空间中点线面的位置关系练习题
点线面之间的位置关系练习题
点线面之间的位置关系练习题(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--点、线、面之间的位置关系及线面平行应用练习1、 平面L =⋂βα,点βαα∈∈∈C B A ,,,且L C ∈,又R L AB =⋂,过A 、B 、C 三点确定的平面记作γ,则γβ⋂是( )A .直线ACB .直线BC C .直线CRD .以上都不对2、空间不共线的四点,可以确定平面的个数是( )A .0B .1C .1或4D .无法确定3、在三角形、四边形、梯形和圆中,一定是平面图形的有 个4、正方体1111D C B A ABCD -中,P 、Q 分别为11,CC AA 的中点,则四边形PBQ D 1是( )A .正方形B .菱形C .矩形D .空间四边形5、在空间四边形ABCD 中,点E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,若AC=BD ,且BD AC ⊥,则四边形EFGH 为6、下列命题正确的是( )A . 若βα⊂⊂b a ,,则直线b a ,为异面直线B . 若βα⊄⊂b a ,,则直线b a ,为异面直线C .若∅=⋂b a ,则直线b a ,为异面直线D . 不同在任何一个平面内的两条直线叫异面直线7、在空间中:①若四点不共面,则这四点中任何三点都不共线;②若两条直线没有公共点,则这两条直线是异面直线,以上两个命题中为真命题的是8、过直线L 外两点作与直线L 平行的平面,可以作( )A .1个B .1个或无数个C .0个或无数个D .0个、1个或无数个 9、b a //,且a 与平面α相交,那么直线b 与平面α的位置关系是( )A .必相交B .有可能平行C .相交或平行D .相交或在平面内10、直线与平面平行的条件是这条直线与平面内的( )A .一条直线不相交B .两条直线不相交C .任意一条直线不相交D .无数条直线不相交11、如果两直线b a //,且//a 平面α,则b 与平面α的位置关系是( )A .相交B .α//bC .α⊂bD .α//b 或α⊂b12、已知直线a 与直线b 垂直,a 平行于平面α,则b 与平面α的位置关系是( )A .α//bB .α⊂bC .b 与平面α相交D .以上都有可能13、若直线a 与直线b 是异面直线,且//a 平面α,则b 与平面α的位置关系是( )A .α//bB .b 与平面α相交C .α⊂bD .不能确定14、已知//a 平面α,直线α⊂b ,则直线a 与直线b 的关系是( )A .相交B .平行C .异面D .平行或异面15、平面⋂α平面a =β,平面⋂β平面b =γ,平面⋂γ平面c =α,若b a //,则c 与b a ,的位置关系是( )A .c 与b a ,异面B .c 与b a ,相交C .c 至少与b a ,中的一条相交D .c 与b a ,都平行16、b a ,是异面直线,则过a 且与b 平行的平面有____个17、正方体1111D C B A ABCD -的棱长为a ,求异面直线1BD 和11C B 所成的角的余弦值18、已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM //面EFG19、在正方体1111D C B A ABCD -中,E 为1DD 的中点,求证:1BD ∥面AEC20、在正方体1111D C B A ABCD -中,E 、F 分别为BC 、11D C 的中点,求证:EF//平面11B BDD21、已知在正方体1111D C B A ABCD -中,E 、F 分别是11,CC AA 的中点,求证:平面//BDF 平面E D B 1122、过正方体1111D C B A ABCD -的棱1BB 作一平面交平面11C CDD 于1EE ,求证:1BB //1EE23、如图,四边形ABCD是矩形,P面ABCD,过BC作平面BCFE交AP于E,交DP于F,求证:四边形BCFE点、线、面之间的位置关系及线面平行应用练习答案1、C2、C3、34、B5、正方形6、D7、①8、D (提示:当α⊂L 时,就为0个) 9、A 10、C 11、D 12、D 13、D 14、D 15、D 16、1 17、33 18、提示:连结MD 交GF 于H ,则点H 为MD 的中点19、提示:连接BD 交AC 于点O ,连接EO ,则EO//1BD ,又⊂EO 面AEC , 故1BD //面AEC20、提示:取11D B 的中点为1O ,连接11,BO FO ,则BE FO //1且BE FO =1,则 四边形1BEFB 是平行四边形,故EF BO //121、提示:11//D B BD ,取1BB 的中点H ,连接EH ,H C 1,有EH D C EH D C =1111,// 所以四边形11D EHC 是平行四边形,所以E D H C 11//,又BF H C //1, 所以BF E D //122、分析:因为1BB //⊄11,BB CC 面11C CDD ,所以1BB //面11C CDD23、分析:因为AD BC //,所以BC//面ADP ,所以BC//EF ,所以EF//AD ,但EF 的长度小于AD 的长度,而AD BC =,所以EF 的长度小于BC 的长度。
空间点线面位置关系例题训练
空间点、线、面的位置关系【基础回顾】1.平面的基本性质公理1:如果一条直线上的________在一个平面内,那么这条直线上所有的点都在这个平面内.公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过____________的一条直线.公理3:经过____________________的三点,有且只有一个平面.推论1:经过____________________,有且只有一个平面.推论2:经过________________,有且只有一个平面.推论3:经过________________,有且只有一个平面.2.直线与直线的位置关系(1)位置关系的分类(2)异面直线判定定理过平面内一点与平面外一点的直线,和这个平面内______________的直线是异面直线.(3)异面直线所成的角①定义:设a,b是两条异面直线,经过空间任意一点O,作直线a′∥a,b′∥b,把a′与b′所成的____________叫做异面直线a,b所成的角.②范围:____________.3.公理4平行于____________的两条直线互相平行.4.定理如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角________.自我检测1.若直线a与b是异面直线,直线b与c是异面直线,则直线a与c的位置关系是____________.2.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线________对.3.三个不重合的平面可以把空间分成n部分,则n的可能取值为________.4.直三棱柱ABC—A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成角的大小为________.5.下列命题:①空间不同三点确定一个平面;②有三个公共点的两个平面必重合;③空间两两相交的三条直线确定一个平面;④三角形是平面图形;⑤平行四边形、梯形、四边形都是平面图形;⑥垂直于同一直线的两直线平行;⑦一条直线和两平行线中的一条相交,也必和另一条相交;⑧两组对边相等的四边形是平行四边形.其中正确的命题是________(填序号).【例题讲解】1、平面的基本性质例1如图所示,空间四边形ABCD中,E、F、G分别在AB、BC、CD上,且满足AE∶EB=CF∶FB=2∶1,CG∶GD=3∶1,AH∶HD=3∶1,过E、F、G的平面交AD于H,连结EH.求证:EH、FG、BD三线共点.变式迁移1如图,E、F、G、H分别是空间四边形AB、BC、CD、DA上的点,且EH与FG 相交于点O.求证:B、D、O三点共线.2、异面直线的判定例2如图所示,直线a、b是异面直线,A、B两点在直线a上,C、D两点在直线b上.求证:BD和AC是异面直线.变式迁移2如图是正方体或四面体,P、Q、R、S分别是所在棱的中点,这四个点不共面的是________(填序号).3、异面直线所成的角例3已知三棱柱ABC—A 1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影为BC的中点,则异面直线AB与CC1所成的角的余弦值为____________________________________________________________________ ____.变式迁移3在空间四边形ABCD中,已知AD=1,BC=,且AD⊥BC,对角线BD=,AC =,求AC和BD所成的角.二、空间的平行关系基础回顾1.空间直线与平面、平面与平面的位置关系(1)直线a和平面α的位置关系有三种:________、__________、__________.(2)两个平面的位置关系有两种:________和________.2.直线与平面平行的判定与性质(1)判定定理:如果平面外一条直线和这个________________平行,那么这条直线与这个平面平行.(2)性质定理:一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行.3.平面与平面平行的判定与性质(1)判定定理:如果一个平面内有________________都平行于另一个平面,那么这两个平面平行.(2)性质定理:如果两个平行平面同时和第三个平面相交,那么所得的两条交线________.自我检测1.下列各命题中:①平行于同一直线的两个平面平行;②平行于同一平面的两个平面平行;③一条直线与两个平行平面中的一个相交,那么这条直线必和另一个相交;④垂直于同一直线的两个平面平行.不正确的命题个数是________.2.经过平面外的两点作该平面的平行平面,可以作______个.3.一条直线若同时平行于两个相交平面,则这条直线与这两个平面的交线的位置关系是________.4.已知α、β是不同的两个平面,直线a?α,直线b?β,命题p:a与b没有公共点;命题q:α∥β,则p是q的________条件.【例题讲解】1、线面平行的判定例1已知有公共边AB的两个全等的矩形ABCD和ABEF不在同一平面内,P、Q分别是对角线AE、BD上的点,且AP=DQ.求证:PQ∥平面CBE.变式迁移1在四棱锥P—ABCD中,四边形ABCD是平行四边形,M、N分别是AB、PC的中点,求证:MN∥平面PAD.2、面面平行的判定例2在正方体ABCD—A 1B1C1D1中,M、N、P分别是C1C、B1C1、C1D1的中点,求证:平面MNP∥平面A1BD.变式迁移2已知P为△ABC所在平面外一点,G1、G2、G3分别是△PAB、△PCB、△PAC的重心.求证:平面G1G2G3∥平面ABC;3、平行中的探索性问题例3如图所示,在四棱锥P—ABCD中,CD∥AB,AD⊥AB,AD=DC=AB,BC⊥PC.(1)求证:PA⊥BC;(2)试在线段PB上找一点M,使CM∥平面PAD,并说明理由.变式迁移3如图所示,在正方体ABCD—A1B1C1D1中,O为底面ABCD的中心,P 是DD1的中点,设Q是CC1上的点,问:当点Q在什么位置时,平面D1BQ∥平面PAO?三、空间的垂直关系基础回顾1.直线与平面垂直(1)判定直线和平面垂直的方法①定义法.②利用判定定理:如果一条直线和一个平面内的两条________直线垂直,那么这条直线垂直于这个平面.③推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条直线也________这个平面.(2)直线和平面垂直的性质①直线垂直于平面,则垂直于平面内________直线.②垂直于同一个平面的两条直线________.③垂直于同一直线的两个平面________.2.直线与平面所成的角平面的一条斜线与它在这个平面内的________所成的锐角,叫做这条直线与这个平面所成的角.一条直线垂直于平面,说它们所成的角为________;直线l∥α或l?α,说它们所成的角是______角.3.平面与平面垂直(1)平面与平面垂直的判定方法①定义法.②利用判定定理:如果一个平面经过另一个平面的____________,那么这两个平面互相垂直.(2)平面与平面垂直的性质如果两个平面互相垂直,那么在一个平面内垂直于它们________的直线垂直于另一个平面.4.二面角的平面角以二面角的棱上的任意一点为端点,在两个面内分别作________棱的射线,这两条射线所成的角叫做二面角的平面角.自我检测1.设l,m是两条不同的直线,α是一个平面,则下列命题正确的是________(填序号).①若l⊥m,m?α,则l⊥α;②若l⊥α,l∥m,则m⊥α;③若l∥α,m?α,则l∥m;④若l∥α,m∥α,则l∥m.2.对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α,β都垂直于γ;②存在平面γ,使得α,β都平行于γ;③存在直线l?α,直线m?β,使得l∥m;④存在异面直线l、m,使得l∥α,l∥β,m∥α,m∥β.其中,可以判定α与β平行的条件有________个.【例题讲解】1、线面垂直的判定与性质例1Rt△ABC所在平面外一点S,且SA=SB=SC,D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC.求证:BD⊥平面SAC.变式迁移1四棱锥S-ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD.已知∠ABC=45°,SA=SB.证明:SA⊥BC.2、面面垂直的判定与性质例2如图所示,已知四棱柱ABCD—A 1B1C1D1的底面为正方形,O1、O分别为上、下底面的中心,且A1在底面ABCD内的射影是O.求证:平面O1DC⊥平面ABCD.变式迁移2如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E,F分别是AP,AD的中点.求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面PAD.3、直线与平面、平面与平面所成的角例3如图,四棱锥S—ABCD的底面是正方形,SD⊥平面ABCD,SD=2a,AD=a,点E是SD上的点,且DE=λa(0<λ≤2).(1)求证:对任意的λ∈(0,2],都有AC⊥BE;(2)设二面角C—AE—D的大小为θ,直线BE与平面ABCD所成的角为φ,若tanθtanφ=1,求λ的值.变式迁移3如图,在三棱锥P—ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC.(1)求证:BC⊥平面PAC.(2)当D为PB的中点时,求AD与平面PAC所成角的正弦值.(3)是否存在点E使得二面角A—DE—P为直二面角?并说明理由.。
