2018版高考数学大一轮复习高考专题突破五高考中的圆锥曲线问题文新人教版
【步步高】高考数学第一轮复习(典型题+详解)专题五 高考中的圆锥曲线问题文档强练 文 新人教A版
专题五 高考中的圆锥曲线问题1.已知F 1、F 2为椭圆x 225+y 29=1的两个焦点,过F 1的直线交椭圆于A 、B 两点.若|F 2A |+|F 2B |=12,则|AB |=________. 答案 8解析 由题意知(|AF 1|+|AF 2|)+(|BF 1|+|BF 2|) =|AB |+|AF 2|+|BF 2|=2a +2a ,又由a =5,可得|AB |+(|BF 2|+|AF 2|)=20, 即|AB |=8.2.设AB 为过抛物线y 2=2px (p >0)的焦点的弦,则|AB |的最小值为( )A.p 2B.pC.2pD.无法确定答案 C解析 当弦AB 垂直于对称轴时|AB |最短, 这时x =p2,∴y =±p ,|AB |min =2p .3.若双曲线x 2a 2-y 23=1的一条渐近线被圆(x -2)2+y 2=4所截得的弦长为2,则该双曲线的实轴长为( )A.1B.2C.3D.6答案 B解析 双曲线x 2a 2-y 23=1的渐近线方程为y =±3a x ,即3x ±ay =0,圆(x -2)2+y 2=4的圆心为C (2,0),半径为r =2,如图,由圆的弦长公式得弦心距|CD |=22-12=3,另一方面,圆心C (2,0)到双曲线x 2a 2-y 23=1的渐近线3x -ay =0的距离为d =|3×2-a ×0|3+a 2=233+a 2,所以233+a 2=3,解得a 2=1,即a =1,该双曲线的实轴长为2a =2.4.在抛物线y =2x 2上有一点P ,它到A (1,3)的距离与它到焦点的距离之和最小,则点P 的坐标是( )A.(-2,1)B.(1,2)C.(2,1)D.(-1,2)答案 B解析 如图所示,直线l 为抛物线y =2x 2的准线,F 为其焦点,PN ⊥l ,AN 1⊥l ,由抛物线的定义知,|PF |=|PN |, ∴|AP |+|PF |=|AP |+|PN |≥|AN 1|, 当且仅当A 、P 、N 三点共线时取等号. ∴P 点的横坐标与A 点的横坐标相同即为1, 则可排除A 、C 、D ,故选B.5.设坐标原点为O ,抛物线y 2=2x 与过焦点的直线交于A 、B 两点,则OA →·OB →等于 ( ) A.34B.-34C.3D.-3答案 B解析 方法一 (特殊值法)抛物线的焦点为F ⎝⎛⎭⎫12,0,过F 且垂直于x 轴的直线交抛物线于A (12,1),B (12,-1), ∴OA →·OB →=⎝⎛⎭⎫12,1·⎝⎛⎭⎫12,-1=14-1=-34. 方法二 设A (x 1,y 1),B (x 2,y 2), 则OA →·OB →=x 1x 2+y 1y 2.由抛物线的过焦点的弦的性质知: x 1x 2=p 24=14,y 1y 2=-p 2=-1.∴OA →·OB →=14-1=-34.题型一 圆锥曲线中的范围、最值问题例1 (2012·浙江改编)如图所示,在直角坐标系xOy 中,点P (1,12)到抛物线C :y 2=2px (p >0)的准线的距离为54.点M (t,1)是C 上的定点,A ,B是C 上的两动点,且线段AB 的中点Q (m ,n )在直线OM 上. (1)求曲线C 的方程及t 的值; (2)记d =|AB |1+4m 2,求d 的最大值.思维启迪 (1)依条件,构建关于p ,t 的方程;(2)建立直线AB 的斜率k 与线段AB 中点坐标间的关系,并表示弦AB 的长度,运用函数的性质或基本不等式求d 的最大值. 解 (1)y 2=2px (p >0)的准线x =-p2,∴1-(-p 2)=54,p =12,∴抛物线C 的方程为y 2=x . 又点M (t,1)在曲线C 上,∴t =1.(2)由(1)知,点M (1,1),从而n =m ,即点Q (m ,m ), 依题意,直线AB 的斜率存在,且不为0, 设直线AB 的斜率为k (k ≠0). 且A (x 1,y 1),B (x 2.y 2),由⎩⎪⎨⎪⎧y 21=x 1,y 22=x 2,得(y 1-y 2)(y 1+y 2)=x 1-x 2,故k ·2m =1, 所以直线AB 的方程为y -m =12m (x -m ),即x -2my +2m 2-m =0.由⎩⎪⎨⎪⎧x -2my +2m 2-m =0,y 2=x 消去x , 整理得y 2-2my +2m 2-m =0,所以Δ=4m -4m 2>0,y 1+y 2=2m ,y 1y 2=2m 2-m . 从而|AB |=1+1k2·|y 1-y 2|=1+4m 2·4m -4m 2 =2(1+4m 2)(m -m 2) ∴d =|AB |1+4m 2=2m (1-m )≤m +(1-m )=1,当且仅当m =1-m ,即m =12时,上式等号成立,又m =12满足Δ=4m -4m 2>0.∴d 的最大值为1.思维升华 圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.椭圆C :x 236+y 220=1的左顶点、右焦点分别为A ,F ,直线的方程为x =9,N 为直线上一点,且在x 轴的上方,AN 与椭圆交于M 点. (1)若M 是AN 的中点,求证:MA ⊥MF .(2)过A ,F ,N 三点的圆与y 轴交于P ,Q 两点,求|PQ |的取值范围. (1)证明 由题意得A (-6,0),F (4,0),x N =9,∴x M =32,又M 点在椭圆上,且在x 轴上方,得y M =532,∴MA →=(-152,-532),MF →=(52,-532),∴MA →·MF →=-754+754=0,∴MA ⊥MF .(2)解 方法一 设N (9,t ),其中t >0,∵圆过A ,F ,N 三点,∴圆心在线段AF 的中垂线上. 设圆心为(-1,b ),半径为r ,有r =(-1-4)2+b 2=(-1-9)2+(b -t )2,∴b =t 2+752t =12(t +75t),|PQ |=2r 2-1=2b 2+24.∵t >0,∴b ≥ t ·75t=53,当且仅当t =75t ,即t =53时取“=”∴|PQ |≥299=611.∴|PQ |的取值范围是[611,+∞). 方法二 设N (9,t ),其中t >0, ∵圆过A ,F ,N 三点,∴设该圆的方程为x 2+y 2+Dx +Ey +F =0,有 ⎩⎪⎨⎪⎧36-6D +F =0,16+4D +F =0,81+t 2+9D +tE +F =0,解得D =2,E =-t -75t ,F =-24,∴圆心为(-1,12(t +75t )),半径r = 25+14(t +75t)2,∴|PQ |=2r 2-1=2 24+14(t +75t)2,∵t >0,∴t +75t ≥2 t ·75t=103,当且仅当t =75t ,即t =53时取“=”∴|PQ |≥299=611,∴|PQ |的取值范围是[611,+∞). 题型二 圆锥曲线中的定点、定值问题例2 (2012·福建)如图,等边三角形OAB 的边长为83,且其三个顶点均在 抛物线E :x 2=2py (p >0)上. (1)求抛物线E 的方程;(2)设动直线l 与抛物线E 相切于点P ,与直线y =-1相交于点Q ,证明:以PQ 为直径的圆恒过y 轴上某定点.思维启迪 既然圆过y 轴上的点,即满足MP →·MQ →=0,对任意P 、Q 恒成立可待定M (0,y 1),也可给定特殊的P 点,猜想M 点坐标,再证明. (1)解 依题意,得|OB |=83,∠BOy =30°.设B (x ,y ),则x =|OB |sin 30°=43,y =|OB |cos 30°=12. 因为点B (43,12)在x 2=2py 上, 所以(43)2=2p ×12,解得p =2. 故抛物线E 的方程为x 2=4y .(2)证明 方法一 由(1)知y =14x 2,y ′=12x .设P (x 0,y 0),则x 0≠0,且l 的方程为 y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20.由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =-1得⎩⎪⎨⎪⎧x =x 20-42x 0,y =-1. 所以Q 为⎝⎛⎭⎫x 20-42x 0,-1.设M (0,y 1),令MP →·MQ →=0对满足y 0=14x 20(x 0≠0)的x 0,y 0恒成立.由于MP →=(x 0,y 0-y 1),MQ →=⎝⎛⎭⎫x 20-42x 0,-1-y 1,由MP →·MQ →=0,得x 20-42-y 0-y 0y 1+y 1+y 21=0, 即(y 21+y 1-2)+(1-y 1)y 0=0.(*)由于(*)式对满足y 0=14x 20(x 0≠0)的y 0恒成立,所以⎩⎪⎨⎪⎧1-y 1=0,y 21+y 1-2=0,解得y 1=1.故以PQ 为直径的圆恒过y 轴上的定点M (0,1). 方法二 由(1)知y =14x 2,y ′=12x .设P (x 0,y 0),则x 0≠0, 且l 的方程为y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20.由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =-1得⎩⎪⎨⎪⎧x =x 20-42x 0,y =-1. 所以Q 为⎝⎛⎭⎫x 20-42x 0,-1.取x 0=2,此时P (2,1),Q (0,-1), 以PQ 为直径的圆为(x -1)2+y 2=2, 交y 轴于点M 1(0,1)或M 2(0,-1); 取x 0=1,此时P ⎝⎛⎭⎫1,14,Q ⎝⎛⎭⎫-32,-1, 以PQ 为直径的圆为⎝⎛⎭⎫x +142+⎝⎛⎭⎫y +382=12564, 交y 轴于点M 3(0,1)、M 4⎝⎛⎭⎫0,-74. 故若满足条件的点M 存在,只能是M (0,1). 以下证明点M (0,1)就是所要求的点.因为MP →=(x 0,y 0-1),MQ →=⎝⎛⎭⎫x 20-42x 0,-2,所以MP →·MQ →=x 20-42-2y 0+2=2y 0-2-2y 0+2=0.故以PQ 为直径的圆恒过y 轴上的定点M (0,1). 思维升华 求定点及定值问题常见的方法有两种: (1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.(2013·江西)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e = 32,a +b =3.(1)求椭圆C 的方程;(2)如图所示,A 、B 、D 是椭圆C 的顶点,P 是椭圆C 上除顶点外的任意一点,直线DP 交x 轴于点N ,直线AD 交BP 于点M ,设BP 的斜率为k ,MN 的斜率为m .证明:2m -k 为定值.(1)解 因为e =32=c a, 所以a =23c ,b =13c . 代入a +b =3得,c =3,a =2,b =1. 故椭圆C 的方程为x 24+y 2=1.(2)证明 方法一 因为B (2,0),点P 不为椭圆顶点,则直线BP 的方程为y =k (x -2)(k ≠0,k ≠±12),①①代入x 24+y 2=1,解得P ⎝ ⎛⎭⎪⎫8k 2-24k 2+1,-4k 4k 2+1.直线AD 的方程为y =12x +1.②①与②联立解得M ⎝⎛⎭⎪⎫4k +22k -1,4k 2k -1.由D (0,1),P ⎝ ⎛⎭⎪⎫8k 2-24k 2+1,-4k 4k 2+1,N (x,0)三点共线知-4k4k 2+1-18k 2-24k 2+1-0=0-1x -0,解得N ⎝ ⎛⎭⎪⎫4k -22k +1,0.所以MN 的斜率为m =4k2k -1-04k +22k -1-4k -22k +1=4k (2k +1)2(2k +1)2-2(2k -1)2=2k +14. 则2m -k =2k +12-k =12(定值).方法二 设P (x 0,y 0)(x 0≠0,±2),则k =y 0x 0-2,直线AD 的方程为y =12(x +2),直线BP 的方程为y =y 0x 0-2(x -2),直线DP 的方程为y -1=y 0-1x 0x ,令y =0,由于y 0≠1可得N ⎝⎛⎭⎪⎫-x 0y 0-1,0, 联立⎩⎨⎧y =12(x +2)y =y0x 0-2(x -2),解得M ⎝⎛⎭⎪⎫4y 0+2x 0-42y 0-x 0+2,4y 02y 0-x 0+2,因此MN 的斜率为m =4y 02y 0-x 0+24y 0+2x 0-42y 0-x 0+2+x 0y 0-1=4y 0(y 0-1)4y 20-8y 0+4x 0y 0-x 20+4=4y 0(y 0-1)4y 20-8y 0+4x 0y 0-(4-4y 20)+4 =y 0-12y 0+x 0-2, 所以2m -k =2(y 0-1)2y 0+x 0-2-y 0x 0-2=2(y 0-1)(x 0-2)-y 0(2y 0+x 0-2)(2y 0+x 0-2)(x 0-2)=2(y 0-1)(x 0-2)-2y 20-y 0(x 0-2)(2y 0+x 0-2)(x 0-2)=2(y 0-1)(x 0-2)-12(4-x 20)-y 0(x 0-2)(2y 0+x 0-2)(x 0-2)=12(定值). 题型三 圆锥曲线中的探索性问题例3 (2012·广东)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率e =23,且椭圆C 上的点到点Q (0,2)的距离的最大值为3. (1)求椭圆C 的方程.(2)在椭圆C 上,是否存在点M (m ,n ),使得直线l :mx +ny =1与圆O :x 2+y 2=1相交于不同的两点A 、B ,且△OAB 的面积最大?若存在,求出点M 的坐标及对应的△OAB 的面积;若不存在,请说明理由.思维启迪 圆锥曲线中,这类问题的解题思想是假设其结论成立、存在等,在这个假设下进行推理论证,如果得到了一个合情合理的推理结果,就肯定假设,对问题作出正面回答;如果得到一个矛盾的结果,就否定假设,对问题作出反面回答.解 (1)∵e 2=c 2a 2=a 2-b 2a 2=23,∴a 2=3b 2,∴椭圆方程为x 23b 2+y 2b 2=1,即x 2+3y 2=3b 2.设椭圆上的点到点Q (0,2)的距离为d ,则 d =(x -0)2+(y -2)2=x 2+(y -2)2=3b 2-3y 2+(y -2)2=-2(y +1)2+3b 2+6, ∴当y =-1时,d 取得最大值,d max =3b 2+6=3, 解得b 2=1,∴a 2=3. ∴椭圆C 的方程为x 23+y 2=1.(2)假设存在点M (m ,n )满足题意,则m 23+n 2=1,即m 2=3-3n 2.设圆心到直线l 的距离为d ′,则d ′<1, d ′=|m ·0+n ·0-1|m 2+n 2=1m 2+n 2. ∴|AB |=212-d ′2=2 1-1m 2+n 2. ∴S △OAB =12|AB |d ′=12·21-1m 2+n 2·1m 2+n 2=1m 2+n 2⎝⎛⎭⎫1-1m 2+n 2. ∵d ′<1,∴m 2+n 2>1, ∴0<1m 2+n 2<1,∴1-1m 2+n 2>0.∴S △OAB =1m 2+n 2⎝⎛⎭⎫1-1m 2+n 2 ≤⎝ ⎛⎭⎪⎪⎫1m 2+n 2+1-1m 2+n 222=12, 当且仅当1m 2+n 2=1-1m 2+n2,即m 2+n 2=2>1时,S △OAB 取得最大值12.由⎩⎪⎨⎪⎧m 2+n 2=2,m 2=3-3n 2得⎩⎨⎧m 2=32,n 2=12,∴存在点M 满足题意,M 点坐标为⎝⎛⎭⎫62,22,⎝⎛⎭⎫62,-22,⎝⎛⎭⎫-62,22或⎝⎛⎭⎫-62,-22, 此时△OAB 的面积为12.思维升华 (1)探索性问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.(2)反证法与验证法也是求解探索性问题常用的方法.(2013·长春调研)已知椭圆C 1、抛物线C 2的焦点均在x 轴上,C 1的中心和C 2的顶点均为原点O ,从每条曲线上各取两个点,将其坐标记录于下表中:(1)求C 1,C 2(2)是否存在直线l 满足条件:①过C 2的焦点F ;②与C 1交于不同的两点M ,N ,且满足OM →⊥ON →?若存在,求出直线l 的方程;若不存在,说明理由. 解 (1)设抛物线C 2:y 2=2px (p ≠0),则有y 2x=2p (x ≠0),据此验证四个点知(3,-23),(4,-4)在C 2上, 易求得C 2的标准方程为y 2=4x . 设椭圆C 1:x 2a 2+y 2b2=1(a >b >0),把点(-2,0),(2,22)代入得⎩⎨⎧4a 2=12a 2+12b 2=1,解得⎩⎪⎨⎪⎧a 2=4b 2=1,所以C 1的标准方程为x 24+y 2=1.(2)容易验证当直线l 的斜率不存在时,不满足题意. 当直线l 的斜率存在时,设其方程为y =k (x -1), 与C 1的交点为M (x 1,y 1),N (x 2,y 2). 由⎩⎪⎨⎪⎧x 24+y 2=1y =k (x -1)消去y 并整理得(1+4k 2)x 2-8k 2x +4(k 2-1)=0, 于是x 1+x 2=8k 21+4k 2,① x 1x 2=4(k 2-1)1+4k 2.②所以y 1y 2=k 2(x 1-1)(x 2-1)=k 2[x 1x 2-(x 1+x 2)+1] =k 2[4(k 2-1)1+4k 2-8k 21+4k 2+1]=-3k 21+4k 2.③由OM →⊥ON →,即OM →·ON →=0,得x 1x 2+y 1y 2=0.(*) 将②③代入(*)式,得4(k 2-1)1+4k 2-3k 21+4k 2=k 2-41+4k 2=0,解得k =±2,所以存在直线l 满足条件, 且直线l 的方程为2x -y -2=0或2x +y -2=0.(时间:80分钟)1.已知中心在坐标原点O 的椭圆C 经过点A (2,3),且点F (2,0)为其右焦点. (1)求椭圆C 的方程;(2)是否存在平行于OA 的直线l ,使得直线l 与椭圆C 有公共点,且直线OA 与l 的距离等于4?若存在,求出直线l 的方程;若不存在,说明理由.解 方法一 (1)依题意,可设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),且可知其左焦点为F ′(-2,0).从而有⎩⎪⎨⎪⎧ c =2,2a =|AF |+|AF ′|=3+5=8,解得⎩⎪⎨⎪⎧c =2,a =4.又a 2=b 2+c 2,所以b 2=12, 故椭圆C 的方程为x 216+y 212=1.(2)假设存在符合题意的直线l ,设其方程为y =32x +t .由⎩⎨⎧y =32x +t ,x 216+y212=1,得3x 2+3tx +t 2-12=0.因为直线l 与椭圆C 有公共点, 所以Δ=(3t )2-4×3×(t 2-12)≥0, 解得-43≤t ≤4 3.另一方面,由直线OA 与l 的距离d =4,得|t |94+1=4,解得t =±213. 由于±213∉[-43,43], 所以符合题意的直线l 不存在.方法二 (1)依题意,可设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),且有⎩⎪⎨⎪⎧4a 2+9b 2=1,a 2-b 2=4.解得b 2=12,b 2=-3(舍去).从而a 2=16.所以椭圆C 的方程为x 216+y 212=1.(2)同方法一.2 .已知椭圆x 24+y 22=1上的两个动点P ,Q ,设P (x 1,y 1),Q (x 2,y 2)且x 1+x 2=2.(1)求证:线段PQ 的垂直平分线经过一个定点A ;(2)设点A 关于原点O 的对称点是B ,求|PB |的最小值及相应的P 点坐标.(1)证明 ∵P (x 1,y 1),Q (x 2,y 2),且x 1+x 2=2.当x 1≠x 2时,由⎩⎪⎨⎪⎧x 21+2y 21=4x 22+2y 22=4, 得y 1-y 2x 1-x 2=-12·x 1+x 2y 1+y 2.