∠D+∠E=∠ACB+∠ACE+∠ECD=180°.典例4:【答案】360°【解析】∠A+∠B=∠1+∠2.(角的8字模型)∠A+∠B+∠C+∠ADC+∠FEB+∠F=∠1+∠2+∠C+∠ADC+∠FEB+∠F =360°.(四边形内角和360°)初露锋芒1. 【答案】A【解析】由8字模型的结论,知∠A+∠B=∠C+∠D.∵AB⊥BD.AC⊥CD.∴∠B=∠C=90°,∴∠D=∠A=40°.故选A.2. 【答案】 C【解析】由8字模型的结论知,∠A+∠C=∠D+∠DEG.∠B+∠F= ∠D+∠DGE,∴∠A+∠B+C+∠F=∠D+∠DEG+∠DGE+∠D.∵∠D=28°,∠D+∠DEG+∠DGE=180°.∴∠A+∠B+∠C+∠F=180°+28°=208°.故选C.3. 【答案】A【解析】如图,连接EF. 由8字模型的结论知, ∠A+∠D=∠2+∠3,∠B+∠C= ∠CFE+∠BEF,∴∠A+∠D+∠BEA+∠CFD=∠2+ ∠3+∠BEA+∠CFD=∠CFE+∠BEF. ∵∠1=60°,∴∠CFE+∠BEF=180°-∠1=180°-60°=120.∴∠A+∠B+∠C+∠D+∠BEA+∠CFD=2(∠CFE+∠BEF)=2×120=240°.4. 【答案】360°.【解析】如图,连接GH ,CD. ∠E+∠B=∠1+∠2.(8字模型) ∠A +∠F=∠3+∠4.(8字模型) ∠A +∠B+∠FCH+∠ADG+∠E+∠F+∠DGB+∠EHC=∠1+∠2+∠3+∠4+∠GDA+∠FCH+∠DGB+∠EHC=360°.(四边形内角和360)5.【答案】360°. 【解析】如图,连接BC.∵∠1=∠E+∠F ,∠1=∠GBC+∠GCB,∴∠E+∠F=∠GBC+∠GCB,∴∠A+∠B+∠C+∠D+∠E+∠F=∠A+∠ABC+∠BCD+∠D又∵∠A+∠ABC+∠BCD+∠D=360°,∴∠A+∠B+C+∠D+∠E+∠F=360°.直击中考【答案】A Array【解析】如图.由8字模型的结论,知∠A+∠B=∠C+∠D,∴30°+20°=40°+ ∠a,∴∠a=10°.故选A.。
专题15 “8字型”模型与“燕尾”模型(原卷版)
中考常考几何模型专题15 “8字型”模型与“燕尾”模型模型一“8 字型”模型与飞镖模型1、角的“8”字模型如图所示,AC、BD 相交于点 O,连接 AD、BC。
结论:∠A+∠D=∠B+∠C。
模型二“燕尾”模型如图所示,有结论:∠D=∠A+∠B+∠C。
模型精练:一.填空题1.(2019•越秀区校级月考)如图,则∠A+∠B+∠C+∠D+∠E的度数是.2.如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=.3.如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=.4.(2019•鄂城区校级月考)如图,求图中∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I度数的和为.5.如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠K的度数为.6.(2019•鼓楼区校级月考)如图,∠A+∠B+∠C+∠D+∠E等于.7.(2019•江阴市校级期中)如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I=.8.(2019•博野校级月考)如图,∠A+∠B+∠C+∠D+∠E=.9.(2019•兴化市校级月考)如右图,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=.二.解答题10.如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H六个角的和.11.如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠K的度数.12.如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I的和.13.(1)如图①,求∠A+∠B+∠C+∠D+∠E+∠F的度数;(2)如图②,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H的度数;(3)如图③,求∠A+∠B+∠C+∠D+∠E+∠F+∠G的度数.14.(2019•鼓楼区校级期中)阅读材料:如图1,AB、CD交于点O,我们把△AOD和△BOC叫做对顶三角形.结论:若△AOD和△BOC是对顶三角形,则∠A+∠D=∠B+∠C.结论应用举例:如图2:求五角星的五个内角之和,即∠A+∠B+∠ACE+∠ADB+∠E的度数.解:连接CD,由对顶三角形的性质得:∠B+∠E=∠1+∠2,在△ACD中,∵∠A+∠ACD+∠ADC=180°,即∠A+∠3+∠1+∠2+∠4=180°,∴∠A+∠ACE+∠B+∠E+ADB=180°即五角星的五个内角之和为180°.解决问题:(1)如图①,∠A+∠B+∠C+∠D+∠E+∠F=;(2)如图②,∠A+∠B+∠C+∠D+∠E+∠F+∠G=;(3)如图③,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=;(4)如图④,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N=;请你从图③或图④中任选一个,写出你的计算过程.15.(2019•长白校级月考)“转化”是数学中的一种重要思想,即把陌生的问题转化成熟悉的问题,把复杂的问题转化成简单的问题,把抽象的问题转化为具体的问题.(1)请你根据已经学过的知识求出下面星形图(1)中∠A+∠B+∠C+∠D+∠E的度数;(2)若对图(1)中星形截去一个角,如图(2),请你求出∠A+∠B+∠C+∠D+∠E+∠F的度数;(3)若再对图(2)中的角进一步截去,你能由题(2)中所得的方法或规律,猜想图3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度数吗?只要写出结论,不需要写出解题过程)。
专题15 三角形之“8”字模型(学生版)
专题15三角形之“8”字模型模型1:角的8字模型如图所示,AC、BD相交于点O,连接AD、BC.结论:∠A+∠D=∠B+∠C.模型2边的“8”字模型如图所示,AC、BD相交于点O,连接AD、BC.结论AC+BD>AD+BC.模型分析∵OA+OD>AD①,OB+OC>BC②,由①+②得:OA+OD+OB+OC>BC+AD即:AC+BD>AD+BC.解题策略【例1】(2021•西湖区校级三模)如图,D,E为△GCF中GF边上两点,过D作AB∥CF交CE的延长线于点A,AE=CE.(1)求证:△ADE≌△CFE;(2)若GB=4,BC=6,BD=2,求CF的长.【例2】(2021秋•阜阳月考)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,连接BD,CE,BD与CE交于点O,BD与AC交于点F.(1)求证:BD=CE.(2)若∠BAC=48°,求∠COD的度数.(3)若G为CE上一点,GE=OD,AG=OC,且AG∥BD,求证:BD⊥AC.经典例题【例3】(2020秋•青岛期末)阅读材料,回答下列问题:【材料提出】“八字型”是数学几何的常用模型,通常由一组对顶角所在的两个三角形构成.【探索研究】探索一:如图1,在八字型中,探索∠A、∠B、∠C、∠D之间的数量关系为;探索二:如图2,若∠B=36°,∠D=14°,求∠P的度数为;探索三:如图3,CP、AG分别平分∠BCE、∠FAD,AG反向延长线交CP于点P,则∠P、∠B、∠D之间的数量关系为.【模型应用】应用一:如图4,延长BM、CN,交于点A,在四边形MNCB中,设∠M=α,∠N=β,α+β>180°,四边形的内角∠MBC与外角∠NCD的角平分线BP,CP相交于点P,则∠A=(用含有α和β的代数式表示),∠P=.(用含有α和β的代数式表示)应用二:如图5,在四边形MNCB中,设∠M=α,∠N=β,α+β<180°,四边形的内角∠MBC与外角∠NCD的角平分线所在的直线相交于点P,∠P=.(用含有α和β的代数式表示)【拓展延伸】拓展一:如图6,若设∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间的数量关系为.(用x、y表示∠P)拓展二:如图7,AP平分∠BAD,CP平分∠BCD的邻补角∠BCE,猜想∠P与∠B、∠D的关系,直接写出结论.【例4】(2021春•邗江区月考)如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.(1)求证:∠A+∠C=∠B+∠D.利用以上结论解决下列问题:(2)如图2所示,∠1=130°,则∠A+∠B+∠C+∠D+∠E+∠F的度数为.(3)如图3,若∠CAB和∠BDC的平分线AP和DP相交于点P,且与CD,AB分别相交于点M,N.①若∠B=100°,∠C=120°,求∠P的度数.②若角平分线中角的关系改成“∠CAP=∠CAB,∠CDP=∠CDB”,试直接写出∠P与∠B,∠C之间存在的数量关系,并证明理由.培优训练一.选择题1.(2022春•叙州区期末)如图,BP平分∠ABC交CD于点F,DP平分∠ADC交AB于点E,若∠A=45°,∠P=40°,则∠C的度数为()A.30°B.35°C.40°D.45°2.(2022•包头)如图,在边长为1的小正方形组成的网格中,A,B,C,D四个点均在格点上,AC与BD相交于点E,连接AB,CD,则△ABE与△CDE的周长比为()A.1:4B.4:1C.1:2D.2:13.(2021秋•市中区期末)如图,在△ABC中,AB=4,BC=5,点D、E分别在BC、AC上,CD=2BD,CE =2AE,BE交AD于点F,则△DEF面积的最大值是()A.1B.2C.D.4.(2021春•自流井区校级期中)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E在BC上,且BE:EC=1:2,AE交BD于点F,若AC=4,菱形ABCD的面积为12,则AF的长为()A.1.4B.1.5C.2.4D.2.55.(2022•宝山区模拟)如图,在平行四边形ABCD中,E是BC的中点,AE交BD于点F,那么S△ABF:S四边的比值为.形CDFE6.(2022•沈阳模拟)如图,在△ABC中,AB=AC=6,点D是△ABC所在平面内一点,且∠A=2∠BDC,BD 交AC所在的直线于点E,当BE•DE=20时,CE=.7.(2021秋•泉州期末)如图,在矩形ABCD中,点E在CD上,且DE=2CE,BE⊥AC于F,连结DF,有下列四个结论:①△CEF∽△ACB;②AF=2CF;③DF=AF;④tan∠ACD=.其中正确的结论有(填写序号即可).8.(2021•延边州模拟)如图,正方形ABCD中,点E是BC的中点,EF⊥AE交AD的延长线于点F,若AB=4,则DF的长为.9.(2021秋•福州期末)如图,AB∥CD,AD与BC相交于点E,若AE=3,ED=5,则的值为.10.(2019春•崇川区校级月考)如图所示,AB、CD相交于点O,若BE平分∠ABD交CD于F,CE平分∠ACD 交AB于G,∠A=45°,∠BEC=40°,则∠D的度数为.11.(2022春•新野县期末)在学习并掌握了平行线的性质和判定内容后,数学老师安排了自主探究内容一利用平行线有关知识探究并证明:三角形的内角和等于180°.小颖通过探究发现:可以将三角形的三个内角之和转化为一个平角来解决,也就是可以过三角形的一个顶点作其对边的平行线来证明.请将下面(1)中的证明补充完整:(1)已知:如图1,三角形ABC,求证:∠BAC+∠B+∠C=180°,证明:过点A作EF∥BC.(2)如图2,线段AB、CD相交于点O,连接AD、CB,我们把形如图2这样的图形称之为“8字形”.请利用小颖探究的结论直接写出∠A、∠B、∠C、∠D之间的数量关系:;(3)在图2的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N,得到图3,请判断∠P与∠D、∠B之间存在的数量关系,并说明理由.12.(2022春•靖江市校级月考)已知,如图,线段AD、CB相交于点O,连结AB、CD,∠DAB和∠BCD的平分线AP和CP相交于点P.试问∠P与∠D、∠B之间存在着怎样的数量关系,请说明理由.13.(2022春•江阴市校级月考)如图1,已知线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:;(2)如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.请直接利用(1)中的结论,完成下列各题:①仔细观察,在图2中“8字形”的个数:个;②若∠D=40°,∠B=50°,试求∠P的度数;③若∠D和∠B为任意角,其他条件不变,试问∠P与∠D、∠B之间是否存在一定的数量关系?若存在,请写出推理过程;若不存在,请说明理由;④若∠D和∠B为任意角,∠DAB=3∠2,∠DCB=3∠4,试问∠P与∠D、∠B之间是否存在一定的数量关系?若存在,请直接写出结论;若不存在,请说明理由.14.(2021秋•九龙坡区校级期末)如图,△ABC为等腰直角三角形,∠CBA=90°.以斜边AC为腰作等腰△CAD,使AC=AD,点E为CD边中点,连接AE.(1)如图1,当A、B、D三点共线时,若AE与BC相交于点F,求证:BF=BD.(2)如图2,射线BM是∠ABC的外角∠CBG的角平分线,当点D恰好落在射线BM上时,请求出∠CAE的度数.(3)如图3,连接BD,以BD为斜边作Rt△BQD,连接EQ,若AC=8,请直接写出线段EQ的最大值.15.(2021秋•大兴区期末)在△ABC中,AC=BC,∠ACB=90°,点D是直线AC上一动点,连接BD并延长至点E,使ED=BD.过点E作EF⊥AC于点F.(1)如图1,当点D在线段AC上(点D不与点A和点C重合)时,此时DF与DC的数量关系是.(2)如图2,当点D在线段AC的延长线上时,依题意补全图形,并证明:2AD=AF+EF.(3)当点D在线段CA的延长线上时,直接用等式表示线段AD,AF,EF之间的数量关系是.16.(2021秋•营口期末)若△ABC,△ADE为等腰三角形,AC=BC,AD=DE,将△ADE绕点A旋转,连接BE,F为BE中点,连接CF,DF.(1)若∠ACB=∠ADE=90°,如图1,试探究DF与CF的关系并证明;(2)若∠ACB=60°,∠ADE=120°,如图2,请直接写出CF与DF的关系.17.(2021秋•正阳县期末)图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:;(2)仔细观察,在图2中“8字形”的个数:个;(3)图2中,当∠D=50度,∠B=40度时,求∠P的度数.(4)图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系.(直接写出结果,不必证明).18.(2022春•茌平区期末)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB、AC上,AD=AE,连结BE,P,Q,M分别为DE,BC,BE的中点.(1)线段PM与QM有怎样的数量关系和位置关系?请说明理由.(2)如图2,把图1中的△ADE绕点A顺时针旋转至点D、E、C三点共线时,DE与AB交于点O,连结PQ,BD,CE,判断△MPQ的形状,并说明理由;(3)已知AB=7,AD=3,将△ADE绕点A旋转一周的过程中,请直接写出△MPQ面积的最大值.19.(2022春•石家庄期中)如图1至图2,在△ABC中,∠BAC=α°,点D在边AC所在直线上,作DE垂直于直线BC,垂足为点E;BM为△ABC的角平分线,∠ADE的平分线交直线BC于点G.特例感悟:(1)如图1,延长AB交DG于点F,若BM∥DG,∠F=30°.解决问题:①∠ABC=°;②求证:AC⊥AB;深入探究;(2)如图2,当α<90,DG与BM反向延长线交于点H,用含α的代数式表示∠BHD=;拓展延伸:(3)当点D在直线AC上移动时,若射线DG与射线BM相交,设交点为N,直接写出∠BND与α的关系式.20.(2021•新泰市模拟)(1)(教材呈现)如图,在△ABC中,点D、E分别是AB与AC的中点,结论:DE∥BC.DE=BC.(2)(结论应用)如图1,四边形ABCD中,AD=BC,E、F、G分别是AB、DC、AC的中点,若∠ACB=80°,∠DAC=20°,求∠EFG的度数.(3)如图2,在△ABC外分别作正方形ACEF和BCGH.D是AB的中点,M,N分别是正方形的中心,AC=3,BC=2,则△DMN的面积最大值为多少?。
专题04 三角形中的8字模型和燕尾模型--2024年中考数学核心几何模型重点突破(学生版)
【模型 1】“8 字”模型 如图,已知 AC 与 BD 相交于点 O,连接 AD,BC;根据三角形内角和定理和对顶角相等可得
A D B C ;根据三角形两边之和大于第三边,可得 AD BC AC BD 。
【模型变式 1】 如图已知 BD 与 AC 相交于点 O,点 E 在 OA 上,连接 AD,DE,BC;根据三角形内角和定理和
在 ABC
中, SAOB
1 2
AO
BG
;
SAOC
1 2
AO CP
SAOB
: SAOC
1 2
AO BG : 1 2
AO CP
BG:CP
在 BGE 和 CPE 中, BGE CPE 90 ; BEG CEP ;
BGE ∽ CPE
BG BE CP CE
SAOB : SAOC BE : CE
对顶角相等可得 A ADO B C DEO EDO 。
【模型变式 2】 如图 DB 与 DG 分别交 AF 于 C 点,E 点,连接 AB,GF;根据三角形内角和定理和对顶角相等
可得 A B G F D 180 。
【模型 2】“燕尾”型 如图在四边形 ABOC 中,可根据外角定理:三角形的一个外角等于不与它相邻的两个内角的 和,可得
A.∠B=∠D
B.∠1=∠A+∠D C.∠2Байду номын сангаас∠D
3.如图,∠1=60°,则∠A+∠B+∠C+∠D+∠E+∠F=( )
D.∠C=∠D
A.240°
B.280°
C.360°
D.540°
4.如图是由线段 AB,CD,DF,BF,CA 组成的平面图形, D 28 ,则 A B C F
中考必会几何模型:8字模型与飞镖模型