空间中点线面位置关系判断综合练习
空间中点线面位置关系----反馈练习一.判断下列命题的真假,真的打“√”,假的打“×”1.平行于同一直线的两条直线平行......................................................................()2.垂直于同一直线的两条直线平行......................................................................()3.若一个角的两边分别与另一个角的两边平行,那么这两个角相等..............()4.垂直于两条异面直线的直线有且只有一条........................................................()5.在正方体中,相邻两侧面的一对异面的对角线所成的角为60º.....................()6.四边形的一边不可能既和它的邻边垂直,又和它的对边垂直...................()7.两条直线和第三条直线成等角,则这两条直线平行....................................()8.平行移动两条异面直线中的任一条,它们所成的角不变..............................()9.四边相等且四个角也相等的四边形是正方形..................................................()10.过直线外一点只能引一条直线与这条直线平行..............................................()11.过平面外一点只能引一条直线与这个平面平行...............................................()12.若直线l⊄α,则l不可能与平面α内无数条直线都相交.................................()13.若直线l与平面α不平行,则l与α内任何一条直线都不平行.......................()14.若直线平行平面,则直线平行平面内的任意直线..........................................()二.选择题1.“a,b是异面直线”是指①a∩b=Φ且a不平行于b;②a⊂平面α,b⊂平面β且a∩b=Φ③a⊂平面α,b⊄平面α④不存在平面α,能使a⊂α且b⊂α成立。
空间几何计算练习题求点线面的位置关系
空间几何计算练习题求点线面的位置关系一、点、线、面的定义在空间几何中,点、线、面是最基本的概念。
点是空间中的一个位置;线是由无数个点按照一定规律排列而成的;面是由无数个线按照一定规律排列而成的。
二、求点、线、面的位置关系在空间中,点、线、面可能存在不同的位置关系。
下面通过一些具体的计算练习题,来求解它们之间的位置关系。
1. 点与线的位置关系设空间中有一条直线L,以及一个点P,求点P与直线L的位置关系。
解题步骤:1) 判断点P是否在直线L上。
通过判断点P是否满足直线L的方程来确定。
若点P满足直线L的方程,则点P在直线L上;若点P不满足直线L的方程,则点P不在直线L上。
2. 点与面的位置关系设空间中有一个平面面,以及一个点P,求点P与平面面的位置关系。
解题步骤:1) 判断点P是否在平面面上。
通过判断点P是否满足平面面的方程来确定。
若点P满足平面面的方程,则点P在平面面上;若点P不满足平面面的方程,则点P不在平面面上。
3. 线与线的位置关系设空间中有两条直线L1和L2,求直线L1与直线L2的位置关系。
解题步骤:1) 判断直线L1是否与直线L2重合。
通过判断直线L1和L2是否满足同一方程来确定。
若直线L1和L2满足同一方程,则直线L1与L2重合;若直线L1和L2不满足同一方程,则直线L1与L2不重合。
4. 线与面的位置关系设空间中有一条直线L和一个平面面,求直线L与平面面的位置关系。
解题步骤:1) 判断直线L是否与平面面平行。
通过判断直线L的方向向量是否与平面面的法向量平行来确定。
若直线L的方向向量与平面面的法向量平行,则直线L与平面面平行;若直线L的方向向量与平面面的法向量不平行,则直线L与平面面不平行。
5. 面与面的位置关系设空间中有两个平面面1和面2,求面1与面2的位置关系。
解题步骤:1) 判断面1是否与面2平行。
通过判断面1的法向量是否与面2的法向量平行来确定。
若面1的法向量与面2的法向量平行,则面1与面2平行;若面1的法向量与面2的法向量不平行,则面1与面2不平行。
点线面的位置关系练习题计算与判断
点线面的位置关系练习题计算与判断在几何学中,点、线、面是基本的几何概念,它们之间的位置关系是我们学习几何学的基础。
本文将通过一系列的练习题,来帮助我们更好地理解和计算点线面之间的位置关系,并进行判断。
练习题一:点与线的位置关系计算1. 以点A(2, 3)和线段AB为例,线段AB的两个端点分别是A(2, 3)和B(4, 5)。
现在需要计算点A与线段AB的位置关系。
解答:首先,我们可以计算线段AB的斜率k,公式为k = (y2 - y1) / (x2 - x1) = (5 - 3) / (4 - 2) = 1。
然后,计算点A到线段AB的垂直距离h,公式为h = |k * x - y + kx1 - y1| / √(k^2 + 1) = |1 * 2 - 3 + 1 * 2 - 3| / √(1^2 + 1^2) = 0。
当垂直距离h等于0时,表示点A在线段AB上。
2. 现在考虑点A(2, 3)与直线y = 2x的位置关系。
解答:首先,直线y = 2x的斜率为2。
然后,计算点A到直线的垂直距离h,h = |k * x - y + kx1 - y1| / √(k^2 + 1) = |2 * 2 - 3 + 2 * 0 - 3| / √(2^2 + 1^2) = 1。
当垂直距离h不等于0时,表示点A不在直线y = 2x上。
练习题二:点与面的位置关系判断3. 现有一个平面P:2x + 3y + 5z = 10和点A(2, 1, 0),判断点A是否在平面P上。
解答:将点A(2, 1, 0)的坐标代入平面P的方程,判断是否满足2 * 2 +3 * 1 + 5 * 0 =4 + 3 + 0 = 7 ≠ 10。
当点A的坐标代入平面P的方程不满足等式时,表示点A不在平面P上。
4. 考虑平面Q:x + 2y + 3z = 6和点A(1, 2, 0),判断点A是否在平面Q上。
解答:将点A(1, 2, 0)的坐标代入平面Q的方程,判断是否满足1 +2 * 2 +3 * 0 = 1 +4 + 0 =5 ≠ 6。
空间点线面位置关系练习题
空间点线面位置关系练习题1、已知l 、m 是不同的两条直线,α、β是不重合的两个平面,则下列正确的是()A 若l ⊥α,α⊥β,则l 其中正确命题的个数有()A 1 个B 2 个C 3 个D 4 个3、若m 、n 为两条不重合的直线,α、β为两个不重合的平面,则下列正确的个数是()(1)若m 、n 都平行于平面α,则m 、n 一定不是相交直线;(2)若m 、n 都垂直于平面α,则m 、n 一定是平行直线;(3)已知α、β互相垂直,m 、n 互相垂直,若m ⊥α,则n ⊥β;(4)m 、n 在平面α内的射影互相垂直,则m 、n 互相垂直.A 1B 2C 3D 44、给出下列四个命题:(1)垂直于同一直线的两条直线互相平行(2)垂直于同一平面的两个平面互相平行(3)若直线1 2 l ,l 与同一平面所成的角相等,则 1 2 l ,l 互相平行(4)若直线1 2 l ,l 是异面直线,则与 1 2 l ,l 都相交的两条直线是异面直线其中假. 命题的个数是()A 1B 2C 3D 45、已知两个不同的平面αβ和两条不重合的直线m ,n ,在下列四个命题中错. 误. 的是()A 若m ∥α,α∩β= n ,则m ∥n B若m ⊥α,m ⊥β,则α∥βC 若m ∥n ,m ⊥α,则n ⊥α D 若m ⊥α,m ∥n ,n ⊂β,则α⊥β6、已知m、n是两条不同的直线,α、β是两个不同的平面,有下列命题:(1)若m ⊂α,n 一. 定. 成立的是()A AB∥mB AC ⊥m C AB∥βD AC ⊥β18、下列关于互不相同的直线m、l、n 和平面α、β的四个命题中为假命题的是()A、若m ⊂α,l ∩α= A,点A ∉m,则l与m不共面;B、若m、l 是异面直线,l 19、给出以下四个命题:(1)如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,(2)如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面(3)如果两条直线都平行于一个平面,那么这两条直线互相平行,(4)如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.其中真命题的个数是()A 4B 3C 2D 1。
高考数学一轮复习全套课时作业7-2空间点线面的位置关系
题组层级快练7.2空间点线面的位置关系一、单项选择题1.若直线a ⊥b ,且直线a ∥平面α,则直线b 与平面α的位置关系是()A .b ⊂αB .b ∥αC .b ⊂α或b ∥αD .b 与α相交或b ⊂α或b ∥α2.下列各图是正方体和正四面体,P ,Q ,R ,S 分别是所在棱的中点,这四个点不共面的图形是()3.将下面的平面图形(图中每个点都是正三角形的顶点或边的中点)沿虚线折成一个正四面体后,直线MN 与PQ 是异面直线的是()A .①②B .②④C .①④D .①③4.空间不共面的四点到某平面的距离相等,则这样的平面的个数为()A .1B .4C .7D .85.如图所示,在底面为正方形,侧棱垂直于底面的四棱柱ABCD -A1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为()A.15B.25C.35D.456.(2020·江西景德镇模拟)将图①中的等腰直角三角形ABC 沿斜边BC 上的中线折起得到空间四面体ABCD(如图②),则在空间四面体ABCD 中,AD 与BC 的位置关系是()A .相交且垂直B .相交但不垂直C .异面且垂直D .异面但不垂直7.(2020·广西钦州质检)在四面体ABCD 中,E ,F 分别为棱AC ,BD 的中点,AD =6,BC =4,EF =2,则异面直线AD 与BC 所成角的余弦值为()A.34B.56C.910D.11128.如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是BC 1,CD 1的中点,则下列说法错误的是()A .MN 与CC 1垂直B .MN 与AC 垂直C .MN 与BD 平行D .MN 与A 1B 1平行9.(2021·吉林长春模拟)已知直线a 和平面α,β有如下关系:①α⊥β;②α∥β;③a ⊥β;④a ∥α.则下列命题为真命题的是()A .①③⇒④B .①④⇒③C .③④⇒①D .②③⇒④10.(2021·福建三明质检)已知四边形ABCD 是矩形,PA ⊥平面ABCD ,AB =1,BC =2,PA =2,E 为BC 的中点,则异面直线AE 与PD 所成的角为()A.π6B.π4C.π3D .π11.(2021·内蒙古包头模拟)如图,在正方体ABCD -A 1B 1C 1D 1中,点P 在线段AD 1上运动,则异面直线CP 与BA 1所成的角θ的取值范围是()A.0,π2B.0,π2C.0,π3D.0,π312.在三棱锥P -ABC 中,PB =PC =AB =AC =BC =4,PA =23,则异面直线PC 与AB 所成角的余弦值是()A.18B.16C.14D.13二、多项选择题13.(2021·山东烟台二模)已知m ,n 为两条不同的直线,α,β为两个不重合的平面,则()A .若m ∥α,n ∥β,α∥β,则m ∥nB .若m ⊥α,n ⊥β,α⊥β,则m ⊥nC .若m ∥n ,m ⊥α,n ⊥β,则α∥βD .若m ∥n ,n ⊥α,α⊥β,则m ∥β14.如图所示,ABCD -A 1B 1C 1D 1是长方体,O 是B 1D 1的中点,直线A 1C 交平面AB 1D 1于点M ,则下列结论正确是()A .A ,M ,O 三点共线B .A ,M ,O ,A 1不共面C .A ,M ,C ,O 不共面D .B ,B 1,O ,M 不共面15.(2021·广东茂名联考)一正方体的平面展开图如图所示,在这个正方体中,有下列四个结论,其中正确的是()A .AF ⊥GCB .BD 与GC 为异面直线且夹角为60°C .BD ∥MND .BG 与平面ABCD 所成的角为45°16.(2021·江西莲塘一中、临川二中联考)如图,正方体ABCD -A1B 1C 1D 1的棱长为1,P 为BC 的中点,Q 为线段CC 1上的动点,过点A ,P ,Q 的平面截正方体所得的截面为S ,当CQ =1时,S 的面积为________.17.如图所示,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,∠BAD =∠FAB =90°,BC ∥AD 且BC =12AD ,BE ∥AF 且BE =12AF ,G ,H 分别为FA ,FD 的中点.(1)证明:四边形BCHG 是平行四边形;(2)C ,D ,F ,E 四点是否共面?为什么?7.2空间点线面的位置关系参考答案1.答案D解析b 与α相交或b ⊂α或b ∥α都可以.2.答案D解析在A 中,易证PS ∥QR ,∴P ,Q ,R ,S 四点共面.在B 中,P ,Q ,R ,S 四点共面,如图所示,证明如下:取BC 中点N ,可证PS ,NR 交于直线B 1C 1上一点E ,∴P ,N ,R ,S 四点共面,设为α.可证PS ∥QN ,∴P ,Q ,N ,S 四点共面,设为β.∵α,β都经过P ,N ,S 三点,∴α与β重合,∴P ,Q ,R ,S 四点共面.在C 中,易证PQ ∥SR ,∴P ,Q ,R ,S 四点共面.在D 中,∵QR ⊂平面ABC ,PS ∩平面ABC =P 且P ∉QR ,∴直线PS 与QR 为异面直线.∴P ,Q ,R ,S 四点不共面.3.答案C解析图②翻折后点N 与点Q 重合,两直线相交;图③翻折后两直线平行.