设线段PQ 的中点为N (1,n ),∴k PQ =y 1-y 2x 1-x 2=-12n ,∴线段PQ 的垂直平分线方程为y -n =2n (x -1), ∴(2x -1)n -y =0,该直线恒过一个定点A (12,0).当x 1=x 2时,线段PQ 的垂直平分线也过定点A (12,0).综上,线段PQ 的垂直平分线恒过定点A (12,0).(2)解 由于点B 与点A 关于原点O 对称,故点B (-12,0).∵-2≤x 1≤2,-2≤x 2≤2,∴x 1=2-x 2∈[0,2],|PB |2=(x 1+12)2+y 21=12(x 1+1)2+74≥94, ∴当点P 的坐标为(0,±2)时,|PB |min =32.3.如图,已知直线l :y =kx -2与抛物线C :x 2=-2py (p >0)交于A 、B两点,O 为坐标原点,OA →+OB →=(-4,-12). (1)求直线l 的方程和抛物线C 的方程;(2)若抛物线上一动点P 从A 到B 运动时,求△ABP 面积的最大值.解 (1)由⎩⎪⎨⎪⎧y =kx -2x 2=-2py ,得x 2+2pkx -4p =0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk , y 1+y 2=k (x 1+x 2)-4=-2pk 2-4.∵OA →+OB →=(x 1+x 2,y 1+y 2)=(-2pk ,-2pk 2-4) =(-4,-12),∴⎩⎪⎨⎪⎧-2pk =-4-2pk 2-4=-12, 解得⎩⎪⎨⎪⎧p =1k =2,故直线l 的方程为y =2x -2,抛物线C 的方程为x 2=-2y .(2)方法一 由⎩⎪⎨⎪⎧y =2x -2x 2=-2y ,得x 2+4x -4=0,∴|AB |=1+k 2·(x 1+x 2)2-4x 1x 2 =1+22·(-4)2-4·(-4)=410. 设P (t ,-12t 2)(-2-22<t <-2+22),∵|AB |为定值,∴当点P 到直线l 的距离d 最大时,△ABP 的面积最大.而d =|2t +12t 2-2|22+(-1)2=|12(t +2)2-4|5,又-2-22<t <-2+22,∴当t =-2时,d max =455. ∴当P 点坐标为(-2,-2)时,△ABP 面积的最大值为410×4552=8 2.方法二 设P (x 0,y 0),依题意,知当抛物线在点P 处的切线与l 平行时,△ABP 的面积最大. ∵y ′=-x ,∴x 0=-2,y 0=-12x 20=-2,P (-2,-2).此时点P 到直线l 的距离=|2·(-2)-(-2)-2|22+(-1)2=45=455.由⎩⎪⎨⎪⎧y =2x -2x 2=-2y,得x 2+4x -4=0,∴|AB |=1+k 2·(x 1+x 2)2-4x 1x 2 =1+22·(-4)2-4(-4)=410, 故△ABP 面积的最大值为410×4552=8 2.4. 如图,椭圆长轴的端点为A ,B ,O 为椭圆的中心,F 为椭圆的右焦点,且AF →·FB →=1,|OF →|=1.(1)求椭圆的标准方程;(2)记椭圆的上顶点为M ,直线l 交椭圆于P ,Q 两点,问:是否存在直线l ,使点F 恰为△PQM 的垂心,若存在,求出直线l 的方程;若不存在,请说明理由. 解 (1)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),则c =1,又∵AF →·FB →=(a +c )·(a -c )=a 2-c 2=1. ∴a 2=2,b 2=1,故椭圆的标准方程为x 22+y 2=1.(2)假设存在直线l 交椭圆于P ,Q 两点, 且F 恰为△PQM 的垂心, 设P (x 1,y 1),Q (x 2,y 2),∵M (0,1),F (1,0),∴直线l 的斜率k =1.于是设直线l 为y =x +m ,由⎩⎪⎨⎪⎧y =x +m x 22+y 2=1 得3x 2+4mx +2m 2-2=0, x 1+x 2=-43m ,① x 1x 2=2m 2-23.②∵MP →·FQ →=x 1(x 2-1)+y 2(y 1-1)=0. 又y i =x i +m (i =1,2),∴x 1(x 2-1)+(x 2+m )(x 1+m -1)=0, 即2x 1x 2+(x 1+x 2)(m -1)+m 2-m =0.将①②代入得2·2m 2-23-4m 3(m -1)+m 2-m =0,解得m =-43或m =1,经检验m =-43符合条件.故存在直线l ,使点F 恰为△PQM 的垂心, 直线l 的方程为y =x -43.5.在平面直角坐标系xOy 中,已知椭圆x 29+y 25=1的左,右顶点分别为A ,B ,右焦点为F .设过点T (t ,m )的直线TA ,TB 与此椭圆分别交于点M (x 1,y 1),N (x 2,y 2),其中m >0,y 1>0,y 2<0.(1)设动点P 满足:|PF |2-|PB |2=4,求点P 的轨迹; (2)设x 1=2,x 2=13,求点T 的坐标;(3)设t =9,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关). (1)解 设P (x ,y ),由题知F (2,0),B (3,0),A (-3,0), 则|PF |2=(x -2)2+y 2,|PB |2=(x -3)2+y 2,由|PF |2-|PB |2=4,得(x -2)2+y 2-[(x -3)2+y 2]=4, 化简,得x =92.故点P 的轨迹方程是x =92.(2)解 将x 1=2,x 2=13分别代入椭圆方程,并考虑到y 1>0,y 2<0,得M ⎝⎛⎭⎫2,53,N ⎝⎛⎭⎫13,-209. 则直线MA 的方程为y -053-0=x +32+3,即x -3y +3=0直线NB 的方程为y -0-209-0=x -313-3,即5x -6y -15=0.联立方程⎩⎪⎨⎪⎧x -3y +3=0,5x -6y -15=0,解得x =7,y =103,所以点T 的坐标为⎝⎛⎭⎫7,103. (3)证明 如图所示,点T 的坐标为(9,m ).直线TA 的方程为y -0m -0=x +39+3,直线TB 的方程为y -0m -0=x -39-3,分别与椭圆x 29+y 25=1联立方程,解得M ⎝ ⎛⎭⎪⎫3(80-m 2)80+m 2,40m 80+m 2,N ⎝ ⎛⎭⎪⎫3(m 2-20)20+m 2,-20m 20+m 2. 直线MN 的方程为y +20m 20+m 240m 80+m 2+20m 20+m 2=x -3(m 2-20)20+m 23(80-m 2)80+m 2-3(m 2-20)20+m 2.令y =0,解得x =1,所以直线MN 必过x 轴上的一定点(1,0). 6.(2012·上海)在平面直角坐标系xOy 中,已知双曲线C 1:2x 2-y 2=1.(1)过C 1的左顶点引C 1的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成的三角形的面积.(2)设斜率为1的直线l 交C 1于P 、Q 两点.若l 与圆x 2+y 2=1相切,求证:OP ⊥OQ . (3)设椭圆C 2:4x 2+y 2=1.若M 、N 分别是C 1、C 2上的动点,且OM ⊥ON ,求证:O 到直线MN 的距离是定值.(1)解 双曲线C 1:x 212-y 2=1,左顶点A ⎝⎛⎭⎫-22,0,渐近线方程:y =±2x .不妨取过点A 与渐近线y =2x 平行的直线方程为 y =2⎝⎛⎭⎫x +22,即y =2x +1.解方程组⎩⎨⎧y =-2x ,y =2x +1得⎩⎨⎧x =-24,y =12.所以所求三角形的面积为S =12|OA ||y |=28.(2)证明 设直线PQ 的方程是y =x +b . 因为直线PQ 与已知圆相切,故|b |2=1,即b 2=2. 由⎩⎪⎨⎪⎧y =x +b ,2x 2-y 2=1得x 2-2bx -b 2-1=0. 设P (x 1,y 1)、Q (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=2b ,x 1x 2=-1-b 2. 又y 1y 2=(x 1+b )(x 2+b ),所以OP →·OQ →=x 1x 2+y 1y 2=2x 1x 2+b (x 1+x 2)+b 2 =2(-1-b 2)+2b 2+b 2=b 2-2=0. 故OP ⊥OQ .(3)证明 当直线ON 垂直于x 轴时, |ON |=1,|OM |=22,则O 到直线MN 的距离为33. 当直线ON 不垂直于x 轴时,设直线ON 的方程为y =kx ⎝⎛⎭⎫显然|k |>22, 则直线OM 的方程为y =-1kx .由⎩⎪⎨⎪⎧y =kx ,4x 2+y 2=1得⎩⎨⎧x 2=14+k 2,y 2=k24+k 2,所以|ON |2=1+k 24+k 2.同理|OM |2=1+k 22k 2-1.设O 到直线MN 的距离为d , 因为(|OM |2+|ON |2)d 2=|OM |2|ON |2,所以1d 2=1|OM |2+1|ON |2=3k 2+3k 2+1=3,即d =33. 综上,O 到直线MN 的距离是定值.。
2018版高三数学一轮复习(3年真题分类+考情精解读+知识全通关+题型全突破+能力大提升)第十章 圆锥曲线与方
考点1
Contents
考情精解读
数学
考情精解读 1
考纲解读
命题规律
命题趋势
第十章
考试大纲
01 了解方程的曲线与曲线的方程的对应关系.
数学
考情精解读 2
考纲解读
命题规律
命题趋势
第十章
考点 2016全国 2015全国 2014全国
轨迹方程 的求法
·全国Ⅰ,20,12 分
·全国Ⅲ,20(Ⅱ)
数学
返回目录
数学
题型全突破 5
考法2 定义法求轨迹方程
第十章
考法指导 定义法求轨迹方程的步骤: (1)判断动点的运动轨迹满足某种曲线的定义; (2)设标准方程,求方程中的基本量; (3)求轨迹方程. 注意 利用定义法求轨迹方程时,要看所求轨迹是不是完整的圆、椭圆、双曲线、抛物线,如
果不是完整的曲线,则应对其中的变量x或y进行限. 制.
第十章
数学
题型全突破 8
.
第十章
数学
题型全突破 9
第十章
数学
题型全突破 10
Hale Waihona Puke 考点4 参数法求轨迹方程.
第十章
数学
题型全突破 11
考法示例4 若过点P(1,1)且互相垂直的两条直线l1,l2分别与x轴、y轴交于A,B
两点,则AB中点M的轨迹方程为
.
第十章
题型全突破
数学
题型全突破 1
考法1 直接法求轨迹方程
第十章
考法指导 直接法求轨迹方程的一般步骤: (1)建立恰当的直角坐标系; (2)设出所求曲线上点的坐标,把几何条件或等量关系用坐标表示为代数方程; (3)化简整理这个方程,检验并说明所求的方程就是曲线的方程. 直接法求曲线方程时最关键的就是把几何条件或等量关系翻译为代数方程,要注意翻译的等价
2018届高考数学一轮复习专题五圆锥曲线课件文
• 三、听英语课要注重实践
• 英语课老师往往讲得不太多,在大部分的时间里,进行的师生之间、学生之间的大量语言实践练习。因此,要上好英语课,就应积极参加语言实践活 动,珍惜课堂上的每一个练习机会。
2019/8/2
最新中小学教学课件
15
thank
you!
2019/8/2
最新中小学教学课件
16
【标准解答】 (1)由已知得 M(0,t),P2Байду номын сангаас2p,t. 又 N 为 M 关于点 P 的对称点,故 Ntp2,t,(2 分) ON 的方程为 y=pt x,代入 y2=2px 整理得 px2-2t2x=0,解得 x1=0,x2=2pt2.(4 分) 因此 H2pt2,2t.所以 N 为 OH 的中点,即||OOHN||=2.(6 分)
【阅卷点评】 本题考查了直线与抛物线的位置关系,联立方 程组求得交点坐标.本题思维量、运算量却不大,适合文科的特点.
(2017·南昌模拟)已知圆 E:x2+y-122=94经过椭圆 C:xa22+yb22= 1(a>b>0)的左、右焦点 F1,F2,且与椭圆 C 在第一象限的交点为 A, 且 F1,E,A 三点共线,直线 l 交椭圆 C 于 M,N 两点,且M→N=λO→A (λ≠0).
• 一、听理科课重在理解基本概念和规律
• 数、理、化是逻辑性很强的学科,前面的知识没学懂,后面的学习就很难继续进行。因此,掌握基本概念是学习的关键。上课时要抓好概念的理解, 同时,大家要开动脑筋,思考老师是怎样提出问题、分析问题、解决问题的,要边听边想。为讲明一个定理,推出一个公式,老师讲解顺序是怎样的, 为什么这么安排?两个例题之间又有什么相同点和不同之处?特别要从中学习理科思维的方法,如观察、比较、分析、综合、归纳、演绎等。
2018版高考数学一轮总复习高考大题冲关系列5圆锥曲线的综合问题课件文
y0-1 直线 PB 的方程为 y= x+1. x0
x0 令 y=0,得 xN=- , y0-1
x0 从而|AN|=|2-xN|=2+y -1 . 0 x 2y 0 0 2 + 1 + 所以|AN|· |BM|= · y0-1 x0-2 2 2 x + 4y 0+4x0 y0-4x0-8y0+4 0 = x0y0-x0-2y0+2
解得 a=2,b=1.
x2 所以椭圆 C 的方程为 +y2=1. 4
(2)证明:由(1)知,A(2,0),B(0,1).
2 设 P(x0,y0),则 x2 0+4y0=4.
y0 当 x0≠0 时,直线 PA 的方程为 y= (x-2). x0-2 2y0 令 x=0,得 yM=- , x0-2
2y 0 从而|BM|=|1-yM|= 1+ . x - 2 0
1 直线 OM 的方程为 y=- x, 2
2 x +y2=1, 4 由方程组 1 y=- x, 2
得
C -
2 2 , D 2, 2 ,- . 2 2
5 5 5 所以|MC|· |MD|= (-m+ 2)· ( 2+m)= (2-m2). 2 2 4 1 1 5 2 2 2 又 |MA|· |MB| = |AB| = [(x1 - x2) + (y1 - y2) ] = [(x1 + 4 4 16 5 5 2 2 x2) -4x1x2]= [4m -4(2m -2)]= (2-m2), 所以|MA|· |MB| 16 4
题型 1 例 1
直线与圆锥曲线的位置关系 x2 y2 [2016· 四川高考]已知椭圆 E: 2+ 2=1(a>b>0)的 a b
2018届高考数学(理)一轮复习人教版课件:第54讲 圆锥曲线的综合问题
4.了解圆锥曲线的简单应用.
5.理解数形结合的思想.
课前双基巩固
知识聚焦
1.直线与圆锥曲线的位置关系 (1)直线与圆锥曲线的位置关系从几何角度来看有三种:相离时,直线与圆锥曲线
一个 公共点;相交时,直线与椭圆有 无 公共点;相切时,直线与圆锥曲线有________ ________ 两个 公共点,直线与双曲线、抛物线有一个或两个公共点. ________
第54讲 PART 54
Байду номын сангаас
圆锥曲线的综 合问题
课前双基巩固│课堂考点探究│高考易失分练│教师备用例题
考试说明
1 .了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.
2.掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质. 3.了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质.
Δ>0 时,直线与圆锥曲线相交; 若 a≠0,当判别式________ Δ=0 时,直线与圆锥曲线相切; 当判别式________ Δ<0 时,直线与圆锥曲线相离. 当判别式________
(3)讨论直线与圆锥曲线的位置关系时,还可以利用数形结合的方法解决.
课前双基巩固
2.直线与圆锥曲线相交的弦长 2 (1)设斜率为 k 的直线 l 与圆锥曲线 C 的两个交点为 A(x1, y1), B(x2, y2), 则|AB|= 1+k · |x1 1 2 2 -x2|= (1+k )[(x1+x2) -4x1x2]或|AB |= 1+ 2·|y1-y2|= k 1 1+ 2[(y1+y2)2-4y1y2]; k |y1-y2| . (2)直线的斜率不存在时,|AB|=________ 3.直线与圆锥曲线相交弦的中点问题 中点弦问题常用“根与系数的关系”或“点差法”求解. (1)利用根与系数的关系:将直线方程代入圆锥曲线的方程,消元后得到一个一元二次方 程,利用根与系数的关系和中点坐标公式建立等式求解.注意不能忽视对判别式的讨论. (2)点差法:若直线 l 与圆锥曲线 C 有两个交点 A,B,一般地,首先设出 A(x1,y1),B(x2, y2),代入曲线方程,通过作差,构造出 x1+x2,y1+y2,x1-x2,y1-y2,从而建立中点坐 标和斜率的关系.
最新-2018届高三数学一轮复习 圆锥曲线综合问题课件 理 新人教B版 精品
- 解得 y1=
33ab22+c+b2 2a,y2=-
3b2c-2a 3a2+b2 .
因为A→F=2F→B,所以-y1=2y2.
即
33ba22+c+b22 a=2·-
3b2c-2a 3a2+b2 .
得离心率 e=ac=23.
(2)因为|AB|= 1+13|y2-y1|,所以 23·34a23+abb22=145. 由ac=23得 b= 35a.所以54a=145,得 a=3,b= 5. 椭圆 C 的方程为x92+y52=1.
解析:抛物线的焦点为 F(0,p2),过焦点斜率为 1 的直 线方程为 y=x+p2,设 A(x1,y1),B(x2,y2)(x2>x1),由题意 可知 y1>0,y2>0.
由y=x+p2 消去 y 得,x2-2px-p2=0.由韦达定理 x2=2py
得:x1+x2=2p,x1x2=-p2. 所以梯形 ABCD 的面积为 S=12(y1+y2)(x2-x1)
行,方程化为2x=5.故此时方程(*)只有一个实数解,即直 线与双曲线相交,且只有一个公共点.如图,交点在双曲 线右支上.
(2)当 1-k2≠0,即 k≠±1 时,Δ=(2k2)2-4(1-k2)·(- k2-4)=4(4-3k2).
①41- -3k2k≠2>00,,
即-2
3
32 <k<
3
3且
k≠±1
• 已知椭圆的焦点为F1(-3,0)、F2(3,0),且与直线x-y+9 =0有公共点,则其中长轴最短的椭圆方程为________.
解析:解法 1:设椭圆方程为ax22+a2y-2 9=1,与直线 x -y+9=0 联立并消去 y 得:
(2a2-9)x2+18a2x+90a2-a4=0, 根据题意,Δ=(18a2)2-4(2a2-9)(90a2-a4)≥0, 解得 a2≥45 或 a2≤9. ∵a2>9,∴a2≥45,∴amin=3 5. 此时椭圆的方程为4x52 +3y62 =1.
2018届高考数学 高考大题专项突破五 直线与圆锥曲线压轴大题课件 文 新人教A版
所以圆心为 C(0,4),半径为 4.
设 M(x,y),则������������=(x,y-4),������������=(2-x,2-y).
由题设知������������ ·������������=0,故 x(2-x)+(y-4)(2-y)=0,
即(x-1)2+(y-3)2=2. 因为点 P 在圆 C 的内部, 所以点 M 的轨迹方程是(x-1)2+(y-3)2=2.
������1-������2 ������
=
������12-������22 ������
= 14+|������������|2=������244-|���3���+| 1 = |������1|+6|���1���|.
∵m2=4k2+3,
∴当 k≠0 时,|m|> 3.
题型一
题型二
题型三
题型一
题型二
题型三
-14-
突破策略二 相关点法
例 2 已知圆 C1 的圆心为坐标原点 O,且与直线 l1:x- 2y+6=0 相
切,设点 A 为圆上一动点,AM⊥x 轴于点 M,且动点 N 满足������������ =
1 2
������������
+
3 3
-
1 2
������������,设动点 N 的轨迹为曲线 C.