8字模型与飞镖模型模型1:角的8字模型如图所示,AC 、BD 相交于点O ,连接AD 、BC . 结论:∠A +∠D =∠B +∠C .ODC BA模型分析 证法一:∵∠AOB 是△AOD 的外角,∴∠A +∠D =∠AOB .∵∠AOB 是△BOC 的外角, ∴∠B +∠C =∠AOB .∴∠A +∠D =∠B +∠C . 证法二:∵∠A +∠D +∠AOD =180°,∴∠A +∠D =180°-∠AOD .∵∠B +∠C +∠BOC =180°, ∴∠B +∠C =180°-∠BOC .又∵∠AOD =∠BOC ,∴∠A +∠D =∠B +∠C . (1)因为这个图形像数字8,所以我们往往把这个模型称为8字模型. (2)8字模型往往在几何综合题目中推导角度时用到.模型实例观察下列图形,计算角度:(1)如图①,∠A +∠B +∠C +∠D +∠E =________;图图①FD C BAE EBCDA图③21O AB图④G F 12AB E解法一:利用角的8字模型.如图③,连接CD .∵∠BOC 是△BOE 的外角, ∴∠B +∠E =∠BOC .∵∠BOC 是△COD 的外角,∴∠1+∠2=∠BOC . ∴∠B +∠E =∠1+∠2.(角的8字模型),∴∠A +∠B +∠ACE +∠ADB +∠E=∠A +∠ACE +∠ADB +∠1+∠2=∠A +∠ACD +∠ADC =180°.解法二:如图④,利用三角形外角和定理.∵∠1是△FCE 的外角,∴∠1=∠C +∠E .∵∠2是△GBD 的外角,∴∠2=∠B +∠D .∴∠A +∠B +∠C +∠D +∠E =∠A +∠1+∠2=180°.(2)如图②,∠A +∠B +∠C +∠D +∠E +∠F =________.图②FDCBAE312图⑤P O QA BFC D图⑥21EDCFOBA(2)解法一: 如图⑤,利用角的8字模型.∵∠AOP 是△AOB 的外角,∴∠A +∠B =∠AOP . ∵∠AOP 是△OPQ 的外角,∴∠1+∠3=∠AOP .∴∠A +∠B =∠1+∠3.①(角的8字模型),同理可证:∠C +∠D =∠1+∠2.② ,∠E +∠F =∠2+∠3.③由①+②+③得:∠A +∠B +∠C +∠D +∠E +∠F =2(∠1+∠2+∠3)=360°.解法二:利用角的8字模型.如图⑥,连接DE .∵∠AOE 是△AOB 的外角, ∴∠A +∠B =∠AOE .∵∠AOE 是△OED 的外角,∴∠1+∠2=∠AOE . ∴∠A +∠B =∠1+∠2.(角的8字模型)∴∠A +∠B +∠C +∠ADC +∠FEB +∠F =∠1+∠2+∠C +∠ADC +∠FEB +∠F=360°.(四边形内角和为360°) 练习:1.(1)如图①,求:∠CAD +∠B +∠C +∠D +∠E = ;图图①OOEEDDCCBBAA解:如图,∵∠1=∠B+∠D ,∠2=∠C+∠CAD ,∴∠CAD+∠B+∠C+∠D+∠E=∠1+∠2+∠E=180°. 故答案为:180° 解法二:(2)如图②,求:∠CAD +∠B +∠ACE +∠D +∠E =.图②OEDCBA解:由三角形的外角性质,知∠BAC=∠E+∠ACE,∠EAD=∠B+∠D,又∵∠BAC+∠CAD+∠EAD=180°,∴∠CAD +∠B +∠ACE +∠D +∠E=180° 解法二:2.如图,求:∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H = .HGFEDCBA解:∵∠G+∠D=∠3,∠F+∠C=∠4,∠E+∠H=∠2,∴∠G+∠D+∠F+∠C+∠E+∠H=∠3+∠4+∠2,∵∠B+∠2+∠1=180°,∠3+∠5+∠A=180°,∴∠A+∠B+∠2+∠4+∠3=360°, ∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=360°解法二:模型2:角的飞镖模型如图所示,有结论:∠D =∠A +∠B +∠C .C图①图②模型分析解法一:如图①,作射线AD .∵∠3是△ABD 的外角,∴∠3=∠B +∠1,∵∠4是△ACD 的外角,∴∠4=∠C +∠2∴∠BDC =∠3+∠4,∴∠BDC =∠B +∠1+∠2+∠C ,∴∠BDC =∠BAC +∠B +∠C解法二:如图②,连接BC .∵∠2+∠4+∠D =180°,∴∠D =180°-(∠2+∠4)∵∠1+∠2+∠3+∠4+∠A =180°,∴∠A +∠1+∠3=180°-(∠2+∠4) ∴∠D =∠A +∠1+∠3.(1)因为这个图形像飞镖,所以我们往往把这个模型称为飞镖模型. (2)飞镖模型在几何综合题目中推导角度时使用. 模型实例如图,在四边形ABCD 中,AM 、CM 分别平分∠DAB 和∠DCB ,AM 与CM 交于M ,探究∠AMC 与∠B 、∠D 间的数量关系.解答:利用角的飞镖模型如图所示,连接DM 并延长.∵∠3是△AMD 的外角,∴∠3=∠1+∠ADM , ∵∠4是△CMD 的外角,∴∠4=∠2+∠CDM ,∵∠AMC =∠3+∠4 ∴∠AMC =∠1+∠ADM +∠CDM +∠2,∴∠AMC =∠1+∠2+∠ADC .(角的飞镖模型)∵AM 、CM 分别平分∠DAB 和∠DCB ,∴12BAD ∠∠=,22BCD∠∠=, ∴22BAD BCDAMC ADC ∠∠∠=++∠,∴()3602B ADC AMC ADC ︒-∠+∠∠=+∠(四边形内角和360°),∴3602B ADCAMC ︒-∠+∠∠=,∴2∠AMC +∠B -∠ADC =360°.练习:1.如图,求∠A+∠B+∠C+∠D+∠E+∠F= .DE【答案】230°提示:∠C+∠E+∠D=∠EOC=115º.(飞镖模型),∠A+∠B+∠F=∠BOF=115º.∠A+∠B+∠C+∠D+∠E+∠F=115º+115º=230º 2.如图,求∠A+∠B+∠C+∠D= .AA【答案】220°提示:如图所示,连接BD.∠AED=∠A+∠3+∠1,∠BFC=∠2+∠4+∠C ,∠A+∠ABF+∠C+∠CDE=∠A+∠3+∠1+∠2+∠4+∠C=∠AED+∠BFC=220º模型3 边的“8”字模型如图所示,AC 、BD 相交于点O ,连接AD 、BC .结论AC+BD>AD+BC .BCA模型分析∵OA+OD>AD ①, OB+OC>BC ②, 由①+②得: OA+OD+OB+OC>BC+AD 即:AC+BD>AD+BC.模型实例如图,四边形ABCD 的对角线AC 、BD 相交于点O 。
8字模型解析(已整理)
模型专题训练之“8”字模型【知识总结】特征:两条相交的线段(有交点,想8字)字模型中,关于边的结论,请做七年级春季讲义第【经典例题】考法一巧用“8字”模型倒角【例1】如图,已知AB ⊥BD ,AC⊥CD ,∠A =40°,则∠D 的度数为()A .40°B .50°C .60°D .70°【分析】根据直角三角形的性质求出∠AEB 的度数,根据对顶角相等求出∠DEC ,根据直角三角形的两个锐角互余计算即可.【解答】解:∵AB ⊥BD ,∠A =40°,∴∠AEB =50°,∴∠DEC =50°,又AC ⊥CD ,∴∠D =40°,故选:A .【练1】如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=30°,∠D=40°,求∠ACD的度数.【分析】根据三角形外角与内角的关系及三角形内角和定理解答.【解答】解:∵DF⊥AB,∴∠DFB=90°,∴∠B=90°﹣∠D=90°﹣40°=50°,∵∠ACD是△ABC的外角,∠A=30°,∴∠ACD=∠B+∠A=50°+30°=80°.【练2】如图,已知D是△ABC的BC边的延长线上一点,DF⊥AB,交AB于点F,交AC于点E,∠A=56°,∠D=30°,则∠ACB的度数为()A.56°B.44°C.64°D.54°【解答】解:∵DF⊥AB,∴∠BFE=90°,∵∠A+∠AEF=∠BFE,∴∠AEF=34°,∴∠CED=∠AEF=34°,∴∠ACB=∠D+∠CED=64°故选:C.【练3】已知BE、CD为△ABC高线,且∠ACB=35°,∠BCD=10°,则∠ABE=________°【解答】由外角性质的,∠COB=∠ACD+∠BEC=∠CDB+∠DBE∵∠ACB=35°,∠BCD=10°,∴∠ACD=20°∵BE、CD为△ABC高线,∴∠BEC=∠CDB=90°∴∠ABE=20°【例2】如图,∠1=∠2,∠D=∠ABE,若线段BE与DC相交于点O,求证:∠1=∠BOD.【解答】(8字模型找AB与DO组成的8字)证明:∵∠D=∠ABE,∵∠DPA=∠BPC,∴∠1=∠BOD【练1】如图,∠1=∠2,∠E=∠ACD,若线段BE与DC相交于点O,求证:∠1=∠BOD.【解答】证明:∵∠E=∠ACD,∴∠COE=∠2∵∠COE=∠BOD,∠2=∠1∴∠1=∠BOD【练2】如图,已知以△ABC的边AB、AC分别向外作等腰直角△ABD与等腰直角△ACE,∠BAD=∠CAE=90°,连接BE和CD相交于点O,AB交CD于点F,AC交BE于点G,求证:BE=DC,且BE⊥DC.【解答】证明:∵△ABD和△ACE都是等腰直角三角形(已知)∴AB=AD,AE=AC(等腰直角三角形定义)又∵∠BAD=∠CAE=90°(已知)∴∠BAD+∠BAC=∠CAE+∠BAC(等式性质)即:∠DAC=∠BAE∴△ABE≌△ADC(SAS)∴BE=DC(全等三角形的对应边相等)∠ABE=∠ADC(全等三角形的对应角相等)又∵∠BFO=∠DFA(对顶角相等)∠ADF+∠DFA=90°(直角三角形的两个锐角互余)∴∠ABE+∠BFO=90°(等量代换)∴∠BOF=∠DAF=90°即BE⊥DC【注意】在证明BE⊥DC时,可找8字模型来证明(DO与AB组成8字模型),规范过程要用8字模型的证明方法:外角的性质来证明.考法二“8字”模型之多角求和【例3】如图,一个任意的五角星,它的五个内角的度数和为()A.90°B.180°C.360°D.120°【解答】解:∵∠AFG是△CEF的外角,∴∠C+∠E=∠AFG,∵∠AGF是△BDG的外角,∴∠B+∠D=∠AGF,∵∠A+∠AFG+∠AGF=180°,∴∠A+∠B+∠C+∠D+∠E=180°.故选B.【练1】如图,∠BAK+∠B+∠C+∠CDE+∠E+∠F+∠MGN+∠H+∠K=.【分析】如图所示,由三角形外角的性质可知:∠A+∠B=∠MJL,∠C+∠D=∠NLJ,∠H+∠K=∠GMJ,∠E+∠F=∠GNL,然后由多边形的内角和公式可求得答案.【解答】解:如图所示:延长AK交BC于J,延长DE交BC于L,由三角形的外角的性质可知:∠A+∠B=∠MJL,∠C+∠D=∠NLJ,∠H+∠K=∠GMJ,∠E+∠F=∠GNL,∴∠BAK+∠B+∠C+∠CDE+∠E+∠F+∠MGN+∠H+∠K=(5﹣2)×180°=3×180°=540°.故答案为:540°.【练2】如图是由线段AB,CD,DF,BF,CA组成的平面图形,∠D=28°,则∠A+∠B+∠C+∠F的度数为()A.62°B.152°C.208°D.236°【分析】首先求出∠F+∠B=∠D+∠EGD,然后证明出∠C+∠A+∠F+∠B﹣∠D=180°,最后结合题干∠D=28°求出∠A+∠B+∠C+∠F的度数.【解答】解:∵如图可知∠BED=∠F+∠B,∠CGE=∠C+∠A,又∵∠BED=∠D+∠EGD,∴∠F+∠B=∠D+∠EGD,又∵∠CGE+∠EGD=180°,∴∠C+∠A+∠F+∠B﹣∠D=180°,又∵∠D=28°,∴∠A+∠B+∠C+∠F=180°+28°=208°,故选:C.【练3】小明一笔画成了如图所示的图形,则∠A+∠B+∠C+∠D+∠E+∠F+∠G的度数为()A.360°B.540°C.600°D.720°【分析】根据五边形的内角和是540°,可求∠A+∠B+∠C+∠D+∠1=540°,又由三角形的一个外角等于与它不相邻的两个内角的和,得∠1=∠E+∠2,∠2=∠F+∠G,从而求出所求的角的和.【解答】解:如图,在五边形ABCDH中:∠A+∠B+∠C+∠D+∠1=540°,∵∠1=∠E+∠2,∠2=∠F+∠G,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=540°.故选:B.【练4】如图,则∠A+∠B+∠C+∠D+∠E+∠F的度数为.【分析】根据三角形的外角性质和四边形内角和等于360°可得∠A+∠B+∠C+∠D+∠E+∠F的度数.【解答】解:如图,∵∠1=∠A+∠F,∠2=∠1+∠E,∴∠A+∠B+∠C+∠D+∠E+∠F=∠B+∠C+∠D+∠2=360°.故答案为:360°.【练5】如图,已知∠1=70°,∠C+∠D+∠E+∠F+∠A+∠B=.【分析】由三角形的外角性质和三角形内角和定理即可得出结果.【解答】解:如图所示:由三角形的外角性质得:∠BMH=∠A+∠C,∠BHM=∠F+∠BGF=∠F+∠1,∵∠BMH+∠BHM+∠B=180°,∠1+∠D+∠F=180°,∴∠C+∠D+∠E+∠F+∠A+∠B=∠BMH+∠BHM+∠B+∠1+∠D+∠E﹣2∠1=2×180°﹣2×70°=220°;故答案为:220°.【练6】如图所示,∠1=130°,则∠A+∠B+∠C+∠D+∠E+∠F的度数为.【分析】根据三角形的内外角关系定理,把要求的角转化为可求的角.【解答】解:如图:∠1=∠B+∠C,∠DME=∠A+∠E,∠ANF=∠F+∠D,∵∠1=∠DME+∠ANF=130°,∴∠A+∠B+∠C+∠D+∠E+∠F=2×130°=260°.故答案为:260°.【练7】如图,∠A+∠B+∠C+∠D+∠E+∠F的度数是.【分析】先根据三角形外角的性质得出∠A+∠B=∠1,∠E+∠F=∠2,∠C+∠D=∠3,再根据三角形的外角和是360°进行解答.【解答】解:∵∠1是△ABG的外角,∴∠1=∠A+∠B,∵∠2是△EFH的外角,∴∠2=∠E+∠F,∵∠3是△CDI的外角,∴∠3=∠C+∠D,∵∠1、∠2、∠3是△GIH的外角,∴∠1+∠2+∠3=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为:360°.“8字”模型与双角分线【例4】如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.(1)求证:∠A+∠C=∠B+D;(2)如图2,若∠CAB和∠BDC的平分线AP和DP相交于点P,且与CD、AB分别相交于点M、N.①以线段AC为边的“8字型”有个,以点O为交点的“8字型”有个;②若∠B=100°,∠C=120°,求∠P的度数;③若角平分线中角的关系改为“∠CAP=∠CAB,∠CDP=∠CDB”,试探究∠P与∠B、∠C之间存在的数量关系,并证明理由.【解答】(1)证明:在图1中,有∠A+∠C=180°﹣∠AOC,∠B+∠D=180°﹣∠BOD,∵∠AOC=∠BOD,∴∠A+∠C=∠B+∠D;(2)解:①3;4;故答案为:3,4;②以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,∵AP、DP分别平分∠CAB和∠BDC,∴∠BAP=∠CAP,∠CDP=∠BDP,∴2∠P=∠B+∠C,∵∠B=100°,∠C=120°,∴∠P=(∠B+∠C)=(100°+120°)=110°;③3∠P=∠B+2∠C,其理由是:∵∠CAP=∠CAB,∠CDP=∠CDB,∴∠BAP=∠CAB,∠BDP=∠CDB,以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴∠C﹣∠P=∠CDP﹣∠CAP=(∠CDB﹣∠CAB),∠P﹣∠B=∠BDP﹣∠BAP=(∠CDB﹣∠CAB).∴2(∠C﹣∠P)=∠P﹣∠B,∴3∠P=∠B+2∠C.【练1】如图1,已知线段AB、CD相交于点O,连接AC、BD,我们把形如图1的图形称之为“对顶三角形”.如图2,∠ACO和∠DBO的平分线CP和BP相交于点P,并且与AB、CD 分别相交于M、N.试解答下列问题:(1)仔细观察,在图2中有个以线段OC为边的“对顶三角形”;(2)在图2中,若∠A=40°,∠D=50°,求∠P的度数.(3)在图2中,若设∠A=α,∠D=β,∠ACP=∠PCD,∠ABP=∠PBD,试问∠P与∠A、∠D之间存在着怎样的数量关系(用α、β表示∠P),并说明理由;(4)如图3,则∠A+∠B+∠C+∠D+∠E+∠F的度数为.【解答】解:(1)在图2中有4个以线段OC为边的“对顶三角形”;故答案为:4;(2)∵∠ACO和∠DBO的平分线CP和BP相交于点P,∴∠ACP=∠DCP,∠ABP=∠DBP,∵∠ACP+∠A=∠ABP+∠P,∠DCP+∠P=∠DBP+∠D,∴∠A﹣∠P=∠D﹣∠P,∴∠P=(∠A+∠D),∵∠A=40°,∠D=50°,∴∠P=(40°+50°)=45°;(3)∠P=(α+β),理由如下:∵∠ACO和∠DBO的平分线CP和BP相交于点P,∴∠ACP=∠DCP,∠ABP=∠DBP,∵∠ACP+∠A=∠ABP+∠P,∠DCP+∠P=∠DBP+∠D,∴∠A﹣∠P=∠D﹣∠P,∴∠P=(∠A+∠D),∴∠P=(α+β);(4)如图所示:由三角形的外角性质得:∠1=∠2+∠E,∠2=∠C+∠D,∴∠1=∠C+∠D+∠E,在四边形ABMF 中,∠A +∠B +∠1+∠F =360°,∴∠A +∠B +∠C +∠D +∠E +∠F =360°.【练2】已知:如图1,线段AB 、CD 相交于点O ,连接AD 、CB ,我们把形如图1的图形称之为“8字形”.试解答下列问题:问题一:(1)在图1中,请直接写出∠A 、∠B 、∠C 、∠D 之间的数量关系:________________;(2)仔细观察,在图2中“8字形”的个数:________;(3)在图2中,若∠D=40°,∠B=36°,∠DAB 和∠BCD 的平分线AP 和CP 相交于点P ,并且与CD 、AB 分别相交于M 、N .利用(1)的结论,试求∠P 的度数;(4)如果图2中∠D 和∠B 为任意角时,其他条件不变,试问∠P 与∠D 、∠B 之间存在着怎样的数量关系.(直接写出结论即可)问题二:如图3,AD BC ∥,且DAB ∠和BCD ∠的平分线AP 和CP 相交于点P ,ADC ∠和ABC ∠的平分线DQ 和BQ 相交于点Q ,判断P ∠与Q ∠的大小关系,并说明理由。
中考专题复习微专题1 “8”字模型及飞镖模型人教版
【解析】如图,将AC平移至BF,AD的延长线与BF相交于点G,连
∴AB+BC+CD+AD< 2AC+2BD.
2(AB+BC+CD+AD)>2(AC+BD),
例1 观察下列图形,计算:∠A+∠B+∠C+∠D+∠E=
∵AB+AC=AB+AE+EC,AB+AE>BE,
∴BE+EC>BD+CD.
角、边的“ 8”字模型
第6章
微专题1
“8”Байду номын сангаас模型及飞镖模型
1.角、边的“ 8”字模型
如图所示,线段AD,BC相交于点O,结论:
∠A+∠B=∠C+∠D.
考向突破
【模型分析】因为这个图形像数字8,所以我们往往把这个模
型称为“ 8”字模型.“ 8”字模型往往在几何综合题目中推导角
度时用到.
【模型推理】∵∠AOC是△AOB的外角,
由①②可得AB+AC>BD+CD.
∴∠A+∠1+∠3=180°-(∠2+∠4).
例5 如图,在四边形ABCD中,AM,CM分别平分∠DAB和∠DCB,AM与CM交于M,探究∠AMC与∠B,∠D间的数量关系.
【模型分析】因为这个图形像数字8,所以我们往往把这个模型称为“ 8”字模型.
∴∠D=∠A+∠1+∠3.
°-(∠+∠)
°-∠+∠
+∠ADC.(四边形内角和是 360°)
.
∴2∠AMC+∠B-∠ADC=360°.