故选C.4.答案C解析当空间四点不共面时,则四点构成一个三棱锥,如图.当平面一侧有一点,另一侧有三点时,即截面与四个面之一平行时,满足条件的平面有4个;当平面一侧有两点,另一侧有两点时,满足条件的平面有3个,所以满足条件的平面共有7个.5.答案D解析连接BC 1,易证BC 1∥AD 1,则∠A 1BC 1即为异面直线A 1B 与AD 1所成的角(或其补角).连接A 1C 1,设AB =1,则AA 1=2,A 1C 1=2,A 1B =BC 1=5,故cos ∠A 1BC 1=5+5-22×5×5=45.6.答案C解析在题图①中,AD ⊥BC ,故在题图②中,AD ⊥BD ,AD ⊥DC ,又因为BD ∩DC =D ,所以AD ⊥平面BCD ,又BC ⊂平面BCD ,D 不在BC 上,所以AD ⊥BC ,且AD 与BC 异面,故选C.7.答案D解析本题考查异面直线所成角的余弦值.取CD 的中点G ,连接EG ,FG ,则FG ∥BC ,EG ∥AD ,则∠EGF 为异面直线AD 与BC 所成的角(或补角).因为FG =12BC =2,EG =12AD =3,所以cos ∠EGF =4+9-22×2×3=1112,故异面直线AD 与BC 所成角的余弦值为1112.8.答案D解析如图,连接C 1D ,在△C 1DB 中,MN ∥BD ,故C 正确;因为CC 1⊥平面ABCD ,所以CC 1⊥BD ,所以MN 与CC 1垂直,故A 正确;因为AC ⊥BD ,MN ∥BD ,所以MN 与AC 垂直,故B 正确;因为A 1B 1与BD 异面,MN ∥BD ,所以MN 与A 1B 1不可能平行,故D 错误.9.答案C解析本题考查空间中有关线面位置关系的命题真假的判断.由①③可知,a ∥α或a ⊂α,A 错误;由①④可知,a 与β的位置关系不确定,B 错误;过直线a 作平面γ,使得γ∩α=b ,∵a ∥α,∴a ∥b.∵a ⊥β,∴b ⊥β.∵b ⊂α,∴α⊥β,C 正确;由②③可知,a ⊥α,D 错误.10.答案C解析本题考查异面直线所成角的大小.分别取AD ,PA 的中点F ,G ,连接CF ,AC ,FG ,CG.∵四边形ABCD 为矩形,E ,F 分别为BC ,AD 的中点,∴AF 綊EC ,∴四边形AFCE 为平行四边形,∴CF ∥AE.∵F ,G 分别为AD ,PA 的中点,∴FG ∥PD.∴异面直线PD 与AE 所成角即为∠CFG(或其补角).∵PA ⊥平面ABCD ,AC ⊂平面ABCD ,∴PA ⊥AC.∴CG =AG 2+AC 2=1+1+4= 6.又CF =1+1=2,FG =1+1=2,∴cos ∠CFG =CF 2+FG 2-CG 22CF ·FG =2+2-62×2×2=-12,∴∠CFG =2π3,即异面直线AE 与PD 所成的角为π3,故选C.11.答案D解析当点P 与点D 1重合时,CP ∥BA 1,所成角为0;当点P 与A 点重合时,CA ∥A 1C 1,连接BC 1,△A 1BC 1为正三角形,所成角为π3,又由于异面直线所成角为,π2,所以选D.12.答案A解析分别取PA ,PB ,BC 的中点E ,F ,G ,连接EF ,EG ,FG ,GA ,PG ,如图所示,由PB =PC =AB=AC =BC =4可得PG =AG =32BC =23,所以EG ⊥PA ,在△GPA 中,PG =AG =PA =23,可得EG =3,由中位线的性质可得EF ∥AB 且EF =12AB =2,FG ∥PC 且FG =12PC =2,所以∠GFE 或其补角即为异面直线PC 与AB 所成角,在△GFE 中,cos ∠GFE =GF 2+EF 2-GE 22GF ·EF =4+4-92×2×2=-18,所以异面直线AB 与PC 所成角的余弦值为18.故选A.13.答案BC解析本题考查空间中线线、线面、面面的位置关系.若m ∥α,n ∥β,α∥β,则m 和n 平行、相交或异面,故A 错误;若m ⊥α,n ⊥β,α⊥β,由线面、面面垂直的性质可知m ⊥n ,故B 正确;若m ∥n ,m ⊥α,则n ⊥α,又n ⊥β,所以α∥β,故C 正确;若m ∥n ,n ⊥α,α⊥β,则m ∥β或m ⊂β,故D 错误.故选BC.14.答案AD解析连接A1C1,AC,则A1C1∥AC,∴A1,C1,A,C四点共面,∴A1C⊂平面ACC1A1,∵M∈A1C,∴M∈平面ACC1A1,又M∈平面AB1D1,∴M在平面ACC1A1与平面AB1D1的交线上,同理O也在平面ACC1A1与平面AB1D1的交线上.∴A,M,O三点共线.又BB1与平面AB1D1仅有B1一个交点,所以B与B1,O,M不共面.15.答案AB解析将平面展开图还原成正方体,如图所示.对于A,由图形知AF与GC异面垂直,故A正确;对于B,BD与GC显然成异面直线.如图,连接EB,ED,则BM∥GC,所以∠MBD即为异面直线BD 与GC所成的角(或其补角).在等边△BDM中,∠MBD=60°,所以异面直线BD与GC所成的角为60°,故B正确;对于C,BD与MN为异面垂直,故C错误;对于D,由题意得,GD⊥平面ABCD,所以∠GBD是BG与平面ABCD所成的角.但在Rt△BDG中,∠GBD不等于45°,故D错误.综上可得A、B正确.16.答案62解析当CQ=1时,Q与C1重合.如图,取A1D1,AD的中点分别为F,G.连接AF,AP,PC1,C1F,PG,D1G,AC1,PF.∵F为A1D1的中点,P为BC的中点,G为AD的中点,∴AF=FC1=AP=PC1=52,PG綊CD,AF綊D1G.由题意易知CD綊C1D1,∴PG綊C1D1,∴四边形C1D1GP为平行四边形,∴PC1綊D1G,∴PC1綊AF,∴A,P,C1,F四点共面,∴四边形APC1F为菱形.∵AC1=3,PF=2,过点A,P,Q的平面截正方体所得的截面S为菱形APC1F,∴其面积为12AC1·PF=12×3×2=62.17.答案(1)略(2)共面,证明略解析(1)证明:∵G,H分别为FA,FD的中点,∴GH綊12AD.又∵BC綊12AD,∴GH綊BC.∴四边形BCHG为平行四边形.(2)C,D,F,E四点共面.理由如下:由BE綊12AF,G是FA的中点,得BE綊GF.所以EF綊BG.由(1)知,BG綊CH,所以EF綊CH.所以EC∥FH.所以C,D,F,E四点共面.。
空间点、直线、平面之间的位置关系测试题(含答案)
空间点、直线、平面之间的位置关系测试题(含答案)空间点、直线、平面之间的位置关系测试题1.已知平面α内有无数条直线都与平面β平行,那么正确的选项是()A。
α∥βB。
α与β相交C。
α与β重合D。
α∥β或α与β相交2.两条直线a,b满足a∥b,b⊥平面α,则a与平面α的关系是()A。
a∥αB。
a与α相交C。
a与α不相交D。
a⊥α3.对于命题:①平行于同一直线的两个平面平行;②平行于同一平面的两个平面平行;③垂直于同一直线的两直线平行;④垂直于同一平面的两直线平行。
其中正确的个数有(。
)A。
1个B。
2个C。
3个D。
4个4.经过平面外两点与这个平面平行的平面()A。
只有一个B。
至少有一个C。
可能没有D。
有无数个5.过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有()A。
3条B。
4条C。
5条D。
6条6.a,b是两条异面直线,下列结论正确的是()A。
过不在a,b上的任一点P,可作一个平面与a,b平行B。
过不在a,b上的任一点P,可作一条直线与a,b相交C。
过不在a,b上的任一点P,可作一条直线与a,b都平行D。
过a可以并且只可以作一平面与b平行7.m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A。
若m‖α,n‖α,则m‖nB。
若α⊥γ,β⊥γ,则α‖βC。
若m‖α,m‖β,则α‖βD。
XXX⊥α,n⊥α,则m‖n8.如图1,正四面体ABCD的棱长均为a,且AD⊥平面α于A,点B,C,D均在平面α外,且在平面α同一侧,则点B到平面α的距离是()A。
a/2B。
a/3C。
a/23D。
2a/39.如图2,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论正确的是A。
PB⊥ADB。
平面PAB⊥平面PBCC。
直线BC∥平面PAED。
直线PD与平面ABC所成的角为45°10.点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,则PA与BD所成角的度数为()A。
空间点、线、面位置关系(经典例题+训练)
空间点、线、面的位置关系 【基础回顾】1.平面的基本性质公理1:如果一条直线上的________在一个平面内,那么这条直线上所有的点都在这个平面内.公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过____________的一条直线.公理3:经过____________________的三点,有且只有一个平面. 推论1:经过____________________,有且只有一个平面. 推论2:经过________________,有且只有一个平面. 推论3:经过________________,有且只有一个平面. 2.直线与直线的位置关系 (1)位置关系的分类⎩⎨⎧共面直线⎩⎪⎨⎪⎧异面直线:不同在任何一个平面内(2)异面直线判定定理过平面内一点与平面外一点的直线,和这个平面内______________的直线是异面直线. (3)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任意一点O ,作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的____________叫做异面直线a ,b 所成的角.②范围:____________. 3.公理4平行于____________的两条直线互相平行. 4.定理如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角________.自我检测1.若直线a 与b 是异面直线,直线b 与c 是异面直线,则直线a 与c 的位置关系是____________.2.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线________对.3.三个不重合的平面可以把空间分成n 部分,则n 的可能取值为________. 4.直三棱柱ABC —A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成角的大小为________.5.下列命题:①空间不同三点确定一个平面; ②有三个公共点的两个平面必重合;③空间两两相交的三条直线确定一个平面; ④三角形是平面图形;⑤平行四边形、梯形、四边形都是平面图形; ⑥垂直于同一直线的两直线平行;⑦一条直线和两平行线中的一条相交,也必和另一条相交; ⑧两组对边相等的四边形是平行四边形. 其中正确的命题是________(填序号).【例题讲解】1、平面的基本性质例1如图所示,空间四边形ABCD中,E、F、G分别在AB、BC、CD上,且满足AE∶EB=CF∶FB=2∶1,CG∶GD=3∶1,AH∶HD=3∶1,过E、F、G的平面交AD于H,连结EH.求证:EH、FG、BD三线共点.变式迁移1如图,E、F、G、H分别是空间四边形AB、BC、CD、DA上的点,且EH与FG相交于点O.求证:B、D、O三点共线.2、异面直线的判定例2如图所示,直线a、b是异面直线,A、B两点在直线a上,C、D两点在直线b 上.求证:BD和AC是异面直线.变式迁移2如图是正方体或四面体,P、Q、R、S分别是所在棱的中点,这四个点不共面的是________(填序号).3、异面直线所成的角例3已知三棱柱ABC—A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影为BC的中点,则异面直线AB与CC1所成的角的余弦值为________________________________________________________________________.变式迁移3在空间四边形ABCD中,已知AD=1,BC=3,且AD⊥BC,对角线BD=132,AC=32,求AC和BD所成的角.二、空间的平行关系基础回顾1.空间直线与平面、平面与平面的位置关系(1)直线a和平面α的位置关系有三种:________、__________、__________.(2)两个平面的位置关系有两种:________和________.2.直线与平面平行的判定与性质(1)判定定理:如果平面外一条直线和这个________________平行,那么这条直线与这个平面平行.(2)性质定理:一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行.3.平面与平面平行的判定与性质(1)判定定理:如果一个平面内有________________都平行于另一个平面,那么这两个平面平行.(2)性质定理:如果两个平行平面同时和第三个平面相交,那么所得的两条交线________.自我检测1.下列各命题中:①平行于同一直线的两个平面平行;②平行于同一平面的两个平面平行;③一条直线与两个平行平面中的一个相交,那么这条直线必和另一个相交;④垂直于同一直线的两个平面平行.不正确的命题个数是________.2.经过平面外的两点作该平面的平行平面,可以作______个.3.一条直线若同时平行于两个相交平面,则这条直线与这两个平面的交线的位置关系是________.4.已知α、β是不同的两个平面,直线a⊂α,直线b⊂β,命题p:a与b没有公共点;命题q:α∥β,则p是q的________条件.【例题讲解】1、线面平行的判定例1已知有公共边AB的两个全等的矩形ABCD和ABEF不在同一平面内,P、Q分别是对角线AE、BD上的点,且AP=DQ.求证:PQ∥平面CBE.变式迁移1 在四棱锥P —ABCD 中,四边形ABCD 是平行四边形,M 、N 分别是AB 、PC的中点,求证:MN ∥平面P AD .2、 面面平行的判定例2 在正方体ABCD —A 1B 1C 1D 1中,M 、N 、P 分别是C 1C 、B 1C 1、C 1D 1的中点,求证:平面MNP ∥平面A 1BD .变式迁移2 已知P 为△ABC 所在平面外一点,G 1、G 2、G 3分别是△P AB 、△PCB 、△P AC 的重心.求证:平面G 1G 2G 3∥平面ABC ;3、 平行中的探索性问题例3 如图所示,在四棱锥P —ABCD 中,CD ∥AB ,AD ⊥AB ,AD =DC =12AB ,BC⊥PC .