考情分析 必备知识
5.通径:过椭圆、双曲线、抛物线的焦点垂直于焦点所在坐标轴
的弦称为通径,椭圆与双曲线的通径长为
2������2 ������
,过椭圆焦点的弦中通
径最短;抛物线通径长是2p,过抛物线焦点的弦中通径最短.椭圆上
高考数学大一轮复习 高考专题突破四 高考中的立体几何问题 文 新人教版-新人教版高三全册数学试题
2018版高考数学大一轮复习高考专题突破四高考中的立体几何问题文新人教版1.正三棱柱ABC-A1B1C1中,D为BC中点,E为A1C1中点,则DE与平面A1B1BA的位置关系为( )A.相交 B.平行C.垂直相交 D.不确定答案 B解析如图取B1C1中点为F,连接EF,DF,DE,则EF∥A1B1,DF∥B1B,∴平面EFD∥平面A1B1BA,∴DE∥平面A1B1BA.2.设x、y、z是空间不同的直线或平面,对下列四种情形:①x、y、z均为直线;②x、y是直线,z是平面;③z是直线,x、y是平面;④x、y、z均为平面.其中使“x⊥z且y⊥z⇒x∥y”为真命题的是( )A.③④ B.①③ C.②③ D.①②答案 C解析由正方体模型可知①④为假命题;由线面垂直的性质定理可知②③为真命题.3.(2016·某某模拟)如图是一个几何体的三视图(侧视图中的弧线是半圆),则该几何体的表面积是( )A .20+3π B.24+3π C .20+4π D.24+4π 答案 A解析 根据几何体的三视图可知,该几何体是一个正方体和一个半圆柱的组合体,其中正方体的棱长为2,半圆柱的底面半径为1,母线长为2,故该几何体的表面积为4×5+2×π+2×12π=20+3π.4.如图,在四棱锥V -ABCD 中,底面ABCD 为正方形,E 、F 分别为侧棱VC 、VB 上的点,且满足VC =3EC ,AF ∥平面BDE ,则VB FB=________.答案 2解析 连接AC 交BD 于点O ,连接EO ,取VE 的中点M ,连接AM ,MF ,∵VC =3EC ,∴VM =ME =EC , 又AO =CO ,∴AM ∥EO , 又EO ⊂平面BDE , ∴AM ∥平面BDE ,又AF ∥平面BDE ,AM ∩AF =A ,∴平面AMF ∥平面BDE ,又MF ⊂平面AMF ,∴MF ∥平面BDE , 又MF ⊂平面VBC ,平面VBC ∩平面BDE =BE , ∴MF ∥BE ,∴VF =FB ,∴VB FB=2.5.如图,在三棱锥P -ABC 中,D ,E ,F 分别为棱PC ,AC ,AB 的中点.若PA ⊥AC ,PA =6,BC =8,DF =5.则直线PA 与平面DEF 的位置关系是________;平面BDE 与平面ABC 的位置关系是________.(填“平行”或“垂直”)答案 平行 垂直解析 ①因为D ,E 分别为棱PC ,AC 的中点, 所以DE ∥PA .又因为PA ⊄平面DEF ,DE ⊂平面DEF , 所以直线PA ∥平面DEF .②因为D ,E ,F 分别为棱PC ,AC ,AB 的中点,PA =6,BC =8, 所以DE ∥PA ,DE =12PA =3,EF =12BC =4.又因为DF =5,故DF 2=DE 2+EF 2, 所以∠DEF =90°,即DE ⊥EF . 又PA ⊥AC ,DE ∥PA ,所以DE ⊥AC .因为AC ∩EF =E ,AC ⊂平面ABC ,EF ⊂平面ABC , 所以DE ⊥平面ABC ,又DE ⊂平面BDE , 所以平面BDE ⊥平面ABC .题型一 求空间几何体的表面积与体积例1 (2016·全国甲卷)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D ′EF 的位置.(1)证明:AC ⊥HD ′;(2)若AB =5,AC =6,AE =54,OD ′=22,求五棱锥D ′ABCFE 的体积.(1)证明 由已知得AC ⊥BD ,AD =CD ,又由AE =CF 得AE AD =CF CD,故AC ∥EF ,由此得EF ⊥HD ,折后EF 与HD 保持垂直关系,即EF ⊥HD ′,所以AC ⊥HD ′.(2)解 由EF ∥AC 得OH DO =AE AD =14.由AB =5,AC =6得DO =BO =AB 2-AO 2=4, 所以OH =1,D ′H =DH =3,于是OD ′2+OH 2=(22)2+12=9=D ′H 2, 故OD ′⊥OH .由(1)知AC ⊥HD ′,又AC ⊥BD ,BD ∩HD ′=H , 所以AC ⊥平面DHD ′,于是AC ⊥OD ′,又由OD ′⊥OH ,AC ∩OH =O ,所以OD ′⊥平面ABC . 又由EF AC =DH DO 得EF =92.五边形ABCFE 的面积S =12×6×8-12×92×3=694.所以五棱锥D ′ABCFE 的体积V =13×694×22=2322.思维升华 (1)若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,等积转换法多用来求三棱锥的体积.(2)若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.正三棱锥的高为1,底面边长为26,内有一个球与它的四个面都相切(如图).求:(1)这个正三棱锥的表面积;(2)这个正三棱锥内切球的表面积与体积.解 (1)底面正三角形中心到一边的距离为13×32×26=2,则正棱锥侧面的斜高为12+22= 3.∴S 侧=3×12×26×3=9 2.∴S 表=S 侧+S 底=92+12×32×(26)2=92+6 3.(2)设正三棱锥P -ABC 的内切球球心为O ,连接OP ,OA ,OB ,OC ,而O 点到三棱锥的四个面的距离都为球的半径r .∴V P -ABC =V O -PAB +V O -PBC +V O -PAC +V O -ABC =13S 侧·r +13S △ABC ·r =13S 表·r =(32+23)r .又V P -ABC =13×12×32×(26)2×1=23,∴(32+23)r =23,得r =2332+23=2332-2318-12=6-2.∴S 内切球=4π(6-2)2=(40-166)π.V 内切球=43π(6-2)3=83(96-22)π.题型二 空间点、线、面的位置关系例2 (2016·某某模拟)如图,在三棱柱ABC -A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC ,AA 1=AC =2,BC =1,E ,F 分别是A 1C 1,BC 的中点.(1)求证:平面ABE ⊥平面B 1BCC 1; (2)求证:C 1F ∥平面ABE ; (3)求三棱锥E -ABC 的体积.(1)证明 在三棱柱ABC -A 1B 1C 1中,BB 1⊥底面ABC . 因为AB ⊂平面ABC , 所以BB 1⊥AB .又因为AB ⊥BC ,BC ∩BB 1=B , 所以AB ⊥平面B 1BCC 1. 又AB ⊂平面ABE ,所以平面ABE ⊥平面B 1BCC 1.(2)证明 方法一 如图1,取AB 中点G ,连接EG ,FG . 因为E ,F 分别是A 1C 1,BC 的中点, 所以FG ∥AC ,且FG =12AC .因为AC ∥A 1C 1,且AC =A 1C 1, 所以FG ∥EC 1,且FG =EC 1, 所以四边形FGEC 1为平行四边形, 所以C 1F ∥EG .又因为EG ⊂平面ABE ,C 1F ⊄平面ABE , 所以C 1F ∥平面ABE .方法二 如图2,取AC 的中点H ,连接C 1H ,FH . 因为H ,F 分别是AC ,BC 的中点,所以HF ∥AB , 又因为E ,H 分别是A 1C 1,AC 的中点, 所以EC 1綊AH ,所以四边形EAHC 1为平行四边形, 所以C 1H ∥AE ,又C 1H ∩HF =H ,AE ∩AB =A , 所以平面ABE ∥平面C 1HF , 又C 1F ⊂平面C 1HF , 所以C 1F ∥平面ABE .(3)解 因为AA 1=AC =2,BC =1,AB ⊥BC , 所以AB =AC 2-BC 2= 3. 所以三棱锥E -ABC 的体积V =13S △ABC ·AA 1=13×12×3×1×2=33. 思维升华 (1)①证明面面垂直,将“面面垂直”问题转化为“线面垂直”问题,再将“线面垂直”问题转化为“线线垂直”问题.②证明C 1F ∥平面ABE :(ⅰ)利用判定定理,关键是在平面ABE 中找(作)出直线EG ,且满足C 1F ∥EG .(ⅱ)利用面面平行的性质定理证明线面平行,则先要确定一个平面C 1HF 满足面面平行,实施线面平行与面面平行的转化.(2)计算几何体的体积时,能直接用公式时,关键是确定几何体的高,不能直接用公式时,注意进行体积的转化.如图,在三棱锥S -ABC 中,平面SAB ⊥平面SBC ,AB ⊥BC ,AS =AB .过A 作AF ⊥SB ,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.\求证:(1)平面EFG ∥平面ABC ; (2)BC ⊥SA .证明 (1)由AS =AB ,AF ⊥SB 知F 为SB 中点, 则EF ∥AB ,FG ∥BC ,又EF ∩FG =F ,AB ∩BC =B , 因此平面EFG ∥平面ABC .(2)由平面SAB ⊥平面SBC ,平面SAB ∩平面SBC =SB ,AF ⊂平面SAB ,AF ⊥SB , 所以AF ⊥平面SBC ,则AF ⊥BC .又BC ⊥AB ,AF ∩AB =A ,则BC ⊥平面SAB , 又SA ⊂平面SAB ,因此BC ⊥SA . 题型三 平面图形的翻折问题例3 (2015·某某)如图1,在直角梯形 ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =12AD =a ,E是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到图2中△A 1BE 的位置,得到四棱锥A 1-BCDE .(1)证明:CD ⊥平面A 1OC ;(2)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1-BCDE 的体积为362,求a 的值. (1)证明 在题图1中,连接EC , 因为AB =BC =12AD =a ,∠BAD =π2,AD ∥BC ,E 为AD 中点,所以BC 綊ED ,BC 綊AE ,所以四边形BCDE 为平行四边形,故有CD ∥BE , 所以四边形ABCE 为正方形,所以BE ⊥AC , 即在题图2中,BE ⊥A 1O ,BE ⊥OC ,且A 1O ∩OC =O , 从而BE ⊥平面A 1OC ,又CD ∥BE , 所以CD ⊥平面A 1OC .(2)解 由已知,平面A 1BE ⊥平面BCDE , 且平面A 1BE ∩平面BCDE =BE , 又由(1)知,A 1O ⊥BE , 所以A 1O ⊥平面BCDE , 即A 1O 是四棱锥A 1-BCDE 的高, 由题图1知,A 1O =22AB =22a ,平行四边形BCDE 的面积S =BC ·AB =a 2, 从而四棱锥A 1-BCDE 的体积为V =13×S ×A 1O =13×a 2×22a =26a 3, 由26a 3=362,得a =6. 思维升华 平面图形的翻折问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况.一般地,翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.(2017·某某月考)如图(1),四边形ABCD 为矩形,PD ⊥平面ABCD ,AB =1,BC=PC =2,作如图(2)折叠,折痕EF ∥DC .其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后,点P 叠在线段AD 上的点记为M ,并且MF ⊥CF .(1)证明:CF ⊥平面MDF ; (2)求三棱锥M -CDE 的体积.(1)证明 因为PD ⊥平面ABCD ,AD ⊂平面ABCD , 所以PD ⊥AD .又因为ABCD 是矩形,CD ⊥AD ,PD 与CD 交于点D , 所以AD ⊥平面PCD .又CF ⊂平面PCD ,所以AD ⊥CF ,即MD ⊥CF . 又MF ⊥CF ,MD ∩MF =M ,所以CF ⊥平面MDF .(2)解 因为PD ⊥DC ,PC =2,CD =1,∠PCD =60°, 所以PD =3,由(1)知FD ⊥CF , 在直角三角形DCF 中,CF =12CD =12.如图,过点F 作FG ⊥CD 交CD 于点G ,得FG =FC sin 60°=12×32=34,所以DE =FG =34,故ME =PE =3-34=334, 所以MD =ME 2-DE 2=3342-342=62. S △CDE =12DE ·DC =12×34×1=38. 故V M -CDE =13MD ·S △CDE =13×62×38=216.题型四 立体几何中的存在性问题例4 (2016·某某双流中学月考)如图,在长方体ABCD -A 1B 1C 1D 1中,平面BMD 1N 与棱CC 1,AA 1分别交于点M ,N ,且M ,N 均为中点.(1)求证:AC ∥平面BMD 1N .(2)若AD =CD =2,DD 1=22,O 为AC 的中点.BD 1上是否存在动点F ,使得OF ⊥平面BMD 1N ?若存在,求出点F 的位置,并加以证明;若不存在,请说明理由. (1)证明 连接MN .因为M ,N 分别为CC 1,AA 1的中点,所以AN =12AA 1,CM =12CC 1.又因为AA 1∥CC 1,且AA 1=CC 1, 所以AN ∥CM ,且AN =CM ,所以四边形ACMN 为平行四边形,所以AC ∥MN . 因为MN ⊂平面BMD 1N ,AC ⊄平面BMD 1N , 所以AC ∥平面BMD 1N .(2)解 当点F 满足D 1F =3BF 时,OF ⊥平面BMD 1N ,证明如下: 连接BD ,则BD 经过点O ,取BD 1的中点G ,连接OF ,DG , 又D 1F =3BF ,所以OF 为三角形BDG 的中位线, 所以OF ∥DG .因为BD =22=DD 1,且G 为BD 1的中点, 所以BD 1⊥DG ,所以BD 1⊥OF .因为底面ABCD 为正方形,所以AC ⊥BD . 又DD 1⊥底面ABCD ,所以AC ⊥DD 1, 又BD ∩DD 1=D ,所以AC ⊥平面BDD 1, 又OF ⊂平面BDD 1,所以AC ⊥OF . 由(1)知AC ∥MN ,所以MN ⊥OF .又MN ,BD 1是平面四边形BMD 1N 的对角线,所以它们必相交, 所以OF ⊥平面BMD 1N .思维升华 对于线面关系中的存在性问题,首先假设存在,然后在该假设条件下,利用线面关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论则否定假设.如图,在直四棱柱ABCD -A 1B 1C 1D 1中,已知DC =DD 1=2AD =2AB ,AD ⊥DC ,AB ∥DC .(1)求证:D1C⊥AC1;(2)问在棱CD上是否存在点E,使D1E∥平面A1BD.若存在,确定点E位置;若不存在,说明理由.(1)证明在直四棱柱ABCD-A1B1C1D1中,连接C1D,∵DC=DD1,∴四边形DCC1D1是正方形,∴DC1⊥D1C.又AD⊥DC,AD⊥DD1,DC∩DD1=D,∴AD⊥平面DCC1D1,又D1C⊂平面DCC1D1,∴AD⊥D1C.∵AD⊂平面ADC1,DC1⊂平面ADC1,且AD∩DC1=D,∴D1C⊥平面ADC1,又AC1⊂平面ADC1,∴D1C⊥AC1.(2)解假设存在点E,使D1E∥平面A1BD.连接AD1,AE,D1E,设AD1∩A1D=M,BD∩AE=N,连接MN,∵平面AD1E∩平面A1BD=MN,要使D 1E ∥平面A 1BD , 可使MN ∥D 1E ,又M 是AD 1的中点,则N 是AE 的中点. 又易知△ABN ≌△EDN ,∴AB =DE . 即E 是DC 的中点.综上所述,当E 是DC 的中点时, 可使D 1E ∥平面A 1BD .1.(2016·顺义区一模)如图所示,已知平面α∩平面β=l ,α⊥β.A ,B 是直线l 上的两点,C ,D 是平面β内的两点,且AD ⊥l ,CB ⊥l ,DA =4,AB =6,CB =8.P 是平面α上的一动点,且有∠APD =∠BPC ,则四棱锥P -ABCD 体积的最大值是( )A .48B .16C .24 3D .144 答案 C解析 由题意知,△PAD ,△PBC 是直角三角形, 又∠APD =∠BPC ,所以△PAD ∽△PBC . 因为DA =4,CB =8,所以PB =2PA . 作PM ⊥AB 于点M ,由题意知,PM ⊥β. 令AM =t (0<t <6),则PA 2-t 2=4PA 2-(6-t )2, 所以PA 2=12-4t .所以PM =12-4t -t 2,即为四棱锥P -ABCD 的高, 又底面ABCD 为直角梯形,S =12×(4+8)×6=36.所以V =13×36×12-4t -t 2=12-t +22+16≤12×12=24 3.2.(2016·某某赣中南五校第一次联考)已知m ,n 是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是( )A.若α⊥γ,α⊥β,则γ∥βB.若m∥n,m⊂α,n⊂β,则α∥βC.若m∥n,m⊥α,n⊥β,则α∥βD.若m∥n,m∥α,则n∥α答案 C解析对于A,若α⊥γ,α⊥β,则γ∥β或相交;对于B,若m∥n,m⊂α,n⊂β,则α∥β或相交;对于D,若m∥n,m∥α,则n∥α或n⊂α.故选C.3.(2016·某某模拟)如图,ABCD-A1B1C1D1为正方体,连接BD,AC1,B1D1,CD1,B1C,现有以下几个结论:①BD∥平面CB1D1;②AC1⊥平面CB1D1;③CB1与BD为异面直线.其中所有正确结论的序号为________.答案①②③解析由题意可知,BD∥B1D1,又B1D1⊂平面CB1D1,BD⊄平面CB1D1,所以BD∥平面CB1D1,①正确;易知AC1⊥B1D1,AC1⊥B1C,又B1D1∩B1C=B1,所以AC1⊥平面CB1D1,②正确;由异面直线的定义可知③正确.4.如图梯形ABCD中,AD∥BC,∠ABC=90°,AD∶BC∶AB=2∶3∶4,E、F分别是AB、CD的中点,将四边形ADFE沿直线EF进行翻折,给出四个结论:①DF⊥BC;②BD⊥FC;③平面DBF⊥平面BFC;④平面DCF⊥平面BFC.在翻折过程中,可能成立的结论是________.(填写结论序号)答案②③解析因为BC∥AD,AD与DF相交不垂直,所以BC与DF不垂直,则①错误;设点D在平面BCF上的射影为点P,当BP⊥CF时就有BD⊥FC,而AD∶BC∶AB=2∶3∶4,可使条件满足,所以②正确;当点P落在BF上时,DP⊂平面BDF,从而平面BDF⊥平面BCF,所以③正确;因为点D的投影不可能在FC上,所以平面DCF⊥平面BFC不成立,即④错误.故答案为②③.5.如图,在正方体ABCD-A1B1C1D1中,点E是棱BC的中点,点F是棱CD上的动点,当CFFD=______时,D1E⊥平面AB1F.答案 1解析如图,连接A1B,则A1B是D1E在平面ABB1A1内的射影.∵AB1⊥A1B,∴D1E⊥AB1,又∵D1E⊥平面AB1F⇒D1E⊥AF.连接DE,则DE是D1E在底面ABCD内的射影,∴D1E⊥AF⇒DE⊥AF.∵ABCD是正方形,E是BC的中点,∴当且仅当F是CD的中点时,DE⊥AF,即当点F 是CD 的中点时,D 1E ⊥平面AB 1F , ∴CF FD=1时,D 1E ⊥平面AB 1F .6.(2016·某某模拟)如图,梯形ABEF 中,AF ∥BE ,AB ⊥AF ,且AB =BC =AD =DF =2CE =2,沿DC 将梯形CDFE 折起,使得平面CDFE ⊥平面ABCD .(1)证明:AC ∥平面BEF ; (2)求三棱锥D -BEF 的体积.(1)证明 如图,取BF 的中点M ,设AC 与BD 交点为O ,连接MO ,ME .由题设知,CE 綊12DF ,MO 綊12DF ,∴CE 綊MO ,故四边形OCEM 为平行四边形, ∴EM ∥CO ,即EM ∥AC .又AC ⊄平面BEF ,EM ⊂平面BEF , ∴AC ∥平面BEF .(2)解 ∵平面CDFE ⊥平面ABCD ,平面CDFE ∩平面ABCD =DC ,BC ⊥DC , ∴BC ⊥平面DEF .∴三棱锥D -BEF 的体积为V D -BEF =V B -DEF =13S △DEF ·BC =13×12×2×2×2=43.7.(2016·某某牟平一中期末)如图,在四棱柱ABCD -A 1B 1C 1D 1中,AC ⊥B 1D ,BB 1⊥底面ABCD ,E ,F ,H 分别为AD ,CD ,DD 1的中点,EF 与BD 交于点G .(1)证明:平面ACD1⊥平面BB1D;(2)证明:GH∥平面ACD1.证明(1)∵BB1⊥平面ABCD,AC⊂平面ABCD,∴AC⊥BB1.又AC⊥B1D,BB1∩B1D=B1,∴AC⊥平面BB1D.∵AC⊂平面ACD1,∴平面ACD1⊥平面BB1D.(2)设AC∩BD=O,连接OD1.∵E,F分别为AD,CD的中点,EF∩OD=G,∴G为OD的中点.∵H为DD1的中点,∴HG∥OD1.∵GH⊄平面ACD1,OD1⊂平面ACD1,∴GH∥平面ACD1.8.(2016·东城区一模)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点,AB=2,∠BAD=60°,M是PD的中点.(1)求证:OM∥平面PAB;(2)求证:平面PBD ⊥平面PAC . (3)当三棱锥C -PBD 的体积等于32时,求PA 的长. (1)证明 因为在△PBD 中,O ,M 分别是BD ,PD 的中点, 所以OM ∥PB .又OM ⊄平面PAB ,PB ⊂平面PAB , 所以OM ∥平面PAB .(2)证明 因为底面ABCD 是菱形,所以BD ⊥AC . 因为PA ⊥平面ABCD ,BD ⊂平面ABCD , 所以PA ⊥BD .又AC ∩PA =A ,所以BD ⊥平面PAC . 又BD ⊂平面PBD , 所以平面PBD ⊥平面PAC .(3)解 因为底面ABCD 是菱形,且AB =2, ∠BAD =60°, 所以S △BCD = 3.又V C -PBD =V P -BCD ,三棱锥P -BCD 的高为PA , 所以13×3×PA =32,解得PA =32.9.(2016·某某测试)如图,已知三棱柱ABC -A ′B ′C ′中,平面BCC ′B ′⊥底面ABC ,BB ′⊥AC ,底面ABC 是边长为2的等边三角形,AA ′=3,E ,F 分别在棱AA ′,CC ′上,且AE =C ′F =2.(1)求证:BB ′⊥底面ABC ;(2)在棱A ′B ′上找一点M ,使得C ′M ∥平面BEF ,并给出证明. (1)证明 如图,取BC 的中点O ,连接AO ,∵三角形ABC是等边三角形,∴AO⊥BC.∵平面BCC′B′⊥底面ABC,AO⊂平面ABC,平面BCC′B′∩平面ABC=BC,∴AO⊥平面BCC′B′.又BB′⊂平面BCC′B′,∴AO⊥BB′.又BB′⊥AC,AO∩AC=A,AO⊂平面ABC,AC⊂平面ABC,∴BB′⊥底面ABC.(2)解显然点M不是点A′,B′,若棱A′B′上存在一点M,使得C′M∥平面BEF,过点M作MN∥AA′交BE于N,连接FN,MC′,如图,∴MN∥C′F,即C′M和FN共面,又平面MNFC′∩平面BEF=FN,∴C′M∥FN,∴四边形C′MNF为平行四边形,∴MN=2,∴MN是梯形A′B′BE的中位线,M为A′B′的中点.故当M为A′B′的中点时,C′M∥平面BEF.。
专题10 圆锥曲线(热点难点突破)-2018年高考数学(文)考纲解读与热点难点突破 含解析