初中数学:8字模型巧解三角形专项学习
1 .如图,AB和CD交于点O,求证:∠A+∠C=∠B+∠D .证明 :如图,在△AOC中,∠COB是一个外角,由 外角的性质 可得:∠COB=∠A+∠C,同理:在△BOD中,∠COB=∠B+∠D,∴∠A+∠C=∠B+∠D.看,就是这么简单!简单到学这个模型都没啥意思。
但是我想说,有了这个8字型意识,后面的题才好做哦。
重要结论:“8”字形图:∠A+∠C=∠B+∠D;总结升华 :8字模型看起来特别简单,在复杂几何图形推导角时往往有巧妙的作用。
因为模型像数字8,所以我们称为8字模型。
接下来用8字型练习一下吧。
2 .如图, AB ∥ CD , AD 和 BC 相交于点 O ,∠ A =40°,∠ AOB =75°,则∠ C等于( ).A、40°B、65°C、75°D、115°【答案】B.这道题简单,看下一题开始妙解咯。
3 .如图所示,五角星ABCDE中,试说明∠A+∠B+∠C+∠D+∠E=180°.解析:这道题可用外角的性质来解,我们这里介绍一下用8字模型解此题,很巧妙,请看: 如下图所示,连接CD,由8字模型可得:∠B+∠E=∠1+∠2.在△ACD中,∠A+∠ACD+∠ADC=180°即∠A+∠ACO+∠1+∠2+∠ADO=180°∴∠A+∠ACO+∠ADO+∠B+∠E=180°即∠A+∠B+∠C+∠D+∠E=180°接下来,练一题感受一下8字模型。
4 .如图,∠ A +∠ B +∠ C +∠ D +∠ E 的度数为____________. (“缙云杯“试题)【答案】180°难度提升,开始做综合题。
这样才能感受8字模型带来的好处!5 .(2015春·启东市校级月考)如图,BE与CD相交于点A,CF为∠BCD的平分线,EF 为∠BED的平分线.(1)试探求:∠F与∠B、∠D之间的关系?(2)若∠B:∠D:∠F=2:4:x.求x的值.【 思路分析 】(1)先根据角平分线的定义得到∠1=∠2,∠3=∠4,如下图所示。
中考几何模型:8字模型与飞镖模型
8字模型与飞镖模型模型1:角的飞镖模型如图所示,有结论:∠D =∠A +∠B +∠C .C图①模型分析解法一:如图①,作射线AD .∵∠3是△ABD 的外角,∴∠3=∠B +∠1,∵∠4是△ACD 的外角,∴∠4=∠C +∠2∴∠BDC =∠3+∠4,∴∠BDC =∠B +∠1+∠2+∠C ,∴∠BDC =∠BAC +∠B +∠C解法二:如图②,连接BC .∵∠2+∠4+∠D =180°,∴∠D =180°-(∠2+∠4)∵∠1+∠2+∠3+∠4+∠A =180°,∴∠A +∠1+∠3=180°-(∠2+∠4) ∴∠D =∠A +∠1+∠3.(1)因为这个图形像飞镖,所以我们往往把这个模型称为飞镖模型. (2)飞镖模型在几何综合题目中推导角度时使用. 模型实例如图,在四边形ABCD 中,AM 、CM 分别平分∠DAB 和∠DCB ,AM 与CM 交于M ,探究∠AMC 与∠B 、∠D 间的数量关系.解答:利用角的飞镖模型如图所示,连接DM 并延长.∵∠3是△AMD 的外角,∴∠3=∠1+∠ADM , ∵∠4是△CMD 的外角,∴∠4=∠2+∠CDM ,∵∠AMC =∠3+∠4 ∴∠AMC =∠1+∠ADM +∠CDM +∠2,∴∠AMC =∠1+∠2+∠ADC .(角的飞镖模型)∵AM 、CM 分别平分∠DAB 和∠DCB ,∴12BAD ∠∠=,22BCD∠∠=, ∴22BAD BCDAMC ADC∠∠∠=++∠,∴()3602B ADC AMC ADC ︒-∠+∠∠=+∠(四边形内角和360°),∴3602B ADCAMC ︒-∠+∠∠=,∴2∠AMC +∠B -∠ADC =360°.练习:1.如图,求∠A+∠B+∠C+∠D+∠E+∠F= .E【答案】230°提示:∠C+∠E+∠D=∠EOC=115º.(飞镖模型),∠A+∠B+∠F=∠BOF=115º.∠A+∠B+∠C+∠D+∠E+∠F=115º+115º=230º 2.如图,求∠A+∠B+∠C+∠D= .AA【答案】220°提示:如图所示,连接BD.∠AED=∠A+∠3+∠1,∠BFC=∠2+∠4+∠C ,∠A+∠ABF+∠C+∠CDE=∠A+∠3+∠1+∠2+∠4+∠C=∠AED+∠BFC=220º模型2 边的“8”字模型如图所示,AC、BD相交于点O,连接AD、BC.结论AC+BD>AD+BC.AC模型分析∵OA+OD>AD①, OB+OC>BC②,由①+②得: OA+OD+OB+OC>BC+AD 即:AC+BD>AD+BC.模型实例如图,四边形ABCD的对角线AC、BD相交于点O。
专题04 三角形中的8字模型和燕尾模型--2024年中考数学核心几何模型重点突破(解析版)
专题04三角形中的8字模型和燕尾模型【模型1】“8字”模型如图,已知AC 与BD 相交于点O,连接AD,BC;根据三角形内角和定理和对顶角相等可得C B D A ∠+∠=∠+∠;根据三角形两边之和大于第三边,可得BD AC BC AD +<+。
【模型变式1】如图已知BD 与AC 相交于点O,点E 在OA 上,连接AD,DE,BC;根据三角形内角和定理和对顶角相等可得EDO DEO C B ADO A ∠+∠=∠+∠=∠+∠。
【模型变式2】如图DB 与DG 分别交AF 于C 点,E 点,连接AB,GF;根据三角形内角和定理和对顶角相等可得︒+∠=∠+∠=∠+∠180D F G B A 。
【模型2】“燕尾”型如图在四边形ABOC 中,可根据外角定理:三角形的一个外角等于不与它相邻的两个内角的和,可得C B A BOC ∠+∠+∠=∠。
【模型变式1】如图在ABC ∆中,点D,E,F 分别在AB,BC,AC 上,AE,BF,CD 相交于点O。
可得:①CE BE S S AOC AOB ::=∆∆:②CFAF S S BOC AOB ::=∆∆③ADBD S S AOC BOC ::=∆∆【证明】如图,分别过点B,点C 作BG 垂直于AE 于G 点,作CP 垂直于AG 的延长线于P 点。
在ABC ∆中,BG AO S AOB ∙=∆21 ;CP AO S AOC ∙=∆21CP BG CP AO BG AO S S AOC AOB :=⎪⎭⎫ ⎝⎛∙⎪⎭⎫ ⎝⎛∙=∴∆∆21:21:在BGE ∆和CPE ∆中,︒=∠=∠90CPE BGE ;CEP BEG ∠=∠;BGE ∆∴∽CPE ∆CE BE CP BG =∴CE BE S S AOC AOB ::=∴∆∆同理可证:CF AF S S BOC AOB ::=∆∆;ADBD S S AOC BOC ::=∆∆【例1】如图,ABC ADE ≌,10CAD ∠=︒,25B ∠=︒,120EAB ∠=︒,求DFB ∠和DGB ∠的度数.【答案】90DFB ∠=︒,65DGB ∠=︒【分析】由 ABC ADE ≌,可得()1 2DAE BAC EAB CAD ∠=∠=∠-∠,根据三角形外角性质可得 DFB FAB B ∠=∠+∠,因为 FAB CAD CAB ∠=∠+∠,即可求得 DFB ∠的度数;根据三角形外角的性质可得 DGB DFB D ∠=∠-∠,即可得 DGB ∠的度数.【解析】解:∵ ABC ADE ≌,∴ BAC DAE ∠=∠, B D ∠=∠,∵120EAB ∠=︒,10CAD ∠=︒,25B ∠=︒,∴25D B ∠=∠=︒,()1 2DAE BAC EAB CAD ∠=∠=∠-∠()1120102=⨯︒-︒55=︒,∴ DFB FAB B∠=∠+∠ CAD CAB B=∠+∠+∠ 105525=︒+︒+︒90=︒,∴ 902565DGB DFB D ∠=∠-∠=︒-︒=︒.∴90DFB ∠=︒,65DGB ∠=︒.【例2】如图1,已知线段AB 、CD 相交于点O ,连接AD 、CB ,我们把形如图1的图形称之为“8字形”.试解答下列问题:(1)在图1中,请直接写出A ∠、B Ð、C ∠、D ∠之间的数量关系:________________;(2)如图2,在图1的条件下,DAB ∠和BCD ∠的平分线AP 和CP 相交于点P ,并且与CD 、AB 分别相交于M 、N .请直接利用(1)中的结论,完成下列各题:①仔细观察,在图2中“8字形”的个数:___________个;②若40,50D B ∠=︒∠=︒,试求P ∠的度数;③若D ∠和B Ð为任意角,其他条件不变,试问P ∠与D ∠、B Ð之间是否存在一定的数量关系?若存在,请写出推理过程;若不存在,请说明理由;④若D ∠和B Ð∠为任意角,32,34DAB DCB ∠=∠∠=∠,试问P ∠与D ∠、B Ð之间是否存在一定的数量关系?若存在,请直接写出结论;若不存在,请说明理由.【答案】(1)A D C B∠+∠=∠+∠(2)①6②45P ∠=︒③存在(理由见解析)④存在,23B D P∠+∠=∠【分析】(1)根据三角形内角和定理以及对顶角相等可得出结论.(2)①分别找到以交点M 、O 、N 为顶点的能构成“8字形”的三角形,避免漏数.②利用“8字形”的数量关系并结合角平分线的定义,可求出P ∠的度数.③和②同理④利用“8字形”的数量关系并结合“32DAB ∠=∠,34DCB ∠=∠”即可得出结论.【解析】(1)解: 在AOD △中,180A D AOD ∠+∠+∠=︒在COB △中,180C B COB ∠+∠+∠=︒AOD COB ∠=∠ (对顶角相等)A D C B∴∠+∠=∠+∠(2)①解:以M 为交点的有1个,即为AMD 和CMP!以O 为交点的有4个,即为AOD △和COB △,AOM 和BOC ,AOM 和CON ,AOD △和CON②解: AP 平分DAB ∠,CP 平分BCD∠21,23OAD OCB∴∠=∠∠=∠由(1)中的结论得:13,D P ∠+∠=∠+∠2123D B∠+∠=∠+∠整理得:2B D P∠+∠=∠5040452P ︒+︒∴∠==︒③解:2B D P ∠+∠=∠理由如下:AP 平分DAB ∠,CP 平分BCD∠21,23OAD OCB∴∠=∠∠=∠由(1)中的结论得:13,D P ∠+∠=∠+∠2123D B∠+∠=∠+∠整理得:2B D P∠+∠=∠④解:23B D P ∠+∠=∠理由如下:由(1)中的结论得:24P B∠+∠=∠+∠3234D B∠+∠=∠+∠整理得:23B D P∠+∠=∠一、单选题1.如图,,AD BC 是O 的直径,点P 在BC 的延长线上,PA 与O 相切于点A ,连接BD ,若40P ∠=︒,则ADB ∠的度数为()A .65︒B .60︒C .50︒D .25︒【答案】A 【分析】由切线性质得出90PAO ∠=︒,根据三角形的内角和是180︒、对顶角相等求出50BOD AOP ∠=∠=︒,即可得出答案;【解析】解: PA 与⊙O 相切于点A ,AD 是⊙O 的直径,∴OA PA ⊥,∴90PAO ∠=︒,40P ∠=︒ ,∴50AOP ∠=︒,∴50BOD AOP ∠=∠=︒,OB OD = ,∴OBD ODB ∠=∠,∴()118050652ADB ∠=⨯︒-︒=︒,故选:A .2.如图,AB 和CD 相交于点O ,∠A =∠C ,则下列结论中不能完全确定正确的是()A.∠B=∠D B.∠1=∠A+∠D C.∠2>∠D D.∠C=∠D【答案】D【分析】利用三角形的外角性质,对顶角相等逐一判断即可.【解析】∵∠A+∠AOD+∠D=180°,∠C+∠COB+∠B=180°,∠A=∠C,∠AOD=∠BOC,∴∠B=∠D,∵∠1=∠2=∠A+∠D,∴∠2>∠D,故选项A,B,C正确,故选D.3.如图,∠1=60°,则∠A+∠B+∠C+∠D+∠E+∠F=()A.240°B.280°C.360°D.540°【答案】A【分析】根据三角形内角和定理得到∠B与∠C的和,然后在五星中求得∠1与另外四个角的和,加在一起即可.【解析】解:由三角形外角的性质得:∠3=∠A+∠E,∠2=∠F+∠D,∵∠1+∠2+∠3=180°,∠1=60°,∴∠2+∠3=120°,即:∠A+∠E+∠F+∠D=120°,∵∠B+∠C=120°,∴∠A+∠B+∠C+∠D+∠E+∠F=240°.故选A.4.如图是由线段AB ,CD ,DF ,BF ,CA 组成的平面图形,D 28 ∠=,则A B C F ∠∠∠∠+++的度数为()A .62B .152C .208D .236【答案】C 【解析】∵如图可知BED F B ∠=∠+∠,CGE C A ∠=∠+∠,又∵BED D EGD ∠=∠+∠,∴F B D EGD ∠+∠=∠+∠,又∵180CGE EGD ∠+∠=︒,∴180C A F B D ∠+∠+∠+∠-∠=︒,又∵28D ∠=︒,∴18028208A B C F ∠+∠+∠+∠=︒+︒=︒,故选C .5.在社会实践手工课上,小茗同学设计了一个形状如图所示的零件,如果52,25A B ︒︒∠=∠=,30,35,72C D E ︒︒︒∠=∠=∠=,那么F ∠的度数是().A .72︒B .70︒C .65︒D .60︒【答案】A 【分析】延长BE 交CF 的延长线于O ,连接AO ,根据三角形内角和定理求出,BOC ∠再利用邻补角的性质求出DEO ∠,再根据四边形的内角和求出DFO ∠,根据邻补角的性质即可求出DFC ∠的度数.【解析】延长BE 交CF 的延长线于O ,连接AO ,如图,∵180,OAB B AOB ∠+∠+∠=︒∴180,AOB B OAB ∠=︒-∠-∠同理得180,AOC OAC C ∠=︒-∠-∠∵360,AOB AOC BOC ∠+∠+∠=︒∴360BOC AOB AOC∠=︒-∠-∠360(180)(180)B OAB OAC C =︒-︒-∠-∠-︒-∠-∠107,B C BAC =∠+∠+∠=︒∵72,BED ∠=︒∴180108,DEO BED ∠=︒-∠=︒∴360DFO D DEO EOF∠=︒-∠-∠-∠36035108107110,=︒-︒-︒-︒=︒∴180********DFC DFO ∠=︒-∠=︒-︒=︒,故选:A .6.如图所示,∠A +∠B +∠C +∠D +∠E 的结果为()A .90°B .360°C .180°D .无法确定【答案】C 【解析】如图,连接BC ,∵∠D +∠E +∠DOE =∠BOC +∠OCB +∠BOC =180°,∠DOE =∠BOC ,∴∠D +∠E =∠OBC +∠OCB ,又∵∠A+∠ABO+∠ACO+∠OBC+∠OCB=180°,∴∠A+∠ABO+∠ACO+∠D+∠E=180°.故选:C.二、填空题7.如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I=__.【答案】900°【分析】根据多边形的内角和,可得答案.【解析】解:连EF,GI,如图,∵6边形ABCDEFK的内角和=(6-2)×180°=720°,∴∠A+∠B+∠C+∠D+∠E+∠F=720°-(∠1+∠2),即∠A+∠B+∠C+∠D+∠E+∠F+(∠1+∠2)=720°,∵∠1+∠2=∠3+∠4,∠5+∠6+∠H=180°,∴∠A+∠B+∠C+∠D+∠E+∠F∠H+(∠3+∠4)=900°,∴∠A+∠B+∠C+∠D+∠E+∠F(∠3+∠4)+∠5+∠6+∠H=720°+180°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I=900°,故答案为:900°.∠+∠+∠+∠+∠=______°.8.如图,A B C D E【答案】180【分析】如图根据三角形的外角的性质,三角形内角和定理可知∠1=∠B+∠2,∠2=∠D +∠E,∠A+∠1+∠C=180°,由此不难证明结论.【解析】解:如图,∵∠1=∠B+∠2,∠2=∠D+∠E,∠A+∠1+∠C=180°,∴∠A+∠B+∠D+∠E+∠C=180°,故答案为:180.9.如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=__.【答案】360°【分析】连接CF,根据三角形的外角得到由三角形外角的性质可得:∠2=∠G+∠H,∠3=∠A+∠B,∠1=∠D+∠E=∠4+∠5,根据四边形的内角和为360°,可得:∠2+∠3+∠GFE+∠4+∠5+∠DCB=360°即∠G+∠H+∠A+∠B+∠GFE+∠D+∠E+∠DCB=360°.【解析】解:如图,连接FC,由三角形外角的性质可得:∠2=∠G+∠H,∠3=∠A+∠B,∠1=∠D+∠E=∠4+∠5,根据四边形的内角和为360°,可得:∠2+∠3+∠GFE+∠4+∠5+∠DCB=360°即∠G+∠H+∠A+∠B+∠GFE+∠D+∠E+∠DCB=360°,故答案为360°.10.如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=__.【答案】720°【分析】根据三角形的外角等于与它不相邻的两个内角的和,可得∠2与∠H、∠G的关系,∠1与∠2、∠D的关系,根据多边形的内角和公式,可得答案.【解析】解:如图:由三角形的外角等于与它不相邻的两个内角的和,得∠2=∠H+∠G,∠1=∠2+∠D,∠1=∠H+∠G+∠D,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=∠A +∠B +∠C +∠E +∠F +∠H +∠G +∠D=180°×(6-2)=270°.故答案为:720°.三、解答题11.如图所示,已知四边形ABDC ,求证BDC A B C ∠=∠+∠+∠.【答案】见解析【分析】方法1连接BC ,根据三角形内角和定理可得结果;方法2作射线AD ,根据三角形的外角性质得到31B ∠=∠+∠,42C ∠=∠+∠,两式相加即可得到结论;方法3延长BD ,交AC 于点E ,两次运用三角形外角的性质即可得出结论.【解析】方法1如图所示,连接BC .在ABC 中,180A ABC ACB ∠+∠+∠= ,即12180A ABD ACD ∠+∠+∠+∠+∠= .在BCD △中,12180BDC ∠+∠+∠= ,++BDC A ABD ACD ∴∠=∠∠∠;方法2如图所示,连接AD 并延长.3∠ 是ABD △的外角,31+ABD ∴∠=∠∠.同理,42ACD ∠=∠+∠.3412ABD ACD ∴∠+∠=∠+∠+∠+∠.即BDC A ABD ACD ∠=∠+∠+∠.方法3如图所示,延长BD ,交AC 于点E .DEC ∠ 是ABE △的外角,DEC A ABD ∴∠=∠+∠.BDC ∠ 是DEC 的外角,BDC DEC ACD ∴∠=∠+∠.BDC A ABD ACD ∴∠=∠+∠+∠.12.如图,AM 、CM 分别平分BAD ∠和BCD ∠,若42B ∠=︒,54D ∠=︒,求M ∠的度数.【答案】48M ∠=︒.【分析】根据三角形内角和定理用∠B 、∠M 表示出∠BAM-∠BCM ,再用∠B 、∠M 表示出∠MAD-∠MCD ,再根据角平分线的定义可得∠BAM-∠BCM=∠MAD-∠MCD ,然后求出∠M 与∠B 、∠D 关系,代入数据进行计算即可得解;【解析】解:根据三角形内角和定理,∠B+∠BAM=∠M+∠BCM ,∴∠BAM-∠BCM=∠M-∠B ,同理,∠MAD-∠MCD=∠D-∠M ,∵AM 、CM 分别平分∠BAD 和∠BCD ,∴∠BAM=∠MAD ,∠BCM=∠MCD ,∴∠M-∠B=∠D-∠M ,∴∠M=12(∠B+∠D )=12(42°+54°)=48°;13.如图,BP 平分ABC ∠,交CD 于点F ,DP 平分ADC ∠交AB 于点E ,AB 与CD 相交于点G ,42A ∠=︒.(1)若60ADC ∠=︒,求AEP ∠的度数;(2)若38C ∠=︒,求P ∠的度数.【答案】(1)72︒;(2)40︒.【分析】(1)根据角平分线的定义可得∠ADP=12ADC ∠,然后利用三角形外角的性质即可得解;(2)根据角平分线的定义可得∠ADP=∠PDF ,∠CBP=∠PBA ,再根据三角形的内角和定理可得∠A+∠ADP=∠P+∠ABP ,∠C+∠CBP=∠P+∠PDF ,所以∠A+∠C=2∠P ,即可得解.【解析】解:(1)∵DP 平分∠ADC ,∴∠ADP=∠PDF=12ADC ∠,∵60ADC ∠=︒,∴30ADP ∠=︒,∴304272AEP ADP A ∠=∠+∠=︒+︒=︒;(2)∵BP 平分∠ABC ,DP 平分∠ADC ,∴∠ADP=∠PDF ,∠CBP=∠PBA ,∵∠A+∠ADP=∠P+∠ABP ,∠C+∠CBP=∠P+∠PDF ,∴∠A+∠C=2∠P ,∵∠A=42°,∠C=38°,∴∠P=12(38°+42°)=40°.14.(1)如图①,求∠A+∠B+∠C+∠D+∠E+∠F的度数;(2)如图②,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H的度数;(3)如图③,求∠A+∠B+∠C+∠D+∠E+∠F+∠G的度数.【答案】(1)360°;(2)720°;(3)540°【分析】(1)连接AD,根据三角形的内角和定理得∠B+∠C=∠BAD+∠CDA,进而将问题转化为求四边形ADEF的内角和,(2)与(1)方法相同转化为求六边形ABCDEF的内角和,(3)使用上述方法,转化为求五边形ABCDE的内角和.