(1)求证:P A ⊥BC ;(2)试在线段PB 上找一点M ,使CM ∥平面P AD ,并说明理由.变式迁移3如图所示,在正方体ABCD—A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,问:当点Q在什么位置时,平面D1BQ∥平面P AO?三、空间的垂直关系基础回顾1.直线与平面垂直(1)判定直线和平面垂直的方法①定义法.②利用判定定理:如果一条直线和一个平面内的两条________直线垂直,那么这条直线垂直于这个平面.③推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条直线也________这个平面.(2)直线和平面垂直的性质①直线垂直于平面,则垂直于平面内________直线.②垂直于同一个平面的两条直线________.③垂直于同一直线的两个平面________.2.直线与平面所成的角平面的一条斜线与它在这个平面内的________所成的锐角,叫做这条直线与这个平面所成的角.一条直线垂直于平面,说它们所成的角为________;直线l∥α或l⊂α,说它们所成的角是______角.3.平面与平面垂直(1)平面与平面垂直的判定方法①定义法.②利用判定定理:如果一个平面经过另一个平面的____________,那么这两个平面互相垂直.(2)平面与平面垂直的性质如果两个平面互相垂直,那么在一个平面内垂直于它们________的直线垂直于另一个平面.4.二面角的平面角以二面角的棱上的任意一点为端点,在两个面内分别作________棱的射线,这两条射线所成的角叫做二面角的平面角.自我检测1.设l,m是两条不同的直线,α是一个平面,则下列命题正确的是________(填序号).①若l⊥m,m⊂α,则l⊥α;②若l⊥α,l∥m,则m⊥α;③若l∥α,m⊂α,则l∥m;④若l∥α,m∥α,则l∥m.2.对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α,β都垂直于γ;②存在平面γ,使得α,β都平行于γ;③存在直线l⊂α,直线m⊂β,使得l∥m;④存在异面直线l、m,使得l∥α,l∥β,m∥α,m∥β.其中,可以判定α与β平行的条件有________个.【例题讲解】1、线面垂直的判定与性质例1Rt△ABC所在平面外一点S,且SA=SB=SC,D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC.求证:BD⊥平面SAC.变式迁移1四棱锥S-ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD.已知∠ABC=45°,SA=SB.证明:SA⊥BC.2、面面垂直的判定与性质例2如图所示,已知四棱柱ABCD—A1B1C1D1的底面为正方形,O1、O分别为上、下底面的中心,且A1在底面ABCD内的射影是O.求证:平面O1DC⊥平面ABCD.变式迁移2如图,在四棱锥P-ABCD中,平面P AD⊥平面ABCD,AB=AD,∠BAD=60°,E,F分别是AP,AD的中点.求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面P AD.3、直线与平面、平面与平面所成的角例3如图,四棱锥S—ABCD的底面是正方形,SD⊥平面ABCD,SD=2a,AD=2 a,点E是SD上的点,且DE=λa(0<λ≤2).(1)求证:对任意的λ∈(0,2],都有AC⊥BE;(2)设二面角C—AE—D的大小为θ,直线BE与平面ABCD所成的角为φ,若tan θtan φ=1,求λ的值.变式迁移3如图,在三棱锥P—ABC中,P A⊥底面ABC,P A=AB,∠ABC=60°,∠BCA =90°,点D、E分别在棱PB、PC上,且DE∥BC.(1)求证:BC⊥平面P AC.(2)当D为PB的中点时,求AD与平面P AC所成角的正弦值.(3)是否存在点E使得二面角A—DE—P为直二面角?并说明理由.。
空间点、直线平面之间的位置关系专题练习(含参考答案)
数学 空间点、直线平面之间的位置关系[基础题组练]1.已知异面直线a ,b 分别在平面α,β内,且α∩β=c ,那么直线c 一定( ) A .与a ,b 都相交B .只能与a ,b 中的一条相交C .至少与a ,b 中的一条相交D .与a ,b 都平行2.已知空间四边形的两条对角线相互垂直,顺次连接四边中点的四边形一定是( ) A .空间四边形 B .矩形 C .菱形D .正方形3.已知直线a ,b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.(2019·广州市高中综合测试(一))在四面体ABCD 中,E ,F 分别为AD ,BC 的中点,AB =CD ,AB ⊥CD ,则异面直线EF 与AB 所成角的大小为( )A.π6B.π4C.π3D.π25.已知棱长为a 的正方体ABCD A ′B ′C ′D ′中,M ,N 分别为CD ,AD 的中点,则MN 与A ′C ′的位置关系是_________.6.给出下列四个命题:①平面外的一条直线与这个平面最多有一个公共点;②若平面α内的一条直线a 与平面β内的一条直线b 相交,则α与β相交; ③若一条直线和两条平行线都相交,则这三条直线共面; ④若三条直线两两相交,则这三条直线共面. 其中真命题的序号是________.7.如图,在正方体ABCD A 1B 1C 1D 1中,O 为正方形ABCD 的中心,H 为直线B 1D 与平面ACD 1的交点.求证:D 1、H 、O 三点共线.8.在正方体ABCD A 1B 1C 1D 1中, (1)求AC 与A 1D 所成角的大小;(2)若E ,F 分别为AB ,AD 的中点,求A 1C 1与EF 所成角的大小.1.如图所示,平面α∩平面β=l ,A ∈α,B ∈α,AB ∩l =D ,C ∈β,C ∉l ,则平面ABC 与平面β的交线是( )A .直线ACB .直线ABC .直线CD D .直线BC 2.在正三棱柱ABC A 1B 1C 1中,|AB |=2|BB 1|,则AB 1与BC 1所成角的大小为( )A.π6B.π3C.5π12D.π23.(2019·长沙模拟)如图,在三棱柱ABC A ′B ′C ′中,点E ,F ,H ,K 分别为AC ′,CB ′,A ′B ′,B ′C ′的中点,G 为△ABC 的重心.从K ,H ,G ,B ′四点中取一点作为P ,使得该棱柱恰有2条棱与平面PEF 平行,则P 为________.4.如图,已知圆柱的轴截面ABB 1A 1是正方形,C 是圆柱下底面弧AB 的中点,C 1是圆柱上底面弧A 1B 1的中点,那么异面直线AC 1与BC 所成角的正切值为________.5.如图所示,A 是△BCD 所在平面外的一点,E ,F 分别是BC ,AD 的中点.(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角.6.(综合型)如图,E ,F ,G ,H 分别是空间四边形ABCD 各边上的点,且AE ∶EB =AH ∶HD =m ,CF ∶FB =CG ∶GD =n .(1)证明:E ,F ,G ,H 四点共面;(2)m ,n 满足什么条件时,四边形EFGH 是平行四边形? (3)在(2)的条件下,若AC ⊥BD ,试证明:EG =FH .【参考答案】1.已知异面直线a ,b 分别在平面α,β内,且α∩β=c ,那么直线c 一定( ) A .与a ,b 都相交B .只能与a ,b 中的一条相交C .至少与a ,b 中的一条相交D .与a ,b 都平行解析:选C.若c 与a ,b 都不相交,则c 与a ,b 都平行,根据公理4,知a ∥b ,与a ,b 异面矛盾.2.已知空间四边形的两条对角线相互垂直,顺次连接四边中点的四边形一定是( ) A .空间四边形 B .矩形 C .菱形 D .正方形解析:选B.如图所示,易证四边形EFGH 为平行四边形. 因为E ,F 分别为AB ,BC 的中点, 所以EF ∥AC . 又FG ∥BD ,所以∠EFG 或其补角为AC 与BD 所成的角. 而AC 与BD 所成的角为90°,所以∠EFG =90°,故四边形EFGH 为矩形.3.已知直线a ,b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 解析:选A.若直线a ,b 相交,设交点为P ,则P ∈a ,P ∈b .又a ⊂α,b ⊂β,所以P ∈α,P ∈β,故α,β相交.反之,若α,β相交,则a ,b 可能相交,也可能异面或平行.故“直线a 和直线b 相交”是“平面α和平面β相交”的充分不必要条件.4.(2019·广州市高中综合测试(一))在四面体ABCD 中,E ,F 分别为AD ,BC 的中点,AB =CD ,AB ⊥CD ,则异面直线EF 与AB 所成角的大小为( )A.π6B.π4C.π3D.π2解析:选B.取BD 的中点O ,连接OE ,OF ,因为E ,F 分别为AD ,BC 的中点,AB =CD ,所以EO ∥AB ,OF ∥CD ,且EO =OF =12CD ,又AB ⊥CD ,所以EO ⊥OF ,∠OEF 为异面直线EF 与AB 所成的角,由△EOF 为等腰直角三角形,可得∠OEF =π4,故选B.5.已知棱长为a 的正方体ABCD A ′B ′C ′D ′中,M ,N 分别为CD ,AD 的中点,则MN 与A ′C ′的位置关系是________________________________________________________.解析:如图,由题意可知MN ∥AC .又因为AC ∥A ′C ′, 所以MN ∥A ′C ′.答案:平行6.给出下列四个命题:①平面外的一条直线与这个平面最多有一个公共点;②若平面α内的一条直线a 与平面β内的一条直线b 相交,则α与β相交; ③若一条直线和两条平行线都相交,则这三条直线共面; ④若三条直线两两相交,则这三条直线共面. 其中真命题的序号是________.解析:①正确,因为直线在平面外即直线与平面相交或直线平行于平面,所以最多有一个公共点.②正确,a ,b 有交点,则两平面有公共点,则两平面相交.③正确,两平行直线可确定一个平面,又直线与两平行直线的两交点在这两平行直线上,所以过这两交点的直线也在平面内,即三线共面.④错误,这三条直线可以交于同一点,但不在同一平面内.答案:①②③7.如图,在正方体ABCD A 1B 1C 1D 1中,O 为正方形ABCD 的中心,H 为直线B 1D 与平面ACD 1的交点.求证:D 1、H 、O 三点共线.证明:如图,连接BD ,B 1D 1, 则BD ∩AC =O , 因为BB 1綊DD 1,所以四边形BB 1D 1D 为平行四边形, 又H ∈B 1D , B 1D ⊂平面BB 1D 1D , 则H ∈平面BB 1D 1D ,因为平面ACD 1∩平面BB 1D 1D =OD 1, 所以H ∈OD 1.即D 1、H 、O 三点共线. 8.在正方体ABCD A 1B 1C 1D 1中, (1)求AC 与A 1D 所成角的大小;(2)若E ,F 分别为AB ,AD 的中点,求A 1C 1与EF 所成角的大小. 解:(1)如图,连接B 1C ,AB 1,由ABCD A 1B 1C 1D 1是正方体,易知A 1D ∥B 1C ,从而B 1C 与AC 所成的角就是AC 与A 1D 所成的角.因为AB 1=AC =B 1C , 所以∠B 1CA =60°.即A 1D 与AC 所成的角为60°.(2)连接BD ,在正方体ABCD A 1B 1C 1D 1中,AC ⊥BD ,AC ∥A 1C 1. 因为E ,F 分别为AB ,AD 的中点, 所以EF ∥BD ,所以EF ⊥AC . 所以EF ⊥A 1C 1.即A 1C 1与EF 所成的角为90°.[综合题组练]1.如图所示,平面α∩平面β=l ,A ∈α,B ∈α,AB ∩l =D ,C ∈β,C ∉l ,则平面ABC 与平面β的交线是( )A .直线ACB .直线ABC .直线CDD .直线BC解析:选C.由题意知,D ∈l ,l ⊂β,所以D ∈β, 又因为D ∈AB ,所以D ∈平面ABC , 所以点D 在平面ABC 与平面β的交线上. 又因为C ∈平面ABC ,C ∈β,所以点C 在平面β与平面ABC 的交线上, 所以平面ABC ∩平面β=CD .2.在正三棱柱ABC A 1B 1C 1中,|AB |=2|BB 1|,则AB 1与BC 1所成角的大小为( ) A.π6 B.π3 C.5π12D.π2解析:选D.将正三棱柱ABC A 1B 1C 1补为四棱柱ABCD A 1B 1C 1D 1,连接C 1D ,BD ,则C 1D ∥B 1A ,∠BC 1D 为所求角或其补角.设|BB 1|=2,则|BC |=|CD |=2,∠BCD =120°,|BD |=23,又因为|BC 1|=|C 1D |=6,所以∠BC 1D =π2.3.(2019·长沙模拟)如图,在三棱柱ABC A ′B ′C ′中,点E ,F ,H ,K 分别为AC ′,CB ′,A ′B ′,B ′C ′的中点,G 为△ABC 的重心.从K ,H ,G ,B ′四点中取一点作为P ,使得该棱柱恰有2条棱与平面PEF 平行,则P 为________.解析:取A ′C ′的中点M ,连接EM ,MK ,KF ,EF ,则EM 綊12CC ′綊KF ,得四边形EFKM 为平行四边形,若取点K 为P ,则AA ′∥BB ′∥CC ′∥PF ,故与平面PEF 平行的棱超过2条;因为HB ′∥MK ,MK ∥EF ,所以HB ′∥EF ,若取点H 或B ′为P ,则平面PEF 与平面EFB ′A ′为同一平面,与平面EFB ′A ′平行的棱只有AB ,不符合题意;连接BC ′,则EF ∥A ′B ′∥AB ,若取点G 为P ,则AB ,A ′B ′与平面PEF 平行.答案:G4.如图,已知圆柱的轴截面ABB 1A 1是正方形,C 是圆柱下底面弧AB 的中点,C 1是圆柱上底面弧A 1B 1的中点,那么异面直线AC 1与BC 所成角的正切值为________.解析:取圆柱下底面弧AB 的另一中点D ,连接C 1D ,AD , 因为C 是圆柱下底面弧AB 的中点, 所以AD ∥BC ,所以直线AC 1与AD 所成角等于异面直线AC 1与BC 所成角,因为C 1是圆柱上底面弧A 1B 1的中点,所以C 1D ⊥圆柱下底面,所以C 1D ⊥AD , 因为圆柱的轴截面ABB 1A 1是正方形, 所以C 1D =2AD ,所以直线AC 1与AD 所成角的正切值为2, 所以异面直线AC 1与BC 所成角的正切值为 2.答案:25.如图所示,A 是△BCD 所在平面外的一点,E ,F 分别是BC ,AD 的中点.(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角.解:(1)证明:假设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A ,B ,C ,D 在同一平面内,这与A 是△BCD 所在平面外的一点相矛盾.故直线EF 与BD 是异面直线.(2)取CD 的中点G ,连接EG ,FG ,则AC ∥FG ,EG ∥BD ,所以相交直线EF 与EG 所成的角,即为异面直线EF 与BD 所成的角.又因为AC ⊥BD ,则FG ⊥EG .在Rt △EGF 中,由EG =FG =12AC ,求得∠FEG =45°,即异面直线EF 与BD 所成的角为45°.6.(综合型)如图,E ,F ,G ,H 分别是空间四边形ABCD 各边上的点,且AE ∶EB =AH ∶HD =m ,CF ∶FB =CG ∶GD =n .(1)证明:E ,F ,G ,H 四点共面;(2)m ,n 满足什么条件时,四边形EFGH 是平行四边形? (3)在(2)的条件下,若AC ⊥BD ,试证明:EG =FH . 解:(1)证明:因为AE ∶EB =AH ∶HD ,所以EH ∥BD . 又CF ∶FB =CG ∶GD ,所以FG ∥BD .所以EH ∥FG . 所以E ,F ,G ,H 四点共面.(2)当EH ∥FG ,且EH =FG 时,四边形EFGH 为平行四边形. 因为EH BD =AE AE +EB =m m +1,所以EH =m m +1BD .同理可得FG =n n +1BD ,由EH =FG ,得m =n .故当m =n 时,四边形EFGH 为平行四边形.(3)证明:当m =n 时,AE ∶EB =CF ∶FB ,所以EF ∥AC ,又EH ∥BD ,所以∠FEH 是AC 与BD 所成的角(或其补角),因为AC ⊥BD ,所以∠FEH =90°,从而平行四边形EFGH 为矩形,所以EG =FH .。