1.已知点A 是抛物线C :x 2=2py (p >0)上一点,O 为坐标原点,若以点M (0,8)为圆心,|OA |的长为半径的圆交抛物线C 于A ,B 两点,且△ABO 为等边三角形,则p 的值是( ) A.38 B .2 C .6 D.23【答案】D 【解析】由题意知|MA |=|OA |,所以点A 的纵坐标为4,又△ABO 为等边三角形,所以点A 的横坐标为433,又点A 是抛物线C 上一点,所以163=2p ³4,解得p =23.2.已知焦点在x 轴上的椭圆方程为x 24a +y 2a 2+1=1,随着a 的增大该椭圆的形状( )A .越接近于圆B .越扁C .先接近于圆后越扁D .先越扁后接近于圆【答案】D 【解析】由题意知4a >a 2+1且a >0,解得2-3<a <2+3,又e 2=1-b 2a 2=1-a 2+14a =1-14⎝ ⎛⎭⎪⎫a +1a .因此当a ∈(2-3,1)时,e 越来越大,当a ∈ (1,2+3)时,e 越来越小,故选D.3.已知F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,对于左支上任意一点P 都有|PF 2|2=8a |PF 1|(a为实半轴),则此双曲线的离心率e 的取值范围是( ) A .(1,+∞) B .(2,3] C .(1,3]D .(1,2]4.抛物线y 2=2px (p >0)的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足∠AFB =120°.过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则|MN ||AB |的最大值为( )A.33B .1 C.233D .2【答案】A 【解析】设AF =a ,BF =b ,由余弦定理得|AB |2=a 2+b 2-2ab cos 120°=a 2+b 2+ab =(a +b )2-ab ≥(a +b )2-⎝⎛⎭⎪⎫a +b 22=34(a +b )2.∵a +b =AF +BF =2MN ,∴|AB |2≥34|2MN |2,∴|MN ||AB |≤33.5.过点A (0,1)作直线,与双曲线x 2-y 29=1有且只有一个公共点,则符合条件的直线的条数为( )A .0B .2C .4D .无数【答案】C 【解析】过点A (0,1)和双曲线的渐近线平行的直线和双曲线只有一个公共点,这样的直线有两条,过点A (0,1)和双曲线相切的直线只有一个公共点,这样的直线也有两条,故共四条直线与双曲线有且只有一个公共点.6.椭圆y 2+x 2m2=1(0<m <1)上存在点P 使得PF 1⊥PF 2,则m 的取值范围是( )A.⎣⎢⎡⎭⎪⎫22,1 B .⎝ ⎛⎦⎥⎤0,22 C.⎣⎢⎡⎭⎪⎫12,1 D.⎝ ⎛⎦⎥⎤0,12 【答案】B 【解析】当点P 是短轴的顶点时∠F 1PF 2最大,因此若椭圆上存在点P 使得PF 1⊥PF 2,则∠F 1PF 2≥90°,所以∠F 2PO ≥45°(O 是原点),从而c a ≥22,即1-m 2≥12,又0<m <1,所以0<m ≤22.7.设点P 是椭圆x 2a 2+y 2b 2=1(a >b >0)上一点,F 1,F 2分别是椭圆的左,右焦点,I 为△PF 1F 2的内心,若S △IPF 1+S △IPF 2=2S △IF 1F 2,则该椭圆的离心率为( )A.12 B .22 C.32D.3-128.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32.双曲线x 2-y 2=1的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为( ) A.x 28+y 22=1B .x 212+y 26=1 C.x 216+y 24=1 D.x 220+y 25=1 【答案】D 【解析】椭圆的离心率e =c a =a 2-b 2a =32,所以a =2b .所以椭圆方程为x 2+4y 2=4b 2.因为双曲线x 2-y 2=1的渐近线方程为x ±y =0,所以渐近线x ±y =0与椭圆x 2+4y 2=4b 2在第一象限的交点为⎝⎛⎭⎪⎫255b ,255b ,所以由圆锥曲线的对称性得四边形在第一象限部分的面积为255b ³255b =4,所以b 2=5,所以a 2=4b 2=20.所以椭圆C 的方程为x 220+y 25=1.故选D.9.双曲线M :x 2-y 2b2=1的左、右焦点分别为F 1,F 2,记|F 1F 2|=2c ,以坐标原点O 为圆心,c 为半径的圆与双曲线M 在第一象限的交点为P ,若|PF 1|=c +2,则P 点的横坐标为________. 【答案】3+12【解析】根据双曲线的定义知|PF 1|-|PF 2|=2,又|PF 1|=c +2,所以|PF 2|=c ,由勾股定理得(c +2)2+c 2=4c 2,即c 2-2c -2=0,解得c =3+1,根据△OPF 2是等边三角形得P 点的横坐标为3+12. 10.已知F 1,F 2为x 2a 2+y 216=1的左、右焦点,M 为椭圆上一点,则△MF 1F 2内切圆的周长等于3π,若满足条件的点M 恰好有2个,则a 2=________.11.如图141,F 1,F 2是双曲线x 2a2-y 2b2=1(a >0,b >0)的左、右焦点,过F 1的直线l 与双曲线的左、右两支分别交于点B ,A .若△ABF 2为等边三角形,则双曲线的离心率为________.图141 【答案】7【解析】因为△ABF 2为等边三角形,由点A 是双曲线上的一点知,|F 1A |-|F 2A |=|F 1A |-|AB |=|F 1B |=2a ,由点B 是双曲线上一点知,|BF 2|-|BF 1|=2a ,从而|BF 2|=4a ,由∠ABF 2=60°得∠F 1BF 2=120°,在△F 1BF 2中应用余弦定理得4c 2=4a 2+16a 2-2²2a ²4a ²cos 120°,整理得c 2=7a 2,则e 2=7,从而e =7.12.设F 1,F 2是椭圆x 2+y 2b2=1(0<b <1)的左、右焦点,过F 1的直线l 交椭圆于A ,B 两点,若|AF 1|=3|F 1B |,且AF 2⊥x 轴,则b 2=________. 【答案】2313.过抛物线y 2=4x 焦点F 的直线交其于A ,B 两点,O 为坐标原点.若|AF |=3,则△AOB 的面积为________. 【答案】322【解析】设直线AB 的倾斜角为θ(0<θ<π)及|BF |=m , ∵|AF |=3,∴点A 到准线l :x =-1的距离为3, ∴2+3cos θ=3,即cos θ=13,则sin θ=223.∵m =2+m cos(π-θ),∴m =21+cos θ=32,∴△AOB 的面积为S =12³|OF |³|AB |³sin θ=12³1³⎝⎛⎭⎪⎫3+32³223=322. 14.如图142,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,右顶点、上顶点分别为点A ,B ,且|AB |=52|BF |.图142(1)求椭圆C 的离心率;(2)若点M ⎝ ⎛⎭⎪⎫-1617,217在椭圆C 内部,过点M 的直线l 交椭圆C 于P ,Q 两点,M 为线段PQ 的中点,且OP ⊥OQ .求直线l 的方程及椭圆C 的方程.[解] (1)由已知|AB |=52|BF |,即a 2+b 2=52a ,2分 4a 2+4b 2=5a 2,4a 2+4(a 2-c 2)=5a 2, ∴e =ca =32.4分 (2)由(1)知a 2=4b 2,∴椭圆C :x 24b 2+y 2b 2=1.设P (x 1,y 1),Q (x 2,y 2),由x 214b 2+y 21b 2=1,x 224b 2+y 22b2=1,可得x 21-x 224b 2+y 21-y 22b 2=0,即x 1+x 2 x 1-x 2 4b 2+ y 1+y 2 y 1-y 2b 2=0, 即-3217 x 1-x 2 4+417(y 1-y 2)=0,从而k PQ =y 1-y 2x 1-x 2=2,6分∴直线l 的方程为y -217=2⎣⎢⎡⎦⎥⎤x -⎝ ⎛⎭⎪⎫-1617,即2x -y +2=0.8分由⎩⎪⎨⎪⎧2x -y +2=0,x 24b 2+y 2b2=1⇒x 2+4(2x +2)2-4b 2=0,即17x 2+32x +16-4b 2=0,9分Δ=322+16³17(b 2-4)>0⇔b >21717,x 1+x 2=-3217,x 1x 2=16-4b 217.∵OP ⊥OQ ,∴OP →²OQ →=0,即x 1x 2+y 1y 2=0,x 1x 2+(2x 1+2)(2x 2+2)=0,5x 1x 2+4(x 1+x 2)+4=0,11分从而5 16-4b 217-12817+4=0,解得b =1,椭圆C 的方程为x 24+y 2=1.12分15.在△ABC 中,A (-1,0),B (1,0),若△ABC 的重心G 和垂心H 满足GH 平行于x 轴(G ,H 不重合). (1)求动点C 的轨迹方程;(2)已知O 为坐标原点,若直线AC 与以O 为圆心,以|OH |为半径的圆相切,求此时直线AC 的方程.依题意可得k21+k =9-2k 2+k49+6k +k,10分 即7k 4+2k 2-9=0,解得k 2=1,即k =1或-1, 故所求直线AC 的方程为y =x +1或y =-x -1.12分16.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,右焦点为F (1,0).(1)求椭圆E 的标准方程;(2)设点O 为坐标原点,过点F 作直线l 与椭圆E 交于M ,N 两点,若OM ⊥ON ,求直线l 的方程.17.已知椭圆E :x 2a2+y 2b2=1(a >b >0)的离心率为32,点P ⎝⎛⎭⎪⎫1,32在椭圆E 上. (1)求椭圆E 的方程;(2)过点P 且斜率为k 的直线l 交椭圆E 于点Q (x Q ,y Q )(点Q 异于点P ),若0<x Q <1,求直线l 斜率k 的取值范围.18.已知抛物线C :x 2=2py (p >0)的焦点为F ,直线2x -y +2=0交抛物线C 于A , B 两点,P 是线段AB 的中点,过P 作x 轴的垂线交抛物线C 于点Q .(1)D 是抛物线C 上的动点,点E (-1,3),若直线AB 过焦点F ,求|DF |+|DE |的最小值; (2)是否存在实数p ,使|2QA →+QB →|=|2QA →-QB →|?若存在,求出p 的值;若不存在,说明理由. 解:(1)因为直线2x -y +2=0与y 轴的交点为(0,2), 所以F (0,2),则抛物线C 的方程为x 2=8y ,准线l :y =-2. 设过D 作DG ⊥l 于G ,则|DF |+|DE |=|DG |+|DE |, 当E , D ,G 三点共线时,|DF |+|DE |取最小值为2+3=5.(2)假设存在实数p ,满足条件等式成立. 联立x 2=2py 与2x -y +2=0, 消去y ,得x 2-4px -4p =0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4p ,x 1x 2=-4p ,所以Q (2p ,2p ). 因为|2QA →+QB →|=|2QA →-QB →|, 所以QA ⊥QB ,则QA →²QB →=0.因此(x 1-2p )(x 2-2p )+(y 1-2p )(y 2-2p )=0. (x 1-2p )(x 2-2p )+(2x 1+2-2p )²(2x 2+2-2p )=0, 5x 1x 2+(4-6p )(x 1+x 2)+8p 2-8p +4=0,把x 1+x 2=4p ,x 1x 2=-4p 代入得4p 2+3p -1=0,解得p =14或p =-1(舍去).因此存在实数p =14,使得|2QA →+QB →|=|2QA →-QB →|成立.19.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点Q ⎝ ⎛⎭⎪⎫b ,a b 在椭圆上,O 为坐标原点. (1)求椭圆C 的方程;(2)已知点P ,M ,N 为椭圆C 上的三点,若四边形OPMN 为平行四边形,证明四边形OPMN 的面积S 为定值,并求该定值.。
数学一轮复习高考大题专项五直线与圆锥曲线理
高考大题专项(五)直线与圆锥曲线突破1圆锥曲线中的最值、范围问题1.(2020山东泰安一模,21)已知椭圆C:x2a2+y2b2=1(a>b〉0)的左、右焦点分别为F1,F2,直线l:y=kx+m与椭圆C相交于P,Q两点。
当直线l经过椭圆C的下顶点A和右焦点F2时,△F1PQ的周长为4√2,且l与椭圆C的另一个交点的横坐标为43。
(1)求椭圆C的方程;(2)点M为△POQ内一点,O为坐标原点,满足MP⃗⃗⃗⃗⃗⃗ +MO⃗⃗⃗⃗⃗⃗ +MQ⃗⃗⃗⃗⃗⃗ =0,若点M恰好在圆O:x2+y2=49上,求实数m的取值范围.2.(2020新高考全国2,21)已知椭圆C:x2a2+y2b2=1(a>b〉0)过点M(2,3),点A为其左顶点,且AM的斜率为12。
(1)求C的方程;(2)点N为椭圆上任意一点,求△AMN的面积的最大值.3.已知抛物线C:y2=2px(p〉0)上一点P(x0,2)到焦点F的距离|PF|=2x0。
(1)求抛物线C的方程;(2)过点P引圆M:(x—3)2+y2=r2(0<r≤√2)的两条切线PA,PB,切线PA,PB与抛物线C的另一交点分别为A,B,线段AB中点的横坐标记为t,求t的取值范围。
4.(2020江苏,18)在平面直角坐标系xOy中,已知椭圆E:x24+y23 =1的左、右焦点分别为F1,F2,点A在椭圆E上且在第一象限内,AF2⊥F1F2,直线AF1与椭圆E相交于另一点B。
(1)求△AF1F2的周长;(2)在x轴上任取一点P,直线AP与椭圆E的右准线相交于点Q,(3)设点M在椭圆E上,记△OAB与△MAB的面积分别为S1,S2.若S2=3S1,求点M的坐标.5.(2020山东高考预测卷)已知抛物线C:y2=2px(p>0)的焦点为F,点M(a,2√5)在抛物线C上。
(1)若|MF|=6,求抛物线的标准方程;(2)若直线x+y=t与抛物线C交于A,B两点,点N的坐标为(1,0),且满足NA⊥NB,原点O到直线AB的距离不小于√2,求p的取值范围。
2018版高三数学一轮复习(3年真题分类+考情精解读+知识全通关+题型全突破+能力大提升)第十章 圆锥曲线与方
数学
知识全通关 4
第十章·第四讲 直线与圆
易错提醒 1.过椭圆外一点总有两条直线与椭圆相切,过椭圆上一点有且仅有一条直线与椭 圆相切,过椭圆内一点的直线均与椭圆相交. 2.过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行 或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条 与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一 条与对称轴平行或重合的直线. 3.过双曲线外但不在渐近线上的一点总有四条直线与双曲线有且只有一个交点:两条切线和两 条与渐近线平行的直线;过双曲线上一点总有三条直线与双曲线有且只有一个交点:一条切线 和两条与渐近线平行的直线;过双曲线内一点总有两条直线与双曲线有且只有一个交点:两条 与渐近线平行的直线.
题型全突破 15
第十章·第四讲 直线与圆
数学
题型全突破 16
返回目录
第十章·第四讲 直线与圆
【突破攻略】
求解定值问题的基本思路 (1)先求出这个几何量或代数表达式; (2)对表达式进行化简,整理成y=f(m,n,k)的最简形式; (3)根据已知条件列出必要的方程(或不等式),消去参数,最后求出定值, 根据已知条件列出方程k=g(m,n)代入y= f(m,n,k),得到y=h(m,n)+c(c为常 形式.
3.直线与圆锥曲线的位置关系 直线与圆锥曲线相交时,直线与椭圆有两个公共点,与双曲线、抛物线有一个或两个公共点. (1)直线与椭圆有 两个交点⇔ 相交,直线与椭圆有 一个交点⇔ 相切,直线与椭圆 没有交点⇔ 相离.
数学
知识全通关 3
第十章·第四讲 直线与圆
(2)直线与双曲线有两个交点⇒相交. 当直线与双曲线只有一个公共点时,除了直线与双曲线相切外,还有可能是直线与双曲线相交, 此时直线与双曲线的渐近线平行. 直线与双曲线 没有交点⇔ 相离. (3)直线与抛物线有 两个交点⇒ 相交. 当直线与抛物线只有一个公共点时,除了直线与抛物线相切外,还有可能是直线与抛物线相交, 此时直线与抛物线的对称轴平行或重合. 直线与抛物线 没有交点⇔ 相离.
2018高考数学文理一轮复习课件:规范解答题五 “圆锥曲线”类题目的审题技巧与解题规范 共36张 精品
行化简,应用根与系数关系求坐标等,如果不全则丢分.
答题规则2:准确应用斜率公式,根与系数的关系,基本不等式 公式的熟记与灵活应用是本题的关键,本题字母多运算量大,公式的灵活
应用是能够正确写出相应步骤的关键.
题型2 探索性问题
x2 y2 (2016· 四川, 13 分)已知椭圆 E: a2+b2=1(a>b>0)的两个焦点与短轴的 一个端点是直角三角形的三个顶点,直线 l:y=-x+3 与椭圆 E 有且只有一个公共 点 T. 导学号 30072670 (1)求椭圆 E 的方程及点 T 的坐标; (2)设 O 是坐标原点,直线 l′平行于 OT,与椭圆 E 交于不同的两点 A,B,且 与直线 l 交于点 P.证明:存在常数 λ,使得|PT|2=λ|PA|· |PB|,并求 λ 的值.
精准高考
数 学
文理(合订)
第八题技巧与解题规范
1 2
审 题 技 巧
解 题 规 范
审 题 技 巧
命题动向:圆锥曲线是历年高考命题的重点和热点,也是一大难点.命题 的热点主要有四个方面:一是直线和圆锥曲线的位置关系中的基本运算;二是 最值与范围问题;三是定点与定值问题;四是有关探究性的问题.命题多与函 数、方程、不等式、数列、向量等多种知识综合,综合考查考生的各种数学思 想与技能,因此也是高考的难点.
②设 A(x1,y1),B(x2,y2). 直线 PA 的方程为 y=kx+m, 直线 QB 的方程为 y=-3kx+m. kx+m, y= 联立x2 y2 + =1, 4 2 整理得(2k2+1)x2+4mkx+2m2-4=0. 2 分 得分点⑥
2m2-4 2m2-2 由 x0 x1 = 2 ,可得 x1= 2 , 2k +1 2k +1x0 2km2-2 所以 y1=kx1+m= 2 +m. 2k +1x0 2m2-2 -6km2-2 同理 x2= ,y = +m. 18k2+1x0 2 18k2+1x0 2m2-2 2m2-2 所以 x2-x1= - 18k2+1x0 2k2+1x0 -32k2m2-2 = , 18k2+12k2+1x0 2 分 得分点⑨ 1 分 得分点⑦ 1 分 得分点⑧
2018版高考数学(人教A版理科)大一轮复习配套讲义:专题探究课五高考中解析几何问题的热点题型含解析
高考导航圆锥曲线是平面解析几何的核心部分,也是每年高考必考的一道解答题,常以求曲线的标准方程、位置关系、定点、定值、最值、范围、探索性问题为主。
这些试题的命制有一个共同的特点,就是起点低,但在第(2)问或第(3)问中一般都伴有较为复杂的运算,对考生解决问题的能力要求较高,通常作为压轴题的形式出现。
热点一圆锥曲线的标准方程与几何性质圆锥曲线的标准方程是高考的必考题型,圆锥曲线的几何性质是高考考查的重点,求离心率、准线、双曲线的渐近线是常考题型。
【例1】(1)(2015·天津卷)已知双曲线错误!-错误!=1(a>0,b>0)的一个焦点为F(2,0),且双曲线的渐近线与圆(x-2)2+y2=3相切,则双曲线的方程为()A。
错误!-错误!=1 B。
错误!-错误!=1C。
x23-y2=1 D.x2-错误!=1(2)若点M(2,1),点C是椭圆错误!+错误!=1的右焦点,点A是椭圆的动点,则|AM|+|AC|的最小值为________。
(3)已知椭圆错误!+错误!=1(a>b>0)与抛物线y2=2px(p>0)有相同的焦点F,P,Q是椭圆与抛物线的交点,若直线PQ经过焦点F,则椭圆错误!+错误!=1(a>b>0)的离心率为________.解析(1)双曲线x2a2-错误!=1的一个焦点为F(2,0),则a2+b2=4,①双曲线的渐近线方程为y=±错误!x,由题意得错误!=错误!,②联立①②解得b=错误!,a=1,所求双曲线的方程为x2-错误!=1,选D。
(2)设点B为椭圆的左焦点,点M(2,1)在椭圆内,那么|BM|+|AM|+|AC|≥|AB|+|AC|=2a,所以|AM|+|AC|≥2a-|BM|,而a=4,|BM|=错误!=错误!,所以(|AM|+|AC|)最小=8-错误!。
(3)因为抛物线y2=2px(p>0)的焦点F为错误!,设椭圆另一焦点为E。
如图所示,将x=错误!代入抛物线方程得y=±p,又因为PQ经过焦点F,所以P错误!且PF⊥OF。
2018年高考数学一轮复习 第八章 解析几何 课时达标54 圆锥曲线的综合问题 理
