2.1幂的运算4

合集下载

幂的综合运算教学设计

幂的综合运算教学设计

幂的综合运算教学设计一、教学目标通过本课程的学习,学生应能够:1. 理解幂的概念和基本性质。

2. 掌握幂的运算规则和计算方法。

3. 能够在实际问题中应用幂的概念和运算。

二、教学重点1. 幂的基本概念和性质。

2. 幂的运算规则。

3. 幂的实际应用。

三、教学内容1. 幂的基本概念和性质1.1 幂的定义幂是指一个数自乘若干次的结果,用上标表示。

例如,a的n 次幂表示为an,其中a为底数,n为指数。

1.2 幂的性质幂具有以下基本性质:- 幂的底数不能为0,指数不能为负数。

- 幂的指数为0时,结果为1。

- 幂的指数为正整数时,结果为底数连乘的积。

- 幂的指数为负整数时,结果为底数连续除的商。

- 幂的指数为分数时,结果为底数开根号的结果。

2. 幂的运算规则2.1 同底数幂的运算规则- 同底数幂相乘,指数相加。

- 同底数幂相除,指数相减。

- 同底数幂的幂,指数相乘。

2.2 不同底数同指数幂的运算规则- 底数相乘,指数不变。

3. 幂的实际应用应用幂的运算,可以解决各种与数量关系有关的实际问题,如:- 人口增长问题:通过模拟连续倍增的过程,求解未来某一年的人口数量。

- 科学计数法:将很大和很小的数用幂表示,方便计算和比较。

四、教学方法1. 课堂讲授:通过讲解幂的概念、性质和运算规则,向学生传递知识。

2. 数学实践:设计一些幂的实际应用问题,并引导学生运用幂的运算方法解决问题。

3. 小组合作:组织学生进行小组讨论和合作,提高学生的互动和合作能力。

五、教学过程安排1. 导入(5分钟)通过提问或展示一个有趣的幂的应用问题,激发学生的兴趣,引入本课的学习内容。

2. 学习幂的基本概念和性质(15分钟)讲解幂的定义和基本性质,并通过示例说明。

3. 学习幂的运算规则(20分钟)详细讲解幂的运算规则,包括同底数幂的运算和不同底数幂的运算。

通过一些练习题让学生进行巩固练习。

4. 实际应用(15分钟)设计一些与实际生活相关的幂的应用问题,引导学生运用所学的幂的运算知识解决问题,并与同学分享解题思路和方法。

(word完整版)幂的运算-教师版

(word完整版)幂的运算-教师版

什么叫乘方,乘方的结果叫什么?求n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂,在n a 中,a 叫做底数,n 叫做指数,读作a 的n 次幂。

注意: ()()221221n n n n a a a a ++-=-=-,,,同底数幂的乘除法则同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.即m n m n a a a +⋅=(m 、n 都是正整数) 逆运用()m nm n p q aa a a a m n p q +=⋅=⋅+=+幂的乘方法则:幂的乘方,底数不变,指数相乘。