【解析】解:(1)如图①,连接AD,由三角形的内角和定理得,∠B+∠C=∠BAD+∠CDA,∴∠BAF+∠B+∠C+∠CDE+∠E+∠F=∠BAF+∠BAD+∠CDA+∠D+∠E+∠F即四边形ADEF的内角和,四边形的内角和为360°,∴∠BAF+∠B+∠C+∠CDE+∠E+∠F=360°,(2)如图②,由(1)方法可得:∠BAH+∠B+∠C+∠D+∠E+∠EFG+∠G+∠H的度数等于六边形ABCDEF的内角和,∴∠BAH+∠B+∠C+∠D+∠E+∠EFG+∠G+∠H=(6-2)×180°=720°,(3)如图③,根据(1)的方法得,∠F+∠G=∠GAE+∠FEA,∠BAG+∠B+∠C+∠D+∠DEF+∠F+∠G的度数等于五边形ABCDE的内角和,∴∠BAG+∠B+∠C+∠D+∠DEF+∠F+∠G=(5-2)×180°=540°,15.阅读材料:如图1,AB、CD交于点O,我们把△AOD和△BOC叫做对顶三角形.结论:若△AOD和△BOC是对顶三角形,则∠A+∠D=∠B+∠C.结论应用举例:如图2:求五角星的五个内角之和,即∠A+∠B+∠ACE+∠ADB+∠E的度数.解:连接CD,由对顶三角形的性质得:∠B+∠E=∠1+∠2,在△ACD中,∵∠A+∠ACD+∠ADC=180°,即∠A+∠3+∠1+∠2+∠4=180°,∴∠A+∠ACE+∠B+∠E+ADB=180°即五角星的五个内角之和为180°.解决问题:(1)如图①,∠A+∠B+∠C+∠D+∠E+∠F=;(2)如图②,∠A+∠B+∠C+∠D+∠E+∠F+∠G=;(3)如图③,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=;(4)如图④,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N=;请你从图③或图④中任选一个,写出你的计算过程.【答案】(1)360°;(2)540°;(3)720°;(4)1080°;过程见解析【分析】(1)连接CD,由对顶角三角形可得∠A+∠B=∠BDC+∠ACD,再由四边形的内角和定理得出结论;(2)连接ED,由对顶角三角形可得∠A+∠B=∠BED+∠ADE,再由五边形的内角和定理得出结论;(3)连接BH、DE,由对顶角三角形可知∠EBH+∠BHD=∠HDE+∠BED,再根据五边形的内角和定理得出结论;(4)连接ND 、NE ,由对顶角三角形可知∠1+∠2=∠NGH +∠EHG ,再由六边形的内角和定理得出结论.【解析】解:(1)连接CD ,由对顶角三角形可得∠A +∠B =∠BDC +∠ACD ,则∠A +∠B +∠C +∠D +∠E +∠F =360°;(2)连接ED ,由对顶角三角形可得∠A +∠B =∠BED +∠ADE ,则∠A +∠B +∠C +∠D +∠E +∠F +∠G =540°;(3)连接BH 、DE ,∵由对顶角三角形可知∠EBH +∠BHD =∠HDE +∠BED ,∴∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H =五边形CDEFG 的内角和+△ABH 的内角和=540°+180°=720°;(4)连接ND 、NE ,∵由对顶角三角形可知∠1+∠2=∠NGH +∠EHG ,∴∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H +∠M +∠N =六边形BCFGHM 的内角和+△AND 的内角和+△NDE 的内角和=(6-2)×180°+360°=1080°.故答案为:360°;540°;720°;1080°.16.模型规律:如图1,延长CO 交AB 于点D ,则1BOC B A C B ∠=∠+∠=∠+∠+∠.因为凹四边形ABOC 形似箭头,其四角具有“BOC A B C ∠=∠+∠+∠”这个规律,所以我们把这个模型叫做“箭头四角形”.模型应用(1)直接应用:①如图2,60,20,30A B C ∠=︒∠=︒∠=︒,则BOC ∠=__________︒;②如图3,A B C D E F ∠+∠+∠+∠+∠+∠=__________︒;(2)拓展应用:①如图4,ABO ∠、ACO ∠的2等分线(即角平分线)1BO 、1CO 交于点1O ,已知120BOC ∠=︒,50BAC ∠=︒,则1BO C ∠=__________︒;②如图5,BO 、CO 分别为ABO ∠、ACO ∠的10等分线1,2,3,,(,)89i =⋯.它们的交点从上到下依次为1O 、2O 、3O 、…、9O .已知120BOC ∠=︒,50BAC ∠=︒,则7BO C ∠=__________︒;③如图6,ABO ∠、BAC ∠的角平分线BD 、AD 交于点D ,已知120,44BOC C ∠=︒∠=︒,则ADB =∠__________︒;④如图7,BAC ∠、BOC ∠的角平分线AD 、OD 交于点D ,则B Ð、C ∠、D ∠之同的数量关系为__________.【答案】(1)①110;②260;(2)①85;②99;③142;④∠B -∠C +2∠D =0【分析】(1)①根据题干中的等式直接计算即可;②同理可得∠A +∠B +∠C +∠D +∠E +∠F =∠BOC +∠DOE ,代入计算即可;(2)①同理可得∠BO 1C =∠BOC -∠OBO 1-∠OCO 1,代入计算可得;②同理可得∠BO 7C =∠BOC -17(∠BOC -∠A ),代入计算即可;③利用∠ADB=180°-(∠ABD+∠BAD)=180°-12(∠BOC-∠C)计算可得;④根据两个凹四边形ABOD和ABOC得到两个等式,联立可得结论.【解析】解:(1)①∠BOC=∠A+∠B+∠C=60°+20°+30°=110°;②∠A+∠B+∠C+∠D+∠E+∠F=∠BOC+∠DOE=2×130°=260°;(2)①∠BO1C=∠BOC-∠OBO1-∠OCO1=∠BOC-12(∠ABO+∠ACO)=∠BOC-12(∠BOC-∠A)=∠BOC-12(120°-50°)=120°-35°=85°;②∠BO7C=∠BOC-310(∠BOC-∠A)=120°-310(120°-50°)=120°-21°=99°;③∠ADB=180°-(∠ABD+∠BAD)=180°-310(∠BOC-∠C)=180°-12(120°-44°)=142°;④∠BOD=12∠BOC=∠B+∠D+12∠BAC,∠BOC=∠B+∠C+∠BAC,联立得:∠B-∠C+2∠D=0.。
初中数学几何8字型
一、8字模型模型1角的“8”字模型如图所示,AC、BD相交于点O,连接AD、BC。
结论:∠A+∠D=∠B+∠C。
证明:在△AOD和△BOC中,∠AOD=∠BOC(对顶角)又∵∠A+∠D+∠AOD=∠B+∠C+∠BOC=180°∴∠A+∠D=∠B+∠C模型分析8字模型往往在几何综合题目中推导角度时用到。
模型实例观察下列图形,计算角度:(1)如图①,∠A+∠B+∠C+∠D+∠E=_____;(2)如图②,∠A+∠B+∠C+∠D+∠E+∠F=_____。
模型精练1.(1)如图①,求∠CAD+∠B+∠C+∠D+∠E=____;(2)如图②,求∠CAD+∠B+∠ACE+∠D+∠E=______。
2.如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=_____。
模型2边的“8”字模型如图所示,AC、BD相交于点O,连接AD、BC。
结论:AC+BD>AD+BC。
证明:在△AOD中,AO+OD>AD在△BOC中,BO+OC>BC∴AC+BD=(A0+OC)+(B0+OD)>AD+BC∴AC+BD>AD+BC模型实例如图,四边形ABCD的对角线AC、BD相交于点O。
求证:(1)AB+BC+CD+AD>AC+BD;(2)AB+BC+CD+AD<2AC+2BD.模型3相似8字模型(又称X字型)⑴如图8型,对顶角的对边平行,则△ADE∽△ABC;⑵如图反8型,对顶角的对边不平行,且有另一对角相等,则△ADE∽△ABC.已知:∠1=∠2,结论:△ADE∽△ABC证明:如图∠1=∠2,又∠DAE=∠BAC(对顶角)∴∠E=∠C(∠D=∠B)∴△ADE∽△ABC(AAA)模型分析在相似三角形的判定中,我们常通过作平行线,从而得到8字形相似(有时得到A字形相似,后面会讲到),在做题时,我们也常常关注题目中由平行线产生的相似三角形。
以下题目由沈阳数学高老师提供模型例题:如图,△ABC 是等边三角形,CE 是外角平分线,点D 在AC 上,连接BD 并延长与CE 交于点E .⑴求证:△ABD ∽△CED ;⑵若AB =6,AD =2CD ,求BE的长.练习:1.如图7,点P 是□ABCD 边AB 上的一点,射线CP 交DA 的延长线于点E ,则图中相似的三角形有()A.0对B.1对C.2对D.3对2.如图8,正方形ABCD 的对角线AC 与BD 相交于点O ,∠ACB 的角平分线分别交AB 、BD 于M 、N 两点,若AM =2,则线段ON 的长为()A.22B.32C.1D.623.如图9,在□ABCD 中,AC 与BD 交于点O ,E 为OD 的中点,连接AE 并延长交DC 于点F ,则DF ∶FC 等于()A.1∶4 B.1∶3 C.2∶3 D.1∶2图7图8图9。
相似三角形中的“8”字模型(3种题型)(解析版)--中考物理数学专项训练
相似三角形中的“8”字模型(3种题型)一、【知识梳理】8字_平行型条件:CD∥AB,结论:ΔPAB∼ΔPCD(上下相似);左右不一定相似,不一定全等,但面积相等;四边形ABCD为一般梯形.条件:CD∥AB,PD=PC.结论:ΔPAB∼ΔPCD∼ΔPDC(上下相似)ΔPAD≅ΔPBC左右全等;四边形ABCD为等腰梯形;8字_不平行型条件:∠CDP=∠BAP.结论:ΔAPB∼ΔDPC(上下相似);ΔAPD∼ΔBPC(左右相似);二、【考点剖析】8字-平行型1.直接利用“8”字型解题1如图,在平行四边形ABCD 中,点E 在边DC 上,若DE :EC =1:2,则BF :BE =.【答案】3:5.【解析】DE :EC =1:2,可知CE CD =CE AB =23,由CE ⎳AB ,可知BF EF =AB CE=32,故BF :BE =3:5.【总结】初步认识相似三角形中的“8”字型.2如图,P 为▱ABCD 对角线BD 上任意一点.求证:PQ ∙PI =PR ∙PS .【解析】证明:∵四边形ABCD 为平行四边形,∴AB ⎳CD ,AD ⎳BC ,∴RB ⎳DI ,SD ⎳BQ .根据三角形一边平行线的性质定理,则有PI PR =PD PB =PS PQ,∴PQ ⋅PI =PR ⋅PS .【总结】初步认识相似三角形中的“8”字型,一个图形中存在往往不只一个,可用来进行等比例转化.3如图,在平行四边形ABCD 中,CD 的延长线上有一点E ,BE 交AC 于点F ,交AD 于点G .求证:BF 2=FG ∙EF .【解析】证明:∵四边形ABCD 为平行四边形,∴AB ⎳CD ,AD ⎳BC ,∴AB ⎳CE ,AG ⎳BC .根据三角形一边平行线的性质定理,则有:EF BF =CF AF=BF FG ,∴BF 2=FG ∙EF .【总结】初步认识相似三角形中的“8”字型,一个图形中存在往往不只一个,可用来进行等比例转化.4如图,点C 在线段AB 上,ΔAMC 和ΔCBN 都是等边三角形.求证:(1)MD DC =AM CN;(2)MD ∙EB =ME ∙DC .【解析】证明:(1)∵ΔAMC 和ΔCBN 是等边三角形,∴∠ACM =∠NCB =∠AMC =60°.∵点C 在线段AB 上,∴∠MCN =180°-∠ACM -∠NCB =60°=∠AMC .∴AM ⎳CN ,∴MD DC =AM CN.(2)同(1)易证得CM ⎳BN ,则有ME EB =MC NB.∵ΔAMC 和ΔCBN 是等边三角形,∴MC =AM ,NB =CN ,∴MD DC=ME EB ,∴MD ∙EB =ME ∙DC .【总结】初步认识相似三角形中的“8”字型,一个图形中存在往往不只一个,可用来进行等比例转化.5如图,已知AB ⎳CD ⎳EF .AB =m ,CD =n ,求EF 的长.(用m 、n 的代数式表示).【答案】mn m +n .【解析】由AB ⎳CD ⎳EF ,则有EF AB =CF BC ,EF CD =BF BC ,即EF m +EF n =1,得EF =mn m +n.【总结】考查相似三角形中“8”字型的综合应用,得到比例关系.6如图,E 为平行四边形ABCD 的对角线AC 上一点,AE EC=13,BE 的延长线交CD 的延长线于点G ,交AD 于点F ,求BF :FG 的值.【答案】1:2.【解析】由AF ⎳BC ,可得AF BC =AE EC =13,即AF AD=13,故AF FD =12,由AB ⎳DG ,可得:BF :FG =AF :FD =1:2.【总结】考查相似三角形中“8”字型的综合应用,得到比例关系.7如图,l 1⎳l 2,AF :FB =2:5,BC :CD =4:1,求AE :EC 的值.【答案】2:1.【解析】由l 1⎳l 2,得:AG BD =AF FB =25,又BC :CD =4:1,可得AG CD=21,故AE :EC =AG :CD =2:1.【总结】考查相似三角形中“8”字型的综合应用,得到比例关系.2.添加辅助线构造“8”字模型解题8过ΔABC 的顶点C 任作一直线,与边AB 及中线AD 分别交于点F 、E .求证:AE ED =2AF FB.【解析】过点D 作DG ⎳AB 交CF 于点G .∵DG ⎳AB ∴AE ED =AF GD ,DG BF =CD CB ;∵AD 是中线, ∴BC =2CD , ∴DG BF =12;∴AE ED =2AF BF.【总结】题考查三角形一边的平行线知识,要学会构造平行基本模型.9如图,AD 是ΔABC 的内角平分线.求证:AB AC=BD DC .【解析】过点C作CM⎳AB交AD的延长线于点M.∵CM⎳AB ∴AB CM=BDDC,∠BAD=∠M∵AD是角平分线∴∠BAD=∠DAC;∴∠M=∠DAC∴AC=CM∴AB AC=BD DC.【总结】本题考查了三角形一边的平行线、角平分线及等腰三角形的相关知识.8字-不平行型1如图,∠BEC=∠CDB,下列结论正确的是()A.EF•BF=DF•CFB.BE•CD=BF•CFC.AE•AB=AD•ACD.AE•BE=AD•DC【分析】结合图形利用8字模型相似三角形证明△EFB∽△DFC,然后利用等角的补角相等得出∠AEC=∠ADB,最后证明△ABD∽△ACE,利用相似三角形的对应边成比例逐一判断即可.【解答】解:∵∠BEC=∠CDB,∠EFB=∠DFC,∴△EFB∽△DFC,∴EF DF=FB FC,∴EF•FC=DF•FB,故A不符合题意:∵△EFB∽△DFC,∴BE CD=BF FC,∴BE•CF=CD•BF,故B不符合题意;∵∠BEC=∠CDB,∠BEC+∠AEC=180°,∠BDC+∠ADB=180°,∴∠AEC=∠ADB,∴△ABD∽△ACE,∴AB AC=AD AE,∴AB•AE=AD•AC,故C符合题意;因为:AE,BE,AD,CD组不成三角形,也不存在比例关系,故D不符合题意;故选:C.【点评】本题考查了相似三角形的判定与性质,根据题目的已知条件并结合图形分析是解题的关键.1.【过关检测】一、选择题(共3小题)1(2023•静安区校级一模)如图,在△ABC中,中线AD与中线BE相交于点G,联结DE.下列结论成立的是()A. B. C. D.【分析】由AD,BE是△ABC的中线,得到DE是△ABC的中位线,推出△DEG∽△ABG,△CDE∽△CBA,由相似三角形的性质即可解决问题.【解答】解:AD,BE是△ABC的中线,∴DE是△ABC的中位线,∴DE∥AB,DE=AB,∴△DEG∽△ABG,∴DG:AG=DE:AB=1:2,BG:EG=AB:DE,==,∴DG=AG,∵BG:EG=AB:DE=2:1,∴GB:BE=2:3,∴S△AGB:S△AEB=2:3,∵AE=EC,∴S△AEB=S△ABC,∴S△AGB=S△ABC,∵△CDE∽△CBA,∴==,∴S △CDE =S △ABC ,∴=,结论成立的是=,故选:C .【点评】本题考查相似三角形的判定和性质,关键是掌握相似三角形的性质.2(2023•徐汇区一模)如图,点D 在△ABC 边AB 上,∠ACD =∠B ,点F 是△ABC 的角平分线AE 与CD 的交点,且AF =2EF ,则下列选项中不正确的是()A. B. C. D.【分析】过C 作CG ∥AB 交AE 延长线于G ,由条件可以证明△ACF ≌△GCE (ASA ),得到AF =EG ,CF =CE ,由△ADF ∽△GCF ,再由平行线分线段成比例,即可解决问题.【解答】解:过C 作CG ∥AB 交AE 延长线于G ,∴∠G =∠BAE ,∵AE 平分∠BAC ,∴∠BAE =∠CAE ,∴∠G =∠CAE ,∴CG =CA ,∵∠ACD =∠B ,∠ECG =∠B ,∴∠ACF =∠ECG ,∴△ACF ≌△GCE (ASA ),∴CF =CE ,AF =EG ,∵AF =2FE ,∴EG =2FE ,令EF =k ,则AF =EG =2k ,AE =GF =3k ,∵△ADF∽△GCF,∴AD:CG=AF:FG=2k:(3k)=2:3,∴=,故A正确.∵AB∥CG,∴CE:BE=GE:AE=2k:(3k)=2:3,∴=,故B正确.∵∠ACD=∠B,∠DAC=∠BAC,∴△ACD∽△ABC,∴==,故C正确.∵=,AC和BD不一定相等,∴不一定等于.故选:D.【点评】本题考查角的平分线,相似三角形的判定和性质,关键是通过辅助线构造相似三角形.3(2022秋•闵行区期末)如图,某零件的外径为10cm,用一个交叉卡钳(两条尺长AC和BD相等)可测量零件的内孔直径AB.如果==3,且量得CD=4cm,则零件的厚度x为()A.2cmB.1.5cmC.0.5cmD.1cm【分析】根据相似三角形的判定和性质,可以求得AB的长,再根据某零件的外径为10cm,即可求得x的值.【解答】解:∵==3,∠COD=∠AOB,∴△COD∽△AOB,∴AB:CD=2,∵CD=4cm.∴AB=8cm.∵某零件的外径为10cm,∴零件的厚度x为:(10-8)÷2=1(cm),故选:D.【点评】本题考查相似三角形的应用,解答本题的关键是求出AB的值.二、填空题(共8小题)4(2022秋•奉贤区期中)如图,已知点D为△ABC中AC边的中点,AE∥BC,ED交AB于点G,交BC的延长线于点F,若,BC=8,则AE的长为4.【分析】由AE∥BC,可得△AEG∽△BFG,△AED∽△CFD推出==,又有BC的值,再由==1,得出AE=CF,代入即可求解AE的长.【解答】解:∵AE∥BC,∴△AEG∽△BFG,△AED∽△CFD,∴==,==1,即AE=CF,又BC=8,∴=AE=4.故答案为:4.【点评】本题主要考查了平行线分线段成比例的性质问题,应熟练掌握.5(2022•浦东新区校级模拟)如图,已知点D、E分别在△ABC的边CA、BA的延长线上,DE∥BC.DE:BC=2:3,设=,试用向量表示向量,=- .【分析】由DE∥BC可得△ADE∽△ACB,由DE:BC=2:3,可得DA=CD,即可表示,从而得出答案.【解答】解:∵DE∥BC,∴△ADE∽△ACB,∵DE:BC=2:3,∴DA:CA=DE:BC=2:3,∵CD=DA+CA,∴DA=CD,∵=,∴=,∴=-,故答案为:-.【点评】本题考查向量的运算,相似三角形的判定与性质,熟练掌握相似三角形的性质和向量的运算的解题的关键.6(2022•静安区二模)如图,在梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,点E、F分别是边AB、CD的中点,AO:OC=1:4,设=,那么= .(用含向量的式子表示)【分析】由相似三角形性质可得=4=4,再根据梯形中位线定理即可求得答案.【解答】解:∵AD∥BC,∴△AOD∽△COB,∴==,∴=4=4,∵点E、F分别是边AB、CD的中点,∴=(+)=(+4)=,故答案为:.【点评】本题考查了相似三角形的判定和性质,梯形中位线定理,平面向量等,熟练掌握相似三角形的判定和性质是解题关键.7(2023•静安区校级一模)在矩形ABCD内作正方形AEFD(如图所示),矩形的对角线AC交正方形的边EF于点P.如果点F恰好是边CD的黄金分割点(DF>FC),且PE=2,那么PF= -1.【分析】先根据黄金分割的定义可得=,再利用正方形的性质可得:DF∥AE,DF=AE,从而可得=,然后证明8字模型相似三角形△CFP∽△AEP,从而利用相似三角形的性质进行计算即可解答.【解答】解:∵点F恰好是边CD的黄金分割点(DF>FC),∴==,∵四边形AEFD是正方形,∴DF∥AE,DF=AE,∴=,∵DC∥AB,∴∠FCP=∠PAE,∠CFP=∠AEP,∴△CFP∽△AEP,∴==,∵PE=2,∴PF=-1,故答案为:-1.【点评】本题考查了相似三角形的判定与性质,矩形的性质,正方形的性质,黄金分割,熟练掌握8字模型相似三角形是解题的关键.8(2022春•浦东新区校级期中)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,如果△BCD的面积是△ABD面积的2倍,那么△BOC与△BDC的面积之比是2:3.【分析】过点D作DM⊥BC,垂足为M,过点B作BN⊥AD,交DA的延长线于点N,根据已知易得DM=BN,再根据S△BCD=2S△ABD,从而可得BC=2AD,然后再证明8字模型相似三角形△AOD∽△COB,利用相似三角形的性质可得==,从而可得=,最后根据△BOC与△BDC 的高相等,即可解答.【解答】解:过点D作DM⊥BC,垂足为M,过点B作BN⊥AD,交DA的延长线于点N,∵AD∥BC,∴BN=DM,∵S△BCD=2S△ABD,∴BC•DM=2×AD•BN,∴BC=2AD,∵AD∥BC,∴∠ADB=∠DBC,∠DAC=∠ACB,∴△AOD∽△COB,∴==,∴=,∵△BOC与△BDC的高相等,∴==,故答案为:2:3.