空间中点线面的位置关系测试题
空间中点、线、面的位置关系一、 选择题:1.下面推理过程,错误的是( )(A ) αα∉⇒∈A l A l ,//(B ) ααα⊂⇒∈∈∈l B A l A ,,(C ) AB B B A A =⋂⇒∈∈∈∈βαβαβα,,,(D ) βαβα=⇒∈∈不共线并且C B A C B A C B A ,,,,,,,,2.一条直线和这条直线之外不共线的三点所能确定的平面的个数是( )(A ) 1个或3个 (B ) 1个或4个(C ) 3个或4个 (D ) 1个、3个或4个3.以下命题正确的有( )(1)若a ∥b ,b ∥c ,则直线a ,b ,c 共面;(2)若a ∥α,则a 平行于平面α内的所有直线;(3)若平面α内的无数条直线都与β平行,则α∥β;(4)分别和两条异面直线都相交的两条直线必定异面。
(A ) 1个 (B ) 2个 (C ) 3个 (D )4个4.正方体的一条体对角线与正方体的棱可以组成异面直线的对数是( )(A ) 2 (B ) 3 (C ) 6 (D ) 125.以下命题中为真命题的个数是( )(1)若直线l 平行于平面α内的无数条直线,则直线l ∥α;(2)若直线a 在平面α外,则a ∥α;(3)若直线a ∥b ,α⊂b ,则a ∥α;(4)若直线a ∥b ,α⊂b ,则a 平行于平面α内的无数条直线。
(A ) 1个 (B ) 2个 (C ) 3个 (D )4个6.若三个平面两两相交,则它们的交线条数是( )(A ) 1条 (B ) 2条 (C ) 3条 (D )1条或3条7. 下列命题正确的是( )A.经过三点确定一个平面 B.经过一条直线和一个点确定一个平面C.四边形确定一个平面 D.两两相交且不共点的三条直线确定一个平面8. 下列命题中正确的个数是( )①若直线l 上有无数个点不在平面α内,则l α∥.②若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行.③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行. ④若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点.9. 若直线a 不平行于平面α,且a α⊄,则下列结论成立的是( )A.α内的所有直线与a 异面 B.α内不存在与a 平行的直线 C.α内存在唯一的直线与a 平行 D.α内的直线与a 都相交10. 三条直线相交于一点,可能确定的平面有( )A.1个 B.2个 C.3个 D.1个或3个11.分别和两条异面直线都相交的两条直线一定是( )A.异面直线 B.相交直线 C.不相交直线 D.不平行直线12.三个平面把空间分成7部分时,它们的交线有( )A.1条 B.2条C.3条 D.1条或2条13.在长方体1111ABCD A B C D -,底面是边长为2的正方形,高为4,则点1A 到截面11AB D 的距离为( )A .83 B . 38C .43D . 34 14.直三棱柱111ABC A B C -中,各侧棱和底面的边长均为a ,点D 是1CC 上任意一点, 连接11,,,A B BD A D AD ,则三棱锥1A A BD -的体积为( )A .361a B .3123a C .363a D .3121a 二、 填空题:1.若直线l 与平面α相交于点O ,l B A ∈,,α∈D C ,,且BD AC //,则O,C,D 三点的位置关系是 。
空间点、直线、平面之间的位置关系测试题(含答案)
空间点、直线、平面之间的位置关系测试题、选择题(本大题共12题,每小题5分,共60分)4. 经过平面外两点与这个平面平行的平面A •只有一个B •至少有一个C •可能没有D •有无数个5. 过三棱柱ABC A1B1C1的任意两条棱的中点作直线,其中与平面ABB i A平行的直线共有()A. 3条B. 4 条C.5 条D. 6条6. a , b是两条异面直线,,下列结论正确的是()A.过不在a, b上的任一-占八、P,可作一个平面与a, b平行B.过不在a, b上的任一-占八、P,可作一条直线与a, b相交C.过不在a, b上的任一-占八、P,可作一条直线与a, b都平行D.过a可以并且只可以作一平面与b平行是三个不同平面,下列命题中正确的是(B.若,,则ID.若m ,n ,则mil nF列结论正确的是10•点P在正方形ABCD所在平面外,PD丄平面ABCD , PD=AD ,则PA与BD所成角的度数为( )A. 30°B.45°C. 60°D. 90°11.已知二面角的大小为50°, P为空间中任意一点,则过点P且与平面和平面所成的角都是250的直线的条数为()A. 2B. 3C. 4D. 58.如图1, 正四面体ABCD的棱长均为a,且AD平面于A,点B, C, D均在平面且在平面同一侧,则点B到平面的距离是()A aB a、、2a _3aA. — C . D .—2323外,A. a/32. 两条直线A.a //3. 对于命B .a与B相交C.a与B重合 D . a/3或a与B相交a, b满足a / b, b ,则a与平面的关系是()B.a与相交C.a与不相交D. a①平行于冋一直线的两个平面平行;②平行于冋一平面的两个平面平行;③垂直于同一直线的两直线平行;④垂直于同一平面的两直线平行A. 1 个B. 2 个C. 3 个D. 4 个7. m,n是两条不同直线,,A.若mil ,n II ,则mil n图19.如图2,已知六棱锥P ABCDEF的底面是正六边形,图2PA 平面ABC, PA 2AB ,则A. PB AD B .平面PAB 平面PBCC.直线BC //平面PAED.直线PD与平面ABC所成的角为451.已知平面a内有无数条直线都与平面B平行,那么(.其中正确的个数有()12.在正四棱柱 ABCD AB i C i D i 中,顶点 B 到对角线BD ,和到平面 ABCD i 的距离分别为h 和d ,则下列命题中正确的是()A. 若侧棱的长小于底面的边长,则B. 若侧棱的长小于底面的边长,则C. 若侧棱的长大于底面的边长,则D. 若侧棱的长大于底面的边长,则、填空题(本大题共4小题,每小题5分,共20分)13. 如图3,A ABC 和厶DBC 所在两平面互相垂直,且 AB=BC=BD=a, / CBA= / CBD=120 ° ,则AD 与平面BCD 所成的角为.14. 在正方体 ABCD — A 1B 1C 1D 1中,E 为DD 1的中点,贝U BD 1与过点A , E ,C 的平面的位置关系是 __________ .15. 若一个n 面体有m 个面是直角三角形,则称这个n 面体的直度为 m ,则在长方体 ABCDn—A| B 1C 1D 1中,四面体 A ABC 的直度为.16.,表示平面,I 表示既不在 内也不在内的直线,存在以下三个事实:①I 丄;②I // ;③丄.若以其中两个为条件,另一个为结论,构成命题,其中正确命题的个数为 ________ 个.三、解答题(本大题共6小题,共70分)17.如图4,在正三棱柱 ABC A 1B 1C 1中,点D 是棱BC 的中点.求证:-的取值范围为 d-的取值范围为 d-的取值范围为 d-的取值范围为 d(0,1)(1)AD GD ;⑵ A1 B // 平面ADC1.18. 如图5,已知三棱柱ABC ABG的侧棱与底面垂直,BAC 90°, M , N 分别是AB1, BC 的中点.(1)证明:ABAC1;(2)判断直线MN和平面ACGA的位置关系,并加以证明.C19.如图6,在正方体ABCD ABQQ!中,E , F分别为棱AD , AB的中点.⑴求证:平面CAA i C i丄平面CB1D1 ;(2)如果AB 1,一个动点从点F出发在正方体的表面上依次经过棱BB1, B1C1, C1D1, D1D , DA上的点,最终又回到点F ,指出整个路线长度的最小值并说明理由•20. 如图7,四棱锥S—ABCD的底面是边长为2a的菱形,且细钢管•考虑到钢管的受力和人的舒适度等因素,设计小凳应满足:①凳子高度为30cm,②三根细钢管相交处的节点O与凳面三角形ABC重心的连线垂直于凳面和地面•(1)若凳面是边长为20cm的正三角形,三只凳脚与地面所成的角均为45°,确定节点O分细钢管上下两段的比值(精确到0.01);(2)若凳面是顶角为120°的等腰三角形,腰长为24cm,节点O分细钢管上下两段之比为 2 :3 .确定三根细钢管的长度(精确到0.1 cm)22. 如图9所示,在边长为12的正方形AAA'A1中,点B,C在线段AA'上,且AB= 3,BC=4,作BB//AA 1,分别交AA'、AA'于点B1,P,作CC//AA 1,分别交A1A1',AA'于点C,Q 将该正方形沿BB,CG折叠,使得A'A1'与AA1重合,构成如图10所示的三棱柱ABC-A1BO.(1 )在三棱柱ABC- ABC中,求证:AB丄平面BCCB1;(2)求平面APQ将三棱柱ABC- A1B1C1分成上、下两部分几何体的体积之比.图9 C1 Q CSA SC 2a SB SD ..2a,点E是SC上的点,且SE a(0(1 )求证:对任意的(2)若SC 平面BED,(0,2],都有BD AE ;求直线SA与平面BED所成角的大小21. 某厂根据市场需求开发折叠式小凳,如图8所示.凳面为三角形的尼龙布,凳脚为三根31,所以2 3,2112~-1,所以一 2 d14.BD 1 //平面 二、填空题提示:13.作AO 丄CB 的延长线,连接 13. 45AECOD 15.1 16.2则OD 即为AD 在平面BCD 上的射影,空间点、直线、平面之间的位置关系测试题一、选择题 1~6 DCBCDD 7~12 DAECBC提示3对于①平行于同一直线的两个平面平行,反例为:把一支笔放在打开的课本之间; ②是对的,③是错的;④是对的5.取 AC,BC,B i C i ,AC i 中点 E,F,M,N ,直线分别为 EF, MN , EN, EM , FM , FN 都与平 面ABB i A i 平行.6. 如图所示,在直线a 上任取一点 P,过P 作b '// b ,则a n b ' =P.那么a 与b '确定一个平面a .因为b / b ' , b ' a, b a,所以b //a . 所以过a 可以作一个平面a 与 b 平行.假设还可作一平面B 与 b 平行,则anp =a , b //a, b 〃B,所以a // b. 这与a 、b 异面相矛盾,即假设不成立 .所以只有一个平面a . 综上所述,过a 有且只有一个平面与 b 平行.故选D. 7.m,n 均为直线,其中 m,n 平行 ,m,n 可以相交也可以异面,故 A 不正确;m , n 丄a 则同垂直于一个平面的两条直线平行;选 D&取AD 的中点 M 易证 AD 平面BCM ,故平面 BCM //平面 ,平面BCMa到平面 的距离为-,即为B 到平面 的距离.29. 因AD 与AB 不相互垂直,排除A ;作AGPB 于G ,因平面PAB平面ABCDEF 而AG 在平面 ABCDE 上的射影在 AB 上,而 AB 与BC 不相 互垂直,故排除B ;由BC // EF ,而EF 是平面PAE 的斜线,故排除C, 故选择D.10. 将图形补成一个正方体如图,则 PA 与BD 所成角等于BC 与BD所成角即/ DBC .在等边三角形 DBC 中,/ DBC =60°即PA 与BD 所成角为60°12.设底面边长为1 ,侧棱长为(0),过 B 1 作 B 1HBD 1, B 1G A 1B .在 Rt BB 1D 1 中, 3D 2, B 1D. 2 2,由三角形面积关系得hB 1HB 1D 1 BB 1 B 1D设在正四棱柱中,由于 BC AB,BC BB 1 , 所以BC 平面AA 1B 1B ,于是BC B 1G ,所以B 1G平面ABCD 1,故B 1G为点B 到平面 A BCD 1 的距离,在 Rt A 1B 1B 中,又由三角形面积关系得A 1B 1 BB 1AB于是21因为 AO=OD = wa,所以/ ADO=45° .14.连接AC , BD 相交于一点 O ,连接OE , AE , EC.因为四边形ABCD 为正方形,所以 DO = BO.而DE = D I E ,所以EO 为厶DD i B 的中位线, 所以EO // D i B,所以BD i //平面AEC.15.本题主要考查空间的垂直关系,由图形得四面体A ABC 的每个面都是直角三角形,m 4 所以 1 . n 416. 由①② ③、①③ 三、解答题17.