即()nm mn a a =(m 、n 都是正整数)逆运用()()()q n m p mn m n a a a a mn pq ⎛⎫==== ⎪⎝⎭积的乘方法则:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘即()nn n ab a b =(n 为正整数) 逆运用()nn n a b ab = ()2323mm m a b a b ⋅=同底数幂的除法法则:同底数幂相除,底数不变,指数相减.即m n m n a a a -÷=(m 、n 都是正整数) 逆运用()m nm n p q aa a a a m n p q -=÷=÷-=-()m a b -,当m 奇数时,()()mm a b b a -=--;当m 偶数时,()()mm a b b a -=-.()m a b +,不论m 为奇数还是偶数,都有()()mm a b b a +=+.幂的运算知识讲解知识回顾【例1】 下列计算是否正确?错误的指出错误的原因,并加以改正.(1)339a a a ⋅=; (2)4482a a a ⋅=; (3)336x x x +=; (4)22y y y ⋅=; (5)34x x x ⋅=; (6)236x x x ⋅=【答案】(1)不正确,指数应是相加而不是相乘,应改为336a a a ⋅=(2)不正确,错在将系数也相加了,应改为448a a a ⋅= (3)不正确,336x x x +=是整式的加法,应改为3332x x x += (4)不正确,y 的指数是1而不是0,应改为23y y y ⋅= (5)正确(6)不正确,指数相加而不是相乘,应改为235x x x ⋅=【例2】 100010010⨯⨯的结果是 .【答案】610【变式练习】计算:(1)45371010101010⨯⨯+⨯ (2)32101010010⨯+⨯ 【答案】(1)10210⨯ (2)4210⨯【例3】 计算:(1)231122⎛⎫⎛⎫-⋅- ⎪⎪⎝⎭⎝⎭; (2)102a a a ⋅⋅;(3)()()2322x y y x -⋅- (4)()()()854x y y x x y -⋅-⋅-【答案】(1)511232⎛⎫-=- ⎪⎝⎭; (2)13a ; (3)()52-y x ; (4)()17x y --【例4】 已知:240x y +-=,求:1233x y -的值.【答案】1221333x y x y -+-=∵240x y +-= ∴24x y += ∴2133327x y +-==同步练习【变式练习】已知:2350x y +-=,求:927x y ⋅的值. 【答案】2323927333x y x y x y +⋅=⋅=∵2350x y +-= ∴原式53243==【例5】 在()222m m y y y -+⋅⋅=中,括号中应填的代数式是 .【答案】3m y +【变式练习】已知32131a a x x x x +⋅⋅=,求a 的值. 【答案】9a =【变式练习】若32125a a x x x x +⋅⋅=,则关于y 的方程=28ay a +的解是 . 【答案】7a =,7728355y y =+==,【例6】 已知22380x x y -+-+=,则22y x x y y x ⋅-⋅= .【答案】24x y ==,,原式422224421612192=⨯-⨯=⨯=【例7】 已知2m a =,3n a =,求下列各式的值.(1)1m a +; (2)3n a +; (3)2m n a ++【答案】(1)12m m a a a a +=⋅=(2)3333n n a a a a +=⋅=(3)2222236m n m n a a a a a a ++=⋅⋅=⨯⨯=【变式练习】已知,3n a =,3m b =,则33m n ++的结果是 . 【答案】33333327m n m n ab ++=⋅⋅=【例8】 计算:(1)()10110033+- (2)()()2008200922-+-(3)200520042003252622000-⨯+⨯+【答案】(1)()()10110010010110010010010033=3333331323+--=-⨯=-=-⨯(2)()()()()()()()200820092008200820082008222222122-+-=-+-⋅-=-⋅-=-(3)200520042003220032003200325262200022522622000-⨯+⨯+=⨯-⨯⨯+⨯+()20034106220002000=-+⨯+=【例9】 计算:(1)()54x ; (2)()32a b ⎡⎤+⎣⎦;(3)()435a a ⋅; (4)()()23211n n a a -+⋅【答案】(1)()5420x x =; (2)()()326a b a b ⎡⎤+=+⎣⎦; (3)()43517a a a ⋅=; (4)()()23211423371n n n n n a a a a a -+-++⋅=⋅=【变式练习】计算(1)()()()32233x x x -⋅-⋅- (2)()()21321n n x x ++-【答案】(1)()()()3223315x x x x -⋅-⋅-=(2)()()21321423375n n n n n x x x x x +++++-=-⋅=-【例10】 已知25n x =,求6155n x -的值.【答案】()362115555n n x x -=-,25n x =,∴原式3155205⨯-=【变式练习】已知3x a =,5x b =,你能用含有a 、b 的代数式表示14x 吗? 【答案】()31433535x x x x ⨯+==⋅;将3x a =,5x b =代入,原式3a b =【例11】 已知105a =,106b =,求2310a b +的值.【答案】()()2323231010101010a b a b a b +=⋅=⋅将105a =,106b =代入,原式23565400=⨯=【变式练习】若3m n 32m n +的值为多少?【答案】()()323232m n m n m n a a a a a +=⋅=⋅当3m a =,4n a =时, 原式3234432=⨯=【例12】 若35n x =,求代数式()()322324nn x x -+的值.【答案】原式=()()()22233322422550n n n x x x -+==⨯=【变式练习】已知3332m n a b ==,,求()()332242m n m n m n a b a b a b +-⋅⋅⋅的值. 【答案】原式()()2233332232327m n m n a b a b =+-⋅=+-⨯=-【例13】 比较5553,4444,3335的大小.【答案】()111555511133243==;()111444411144256==;()111333311155125==256243125>> 444555333435>>【变式练习】若504030345a b c ===,,,则a b c 、、的大小关系为( )..A .a b c << B .c a b << C .c b a << D .b c a <<【答案】B .【例14】 你能比较68与94的大小吗?【答案】()663188=22=;()99218422==;所以6984=【变式练习】若31416181279a b c ===,,,则a b c 、、的大小关系为( )..A .a b c >> B .a c b >> C .a b c << D .b c a >>【答案】A .【例15】 求满足2003005n<的最大整数值n .【答案】∵2003005n< ()()100100235n <∴2125n <∴最大整数值n 为11.【变式练习】求满足()507513x -<的x 的最大整数值. 【答案】∵()507513x -< ()()()25252313x -<∴()2127x -< ∴x 的最大整数值6【例16】 已知232122192m m ++-=,求m 的值.【答案】∵232122192m m ++-=∴2322222262192m m m ⨯-⨯=⨯= ∴2232m = 25m = 52m =【变式练习】若x y 、都是正整数,且()22232x y ⋅=,求满足条件的x y 、.【答案】∵()225222322x y x y +⋅===∴25x y += ∴13x y =⎧⎨=⎩或21x y =⎧⎨=⎩【例17】 计算:(1)()4xy - (2)()322ab -(3)()332a b a ⎡⎤--⋅⎢⎥⎣⎦(4)()()35232xy y ---【答案】(1)()()4444441xy x y x y -=-=;(2)()()33233236228ab a b a b -=-=-(3)()()339223219a b a a b a a b ⎡⎤--⋅=--⋅=⎢⎥⎣⎦(4)()()352332128xy y x y ---=-【变式练习】计算:(1)()42234122x yxy z ⎛⎫-⋅ ⎪⎝⎭(2)()()()3222223325a a a a -+⋅+(3)()()4234242a a a a a ⋅⋅+-+- (4)()()()3322337235x x x x x ⋅-+⋅【答案】(1)()42234822411224x yxy z x y z ⎛⎫-⋅= ⎪⎝⎭(2)()()()32222233250a a a a -+⋅+=(3)()()423424826a a a a a a ⋅⋅+-+-=(4)()()()33223372350x x x x x ⋅-+⋅=【例18】 下列各题中,计算正确的是( )..A .()()233266m n m n --= B .()()323321818m n m n ⎡⎤--=-⎢⎥⎣⎦C .()()2322298m n mn m n --=- D .()()332299m n mn m n --=-【答案】B .【例19】 计算:(1)()20042003188⎛⎫-⨯- ⎪⎝⎭(2)2001100021234⎛⎫⎛⎫-⋅ ⎪⎪⎝⎭⎝⎭(3)20012002200311311345⎛⎫⎛⎫⎛⎫⋅-⋅- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】(1)()()()20032004200320032003111111888888888⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-=-⨯-⨯-=-⨯-⨯-=- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦(2)原式20011000200120002923234323⎛⎫⎛⎫⎛⎫⎛⎫-⋅=-=- ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(3)原式2001200120012455339=3445520⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⋅-⋅-⋅-⋅-= ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭【例20】 已知155a b ==-,n 为正整数,你能求出2222n n a b b +的值吗?【答案】()222222n n nab b ab ++=, 原式221515n +⎡⎤⎛⎫=⨯-= ⎪⎢⎥⎝⎭⎣⎦【例21】 若5n a =,2n b =,则()32na b = .【答案】()()()3232nn n a b a b =⋅,当5n a =,2n b =时,原式3252500=⨯=.【变式练习】已知25n x =,求()()24323n n x x -的值.【答案】()()()()24323222343n n n n x x x x -=-,当25n x =时,原式32453550075425⨯-⨯=-=【变式练习】已知n 是正整数,216nx =,求()2232111616n n x x ⎛⎫- ⎪⎝⎭的值.【答案】原式()()322221101616n n x x =-=【例22】 若()2322350a b a b ++++,化简()()3322221aa ax y bxyx y z a ⎛⎫⋅-⋅ ⎪⎝⎭. 【答案】依题可知:3202350a b a b +=⎧⎨++=⎩,解得23a b =⎧⎨=-⎩原式63246661413618998x y x y x y z x y z =⋅⋅=【例23】 若87a =,78b =,则5656= .【答案】()()()78565687567878=⨯=⨯,当87a =,78b =时,原式78a b =【变式练习】已知227373996y x z ⋅⋅=,求2004(2)x y z -+的值. 【答案】∵2339962337=⨯⨯ ∴211x y z ===,,20042004(2)=1=1x y z -+【例24】 若1122222n n n n x y +--=+=+,,其中n 为正整数,则x 与y 的数量关系为 . 【答案】4x y =【变式练习】若21m x =+,34m y =+,用含x 代数式表示y . 【答案】()()22234=3+23124m m y x x x =+=+-=-+【变式练习】已知23x =,26y =,212z =,试求x y z 、、的关系. 【答案】∵12623222y x x +==⨯=⨯= ∴1y x =+∵2221234222z x x +==⨯=⨯= ∴2z x =+ +1z y =【例25】 化简:(1)()()4322222n n ++-=(2)2231424m m m ++--=【答案】(1)78(2)32【例26】 已知311n m +能被10整除,求证42311n m +++也能被10整除.【答案】4242311=33111181312111n m n m n m +++⨯+⨯=⨯+⨯()()31180312011n m n m =++⨯+⨯ ()()31110831211n m n m =++⨯⨯+⨯∴42311n m +++也能被10整除.【例27】 是否存在整数a b c 、、满足9101628915abc⎛⎫⎛⎫⎛⎫⋅⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,若存在,求出a b c 、、的值;若不存在,请说明理由. 【答案】∵()()()()()()233232132322591016235289152353523acb abcb c a b a bc a b c ++⨯⋅⋅⎛⎫⎛⎫⎛⎫⋅⋅=⋅⋅== ⎪⎪ ⎪⋅⋅⎝⎭⎝⎭⎝⎭⨯ ∴b c = 221a b =+ 331b c a +=+∴32a b c ===,【变式练习】若整数x y z 、、满足10981271615256xyz⎛⎫⎛⎫⎛⎫⋅⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,求()y x x y z -+-的值. 【答案】∵()()()()()()233243834322510982351127161523525623532yzxxyzx z y x xyzy x z z ++⨯⋅⋅⎛⎫⎛⎫⎛⎫⋅⋅=⋅⋅=== ⎪⎪ ⎪⋅⋅⎝⎭⎝⎭⎝⎭⨯ ∴23348x z y x z x z y =⎧⎪=+⎨⎪+=-⎩ 解得242x y z =⎧⎪=⎨⎪=⎩()2416y xx y z -+-==【例28】 若3436x y ==,,求2927x y x y --+的值. 【答案】∵()()()()()()24233223927333333x yx yx y x y x y x y ----+=+=÷+÷3436x y ==,,∴原式20027=【习题1】下列计算正确的是( ).A .235a a a +=B .236a a a ⋅=C .()326a a = D .236a a a ⨯=【答案】C【习题2】下列计算正确的是( ).A .5510x x x +=B .5510·x x x = C .5510()x x = D .20210x x x ÷= 【答案】B【习题3】直接写出结果(1)=-⋅-22)(m m (2)=-⋅-24)2()2(m n n m (3)=+43])[(b a (4)=⋅-6243)2(])2[( (5)=-2)2(x (6)=-232)4(b a【答案】(1)224()m m m -⋅-=-; (2)426(2)(2)(2)m n n m m n -⋅-=-(3)()1234[()]a b a b +=+; (4)342624[(2)](2)2-⋅= (5)22(2)4x x -=; (6)23246(4)16a b a b -=【习题4】计算()2323a a -÷的结果是( ).A .49a -B . 46aC .29aD .49a【答案】D【习题5】若0a >且2x a =,3y a =,则x ya -的值为( ).A .1-B .1C .2D .3 课后练习【答案】C【习题6】计算:(1)1716)8()125.0(-⨯ (2)32236])2[()2()2(a a a -----(3)675)21(6)31(-⨯⨯- (4)232332)(3m m m m m ⋅⋅++-)(【答案】(1)1617(0.125)(8)8⨯-=-(2) 632236(2)(2)[(2)]4a a a a -----=-(3)57611()6()1832-⨯⨯-=-(4)23323263()25m m m m m m -++⋅⋅=-()【习题7】 计算:(1)()()43x y x y +⋅+ (2)()()()43m n n m n m -⋅-⋅-(3)()()132()()n n y x x y x y y x +--+--【答案】(1)()()()437x y x y x y +⋅+=+(2)()()()()438m n n m n m n m -⋅-⋅-=-或()8m n -(3)()()()()13332()()0n n n n y x x y x y y x x y x y +++--+--=--+-=【习题8】 计算:(1)(.)0125820032004⨯ (2)1320036009n n +⎛⎫⋅ ⎪⎝⎭ 【答案】(1)20032003200420031(0.125)8=8888⎛⎫-⨯-⨯⨯=- ⎪⎝⎭ (2)1131120032003600920032003n n n n ++⎛⎫⎛⎫⋅=⋅= ⎪ ⎪⎝⎭⎝⎭【习题9】若4)31()9(832=⋅x ,求3x 的值. 【答案】()()32223883111(9)()3()4339x x x ⎡⎤⋅=⋅==⎣⎦,()2336x ∴=,36x ∴=±【习题10】如果12m x =,3n x =,求23m n x +的值. 【答案】()()2323m n m n x x x +=⋅,12m x =,3n x =,∴原式274=【习题11】若2530x y +-=,求432x y ⋅的值. 【答案】()()2525432222x yx y x y +⋅=⋅= 当2530x y +-=时,原式328==【习题12】(1)若31381x +=,则=x (2)若319()x a a a ⋅=,则=x .【答案】(1)∵4813= ∴3141x x +==(2)∵331()x x a a a +⋅= ∴31196x x +==【习题13】如果2111m n n x x x -+=且145m n y y y --=,求m ,n 的值.【答案】∵2111m n n x x x -+=,145m n y y y --=∴2111145m n n m n -++=⎧⎨-+-=⎩ 解之64m n =⎧⎨=⎩【习题14】若2211322323⋅=⋅-⋅++x x x x ,求x 的值.【答案】()()()11323233223232x x x x x x x ++⋅-⋅=⋅⨯-⋅⨯=⨯∵1122323223x x x x ++⋅-⋅=⋅∴2x =【习题15】 已知212448n n ++=,求n 的值.【答案】21222242222348n n n n n ++=⨯+=⨯= 242162n == 24n = 2n =【习题16】若21025x =,则110x +的值为_______.【答案】()2221010255x x === 105x = 110101050x x +=⨯=【习题17】 若()a n 29=,求()()1333222a a n n -的值.【答案】()()3232222211()3()=38138116239n n n n a a a a --=-⨯=-【习题18】比较大小 (1)1625与209 (2)1003与605(3)2100与375(4)101726与31724 【答案】(1)()252541001622== ∴1625>209(2)()()2020100533243==;()()202060355125== ∴ 1006035>(3)()251004252216==;()25753253327== ∴2100<375 (4)226421010171717=⨯;2224423317171717⨯=⨯ ∴101726<31724。