2018年高考数学一轮复习 第八章 解析几何 课时达标54 圆锥曲线的综合问题 理[解密考纲]圆锥曲线是平面解析几何的核心内容,也是每年高考卷中的一道解答题,常以求曲线的标准方程、位置关系、定点、定值、最值、范围、探索性问题为主.这些试题的特点就是起点低、难度大,在第(2)问或第(3)问中一般都伴有较为复杂的运算,对学生解决问题的能力要求较高,通常作为压轴题.1.(2017·山西四校联考)已知椭圆C 的中心在原点,焦点在x 轴上,焦距为2,离心率为12.(1)求椭圆C 的方程;(2)设直线l 经过点M (0,1),且与椭圆C 交于A ,B 两点,若AM →=2MB →,求直线l 的方程.解析:(1)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),因为c =1,c a =12,所以a =2,b =3,所以椭圆方程为x 24+y 23=1.(2)由题得直线l 的斜率存在,设直线l 的方程为y =kx +1,则由⎩⎪⎨⎪⎧y =kx +1x 24+y23=1得(3+4k 2)x 2+8kx -8=0,且Δ>0.设A (x 1,y 1),B (x 2,y 2),则由AM →=2MB →得x 1=-2x 2, 又⎩⎪⎨⎪⎧x 1+x 2=-8k3+4k ,x 1·x 2=-83+4k2,所以⎩⎪⎨⎪⎧-x 2=-8k3+4k ,-2x 22=-83+4k2,消去x 2得⎝⎛⎭⎪⎫8k 3+4k 2=43+4k 2,解得k 2=14,k =±12,所以直线l 的方程为y =±12x +1,即x -2y +2=0或x +2y -2=0.2.已知拋物线y 2=2px (p >0),过点C (-2,0)的直线l 交抛物线于A ,B 两点,坐标原点为O ,OA →·OB →=12.(1)求抛物线的方程;(2)当以AB 为直径的圆与y 轴相切时,求直线l 的方程.解析:(1)设l :x =my -2,代入y 2=2px ,得y 2-2pmy +4p =0.(*) 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2pm ,y 1y 2=4p ,则x 1x 2=y 21y 224p2=4.因为OA →·OB →=12,所以x 1x 2+y 1y 2=12,即4+4p =12, 得p =2,抛物线的方程为y 2=4x . (2)(1)中(*)式可化为y 2-4my +8=0,y 1+y 2=4m ,y 1y 2=8.设AB 的中点为M ,则|AB |=2x M =x 1+x 2=m (y 1+y 2)-4=4m 2-4,① 又|AB |=1+m 2|y 1-y 2|=+m2m 2-,②由①②得(1+m 2)(16m 2-32)=(4m 2-4)2, 解得m 2=3,m =± 3.所以直线l 的方程为x +3y +2=0或x -3y +2=0.3.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点⎝ ⎛⎭⎪⎫1,32,且长轴长等于4. (1)求椭圆C 的方程;(2)F 1,F 2是椭圆C 的两个焦点,圆O 是以F 1F 2为直径的圆,直线l :y =kx +m 与圆O 相切,并与椭圆C 交于不同的两点A ,B ,若OA →·OB →=-32,求k 的值.解析:(1)由题意,椭圆的长轴长2a =4,解得a =2. 因为点⎝ ⎛⎭⎪⎫1,32在椭圆上,所以14+94b 2=1,解得b 2=3,所以椭圆C 的方程为x 24+y 23=1.(2)由直线l 与圆O 相切,得|m |1+k2=1,即m 2=1+k 2.设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 24+y 23=1,y =kx +m消去y ,整理得(3+4k 2)x 2+8kmx +4m 2-12=0.由题意可知圆O 在椭圆内,所以直线必与椭圆相交,所以x 1+x 2=-8km3+4k 2,x 1·x 2=4m 2-123+4k2.y 1·y 2=(kx 1+m )(kx 2+m )=k 2x 1·x 2+km (x 1+x 2)+m 2=k 2·4m 2-123+4k 2+km ·⎝ ⎛⎭⎪⎫-8km 3+4k 2+m 2=3m 2-12k23+4k2.所以x 1x 2+y 1y 2=4m 2-123+4k 2+3m 2-12k 23+4k 2=7m 2-12k 2-123+4k 2. 因为m 2=1+k 2,所以x 1x 2+y 1y 2=-5-5k23+4k2.又因为OA →·OB →=-32,所以-5-5k 23+4k 2=-32,解得k 2=12,所以k =±22. 4.已知点A (x 1,y 1),B (x 2,y 2)是抛物线y 2=4x 上相异两点,且满足x 1+x 2=2. (1)若AB 的中垂线经过点P (0,2),求直线AB 的方程;(2)若AB 的中垂线交x 轴于点M ,求△AMB 的面积的最大值及此时直线AB 的方程. 解析:(1)根据题意,设AB 的中点为Q (1,t ), 则k AB =y 2-y 1x 2-x 1=y 2-y 1y 224-y 214=2t . 由P ,Q 两点得线段AB 的中垂线的斜率k =t -2, 由(t -2)·2t =-1,得t =43.∴直线AB 的方程为y =32x -16.(2)由(1)知直线AB 的方程为y -t =2t (x -1),线段AB 的中垂线方程为y -t =-t2(x -1),中垂线交x 轴于点M (3,0),点M 到直线AB 的距离d =t 2+4t 2+4=t 2+4.由⎩⎪⎨⎪⎧y -t =2t x -,y 2=4x ,得4x 2-8x +(t 2-2)2=0,∴x 1+x 2=2,x 1x 2=t 2-24,∴|AB |=1+4t2·|x 1-x 2|=t 2+-t 2,∴S =12|AB |·d =12t 2+2-t2=24t 2+t 2+-2t 2≤24×⎝ ⎛⎭⎪⎫1633=1669.当t 2=43时,S 有最大值1669,此时直线AB 的方程为3x ±3y -1=0.5.已知椭圆M :x 2a 2+y 2b2=1(a >b >0),直线y =kx (k ≠0)与椭圆M 交于A ,B 两点,直线y=-1k x 与椭圆M 交于C ,D 两点,椭圆M 的离心率为22,若弦AC 的长的最小值为263,求椭圆M 的方程.解析:可将椭圆方程可化为x 2+2y 2=a 2,联立方程,得⎩⎪⎨⎪⎧x 2+2y 2=a 2,y =kx ,可得x 2=a 21+2k 2,y 2=k 2a 21+2k2,设O 为坐标原点,则|OA |2=a2+k 21+2k2,同理可得|OC |2=a 2⎝ ⎛⎭⎪⎫1+1k 21+2k 2.由已知条件可知直线y =kx 与y =-1kx 垂直,所以|AC |2=|OA |2+|OC |2=a 2+k 21+2k2+a 2⎝ ⎛⎭⎪⎫1+1k 21+2k 2=a 2·3k 4+6k 2+32k 4+5k 2+2=a 2·32+1k 2+1k2+2≥4a 23.当且仅当k =±1时取等号,所以4a 23=83,即a 2=2,所以椭圆M 的方程为x 22+y 2=1.6.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦距为2,且过点⎝⎛⎭⎪⎫1,22,右焦点为F 2.设A ,B是C 上的两个动点,线段AB 的中点M 的横坐标为-12,线段AB 的中垂线交椭圆C 于P ,Q两点.(1)求椭圆C 的方程; (2)求F 2P →·F 2Q →的取值范围.解析:(1)因为焦距为2,所以a 2-b 2=1. 因为椭圆C 过点⎝ ⎛⎭⎪⎫1,22,所以1a 2+12b 2=1,故a 2=2,b 2=1, 所以椭圆C的方程为x 22+y 2=1.(2)由题意知,当直线AB 垂直于x 轴时,直线AB 方程为x =-12,此时P (-2,0),Q (2,0),又F 2(1,0),得F 2P →·F 2Q →=-1. 当直线AB 不垂直于x 轴时,设直线AB 的斜率为k (k ≠0),M ⎝ ⎛⎭⎪⎫-12,m (m ≠0),A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-1,y 1+y 2=2m .⎩⎪⎨⎪⎧x 212+y 21=1,x 222+y 22=1,得(x 1+x 2)+2(y 1+y 2)·y 1-y 2x 1-x 2=0, 则-1+4mk =0,故k =14m,此时,直线PQ 斜率为k 1=-4m ,PQ 的直线方程为y -m =-4m ⎝⎛⎭⎪⎫x +12,即y =-4mx -m .联立方程组⎩⎪⎨⎪⎧y =-4mx -m ,x 22+y 2=1,整理得(32m 2+1)x 2+16m 2x +2m 2-2=0.设P (x 3,y 3),Q (x 4,y 4),所以x 3+x 4=-16m 232m 2+1,x 3x 4=2m 2-232m 2+1.于是F 2P →· F 2Q →=(x 3-1)(x 4-1)+y 3y 4 =x 3x 4-(x 3+x 4)+1+(4mx 3+m )(4mx 4+m ) =(4m 2-1)(x 3+x 4)+(16m 2+1)x 3x 4+m 2+1 =m 2--16m 232m 2+1+1+16m 2m 2-32m 2+1+m 2+1=19m 2-132m 2+1. 由于M ⎝ ⎛⎭⎪⎫-12,m 在椭圆的内部,故0<m 2<78.令t =32m 2+1,1<t <29,则F 2P →· F 2Q →=1932-5132t .又1<t <29,所以-1<F 2P →· F 2Q →<125232.综上,F 2P →· F 2Q →的取值范围为⎣⎢⎡⎭⎪⎫-1,125232. 7.如图,已知抛物线C :y 2=4x ,过点A (1,2)作抛物线C 的弦AP ,AQ .若AP ⊥AQ ,证明:直线PQ 过定点,并求出定点的坐标.证明:设直线PQ 的方程为x =my +n ,点P ,Q 的坐标分别为P (x 1,y 1),Q (x 2,y 2).由⎩⎪⎨⎪⎧x =my +n ,y 2=4x ,得y 2-4my -4n =0,由Δ>0,得m 2+n >0,y 1+y 2=4m ,y 1·y 2=-4n .∵AP ⊥AQ ,∴AP →·AQ →=0,∴(x 1-1)(x 2-1)+(y 1-2)(y 2-2)=0. 又x 1=y 214,x 2=y 224,∴(y 1-2)(y 2-2)[(y 1+2)(y 2+2)+16]=0. ∴(y 1-2)(y 2-2)=0或(y 1+2)(y 2+2)+16=0.∴n =-2m +1或n =2m +5,∵Δ>0恒成立,∴n =2m +5. ∴直线PQ 方程为x -5=m (y +2), ∴直线PQ 过定点(5,-2).8.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,以该椭圆上的点和椭圆的两个焦点为顶点的三角形的周长为2(2+3).(1)求椭圆C 的方程;(2)设过点P (1,0)的直线l 交C 于A ,B 两点,是否存在x 轴上的定点Q ,使QA →·QB →为定值?若存在,求出定点Q 的坐标和QA →·QB →的值;若不存在,请说明理由.解析:(1)∵e =c a =32,∴c =32a , 又∵2a +2c =2(2+3),则a =2,c =3,b 2=1, ∴椭圆C 的方程为x 24+y 2=1. (2)设A (x 1,y 1),B (x 2,y 2),Q (x 0,0)当直线l 与x 轴不垂直时,设直线l 的方程为y =k (x -1),将直线方程代入x 2+4y 2-4=0,整理得(4k 2+1)x 2-8k 2x +4k 2-4=0,Δ=64k 4-4(4k 2+1)(4k 2-4)=48k 2+16>0,∴x 1+x 2=8k 24k 2+1,x 1x 2=4k 2-44k 2+1.∵Q A →·Q B →=(x 1-x 0,y 1)·(x 2-x 0,y 2) =(x 1-x 0)(x 2-x 0)+y 1y 2=(x 1-x 0)·(x 2-x 0)+k (x 1-1)·k (x 2-1) =(k 2+1)x 1x 2-(k 2+x 0)(x 1+x 2)+k 2+x 20 =(k 2+1)4k 2-44k 2+1-(k 2+x 0)·8k 24k 2+1+k 2+x 2=4k 2⎝⎛⎭⎪⎫x 20-2x 0+14+x 20-44k 2+1, 要使Q A →·Q B →为定值,则x 20-2x 0+14=x 20-4,即x 0=178,此时Q ⎝ ⎛⎭⎪⎫178,0,Q A →·Q B →为定值,且Q A →·Q B →=3364.当直线l 与x 轴垂直时,直线l 的方程为x =1,A ⎝ ⎛⎭⎪⎫1,32,B ⎝ ⎛⎭⎪⎫1,-32,此时Q A →·Q B →=⎝⎛⎭⎪⎫1-178×⎝ ⎛⎭⎪⎫1-178+32×⎝ ⎛⎭⎪⎫-32=3364,符合题意, 故存在定点Q ⎝ ⎛⎭⎪⎫178,0,使Q A →·Q B →=3364.。
高考数学大一轮复习 高考专题突破五 高考中的圆锥曲线问题 文 新人教版-新人教版高三全册数学试题
2018版高考数学大一轮复习 高考专题突破五 高考中的圆锥曲线问题 文 新人教版1.(2015·课标全国Ⅱ)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为( ) A. 5 B .2 C. 3 D. 2 答案 D解析 如图,设双曲线E 的方程为x 2a 2-y 2b2=1(a >0,b >0),则|AB |=2a ,由双曲线的对称性,可设点M (x 1,y 1)在第一象限内,过M 作MN ⊥x 轴于点N (x 1,0), ∵△ABM 为等腰三角形,且∠ABM =120°, ∴|BM |=|AB |=2a ,∠MBN =60°,∴y 1=|MN |=|BM |sin∠MBN =2a sin 60°=3a ,x 1=|OB |+|BN |=a +2a cos 60°=2a .将点M (x 1,y 1)的坐标代入x 2a 2-y 2b 2=1,可得a 2=b 2,∴e=c a= a 2+b 2a 2=2,选D.2.如图,已知椭圆C 的中心为原点O ,F (-25,0)为C 的左焦点,P 为C 上一点,满足|OP |=|OF |,且|PF |=4,则椭圆C 的方程为( )A.x225+y25=1 B.x236+y216=1 C.x 230+y 210=1 D.x 245+y 225=1 答案 B解析 设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),焦距为2c ,右焦点为F ′,连接PF ′,如图所示,因为F (-25,0)为C 的左焦点,所以c =2 5. 由|OP |=|OF |=|OF ′|知,∠FPF ′=90°,即FP ⊥PF ′. 在Rt△PFF ′中,由勾股定理, 得|PF ′|=|FF ′|2-|PF |2=452-42=8.由椭圆定义,得|PF |+|PF ′|=2a =4+8=12,所以a =6,a 2=36,于是b 2=a 2-c 2=36-(25)2=16,所以椭圆的方程为x 236+y 216=1.3.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( ) A.334 B.938 C.6332 D.94答案 D解析 由已知得焦点坐标为F (34,0),因此直线AB 的方程为y =33(x -34), 即4x -43y -3=0.方法一 联立直线方程与抛物线方程化简得 4y 2-123y -9=0, 故|y A -y B |=y A +y B2-4y A y B =6.因此S △OAB =12|OF ||y A -y B |=12×34×6=94.方法二 联立方程得x 2-212x +916=0,故x A +x B =212.根据抛物线的定义有|AB |=x A +x B +p =212+32=12,同时原点到直线AB 的距离为h =|-3|42+-432=38,因此S △OAB =12|AB |·h =94.4.(2016·)双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点,若正方形OABC 的边长为2,则a =________. 答案 2解析 设B 为双曲线的右焦点,如图所示.∵四边形OABC 为正方形且边长为2, ∴c =|OB |=22, 又∠AOB =π4,∴b a =tan π4=1,即a =b . 又a 2+b 2=c 2=8,∴a =2.5.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)和椭圆x 216+y 29=1有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为____________. 答案x 24-y 23=1 解析 由题意得,双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦点坐标为(7,0),(-7,0),c =7且双曲线的离心率为2×74=72=c a⇒a =2,b 2=c 2-a 2=3, 双曲线的方程为x 24-y 23=1.题型一 求圆锥曲线的标准方程例1 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A 、B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A.x 245+y 236=1B.x 236+y 227=1C.x 227+y 218=1D.x 218+y 29=1 答案 D解析 设A (x 1,y 1)、B (x 2,y 2),所以⎩⎪⎨⎪⎧x 21a 2+y 21b2=1,x 22a 2+y22b 2=1运用点差法,所以直线AB 的斜率为k =b 2a 2,设直线方程为y =b 2a2(x -3),联立直线与椭圆的方程得(a 2+b 2)x 2-6b 2x +9b 2-a 4=0,所以x 1+x 2=6b2a 2+b2=2,又因为a 2-b 2=9,解得b 2=9,a 2=18.思维升华 求圆锥曲线的标准方程是高考的必考题型,主要利用圆锥曲线的定义、几何性质,解得标准方程中的参数,从而求得方程.(2015·某某)已知双曲线x 2a 2-y 2b2=1(a >0,b >0 )的一个焦点为F (2,0),且双曲线的渐近线与圆(x -2)2+y 2=3相切,则双曲线的方程为( ) A.x 29-y 213=1 B.x 213-y 29=1 C.x 23-y 2=1 D .x 2-y 23=1 答案 D解析 双曲线x 2a 2-y 2b2=1的一个焦点为F (2,0),则a 2+b 2=4,①双曲线的渐近线方程为y =±b ax , 由题意得2ba 2+b 2=3,②联立①②解得b =3,a =1, 所求双曲线的方程为x 2-y 23=1,选D.题型二 圆锥曲线的几何性质例2 (1)(2015·某某)若双曲线x 2a 2-y 2b2=1的一条渐近线经过点(3,-4),则此双曲线的离心率为( ) A.73 B.54 C.43 D.53(2)(2016·某某)设抛物线⎩⎪⎨⎪⎧x =2pt 2,y =2pt(t 为参数,p >0)的焦点为F ,准线为l .过抛物线上一点A 作l 的垂线,垂足为B .设C ⎝ ⎛⎭⎪⎫72p ,0,AF 与BC 相交于点E .若|CF |=2|AF |,且△ACE的面积为32,则p 的值为________. 答案 (1)D (2) 6解析 (1)由条件知y =-b ax 过点(3,-4),∴3ba=4,即3b =4a ,∴9b 2=16a 2,∴9c 2-9a 2=16a 2, ∴25a 2=9c 2,∴e =53.故选D.(2)由⎩⎪⎨⎪⎧x =2pt 2,y =2pt(p >0)消去t 可得抛物线方程为y 2=2px (p >0),∴F ⎝ ⎛⎭⎪⎫p2,0, |AB |=|AF |=32p ,可得A (p ,2p ).易知△AEB ∽△FEC ,∴|AE ||FE |=|AB ||FC |=12,故S △ACE =13S △ACF =13×3p ×2p ×12=22p 2=32, ∴p 2=6,∵p >0,∴p = 6.思维升华 圆锥曲线的几何性质是高考考查的重点,求离心率、准线、双曲线渐近线,是常考题型,解决这类问题的关键是熟练掌握各性质的定义,及相关参数间的联系.掌握一些常用的结论及变形技巧,有助于提高运算能力.已知椭圆x 2a 2+y 2b2=1(a >b >0)与抛物线y 2=2px (p >0)有相同的焦点F ,P ,Q 是椭圆与抛物线的交点,若PQ 经过焦点F ,则椭圆x 2a 2+y 2b2=1(a >b >0)的离心率为____________.答案2-1解析 因为抛物线y 2=2px (p >0)的焦点F 为⎝ ⎛⎭⎪⎫p2,0,设椭圆另一焦点为E .当x =p2时,代入抛物线方程得y =±p ,又因为PQ 经过焦点F ,所以P ⎝ ⎛⎭⎪⎫p2,p 且PF ⊥OF . 所以|PE |=p 2+p22+p 2=2p ,|PF |=p ,|EF |=p .故2a = 2p +p,2c =p ,e =2c2a=2-1.题型三 最值、X 围问题例3 若直线l :y =3x 3-233过双曲线x 2a 2-y2b 2=1(a >0,b >0)的一个焦点,且与双曲线的一条渐近线平行. (1)求双曲线的方程;(2)若过点B (0,b )且与x 轴不平行的直线和双曲线相交于不同的两点M ,N ,MN 的垂直平分线为m ,求直线m 在y 轴上的截距的取值X 围. 解 (1)由题意,可得c =2,ba =33, 所以a 2=3b 2,且a 2+b 2=c 2=4, 解得a =3,b =1. 故双曲线的方程为x 23-y 2=1.(2)由(1)知B (0,1),依题意可设过点B 的直线方程为y =kx +1(k ≠0),M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +1,x 23-y 2=1,得(1-3k 2)x 2-6kx -6=0,所以x 1+x 2=6k 1-3k2,Δ=36k 2+24(1-3k 2)=12(2-3k 2)>0⇒0<k 2<23,且1-3k 2≠0⇒k 2≠13.设MN 的中点为Q (x 0,y 0), 则x 0=x 1+x 22=3k 1-3k 2,y 0=kx 0+1=11-3k2, 故直线m 的方程为y -11-3k 2=-1k ⎝ ⎛⎭⎪⎫x -3k 1-3k 2, 即y =-1k x +41-3k 2.所以直线m 在y 轴上的截距为41-3k2, 由0<k 2<23,且k 2≠13,得1-3k 2∈(-1,0)∪(0,1),所以41-3k2∈(-∞,-4)∪(4,+∞).故直线m 在y 轴上的截距的取值X 围为(-∞,-4)∪(4,+∞).思维升华 圆锥曲线中的最值、X 围问题解决方法一般分两种:一是代数法,从代数的角度考虑,通过建立函数、不等式等模型,利用二次函数法和均值不等式法、换元法、导数法等方法求最值;二是几何法,从圆锥曲线的几何性质的角度考虑,根据圆锥曲线几何意义求最值与X 围.直线l :x -y =0与椭圆x 22+y 2=1相交于A ,B 两点,点C 是椭圆上的动点,则△ABC 面积的最大值为________. 答案2解析 由⎩⎪⎨⎪⎧x -y =0,x 2+2y 2-2=0,得3x 2=2,∴x =±63,设点A 在第一象限, ∴A (63,63),B (-63,-63),∴|AB |=433.设与l 平行的直线l ′:y =x +m 与椭圆相切于P 点. 则△ABP 面积最大.由⎩⎪⎨⎪⎧y =x +m ,x 22+y 2=1,得3x 2+4mx +2m 2-2=0,∴Δ=(4m )2-4×3×(2m 2-2)=0,∴m =±3.∴P 到AB 的距离即为l 与l ′的距离, ∴d =32.∴S △ABC =12×433×32= 2.题型四 定值、定点问题例4 (2016·全国乙卷)设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (1)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值X 围.解 (1)因为|AD |=|AC |,EB ∥AC ,故∠EBD =∠ACD =∠ADC ,所以|EB |=|ED |,故|EA |+|EB |=|EA |+|ED |=|AD |.又圆A 的标准方程为(x +1)2+y 2=16,从而|AD |=4,所以|EA |+|EB |=4.由题设得A (-1,0),B (1,0),|AB |=2,由椭圆定义可得点E 的轨迹方程为x 24+y 23=1(y ≠0).(2)当l 与x 轴不垂直时,设l 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧y =k x -1,x 24+y23=1,得(4k 2+3)x 2-8k 2x +4k 2-12=0.则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3,所以|MN |=1+k 2|x 1-x 2|=12k 2+14k 2+3. 过点B (1,0)且与l 垂直的直线m :y =-1k(x -1), 点A 到m 的距离为2k 2+1,所以|PQ |=242-⎝ ⎛⎭⎪⎫2k 2+12=44k 2+3k 2+1.故四边形MPNQ 的面积S =12|MN ||PQ |=121+14k 2+3. 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值X 围为(12,83).当l 与x 轴垂直时,其方程为x =1,|MN |=3,|PQ |=8,四边形MPNQ 的面积为12. 综上,四边形MPNQ 面积的取值X 围为[12,83). 思维升华 求定点及定值问题常见的方法有两种 (1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.(2016·)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a,0),B (0,b ),O (0,0),△OAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |·|BM |为定值. (1)解 由已知ca =32,12ab =1. 又a 2=b 2+c 2,解得a =2,b =1,c = 3. ∴椭圆方程为x 24+y 2=1.(2)证明 由(1)知,A (2,0),B (0,1). 设椭圆上一点P (x 0,y 0),则x 204+y 20=1.当x 0≠0时,直线PA 方程为y =y 0x 0-2(x -2),令x =0,得y M =-2y 0x 0-2.从而|BM |=|1-y M |=⎪⎪⎪⎪⎪⎪1+2y 0x 0-2. 直线PB 方程为y =y 0-1x 0x +1. 令y =0,得x N =-x 0y 0-1. ∴|AN |=|2-x N |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1.