证明:(1)因为三棱柱 ABC A 1B 1C 1是正三棱柱,所以 C 1C 又AD 平面ABC ,所以C 1C AD .又点D 是棱BC 的中点,且 ABC 为正三角形,所以 因为BC I C 1C C ,所以AD 平面BCC 1B 1 , 又因为DC 1 平面BCC 1B 1,所以AD C 1D .⑵连接A .C 交AC 1于点E ,再连接DE .因为四边形 A 1ACC 1为矩形,所以E 为A 1C 的中点, 又因为D 为BC 的中点,所以ED//AB .由条件 BAC 90°,即 AC AB ,且 AC ? CC 1 C ,所以 AB 平面 ACC 1A 1 . 又AG 平面ACGA ,所以AB AC 1 .(2) MN //平面ACC 1A ,证明如下: 设AC 的中点为D ,连接DN , AQ .因为D , 1 N 分别是AC , BC 的中点,所以DN // - AB . 2又AM =1A 1B 1 , A 1B 1 〃 AB ,所以 AM 〃 DN .2 所以四边形 ADNM 是平行四边形•所以 AD // MN .因为AQ 平面ACC 1A 1 , MN 平面ACGA ,所以MN //平面ACGA .②是正确命题,由②③不能得到①平面ABC ,AD BC .又AB 平面ADC 1, ED 平面ADC 1,所以A 1 B //平面ADC 1 . 18.证明:⑴因为CG平面ABC ,又AB 平面ABC ,所以CC 1AB .19. (1)证明:因为在正方体 AG 中,AA 丄平面A i BQD ,而BD 丄 B i D .又因为在正方形 A i B C i D 中,AQ 丄B i D ,所以B i D 丄平面 CAAO . 又因为B i D 平面OBD ,所以平面 OAAO 丄平面 CBD .⑵ 最小值为3 ■■一 2 •如图,将正方体六个面展开成平面图形,从图中F 到F ,两点之间线段最短,而且依次经过棱 BB ,B i O ,O D ,D D, DA 上的中点,所求的最小值为 3 2 • 20解:(i )连结BD ,AO ,设BD 与AO 交于O.由底面是菱形,得 BD AC.QSB SD ,O 为 BD 中点, BD SQ又 AO SO Q , BD 面 SAO.又 AE 面 SAO , BD AE.(2)取 SO 的中点 F ,连结 QF ,QE ,SA//QF.QF 与平面EDB 所成的角就是SA 与平面EDB 所成的角.设细钢管上下两段之比为.已知凳子高度为30.则OH 上—.1因为节点Q 与凳面三角形 ABC 重心的连线与地面垂直,且凳面与地面平行 .所以 QBH 就是QB 与平面ABC 所成的角,亦即 QBH 45°.因为 BH QH ,所以竺^3,解得"厂0.63.39 2 3即节点Q 分细钢管上下两段的比值约为 0.63.Q SC 平面 BED , FE 面 BED , E 为垂足,EQF 为所求角在等腰CSB 中,SOBO 2a,SB 、2a得底边SB 上的高为CH平面ABQD ,所以AA iSO BE SB CH所以在Rt BES 中,SE7 2 1-a a,EF4 2所以1 1 a a a2 2在 Rt FEQ 中,QF a, sin EQF里即直线SA 与平面BED 所成角为一.QF 262 i .解:(门设厶ABC 的重心为 H ,连结QH .由题意,得BH20 3 3(2)设B i20°,所以AB BO 24,AO 24 3.设厶ABC的重心为H,则BH 8, AH 8 7 , 由节点0分细钢管上下两段之比为2:3,可知0H 12.设过点A, B, C的细钢管分别为AA,BB,CC,c c - _则AA CC -OA .0H 2 AH 210.37 60.8,2 2- - 2 ____ 2 —BB -OB OH BH 10.13 36.1,2 2所以对应于A, B, C三点的三根细钢管长度分别为60.8cm, 36.1cm和60.8cm.22. (1)证明:在正方形AAA'A 1中,因为A'C = AA' - AB- BC=-,所以三棱柱ABO ABC的底面三角形ABC的边AC= 5.因为AB= 3, BC= 4,所以AB+ BC= AC.所以AB1BC因为四边形AA'A1'A1为正方形,BB//AA1,所以AB丄BB1.而BCH BB1= B, BC平面BCCB , BB 平面BCCB,所以AB丄平面BCC&.⑵解:因为AB丄平面BCCB,所以AB为四棱锥A- BCQP勺高.因为四边形BCQP为直角梯形,且BNAB= 3, CQ= AB+ BC= 7,1所以梯形BCQP勺面积为S BCQ^2(BP + CQ)X BC= 20.1所以四棱锥A- BCQP勺体积V A- BCQ7 -S BCQ就AB= 20.3由(1),知BB 丄AB BB 丄BC 且ABA BC= B, AB 平面ABC BC 所以BB丄平面ABC所以三棱柱ABC- ABC为直棱柱.所以三棱柱ABC- A BQ 的体积为V A BC-A B1 C =S^ABC X BB = 72.故平面APQ将三棱柱ABC- ABC分成上、下两部分的体积之比为平面ABC72 —20 13 20 = "5.。
高一数学点线面的位置关系试题
高一数学点线面的位置关系试题1.若,是异面直线,直线∥,则与的位置关系是()A.相交B.异面C.异面或相交D.平行【答案】C【解析】空间中直线与直线有三种位置关系:相交,平行,异面;当直线与直线在同一个平面内,则相交,不在任何一个平面内,则是异面直线;要是,由平行公理得,这与为异面直线相矛盾,故位置关系是相交或异面.【考点】空间中直线和直线的位置关系.2.若、、是互不相同的直线,是不重合的平面,则下列命题中为真命题的是()A.若∥,,,则∥B.若,则C.若,∥,则D.若,则∥【答案】C【解析】对于,直线可能平行,可能异面;对于没有说明直线垂直交线;对于由平面与平面垂直的性质得正确;对于,垂直于同一条直线的两条直线可能平行、相交、异面.【考点】空间中点、线、面的位置关系.3.如图,已知在侧棱垂直于底面三棱柱中,,,,,点是的中点.(1)求证:;(2)求证:(3)求三棱锥的体积.【答案】(1)证明:在中,由勾股定理得为直角三角形,即.又面,,,面,;(2)证明:设交于点,则为的中点,连接,则为的中位线,则在中,∥,又面,则∥面;(3).【解析】(1)由勾股定理得,由面得到,从而得到面,故;(2)连接交于点,则为的中位线,得到∥,从而得到∥面;(3)过作垂足为,面,面积法求,求出三角形的面积,代入体积公式进行运算.试题解析:(1)证明:在中,由勾股定理得为直角三角形,即.又面,,,面,.(2)证明:设交于点,则为的中点,连接,则为的中位线,则在中,∥,又面,则∥面.(3)在中过作垂足为,由面⊥面知,面,.而,,.【考点】直线与平面平行的判定;棱柱、棱锥、棱台的体积.4.已知m,n是两条不同直线,是三个不同平面,下列命题中正确的是()A.若m,n,则m n B.若C.若D.若【答案】D【解析】A选项中m,n可以相交;B选项中可能相交,不同于平面中的垂直于同一直线的两直线平行;C选项中m有可能与的相交线平行,同时也与平行,但平面不平行;综合选D.【考点】直线与平面的位置关系.5.已知在四面体ABCD中,E、F分别是AC、BD的中点,若CD=2AB=4,EF AB,则EF与CD所成的角为().A.B.C.D.【答案】D【解析】设为的中点,连接,由三角形中位线定理可得,则即为与所成的角,结合,在中,利用三角函数即可得到答案.【考点】异面直线及其所成的角.三角形中位线定理.6.下列命题中正确的是()A.空间三点可以确定一个平面B.三角形一定是平面图形C.若既在平面内,又在平面内,则平面和平面重合.D.四条边都相等的四边形是平面图形【答案】B【解析】对于A,当三个点在同一直线上时,不能确定一个平面,故A不正确;对于B,三角形三条直线两两相交,有不共线的三点,因此一定是平面图形,故B正确;对于C,当在一条直线上时,平面和平面也可能相交,故C不正确;对于D,当四边形的对边所在直线是异面直线时,四边形不是平面图形,故D不正确,故选B.【考点】平面的基本性质.7.已知△中,,,平面,,、分别是、上的动点,且.(1)求证:不论为何值,总有平面平面;(2)当为何值时,平面平面?【答案】(1)见解析;(2)见解析.【解析】(1)通过证明⊥平面,说明平面平面;(2)将平面平面作为条件,利用三角形关系求解.试题解析:(1)∵⊥平面,∴⊥.∵⊥且,∴⊥平面,又∵,∴不论为何值,恒有,∴⊥平面.又平面,∴不论为何值,总有平面⊥平面.(2)由(1)知,⊥,又平面⊥平面,∴⊥平面,∴⊥.∵,,,∴,,∴,由,得,∴,故当时,平面平面.【考点】两平面的位置关系的证明.8.下列四个结论:⑴两条不同的直线都和同一个平面平行,则这两条直线平行.⑵两条不同的直线没有公共点,则这两条直线平行.⑶两条不同直线都和第三条直线垂直,则这两条直线平行.⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行.其中正确的个数为()A.B.C.D.【答案】A【解析】两条不同的直线都和同一个平面平行,则这两条直线平行、相交或异面的位置关系.所以(1)不正确;两条不同的直线没有公共点,则这两条直线平行,或异面,所以(2)不正确;两条不同直线都和第三条直线垂直,则这两条直线平行、相交或异面,所以(3)不正确;一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行或直线在平面内,所以(4)不正确.故选A.【考点】1.直线与平面的位置关系.2.直线与直线的位置关系.3.相关的判断定理.9.在正四面体(所有棱长都相等)中,分别是的中点,下面四个结论中不成立的是()A.平面平面B.平面C.平面平面D.平面平面【答案】C【解析】由AF⊥BC,PE⊥BC,可得BC⊥平面PAE,而DF//BC,所以,DF⊥平面PAE,故A正确.若PO⊥平面ABC,垂足为O,则O在AE上,则DF⊥PO,又DF⊥AE,故DF⊥平面PAE,故B正确.由DF⊥平面PAE可得,平面PAE⊥平面ABC,故D正确.故选C.【考点】正四面体的几何特征,平行、垂直关系。
空间立体几何点线面关系(课堂练习)
空间立体几何点线面关系一、选择题一、选择题1、以下命题(其中a ,b 表示直线,a 表示平面)表示平面)①若a ∥b ,b Ìa ,则a ∥a ②若a ∥a ,b ∥a ,则a ∥b ③若a ∥b ,b ∥a ,则a ∥a ④若a ∥a ,b Ìa ,则a ∥b 其中正确命题的个数是其中正确命题的个数是其中正确命题的个数是( ))(A )0个(B )1个 (C )2个(D )3个2、已知a ∥a ,b ∥a ,则直线a ,b 的位置关系①平行;②垂直不相交;③垂直相交;④相交;⑤不垂直且不相交交;⑤不垂直且不相交..其中可能成立的有(其中可能成立的有( )) (A )2个 (B )3个 (C )4个 (D )5个3、如果平面a 外有两点A 、B ,它们到平面a 的距离都是a ,则直线AB 和平面a 的位置关系一定是定是 ( ))(A )平行(B )相交(C )平行或相交)平行或相交 (D )AB Ìa 4、已知m ,n 为异面直线,m ∥平面a ,n ∥平面b ,a ∩b =l ,则l ( ) (A )与m ,n 都相交都相交 (B )与m ,n 中至少一条相交中至少一条相交 (C )与m ,n 都不相交都不相交 (D )与m ,n 中一条相交中一条相交 5、已知直线m 、n 与平面α、β,给出下列三个命题:给出下列三个命题:①若m ∥α,n ∥α,则m ∥n ;②若m ∥α,n ⊥α,则n ⊥m ;③若m ⊥α,m ∥β,则α⊥β.其中真命题的个数是 A .0 B 0 B..1 C 1 C...2 D .2 D..36、若a 、b 为空间两条不同的直线,a 、b 为空间两个不同的平面,则a a ^的一个充分条件是条件是A .//a b 且a b ^B B..a b Ì且a b ^C C..a b ^且//b aD.a b ^且//a b7、设直线m n 、和平面a b 、,则下列命题中正确..的是的是 A .若//m n m n a b ÌÌ,,,则//a b B B.若.若//m n m n a b Ì^,,,则a b ^ C .若m m n n a b ^^Ì,,,则//a b D D.若.若//m n m n a b ^^,,,则a b ^ 8、对于平面a 和共面的直线m 、,n 下列命题中真命题是下列命题中真命题是A .若,,m m n a ^^则n a ∥B B.若.若m a a ∥,n ,n∥∥,则m ∥nC .若,m n a a Ì∥,则m ∥nD D.若.若m 、n 与a 所成的角相等,则m ∥n9、若直线a 与平面α不垂直,那么在平面α内与直线a 垂直的直线垂直的直线 ( ))A .只有一条.只有一条B .有无数条.有无数条C .所有直线.所有直线D .不存在.不存在 1010、经过平面、经过平面α外一点和平面α内一点与平面α垂直的平面有垂直的平面有( ))A .0个B .1个C .无数个.无数个D .1个或无数个个或无数个1111、已知直线、已知直线a ,b 和平面a ,下列命题中正确的是(,下列命题中正确的是( )) A .若b a b a //,,//则a a ÌB .若b a b a //,//,//则a aC .若a a //,,//a b b a 则ÌD .若a a a //,//,//b b a b a 或则Ì1212、已知直线、已知直线m ⊥平面α,直线Ìn 平面β,下列说法正确的有,下列说法正确的有 ( ))①若①若n m ^则,//b a ②若b a ^,则m //n ③若③若m //n ,则b a ^④若b a //,则n m ^A .1个B .2个C .3个D .4个1313、已知平面、已知平面α内有无数条直线都与平面β平行,那么平行,那么( )A .α∥βB .α与β相交相交C .α与β重合重合D .α∥β或α与β相交相交1414、经过平面外两点与这个平面平行的平面、经过平面外两点与这个平面平行的平面、经过平面外两点与这个平面平行的平面 ( ) A .只有一个.只有一个 B .至少有一个.至少有一个 C C.可能没有.可能没有.可能没有D .有无数个.有无数个1515、已知、已知,m n 是两条不同直线,,,a b g 是三个不同平面,下列命题中正确的是(是三个不同平面,下列命题中正确的是( ))A .,,m n m n a a 若则‖‖‖B .,,a g b g a b ^^若则‖C .,,m m a b a b 若则‖‖‖D D..,,m n m n a a ^^若则‖1616、设有直线、设有直线m 、n 和平面a 、b 。
空间点、直线、平面之间的位置关系练习题(基础、经典、好用)