幂的运算例题精讲

幂的运算例题精讲

幂的运算例题精讲【知识方法归纳】注意:零指数幂的意义“任何不等于0的数的0次幂都等于1”和负指数幂的意义“任何不等于0的数的负次幂等于它正次幂的倒数”知识点1 同底数幂的意义及同底数幂的乘法法则(重点) 同底数幂的乘法法则:+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加.要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一性质,即mnpm n pa a a a++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。

即m nm n aa a +=⋅(,m n 都是正整数).【典型例题】例1:计算.(1)234444⨯⨯; (2)3452622a a a a a a ⋅+⋅-⋅;(3)11211()()()()()nn m n m x y x y x y x y x y +-+-+⋅+⋅+++⋅+例2:辨析:下列运算是否正确?不正确的,请改为正确的答案。

(1)x 3·x 5= x 15( ) ; (2) b 7+ b 7=b 14( ) ;(3)a 5- a 2=a 3 ( ) (4) 2x 3+ x 3=2x 6( ) ;(5) (b- a)3=-(a- b)3 ( ) ; (6)(- a- b)4=(a- b)4( )练习计算(1)5323(3)(3)⋅-⋅-; (2)221()()p p p x x x +⋅-⋅-(p 为正整数); (3)232(2)(2)n ⨯-⋅-(n 为正整数).1.计算(-2)2007+(-2)2008的结果是( ) A .22015B .22007C .-2D .-220082.当a<0,n 为正整数时,(-a )5·(-a )2n的值为( )A .正数 B .负数 C .非正数 D .非负数 3.(一题多解题)计算:(a -b )2m -1·(b -a )2m ·(a -b )2m+1,其中m 为正整数.知识点2 逆用同底数幂的法则 逆用法则为:n m nm a a a ∙=+(m 、n 都是正整数)【典型例题】 例(1)如果21+x =16,求x 的值 (2)如果a m =3, a n =5, 求anm + 的值。

幂运算常用的8个公式幂数口诀

幂运算常用的8个公式幂数口诀

幂运算常用的8个公式幂数口诀幂运算常用的8个公式是:1、同底数幂相乘;2、幂的乘方;3、积的乘方;4、同底数幂相除;5、a^(m+n)=a^m·a^n;6、a^mn=(a^m)·n;7、a^m·b^m=(ab)^m;8、a^(m-n)=a^m÷a^n(a≠0)。

幂运算常用的8个公式幂运算常用的8个公式是:1、同底数幂相乘:a^m·a^n=a^(m+n)。

2、幂的乘方:(a^m)n=a^mn。

3、积的乘方:(ab)^m=a^m·b^m。

4、同底数幂相除:a^m÷a^n=a^(m-n)(a≠0)。

5、a^(m+n)=a^m·a^n。

6、a^mn=(a^m)·n。

7、a^m·b^m=(ab)^m。

8、a^(m-n)=a^m÷a^n(a≠0)。

幂数口诀指数加减底不变,同底数幂相乘除。

指数相乘底不变,幂的乘方要清楚。

积商乘方原指数,换底乘方再乘除。

非零数的零次幂,常值为1不糊涂。

负整数的指数幂,指数转正求倒数。

看到分数指数幂,想到底数必非负。

乘方指数是分子,根指数要当分母。

幂运算是什么意思1、幂运算是一种关于幂的数学运算。

掌握正整数幂的运算性质(同底数幂的乘法、幂的乘方、积的乘方、同底数幂的除法),能用字母式子和文字语言正确地表述这些性质,并能运用它们熟练地进行运算。

2、思考对于数学的学习是最核心的,对做题更是如此。

数学是考你对知识点的运用,能够理解这些知识点,然后解题,通过解题巩固所学知识。

一开始不会解题,要忍住不去翻看答案,自己先思考。

3、在学习法则的过程中,不是简单地套用公式,而是除了理解法则的形成过程外,还需要知道每一个法则的具体适用情况,并会变式和引申。

在运用幂的运算法则进行计算时,一定要审清题,特别注意系数、符号和指数,其次要正确运用公式,看清底数和指数的变化,学会用转化的方法和整体的思想去解决问题。

(完整版)幂的运算方法总结

(完整版)幂的运算方法总结

•幂的运算方法总结幂的运算的基本知识就四条性质,写作四个公式:①a m×a n=a m+n②(a m)n=a mn③(ab)m=a m b m④a m÷a n=a m-n只要理解掌握公式的形状特点,熟悉其基本要义,直接应用一般都容易,即使运用公式求其中的未知指数难度也不大。