【点评】本题考查了平行线间的距离,相似三角形的判定与性质,梯形,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.9(2022秋•虹口区校级月考)如图,梯形ABCD中,AD∥BC,,点E为边BC的中点,点F在边CD上且3CF=CD,EF交对角线AC于点G,则AG:GC=7:2.【分析】如图,连接DE,交AC于M,过M作MH∥EF交CD于H,首先利用AD∥BC,,点E 为边BC的中点,可以得到AD:EC=AM:CM=DM:ME=3:2,然后利用MH∥EF,DH:HF= DM:ME=3:2=6:4,最后利用又3CF=CD即可求解.【解答】解:如图,连接DE,交AC于M,过M作MH∥EF交CD于H,∵AD∥BC,,点E为边BC的中点,∴△ADM∽△CME,∴AD:EC=AM:CM=DM:ME=3:2,∵MH∥EF,∴DH:HF=DM:ME=3:2=6:4,又3CF=CD,∴DF=2CF,∴CF:HF=5:4,∴CG:MG=5:4,∴CG=CM,MG=CM,而AM:CM=3:2,∴AM=CM,∴AG=AM+MG=CM,∴AG:GC=CM:CM=7:2.故答案为:7:2.【点评】此题主要考查了相似三角形的性质于判定,同时也利用了平行线的性质,解题的关键是会进行比例线段的转换,有一定的难度.10(2022秋•黄浦区期末)如图是一个零件的剖面图,已知零件的外径为10cm,为求出它的厚度x,现用一个交叉卡钳(AC和BD的长相等)去测量零件的内孔直径AB.如果==,且量得CD的长是3cm,那么零件的厚度x是0.5cm.的值.【解答】解:∵==,∠COD=∠AOB,∴△COD∽△AOB,∴AB:CD=3,∵CD=3cm.∴AB=9cm.∵某零件的外径为10cm,∴零件的厚度x为:(10-9)÷2=0.5(cm),故答案为:0.5.【点评】本题考查相似三角形的应用,解答本题的关键是求出AB的值.11(2022春•闵行区校级月考)如图,梯形ABCD中,∠D=90°,AB∥CD,将线段CB绕着点B按顺时针方向旋转,使点C落在CD延长线上的点E处.联结AE、BE,设BE与边AD交于点F,如果AB=4,且=,那么梯形ABCD的中位线等于7.【分析】过点B作BG⊥EC,利用同高的两个三角形的面积的比先求出EF:BF,再利用相似三角形的性质求出ED、EG,最后利用梯形中位线与上下底的关系得结论.【解答】解过点B作BG⊥EC,垂足为G∵=,∴=.∵AB∥CD,∴△EDF∽△BAF.∴==,∴ED=2,=.∵AD∥BG,∴=.∴EG=6.∵CB绕着点B按顺时针方向旋转,点C落在CD延长线上的点E处,∴BE=BC.∵BG⊥EC,∴EG=GC=6.∴DC=DG+CG=4+6=10.∴梯形ABCD的中位线=(AB+CD)=(4+10)=7.故答案为:7.【点评】本题主要考查了相似三角形的性质和判定,掌握等腰三角形的三线合一、等高的两个三角形的面积比等于底边的比、梯形的中位线等于上下底的和的一半是解决本题的关键.三、解答题(共12小题)1(2023•普陀区一模)如图,已知梯形ABCD中,AD∥BC,E是BC上一点,AE∥CD,AE、BD相交于点F,EF:CD=1:3.(1)求的值;(2)联结FC,设,,那么= ,= .(用向量、表示)【分析】(1)根据题意可证明四边形AECD为平行四边形,得到AE=CD,则EF:AE=1:3,EF:AF=1:2,易证明△BEF∽△DAF,由相似三角形的性质即可求解;(2)由AF=2EF得,,由三角形法则求出和,再求出,最后利用三角形法则即可求出.【解答】解:∵AD∥BC,AE∥CD,∴四边形AECD为平行四边形,∴AE=CD,∵EF:CD=1:3,∴EF:AE=1:3,EF:AF=1:2,∵AD∥BC,∴△BEF∽△DAF,∴;(2)联结FC,如图,由(1)可得AF=2EF,∵,∴,,∴=,=,∵,AD=EC,∴,∴==,∴==.故答案为:,.【点评】本题主要考查平行四边形的判定与性质、相似三角形的判定与性质、平面向量,熟练三角形法则是解题关键.2(2023•奉贤区一模)已知:如图,在梯形ABCD中,AD∥BC,点E在对角线BD上,∠EAD=∠BDC.(1)求证:AE•BD=AD•DC;(2)如果点F在边DC上,且,求证:EF∥BC.【分析】(1)利用平行线的性质证明∠ADB=∠DBC,然后利用已知条件可以证明△ADE∽△DBC,由此即可解决问题;(2)利用(1)的结论和已知条件可以证明△DEF∽△DBC,接着利用相似三角形的在即可求解.【解答】证明:(1)∵AD∥BC,∴∠ADB=∠DBC,又∵∠EAD=∠BDC,∴△ADE∽△DBC,∴AE:AD=DC:BD,∴AE•BD=AD•DC;(2)∵AE:AD=DC:BD,且,∴=,而∠EDF=∠BDC,∴△DEF∽△DBC,∴∠DEF=∠DBC,∴EF∥BC.【点评】此题主要考查了相似三角形的性质与判定,同时也利用了平行线的性质,比例的基本性质,有一定的综合性.3(2023•青浦区一模)如图,在平行四边形ABCD中,点F在边AD上,射线BA、CF相交于点E,DF=2AF.(1)求EA:AB的值;(2)如果,,试用、表示向量.【分析】(1)根据平行四边形的性质可得AB∥CD,AB=CD,易证△AEF∽△DCF,则=,由DF=2AF即可求解;(2)先算出,再根据即可求解.【解答】解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴△AEF∽△DCF,∴,∴,∵DF=2AF,∴,∴;(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵DF=2AF,∴,∵,,∴,,∴.【点评】本题主要考查相似三角形的判定与性质、平行四边形的性质、平面向量,熟练掌握平面向量的运算法则是解题关键.4(2022秋•金山区校级期末)已知:如图,在△ABC中,点D在边BC上,AE∥BC,BE与AD、AC 分别相交于点F、G,AF2=FG•FE.(1)求证:△CAD∽△CBG;(2)联结DG,求证:DG•AE=AB•AG.【分析】(1)通过证明△FAG∽△FEA,可得∠FAG=∠E,由平行线的性质可得∠E=∠EBC=∠FAG,且∠ACD=∠BCG,可证△CAD∽△CBG;(2)由相似三角形的性质可得=,且∠DCG=∠ACB,可证△CDG∽△CAB,可得=,由平行线分线段成比例可得=,可得结论.【解答】证明:(1)∵AF2=FG⋅FE.∴=,∵∠AFG=∠EFA,∴△FAG∽△FEA,∴∠FAG=∠E,∵AE∥BC,∴∠E=∠EBC,∴∠EBC=∠FAG,∵∠ACD=∠BCG,∴△CAD∽△CBG;(2)∵△CAD∽△CBG,∴=,∵∠DCG=∠ACB,∴△CDG∽△CAB,∴=,∵AE∥BC,∴=,∴=,∴=,∴DG•AE=AB•AG.【点评】本题考查了相似三角形的判定和性质,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.5(2022•松江区二模)已知:如图,两个△DAB和△EBC中,DA=DB,EB=EC,∠ADB=∠BEC,且点A、B、C在一条直线上,联结AE、ED,AE与BD交于点F.(1)求证:;(2)如果BE2=BF•BD,求证:DF=BE.【分析】(1)根据已知易证△DAB∽△EBC,然后利用相似三角形的性质可得∠DAB=∠EBC,=,从而可得AD∥EB,进而证明8字模型相似三角形△ADF∽△EBF,最后利用相似三角形的性质可得=,即可解答;(2)根据已知易证△BFE ∽△BED ,从而利用相似三角形的性质可得∠BEF =∠BDE ,进而可得∠DAF =∠BDE ,然后利用(1)的结论可证△ADF ≌△DBE ,再利用全等三角形的性质即可解答.【解答】证明:(1)∵DA =DB ,EB =EC ,∴=,∵∠ADB =∠BEC ,∴△DAB ∽△EBC ,∴∠DAB =∠EBC ,=,∴AD ∥EB ,∴∠DAF =∠AEB ,∠ADF =∠DBE ,∴△ADF ∽△EBF ,∴=,∴;(2)∵BE 2=BF •BD ,∴=,∵∠DBE =∠EBF ,∴△BFE ∽△BED ,∴∠BEF =∠BDE ,∵∠DAF =∠AEB ,∴∠DAF =∠BDE ,∵∠ADF =∠DBE ,AD =DB ,∴△ADF ≌△DBE (ASA ),∴DF =BE .【点评】本题考查了全等三角形的判定与性质,相似三角形的判定与性质,熟练掌握全等三角形的判定与性质,以及相似三角形的判定与性质是解题的关键.6(2023•宝山区二模)如图,四边形ABCD 中,AD ∥BC ,AC 、BD 交于点O ,OB =OC .(1)求证:AB =CD ;(2)E 是边BC 上一点,联结DE 交AC 于点F ,如果AO 2=OF •OC ,求证:四边形ABED 是平行四边形.【分析】(1)由等腰三角形的性质和判定及平行线的性质,说明△AOB 和△DOC 全等,利用全等三角形的性质得结论;(2)先说明△AOB∽△FOD,再说明AB∥DE,结合已知由平行四边形的判定可得结论.【解答】证明:(1)∵OB=OC,∴∠DBC=∠ACB.∵AD∥BC,∴∠DAC=∠ACB,∠ADB=∠DBC.∴∠DAC=∠ADB.∴OA=DO.在△AOB和△DOC中,,∴△AOB≌△DOC(SAS).∴AB=CD.(2)∵AO2=OF•OC,OA=OD,OC=OB,∴AO•OD=OF•OB,即.∵∠AOB=∠DOC,∴△AOB∽△FOD.∴∠BAO=∠DFO.∴AB∥DE.又∵AD∥BC,∴四边形ABED是平行四边形.【点评】本题主要考查了三角形全等和相似,掌握全等三角形的性质和判定、相似三角形的判定和性质、平行线的性质、等腰三角形的判定和性质及平行四边形的判定是解决本题的关键.7(2022秋•徐汇区期中)如图,在四边形ABCD中,对角线AC与BD交于点E,DB平分∠ADC,且AB2=BE•BD.(1)求证:△ABE∽△DCE;(2)AE•CD=BC•ED.【分析】(1)根据相似三角形的判定可得△ABE∽△DBA;所以∠BAC=∠BDC,由此可得出△ABE ∽△DCE;(2)由(1)中的相似可得出AE:DE=BE:CE,再由∠BEC=∠AED可得△ADE∽△BCE,所以∠EAD=∠EBC,∠ADE=∠BDC=∠BCE,可得△BCD∽△ADE,进而可得结论.【解答】证明:(1)∵AB2=BE•BD,∴AB:BE=BD:AB,∵∠ABE=∠DBA,∴△ABE∽△DBA,∴∠BAC=∠BDC,∵BD平分∠ADC,∴∠ADB=∠BDC=∠BAC,∴△ABE∽△DCE;(2)由(1)中相似可得,AE:DE=BE:CE,∵∠BEC=∠AED,∴△ADE∽△BCE,∴∠EAD=∠EBC,∠ADE=∠BDC=∠BCE,∴△BCD∽△AED,∴BC:AE=CD:ED,AE•CD=BC•ED.【点评】本题主要考查相似三角形的性质与安定,涉及A字型相似,8字型相似等相关内容,熟练掌握相关判定是解题关键.8(2022春•杨浦区校级期中)如图1,在△ABC中,点E在AC的延长线上,且∠E=∠ABC.(1)求证:AB2=AC•AE;(2)如图2,D在BC上且BD=3CD,延长AD交BE于F,若=,求的值.【分析】(1)利用两角相等的两个三角形相似,证明△ABC∽△AEB,然后利用相似三角形的性质即可解答;(2)过点E作EH∥CB,交AF的延长线于点H,利用(1)的结论可得===,先AC=2a,AB=3a,从而求出AE的长,进而求出的值,再根据已知设CD=m,BD=3m,从而求出BC,BE的长,然后证明A字模型相似三角形△ACD∽△AEH,利用相似三角形的性质可得EH=m,再证明8字模型相似三角形△BDF∽△EHF,利用相似三角形的性质可得=,从而求出EF的长,进行计算即可解答.【解答】(1)证明:∵∠E=∠ABC,∠A=∠A,∴△ABC∽△AEB,∴=,∴AB 2=AC •AE ;(2)解:过点E 作EH ∥CB ,交AF 的延长线于点H ,∵△ABC ∽△AEB ,∴===,∴设AC =2a ,AB =3a ,∴=,∴AE =a ,∴==,∵BD =3CD ,∴设CD =m ,则BD =3m ,∴BC =CD +BD =4m ,∴=,∴EB =6m ,∵EH ∥CD ,∴∠ACD =∠AEH ,∠ADC =∠AHE ,∴△ACD ∽△AEH ,∴==,∴EH =m ,∵EH ∥BD ,∴∠BDF =∠DHE ,∠DBF =∠FEH ,∴△BDF ∽△EHF ,∴===,∴EF =BE =m ,∴==,∴的值为.【点评】本题考查了相似三角形的判定与性质,平行线分线段成比例,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.9(2023•崇明区二模)已知:如图,在平行四边形ABCD中,对角线AC、BD交于E,M是边DC延长线上的一点,联结AM,与边BC交于F,与对角线BD交于点G.(1)求证:AG2=GF•GM;(2)联结CG,如果∠BAG=∠BCG,求证:平行四边形ABCD是菱形.【分析】(1)由平行线的性质和相似三角形的平行判定法,可得到△ABG∽△MDG、△ADG∽△FBG,再利用相似三角形的性质得结论;(2)利用“两角对应相等”先说明△GCF∽△GMC,再利用等腰三角形的三线合一说明BD⊥AC,最后利用菱形的判定方法得结论.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥DM,AD∥BC.∴△ABG∽△MDG,△ADG∽△FBG.∴=,=.∴=.∴AG2=GF•GM.(2)∵AB∥DM,∴∠BAG=∠M.∵∠BAG=∠BCG,∴∠M=∠BCG.∵∠MGC=∠FGC,∴△GCF∽△GMC.∴=,即CG2=GF•GM.∵AG2=GF•GM,∴CG2=AG2.∴CG =AG .∵四边形ABCD 是平行四边形,∴AE =CE .∴GE ⊥AC ,即BD ⊥AC .∴平行四边形ABCD 是菱形.【点评】本题主要考查了相似三角形的性质和判定,掌握相似三角形的判定和性质、平行四边形的性质、菱形的判定方法、等腰三角形的判定和性质等知识点是解决本题的关键.10(2021秋•虹口区期末)如图,在梯形ABCD 中,∠ABC =90°,AD ∥BC ,BC =2AD ,对角线AC 与BD 交于点E .点F 是线段EC 上一点,且∠BDF =∠BAC .(1)求证:EB 2=EF •EC ;(2)如果BC =6,sin ∠BAC =,求FC 的长.【分析】(1)先由AD ∥BC 得到△EAD ∽△ECB ,从而得到,然后由∠BDF =∠BAC 、∠AEB =∠DEF 得证△EAB ∽△EDF ,进而得到,最后得到结果;(2)先利用条件得到AC 、AB 的长,然后利用BC =2AD 得到AD 、BD 的长,再结合相似三角形的性质得到EB 、EC 的长,进而得到EF 的长和FC 的长.【解答】(1)证明:∵AD ∥BC ,∴△EAD ∽△ECB ,∴,即,∵∠BDF =∠BAC ,∠AEB =∠DEF ,∴△EAB ∽△EDF ,∴,∴,∴EB2=EF•EC.(2)解:∵BC=6,sin∠BAC==,BC=2AD∴AC=9,AD=3,∵∠ABC=90°,AD∥BC,∴∠BAD=90°,∴AB===3,∴BD===3,∵△EAD∽△ECB,∴,∴EC=AC=×9=6,EB=BD=×3=2,∵EB2=EF•EC,即(2)2=6EF,∴EF=4,∴FC=EC-EF=6-4=2.【点评】本题考查了直角梯形的性质、相似三角形的判定与性质、勾股定理,解题的关键是熟知“8”字模型相似三角形的判定与性质.11(2021秋•嘉定区期末)如图,在梯形ABCD中,AD∥BC,点E在线段AD上,CE与BD相交于点H,CE与BA的延长线相交于点G,已知DE:AE=2:3,BC=4DE,CE=10.求EH、GE的长.【分析】根据题目的已知并结合图形分析8字型模型相似三角形和A字型模型相似三角形,然后进行计算即可解答.【解答】解:∵AD∥BC,∴∠ADB=∠DBC,∠DEC=∠ECB,∴△DEH∽△BCH,∴,∵BC=4DE,∴,∵CE=10,∴HC=10-EH,∴,∴EH=2,∵BC=4DE,DE:AE=2:3,∴,∵AD∥BC,∴∠GAE=∠GBC,∠GEA=∠GCB,∴△GAE∽△GBC,∴,∵CE=10,∴GC=10+GE,∴,∴GE=6.【点评】本题考查了相似三角形的判定与性质,梯形,熟练掌握8字型模型相似三角形和A字型模型相似三角形是解题的关键.12(2021秋•杨浦区期末)如图,已知在Rt△ABC中,∠ACB=90°,AC=BC=5,点D为射线AB上一动点,且BD<AD,点B关于直线CD的对称点为点E,射线AE与射线CD交于点F.(1)当点D在边AB上时,①求证:∠AFC=45°;②延长AF与边CB的延长线相交于点G,如果△EBG与△BDC相似,求线段BD的长;(2)联结CE、BE,如果S△ACE=12,求S△ABE的值.【分析】(1)①如图1,连接CE,根据轴对称的性质可得:EC=BC,∠ECF=∠BCF,设∠ECF=∠BCF=α,则∠BCE=2α,∠ACE=90°-2α,再利用等腰三角形性质即可证得结论;②如图2,连接BE,CE,由△EBG∽△BDC,可得出∠G=∠BCD=22.5°,过点D作DH⊥AB交BC于点H,则△BDH是等腰直角三角形,推出CH=DH=BD,再根据CH+BH=BC=5,建立方程求解即可;(2)分两种情况:Ⅰ.当点D在AB上时,如图3,过点C作CM⊥AE于点M,连接BF,利用勾股定理、三角形面积建立方程求解即可;Ⅱ.当点D在AB的延长线上时,如图4,过点C作CM⊥AE于点M,连接BF,利用勾股定理、三角形面积建立方程求解即可.【解答】解:(1)①证明:如图1,连接CE,∵点B关于直线CD的对称点为点E,∴EC=BC,∠ECF=∠BCF,设∠ECF=∠BCF=α,则∠BCE=2α,∴∠ACE=90°-2α,∵AC=BC,∴AC=EC,∴∠AEC=∠EAC=[180°-(90°-2α)]=45°+α,∵∠AEC=∠AFC+∠ECF=∠AFC+α,∴∠AFC=45°;②如图2,连接BE,CE,∵B、E关于直线CF对称,∴CF垂直平分BE,由(1)知:∠AFC=45°,∴∠BEF=45°,∵△EBG与△BDC相似,∠BEG=∠DBC=45°,∵∠EBG与∠BDC均为钝角,∴△EBG∽△BDC,∴∠G=∠BCD=∠BAG,∵∠G+∠BAG=∠ABC=45°,∴∠G=∠BCD=22.5°,过点D作DH⊥AB交BC于点H,则△BDH是等腰直角三角形,∴DH=BD,BH=BD,∠BHD=45°,∵∠CDH=∠BHD-∠BCD=45°-22.5°=22.5°=∠BCD,∴CH=DH=BD,∵CH+BH=BC=5,∴BD+BD=5,∴BD==5-5,∴线段BD的长为5-5;(2)Ⅰ.当点D在AB上时,如图3,过点C作CM⊥AE于点M,连接BF,∵AC=EC=BC=5,∴AM=EM=AE,∴①AM2+CM2=AC2=25,∵S△ACE=AE•CM=12,∴②AM•CM=12,①+②×2,得:(AM+CM)2=49③,①-②×2,得:(AM-CM)2=49③,∵CM>AM>0,∴AM=3,CM=4,∴AE=6,由(1)知:∠AFC=45°,BE⊥CF,∴∠BEF=45°,∵∠AFC=∠ABC=45°,∴A、C、B、F四点共圆,∴∠AFB+∠ACB=180°,∴∠AFB=90°,∴△BEF是等腰直角三角形,∴EF=BF,设EF=BF=x,则AE=x+6,在Rt△ABF中,AF2+BF2=AB2,∴(x+6)2+x2=50,解得:x=1或x=-7(舍去),∴BF=1,∴S△ABE=AE•BF=×6×1=3;Ⅱ.当点D在AB的延长线上时,如图4,过点C作CM⊥AE于点M,连接BF,由(1)知:∠AFC=45°,CF垂直平分BE,∴∠BEF=45°,BF=EF,∴∠EBF=∠BEF=45°,∴∠BFE=90°,∵AC=EC=BC=5,∴AM=EM=AE,与Ⅰ同理可得:AM=EM=4,CM=3,AE=8,设BF=EF=y,则AF=8-y,在Rt△ABF中,AF2+BF2=AB2,∴(8-y)2+y2=50,解得:y=1或y=7(舍去),∴BF=1,∴S△ABE=AE•BF=×8×1=4;综上,S△ABE的值为3或4.【点评】本题考查了三角形面积,等腰直角三角形性质和判定,相似三角形的判定和性质,轴对称变换的性质,勾股定理等,解题关键是添加辅助线构造直角三角形,运用分类讨论思想和方程思想解决问题.。
初中数学三角形中的倒角模型-“8”字模型、“A”字模型与三角板模型及参考答案
三角形中的倒角模型-“8”字模型、“A”字模型与三角板模型近年来各地中考中常出现一些几何倒角模型,该模型主要涉及高线、角平分线及角度的计算(内角和定理、外角定理等)。
熟悉这些模型可以快速得到角的关系,求出所需的角。
本专题“8”字模型、“A”字模型与三角板模型进行梳理及对应试题分析,方便掌握。
模型1、“8”字模型图1图28字模型(基础型)条件:如图1,AD、BC相交于点O,连接AB、CD;结论:①∠A+∠B=∠C+∠D;②AB+CD<AD+BC。