∴|AN |·|BM |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1·⎪⎪⎪⎪⎪⎪1+2y 0x 0-2=⎪⎪⎪⎪⎪⎪x 0+2y 0-2y 0-1·⎪⎪⎪⎪⎪⎪x 0+2y 0-2x 0-2=⎪⎪⎪⎪⎪⎪x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2 =⎪⎪⎪⎪⎪⎪4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2=4.当x 0=0时,y 0=-1,|BM |=2,|AN |=2, ∴|AN |·|BM |=4. 故|AN |·|BM |为定值. 题型五 探索性问题例5 (2015·某某)已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B .(1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L :y =k (x -4)与曲线C 只有一个交点?若存在,求出k 的取值X 围;若不存在,说明理由.解 (1)圆C 1:x 2+y 2-6x +5=0化为(x -3)2+y 2=4,∴圆C 1的圆心坐标为(3,0). (2)设M (x ,y ),∵A ,B 为过原点的直线l 与圆C 1的交点,且M 为AB 的中点, ∴由圆的性质知MC 1⊥MO , ∴MC 1→·MO →=0.又∵MC 1→=(3-x ,-y ),MO →=(-x ,-y ), ∴由向量的数量积公式得x 2-3x +y 2=0. 易知直线l 的斜率存在, ∴设直线l 的方程为y =mx , 当直线l 与圆C 1相切时,d =|3m -0|m 2+1=2, 解得m =±255.把相切时直线l 的方程代入圆C 1的方程, 化简得9x 2-30x +25=0,解得x =53.当直线l 经过圆C 1的圆心时,M 的坐标为(3,0).又∵直线l 与圆C 1交于A ,B 两点,M 为AB 的中点, ∴53<x ≤3. ∴点M 的轨迹C 的方程为x 2-3x +y 2=0,其中53<x ≤3. (3)由题意知直线L 表示过定点(4,0),斜率为k 的直线,把直线L 的方程代入轨迹C 的方程x 2-3x +y 2=0,其中53<x ≤3,化简得(k 2+1)x 2-(3+8k 2)x +16k 2=0,其中53<x ≤3,记f (x )=(k 2+1)x 2-(3+8k 2)x +16k 2,其中53<x ≤3. 若直线L 与曲线C 只有一个交点,令f (x )=0.当Δ=0时,解得k 2=916,即k =±34,此时方程可化为25x 2-120x +144=0,即(5x -12)2=0,解得x =125∈⎝ ⎛⎦⎥⎤53,3,∴k =±34满足条件. 当Δ>0时,①若x =3是方程的解,则f (3)=0⇒k =0⇒另一根为x =0<53,故在区间⎝ ⎛⎦⎥⎤53,3上有且仅有一个根,满足题意;②若x =53是方程的解,则f ⎝ ⎛⎭⎪⎫53=0⇒k =±257⇒另外一根为x =6423,53<6423≤3,故在区间⎝ ⎛⎦⎥⎤53,3上有且仅有一根,满足题意;③若x =3和x =53均不是方程的解,则方程在区间⎝ ⎛⎭⎪⎫53,3上有且仅有一个根,只需f ⎝ ⎛⎭⎪⎫53·f (3)<0⇒-257<k <257.故在区间⎝ ⎛⎦⎥⎤53,3上有且仅有一个根,满足题意. 综上所述,k 的取值X 围是-257≤k ≤257或k =±34. 思维升华 (1)探索性问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.(2)反证法与验证法也是求解探索性问题常用的方法.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)以抛物线y 2=8x 的焦点为顶点,且离心率为12. (1)求椭圆E 的方程;(2)若直线l :y =kx +m 与椭圆E 相交于A ,B 两点,与直线x =-4相交于Q 点,P 是椭圆E上一点且满足OP →=OA →+OB →(其中O 为坐标原点),试问在x 轴上是否存在一点T ,使得OP →·TQ →为定值?若存在,求出点T 的坐标及OP →·TQ →的值;若不存在,请说明理由.解 (1)抛物线y 2=8x 的焦点为椭圆E 的顶点,即a =2.又c a =12,故c =1,b = 3. ∴椭圆E 的方程为x 24+y 23=1. (2)设A (x 1,y 1),B (x 2,y 2),∵OP →=OA →+OB →,∴P (x 1+x 2,y 1+y 2),联立⎩⎪⎨⎪⎧ y =kx +m ,3x 2+4y 2=12,得(4k 2+3)x 2+8kmx +4m 2-12=0.由根与系数的关系,得x 1+x 2=-8km 4k 2+3, y 1+y 2=k (x 1+x 2)+2m =6m 4k 2+3. 将P ⎝ ⎛⎭⎪⎫-8km 4k 2+3,6m 4k 2+3代入椭圆E 的方程, 得64k 2m 244k 2+32+36m 234k 2+32=1,整理,得4m 2=4k 2+3. 设T (t,0),Q (-4,m -4k ),∴TQ →=(-4-t ,m -4k ),OP →=⎝ ⎛⎭⎪⎫-8km 4k 2+3,6m 4k 2+3. 即OP →·TQ →=32km +8kmt 4k 2+3+6m m -4k 4k 2+3=6m 2+8km +8kmt 4k 2+3. ∵4k 2+3=4m 2,∴OP →·TQ →=6m 2+8km +8kmt 4m 2=32+2k 1+t m . 要使OP →·TQ →为定值,只需⎣⎢⎡⎦⎥⎤2k 1+t m 2=4k 21+t 2m 2=4m 2-31+t 2m 2为定值,则1+t =0,∴t =-1,∴在x 轴上存在一点T (-1,0),使得OP →·TQ →为定值32.1.(2015·某某)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0),经过点A (0,-1),且离心率为22.(1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.(1)解 由题设知c a =22,b =1, 结合a 2=b 2+c 2,解得a =2,所以椭圆的方程为x 22+y 2=1. (2)证明 由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1, 得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0,由已知Δ>0,设P (x 1,y 1),Q (x 2,y 2),x 1x 2≠0,则x 1+x 2=4k k -11+2k 2,x 1x 2=2k k -21+2k2, 从而直线AP ,AQ 的斜率之和k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-k x 2=2k +(2-k )⎝ ⎛⎭⎪⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2=2k +(2-k )4k k -12k k -2=2k -2(k -1)=2. 2.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的焦距为32,其中一条渐近线的方程为x -2y =0.以双曲线C 的实轴为长轴,虚轴为短轴的椭圆记为E ,过原点O 的动直线与椭圆E 交于A ,B 两点.(1)求椭圆E 的方程;(2)若点P 为椭圆E 的左顶点,PG →=2GO →,求|GA →|2+|GB →|2的取值X 围.解 (1)由双曲线x 2a 2-y 2b2=1的焦距为32, 得c =322,∴a 2+b 2=92.①由题意知b a =22,② 由①②解得a 2=3,b 2=32, ∴椭圆E 的方程为x 23+23y 2=1. (2)由(1)知P (-3,0).设G (x 0,y 0),由PG →=2GO →,得(x 0+3,y 0)=2(-x 0,-y 0). 即⎩⎨⎧ x 0+3=-2x 0,y 0=-2y 0,解得⎩⎪⎨⎪⎧ x 0=-33,y 0=0,∴G (-33,0). 设A (x 1,y 1),则B (-x 1,-y 1),|GA →|2+|GB →|2=(x 1+33)2+y 21+(x 1-33)2+y 21 =2x 21+2y 21+23=2x 21+3-x 21+23=x 21+113. 又∵x 1∈[-3,3],∴x 21∈[0,3], ∴113≤x 21+113≤203, ∴|GA →|2+|GB →|2的取值X 围是[113,203]. 3.(2016·顺义尖子生素质展示)已知椭圆x 24+y 23=1的左顶点为A ,右焦点为F ,过点F 的直线交椭圆于B ,C 两点.(1)求该椭圆的离心率;(2)设直线AB 和AC 分别与直线x =4交于点M ,N ,问:x 轴上是否存在定点P 使得MP ⊥NP ?若存在,求出点P 的坐标;若不存在,说明理由.解 (1)由椭圆方程可得a =2,b =3,从而椭圆的半焦距c =a 2-b 2=1. 所以椭圆的离心率为e =c a =12. (2)依题意,直线BC 的斜率不为0,设其方程为x =ty +1.将其代入x 24+y 23=1,整理得(4+3t 2)y 2+6ty -9=0. 设B (x 1,y 1),C (x 2,y 2),所以y 1+y 2=-6t 4+3t 2,y 1y 2=-94+3t2. 易知直线AB 的方程是y =y 1x 1+2(x +2), 从而可得M (4,6y 1x 1+2),同理可得N (4,6y 2x 2+2). 假设x 轴上存在定点P (p,0)使得MP ⊥NP ,则有PM →·PN →=0.所以(p -4)2+36y 1y 2x 1+2x 2+2=0. 将x 1=ty 1+1,x 2=ty 2+1代入上式,整理得(p -4)2+36y 1y 2t 2y 1y 2+3t y 1+y 2+9=0, 所以(p -4)2+36×-9t 2-9+3t -6t +94+3t 2=0, 即(p -4)2-9=0,解得p =1或p =7.所以x 轴上存在定点P (1,0)或P (7,0),使得MP ⊥NP .4.如图,已知M (x 1,y 1)是椭圆x 2a 2+y 2b2=1(a >b >0)上任意一点,F 为椭圆的右焦点.(1)若椭圆的离心率为e ,试用e ,a ,x 1表示|MF |,并求|MF |的最值;(2)已知直线m 与圆x 2+y 2=b 2相切,并与椭圆交于A ,B 两点,且直线m 与圆的切点Q 在y 轴右侧,若a =2,求△ABF 的周长.解 (1)设F (c,0),则|MF |=x 1-c 2+y 21, 又x 21a 2+y 21b 2=1,则y 21=⎝ ⎛⎭⎪⎫1-x 21a 2b 2, 所以|MF |=⎝ ⎛⎭⎪⎫1-b 2a 2x 21-2cx 1+a 2 = c 2a 2x 21-2cx 1+a 2=ex 1-a 2,又-a ≤x 1≤a 且0<e <1,所以|MF |=a -ex 1,且|MF |max =a +ae ,|MF |min =a -ae .(2)设A (x 0,y 0),B (x 2,y 2)(x 0,x 2>0),连接OQ ,OA , 在Rt△OQA 中, |AQ |2=x 20+y 20-b 2,又y 20=⎝ ⎛⎭⎪⎫1-x 2a 2b 2,所以|AQ |2=c 2x 2a 2,则|AQ |=cx 0a ,同理|BQ |=cx 2a ,所以|AB |+|AF |+|BF | =2a -⎝ ⎛⎭⎪⎫c a x 0+c a x 2+c a x 0+ca x 2=2a ,又a =2,所以所求周长为4.。
2018年高考数学一轮温习第八章解析几何课时达标54圆锥曲线的综合问题理
M (m≠0),A(x1,y1),B(x2,y2),
则x1+x2=-1,y1+y2=2m.
得(x1+x2)+2(y1+y2)· =0,
那么-1+4mk=0,故k= ,现在,直线PQ斜率为k1=-4m,
PQ的直线方程为y-m=-4m ,即y=-4mx-m.
1.(2017·山西四校联考)已知椭圆C的中心在原点,核心在x轴上,焦距为2,离心率为 .
(1)求椭圆C的方程;
(2)设直线l通过点M(0,1),且与椭圆C交于A,B两点,假设 =2 ,求直线l的方程.
解析:(1)设椭圆方程为 + =1(a>b>0),
因为c=1, = ,因此a=2,b= ,
因此椭圆方程为 + =1.
2018年高考数学一轮温习 第八章 解析几何 课时达标54 圆锥曲线的综合问题 理
[解密考纲]圆锥曲线是平面解析几何的核心内容,也是每一年高考卷中的一道解答题,常以求曲线的标准方程、位置关系、定点、定值、最值、范围、探讨性问题为主.这些试题的特点确实是起点低、难度大,在第(2)问或第(3)问中一样都伴有较为复杂的运算,对学生解决问题的能力要求较高,通常作为压轴题.
联立方程,得 可得x2= ,y2= ,
设O为坐标原点,那么|OA|2= ,同理可得|OC|2= .由已知条件可知直线y=kx与y=- x垂直,因此|AC|2=|OA|2+|OC|2= + =a2· =a2· ≥ .当且仅当k=±1时取等号,因此 = ,即a2=2,因此椭圆M的方程为 +y2=1.
6.已知椭圆C: + =1(a>b>0)的焦距为2,且过点 ,右核心为F2.设A,B是C上的两个动点,线段AB的中点M的横坐标为- ,线段AB的中垂线交椭圆C于P,Q两点.
【步步高】高三数学大一轮复习 专题五 圆锥曲线的综合问题教案 理 新人教A版
专题五 圆锥曲线的综合问题1. 直线与圆锥曲线的位置关系(1)从几何角度看,可分为三类:无公共点,仅有一个公共点及有两个相异的公共点. (2)从代数角度看,可通过将表示直线的方程代入二次曲线的方程消元后所得一元二次方程解的情况来判断.设直线l 的方程为Ax +By +C =0,圆锥曲线方程f (x ,y )=0.由⎩⎪⎨⎪⎧Ax +By +C =0f x ,y =0,消元如消去y 后得ax 2+bx +c =0.①若a =0,当圆锥曲线是双曲线时,直线l 与双曲线的渐近线平行或重合;当圆锥曲线是抛物线时,直线l 与抛物线的对称轴平行或重合. ②若a ≠0,设Δ=b 2-4ac .a .Δ>0时,直线和圆锥曲线相交于不同两点;b .Δ=0时,直线和圆锥曲线相切于一点;c .Δ<0时,直线和圆锥曲线没有公共点. 2. 直线与圆锥曲线相交时的弦长问题(1)斜率为k 的直线与圆锥曲线交于两点P 1(x 1,y 1),P 2(x 2,y 2),则所得弦长|P 1P 2|=1+k 2|x 1-x 2|或|P 1P 2|=1+1k2|y 1-y 2|.(2)当斜率k 不存在时,可求出交点坐标,直接运算(利用轴上两点间距离公式). 3. 圆锥曲线的中点弦问题遇到中点弦问题常用“根与系数的关系”或“点差法”求解.在椭圆x 2a 2+y 2b 2=1中,以P (x 0,y 0)为中点的弦所在直线的斜率k =-b 2x 0a 2y 0;在双曲线x 2a 2-y 2b 2=1中,以P (x 0,y 0)为中点的弦所在直线的斜率k =b 2x 0a 2y 0;在抛物线y 2=2px (p >0)中,以P (x 0,y 0)为中点的弦所在直线的斜率k =p y 0. [难点正本 疑点清源]1. 直线和圆锥曲线问题解法的一般规律“联立方程求交点,根与系数的关系求弦长,根的分布找范围,曲线定义不能忘”. 2. “点差法”的常见题型求中点弦方程、求(过定点、平行弦)弦中点轨迹、垂直平分线问题.必须提醒的是“点差法”具有不等价性,即要考虑判别式Δ>0是否成立.1. 已知F 1、F 2为椭圆x 225+y 29=1的两个焦点,过F 1的直线交椭圆于A 、B 两点.若|F 2A |+|F 2B |=12,则|AB |=_______________. 答案 8解析 由题意知(|AF 1|+|AF 2|)+(|BF 1|+|BF 2|)=|AB |+|AF 2|+|BF 2|=2a +2a ,又由a =5,可得|AB |+(|BF 2|+|AF 2|)=20,即|AB |=8.2. 已知双曲线方程是x 2-y 22=1,过定点P (2,1)作直线交双曲线于P 1,P 2两点,并使P (2,1)为P 1P 2的中点,则此直线方程是____________. 答案 4x -y -7=0解析 设点P 1(x 1,y 1),P 2(x 2,y 2),则由x 21-y 212=1,x 22-y 222=1,得k =y 2-y 1x 2-x 1=x 2+x 1y 2+y 1=2×42=4,从而所求方程为4x -y -7=0.将此直线方程与双曲线方程联立得14x 2-56x +51=0,Δ>0,故此直线满足条件.3. 过抛物线y 2=4x 的焦点作直线交抛物线于点A (x 1,y 1),B (x 2,y 2),若|AB |=7,则AB的中点M 到抛物线准线的距离为( ) A.52B.72C .2D .3答案 B4. 设坐标原点为O ,抛物线y 2=2x 与过焦点的直线交于A 、B 两点,则OA →·OB →等于( )A.34B .-34C .3D .-3答案 B解析 方法一 (特殊值法)抛物线的焦点为F ⎝ ⎛⎭⎪⎫12,0,过F 且垂直于x 轴的直线交抛物线于A (12,1),B (12,-1),∴OA →·OB →=⎝ ⎛⎭⎪⎫12,1·⎝ ⎛⎭⎪⎫12,-1=14-1=-34.方法二 设A (x 1,y 1),B (x 2,y 2), 则OA →·OB →=x 1x 2+y 1y 2.由抛物线的过焦点的弦的性质知:x 1x 2=p 24=14,y 1y 2=-p 2=-1.∴OA →·OB →=14-1=-34.题型一 圆锥曲线中的范围、最值问题例1 已知抛物线C :y 2=4x ,过点A (-1,0)的直线交抛物线C 于P 、Q 两点,设AP →=λAQ →.(1)若点P 关于x 轴的对称点为M ,求证:直线MQ 经过抛物线C 的焦点F ;(2)若λ∈⎣⎢⎡⎦⎥⎤13,12,求|PQ |的最大值. 思维启迪:(1)可利用向量共线证明直线MQ 过F ;(2)建立|PQ |和λ的关系,然后求最值.(1)证明 设P (x 1,y 1),Q (x 2,y 2),M (x 1,-y 1). ∵AP →=λAQ →,∴x 1+1=λ(x 2+1),y 1=λy 2, ∴y 21=λ2y 22,y 21=4x 1,y 22=4x 2,x 1=λ2x 2, ∴λ2x 2+1=λ(x 2+1),λx 2(λ-1)=λ-1, ∵λ≠1,∴x 2=1λ,x 1=λ,又F (1,0),∴MF →=(1-x 1,y 1)=(1-λ,λy 2) =λ⎝ ⎛⎭⎪⎫1λ-1,y 2=λFQ →,∴直线MQ 经过抛物线C 的焦点F . (2)解 由(1)知x 2=1λ,x 1=λ,得x 1x 2=1,y 21·y 22=16x 1x 2=16, ∵y 1y 2>0,∴y 1y 2=4,则|PQ |2=(x 1-x 2)2+(y 1-y 2)2=x 21+x 22+y 21+y 22-2(x 1x 2+y 1y 2) =⎝ ⎛⎭⎪⎫λ+1λ2+4⎝ ⎛⎭⎪⎫λ+1λ-12 =⎝ ⎛⎭⎪⎫λ+1λ+22-16,λ∈⎣⎢⎡⎦⎥⎤13,12,λ+1λ∈⎣⎢⎡⎦⎥⎤52,103,当λ+1λ=103,即λ=13时,|PQ |2有最大值1129,|PQ |的最大值为473.探究提高 圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.(2012·四川)如图,动点M 与两定点A (-1,0)、B (1,0)构成△MAB ,且直线MA 、MB 的斜率之积为4.设动点M 的轨迹为C . (1)求轨迹C 的方程.(2)设直线y =x +m (m >0)与y 轴相交于点P ,与轨迹C 相交于点Q ,R ,且|PQ |<|PR |.求|PR ||PQ |的取值范围.解 (1)设M 的坐标为(x ,y ),当x =-1时,直线MA 的斜率不存在; 当x =1时,直线MB 的斜率不存在.于是x ≠1且x ≠-1. 此时,MA 的斜率为y x +1,MB 的斜率为yx -1. 由题意,有y x +1·yx -1=4.化简可得,4x 2-y 2-4=0.故动点M 的轨迹C 的方程为4x 2-y 2-4=0(x ≠1且x ≠-1).(2)由⎩⎪⎨⎪⎧y =x +m ,4x 2-y 2-4=0消去y ,可得3x 2-2mx -m 2-4=0.(*) 对于方程(*),其判别式Δ=(-2m )2-4×3(-m 2-4)=16m 2+48>0, 而当1或-1为方程(*)的根时,m 的值为-1或1. 结合题设(m >0)可知,m >0且m ≠1. 设Q 、R 的坐标分别为(x Q ,y Q ),(x R ,y R ), 则x Q ,x R 为方程(*)的两根.因为|PQ |<|PR |,所以|x Q |<|x R |,x Q =m -2m 2+33,x R =m +2m 2+33.所以|PR ||PQ |=⎪⎪⎪⎪⎪⎪x R x Q =21+3m2+121+3m2-1=1+221+3m2-1.此时1+3m2>1,且1+3m2≠2,所以1<1+221+3m2-1<3,且1+221+3m2-1≠53, 所以1<|PR ||PQ |=⎪⎪⎪⎪⎪⎪x R x Q <3,且|PR ||PQ |=⎪⎪⎪⎪⎪⎪x R x Q ≠53.综上所述,|PR ||PQ |的取值范围是⎝ ⎛⎭⎪⎫1,53∪⎝ ⎛⎭⎪⎫53,3.题型二 圆锥曲线中的定点、定值问题例2 已知椭圆C 经过点A ⎝ ⎛⎭⎪⎫1,32,两个焦点为(-1,0)、(1,0).(1)求椭圆C 的方程;(2)E 、F 是椭圆C 上的两个动点,如果直线AE 的斜率与AF 的斜率互为相反数,证明直线EF 的斜率为定值,并求出这个定值.思维启迪:可设直线AE 的斜率来计算直线EF 的斜率,通过推理计算消参.(1)解 由题意,c =1,可设椭圆方程为x 21+b 2+y 2b2=1.因为A 在椭圆上,所以11+b 2+94b 2=1,解得b 2=3,b 2=-34(舍去),所以椭圆方程为x 24+y 23=1.(2)证明 设直线AE 的方程为y =k (x -1)+32,代入x 24+y 23=1.得(3+4k 2)x 2+4k (3-2k )x +4⎝ ⎛⎭⎪⎫32-k 2-12=0. 设E (x E ,y E ),F (x F ,y F ).因为点A ⎝ ⎛⎭⎪⎫1,32在椭圆上,所以x E =4⎝ ⎛⎭⎪⎫32-k 2-123+4k 2, y E =kx E +32-k .又直线AF 的斜率与AE 的斜率互为相反数,在上式中以-k 代替k ,可得x F =4⎝ ⎛⎭⎪⎫32+k 2-123+4k 2,y F =-kx F +32+k , 所以直线EF 的斜率k EF =y F -y E x F -x E =-k x E +x F +2k x F -x E =12,即直线EF 的斜率为定值,其值为12.探究提高 求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.椭圆C 的中心在坐标原点,焦点在x 轴上,该椭圆经过点P ⎝ ⎛⎭⎪⎫1,32且离心率为12. (1)求椭圆C 的标准方程;(2)若直线l :y =kx +m 与椭圆C 相交于A ,B 两点(A ,B 不是左,右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.(1)解 设椭圆方程为x 2a 2+y 2b 2=1 (a >b >0),由e =c a =12,得a =2c ,∵a 2=b 2+c 2,∴b 2=3c 2,则椭圆方程变为x 24c 2+y 23c2=1.又椭圆过点P ⎝ ⎛⎭⎪⎫1,32,将其代入求得c 2=1,故a 2=4,b 2=3,即得椭圆的标准方程为x 24+y 23=1.(2)证明 设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y23=1,得(3+4k 2)x 2+8mkx +4(m 2-3)=0.