问题1、已知a7a m=a3a10,求m的值。

思路探索:用公式1计算等号左右两边,得到等底数的同幂形式,按指数也相等的规则即可得m的值。

方法思考:只要是符合公式形式的都可套用公式化简试一试。

方法原则:可用公式套一套。

但是,渗入幂的代换时,就有点难度了。

问题2、已知x n=2,y n=3,求(x2y)3n的值。

思路探索:(x2y)3n中没有x n和y n,但运用公式3就可将(x2y)3n化成含有x n 和y n的运算。

因此可简解为,(x2y)3n =x6n y3n=(x n)6(y n)3=26×33=1728方法思考:已知幂和要求的代数式不一致,设法将代数式变形,变成已知幂的运算的形式即可代入求值。

方法原则:整体不同靠一靠。

然而,遇到求公式右边形式的代数式该怎么办呢?问题3、已知a3=2,a m=3,a n=5,求a m+2n+6的值。

思路探索:试逆用公式,变形出与已知同形的幂即可代入了。

简解:a m+2n+6=a m a2n a6=a m(a n)2(a3)2=3×25×4=300方法思考:遇到公式右边的代数式时,通常倒过来逆用公式,把代数式展开,然后代入。

方法原则:逆用公式倒一倒。

当底数是常数时,会有更多的变化,如何思考呢?问题4、已知22x+3-22x+1=48,求x的值。

思路探索:方程中未知数出现在两项的指数上,所以必须统一成一项,即用公式把它们变成同类项进行合并。

由此,可考虑逆用公式1,把其中常数的整数指数幂,化作常数作为该项的系数。

简解:22x+3-22x+1=22x×23-22x×21=8×22x-2×22x=6×22x=48 ∴22x=8 ∴2x=3∴x=1.5方法思考:冪的底数是常数且指数中有常数也有未知数时,通常把常数的整数指数冪化成常数作为其它冪的系数,然后进行其它运算。

北师大版七年级幂的运算

北师大版七年级幂的运算

北师大版七年级幂的运算在我们七年级的数学学习中,幂的运算可是一个非常重要的知识点。

它就像是一把神奇的钥匙,能够帮助我们打开数学世界里很多复杂问题的大门。

首先,咱们来聊聊什么是幂。

幂其实就是几个相同的数相乘的简便表示方法。

比如说,2×2×2×2×2,写起来很麻烦对不对?这时候我们就可以用幂的形式来表示,写成 2 的 5 次方。

其中,2 叫做底数,5 叫做指数,整个“2 的 5 次方”就叫做幂。

接下来,咱们看看幂的运算都有哪些规则。

同底数幂相乘,底数不变,指数相加。

比如说,2 的 3 次方乘以 2的 4 次方,就等于 2 的(3 + 4)次方,也就是 2 的 7 次方。

这个规则很好理解,你可以想象成一堆 2 相乘,再乘以另一堆 2 相乘,那不就是更多的 2 相乘了嘛。

同底数幂相除,底数不变,指数相减。

比如 2 的 5 次方除以 2 的 3次方,就等于 2 的(5 3)次方,也就是 2 的 2 次方。

这就好像是把一堆 2 分成了几小堆 2,剩下的 2 的个数就是指数的差值。

幂的乘方,底数不变,指数相乘。

比如(2 的 3 次方)的 2 次方,就等于 2 的(3×2)次方,也就是 2 的 6 次方。

这个就像是给一组相同的数相乘又整体乘了几次,那么指数就得相乘。

积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。

比如(2×3)的 2 次方,就等于 2 的 2 次方乘以 3 的 2 次方。

这些运算规则看起来好像有点复杂,但只要多做几道练习题,就能熟练掌握啦。

咱们来通过几个例子感受一下。

比如计算 3 的 4 次方乘以 3 的 5 次方。

因为是同底数幂相乘,底数3 不变,指数 4 和 5 相加,得到 3 的 9 次方。

再比如计算 4 的 7 次方除以 4 的 4 次方。

同底数幂相除,底数 4 不变,指数 7 减去 4,得到 4 的 3 次方。

还有(5 的 2 次方)的 3 次方,底数 5 不变,指数 2 和 3 相乘,得到 5 的 6 次方。

数学幂的运算技巧男老师

数学幂的运算技巧男老师

数学幂的运算技巧男老师数学幂运算是数学中的基本运算之一。

在解决各种数学问题时,掌握数学幂的运算技巧非常重要。

以下是关于数学幂运算的一些常见技巧:1. 同底数相乘:两个相同底数的幂相乘时,底数不变,指数相加。

例如,a^m * a^n = a^(m+n)。

2. 同底数相除:两个相同底数的幂相除时,底数不变,指数相减。

例如,a^m / a^n = a^(m-n)。

3. 幂的乘法法则:当有一个幂的乘法时,可以将底数相乘,指数相加。

例如,(a^m)^n = a^(mn)。

4. 幂的除法法则:当有一个幂的除法时,可以将底数相除,指数相减。

例如,(a^m) / (a^n) = a^(m-n)。

5. 乘方运算:任何数的0次方都等于1。

例如,a^0 = 1,其中a ≠0。

6. 幂的负指数:一个数的负指数相当于其倒数的正指数。

例如,a^(-n) = 1 / (a^n),其中a ≠0。

7. 积的幂:一个积的幂可以分别对每个因子进行幂运算,然后将结果相乘。

例如,(ab)^n = a^n * b^n。

8. 商的幂:一个商的幂可以分别对分子和分母进行幂运算,然后将结果相除。

例如,(a/b)^n = a^n / b^n,其中b ≠0。

9. 幂的幂:一个幂的幂可以将指数相乘。

例如,(a^m)^n = a^(mn)。

10. 幂的分配律:两个幂的和的幂等于这两个幂的幂的积。

例如,(a^m +b^m)^n = a^(mn) + b^(mn)。

11. 零的幂:任何非零数的0次方都等于1。

例如,0^0 = 1。

12. 幂的乘法的连乘法则:当有多个幂相乘时,可以将它们的底数相乘,指数相加。

例如,a^m * b^m * c^m = (abc)^m。

以上是一些常见的数学幂运算技巧,可以帮助人们更加灵活地处理幂运算问题。

通过合理运用这些技巧,可以简化计算过程,提高计算效率。

在实际应用中,数学幂运算经常与其他运算一起出现,因此熟练掌握这些技巧对解决各类数学问题都非常有帮助。

幂的运算整式的乘法

幂的运算整式的乘法

幂的运算整式的乘法1、幂的运算(1)同底数幂的乘法:同底数幂相乘,底数不变,指数相加。

即: a m·a n=a m+n( m 、 n 都是正整数)(2)幂的乘方:底数不变,指数相乘即: (a m)n=a mn( m 、 n 都是正整数)(3)积的乘方:把每一个因式分别乘方,再把所得的幂相乘。