8字模型(加角平分线)条件:如图2,线段AP平分∠BAD,线段CP平分∠BCD;结论:2∠P=∠B+∠D1(2021·河北·统考中考真题)下图是可调躺椅示意图(数据如图),AE与BD的交点为C,且∠A,∠B,∠E 保持不变.为了舒适,需调整∠D的大小,使∠EFD=110°,则图中∠D应(填“增加”或“减少”)度.2(2023·浙江·八年级假期作业)如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠K的度数.3(2023·山东德州·八年级校考阶段练习)如图1,已知线段AB,CD相交于点O,连接AC,BD,则我们把形如这样的图形称为“8字型”.(1)求证:∠A+∠C=∠B+∠D;(2)如图2,若∠CAB和∠BDC的平分线AP和DP相交于点P,且与CD,AB分别相交于点M、N.①若∠B=100°,∠C=120°,求∠P的度数;②若角平分线中角的关系改为“∠CAP=13∠CAB,∠CDP=13∠CDB”,试探究∠P与∠B,∠C之间的数量关系.4(2023春·广东深圳·七年级统考期末)定理:三角形任意两边之和大于第三边.(1)如图1,线段AD,BC交于点E,连接AB,CD,判断AD+BC与AB+CD的大小关系,并说明理由;(2)如图2,OC平分∠AOB,P为OC上任意一点,在OA,OB上截取OE=OF,连接PE,PF.求证:PE=PF;(3)如图3,在△ABC中,AB>AC,P为角平分线AD上异于端点的一动点,求证:PB-PC>BD-CD.5(2023春·江苏苏州·七年级校联考期中)阅读:基本图形通常是指能够反映一个或几个定理,或者能够反映图形基本规律的几何图形.这些图形以基本概念、基本事实、定理、常用的数学结论和基本规律为基础,图形简单又具有代表性.在几何问题中,熟练把握和灵活构造基本图形,能更好地帮助我们解决问题.我们将图1①所示的图形称为“8字形”.在这个“8字形”中,存在结论∠A+∠B=∠C+∠D.我们将图1②所示的凹四边形称为“飞镖形”.在这个“飞镖形”中,存在结论∠AOC=∠A+∠C+∠P.(1)直接利用上述基本图形中的任意一种,解决问题:如图2,AP、CP分别平分∠BAD、∠BCD,说明:∠P=12∠B+∠D.(2)将图2看作基本图形,直接利用(1)中的结论解决下列问题:①如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠B=30°,∠D=20°,求∠P的度数.②在图4中,AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的关系(直接写出结果,无需说明理由).③在图5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的关系(直接写出结果,无需说明理由).模型2、“A”字模型结论:①∠3+∠4=∠D+∠E;②∠1+∠2=∠A+180°。
初中几何常考模型汇总(完整版)
第Ol讲8字模型与飞镖模型模型1角的“8”字模型如图所示,AB、CD相交于点O,连接AD、BC O 结论:ZA+ZD=ZB+ZCo模型分析8字模型往往在几何综合题目中推导角度时用到O模型实例观察下列图形,计算角度:(1)如图①,ZA+ZB+ZC+ZD+ZE= ________________ :(2)如图②,ZA+ZB+ZC+ZD+ZE+ZF= _________________热搜梢练1.(1)如图①,求ZCAD+ZB+ZC+ZD+ZE= _________________ :(2)如图②,求Z C A D+ Z B + Z AC E+ Z D+ Z E= ___2. ________________________________________________ 如图,求ZA+ZB+ZC+ZD+ZE+ZF+ZG+ZH= _______________________________图②模型2角的飞镖模型如图所示,有结论:ZD=ZA+ZB+ZCo模型分析飞镖模型往往在几何综合题目中推导角度时用到a模型实例如图,在四边形ABCD中,AM、CM分别平分ZDAB和ZDCB, AM与CM交于W 探究ZAMC与ZB、ZD间的数量关系。
热搜精练1._________________________________________如图,ΛRZA+ZB+ZC+ZD+ZE+ZF=2.__________________________________ 如图,求ZA+ZB+ZC+ZD=C F模型3边的“8”字模型如图所示,AC、BD相交于点O,连接AD、BC O 结论:AC+BD>AD+BCoD模型实例如图,四边形ABCD的对角线AC、BD相交于点0。
求证:(1) AB+BC+CD+AD>AC+BD:(2) AB+BC+CD+AD<2AC+2BD.模型4边的飞镖模型如图所示有结论:AB+AC>BD+CD.模型实例如图,点O为三角形内部一点。
三角形中的八大经典模型(解析版)
三角形中的八大经典模型【八大题型】【题型1A字模型】【题型28字模型】【题型3双垂直模型】【题型4飞镖模型】【题型5风筝模型】【题型6两内角角平分线模型】【题型7两外角角平分线模型】【题型8内外角角平分线模型】【知识点1A字模型】【条件】△ADE与△ABC.【结论】∠AED+∠ADE=∠B+C.【证明】根据三角形内角和可得,∠AED+∠ADE=180°-∠A,∠B+C=180°-∠A,∴∠AED+∠ADE=∠B+C,得证.【题型1A字模型】1(2023春·湖北荆门·八年级校联考期末)如图,在△ABC中,∠C=70º,沿图中虚线截去∠C,则∠1+∠2 =()A.360ºB.250ºC.180ºD.140º【答案】B【分析】根据三角形内角和定理得出∠A+∠B=110°,进而利用四边形内角和定理得出答案.【详解】解:∵△ABC中,∠C=70°,∴∠A+∠B=180°-∠C,∴∠1+∠2=360°-110°=250°,故选:B.【点睛】本题主要考查了多边形内角和定理,根据题意得出∠A+∠B的度数是解题关键.1.(2023春·八年级单元测试)如图所示,∠DAE的两边上各有一点B,C,连接BC,求证∠DBC+∠ECB=180°+∠A.【答案】见解析【分析】根据三角形的外角等于与它不相邻的两个内角的和证明即可.【解析】解:∵∠DBC和∠ECB是△ABC的外角,∴∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC.又∵∠A+∠ABC+∠ACB=180°,∴∠DBC+∠ECB=∠A+∠ACB+∠ABC+∠A=180°+∠A.【点睛】本题主要考查三角形外角的性质,熟知三角形的外角等于与它不相邻的两个内角的和是解题的关键.2.(2023春•常州期中)如图,△ABC中,∠B=68°,∠A比∠C大28°,点D、E分别在AB、BC上.连接DE,∠DEB=42°.(1)求∠A的度数;(2)判断DE与AC之间的位置关系,并说明理由.【答案】(1)设∠C的度数为x,根据三角形的内角和列出方程解答即可;(2)根据平行线的判定解答即可.【解析】解:(1)设∠C的度数为x°,则∠A的度数为(x+28)°,△ABC中,∠A+∠B+∠C=180°,∠B=68°,可得:x+x+28+68=180,解得:x=42,所以∠C=42°,∠A=70°,(2)∵∠DEB=42°,∠C=42°,∴∠DEB=∠C,∴DE∥AC.3.(2023春·江苏泰州·八年级校联考期中)如图,已知∠A=40°,则∠1+∠2+∠3+∠4的度数为.【答案】280°【分析】根据三角形的内角和定理分别求得∠1+∠2,∠3+∠4,就可求得最后结果.【解析】∵∠A=40°,∴∠1+∠2=∠3+∠4=180°-∠A=140°,∴∠1+∠2+∠3+∠4=280°,故答案为280°.【点睛】本题考查了三角形内角和定理的运用,熟练掌握三角形内角和为180度是解题的关键.【知识点28字模型】【条件】AD、BC相交于点O.【结论】∠A+∠B=∠C+∠D.(上面两角之和等于下面两角之和)【证明】在△ABO中,由内角和定理:∠A+∠B+∠BOA=180°,在△CDO中,∠C+∠D+∠COD=180°,∴∠A+∠B+∠BOA=180°=∠C+∠D+∠COD,由对顶角相等:∠BOA=∠COD∴∠A+∠B=∠C+∠D,得证.【题型28字模型】1(2015-2016学年北京市怀柔区八年级上学期期末数学试卷(带解析))如图是由线段AB,CD,DF,BF,CA组成的平面图形,∠D=28°,则∠A+∠B+∠C+∠F的度数为()A.62°B.152°C.208°D.236°【答案】C【详解】∵如图可知∠BED=∠F+∠B,∠CGE=∠C+∠A,又∵∠BED=∠D+∠EGD,∴∠F+∠B=∠D+∠EGD,又∵∠CGE+∠EGD=180°,∴∠C+∠A+∠F+∠B-∠D=180°,又∵∠D=28°,∴∠A+∠B+∠C+∠F=180°+28°=208°,故选C.点睛:本题主要考查了三角形内角和定理即三角形外角与内角的关系,解答本题的关键是求出∠C+∠A +∠F+∠B-∠D=180°,此题难度不大.1.(2013-2014学年初中数学苏教版八年级上册第一章练习卷(带解析))如图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.【答案】90°;65°【分析】由ΔABC≅ΔADE,可得∠DAE=∠BAC=12(∠EAB-∠CAD),根据三角形外角性质可得∠DFB=∠FAB+∠B,因为∠FAB=∠FAC+∠CAB,即可求得∠DFB的度数;根据三角形内角和定理可得∠DGB=∠DFB-∠D,即可得∠DGB的度数.【解析】解:∵ΔABC≅ΔADE,∴∠DAE=∠BAC=12(∠EAB-∠CAD)=12(120°-10°)=55°.∴∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10°+55°+25°=90°∠DGB=∠DFB-∠D=90°-25°=65°.综上所述:∠DFB=90°,∠DGB=65°.【点睛】本题主要考查三角形全等的性质,解题的关键是找到相应等量关系的角,做题时要结合图形进行思考.2.(2023·河北·统考中考真题)下图是可调躺椅示意图(数据如图),AE与BD的交点为C,且∠A,∠B,∠E保持不变.为了舒适,需调整∠D的大小,使∠EFD=110°,则图中∠D应(填“增加”或“减少”)度.【答案】减少10【分析】先通过作辅助线利用三角形外角的性质得到∠EDF与∠D、∠E、∠DCE之间的关系,进行计算即可判断.【解析】解:∵∠A+∠B=50°+60°=110°,∴∠ACB=180°-110°=70°,∴∠DCE=70°,如图,连接CF并延长,∴∠DFM=∠D+∠DCF=20°+∠DCF,∠EFM=∠E+∠ECF=30°+∠ECF,∴∠EFD=∠DFM+∠EFM=20°+∠DCF+30°+∠ECF=50°+∠DCE=50°+70°=120°,要使∠EFD=110°,则∠EFD减少了10°,若只调整∠D的大小,由∠EFD=∠DFM+∠EFM=∠D+∠DCF+∠E+∠ECF=∠D+∠E+∠ECD=∠D+30°+70°=∠D+100°,因此应将∠D减少10度;故答案为:①减少;②10.【点睛】本题考查了三角形外角的性质,同时涉及到了三角形的内角和与对顶角相等的知识;解决本题的关键是理解题意,读懂图形,找出图形中各角之间的关系以及牢记公式建立等式求出所需的角,本题蕴含了数形结合的思想方法.3.(2023春·八年级期末)(1)如图①,求∠A+∠B+∠C+∠D+∠E+∠F的度数;(2)如图②,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H的度数;(3)如图③,求∠A+∠B+∠C+∠D+∠E+∠F+∠G的度数.【答案】(1)360°;(2)720°;(3)540°【分析】(1)连接AD,根据三角形的内角和定理得∠B+∠C=∠BAD+∠CDA,进而将问题转化为求四边形ADEF的内角和,(2)与(1)方法相同转化为求六边形ABCDEF的内角和,(3)使用上述方法,转化为求五边形ABCDE的内角和.【解析】解:(1)如图①,连接AD,由三角形的内角和定理得,∠B+∠C=∠BAD+∠CDA,∴∠BAF+∠B+∠C+∠CDE+∠E+∠F=∠BAF+∠BAD+∠CDA+∠D+∠E+∠F即四边形ADEF的内角和,四边形的内角和为360°,∴∠BAF+∠B+∠C+∠CDE+∠E+∠F=360°,(2)如图②,由(1)方法可得:∠BAH+∠B+∠C+∠D+∠E+∠EFG+∠G+∠H的度数等于六边形ABCDEF的内角和,∴∠BAH+∠B+∠C+∠D+∠E+∠EFG+∠G+∠H=(6-2)×180°=720°,(3)如图③,根据(1)的方法得,∠F+∠G=∠GAE+∠FEA,∠BAG+∠B+∠C+∠D+∠DEF+∠F+∠G的度数等于五边形ABCDE的内角和,∴∠BAG+∠B+∠C+∠D+∠DEF+∠F+∠G=(5-2)×180°=540°,【点睛】本题考查三角形的内角和、多边形的内角和的计算方法,适当的转化是解决问题的关键.【知识点3双垂直模型】【条件】∠B=∠D=∠ACE=90°.【结论】∠BAC=∠DCE,∠ACB=∠CED.【证明】∵∠B=∠D=∠ACE=90°;∴∠BAC+∠ACB=90°;又∠ECD+∠ACB=90°;∴∠BAC=∠DCE同理,∠ACB+∠DCE =90°,且∠CED+∠DCE =90°;∴∠ACB=∠CED,得证.【题型3双垂直模型】1(2023春·广东珠海·八年级校联考期末)如图1,线段AB⊥BC于点B,CD⊥BC于点C,点E在线段BC上,且AE⊥DE.(1)求证:∠EAB=∠CED;(2)如图2,AF、DF分别平分∠BAE和∠CDE,EH平分∠DEC交CD于点H,EH的反向延长线交AF于点G.①求证EG⊥AF;②求∠F的度数.【提示:三角形内角和等于180度】【答案】(1)证明见解析;(2)①证明见解析;②45°.【分析】(1)利用同角的余角相等即可证明;(2)①想办法证明∠EAG+∠AEG=90°即可解决问题;②利用∠DFA=∠DFM+∠AFM=12∠CDE+12∠EAB=12(∠CDE+∠EAB)即可解决问题.【详解】(1)∵AB⊥BC,∴∠EAB+∠AEB=90°,∵AE⊥ED,∴∠CED+∠AEB=90°,∴∠EAB=∠CED.(2)①∵AF平分∠BAE,∴∠EAG=12∠EAB,∵EH平分∠DEC,∴∠HED=12∠CED,∵∠EAB=∠CED,∴∠HED=∠EAG,∴∠HED+∠AEG=90°,∴∠EAG+∠AEG=90°,∴∠EGA=90°,∴EG⊥AF.②作FM∥CD,∵AB⊥BC,CD⊥BC,∴AB∥CD,∴FM∥AB,∴∠DFM=∠CDF=12∠CDE,∠AFM=∠FAB=12∠EAB,∵∠CDE+∠CED=90°,∴∠CDE+∠EAB=90°,∴∠DFA=∠DFM+∠AFM=12∠CDE+12∠EAB=12(∠CDE+∠EAB)=45°.【点睛】本题考查三角形内角和定理、平行线的性质、角平分线的定义等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考常考题型.1.(2023春·江苏泰州·八年级校考期中)如图,在△ABC中,∠ACB=90°,AE是角平分线,CD是高,AE、CD相交于点F,求证:∠CFE=∠CEF 请在以下的解题过程中的括号里填推理的理由.证明:∵AE平分∠CAB(已知)∴∠CAE=∠FAB()∵∠ACE=90°(已知)∴∠CAE+∠CEF=90°()∵CD是△ABC的高(已知)∴∠FDA=90°(三角形高的定义)∴∠FAB+∠AFD=90°(直角三角形的两锐角互余)∴∠CEF=∠AFD()∵∠CFE=∠AFD()∴∠CFE=∠CEF()【答案】角平分线的定义;直角三角形的两锐角互余;等角的余角相等;对顶角相等;等量代换【分析】根据角平分线的定义得到∠CAE=∠FAB,根据直角三角形两锐角互余得到∠CAE+∠CEF= 90°,∠FAB+∠AFD=90°,再利用等角的余角相等得到∠CEF=∠AFD,最后利用等量代换可得结果.【解析】解:证明:∵AE平分∠CAB(已知)∴∠CAE=∠FAB(角平分线的定义)∵∠ACE=90°(已知)∴∠CAE+∠CEF=90°(直角三角形的两锐角互余)∵CD是△ABC的高(已知)∴∠FDA=90°(三角形高的定义)∴∠FAB+∠AFD=90°(直角三角形的两锐角互余)∴∠CEF=∠AFD(等角的余角相等)∵∠CFE=∠AFD(对顶角相等)∴∠CFE=∠CEF(等量代换)故答案为:角平分线的定义;直角三角形的两锐角互余;等角的余角相等;对顶角相等;等量代换【点睛】本题考查的是三角形内角和定理,角平分线的定义,余角的性质,熟知三角形内角和是180°是解答此题的关键,此题难度不大.2.(2023春·山东青岛·八年级山东省青岛第五十九中学校考期中)如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC交DE的延长线于点F,连接CF交AD于点G.(1)判断△DBF的形状,并说明理由.(2)求证:AD⊥CF.【答案】(1)△DBF是等腰直角三角形,理由见解析;(2)证明见解析.【分析】(1)利用等腰Rt△ABC中,∠ACB=90°,证明∠CBA=∠CAB=45°,再利用BF∥AC得到∠ABF=∠CAB=45°,进一步得∠CBA+∠ABF=90°,利用DE⊥AB证明∠BDF=45°即可证明△DBF是等腰直角三角形;(2)欲求证AD⊥CF,先证明∠CAG+∠ACG=90°,需证明∠CAG=∠BCF,只要证明三角形全等,即可.【解析】(1)解:△DBF是等腰直角三角形,理由如下:∵等腰Rt△ABC中,∠ACB=90°,∴∠CBA=∠CAB=45°,∵BF∥AC,∴∠ABF=∠CAB=45°,∴∠CBA+∠ABF=90°,即∠DBF=90°,∵DE⊥AB,∠CBA=45°,∴∠BDF=45°,∴∠BFD=45°,∴△DBF是等腰直角三角形.(2)证明:在等腰直角三角形ABC中,∵∠ACB=90°,∴∠CBA=∠CAB=45°.又∵DE⊥AB,∴∠DEB=90°.∴∠BDE=45°.又∵BF∥AC,∴∠CBF=90°.∴∠BFD=45°=∠BDE.∴BF=DB.又∵D为BC的中点,∴CD=DB.∴BF=CD.在△CBF和△ACD中,BF=CD∠CBF=∠ACD CB=AC∴△CBF≌△ACD(SAS).∴∠BCF=∠CAD.又∵∠BCF+∠GCA=90°,∴∠CAD+∠GCA=90°.∴∠AGC=90°,即AD⊥CF.【点睛】本题考查了三角形的综合问题,掌握全等三角形的性质以及判定定理、垂直的定义、等腰三角形的性质以及判定是解题的关键.3.(2023春·山东济南·八年级济南育英中学校联考期中)如图,△ABC中,∠B=90°,点D在射线BC上运动,DE⊥AD交射线AC于点E.(1)如图1,若∠BAC=60°,当AD平分∠BAC时,求∠EDC的度数;(2)如图2,当点D在线段BC上时,①判断∠EDC与∠BAD的数量关系并说明理由;②作EF⊥BC于F,∠BAD、∠DEF的角平分线相交于点G,随着点D的运动,∠G的度数会变化吗?如果不变,求出∠G的度数;如果变化,说明理由;(3)如图3,当点D在BC的延长线上时,作EF⊥BD于F,∠BAD的角平分线和∠DEF的角平分线的反向延长线相交于点G,∠G的度数会变化吗?如果不变,求出∠G的度数;如果变化,说明理由.【答案】(1)30°;(2)①∠EDC=∠BAD,理由见解析;②∠G的度数不变,理由见解析;(3)不变,45°.【分析】(1)先求出∠ACB=30°,再利用角平分线得出∠DAC=30°,即可得出∠ADC=120°即可得出结论;(2)①利用直角三角形的两锐角互余和等角的余角相等即可得出结论; ②先利用①的结论得出∠BAD+∠DEF=90°,进而得出∠DAG+∠DEG=45°,最后利用三角形的内角和即可得出结论;(3)利用三角形的外角和三角形的内角和即可得出结论.【解析】解:(1)在Rt△ABC中,∠BAC=60°,∴∠ACB=30°,∵AD平分∠BAC,∴∠DAC=12∠BAC=30°,∴∠ADC=120°,∵DE⊥AD,∴∠ADE=90°,∴∠EDC=∠ADC-∠ADE=30°;(2)①相等,在Rt△ABD中,∠BAD+∠ADB=90°,∵∠ADE=90°,∴∠EDC+∠ADB=90°,∴∠EDC=∠BAD;②∠G的度数不变,理由:∵EF⊥BC,∴∠EDF+∠DEF=90°,∵∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∵∠BAD+∠ADB=90°,∴∠BAD+∠DEF=90°,∵∠BAD、∠DEF的角平分线相交于点G,∴∠DAG=12∠BAD,∠DEG=12∠DEF,∴∠DAG+∠DEG=12(∠BAD+∠DEF)=45°,∵∠DAE+∠DEA=90°,∴∠GAE+∠GEA=90°+45°=135°,∴∠G=45°;(3)∠G的度数不变化,理由:如图3,∵AD⊥DE,∴∠ADB+∠BDE=90°,∵EF⊥BD,∴∠DEF+∠BDE=90°,∴∠ADB=∠DEF,∵EM是∠DEF的角平分线,∴∠DEM=12∠DEF=12∠ADB,∵AG平分∠BAD,∴∠DAG=12∠BAD,延长DE交AG于N,∴∠AEN=∠ADE+∠DAE=90°+∠DAE,∴∠ENG=∠AEN+∠EAG=90°+∠DAE+∠EAG=90°+∠DAG=90°+12∠BAD,∴∠G=180°-(∠ENG+∠GEN)=180°-(∠ENG+∠DEM),=180°-90°+12∠BAD+12∠ADB,=90°-12(∠BAD+∠ADB)=45°.【点睛】本题主要考查了角平分线的定义,直角三角形的性质,三角形的内角和和外角的性质,解(1)的关键是求出∠ADC=120°,解(2)的关键是求出∠DAG+∠DEG=45°,解(3)的关键是利用三角形的外角的性质.