则⎩⎪⎨⎪⎧Δ=64m 2k 2-+4k2m 2-,x 1+x 2=-8mk 3+4k 2,x 1·x 2=m 2-3+4k2.①又y 1y 2=(kx 1+m )(kx 2+m ) =k 2x 1x 2+mk (x 1+x 2)+m 2=m 2-4k 23+4k2. ∵椭圆的右顶点为A 2(2,0),AA 2⊥BA 2, ∴(x 1-2)(x 2-2)+y 1y 2=0, ∴y 1y 2+x 1x 2-2(x 1+x 2)+4=0, ∴m 2-4k 23+4k 2+m 2-3+4k 2+16mk3+4k2+4=0,∴7m 2+16mk +4k 2=0,解得m 1=-2k ,m 2=-2k 7,由①,得3+4k 2-m 2>0,当m 1=-2k 时,l 的方程为y =k (x -2),直线过定点(2,0),与已知矛盾.当m 2=-2k 7时,l 的方程为y =k ⎝ ⎛⎭⎪⎫x -27,直线过定点⎝ ⎛⎭⎪⎫27,0,∴直线l 过定点,定点坐标为⎝ ⎛⎭⎪⎫27,0. 题型三 圆锥曲线中的探索性问题例3 已知中心在坐标原点O 的椭圆C 经过点A (2,3),且点F (2,0)为其右焦点.(1)求椭圆C 的方程;(2)是否存在平行于OA 的直线l ,使得直线l 与椭圆C 有公共点,且直线OA 与l 的距离等于4?若存在,求出直线l 的方程;若不存在,说明理由.思维启迪:可先假设l 存在,然后根据与C 有公共点和与OA 距离等于4两个条件探求.解 方法一 (1)依题意,可设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),且可知其左焦点为F ′(-2,0).从而有⎩⎪⎨⎪⎧c =2,2a =|AF |+|AF ′|=3+5=8,解得⎩⎪⎨⎪⎧c =2,a =4.又a 2=b 2+c 2,所以b 2=12,故椭圆C 的方程为x 216+y 212=1.(2)假设存在符合题意的直线l ,设其方程为y =32x +t .由⎩⎪⎨⎪⎧y =32x +t ,x 216+y 212=1,得3x 2+3tx +t 2-12=0.因为直线l 与椭圆C 有公共点, 所以Δ=(3t )2-4×3×(t 2-12)≥0, 解得-43≤t ≤4 3.另一方面,由直线OA 与l 的距离d =4,得|t |94+1=4,解得t =±213. 由于±213∉[-43,43],所以符合题意的直线l 不存在.方法二 (1)依题意,可设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),且有⎩⎪⎨⎪⎧4a +9b=1,a 2-b 2=4.解得b 2=12,b 2=-3(舍去).从而a 2=16.所以椭圆C 的方程为x 216+y 212=1.(2)同方法一.探究提高 解决直线与圆锥曲线位置关系的存在性问题,往往是先假设所求的元素存在,然后再推理论证,检验说明假设是否正确.(2012·江西)已知三点O (0,0),A (-2,1),B (2,1),曲线C 上任意一点M (x ,y )满足|MA →+MB →|=OM →·(OA →+OB →)+2.(1)求曲线C 的方程;(2)动点Q (x 0,y 0)(-2<x 0<2)在曲线C 上,曲线C 在点Q 处的切线为l .问:是否存在定点P (0,t )(t <0),使得l 与PA ,PB 都相交,交点分别为D ,E ,且△QAB 与△PDE 的面积之比是常数?若存在,求t 的值;若不存在,说明理由. 解 (1)由MA →=(-2-x,1-y ),MB →=(2-x,1-y ), |MA →+MB →|=-2x2+-2y2,OM →·(OA →+OB →)=(x ,y )·(0,2)=2y ,由已知得-2x2+-2y2=2y +2,化简得曲线C 的方程:x 2=4y .(2)假设存在点P (0,t )(t <0)满足条件, 则直线PA 的方程是y =t -12x +t ,PB 的方程是y =1-t2x +t . 曲线C 在Q 处的切线l 的方程是y =x 02x -x 204,它与y 轴的交点为F ⎝⎛⎭⎪⎫0,-x 204. 由于-2<x 0<2,因此-1<x 02<1.①当-1<t <0时,-1<t -12<-12,存在x 0∈(-2,2),使得x 02=t -12, 即l 与直线PA 平行,故当-1<t <0时不符合题意. ②当t ≤-1时,t -12≤-1<x 02,1-t 2≥1>x 02, 所以l 与直线PA ,PB 一定相交.分别联立方程组⎩⎪⎨⎪⎧y =t -12x +t ,y =x 02x -x24,⎩⎪⎨⎪⎧y =1-t 2x +t ,y =x 02x -x 24,解得D ,E 的横坐标分别是x D =x 20+4tx 0+1-t,x E =x 20+4t x 0+t -,则x E -x D =(1-t )x 20+4tx 20-t -2.又|FP |=-x 204-t ,有S △PDE =12·|FP |·|x E -x D |=1-t8·x 20+4t2t -2-x 20,又S △QAB =12·4·⎝ ⎛⎭⎪⎫1-x 204=4-x 202,于是S △QAB S △PDE =41-t·x 20-x 20-t -2]x 20+4t 2=41-t ·x 40-[4+t -2]x 20+t -2x 40+8tx 20+16t 2.对任意x 0∈(-2,2),要使S △QABS △PDE为常数, 即只需t 满足⎩⎪⎨⎪⎧-4-t -2=8t ,t -2=16t 2.解得t =-1.此时S △QABS △PDE=2, 故存在t =-1,使得△QAB 与△PDE 的面积之比是常数2.圆锥曲线中的函数思想典例:(12分)已知椭圆x 24+y 22=1上的两个动点P ,Q ,设P (x 1,y 1),Q (x 2,y 2)且x 1+x 2=2.(1)求证:线段PQ 的垂直平分线经过一个定点A ;(2)设点A 关于原点O 的对称点是B ,求|PB |的最小值及相应的P 点坐标.审题视角 (1)引入参数PQ 中点的纵坐标,先求k PQ ,利用直线PQ 的方程求解.(2)建立|PB |关于动点坐标的目标函数,利用函数的性质求最值. 规范解答(1)证明 ∵P (x 1,y 1),Q (x 2,y 2),且x 1+x 2=2.当x 1≠x 2时,由⎩⎪⎨⎪⎧x 21+2y 21=4x 22+2y 22=4,得y 1-y 2x 1-x 2=-12·x 1+x 2y 1+y 2. 设线段PQ 的中点N (1,n ),∴k PQ =y 1-y 2x 1-x 2=-12n,[4分] ∴线段PQ 的垂直平分线方程为y -n =2n (x -1), ∴(2x -1)n -y =0,该直线恒过一个定点A (12,0).[6分]当x 1=x 2时,线段PQ 的中垂线也过定点A (12,0).综上,线段PQ 的垂直平分线恒过定点A (12,0).[7分](2)解 由于点B 与点A 关于原点O 对称, 故点B (-12,0).[8分]∵-2≤x 1≤2,-2≤x 2≤2,∴x 1=2-x 2∈[0,2],|PB |2=(x 1+12)2+y 21=12(x 1+1)2+74≥94,[10分]∴当点P 的坐标为(0,±2)时,|PB |min =32.[12分]温馨提醒 (1)本题是圆锥曲线中的综合问题,涉及到了定点问题以及最值问题.求圆锥曲线的最值问题是高考考查的一个重要问题,通常是先建立一个目标函数,然后利用函数的单调性、函数的图象、函数的有界性或基本不等式等求最值,本题是建立二次函数、利用二次函数的图象求最值.(2)本题的第一个易错点是,表达不出线段PQ 的中垂线方程,原因是想不到引入参数表示PQ 的中点.第二个易错点是,易忽视P 点坐标的取值范围.实质上是忽视了椭圆的范围.方法与技巧1. 解决直线与椭圆的位置关系问题,如果直线与椭圆有两个不同交点,可将直线方程y =kx +c 代入椭圆方程x 2a 2+y 2b 2=1整理出关于x (或y )的一元二次方程Ax 2+Bx +C =0,Δ=B 2-4AC >0,可利用根与系数之间的关系求弦长(弦长为1+k 2Δ|A |). 2. 圆锥曲线综合问题要四重视:(1)重视定义在解题中的作用; (2)重视平面几何知识在解题中的作用; (3)重视根与系数的关系在解题中的作用;(4)重视曲线的几何特征与方程的代数特征在解题中的作用. 失误与防范1. 在解决直线与抛物线的位置关系时,要特别注意直线与抛物线的对称轴平行的特殊情况. 2. 中点弦问题,可以利用“点差法”,但不要忘记验证Δ>0或说明中点在曲线内部.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. 直线y =kx +2与抛物线y 2=8x 有且只有一个公共点,则k 的值为( )A .1B .1或3C .0D .1或0答案 D解析 由⎩⎪⎨⎪⎧y =kx +2,y 2=8x得ky 2-8y +16=0,若k =0,则y =2,若k ≠0,若Δ=0,即64-64k =0,解得k =1,因此直线y =kx +2与抛物线y 2=8x 有且只有一个公共点,则k =0或k =1.2. AB 为过椭圆x 2a 2+y 2b2=1中心的弦,F (c,0)为它的焦点,则△FAB 的最大面积为 ( )A .b 2B .abC .acD .bc答案 D解析 设A 、B 两点的坐标为(x 1,y 1)、(-x 1,-y 1), 则S △FAB =12|OF ||2y 1|=c |y 1|≤bc .3. 过抛物线y 2=2px (p >0)的焦点F 且倾斜角为60°的直线l 与抛物线在第一、四象限分别交于A 、B 两点,则|AF ||BF |的值等于( ) A .5 B .4 C .3 D .2答案 C解析 记抛物线y 2=2px 的准线为l ,作AA 1⊥l ,BB 1⊥l ,BC ⊥AA 1,垂足分别是A 1、B 1、C ,则有cos 60°=|AC ||AB |=|AA 1|-|BB 1||AF |+|BF |=|AF |-|BF ||AF |+|BF |=12,由此得|AF ||BF |=3,选C. 4. (2011·山东)设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心、|FM |为半径的圆和抛物线C 的准线相交,则y 0的取值范围是( ) A .(0,2)B .[0,2]C .(2,+∞)D .[2,+∞)答案 C解析 ∵x 2=8y ,∴焦点F 的坐标为(0,2),准线方程为y =-2.由抛物线的定义知|MF |=y 0+2.由于以F 为圆心、|FM |为半径的圆与准线相交,又圆心F 到准线的距离为4,故4<y 0+2,∴y 0>2.二、填空题(每小题5分,共15分)5. 设抛物线x 2=4y 的焦点为F ,经过点P (1,4)的直线l 与抛物线相交于A 、B 两点,且点P 恰为AB 的中点,则|AF →|+|BF →|=________.答案 10解析 设A (x 1,y 1),B (x 2,y 2),由题意知x 1+x 2=2,且x 21=4y 1,x 22=4y 2,两式相减整理得,y 1-y 2x 1-x 2=x 1+x 24=12,所以直线AB 的方程为x -2y +7=0.将x =2y -7代入 x 2=4y 整理得4y 2-32y +49=0,所以y 1+y 2=8,又由抛物线定义得|AF →|+|BF →|=y 1+y 2+2=10.6. 已知椭圆x 24+y 2=1的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则|PF 2|=______. 答案 72解析 将x =-3代入椭圆方程得y p =12,由|PF 1|+|PF 2|=4⇒|PF 2|=4-|PF 1|=4-12=72.7. 直线y =kx -2与抛物线y 2=8x 交于不同两点A 、B ,且AB 的中点横坐标为2,则k 的值是________. 答案 2解析 设A (x 1,y 1)、B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx -2,y 2=8x ,消去y 得k 2x 2-4(k +2)x +4=0, 由题意得⎩⎪⎨⎪⎧Δ=[-k +2-4×k 2×4>0,x 1+x 2=k +k 2=2×2,∴⎩⎪⎨⎪⎧k >-1,k =-1或k =2, 即k =2.三、解答题(共22分)8. (10分)椭圆x 2a 2+y 2b2=1 (a >b >0)与直线x +y -1=0相交于P 、Q 两点,且OP ⊥OQ (O 为原点).(1)求证:1a 2+1b2等于定值;(2)若椭圆的离心率e ∈⎣⎢⎡⎦⎥⎤33,22,求椭圆长轴长的取值范围. (1)证明 由⎩⎪⎨⎪⎧b 2x 2+a 2y 2=a 2b 2,x +y -1=0消去y ,得(a 2+b 2)x 2-2a 2x +a 2(1-b 2)=0,① ∵直线与椭圆有两个交点,∴Δ>0, 即4a 4-4(a 2+b 2)a 2(1-b 2)>0 ⇒a 2b 2(a 2+b 2-1)>0,∵a >b >0,∴a 2+b 2>1.设P (x 1,y 1)、Q (x 2,y 2),则x 1、x 2是方程①的两实根. ∴x 1+x 2=2a 2a 2+b 2,x 1x 2=a 2-b2a 2+b 2.②由OP ⊥OQ 得x 1x 2+y 1y 2=0, 又y 1=1-x 1,y 2=1-x 2, 得2x 1x 2-(x 1+x 2)+1=0.③ 式②代入式③化简得a 2+b 2=2a 2b 2.④ ∴1a 2+1b2=2.(2)解 利用(1)的结论,将a 表示为e 的函数 由e =c a⇒b 2=a 2-a 2e 2,代入式④,得2-e 2-2a 2(1-e 2)=0. ∴a 2=2-e 2-e 2=12+1-e2. ∵33≤e ≤22,∴54≤a 2≤32. ∵a >0,∴52≤a ≤62. ∴长轴长的取值范围为[5,6]. 9. (12分)给出双曲线x 2-y 22=1.(1)求以A (2,1)为中点的弦所在的直线方程;(2)若过点A (2,1)的直线l 与所给双曲线交于P 1,P 2两点,求线段P 1P 2的中点P 的轨迹方程;(3)过点B (1,1)能否作直线m ,使得m 与双曲线交于两点Q 1,Q 2,且B 是Q 1Q 2的中点?这样的直线m 若存在,求出它的方程;若不存在,说明理由.解 (1)设弦的两端点为P 1(x 1,y 1),P 2(x 2,y 2),则⎩⎪⎨⎪⎧2x 21-y 21=2,2x 22-y 22=2,两式相减得到2(x 1-x 2)(x 1+x 2)=(y 1-y 2)(y 1+y 2),又x 1+x 2=4,y 1+y 2=2,所以直线斜率k =y 1-y 2x 1-x 2=4. 故求得直线方程为4x -y -7=0. (2)设P (x ,y ),P 1(x 1,y 1),P 2(x 2,y 2), 按照(1)的解法可得y 1-y 2x 1-x 2=2xy,① 由于P 1,P 2,P ,A 四点共线,得y 1-y 2x 1-x 2=y -1x -2,② 由①②可得2x y =y -1x -2,整理得2x 2-y 2-4x +y =0,检验当x 1=x 2时,x =2,y =0也满足方程,故P 1P 2的中点P 的轨迹方程是2x 2-y 2-4x +y =0.(3)假设满足题设条件的直线m 存在,按照(1)的解法可得直线m 的方程为y =2x -1.考虑到方程组⎩⎪⎨⎪⎧y =2x -1,x 2-y 22=1无解,因此满足题设条件的直线m 是不存在的.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. 已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为 ( )A.x 23-y 26=1B.x 24-y 25=1 C.x 26-y 23=1D.x 25-y 24=1 答案 B解析 ∵k AB =0+153+12=1,∴直线AB 的方程为y =x -3.由于双曲线的焦点为F (3,0),∴c =3,c 2=9.设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),则x 2a 2-x -2b 2=1.整理,得(b 2-a 2)x 2+6a 2x -9a 2-a 2b 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=6a 2a 2-b2=2×(-12),∴a 2=-4a 2+4b 2,∴5a 2=4b 2.又a 2+b 2=9,∴a 2=4,b 2=5,∴双曲线E 的方程为x 24-y 25=1.2. 已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A 、B ,则|AB |等于( )A .3B .4C .3 2D .4 2答案 C解析 设直线AB 的方程为y =x +b .由⎩⎪⎨⎪⎧y =-x 2+3y =x +b⇒x 2+x +b -3=0⇒x 1+x 2=-1,得AB 的中点M ⎝ ⎛⎭⎪⎫-12,-12+b .又M ⎝ ⎛⎭⎪⎫-12,-12+b 在直线x +y =0上,可求出b =1,∴x 2+x -2=0, 则|AB |=1+12·-2--=3 2.3. 如图,已知过抛物线y 2=2px (p >0)的焦点F 的直线x -my +m =0与抛物线交于A 、B 两点,且△OAB (O 为坐标原点)的面积为22,则m 6+m 4的值是( )A .1 B. 2 C .2D .4答案 C解析 设A (x 1,y 1),B (x 2,y 2),由题意可知,p2=-m ,将x =my -m 代入抛物线方程y2=2px (p >0)中,整理得y 2-2pmy +2pm =0,由根与系数的关系,得y 1+y 2=2pm ,y 1y 2=2pm ,∴(y 1-y 2)2=(y 1+y 2)2-4y 1y 2=(2pm )2-8pm =16m 4+16m 2,又△OAB 的面积S =12×p 2|y 1-y 2|=12(-m )×4m 4+m 2=22,两边平方即可得m 6+m 4=2.二、填空题(每小题5分,共15分)4. 直线y =kx +1与椭圆x 25+y 2m=1恒有公共点,则m 的取值范围是__________.答案 m ≥1且m ≠5解析 ∵方程x 25+y 2m=1表示椭圆,∴m >0且m ≠5.∵直线y =kx +1恒过(0,1)点,∴要使直线与椭圆总有公共点,应有:025+12m≤1,m ≥1,∴m 的取值范围是m ≥1且m ≠5.5. 已知双曲线x 2a -y 2b=1 (a >1,b >0)的焦距为2c ,离心率为e ,若点(-1,0)与(1,0)到直线x a -y b =1的距离之和s ≥45c ,则e 的取值范围是__________. 答案 ⎣⎢⎡⎦⎥⎤52,5 解析 由题意知s =|-b -ab |a 2+b 2+|b -ab |a 2+b 2=2ab c ≥45c ,∴2c 2≤5ab ,∴2c 2a ≤5ba.又b a=c 2-a 2a2=e 2-1,∴2e 2≤5e 2-1, ∴4e 4≤25(e 2-1),∴4e 4-25e 2+25≤0, ∴54≤e 2≤5,∴52≤e ≤ 5. 6. 若过抛物线y 2=2px (p >0)的焦点F 的直线l 依次交抛物线及其准线于点A 、B 、C ,若|BC |=2|BF |,且|AF |=3,则抛物线的方程为____________. 答案 y 2=3x解析 如图,过A 、B 分别作AD 、BE 垂直于准线,垂足分别为D 、E . 由|BC |=2|BF |,即|BC |=2|BE |,则∠BCE =30°,又|AF |=3, 即|AD |=3,|AC |=6,∴F 为AC 的中点,KF 为△ACD 的中位线, ∴p =|FK |=12|AD |=32,所求抛物线方程为y 2=3x . 三、解答题7. (13分)(2012·上海)在平面直角坐标系xOy 中,已知双曲线C 1:2x 2-y 2=1.(1)过C 1的左顶点引C 1的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成的三角形的面积.(2)设斜率为1的直线l 交C 1于P 、Q 两点.若l 与圆x 2+y 2=1相切,求证:OP ⊥OQ . (3)设椭圆C 2:4x 2+y 2=1.若M 、N 分别是C 1、C 2上的动点,且OM ⊥ON ,求证:O 到直线MN 的距离是定值.(1)解 双曲线C 1:x 212-y 2=1,左顶点A ⎝ ⎛⎭⎪⎫-22,0,渐近线方程:y =±2x .不妨取过点A 与渐近线y =2x 平行的直线方程为y =2⎝ ⎛⎭⎪⎫x +22,即y =2x +1. 解方程组⎩⎨⎧y =-2x ,y =2x +1得⎩⎪⎨⎪⎧x =-24,y =12.所以所求三角形的面积为S =12|OA ||y |=28.(2)证明 设直线PQ 的方程是y =x +b .因为直线PQ 与已知圆相切,故|b |2=1,即b 2=2.由⎩⎪⎨⎪⎧y =x +b ,2x 2-y 2=1得x 2-2bx -b 2-1=0.设P (x 1,y 1)、Q (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=2b ,x 1x 2=-1-b 2.又y 1y 2=(x 1+b )(x 2+b ),所以 OP →·OQ →=x 1x 2+y 1y 2=2x 1x 2+b (x 1+x 2)+b 2=2(-1-b 2)+2b 2+b 2=b 2-2=0. 故OP ⊥OQ .(3)证明 当直线ON 垂直于x 轴时, |ON |=1,|OM |=22,则O 到直线MN 的距离为33. 当直线ON 不垂直于x 轴时,设直线ON 的方程为y =kx ⎝ ⎛⎭⎪⎫显然|k |>22, 则直线OM 的方程为y =-1kx .由⎩⎪⎨⎪⎧y =kx ,4x 2+y 2=1得⎩⎪⎨⎪⎧x 2=14+k2,y 2=k24+k 2,所以|ON |2=1+k24+k2.同理|OM|2=1+k22k2-1.设O到直线MN的距离为d,因为(|OM|2+|ON|2)d2=|OM|2|ON|2,所以1d2=1|OM|2+1|ON|2=3k2+3k2+1=3,即d=33.综上,O到直线MN的距离是定值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018版高考数学大一轮复习 高考专题突破五 高考中的圆锥曲线问题 文 新人教版1.(2015²课标全国Ⅱ)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为( ) A. 5 B .2 C. 3 D. 2 答案 D解析 如图,设双曲线E 的方程为x 2a 2-y 2b2=1(a >0,b >0),则|AB |=2a ,由双曲线的对称性,可设点M (x 1,y 1)在第一象限内,过M 作MN ⊥x 轴于点N (x 1,0), ∵△ABM 为等腰三角形,且∠ABM =120°, ∴|BM |=|AB |=2a ,∠MBN =60°,∴y 1=|MN |=|BM |sin∠MBN =2a sin 60°=3a ,x 1=|OB |+|BN |=a +2a cos 60°=2a .将点M (x 1,y 1)的坐标代入x 2a 2-y 2b 2=1,可得a 2=b 2,∴e=c a= a 2+b 2a 2=2,选D.2.如图,已知椭圆C 的中心为原点O ,F (-25,0)为C 的左焦点,P 为C 上一点,满足|OP |=|OF |,且|PF |=4,则椭圆C 的方程为( )A.x225+y25=1 B.x236+y216=1 C.x 230+y 210=1 D.x 245+y 225=1 答案 B解析 设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),焦距为2c ,右焦点为F ′,连接PF ′,如图所示,因为F (-25,0)为C 的左焦点,所以c =2 5. 由|OP |=|OF |=|OF ′|知,∠FPF ′=90°,即FP ⊥PF ′. 在Rt△PFF ′中,由勾股定理,得|PF ′|=|FF ′|2-|PF |2= 45 2-42=8. 