即: (ab)n=a n b n(4)同底数幂的除法:同底数幂相除、底数不变、指数相减。

即: a m÷a n=a m-n(a≠0 , m 、 n 都是正整数且 m>n)2、整式的乘法(1)单项式与单项式相乘单项式与单项式相乘,只要将它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.(3)多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加,即(m+n)(a+b)=am+bm+an+bn3、幂的运算法则的逆向应用(m,n为正整数)a m+n=a m·a na mn=(a m)na nb n=(ab)n例1、下列计算是否正确,错的请指出错因,并加以改正.(1)x5·x5=2x5(2)x3·x3=x9(3)(-2a3)2=-2a6(4)(a n+1)3=a3n+1例2、(1)比较:355,444,533;(2)已知a m=2,a n=3,求a3m+2n的值;(3)已知2a=3,2b=6,2c=12,求a、b、c之间的关系.例3、计算:(4)(x m+1x2n)3÷x m+n(5)(a+b)5÷(-a-b)3·(-a-b)2例4、已知求代数式例6、计算:(1)(-3ab)(2a2b+ab-1)(2)a n b2[3b n-1-2ab n+1+(-1)2005]例7、计算:(1)(a-2b)(5a+3b)(2)(x+y)(x2-xy+y2)(3)(3x+1)(x+1)-(2x-1)(x-1)-3x(x-2)-2x(-3x) 例8、若(x2+px+q)(x2-3x+2)的乘积中不含x2和x3项,求p、q的值. 12、解方程(1)2x(5-4x)+5x(7-2x)=9x(8-2x)-108(2)(x-2)(x-3)+2(x+6)(x-5)=3(x2-7x+15) 11、计算(1) (-x)2·x3·(-2y)3-(-2xy)2·(2x)3·y (2) [(-x2y)3]3·(-x3y3)2·(-xy2)5(3)(4) (x m+2·x n)3÷x2m+n。

几次幂的运算所有公式

几次幂的运算所有公式

几次幂的运算所有公式全文共四篇示例,供读者参考第一篇示例:幂运算是数学中非常常见的一种运算方式,它包括一次幂、二次幂、三次幂等等。

在数学中,指数是幂运算的重要概念,它表示一个数被乘方的次数。

几次幂的计算是数学中非常基础和重要的内容,通过幂运算,我们可以更好地理解数学中的各种关系和规律。

在本文中,我们将介绍几次幂的运算公式及其应用。

一次幂运算:一次幂运算是最简单的一种幂运算,表示一个数本身。

一次幂的运算公式为x^1=x,即任何一个数的一次幂等于它本身。

2的一次幂等于2,3的一次幂等于3,-4的一次幂等于-4等等。

一次幂运算在数学中应用广泛,它可以用来表示原数的数量等。

幂运算的应用:幂运算在数学中有着广泛的应用,它可以用来解决各种问题和计算。

在代数中,幂运算可以帮助我们简化计算和展开式子;在几何中,幂运算可以用来求解面积、体积等问题;在物理中,幂运算可以用来表示力、功等物理量。

对幂运算的掌握是数学学习的基础,也是我们应用数学知识的基础。

第二篇示例:几次幂的运算是数学中一个非常常见而重要的概念,在各个领域的计算中都有广泛的应用。

几次幂即指一个数自身连续相乘多次的运算,其中常见的几次幂包括平方、立方、四次方等。

我们先来介绍一下几次幂的定义。

一个数的n次幂,表示这个数连续相乘自身n次的结果。

2的3次方就是2乘2乘2,即8。

一般的,如果一个数的n次幂的表达式为a^n,其中a是底数,n是指数。

接下来,我们来看几次幂的运算公式。

几次幂的运算公式是指通过已知的几次幂来求解新的几次幂。

下面我们将分别介绍平方、立方和更高次幂的运算公式。

一、平方的运算公式:1. 平方的定义:一个数的平方,就是这个数和自身的乘积。

2的平方是2乘2,即4。

2. 平方的运算公式:a^2 = a × a三、四次方及更高次幂的运算公式:1. 四次方的定义:一个数的四次方,就是这个数和自身连续相乘三次的乘积。

2的四次方是2乘2乘2乘2,即16。

幂的运算顺序

幂的运算顺序

幂运算是指在数学中,将一个数字乘以自身一定次数,产生一个新的数字。

它可以被定义为:a的n次幂是a的乘积,其中a的次数是n,n是一个正整数。

幂运算的计算顺序是从左往右,即先计算最左边的幂运算,然后再计算右边的幂运算。

例如:
2的3次幂可以写成 2^3=8,幂的运算顺序是先计算2的2次幂,即2^2=4,然后再计算2的1次幂,即2^1=2,最后将2^2和2^1相乘,得出结果2^3=8。

对于多个数字的幂运算,运算顺序仍是从左往右,例如:
2^3*4^2=64,先计算2^3=8,再计算4^2=16,最后将8和16相乘,得出结果
2^3*4^2=64。

幂运算的运算顺序是从左往右,这样可以保证计算结果的正确性。

当遇到多个幂运算时,应该从左往右计算,这样可以确保正确的计算结果。

幂的运算公式

幂的运算公式

幂的运算公式幂运算是代数运算中常见的一种操作,它是通过乘法法则,利用一个数不断乘以自身从而获得一个幂而完成的。

幂运算的公式可以为:a^n=aaaa(n个);幂运算有以下特点:(1)运算可以提升某一数的倍数。

例如:2^3 = 2*2*2 = 8,即把2乘以自身3次,可以得到8倍。

(2)运算有规律,它可以利用乘法的累乘累加原理求出解。

例如:a^3 =a*a*a = a^2*a等。

(3)运算还可以使算式更加简洁,简化繁琐的乘法运算。

例如:2*2*2*2*2*2*2*2*2 = 2^9 = 512.(4)运算还可以利用立方数原理求出解,例如:a^3 = a*a*a = a^2*a = (a^2)^2,即奇数幂运算可以利用双次方数原理去解决。

(5)运算同样可以利用平方根原理求出解,例如:a^3 = a*a*a = (a^2)^2 = (a^2)^(1/2)*a,即偶数幂运算可以利用开根号原理进行求解。

从上述可以看出,幂运算具有很多特点,可以有效把乘法运算简化,而且也可以利用立方数、平方根等原理解决,有着非常广泛的应用。

除了基本的幂运算,还可以利用其他思维来求解,例如对幂次存在两个数时,可以把两个数分别拆分成若干项,利用分配律把它们连乘,从而可以得出解。

例如:a^2*b^2 = (a*a) * (b*b) = (a*b)*(a*b)。

此外,还可以利用数学归纳法,用数学的推论来解决幂运算的问题。

例如:若知a^n=2,已知a^(n-1)=1,则a=2^(1/n)。

利用这种方法,可以在给定条件的情况下,简便求出幂次中的底数。

最后,还可以利用特殊的方法,如费马小定理、高斯求和公式等,解决一些复杂的幂运算问题。

例如:费马小定理可以用于求2^n与n 有关的一元多项式问题,而高斯求和公式可以求一个数字的幂次和问题。

从上述可以看出,幂运算不仅可以利用乘法累加原理求解,还可以利用归纳法、费马小定理、高斯求和公式等特殊原理求解,使得幂运算在数学中发挥了重要作用。

七年级下册数学幂的运算

七年级下册数学幂的运算

七年级下册数学幂的运算一、幂的运算知识点。

1. 同底数幂的乘法。

- 法则:同底数幂相乘,底数不变,指数相加。

即a^m· a^n = a^m + n(a≠0,m、n为整数)。

- 例如:2^3×2^4 = 2^3 + 4=2^7 = 128。

- 推导:a^m表示m个a相乘,a^n表示n个a相乘,那么a^m· a^n就是(m + n)个a相乘,所以结果为a^m + n。

2. 幂的乘方。

- 法则:幂的乘方,底数不变,指数相乘。

即(a^m)^n=a^mn(a≠0,m、n为整数)。

- 例如:(3^2)^3 = 3^2×3=3^6 = 729。

- 推导:(a^m)^n表示n个a^m相乘,a^m中有m个a相乘,那么n个a^m相乘就有mn个a相乘,所以结果为a^mn。

3. 积的乘方。

- 法则:积的乘方等于乘方的积。

即(ab)^n=a^n b^n(a≠0,b≠0,n为整数)。

- 例如:(2×3)^2 = 2^2×3^2=4×9 = 36。

- 推导:(ab)^n=⏟(ab)×(ab)×·s×(ab)_n个(ab)=⏟(a× a×·s× a)_n个a×⏟(b× b×·s×b)_n个b=a^n b^n。