【知识点4飞镖模型】【条件】四边形ABDC如上左图所示.【结论】∠D=∠A+∠B+∠C.(凹四边形凹外角等于三个内角和)【证明】如上右图,连接AD并延长到E,则:∠BDC=∠BDE+∠CDE=(∠B+∠1)+(∠2+∠C)=∠B+∠BAC+∠C.本质为两个三角形外角和定理证明.【题型4飞镖模型】1(2023春·江苏镇江·八年级统考期中)在社会实践手工课上,小茗同学设计了一个形状如图所示的零件,如果∠A=52°,∠B=25°,∠C=30°,∠D=35°,∠E=72°,那么∠F的度数是( ).A.72°B.70°C.65°D.60°【答案】B【分析】延长BE交CF的延长线于O,连接AO,根据三角形内角和定理求出∠BOC,再利用邻补角的性质求出∠DEO,再根据四边形的内角和求出∠DFO,根据邻补角的性质即可求出∠DFC的度数.【详解】延长BE交CF的延长线于O,连接AO,如图,∵∠OAB+∠B+∠AOB=180°,∴∠AOB=180°-∠B-∠OAB,同理得∠AOC=180°-∠OAC-∠C,∵∠AOB+∠AOC+∠BOC=360°,∴∠BOC=360°-∠AOB-∠AOC=360°-(180°-∠B-∠OAB)-(180°-∠OAC-∠C)=∠B+∠C+∠BAC=107°,∵∠BED=72°,∴∠DEO=180°-∠BED=108°,∴∠DFO=360°-∠D-∠DEO-∠EOF=360°-35°-108°-107°=110°,∴∠DFC=180°-∠DFO=180°-110°=70°,故选:B.【点睛】本题考查三角形内角和定理,多边形内角和,三角形的外角的性质,邻补角的性质,解题关键是会添加辅助线,将已知条件联系起来进行求解.三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角的和;邻补角性质:邻补角互补.1.(2023春·八年级期末)如图,已知在△ABC中,∠A=40°,现将一块直角三角板放在△ABC上,使三角板的两条直角边分别经过点B,C,直角顶点D落在△ABC的内部,则∠ABD+∠ACD=( ).A.90°B.60°C.50°D.40°【答案】C【分析】由三角形内角和定理可得∠ABC+∠ACB+∠A=180°,即∠ABC+∠ACB=180-∠A=140°,再说明∠DBC+∠DCB=90°,进而完成解答.【解析】解:∵在△ABC中,∠A=40°∴∠ABC+∠ACB=180-∠A=140°∵在△DBC中,∠BDC=90°∴∠DBC+∠DCB=180°-90°=90°∴∠ABD+∠ACD=40°-90°=50°故选C.【点睛】本题主要考查三角形内角和定理,灵活运用三角形内角和定理成为解答本题的关键.2.(2023·全国·八年级假期作业)如图所示,已知四边形ABDC,求证∠BDC=∠A+∠B+∠C.【答案】见解析【分析】方法1连接BC,根据三角形内角和定理可得结果;方法2作射线AD,根据三角形的外角性质得到∠3=∠B+∠1,∠4=∠C+∠2,两式相加即可得到结论;方法3延长BD,交AC于点E,两次运用三角形外角的性质即可得出结论.【解析】方法1如图所示,连接BC.在△ABC中,∠A+∠ABC+∠ACB=180°,即∠A+∠ABD+∠1+∠ACD+∠2=180°.在△BCD中,∵∠BDC+∠1+∠2=180°,∴∠BDC=∠A+∠ABD+∠ACD;方法2如图所示,连接AD并延长.∵∠3是△ABD的外角,∴∠3=∠1+∠ABD.同理,∠4=∠2+∠ACD.∴∠3+∠4=∠1+∠2+∠ABD+∠ACD.即∠BDC=∠A+∠ABD+∠ACD.方法3如图所示,延长BD,交AC于点E.∵∠DEC是△ABE的外角,∴∠DEC=∠A+∠ABD.∵∠BDC是△DEC的外角,∴∠BDC=∠DEC+∠ACD.∴∠BDC=∠A+∠ABD+∠ACD.【点睛】本题考查了三角形的外角性质:解题的关键是知道三角形的任一外角等于与之不相邻的两内角的和.也考查了三角形内角和定理.3.(2023春·福建南平·八年级统考期中)如图,若∠EOC=115°,则∠A+∠B+∠C+∠D+∠E+∠F=.【答案】【答案】230°【分析】根据三角形外角的性质,得到∠EOC=∠E+∠2=115°,∠2=∠D+∠C,∠EOC=∠1+∠F= 115°,∠1=∠A+∠B,即可得到结论.【解析】【详解】解:如图∵∠EOC=∠E+∠2=115°,∠2=∠D+∠C,∴∠E+∠D+∠C=115°,∵∠EOC=∠1+∠F=115°,∠1=∠A+∠B,∴∠A+∠B+∠F=115°,∴∠A+∠B+∠C+∠D+∠E+∠F=230°,故答案为:230°.【点睛】本题主要考查三角形内角和定理和三角形外角的性质,解决本题的关键是要熟练掌握三角形外角性质.【知识点5风筝模型】【条件】四边形ABPC,分别延长AB、AC于点D、E,如上左图所示.【结论】∠PBD+∠PCE=∠A+∠P.【证明】如上右图,连接AP,则:∠PBD=∠PAB+∠APB,∠PCE=∠PAC+∠APC,∴∠PBD+∠PCE=∠PAB+∠APB+∠PAC+∠APC=∠BAC+∠BPC,得证.【题型5风筝模型】1(2023春·重庆渝北·八年级校考期中)如图,将△ABC沿着DE翻折,使B点与B'点重合,若∠1+∠2= 80°,则∠B的度数为()A.20°B.30°C.40°D.50°【答案】C【分析】由折叠的性质可知∠BED=∠B'ED,∠BDE=∠B'DE,再利用平角的定义可求出∠BED+∠BDE的度数,进而利用三角形内角和可求∠B的度数.【详解】由折叠的性质可知∠BED=∠B'ED,∠BDE=∠B'DE∵∠1+∠BED+∠B'ED=180°,∠2+∠BDE+∠B'DE=180°∴∠BED+∠BDE=12(360°-∠1-∠2)=12×(360°-80°)=140°∴∠B=180°-(∠BED+∠BDE)=180°-140°=40°故选C【点睛】本题主要考查折叠的性质及三角形内角和定理,掌握折叠的性质及三角形内角和定理是解题的关键.1.(2023春·八年级期末)如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=55°,∠1=95°,则∠2的度数为( ).A.14°B.15°C.28°D.30°【答案】B【分析】根据三角形内角和定理和平角定义证得∠FEB+∠EFC=360°-125°=235°,再根据折叠性质得出∠B′EF+∠EFC′=∠FEB+∠EFC=235°,进而求得∠1+∠2=110°即可求解.【解析】解:∵∠A=55°,∴∠AEF+∠AFE=180°-55°=125°,∴∠FEB+∠EFC=360°-125°=235°,由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=235°,∴∠1+∠2=235°-125°=110°,∵∠1=95°,∴∠2=110°-95°=15°,故选:B.【点睛】本题考查折叠性质、三角形的内角和定理、平角定义,熟练掌握折叠性质是解答的关键.2.(2023春·八年级期末)如图,三角形纸片ABC中,∠A=65°,∠B=75°,将∠C沿DE翻折,使点C落在△ABC外的点C 处.若∠1=20°,则∠2的度数为.【答案】100°【分析】根据三角形内角和定理求出∠C,根据折叠的性质求出∠C',根据三角形的外角的性质计算,得到答案.【解析】解:∵∠A=65°,∠B=75°,∴∠C=180°-65°-75°=40°,由折叠的性质可知,∠C'=∠C=40°,∴∠3=∠1+∠C'=60°,∴∠2=∠C+∠3=100°,故答案是:100°.【点睛】本题考查的是三角形内角和定理、折叠的性质,掌握三角形内角和等于180°是解题的关键.3.(2023春·全国·八年级专题练习)如图,将△ABC纸片沿DE折叠,使点A落在点A'处,且A'B平分∠ABC,A'C平分∠ACB,若∠BA'C=120°,则∠1+∠2的度数为()A.90°B.100°C.110°D.120°【答案】D【分析】连接A'A,先求出∠BAC,再证明∠1+∠2=2∠BAC即可解决问题.【解析】解:如图,连接AA ',∵A 'B 平分∠ABC ,A 'C 平分∠ACB ,∴∠A 'BC =12∠ABC ,∠A 'CB =12∠ACB ,∵∠BA 'C =120°,∴∠A 'BC +∠A 'CB =180°-120°=60°,∴∠ABC +∠ACB =120°,∴∠BAC =180°-120°=60°,∵沿DE 折叠,∴∠DAA '=∠DA 'A ,∠EAA '=∠EA 'A ,∵∠1=∠DAA '+∠DA 'A =2∠DAA ',∠2=∠EAA '+∠EA 'A =2∠EAA ',∴∠1+∠2=2∠DAA '+2∠EAA '=2∠BAC =2×60°=120°,故选:D .【点睛】本题考查了三角形内角和定理、角平分线定义、三角形外角的性质、折叠变换等知识,解题的关键是正确添加辅助线,灵活应用所学知识,属于中考常考题型.【知识点6两内角角平分线模型】【条件】△ABC 中,BI 、CI 分别是∠ABC 和∠ACB 的角平分线,且相交于点I .【结论】∠I =90°+12∠A 【证明】∵BI 是∠ABC 平分线,∴∠2=12∠ABC ∵CI 是∠ACB 平分线,∴∠3=12∠ACB 由A →B →I →C →A 的飞镖模型可知:∠I =∠A +∠2+∠3=∠A +12∠ABC +12∠ACB =∠A +12(180°−∠A )=90°+12∠A .【题型6两内角角平分线模型】1(2023春·江苏苏州·八年级期中)直线MN 与直线PQ 垂直相交于点O ,点A 在直线PQ 上运动,点B 在直线MN 上运动.(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出∠CED的度数.(3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及反向延长线相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,则∠ABO的度数为(直接写答案)【答案】(1)不发生变化,∠AEB=135°;(2)不发生变化,∠CED=67.5°;(3)60°或45°【分析】(1)根据直线MN与直线PQ垂直相交于O可知∠AOB=90°,再由AE、BE分别是∠BAO和∠ABO的角平分线得出∠BAE=12∠OAB,∠ABE=12∠ABO,由三角形内角和定理即可得出结论;(2)延长AD、BC交于点F,根据直线MN与直线PQ垂直相交于O可得出∠AOB=90°,进而得出∠OAB+∠OBA=90°,故∠PAB+∠MBA=270°,再由AD、BC分别是∠BAP和∠ABM的角平分线,可知∠BAD=12∠BAP,∠ABC=12∠ABM,由三角形内角和定理可知∠F=45°,再根据DE、CE分别是∠ADC和∠BCD的角平分线可知∠CDE+∠DCE=112.5°,进而得出结论;(3)由∠BAO与∠BOQ的角平分线相交于E可知∠EAO=12∠BAO,∠EOQ=12∠BOQ,进而得出∠E的度数,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的3倍分四种情况进行分类讨论.【详解】解:(1)∠AEB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∵AE、BE分别是∠BAO和∠ABO角的平分线,∴∠BAE=12∠OAB,∠ABE=12∠ABO,∴∠BAE+∠ABE=12(∠OAB+∠ABO)=45°,∴∠AEB=135°;(2)∠CED的大小不变.延长AD、BC交于点F.∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB +∠MBA =270°,∵AD 、BC 分别是∠BAP 和∠ABM 的角平分线,∴∠BAD =12∠BAP ,∠ABC =12∠ABM ,∴∠BAD +∠ABC =12(∠PAB +∠ABM )=135°,∴∠F =45°,∴∠FDC +∠FCD =135°,∴∠CDA +∠DCB =225°,∵DE 、CE 分别是∠ADC 和∠BCD 的角平分线,∴∠CDE +∠DCE =112.5°,∴∠CED =67.5°;(3)∵∠BAO 与∠BOQ 的角平分线相交于E ,∴∠EAO =12∠BAO ,∠EOQ =12∠BOQ ,∴∠E =∠EOQ -∠EAO =12(∠BOQ -∠BAO )=12∠ABO ,∵AE 、AF 分别是∠BAO 和∠OAG 的角平分线,∴∠EAF =90°.在△AEF 中,∵有一个角是另一个角的3倍,故有:①∠EAF =3∠E ,∠E =30°,∠ABO =60°;②∠EAF =3∠F ,∠E =60°,∠ABO =120°(舍弃);③∠F =3∠E ,∠E =22.5°,∠ABO =45°;④∠E =3∠F ,∠E =67.5°,∠ABO =135°(舍弃).∴∠ABO 为60°或45°.故答案为:60°或45°.【点睛】本题考查的是平行线的判定和性质,三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.1.(2023春·全国·八年级专题练习)如图,BE 平分∠ABD ,CF 平分∠ACD ,BE 与CF 交于点G ,若∠BDC =140°,∠BGC =100°,则∠A =()A.80°B.75°C.60°D.45°【答案】C【分析】连接BC,先求解∠DBC+∠DCB, 再求解∠GBC+∠GCB, 可得∠GBD+∠GCD, 再利用角平分线的定义可得:∠ABD+∠ACD, 从而可得:∠ABC+∠ACB, 再利用三角形的内角和定理可得∠A的大小.【解析】解:连接BC, ∵∠BDC=140°,∴∠DBC+∠DCB=180°-140°=40°,∵∠BGC=100°,∴∠GBC+∠GCB=180°-100°=80°,∴∠GBD+∠GCD=∠GBC+∠GCB-∠DBC-∠DCB=40°,∵BE平分∠ABD,CF平分∠ACD,∴∠ABD+∠ACD=2(∠GBD+∠GCD)=80°,∴∠ABC+∠ACB=∠ABD+∠ACD+∠DBC+∠DCB=80°+40°=120°,∴∠A=180°-(∠ABC+∠ACB)=60°.故选:C.【点睛】本题考查的是三角形的内角和定理的应用,角平分线的定义,熟练利用三角形的内角和定理求解与之相关的角的大小是解题的关键.2.(2023春·全国·八年级专题练习)如图,在△ABC中,∠ABC和∠ACB的角平分线交于点O,延长BO与∠ACB的外角平分线交于点D,若∠BOC=130°,则∠D=【答案】40°【分析】根据角平分线的定义结合三角形外角的性质即可得到结论.【解析】解:∵∠ABC和∠ACB的角平分线交于点O,∴∠ACO=12∠ACB,∵CD平分∠ACE,∴∠ACD=12∠ACE,∵∠ACB+∠ACE=180°,∴∠OCD=∠ACO+∠ACD=12(∠ACB+∠ACE)=12×180°=90°,∵∠BOC=130°,∴∠D=∠BOC-∠OCD=130°-90°=40°,故答案为:40°.【点睛】本题考查了三角形的外角性质,角平分线的定义,熟练掌握相关性质和概念正确推理计算是解题的关键.3.(2023春·黑龙江哈尔滨·八年级校联考期末)如图1,点A、B分别在射线OM、ON上运动(不与点O重合),AC、BC分别是∠BAO和∠ABO的角平分线,BC延长线交OM于点G.(1)若∠MON=60°,则∠ACG=;(直接写出答案)(2)若∠MON=n°,求出∠ACG的度数;(用含n的代数式表示)(3)如图2,若∠MON=80°,过点C作CF∥OA交AB于点F,求∠BGO与∠ACF的数量关系.【答案】(1)60°;(2)90°-12n°;(3)∠BGO-∠ACF=50°【分析】(1)根据三角形内角和定理求出∠BAO+∠ABO,根据角平分线的定义、三角形的外角性质计算,得到答案;(2)仿照(1)的解法解答;(3)根据平行线的性质得到∠ACF=∠CAG,根据(2)的结论解答.【解析】解:(1)∵∠MON=60°,∴∠BAO+∠ABO=120°,∵AC、BC分别是∠BAO和∠ABO的角平分线,∴∠CBA=12∠ABO,∠CAB=12∠BAO,∴∠CBA+∠CAB=12(∠ABO+∠BAO)=60°,∴∠ACG=∠CBA+∠CAB=60°,故答案为:60°;(2)∵∠MON=n°,∴∠BAO+∠ABO=180°-n°,∵AC、BC分别是∠BAO和∠ABO的角平分线,∴∠CBA=12∠ABO,∠CAB=12∠BAO,∴∠CBA+∠CAB=12(∠ABO+∠BAO)=90°-12n°,∴∠ACG=∠CBA+∠CAB=90°-12n°;(3)∵CF∥OA,∴∠ACF=∠CAG,∴∠BGO -∠ACF =∠BGO -∠CAG =∠ACG ,由(2)得:∠ACG =90°-12×80°=50°.∴∠BGO -∠ACF =50°.【点睛】本题考查的是角平分线的定义、平行线的性质、三角形的外角性质,掌握两直线平行、内错角相等是解题的关键.【知识点7两外角角平分线模型】【条件】△ABC 中,BI 、CI 分别是△ABC 的外角的角平分线,且相交于点O .【结论】∠O =90°−12∠A .【证明】∵BO 是∠EBC 平分线,∴∠2=12∠EBC ,∵CO 是∠FCB 平分线,∴∠5=12∠FCB 由△BCO 中内角和定理可知:∠O =180°-∠2-∠5=180°-12∠EBC -12∠FCB =180°-12(180°−∠ABC )-12(180°−∠ACB )=12(∠ABC +∠ACB )=12(180°−∠A )=∠O =90°−12∠A 【题型7两外角角平分线模型】1(2023春·江苏·八年级专题练习)【问题背景】(1)如图1的图形我们把它称为“8字形”,请说明∠A +∠B =∠C +∠D ;【简单应用】(2)如图2,AP 、CP 分别平分∠BAD .∠BCD ,若∠ABC =46°,∠ADC =26°,求∠P 的度数;【问题探究】(3)如图3,直线AP 平分∠BAD 的外角∠FAD ,CP 平分∠BCD 的外角∠BCE ,若∠ABC =36°,∠ADC =16°,请猜想∠P 的度数,并说明理由.【拓展延伸】(4) ①在图4中,若设∠C =α,∠B =β,∠CAP =13∠CAB ,∠CDP =13∠CDB ,试问∠P 与∠C 、∠B 之间的数量关系为:(用α、β表示∠P );②在图5中,AP 平分∠BAD ,CP 平分∠BCD 的外角∠BCE ,猜想∠P 与∠B 、∠D 的关系,直接写出结论.【答案】(1)见解析;(2)36°;(3)26°,理由见解析;(4)①∠P=2α+β3②∠P=180°+∠B+∠D2【分析】(1)根据三角形内角和定理即可证明;(2)直接利用(1)中的结论两次,两式相加,然后根据角平分线的性质求解即可;(3)由AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,推出∠1=∠2,∠3=∠4,推出∠PAD=180°-∠2,∠PCD=180°-∠3,由∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,推出2∠P=∠B+∠D,即可解决问题.(4)①同法利用(1)种的结论列出方程即可解决问题.②同法利用(1)种的结论列出方程即可解决问题.【详解】(1)在△AEB中,∠A+∠B+∠AEB=180°.在△CED中,∠C+∠D+∠CED=180°.∵∠AEB=∠CED,∴∠A+∠B=∠C+∠D;(2)由(1)得:∠1+∠B=∠3+∠P,∠4+∠D=∠2+∠P,∴∠1+∠B+∠4+∠D=∠3+∠P+∠2+∠P.∵∠1=∠2,∠3=∠4,∴2∠P=∠B+∠D=46°+26°=72°,∴∠P=36°.(3)∠P=26°,理由是:如图3:∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∴∠PAD=180°-∠2,∠PCD=180°-∠3.∵∠PAB=∠1,∠P+∠PAB=∠B+∠4,∴∠P+∠1=∠B+∠4.∵∠P+(180°-∠2)=∠D+(180°-∠3),∴2∠P=∠B+∠D,∴∠P=12(∠B+∠D)=12×(36°+16°)=26°.(4)①设∠CAP=m,∠CDP=n,则∠CAB=3m,,∠CDB=3n,∴∠PAB=2m,∠PDB=2n.∵∠C+∠CAP=∠P+∠PDC,∠P+∠PAB=∠B+∠PDB,∵∠C=α,∠B=β,∴α+m=∠P+n,∠P+2m=β+2n,∴α-∠P=n-m,∠P-β=2n-2m=2(n-m),∴2α+β=3∠P∴∠P=2α+β3.故答案为:∠P=2α+β3.②设∠BAP=x,∠PCE=y,则∠PAO=x,∠PCB=y.∵∠PAO+∠P=∠PCD+∠D,∠B+∠BAO=∠OCD+∠D,∴x+∠P=180°-y+∠D,∠B+2x=180°-2y+∠D,∴∠P=180°+∠B+∠D2.故答案为:∠P=180°+∠B+∠D2.【点睛】本题考查了三角形内角和,三角形的外角的性质、多边形的内角和等知识,解题的关键是学会用方程的思想思考几何问题,属于中考常考题型.1.(2023春·全国·八年级专题练习)如图,五边形ABCDE在∠BCD,∠EDC处的外角分别是∠FCD,∠GDC,CP,DP分别平分∠FCD和∠GDC且相交于点P.若∠A=160°,∠B=80°,∠E=90°,则∠CPD=.【答案】105°【分析】根据多边形内角和公式求出五边形的内角和,根据题意求出∠BCD+∠CDE的度数,从而求出∠PCD+∠PDC的度数,运用三角形内角和定理即可求出∠CPD的度数.