由椭圆定义,得|PF |+|PF ′|=2a =4+8=12,所以a =6,a 2=36,于是b 2=a 2-c 2=36-(25)2=16,所以椭圆的方程为x 236+y 216=1.3.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( ) A.334 B.938 C.6332 D.94答案 D解析 由已知得焦点坐标为F (34,0),因此直线AB 的方程为y =33(x -34), 即4x -43y -3=0.方法一 联立直线方程与抛物线方程化简得 4y 2-123y -9=0,故|y A -y B |= y A +y B 2-4y A y B =6. 因此S △OAB =12|OF ||y A -y B |=12³34³6=94.方法二 联立方程得x 2-212x +916=0,故x A +x B =212.根据抛物线的定义有|AB |=x A +x B +p =212+32=12,同时原点到直线AB 的距离为h =|-3|42+ -432=38,因此S △OAB =12|AB |²h =94.4.(2016²北京)双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点,若正方形OABC 的边长为2,则a =________. 答案 2解析 设B 为双曲线的右焦点,如图所示.∵四边形OABC 为正方形且边长为2, ∴c =|OB |=22, 又∠AOB =π4,∴b a =tan π4=1,即a =b . 又a 2+b 2=c 2=8,∴a =2.5.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)和椭圆x 216+y 29=1有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为____________. 答案x 24-y 23=1 解析 由题意得,双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦点坐标为(7,0),(-7,0),c =7且双曲线的离心率为2³74=72=c a⇒a =2,b 2=c 2-a 2=3, 双曲线的方程为x 24-y 23=1.题型一 求圆锥曲线的标准方程例1 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A 、B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A.x 245+y 236=1 B.x 236+y 227=1C.x 227+y 218=1 D.x 218+y 29=1 答案 D解析 设A (x 1,y 1)、B (x 2,y 2),所以⎩⎪⎨⎪⎧x 21a 2+y 21b2=1,x 22a 2+y22b 2=1运用点差法,所以直线AB 的斜率为k =b 2a 2,设直线方程为y =b 2a2(x -3),联立直线与椭圆的方程得(a 2+b 2)x 2-6b 2x +9b 2-a 4=0,所以x 1+x 2=6b2a 2+b2=2,又因为a 2-b 2=9,解得b 2=9,a 2=18.思维升华 求圆锥曲线的标准方程是高考的必考题型,主要利用圆锥曲线的定义、几何性质,解得标准方程中的参数,从而求得方程.(2015²天津)已知双曲线x 2a 2-y 2b2=1(a >0,b >0 )的一个焦点为F (2,0),且双曲线的渐近线与圆(x -2)2+y 2=3相切,则双曲线的方程为( ) A.x 29-y 213=1 B.x 213-y 29=1 C.x 23-y 2=1 D .x 2-y 23=1答案 D解析 双曲线x 2a 2-y 2b2=1的一个焦点为F (2,0),则a 2+b 2=4,①双曲线的渐近线方程为y =±b ax , 由题意得2ba 2+b 2=3,②联立①②解得b =3,a =1, 所求双曲线的方程为x 2-y 23=1,选D.题型二 圆锥曲线的几何性质例2 (1)(2015²湖南)若双曲线x 2a 2-y 2b2=1的一条渐近线经过点(3,-4),则此双曲线的离心率为( ) A.73 B.54 C.43 D.53(2)(2016²天津)设抛物线⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数,p >0)的焦点为F ,准线为l .过抛物线上一点A 作l 的垂线,垂足为B .设C ⎝ ⎛⎭⎪⎫72p ,0,AF 与BC 相交于点E .若|CF |=2|AF |,且△ACE的面积为32,则p 的值为________. 答案 (1)D (2) 6解析 (1)由条件知y =-b ax 过点(3,-4),∴3ba=4,即3b =4a ,∴9b 2=16a 2,∴9c 2-9a 2=16a 2, ∴25a 2=9c 2,∴e =53.故选D.(2)由⎩⎪⎨⎪⎧x =2pt 2,y =2pt (p >0)消去t 可得抛物线方程为y 2=2px (p >0),∴F ⎝ ⎛⎭⎪⎫p2,0, |AB |=|AF |=32p ,可得A (p ,2p ).易知△AEB ∽△FEC ,∴|AE ||FE |=|AB ||FC |=12,故S △ACE =13S △ACF =13³3p ³2p ³12=22p 2=32, ∴p 2=6,∵p >0,∴p = 6.思维升华 圆锥曲线的几何性质是高考考查的重点,求离心率、准线、双曲线渐近线,是常考题型,解决这类问题的关键是熟练掌握各性质的定义,及相关参数间的联系.掌握一些常用的结论及变形技巧,有助于提高运算能力.已知椭圆x 2a 2+y 2b2=1(a >b >0)与抛物线y 2=2px (p >0)有相同的焦点F ,P ,Q 是椭圆与抛物线的交点,若PQ 经过焦点F ,则椭圆x 2a 2+y 2b2=1(a >b >0)的离心率为____________.答案2-1解析 因为抛物线y 2=2px (p >0)的焦点F 为⎝ ⎛⎭⎪⎫p2,0,设椭圆另一焦点为E .当x =p2时,代入抛物线方程得y =±p ,又因为PQ 经过焦点F ,所以P ⎝ ⎛⎭⎪⎫p2,p 且PF ⊥OF . 所以|PE |=p 2+p22+p 2=2p , |PF |=p ,|EF |=p .故2a = 2p +p,2c =p ,e =2c2a=2-1.题型三 最值、范围问题例3 若直线l :y =3x 3-233过双曲线x 2a 2-y2b 2=1(a >0,b >0)的一个焦点,且与双曲线的一条渐近线平行. (1)求双曲线的方程;(2)若过点B (0,b )且与x 轴不平行的直线和双曲线相交于不同的两点M ,N ,MN 的垂直平分线为m ,求直线m 在y 轴上的截距的取值范围. 解 (1)由题意,可得c =2,ba =33, 所以a 2=3b 2,且a 2+b 2=c 2=4, 解得a =3,b =1. 故双曲线的方程为x 23-y 2=1.(2)由(1)知B (0,1),依题意可设过点B 的直线方程为y =kx +1(k ≠0),M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +1,x 23-y 2=1,得(1-3k 2)x 2-6kx -6=0,所以x 1+x 2=6k 1-3k2,Δ=36k 2+24(1-3k 2)=12(2-3k 2)>0⇒0<k 2<23,且1-3k 2≠0⇒k 2≠13.设MN 的中点为Q (x 0,y 0), 则x 0=x 1+x 22=3k 1-3k 2,y 0=kx 0+1=11-3k2, 故直线m 的方程为y -11-3k 2=-1k ⎝ ⎛⎭⎪⎫x -3k 1-3k 2, 即y =-1k x +41-3k 2.所以直线m 在y 轴上的截距为41-3k2, 由0<k 2<23,且k 2≠13,得1-3k 2∈(-1,0)∪(0,1),所以41-3k∈(-∞,-4)∪(4,+∞).故直线m 在y 轴上的截距的取值范围为(-∞,-4)∪(4,+∞).思维升华 圆锥曲线中的最值、范围问题解决方法一般分两种:一是代数法,从代数的角度考虑,通过建立函数、不等式等模型,利用二次函数法和均值不等式法、换元法、导数法等方法求最值;二是几何法,从圆锥曲线的几何性质的角度考虑,根据圆锥曲线几何意义求最值与范围.直线l :x -y =0与椭圆x 22+y 2=1相交于A ,B 两点,点C 是椭圆上的动点,则△ABC 面积的最大值为________. 答案2解析 由⎩⎪⎨⎪⎧x -y =0,x 2+2y 2-2=0,得3x 2=2,∴x =±63,设点A 在第一象限, ∴A (63,63),B (-63,-63),∴|AB |=433.设与l 平行的直线l ′:y =x +m 与椭圆相切于P 点. 则△ABP 面积最大.由⎩⎪⎨⎪⎧y =x +m ,x 22+y 2=1,得3x 2+4mx +2m 2-2=0,∴Δ=(4m )2-4³3³(2m 2-2)=0,∴m =±3.∴P 到AB 的距离即为l 与l ′的距离, ∴d =32.∴S △ABC =12³433³32= 2.题型四 定值、定点问题例4 (2016²全国乙卷)设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (1)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.解 (1)因为|AD |=|AC |,EB ∥AC ,故∠EBD =∠ACD =∠ADC ,所以|EB |=|ED |,故|EA |+|EB |=|EA |+|ED |=|AD |.又圆A 的标准方程为(x +1)2+y 2=16,从而|AD |=4,所以|EA |+|EB |=4.由题设得A (-1,0),B (1,0),|AB |=2,由椭圆定义可得点E 的轨迹方程为x 24+y 23=1(y ≠0).(2)当l 与x 轴不垂直时,设l 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧y =k x -1 ,x 24+y23=1,得(4k 2+3)x 2-8k 2x +4k 2-12=0.则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3,所以|MN |=1+k 2|x 1-x 2|=12 k 2+14k 2+3. 过点B (1,0)且与l 垂直的直线m :y =-1k(x -1),点A 到m 的距离为2k 2+1,所以|PQ |=242-⎝ ⎛⎭⎪⎫2k 2+12=44k 2+3k 2+1.故四边形MPNQ 的面积S =12|MN ||PQ |=121+14k 2+3. 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为(12,83).当l 与x 轴垂直时,其方程为x =1,|MN |=3,|PQ |=8,四边形MPNQ 的面积为12. 综上,四边形MPNQ 面积的取值范围为[12,83). 思维升华 求定点及定值问题常见的方法有两种 (1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.(2016²北京)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a,0),B (0,b ),O (0,0),△OAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |²|BM |为定值. (1)解 由已知ca =32,12ab =1. 又a 2=b 2+c 2,解得a =2,b =1,c = 3. ∴椭圆方程为x 24+y 2=1.(2)证明 由(1)知,A (2,0),B (0,1). 设椭圆上一点P (x 0,y 0),则x 204+y 20=1.当x 0≠0时,直线PA 方程为y =y 0x 0-2(x -2),令x =0,得y M =-2y 0x 0-2.从而|BM |=|1-y M |=⎪⎪⎪⎪⎪⎪1+2y 0x 0-2. 直线PB 方程为y =y 0-1x 0x +1. 令y =0,得x N =-x 0y 0-1. ∴|AN |=|2-x N |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1.∴|AN |²|BM |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1²⎪⎪⎪⎪⎪⎪1+2y 0x 0-2=⎪⎪⎪⎪⎪⎪x 0+2y 0-2y 0-1²⎪⎪⎪⎪⎪⎪x 0+2y 0-2x 0-2=⎪⎪⎪⎪⎪⎪x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2 =⎪⎪⎪⎪⎪⎪4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2=4.当x 0=0时,y 0=-1,|BM |=2,|AN |=2, ∴|AN |²|BM |=4. 故|AN |²|BM |为定值. 题型五 探索性问题例5 (2015²广东)已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B .(1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L :y =k (x -4)与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.解 (1)圆C 1:x 2+y 2-6x +5=0化为(x -3)2+y 2=4,∴圆C 1的圆心坐标为(3,0). (2)设M (x ,y ),∵A ,B 为过原点的直线l 与圆C 1的交点,且M 为AB 的中点, ∴由圆的性质知MC 1⊥MO , ∴MC 1→²MO →=0.又∵MC 1→=(3-x ,-y ),MO →=(-x ,-y ), ∴由向量的数量积公式得x 2-3x +y 2=0. 易知直线l 的斜率存在, ∴设直线l 的方程为y =mx , 当直线l 与圆C 1相切时,d =|3m -0|m 2+1=2, 解得m =±255.把相切时直线l 的方程代入圆C 1的方程, 化简得9x 2-30x +25=0,解得x =53.当直线l 经过圆C 1的圆心时,M 的坐标为(3,0).又∵直线l 与圆C 1交于A ,B 两点,M 为AB 的中点, ∴53<x ≤3. ∴点M 的轨迹C 的方程为x 2-3x +y 2=0,其中53<x ≤3.(3)由题意知直线L 表示过定点(4,0),斜率为k 的直线,把直线L 的方程代入轨迹C 的方程x 2-3x +y 2=0,其中53<x ≤3,化简得(k 2+1)x 2-(3+8k 2)x +16k 2=0,其中53<x ≤3,记f (x )=(k 2+1)x 2-(3+8k 2)x +16k 2,其中53<x ≤3.若直线L 与曲线C 只有一个交点,令f (x )=0.当Δ=0时,解得k 2=916,即k =±34,此时方程可化为25x 2-120x +144=0,即(5x -12)2=0,解得x =125∈⎝ ⎛⎦⎥⎤53,3,∴k =±34满足条件.当Δ>0时,①若x =3是方程的解,则f (3)=0⇒k =0⇒另一根为x =0<53,故在区间⎝ ⎛⎦⎥⎤53,3上有且仅有一个根,满足题意;②若x =53是方程的解,则f ⎝ ⎛⎭⎪⎫53=0⇒k =±257⇒另外一根为x =6423,53<6423≤3,故在区间⎝ ⎛⎦⎥⎤53,3上有且仅有一根,满足题意;③若x =3和x =53均不是方程的解,则方程在区间⎝ ⎛⎭⎪⎫53,3上有且仅有一个根,只需f ⎝ ⎛⎭⎪⎫53²f (3)<0⇒-257<k <257.故在区间⎝ ⎛⎦⎥⎤53,3上有且仅有一个根,满足题意. 综上所述,k 的取值范围是-257≤k ≤257或k =±34.思维升华 (1)探索性问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.(2)反证法与验证法也是求解探索性问题常用的方法.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)以抛物线y 2=8x 的焦点为顶点,且离心率为12.(1)求椭圆E 的方程;(2)若直线l :y =kx +m 与椭圆E 相交于A ,B 两点,与直线x =-4相交于Q 点,P 是椭圆E上一点且满足OP →=OA →+OB →(其中O 为坐标原点),试问在x 轴上是否存在一点T ,使得OP →²TQ →为定值?若存在,求出点T 的坐标及OP →²TQ →的值;若不存在,请说明理由.解 (1)抛物线y 2=8x 的焦点为椭圆E 的顶点,即a =2.又c a =12,故c =1,b = 3.∴椭圆E 的方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2), ∵OP →=OA →+OB →,∴P (x 1+x 2,y 1+y 2),联立⎩⎪⎨⎪⎧y =kx +m ,3x 2+4y 2=12,得(4k 2+3)x 2+8kmx +4m 2-12=0. 由根与系数的关系,得x 1+x 2=-8km4k 2+3,y 1+y 2=k (x 1+x 2)+2m =6m4k 2+3. 将P ⎝ ⎛⎭⎪⎫-8km4k 2+3,6m 4k 2+3代入椭圆E 的方程,得64k 2m 24 4k 2+3 2+36m 23 4k 2+3 2=1,整理,得4m 2=4k 2+3. 设T (t,0),Q (-4,m -4k ),∴TQ →=(-4-t ,m -4k ),OP →=⎝ ⎛⎭⎪⎫-8km 4k 2+3,6m 4k 2+3.即OP →²TQ →=32km +8kmt 4k 2+3+6m m -4k 4k 2+3 =6m 2+8km +8kmt4k 2+3. ∵4k 2+3=4m 2,∴OP →²TQ →=6m 2+8km +8kmt 4m =32+2k 1+t m . 要使OP →²TQ →为定值,只需⎣⎢⎡⎦⎥⎤2k 1+t m 2=4k 2 1+t 2m = 4m 2-3 1+t 2m 为定值,则1+t =0,∴t =-1, ∴在x 轴上存在一点T (-1,0),使得OP →²TQ →为定值32.1.(2015²陕西)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0),经过点A (0,-1),且离心率为22.(1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2. (1)解 由题设知ca =22,b =1, 结合a 2=b 2+c 2,解得a =2, 所以椭圆的方程为x 22+y 2=1.(2)证明 由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0,由已知Δ>0, 设P (x 1,y 1),Q (x 2,y 2),x 1x 2≠0, 则x 1+x 2=4k k -1 1+2k 2,x 1x 2=2k k -21+2k 2, 从而直线AP ,AQ 的斜率之和k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-kx 2=2k +(2-k )⎝ ⎛⎭⎪⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2=2k +(2-k )4k k -12k k -2=2k -2(k -1)=2.2.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的焦距为32,其中一条渐近线的方程为x -2y =0.以双曲线C 的实轴为长轴,虚轴为短轴的椭圆记为E ,过原点O 的动直线与椭圆E 交于A ,B 两点.(1)求椭圆E 的方程;(2)若点P 为椭圆E 的左顶点,PG →=2GO →,求|GA →|2+|GB →|2的取值范围.解 (1)由双曲线x 2a 2-y 2b2=1的焦距为32,得c =322,∴a 2+b 2=92.①由题意知b a =22,② 由①②解得a 2=3,b 2=32,∴椭圆E 的方程为x 23+23y 2=1.(2)由(1)知P (-3,0). 设G (x 0,y 0),由PG →=2GO →, 得(x 0+3,y 0)=2(-x 0,-y 0).即⎩⎨⎧x 0+3=-2x 0,y 0=-2y 0,解得⎩⎪⎨⎪⎧x 0=-33,y 0=0,∴G (-33,0). 设A (x 1,y 1),则B (-x 1,-y 1),|GA →|2+|GB →|2=(x 1+33)2+y 21+(x 1-33)2+y 21=2x 21+2y 21+23=2x 21+3-x 21+23=x 21+113. 又∵x 1∈[-3,3],∴x 21∈[0,3], ∴113≤x 21+113≤203, ∴|GA →|2+|GB →|2的取值范围是[113,203].3.(2016²北京顺义尖子生素质展示)已知椭圆x 24+y 23=1的左顶点为A ,右焦点为F ,过点F的直线交椭圆于B ,C 两点. (1)求该椭圆的离心率;(2)设直线AB 和AC 分别与直线x =4交于点M ,N ,问:x 轴上是否存在定点P 使得MP ⊥NP ?若存在,求出点P 的坐标;若不存在,说明理由. 解 (1)由椭圆方程可得a =2,b =3, 从而椭圆的半焦距c =a 2-b 2=1.所以椭圆的离心率为e =c a =12.(2)依题意,直线BC 的斜率不为0, 设其方程为x =ty +1.将其代入x 24+y 23=1,整理得(4+3t 2)y 2+6ty -9=0.设B (x 1,y 1),C (x 2,y 2),所以y 1+y 2=-6t 4+3t 2,y 1y 2=-94+3t 2.易知直线AB 的方程是y =y 1x 1+2(x +2),从而可得M (4,6y 1x 1+2),同理可得N (4,6y 2x 2+2). 假设x 轴上存在定点P (p,0)使得MP ⊥NP , 则有PM →²PN →=0.所以(p -4)2+36y 1y 2 x 1+2 x 2+2 =0.将x 1=ty 1+1,x 2=ty 2+1代入上式,整理得 (p -4)2+36y 1y 2t 2y 1y 2+3t y 1+y 2 +9=0,所以(p -4)2+36³ -9t 2-9 +3t -6t +9 4+3t 2=0,即(p -4)2-9=0,解得p =1或p =7. 所以x 轴上存在定点P (1,0)或P (7,0), 使得MP ⊥NP .4.如图,已知M (x 1,y 1)是椭圆x 2a 2+y 2b2=1(a >b >0)上任意一点,F 为椭圆的右焦点.(1)若椭圆的离心率为e ,试用e ,a ,x 1表示|MF |,并求|MF |的最值;(2)已知直线m 与圆x 2+y 2=b 2相切,并与椭圆交于A ,B 两点,且直线m 与圆的切点Q 在y 轴右侧,若a =2,求△ABF 的周长.解 (1)设F (c,0),则|MF |= x 1-c 2+y 21,又x 21a +y 21b =1,则y 21=⎝ ⎛⎭⎪⎫1-x 21a 2b 2, 所以|MF |= ⎝ ⎛⎭⎪⎫1-b 2a 2x 21-2cx 1+a 2=c 2a2x 21-2cx 1+a 2=ex 1-a 2, 又-a ≤x 1≤a 且0<e <1,所以|MF |=a -ex 1,且|MF |max =a +ae ,|MF |min =a -ae . (2)设A (x 0,y 0),B (x 2,y 2)(x 0,x 2>0),连接OQ ,OA , 在Rt△OQA 中, |AQ |2=x 20+y 20-b 2,又y 20=⎝ ⎛⎭⎪⎫1-x 20a 2b 2,所以|AQ |2=c 2x 20a2,则|AQ |=cx 0a ,同理|BQ |=cx 2a, 所以|AB |+|AF |+|BF |=2a -⎝ ⎛⎭⎪⎫c a x 0+c a x 2+c ax 0+c ax 2=2a ,又a =2,所以所求周长为4.。