4. 同底数幂的除法。

- 法则:同底数幂相除,底数不变,指数相减。

即a^m÷ a^n = a^m - n(a≠0,m、n为整数且m>n)。

- 例如:5^5÷5^3 = 5^5 - 3=5^2 = 25。

- 特殊情况:当m = n时,a^m÷ a^n=a^m - n=a^0,规定a^0 = 1(a≠0);当m < n时,a^m÷ a^n=(1)/(a^n - m)。

二、典型例题。

(完整版)幂的运算总结及方法归纳.docx

(完整版)幂的运算总结及方法归纳.docx

(完整版)幂的运算总结及方法归纳.docx幂的运算一、知识网络归纳二、学习重难点学习本章需关注的几个问题:●在运用 a m ? a n a m n( m 、 n 为正整数), a m a n a m n (a 0, m 、 n 为正整数且 m > n ), (a m ) n a mn( m 、 n 为正整数), (ab) n a n b n( n 为正整数), a 01(a 0) ,a n1( a 0 ,n为正整数)时,要特别注意各式子成a n立的条件。

◆上述各式子中的底数字母不仅仅表示一个数、一个字母,它还可以表示一个单项式,甚至还可以表示一个多项式。

换句话说,将底数看作是一个“整体”即可。

◆注意上述各式的逆向应用。

如计算0.252004 4 2005,可先逆用同底数幂的乘法法则将42005 写成42004 4 ,再逆用积的乘方法则计算0.25 200442004(0.25 4) 2004120041,由此不难得到结果为1。

◆通过对式子的变形,进一步领会转化的数学思想方法。

如同底数幂的乘法就是将乘法运算转化为指数的加法运算,同底数幂的除法就是将除法运算转化为指数的减法运算,幂的乘方就是将乘方运算转化为指数的乘法运算等。

◆在经历上述各个式子的推导过程中,进一步领悟“通过观察、猜想、验证与发现法则、规律” 这一重要的数学研究的方法,学习并体会从特殊到一般的归纳推理的数学思想方法。

一、同底数幂的乘法1、同底数幂的乘法同底数幂相乘,底数不变,指数相加.公式表示为:a m a n a m n m、n为正整数2、同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即a m a n a p a m m p (m、 n、 p为正整数 )注意点:(1)同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数 .(2)在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算 .例题:例 1:计算列下列各题(1)a3 a4;( 2) b b2b324;( 3)cc c简单练习:一、选择题1.下列计算正确的是 ( )A.a2+a3=a5B.a2·a3=a5C.3m+2m=5mD.a2+a2=2a42.下列计算错误的是 ( )A.5 x2- x2=4x2B.am+am=2amC.3m+2m=5mD. x·x2m-1=x 2m3.下列四个算式中①a333②x336325·a=2a+x =x③b·b·b=b④p2+p2+p2=3p2正确的有 ( )A.1个B.2个C.3个D.4个4.下列各题中,计算结果写成底数为10 的幂的形式,其中正确的是 ()A.100 × 102=103B.1000× 1010=103C.100 × 103=105D.100×1000=104二、填空题1.a4·a4=_______;a4+a4=_______。

(完整)幂的运算总结及方法归纳,推荐文档

(完整)幂的运算总结及方法归纳,推荐文档

幂的运算一、知识网络归纳二、学习重难点学习本章需关注的几个问题:●在运用n m n m a a a +=•(m 、n 为正整数),n m n m a a a -=÷(0≠a ,m 、n 为正整数且m >n ),mn n m a a =)((m 、n 为正整数),n n n b a ab =)((n 为正整数),)0(10≠=a a ,n n aa 1=-(0≠a ,n 为正整数)时,要特别注意各式子成立的条件。

◆上述各式子中的底数字母不仅仅表示一个数、一个字母,它还可以表示一个单项式,甚至还可以表示一个多项式。

换句话说,将底数看作是一个“整体”即可。

◆注意上述各式的逆向应用。

如计算20052004425.0⨯,可先逆用同底数幂的乘法法则将20054写成442004⨯,再逆用积的乘方法则计算11)425.0(425.02004200420042004==⨯=⨯,由此不难得到结果为1。

◆通过对式子的变形,进一步领会转化的数学思想方法。

如同底数幂的乘法就是将乘法运算转化为指数的加法运算,同底数幂的除法就是将除法运算转化为指数的减法运算,幂的乘方就是将乘方运算转化为指数的乘法运算等。

◆在经历上述各个式子的推导过程中,进一步领悟“通过观察、猜想、验证与发现法则、规律”这一重要的数学研究的方法,学习并体会从特殊到一般的归纳推理的数学思想方法。

一、同底数幂的乘法1、同底数幂的乘法同底数幂相乘,底数不变,指数相加.公式表示为:()mnm na a am n +⋅=、为正整数2、同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即()m n p m m p a a a a m n p ++⋅⋅=、、为正整数注意点:(1) 同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数.(2) 在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算.例题:例1:计算列下列各题(1) 34a a ⋅; (2) 23b b b ⋅⋅ ; (3) ()()()24c c c -⋅-⋅- 简单练习: 一、选择题1. 下列计算正确的是( )A.a2+a3=a5B.a2·a3=a5C.3m +2m =5mD.a2+a2=2a42. 下列计算错误的是( )A.5x2-x2=4x2B.am +am =2amC.3m +2m =5mD.x·x2m-1= x2m3. 下列四个算式中①a3·a3=2a3 ②x3+x3=x6 ③b3·b·b2=b5④p 2+p 2+p 2=3p 2正确的有( )A.1个B.2个C.3个D.4个4. 下列各题中,计算结果写成底数为10的幂的形式,其中正确的是( )A.100×102=103B.1000×1010=103C.100×103=105D.100×1000=104二、填空题1. a4·a4=_______;a4+a4=_______。

幂的运算性质

幂的运算性质

幂的运算性质知识梳理1.知识结构2.知识要点 (1)同底数幂相乘,底数不变,指数相加,即 n m n m a a a +=⋅(2)幂的乘方,底数不变,指数相乘,即()mn n m a a =(3)积的乘方,等于每个因式分别乘方,即()n n n b a ab =(4)同底数幂相除,底数不变,指数相减,即 n m n m aa a -=÷(a ≠0) (5)零指数和负指数:规定10=a ,pp a a 1=-(其中a ≠0,p 为正整数) (其中,m 、n 均为整数)3.中考预测对于幂的运算性质的考查,在中考中多以选择题和填空题出现,以考查对该性质的掌握,题目侧重于基础知识的掌握和运用,以及对该性质的理解,题目不会很难,但是会有一定的综合性,应准确把握和理解幂的运算性质,防止混淆。