空间点、直线、平面之间的位置关系一、选择题1.以下四个命题中①不共面的四点中,其中任意三点不共线;②若点A、B、C、D共面,点A、B、C、E共面,则点A、B、C、D、E共面;③若直线a、b共面,直线a、c共面,则直线b、c共面;④依次首尾相接的四条线段必共面.正确命题的个数是()A.0 B.1 C.2 D.32.已知异面直线a,b分别在平面α,β内,且α∩β=c,那么直线c一定()A.与a,b都相交B.只能与a,b中的一条相交C.至少与a,b中的一条相交D.与a,b都平行3.如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,这四个点不共面的一个图是()图7-3-74.(2013·揭阳模拟)如图7-3-7,正三棱柱ABC—A1B1C1的各棱长(包括底面边长)都是2,E,F分别是AB,A1C1的中点,则EF与侧棱C1C所成的角的余弦值是()A.55B.255C.12D.25.设A,B,C,D是空间四个不同的点,在下列命题中,不正确的是()A.若AC与BD共面,则AD与BC共面B.若AC与BD是异面直线,则AD与BC是异面直线C.若AB=AC,DB=DC,则AD=BCD.若AB=AC,DB=DC,则AD⊥BC二、填空题图7-3-86.(2013·深圳质检)如图7-3-8是正四面体的平面展开图,G、H、M、N分别为DE、BE、EF、EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是________.7.(2013·韶关模拟)设a,b,c是空间中的三条直线,下面给出四个命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a∥c;③若a与b相交,b与c相交,则a与c相交;④若a⊂平面α,b⊂平面β,则a,b一定是异面直线.上述命题中正确的命题是________(只填序号).图7-3-98.如图7-3-9所示,在正三棱柱ABC—A1B1C1中,D是AC的中点,AA1∶AB=2∶1,则异面直线AB1与BD所成的角为________.三、解答题图7-3-109.如图7-3-10所示,在正方体ABCD—A1B1C1D1中,E,F分别为CC1,AA1的中点,画出平面BED1F与平面ABCD的交线.图7-3-1110.如图7-3-11所示,在正方体ABCD—A1B1C1D1中,E,F分别为A1A,C1C的中点,求证:四边形EBFD1是菱形.图7-3-1211.如图7-3-12,三棱锥P—ABC中,PA⊥平面ABC,∠BAC=60°,PA=AB=AC=2,E是PC的中点.(1)求异面直线AE和PB所成角的余弦值;(2)求三棱锥A—EBC的体积.解析及答案一、选择题1.【解析】①中显然是正确的;②中若A、B、C三点共线则A、B、C、D、E五点不一定共面.③构造长方体或正方体,如图显然b、c异面故不正确.④中空间四边形中四条线段不共面,故只有①正确.【答案】B2.【解析】若c与a,b都不相交,则c与a,b都平行,则a∥b与a,b异面相矛盾.【答案】C3.【解析】在A图中分别连接PS,QR,易证PS∥QR,∴P,Q,R,S共面;在C图中分别连接PQ,RS,易证PQ∥RS,∴P,Q,R,S共面.在B图中过P,Q,R,S可作一正六边形,故四点共面;D图中PS与QR为异面直线,∴四点不共面,故选D.【答案】D4.【解析】如图,取AC中点G,连FG、EG,则FG∥C1C,FG=C1C;EG∥BC,EG=12BC,故∠EFG即为EF与C1C所成的角,在Rt△EFG中,cos∠EFG=FGFE=25=255.【答案】B5.【解析】由公理1知,命题A正确.对于B,假设AD与BC共面,由A正确得AC与BD共面,这与题设矛盾,故假设不成立,从而结论B正确.对于C,如图,当AB=AC,DB=DC,使二面角A—BC—D的大小变化时,AD与BC不一定相等,故不正确.对于D,如图,取BC的中点E,连接AE,DE,则由题设得BC⊥AE,BC⊥DE.根据线面垂直的判定定理得BC⊥平面ADE,从而AD⊥BC.故D正确.【答案】C二、填空题6.【解析】还原成正四面体知GH与EF为异面直线,BD与MN为异面直线,GH与MN成60°角,DE⊥MN.【答案】②③④7.【解析】由公理4知①正确;当a⊥b,b⊥c时,a与c可以相交、平行,或异面,故②错;当a与b相交,b与c相交时,a与c可以相交、平行,也可以异面,故③错;a⊂α,b⊂β,并不能说明a与b“不同在任何一个平面内”,故④错.【答案】①8.【解析】取A1C1的中点D1,连接B1D1,因为D是AC的中点,所以B1D1∥BD,所以∠AB1D1即为异面直线AB1与BD所成的角.连接AD1,设AB=a,则AA1=2a,所以AB1=3a,B1D1=32a,AD1=14a2+2a2=32a.所以cos∠AB1D1=3a2+34a2-94a22×3a×32a=12,所以∠AB1D1=60°.【答案】60°三、解答题9.【解】在平面AA1D1D内,延长D1F,∵D1F与DA不平行,∴D1F与DA必相交于一点,设为P,则P∈D1F,P∈DA.又∵D1F⊂平面BED1F,AD⊂平面ABCD,∴P∈平面BED1F,P∈平面ABCD.又B为平面ABCD与平面BED1F的公共点,连接PB,∴PB即为平面BED1F与平面ABCD 的交线.如图所示.10.【证明】如图所示,取B1B的中点G,连接GC1,EG,∵GB∥C1F,且GB=C1F,∴四边形C1FBG是平行四边形,∴FB∥C1G,且FB=C1G,∵D1C1∥EG,且D1C1=EG,∴四边形D1C1GE为平行四边形.∴GC1∥D1E,且GC1=D1E,∴FB∥D1E,且FB=D1E,∴四边形EBFD1为平行四边形.又∵FB=FD1,∴四边形EBFD1是菱形.11.【解】(1)取BC的中点F,连结EF,AF,则EF∥PB.所以∠AEF就是异面直线AE和PB所成的角或其补角.∵∠BAC=60°,PA=AB=AC=2,PA⊥平面ABC,∴AF=3,AE=2,EF=2,cos∠AEF=2+2-32×2×2=14.(2)因为E是PC中点,所以E到平面ABC的距离为12PA=1,V A—EBC=V E—ABC=13×34×4×1=33.。
空间中点线面的位置关系测试题
空间中点、线、面的地位关系之杨若古兰创作 一、 选择题:1.上面推理过程,错误的是( )(A ) αα∉⇒∈A l A l ,//(B ) ααα⊂⇒∈∈∈l B A l A ,,(C ) AB B B A A =⋂⇒∈∈∈∈βαβαβα,,,(D ) βαβα=⇒∈∈不共线并且C B A C B A C B A ,,,,,,,,2.一条直线和这条直线以外不共线的三点所能确定的平面的个数是( )(A ) 1个或3个(B ) 1个或4个(C ) 3个或4个 (D ) 1个、3个或4个3.以下命题准确的有( )(1)若a ∥b ,b ∥c ,则直线a ,b ,c 共面;(2)若a ∥α,则a 平行于平面α内的所有直线;(3)若平面α内的有数条直线都与β平行,则α∥β;(4)分别和两条异面直线都订交的两条直线肯定异面.(A ) 1个 (B ) 2个 (C ) 3个 (D )4个4.正方体的一条体对角线与正方体的棱可以构成异面直线的对数是( )(A ) 2 (B ) 3 (C ) 6 (D ) 125.以下命题中为真命题的个数是( )(1)若直线l 平行于平面α内的有数条直线,则直线l ∥α;(2)若直线a在平面α外,则a∥α;(3)若直线a∥b,α⊂b,则a∥α;(4)若直线a∥b,α⊂b,则a平行于平面α内的有数条直线.(A) 1个(B) 2个(C) 3个(D)4个6.若三个平面两两订交,则它们的交线条数是()(A) 1条(B) 2条(C) 3条(D)1条或3条7.以下命题准确的是()A.经过三点确定一个平面B.经过一条直线和一个点确定一个平面C.四边形确定一个平面D.两两订交且不共点的三条直线确定一个平面8.以下命题中准确的个数是()①若直线l上有有数个点不在平面α内,则lα∥.②若直线l与平面α平行,则l与平面α内的任意一条直线都平行.③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行.④若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点.9. 若直线a 不服行于平面α,且a α⊄,则以下结论成立的是( )A.α内的所有直线与a 异面B.α内不存在与a 平行的直线 C.α内存在独一的直线与a 平行D.α内的直线与a 都订交10. 三条直线订交于一点,可能确定的平面有( ) A.1个B.2个C.3个D.1个或3个11.分别和两条异面直线都订交的两条直线必定是( ) A.异面直线B.订交直线C.不订交直线D.不服行直线12.三个平面把空间分成7部分时,它们的交线有( )A.1条 B.2条C.3条 D.1条或2条13.在长方体1111ABCD A BC D -,底面是边长为2的正方形,高为4,则点1A 到截面11AB D 的距离为( )A . 83B .38C .43D . 3414.直三棱柱111ABC A B C -中,各侧棱和底面的边长均为a ,点D 是1CC 上任意一点,连接11,,,A B BD A D AD ,则三棱锥1A A BD -的体积为( ) A .361a B .3123a C .363a D .3121a1.若直线l与平面α订交于点O,lC,,且D,,α∈BA∈AC//,则O,C,D三点的地位关系是.BD2.在空间中,①若四点不共面,则这四点中任何三点都不共线.②若两条直线没有公共点,则这两条直线是异面直线.以上两个命题中为真命题的是(把符合请求的命题序号填上)3.已知,a、b为不垂直的异面直线,α是一个平面,则a、b在α上的射影有可能是①两条平行直线②两条互相垂直的直线③同一条直线④一条直线及其外一点在上面结论中,准确结论的编号为(写出所有准确结论的编号).4.已知a,b,c是三条直线,角a b∥,且a与c的夹角为θ,那么b与c夹角为.5.已知两条订交直线a,b,aα∥则b与α的地位关系平面是.6.在空间四边形ABCD中,N,M分别是BC,AD的中点,则2MN与AB CD+的大小关系是.1.已知长方体1111D C B A ABCD -中,M 、N 分别是1BB 和BC 的中点,AB=4,AD=2,1521=BB ,求异面直线D B 1与MN 所成角的余弦值.2.如图,空间四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点. 求证:四边形EFGH 是平行四边形. ( 常识点:空间平行线的传递性 ;)3. 如图,已知长方体ABCD A B C D ''''-中,23AB =,23AD =,2AA '=. (1)BC 和A C ''所成的角是多少度?(2)AA '和BC '所成的角是多少度? 4. 已知正方体1111ABCD A B C -中,E ,F 分别为11D C ,11C B 的中点,AC BD P =,11AC EF Q =.求证:(1)D ,B ,F ,E 四点共面; (2)若1AC 交平面DBFE 于R 点,则P ,Q ,R 三点共线.5.、在长方体1111ABCD A B C D -中,点O ,1O 分别是四边形ABCD ,1111A B C D 的对角线的交点,点E ,F 分别是四边形11AA D D ,11BB C C的对角线的交点,点G ,H 分别是四边形11A ABB ,11C CDD 的对角线的交点. 求证:1OEG O FH △≌△. A D B C D 'C ' B ' A 'A EB H GC F D。
空间点、线、面的位置关系-习题
8.2 空间点、线、面的位置关系考点一 点、线、面的位置关系1.(2016浙江,2,5分)已知互相垂直的平面α,β交于直线l.若直线m,n 满足m ∥α,n ⊥β,则( )A.m ∥lB.m ∥nC.n ⊥lD.m ⊥n答案 C 对于A,m 与l 可能平行或异面,故A 错;对于B 、D,m 与n 可能平行、斜交或异面,故B 、D 错;对于C,因为n ⊥β,l ⊂β,所以n ⊥l,故C 正确.故选C.2.(2016山东,6,5分)已知直线a,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A 因为直线a 和直线b 相交,所以直线a 与直线b 有一个公共点,而直线a,b 分别在平面α,β内,所以平面α与β必有公共点,从而平面α与β相交;反之,若平面α与β相交,则直线a 与直线b 可能相交、平行、异面.故选A.3.(2015安徽理,5,5分)已知m,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A.若α,β垂直于同一平面,则α与β平行B.若m,n 平行于同一平面,则m 与n 平行C.若α,β不平行···,则在α内不存在···与β平行的直线D.若m,n 不平行···,则m 与n 不可能···垂直于同一平面答案 D 若α,β垂直于同一个平面γ,则α,β可以都过γ的同一条垂线,即α,β可以相交,故A 错;若m,n 平行于同一个平面,则m 与n 可能平行,也可能相交,还可能异面,故B 错;若α,β不平行,则α,β相交,设α∩β=l,在α内存在直线a,使a ∥l,则a ∥β,故C 错;从原命题的逆否命题进行判断,若m 与n 垂直于同一个平面,由线面垂直的性质定理知m ∥n,故D 正确.4.(2015浙江文,4,5分)设α,β是两个不同的平面,l,m 是两条不同的直线,且l ⊂α,m ⊂β.( )A.若l ⊥β,则α⊥βB.若α⊥β,则l ⊥mC.若l ∥β,则α∥βD.若α∥β,则l ∥m答案 A 对于选项A,由面面垂直的判定定理可知选项A 正确;对于选项B,若α⊥β,l ⊂α,m ⊂β,则l 与m 可能平行,可能相交,也可能异面,所以选项B 错误;对于选项C,当l 平行于α与β的交线时,l ∥β,但此时α与β相交,所以选项C 错误;对于选项D,若α∥β,则l 与m 可能平行,也可能异面,所以选项D 错误.故选A.5.(2015广东,6,5分)若直线l 1和l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A.l 与l 1,l 2都不相交B.l 与l 1,l 2都相交C.l 至多与l 1,l 2中的一条相交D.l 至少与l 1,l 2中的一条相交答案 D 解法一:如图1,l 1与l 2是异面直线,l 1与l 平行,l 2与l 相交,故A,B 不正确;如图2,l 1与l 2是异面直线,l 1,l 2都与l 相交,故C 不正确,选D.解法二:因为l分别与l1,l2共面,故l与l1,l2要么都不相交,要么至少与l1,l2中的一条相交.