【解析】解:∵∠A=160°,∠B=80°,∠E=90°,∴∠BCD+∠CDE=(5-2)×180°-160°-80°-90°=210°,∴∠PCD+∠PDC=12(180°×2-210°)=75°,在△CPD中,∠CPD=180°-(∠PCD+∠PDC)=180°-75°=105°,故答案为:105°.【点睛】本题主要考查多边形内角和公式,三角形内角和定理,以及外角的平分线,根据已知条件求出∠BCD+∠CDE的度数是解题的关键.2.(2023春·全国·八年级专题练习)如图,点P是ΔABC的外角∠BCE和∠CBF的角平分线交点,延长BP交AC于G,请写出∠A和∠CPG的数量关系.【答案】∠CPG=90°+12∠A【分析】先根据三角形外角的性质及角平分线的性质即可用含∠A的式子表示出∠CBP和∠BCP的和,再利用三角形外角的性质即可得到∠A和∠CPG的数量关系.【解析】解:∵∠ACB+∠ABC=180°-∠A,∴∠ECB+∠FBC=180°×2-(180°-∠A)=180°+∠A,∵点P是ΔABC的外角∠BCE和∠CBF的角平分线交点,∴∠CBP+∠BCP=12(180°+∠A)=90°+12∠A,又∵∠CPG=∠CBP+∠BCP,∴∠CPG=90°+12∠A.【点睛】本题考查了三角形内角和定理、三角形外角和的性质及角平分线的性质.熟练应用三角形外角的性质是解题的关键.3.(2023春·八年级期末)如图1,△ABC的外角平分线交于点F.(1)若∠A=40°,则∠F的度数为;(2)如图2,过点F作直线MN∥BC,交AB,AC延长线于点M,N,若设∠MFB=α,∠NFC=β,则∠A 与α+β的数量关系是;(3)在(2)的条件下,将直线MN绕点F转动.①如图3,当直线MN与线段BC没有交点时,试探索∠A与α,β之间的数量关系,并说明理由;②当直线MN与线段BC有交点时,试问①中∠A与α,β之间的数量关系是否仍然成立?若成立,请说明理由;若不成立,请给出三者之间的数量关系.【答案】(1)70°(2)α+β-12∠A=90° (3)①见解析 ②不成立;β-α-12∠A=90°或α-β-12∠A=90°【分析】(1)根据三角形内角和定理以及角平分线的定义,即可得到∠F的度数;(2)根据三角形内角和定理以及角平分线的定义,即可得到∠BFC的度数,再根据平行线的性质,即可得到∠A与α+β的数量关系;(3)①根据(2)中的结论∠BFC =90°-12∠A ,以及平角的定义,即可得到∠A 与α,β之间的数量关系;②分两种情况进行讨论,根据(2)中的结论∠BFC =90°-12∠A ,以及平角的定义,即可得到∠A 与α,β之间的数量关系.【解析】解:(1)如图1,∵∠A =40°,∴∠ABC +∠ACB =140°,∴∠DBC +∠ECB =360°-140°=220°,又∵△ABC 的外角平分线交于点F ,∴∠FBC +∠FCB =12(∠DBC +∠ECB )=12×220°=110°,∴△BCF 中,∠F =180°-110°=70°,故答案为:70°;(2)如图2,∵∠ABC +∠ACB =180°-∠A ,∴∠DBC +∠ECB =360°-(180°-∠A )=180°+∠A ,又∵△ABC 的外角平分线交于点F ,∴∠FBC +∠FCB =12(∠DBC +∠ECB )=12×(180°+∠A )=90°+12∠A ,∴△BCF 中,∠BFC =180°-90°+12∠A =90°-12∠A ,又∵∠MFB =α,∠NFC =β,MN ∥BC ,∴∠FBC =α,∠FCB =β,∵△BCF 中,∠FBC +∠FCB +∠BFC =180°,∴α+β+90°-12∠A =180°,即α+β-12∠A =90°,故答案为:α+β-12∠A =90°;(3)①α+β-12∠A =90°,理由如下:如图3,由(2)可得,∠BFC =90°-12∠A ,∵∠MFB +∠NFC +∠BFC =180°,∴α+β+90°-12∠A =180°,即α+β-12∠A =90°,②当直线MN 与线段BC 有交点时,①中∠A 与α,β之间的数量关系不成立.分两种情况:如图4,当M 在线段AB 上,N 在AC 延长线上时,由(2)可得,∠BFC =90°-12∠A ,∵∠BFC -∠MFB +∠NFC =180°,∴90°-12∠A -α+β=180°,即β-α-12∠A =90°;如图5,当M 在AB 的延长线上,N 在线段AC 上时,由(2)可得,∠BFC =90°-12∠A ,∵∠BFC -∠NFC +∠MFB =180°,∴90°-12∠A -β+α=180°,即α-β-12∠A =90°;综上所述,∠A 与α,β之间的数量关系为β-α-12∠A =90°或α-β-12∠A =90°.【点睛】此题主要考查三角形的角度求解与证明,解题的关键是根据题意分情况作图.【知识点8内外角角平分线模型】【条件】△ABC 中,BP 、CP 分别是△ABC 的内角和外角的角平分线,且相交于点P .【结论】∠P =12∠A 【证明】∵BP 是∠ABC 平分线,∴∠3=12∠ABC ∵CP 是∠ACE 平分线,∴∠1=12∠ACE 由△ABC 外角定理可知:∠ACE =∠ABC +∠A 即:2∠1=2∠3+∠A ⋯⋯①对①式两边同时除以2,得:∠1=∠3+12∠A ⋯⋯②又在△BPC 中由外角定理可知:∠1=∠3+∠P ⋯⋯③比较②③式子可知:∠P =12∠A .12(∠ABC +∠ACB )=12(180°−∠A )=∠O =90°−12∠A .【题型8内外角角平分线模型】1(2023春·八年级期末)如图,BA 1和CA 1分别是△ABC 的内角平分线和外角平分线,BA 2是∠A 1BD 的平分线,CA 2是∠A 1CD 的平分线,BA 3是∠A 2BD 的平分线,CA 3是∠A 2CD 的平分线,⋯⋯以此类推,若∠A =α,则∠A 2020=.【答案】α22020【分析】根据角平分线的定义可得∠A 1BC =12∠ABC ,∠A 1CD =12∠ACD ,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD =∠A +∠ABC ,∠A 1CD =∠A 1BC +∠A 1,整理即可得解∠A 1=12∠A ,同理求出∠A 2,∠A 3,可以发现后一个角等于前一个角的12,根据此规律即可得解.【详解】∵A 1B 是∠ABC 的平分线,A 1C 是∠ACD 的平分线,∴∠A 1BC =12∠ABC ,∠A 1CD =12∠ACD ,又∵∠ACD =∠A +∠ABC ,∠A 1CD =∠A 1BC +∠A 1,∴12(∠A +∠ABC )=12∠ABC +∠A 1,∴∠A 1=12∠A ,∵∠A =α.∠A 1=12∠A =12α,同理可得∠A 2=12∠A 1=122α,根据规律推导,∴∠A 2020=α22020,故答案为α22020.【点睛】本题主要考查的是三角形外角性质,角平分线定理,熟知三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义是解题的关键. 1.(2023春·八年级期末)如图,已知△ABC 的两条高BD 、CE 交于点F ,∠ABC 的平分线与。
人教版8上数学习题课件 小专题(四) 角度转换模型(1)——8字型
类型一 利用“8字型”进行转化 1.如图,求∠A+∠B+∠C+∠D+∠E+∠F的度数.
解:如图,∵∠A+∠B+∠4=180°,∠1+∠2+∠3=180°,∠3 ∴∠A+∠B=∠1+∠2. 同理可得∠C+∠D=∠2+∠3,∠E+∠F=∠1+∠3, ∴∠A+∠B+∠C+∠D+∠E+∠F=2(∠1+∠2+∠3)=360°.
3.如图,求∠1+∠2+∠3+∠4+∠5+∠6+∠7的度数.
解:连接CG. ∵∠OCG+∠OGC+∠COG=180°,∠6+∠7+∠AOB=180°, ∠COG=∠AOB, ∴∠6+∠7=∠OCG+∠OGC. ∵在五边形CDEFG中,∠1+∠2+∠OCG+∠OGC+∠3+∠4+∠ ∴∠1+∠2+∠6+∠7+∠3+∠4+∠5=540°, 即∠1+∠2+∠3+∠4+∠5+∠6+∠7=540°.
类型二 利用三角形内角与外角的性质进行转化 4.如图,求∠A+∠ABC+∠C+∠D+∠E+∠F的度数.
解:∵∠EBG=∠C+∠D,∠BGF=∠A+∠ABC, ∴∠A+∠ABC+∠C+∠D+∠E+∠F=∠EBG+∠BGF+∠E+
5.如图1,易得∠A+∠B+∠C+∠D+∠E=180°. (1)若将图1变形为图2,则∠A+∠DBE+∠C+∠D+∠E 的度数会变化吗?请说明理由;
解:(1)不变.理由如下:
∵∠ABE是△BCE的外角,∠DBC是△ABD的外角,
∴∠ABE=∠C+∠E,∠DBC=∠A+∠D.
∵∠DBC+∠DBE+∠ABE=180°,
∴∠A+∠DBE+∠C+∠D+∠E=180°.图
图
1
2
(2)若将图1变形为图3,则∠A+∠B+∠C+∠D+∠E的 度数不会变化吗?请说明理由.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
角的8字模型结论:1.∠A+∠D=∠C+∠B,若∠A=∠C,则∠B=∠D2.AD+BC<AB+CD证明:(1)∵线段AB,CD相交于点0,∴∠AOD=∠BOC,又∵∠A+∠D=180°-∠AOD,∠C+∠B=180°-∠BOC,∴∠A+∠D=∠C+∠B.(2)∵AD<AO+DO,BC<BO+CO∴AD+ BC<AO+DO+ BO+CO即: AD+BC<AB+CD(1)因为这个图形像数字8,所以我们称为8字模型。
(2)8字模型往往在几何综合题目中推导角度时用到。
模型实例:1.如图,线段AB,CD相交于点O,连接AD,CB.(1)求证:∠A+∠D=∠C+∠B;(2)若∠A=40°,∠C=60°,则∠D-∠B= ;(3)若∠C=α,∠A=β(α>β),则∠D-∠B= .解答:(1)证明:∵线段AB ,CD 相交于点0,∴∠AOD=∠BOC ,又∵∠A+∠D=180°-∠AOD ,∠C+∠B=180°-∠BOC ,∴∠A+∠D=∠C+∠B.(2)由(1)知,∠C-∠A=∠D-∠B ,∴若∠A=40°,∠C=60°,则∠D-∠B=60°-40°=20°.(3)若∠C=α,∠A=β(α>β),则∠D-∠B=∠C-∠A=α-β.观察下列图形,计算角度:2.如图,∠ A+∠B+∠ C+∠D+∠E=__________解法一:利用角的8字模型。
如图,连接CD.∵∠BOC 是△BOE 的外角,∴∠B+∠E =∠BOC。
∵∠BOC 是△COD 的外角∴∠1+∠2=∠BOC∴∠B+∠E =∠1+∠2。
(角的8字模型)∴∠ A+∠B+∠ACE+∠ADB+∠E=∠ A +∠ACE+∠ADB+∠1+∠2=∠ A +∠ACD+∠ADC=180°解法二:利用三角形的外角和定理。
∵∠1是△FCE 的外角,∴ ∠1=∠C +∠E.∵∠2是△GBD 的外角,∴ ∠2=∠B +∠D∴∠A+∠B+∠ C+∠D+∠E=∠A+∠1+∠2=180°3.如图,∠A+∠B+∠C+∠D+∠E +∠F =__________解法一 利用角的8字模型在△AFQ 中可得:∠A+∠F=180°-∠AQF=180°-∠OQP ①,同理可得: ∠B+∠C=180°-∠OPQ ②,∠E+∠D=180°-∠POQ ③,①+②+③可得:∠A+∠F+∠B+∠C+∠E+∠D=180°-∠OQP+180°-∠OPQ+180°-∠POQ=540°-(∠OQP+∠OPQ+∠POQ )=540°-180°=360°;解法二:利用角的8字模型如图,连接DE ,∵∠AOE 是△AOB 的外角,∴∠A +∠B =∠AOE∵∠AOE 是△OED 的外角,∴∠1+∠2=∠AOE∴∠A +∠B =∠1+∠2(角的8字模型)∴∠A+∠B+∠ C+∠ADC+∠FEB+∠F=∠1+∠2+∠ C+∠ADC+∠FEB+∠F=360°4.如图(2),求出∠A+∠B+∠C+∠D+∠E+∠F 的度数.解:在△APQ 中可得:∠A+∠B=180°-∠OPQ①,同理可得: ∠C+∠D=180°-∠POQ②,∠E+∠F=180°-∠OQP ③① +②+③可得:∠A+∠B+∠C+∠D+∠E+∠F=180°-∠OPQ+180°-∠POQ+180°-∠OQP=540°-(∠OQP+∠OPQ+∠POQ )=540°-180°=360°.针对练习:1.如图所示,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A.180°B.360°C.540°D.720°2.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=.3.如图,线段AC、BD相交于点E,连结AB、CD,若∠A=98°,∠B=25°,∠C=50°,则∠D=°.4.如图1所示,△ABO与△CDO称为“对顶三角形”,其中∠A+∠B=∠C+∠D.利用这个结论,在图2中,∠A+∠B+∠C+∠D+∠E+∠F+∠G=°.5.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数是.6.如图,则∠A+∠B+∠C+∠D+∠E+∠F的度数为度.7.如图所示,求∠A+∠B+∠C+∠D+∠E+∠F.8.如图所示中的几个图形是五角星和它的变形.(1)图甲中是一个五角星形状,求证:∠A+∠B+∠C+∠D+∠E=180°;(2)图甲中的点A向下移到BE上时(如图乙)五个角的和(即∠CAD+∠B+∠C+∠D+∠E)有无变化?试说明理由(3)把图乙中的点C向上移动到BD上时(如图丙所示),五个角的和(即∠CAD+∠B+∠ACE+∠D+∠E)有无变化?试说明理由.9.如图,在△ABC的边上取两点D、E,且BD=CE,求证:AB+AC>AD+AE.参考答案1.如图所示,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A.180°B.360°C.540°D.720°【分析】根据三角形外角性质得出∠ENM=∠A+∠C,∠DMN=∠B+∠F,根据四边形的内角和定理得出∠ENM+∠DMN+∠D+∠E=360°,代入求出即可.【解答】解:设AE和CF交于N,BD和CF交于M,∵∠ENM=∠A+∠C,∠DMN=∠B+∠F,又∵∠ENM+∠DMN+∠D+∠E=360°,∴∠A+∠C+∠B+∠F+∠D+∠E=360°,即∠A+∠B+∠C+∠D+∠E+∠F=360°,故选:B.【点评】本题考查了多边形的内角和定理和三角形外角性质,能根据定理得出∠ENM=∠A+∠C、∠DMN=∠B+∠F、∠ENM+∠DMN+∠D+∠E=360°是解此题的关键.2.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=40°.【分析】直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.【解答】解:如图所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,∵∠1+∠2+∠3+∠4=220°,∴∠1+∠2+∠6+∠3+∠4+∠7=360°,∴∠6+∠7=140°,∴∠5=180°﹣(∠6+∠7)=40°.故答案为:40°.【点评】此题主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.3.如图,线段AC、BD相交于点E,连结AB、CD,若∠A=98°,∠B=25°,∠C=50°,则∠D= 73°.【分析】利用三角形的内角和定理和对顶角即可得出结论.【解答】解:在△ABEz中,∠A=98°,∠B=25°,∴∠AEB=180°﹣∠A﹣∠B=57°,∴∠DEC=∠AEB=57°,在△CDE中,∠C=50°,∴∠D=180°﹣∠C﹣∠DEC=73°,故答案为:73.【点评】此题主要考查了三角形的内角和定理和对顶角的性质,熟记三角形的内角和定理是解本题的关键.4.如图1所示,△ABO与△CDO称为“对顶三角形”,其中∠A+∠B=∠C+∠D.利用这个结论,在图2中,∠A+∠B+∠C+∠D+∠E+∠F+∠G=540°.【分析】先连接BE,构造“对顶三角形”,得出∠C+∠D=∠CBE+∠DEB,再根据五边形内角和为540°,得出∠A+∠ABE+∠BEF+∠F+∠G=540°,进而得到∠A+∠ABC+∠C+∠D+∠DEF+∠F+∠G=540°.【解答】解:如图2,连接BE,由对顶三角形可得,∠C+∠D=∠CBE+∠DEB,∵五边形ABEFG中,∠A+∠ABE+∠BEF+∠F+∠G=540°,即∠A+∠ABC+∠CBE+∠BED+∠DEF+∠F+∠G=540°,∴∠A+∠ABC+∠C+∠D+∠DEF+∠F+∠G=540°,故答案为:540.【点评】本题主要考查了多边形内角和定理的运用,解决问题的关键是作辅助线构造“对顶三角形”以及五边形,并得出∠C+∠D=∠CBE+∠DEB.解题时注意,五边形的内角和为540°.5.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数是360°.【分析】先根据三角形外角的性质得出∠A+∠B=∠1,∠E+∠F=∠2,∠C+∠D=∠3,再根据三角形的外角和是360°进行解答.【解答】解:∵∠1是△ABG的外角,∴∠1=∠A+∠B,∵∠2是△EFH的外角,∴∠2=∠E+∠F,∵∠3是△CDI的外角,∴∠3=∠C+∠D,∵∠1、∠2、∠3是△GIH的外角,∴∠1+∠2+∠3=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为:360°.【点评】本题考查的是三角形外角的性质及三角形的外角和,熟知三角形的外角和是360度是解答此题的关键.6.如图,则∠A+∠B+∠C+∠D+∠E+∠F的度数为360度.【分析】根据三角形外角的性质,以及四边形的四个内角的和是360°即可求解.【解答】解:∵∠1=∠C+∠D,∠2=∠A+∠B,∴∠A+∠B+∠C+∠D+∠E+∠F=∠1+∠2+∠E+∠F=360°.故答案是:360°.【点评】本题考查的是三角形外角的性质及三角形的外角和,熟知三角形的外角和是360度是解答此题的关键.7.如图所示,求∠A+∠B+∠C+∠D+∠E+∠F.【分析】连接AD,由三角形内角和外角的关系可知∠E+∠F=∠FAD+∠EDA,由四边形内角和是360°,即可求∠A+∠B+∠C+∠D+∠E+∠F=360°.【解答】解:如图,连接AD.∵∠1=∠E+∠F,∠1=∠FAD+∠EDA,∴∠E+∠F=∠FAD+∠EDA,∴∠A+∠B+∠C+∠D+∠E+∠F=∠BAD+∠ADC+∠B+∠C.又∵∠BAD+∠ADC+∠B+∠C=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.【点评】本题考查的是三角形内角与外角的关系,涉及到四边形及三角形内角和定理,比较简单.8.如图所示中的几个图形是五角星和它的变形.(1)图甲中是一个五角星形状,求证:∠A+∠B+∠C+∠D+∠E=180°;(2)图甲中的点A向下移到BE上时(如图乙)五个角的和(即∠CAD+∠B+∠C+∠D+∠E)有无变化?试说明理由(3)把图乙中的点C向上移动到BD上时(如图丙所示),五个角的和(即∠CAD+∠B+∠ACE+∠D+∠E)有无变化?试说明理由.【分析】(1)根据三角形的外角的性质,可得∠1,∠2,根据三角形的内角和定理,可得答案;(2)根据三角形的外角的性质,可得∠1,∠2,根据三角形的内角和定理,可得答案;(3)根据三角形的外角的性质,可得∠1,∠2,根据三角形的内角和定理,可得答案.【解答】解:(1)如图:由三角形外角的性质,得∠C+∠E=∠1,∠B+∠D=∠2.由三角形的内角和定理,得∠A+∠1+∠2=180°,等量代换,得∠A+∠B+∠C+∠D+∠E=180゜;(2)如图:由三角形外角的性质,得∠C+∠E=∠1,∠A+∠D=∠2,由三角形的内角和定理,得∠B+∠1+∠2=180°,等量代换,得∠A+∠B+∠C+∠D+∠E=180゜;(3)∵∠ECD是△BCE的一个外角,∴∠ECD=∠B+∠E(三角形的一个外角等于它不相邻的两个内角的和),∴∠CAD+∠B+∠ACE+∠D+∠E=∠CAD+∠ACE+∠D+∠ECD=∠CAD+∠ACD+∠D=180°,故∠CAD+∠B+∠ACE+∠D+∠E等于180°,没有变化.【点评】本题考查了多边形的内角与外角,利用了三角形外角的性质,三角形的内角和定理.9.如图,在△ABC的边上取两点D、E,且BD=CE,求证:AB+AC>AD+AE.【分析】取BC的中点F,连接AF并延长至G,使FG=AF,连接GB,GC,GD,GE,依据四边形ABGC和四边形ADGE是平行四边形,即可得到BG=AC,DG=AE,延长AD至H,交BG于H,依据三角形三边关系,即可得到AB+BH>AD+DH,DH+HG>DG,进而得出AB+BG>AD+DG,即AB+AC>AD+AE.【解答】证明:取BC的中点F,连接AF并延长至G,使FG=AF,连接GB,GC,GD,GE,∵BD=CE,∴DF=EF,∴四边形ABGC和四边形ADGE是平行四边形,∴BG=AC,DG=AE,延长AD至H,交BG于H,∵AB+BH>AD+DH,DH+HG>DG,∴AB+BH+DH+HG>AD+DH+DG,∴AB+BG>AD+DG,即AB+AC>AD+AE.【点评】本题主要考查了三角形三边关系的运用,解决问题的关键是作辅助线构造平行四边形,利用三角形三边关系进行判断.。