解题指导例 (1)计算n m a a ⋅3)(的结果是 ( )(A )n m a +3 (B )n m a +3 (C ))(3n m a+ (D )mn a 3 (2)下列运算正确的是( )(A )954a a a =+ (B )33333a a a a =∙∙ (C )954632a a a =⨯ (D )()743a a =- (3)在①[]325)(a a -⋅-;②34)(a a -⋅;③2332)()(a a ⋅-;④[]34a --中,计算结果为12a -的有( )(A )①和③ (B )①和② (C )②和③ (D )③和④ (4)若._____,927936==⋅⋅x x x x 则分析: 以上各题考查的是幂的运算性质的综合运用,要准确把握幂的运算性质,防止混淆.解答:(1)n m n m n m a a aa a +=⋅=⋅333)(,选B ; (2)对于(A ),两者不是同类项,不能相加,对于(B )结果应为9a ,对于(C )结果是正确的,对于(D )()124343a a a ==-⨯,故选C(3)①[]325)(a a -⋅-=()1165a a a -=-⋅-;②34)(a a -⋅=12a -;③2332)()(a a ⋅-=1266a a a -=⋅-; ④[]34a --=()1212a a=--,所以②和③的结果为12a -,应选C ; (4)因为=⋅⋅x x x 2793()()=⋅⋅x x x 32333x x x x 6323333=⋅⋅,而()12626339== 所以,有12633=x ,126=x ,2=x .点评:应用幂的运算性质时,应细心观察题目,准确应用性质,不要搞婚,计算是要细心,防止出现计算错误,这类问题一般比较简单,只要性质掌握熟练后,就能顺利解决问题. 自我测验基础验收题一、选择题幂的运算性质 同底数幂相乘 幂的乘方 积的乘方 同底数幂相除1.计算20022003)2()5.0(-⋅的结果是 ( )(A ) 5.0- (B ) 5.0 (C ) 1 (D ) 22.下列各式计算出错的是 ( ) (A ) 95310101010=⨯⨯ (B ) 834a a a a =⋅⋅-(C )n n x x x x +-=--532)()( (D ) n n n y y y 211=⋅-+3.计算:100101)2()2(-+- 的结果是 ( ) (A ) 1002- (B ) 2- (C ) 2 (D ) 1002 4.的结果是11001000+⋅x x ( )(A )12100000+x (B )2510+x (C )2210+x (D )3510+x5.下面计算:52510251275105225257252;;;)(;)(;)(x y x x y x x y x x x x x x x ======中,其中错误的结果的个数是 ( )(A ) 5 个 (B ) 4 个 (C ) 3 个 (D ) 2 个二、填空题1.计算:______)(32=-⋅-a a ;2.计算:__________)()(23=--x y y x ; 3._______53213519971997=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-; 4.当_____=n 时,823)3(=n ;5.计算:()()2533-÷-=___________ , ()4)(p p -÷-=_________.三、解答题 1.计算:23422225)()()()(2a a a a ⋅-⋅;2.(3x 3)2·(-2y 2)5÷(-6xy 4)综合能力测试题一、选择题1.已知n28232=⨯,则n 的值为 ( )(A ) 18 (B )8 (C ) 7 (D )112.若()1520=-x ,则x 的取值是( ) (A )25>x (B )x ≥—25 (C) x >—25 (D )x ≠25 3.已知,5,3==b a x x 则=-b a x23( ) (A )2527 (B )109 (C )53 (D )52 4.下列计算结果正确的是( ) (A ) 100×103=106 (B )1000×10100=103000 (C ) 1002 n ×1000=104 n+3 (D)1005×10=10005=1015 5.下面计算中,正确的是( )(A )3338)2(n m mn -=- (B )5523)()(n m n m n m +=++(C ) 69323)(b a b a -=-- (D ) 262461)31(b a b a =- 二、填空题1. 计算:()()()=---a a a 22 2.已知9121a a a m m =⋅-+,则m=__________.3.若._______________,,3,423====+n m n n m xx x x 则4.计算:)3()6(12b ab a n n -⋅-=_________ 5. 计算:.________)21(________,)2(2223=⎥⎦⎤⎢⎣⎡--=--ab 三、解答题1.计算:(-2)3×(-2)-2-(-32)÷(32)-2+(-100)0 2.已知的值求n n n b a b a 422)(,3,21-==. 3.在括号内填上适当的数;53×63=30( ) 5n ×6n =30( ) ;若105=10n ,则n =( )解方程:3x +1·2x +1=62x -3幂的运算性质 参考答案基础验收题一、选择题1. B 2.B 3.A 4.B 5.A二、填空题1.5a 2.()5y x - 3.1 4.-27 5. 31p - 三、解答题1. 142a2. 6548y x综合能力测试题一、选择题1.D 2.D 3.A 4.C 5.A二、填空题1.5a 2.3 3.27 , 36 4.313108b an - 5.624b a -, 161 三、解答题 1.477 2. 2569 3. x = 4。

幂的运算方法归纳总结

幂的运算方法归纳总结

幂的运算方法总结作为整式乘除的前奏,幂的运算看似非常简单,实际运用起来却灵活多变。

不过,只要熟悉运算的一些基本方法原则,问题就迎刃而解了。

而且通过这些方法原则的学习,不但能使我们熟悉幂的运算,还可得到全面的思维训练,现在对此做一探索。

幂的运算的基本知识就四条性质,写作四个公式:①am×an=am+n ②(am)n=amn③(ab)m=ambm ④am÷an=am-n只要理解掌握公式的形状特点,熟悉其基本要义,直接应用一般都容易,即使运用公式求其中的未知指数难度也不大。

问题1已知a7am=a3a10,求m的值。

思路探索:用公式1计算等号左右两边,得到等底数的同幂形式,按指数也相等的规则即可得m的值。

方法思考:只要是符合公式形式的都可套用公式化简试一试。

方法原则:可用公式套一套。

但是,渗入幂的代换时,就有点难度了。

问题2已知xn=2,yn=3,求(x2y)3n的值。

思路探索:(x2y)3n中没有xn和yn,但运用公式3就可将(x2y)3n化成含有xn和yn的运算。

因此可简解为,(x2y)3n=x6ny3n=(xn)6(yn)3=26×33=1728方法思考:已知幂和要求的代数式不一致,设法将代数式变形,变成已知幂的运算的形式即可代入求值。

方法原则:整体不同靠一靠。

然而,遇到求公式右边形式的代数式该怎么办呢?问题3已知a3=2,am=3,an=5,求am+2n+6的值。

思路探索:试逆用公式,变形出与已知同形的幂即可代入了。

简解:am+2n+6=ama2na6=am(an)2(a3)2=3×25×4=300方法思考:遇到公式右边的代数式时,通常倒过来逆用公式,把代数式展开,然后代入。

方法原则:逆用公式倒一倒。

当底数是常数时,会有更多的变化,如何思考呢?问题4已知22x+3-22x+1=48,求x的值。

思路探索:方程中未知数出现在两项的指数上,所以必须统一成一项,即用公式把它们变成同类项进行合并。

幂的运算公式范文

幂的运算公式范文

幂的运算公式范文
1.幂的乘法运算公式:
a^m*a^n=a^(m+n)
幂的乘法运算公式适用于相同底数的幂相乘的情况。

为了得到结果,
我们将相同底数的指数相加。

例子:
2^3*2^4=2^(3+4)=2^7=128
2.幂的除法运算公式:
a^m/a^n=a^(m-n)
幂的除法运算公式适用于相同底数的指数相除的情况。

为了得到结果,我们将相同底数的指数相减。

例子:
3^6/3^2=3^(6-2)=3^4=81
3.幂的幂等运算公式:
(a^m)^n=a^(m*n)
幂的幂等运算公式适用于幂的指数再次乘幂的情况。

为了得到结果,
我们将幂的指数相乘。

例子:
(2^3)^4=2^(3*4)=2^12=4096
除了上述基本的运算公式,还有几个特殊的幂运算公式:
4.平方的运算公式:
(a^2)^n=a^(2*n)
由于平方指数是2的倍数,所以幂的平方可以简化为底数的指数的两倍。