若l与l1,l2都不相交,则l∥l1,l∥l2,从而l1∥l2,与l1,l2是异面直线矛盾,故l至少与l1,l2中的一条相交,选D.6.(2014辽宁,4,5分)已知m,n表示两条不同直线,α表示平面.下列说法正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α答案B若m∥α,n∥α,则m与n可能平行、相交或异面,故A错误;B正确;若m⊥α,m⊥n,则n∥α或n⊂α,故C错误;若m∥α,m⊥n,则n与α可能平行、相交或n⊂α,故D错误.因此选B.7.(2014广东理,7,5分)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定答案D由l1⊥l2,l2⊥l3可知l1与l3的位置不确定,若l1∥l3,则结合l3⊥l4,得l1⊥l4,所以排除选项B、C,若l1⊥l3,则结合l3⊥l4,知l1与l4可能不垂直,所以排除选项A.故选D.评析本题考查了空间直线之间的位置关系,考查学生的空间想象能力、思维的严密性.8.(2014浙江文,6,5分)设m,n是两条不同的直线,α,β是两个不同的平面.()A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α答案C对于选项A、B、D,均能举出m∥α的反例;对于选项C,若m⊥β,n⊥β,则m∥n,又n⊥α,∴m⊥α,故选C.9.(2013课标Ⅱ理,4,5分)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l答案D若α∥β,则m∥n,这与m、n为异面直线矛盾,所以A不正确,α与β相交.将已知条件转化到正方体中,易知α与β不一定垂直,但α与β的交线一定平行于l,从而排除B、C.故选D.导师点睛对于此类题,放入正方体中判断起来比较快捷.10.(2013广东理,6,5分)设m,n是两条不同的直线,α,β是两个不同的平面.下列命题中正确的是()A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若α∥β,m⊂α,n⊂β,则m∥nC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β答案D若α⊥β,m⊂α,n⊂β,则m与n可能平行,故A错;若α∥β,m⊂α,n⊂β,则m与n可能平行,也可能异面,故B错;若m⊥n,m⊂α,n⊂β,则α与β可能相交,也可能平行,故C错;对于D项,由m⊥α,m∥n,得n⊥α,又知n∥β,故α⊥β,所以D项正确.11.(2011辽宁理,8,5分)如图,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确...的是()A.AC⊥SBB.AB∥平面SCDC.SA与平面SBD所成的角等于SC与平面SBD所成的角D.AB与SC所成的角等于DC与SA所成的角答案D∵四边形ABCD是正方形,∴AC⊥BD.又∵SD⊥底面ABCD,∴SD⊥AC.其中SD∩BD=D,∴AC⊥面SDB,从而AC⊥SB.故A正确.易知B正确.设AC与DB交于O点,连接SO.则SA与平面SBD所成的角为∠ASO,SC与平面SBD所成的角为∠CSO,又OA=OC,SA=SC,∴∠ASO=∠CSO.故C正确.由排除法可知选D.评析本题主要考查了线面平行与垂直的判断及线面角、线线角的概念.属中档题.12.(2016课标Ⅱ理,14,5分)α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)答案②③④解析由m⊥n,m⊥α,可得n∥α或n在α内,当n∥β时,α与β可能相交,也可能平行,故①错.易知②③④都正确.考点二异面直线所成的角1.(2017课标Ⅱ理,10,5分)已知直三棱柱ABC-A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.√32B.√155C.√105D.√33答案C本题考查直棱柱的性质和异面直线所成的角.将直三棱柱ABC-A1B1C1补形成直四棱柱ABCD-A1B1C1D1(如图),连接AD1,B1D1,则AD1∥BC1.则∠B 1AD 1为异面直线AB 1与BC 1所成的角(或其补角),易求得AB 1=√5,BC 1=AD 1=√2,B 1D 1=√3.由余弦定理得cos ∠B 1AD 1=√105.故选C.方法总结 本题主要考查异面直线所成的角,求异面直线所成角的方法有两种:一是定义法,二是用向量的夹角公式求解.2.(2016课标Ⅰ,11,5分)平面α过正方体ABCD-A 1B 1C 1D 1的顶点A,α∥平面CB 1D 1,α∩平面ABCD=m,α∩平面ABB 1A 1=n,则m,n 所成角的正弦值为( )A.√32B.√22C.√33D.13答案 A 如图,过点A 补作一个与正方体ABCD-A 1B 1C 1D 1相同棱长的正方体,易知平面α为平面AF 1E,则m,n 所成角为∠EAF 1(或其补角),因为△EAF 1为正三角形,所以sin ∠EAF 1=sin 60°=√32,故选A.3.(2014大纲全国理,11,5分)已知二面角α-l-β为60°,AB ⊂α,AB ⊥l,A 为垂足,CD ⊂β,C ∈l,∠ACD=135°,则异面直线AB 与CD 所成角的余弦值为( )A.14B.√24C.√34D.12答案 B 在平面α内过点C 作CE ∥AB,则∠ECD 为异面直线AB 与CD 所成的角(或其补角),不妨取CE=1,过点E 作EO ⊥β于点O.在平面β内过点O 作OH ⊥CD 于点H,连接EH,则EH ⊥CD.因为AB ∥CE,AB ⊥l,所以CE ⊥l,又因为EO ⊥β,所以CO ⊥l.所以∠ECO 为二面角α-l-β的平面角,即∠ECO=60°.因为∠ACD=135°,CD ⊥l,所以∠OCH=45°.在Rt △ECO 中,CO=CE ·cos ∠ECO=1×cos 60°=12.在Rt △COH 中,CH=CO ·cos ∠OCH=12×cos 45°=√24. 在Rt △ECH 中,cos ∠ECH=CH CE =√241=√24. 所以异面直线AB 与CD 所成角的余弦值为√24.选B.4.(2014大纲全国文,4,5分)已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( )A.16B.√36C.13D.√33 答案 B 如图,取AD 的中点F,连接EF 、CF.因为E 、F 分别是AB 、AD 的中点,所以EF 12BD,故∠CEF 或其补角是异面直线CE 、BD 所成的角. 设正四面体ABCD 的棱长为a,易知CE=CF=√32a,EF=12a.在△CEF 中,由余弦定理可得cos ∠CEF=(√32a )2+(12a )2-(√32a )22×√32a×12a =√36.故选B. 5.(2017课标Ⅲ理,16,5分)a,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60°角时,AB 与b 成30°角;②当直线AB 与a 成60°角时,AB 与b 成60°角;③直线AB 与a 所成角的最小值为45°;④直线AB 与a 所成角的最大值为60°.其中正确的是 .(填写所有正确结论的编号)答案 ②③解析 本题考查空间直线、平面间的位置关系.过点C 作直线a 1∥a,b 1∥b,则直线AC 、a 1、b 1两两垂直.不妨分别以a 1、b 1、AC 为x 、y 、z 轴建立空间直角坐标系,取n 1=(1,0,0)为a 1的方向向量,n 2=(0,1,0)为b 1的方向向量,令A(0,0,1).可设B(cos θ,sin θ,0),则AB ⃗⃗⃗⃗⃗ =(cos θ,sin θ,-1).当直线AB 与a 成60°角时,|cos<n 1,AB ⃗⃗⃗⃗⃗ >|=12,∴|cos θ|=√22,|sin θ|=√22,∴|cos<n 2,AB ⃗⃗⃗⃗⃗ >|=12,即AB 与b 所成角也是60°.∵|cos<n 1,AB ⃗⃗⃗⃗⃗ >|=√1×√2=√2≤√22, ∴直线AB 与a 所成角的最小值为45°.综上,②和③是正确的,①和④是错误的.故填②③.一题多解 过点B 作a 1∥a,b 1∥b,当直线AB 与a 成60°角时,由题意,可知AB 在由a 1,b 1确定的平面上的射影为BC,且BC 与a 1成45°角,又a ⊥b,故AB 与b 所成角也是60°.①错,②正确;当直线a ∥BC 时,AB 与a 所成角最小,故最小角为45°.③正确,④错误.综上,正确的是②③,错误的是①④.(注:一条斜线与平面所成角的余弦值和其在平面内的射影与平面内一条直线所成角的余弦值的乘积等于斜线和平面内的直线所成角的余弦值)6.(2015浙江,13,4分)如图,在三棱锥A-BCD 中,AB=AC=BD=CD=3,AD=BC=2,点M,N 分别为AD,BC 的中点,则异面直线AN,CM 所成的角的余弦值是 .答案 78解析 连接DN,取DN 的中点H,连接HM,由N 、M 、H 均为中点,知|cos ∠HMC|即为所求.因为AB=AC=BD=CD=3,AD=BC=2,又M,N 为AD,BC 的中点,所以CM ⊥AD,AN ⊥BC,所以CM=√CD 2-MD 2=2√2,AN=√AC 2-NC 2=2√2,MH=12AN=√2,HC=√NC 2+NH 2=√3,则cos ∠HMC=CM 2+MH 2-HC 22CM ·MH =78.故异面直线AN,CM 所成角的余弦值为78. 7.(2018天津,17,13分)如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD,点M 为棱AB 的中点,AB=2,AD=2√3,∠BAD=90°.(1)求证:AD ⊥BC;(2)求异面直线BC 与MD 所成角的余弦值;(3)求直线CD 与平面ABD 所成角的正弦值.解析 (1)证明:由平面ABC ⊥平面ABD,平面ABC ∩平面ABD=AB,AD ⊥AB,可得AD ⊥平面ABC,故AD ⊥BC.(2)取棱AC 的中点N,连接MN,ND.又因为M 为棱AB 的中点,故MN ∥BC.所以∠DMN(或其补角)为异面直线BC 与MD 所成的角. 在Rt △DAM 中,AM=1,故DM=√AD 2+AM 2=√13.因为AD ⊥平面ABC,故AD ⊥AC.在Rt △DAN 中,AN=1,故DN=√AD 2+AN 2=√13.在等腰三角形DMN 中,MN=1,可得cos ∠DMN=12MN DM =√1326.所以,异面直线BC 与MD 所成角的余弦值为√1326.(3)连接CM.因为△ABC为等边三角形,M为边AB的中点,故CM⊥AB,CM=√3.又因为平面ABC⊥平面ABD,而CM⊂平面ABC,故CM⊥平面ABD.所以,∠CDM为直线CD与平面ABD所成的角.在Rt△CAD中,CD=√AC2+AD2=4.在Rt△CMD中,sin∠CDM=CMCD =√3 4.所以,直线CD与平面ABD所成角的正弦值为√34.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、下列有关平面的说法正确的是( )
A 一个平面长是10cm ,宽是5cm
B 一个平面厚为1厘米
C 平面是无限延展的
D 一个平面一定是平行四边形
2、已知点A 和直线a 及平面α,则:
①αα∉⇒⊄∈A a a A , ② αα∈⇒⊂∈A a a A ,
③αα∉⇒⊂∉A a a A , ④αα⊂⇒⊂∈A a a A ,
其中说法正确的个数是( )
A.0
B.1
C.2
D.3
3、下列图形不一定是平面图形的是( )
A 三角形
B 四边形
C 圆
D 梯形
4、三个平面将空间可分为互不相通的几部分( )
A.4、6、7
B.3、4、6、7
C.4、6、7、8
D.4、6、8 5、共点的三条直线可确定几个平面 ( )
A.1
B.2
C.3
D.1或3
6、正方体ABCD-A 1B 1C 1D 1中,P 、Q 、R 分别是AB 、AD 、1B 1C 1的中点,
则,正方体的过P 、Q 、R 的截面图形是( ) A 三角形 B 四边形 C 五边形 D 六边形 7、三个平面两两相交,交线的条数可能有————————————————
8、不共线的四点可以确定——————————————————个平面。
9、下列说法①若一条直线和一个平面有公共点,则这条直线在这个平面内②过两条相交直线的平面有且只有一个③若两个平面有三个公共点,则两个平面重合④两个平面相交有且只有一条交线⑤过不共线三点有且只有一个平面,其中正确的有———————————
10、空间两条互相平行的直线指的是( )
A.在空间没有公共点的两条直线
B.分别在两个平面内的两条直线
C.分别在两个不同的平面内且没有公共点的两条直线
D.在同一平面内且没有公共点的两条直线
11、分别和两条异面直线都相交的两条直线一定是( )
A 异面直线
B 相交直线
C 不平行直线
D 不相交直线
12、正方体ABCD-A 1B 1C 1D 1中,与直线BD 异面且成600角的面对角线有( )条。
A 4
B 3
C 2
D 1
13、设A 、B 、C 、D 是空间四个不同的点,下列说法中不正确的是( )
A.若AC 和BD 共面,则AD 与BC 共面
B.若AC 和BD 是异面直线,则AD 与BC 是异面直线
C.若AB =AC ,DB =DC ,则AD =BC
D.若AB =BC =CD =DA ,则四边形ABCD 不一定是菱形
14、空间四边形SABC 中,各边及对角线长都相等,若E 、F 分别为SC 、AB 的中点, 那么异面直线EF 与SA 所成的角为( )
A 300
B 450
C 600
D 900
15、和两条平行直线中的一条是异面直线的直线,与另一条直线的位置关系是————————————————————
16、设c b a 、、表示直线,给出四个论断:①b a ⊥②c c ⊥③c a ⊥④c a //,以其中任意两个为条件,另外的某一个为结论,写出你认为正确的一个命题——————————————————
17、ABCDEF 是正六边形,P 是它所在平面外一点,连接PA 、PB 、PC 、PD 、PE 、PF 后与正六边形的六条边所在直线共十二条直线中,异面直线共有——————————对。
18、点E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA 的中点,且BD =AC ,则四边形EFGH 是————————————。
A Q B 1 R C B D P A 1 C 1 D 1 ∙ ∙ ∙ S C A B E F。