例子:
(4^2)^3=4^(2*3)=4^6=4096
5.指数为0的运算公式:
a^0=1
任何数的0次幂等于1
例子:
5^0=1
6.分数指数的运算公式:
a^(m/n)=(n√a)^m
当幂的指数是分数时,我们可以用根式来表示幂。

例子:
8^(3/2)=(2√8)^3=4^3=64
以上是常见的幂的运算公式,在数学中经常被用于求解幂的计算。

这些公式可以帮助我们在处理具有幂的问题时更加方便和高效地进行运算。

幂的运算知识归纳总结,(知识点,关系,典型考题)A4思维导图

幂的运算知识归纳总结,(知识点,关系,典型考题)A4思维导图

幂的运算知识归纳总结,(知识点,关系,典型考题)A4思维导图问题:幂的运算知识归纳总结,1、自然数幂的定义。

①从1开始到 n(不包括0)这个范围内都是有限个相同因子组成的自然数叫做自然数;②正整数和零既不能被看作是自然数也不能被看作非自然数.只有正数才可以称为自然数。

③在所有自然数中,正整数有无穷多个,负整数有无穷多个。

这些无穷多个正整数和无穷多个负整数统称为整数。

2、整数指数幂:整数 a 的指数是1时,我们就说 a 是一个正整数的指数幂。

例如:2^3,2^2…2^ n,其中, a 是整数, n 是自然数或者正整数.3、有理数指数幂:整数 a 的指数是1时,我们还可以把它写成小数形式,即 a= a×(n/ m),其中 m 是整数, n 是大于等于1的正整数。

当 a 的指数是正整数时,我们通常用字母 x 表示,而且小数部分的数值保留到整数部分后面。

例如:2^ x,2^ x…2^(x-1),其中, x 是整数, x-1是小数点。

3、有理数指数幂:整数 a 的指数是1时,我们还可以把它写成小数形式,即 a= a×(n/ m),其中 m 是整数, n 是大于等于1的正整数。

当 a 的指数是正整数时,我们通常用字母 x 表示,而且小数部分的数值保留到整数部分后面。

例如:2^ x,2^ x…2^(x-1),其中, x 是整数, x-1是小数点。

4、对于实际问题,应该先计算出各种可能的结果,再利用公式进行推导。

5、要求,每条推论的前提必须是正确的,但在解决具体问题时,我们往往会忽略掉某些条件,使得最终的结果与预期的存在偏差。

因此,遇到需要运用公式进行推导的问题时,一定要先判断好已知条件的真假性,否则会影响到最终结果的准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3
4
= - 1 x4 · ( y2)4 · ( z 3)4 2 = 1 x4 y8z12 . 16
4
1.判断(正确的打“√”, (1) x3·x5=x15 (3) x3+x5=x8
错误的打“×”) ( ×)
( × ) (2) x·x3=x3
( × ) (4)x2·x2=2x4 ( × )
am · an = am+n
(x+y)4 = (x+y)3+4 =(x+y)7 解: (x+y)3 ·
2014年3月16日11时1分
2、 计算:
(1)(-2x)3; (3)(xy2)3;
(2)(-4xy)2; (4) - 1 xy2 z 2
3
4
( 1) ( - 2x) 3 解 ( - 2x) 3 = (-2)3 ·x3 = - 8 x 3.
(2) (-4xy)2 解 (-4xy)2 = (-4)2 ·x2 ·y2
= 16x2y2.
(3) (xy2)3 解 (xy2)3 = x3 ·(y2)3 = x3y6.
( 4 ) - 1 xy2 z 2
3
4


- 1 xy 2 z 2
·
(1) 8 = 2x,则 x = 3 23 (2) 8× 4 = 2x,则 x = ;
5
; .
23× 22 = 25 (3) 3×27×9 = 3x,则 x = 6
3 × 33 × 32 = 36 9 . ⑷.若82a+3·8b-2=810,则2a+b的值是_____
2、你能用简便的方法计算下列各题:
所以: 3
44
22 2 11 11
4 2 5
33 55
22
能力挑战
1、已知2x 5 y 3, 求4 32 的值
x y
2、已知a 5, a
x
x y

25, 求a a 的值。
x y
3、计算: 2-2 -2 -2 -2 -2 -2 -2 -2 +2 。
2
3
4
5
6
7
8
9
10
作业P52、A组第1题、①②③④
-1a b 2
2

3
的结果正确的是(
C)
A. 1 a 4b 2 4 C. - 1 a 6b 3 8
B. 1 a 6b 3 8 D. - 1 a 5b 3 8
(a2)3 ·b3 解析 原式 = (-1)3 ·( 1 )3 · 2 = - 1 a 6b 3 . 8 故,应选择C.
1.填空:
10 x 2 3 4 4.计算:(-x)·(-x )·(-x )·(-x )=_________.
-81 5.计算:3n-4·(-3)3·35-n=__________ .
下面的计算对吗?错的请改正:
(1) (3a ) 27a
2 3
5
(2) ( a b) a b
2 4
8 4
(3) (ab ) ab
同底数幂相乘, 底数 不变, 指数 相加
am · an = am+n (m、n正整数)
幂的乘方, 底数 不变, 指数 相乘 知识
幂 的 运 算
我 学 到 了 什 么 ?
(am )n= amn (m、n正整数) 积的乘方,等于积中每个因式分别乘方 (ab)n = an bn (m、n正整数) “特殊 → 一般 → 特殊”
(5)(-x)2 · (-x)3 = (-x)5= -x5 ( √
(6)a3·a2 - a2·a3 = 0 ( √ )
)
(7)a3·b5=(ab)8
(8)
( × )
y7+y7=y14 ( × )
不变 ,指数_________ 相加 2.同底数幂相乘,底数________ . -16 . 3.计算:-22×(-2)2=_______
3、 化简[-a · (-2a)3· (-a)5]7的结果 是 -221a63 .
解析 原式 = [-a · (-1)3 ·23a3 ·(-1)5 ·a5]7 = [-23 · (a1+3+5)]7
= (-1)7 ·23×7 ·a9×7
= -221a63 .
中考 试题
做一做
计算

4、
2
2 3
(5) (a ) (ab)
(6) [m ( x 1)]
3
做一做
2. 计算:
-( xyz ) + ( 2x y z ) .
解: -(xyz )4 + (2x2y2z2 )2
4
2 2 2
2
= - x 4y 4z 4 + 4 x 4y 4z 4
= 3 x 4y 4z 4.
中考 试题
做一做
方法 例子 公式 应用
还有以前学的那个内容容易与它们混淆? n n n
如:a +a =2a
合并同类项,字母和字母指数不变,系数相加。
1.计算: (1)
解:
a (a) (a)
4
3
原式=(-a)1+4+3
=(-a) 8=a8
公式中的a可代表 一个数、字母、式 子等.
(2) (x+y)3 · (x+y)4
(1)4 0.25
8
10
8
1 11 ( 2 )2 ( ) 2
3、在255,344,433,522,这四个幂的数 值中,最大的一个是_______
解:因为
2 =(2 ) =32
44 4 11 11
55
5 11
11
3 =(3 ) =81 33 3 11 11 4 =(4 ) =64
5 =(5 ) =25 又因为 81 64 32 25
2 3
3 2
6
(4) (3cd ) 9c d
3 3 5
3
(5) ( 3a ) 9a
1 3 3 1 6 3 (6) ( x y) x y 3 27
做一做
(1) (ab)
2
1、计算下列各式:
6
(2) (a y )
2
5
(3) ( x y )
2 3
3 4
(4) ( 2 x )
3
相关文档
最新文档