二次函数各知识点练习题

合集下载

二次函数知识点及典型例题

二次函数知识点及典型例题

⼆次函数知识点及典型例题⼆次函数⼀、⼆次函数的⼏何变换⼆、⼆次函数的图象和性质(Ⅰ) y=a(x-h)2+k (a≠0)的图象和性质(Ⅱ) y=ax2+bx+c (a≠0)的图象和性质(Ⅲ) a 、b 、c 的符号对抛物线形状位置的影响三、待定系数法求⼆次函数的解析式1、⼀般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择⼀般式。

2、顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式。

3、交点式:已知图像与x 轴的交点横坐标1x 、2x ,通常选⽤交点式:()()21x x x x a y --=。

4、顶点在原点,可设解析式为y=ax 2。

5、对称轴是y 轴(或者顶点在y 轴上),可设解析式为y= ax 2+c 。

6、顶点在x 轴上,可设解析式为()2h x a y -=。

7、抛物线过原点,可设解析式为y=ax2+bx 。

四、抛物线的对称性1、抛物线与x 轴有两个交点(x 1,0)(x 2,0),则对称轴为x=2x x 21+。

2、抛物线上有不同的两个交点(m ,a )(n,a ),则对称轴为x=2nm +。

3、抛物线c bx ax y ++=2(a ≠0)与y 轴交点关于对称轴的对称点为(ab-, c)。

五、⼆次函数与⼀元⼆次⽅程的关系对于抛物线c bx ax y ++=2(a ≠0),令y=0,即为⼀元⼆次⽅程02=++c bx ax ,⼀元⼆次⽅程的解就是⼆次函数与x 轴交点的横坐标。

要分三种情况:1、判别式△=b 2-4ac >0?抛物线与x 轴有两个不同的交点(ab 24acb -2+,0)(a b 24ac b --2,0)。

有韦达定理可知x 1+x 2=a b - ,x 1·x 2=ac 。

2、判别式△=b 2-4ac=0?抛物线与x 轴有⼀个交点(ab 2-,0)。

3、判别式△=b 2-4ac=0?抛物线与x 轴⽆交点。

二次函数知识点总结及练习题

二次函数知识点总结及练习题

二次函数考点1、二次函数的概念定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 注意: (1)二次函数是关于自变量x 的二次式,二次项系数a 必须为非零实数,即a ≠0, 而b 、c 为任意实数。

(2)当b=c=0时,二次函数2ax y =是最简单的二次函数。

(3)二次函数c b a c bx ax y ,,(2++=是常数,)0≠a 自变量的取值为全体实数 (c bx ax ++2为整式)例1: 函数y=(m +2)x 22-m +2x -1是二次函数,则m= _______.例2:已知函数y=ax 2+bx +c (其中a ,b ,c 是常数),当a____时,是二次函数;当a______,b_____时,是一次函数;当a_______,b_______,c_________时,是正比例函数.例3:函数y=(m -n )x 2+mx +n 是二次函数的条件是( )A .m 、n 为常数,且m ≠0B .m 、n 为常数,且m ≠nC .m 、n 为常数,且n ≠0D .m 、n 可以为任何常数 例4: 下列函数中是二次函数的有( )①y=x +x 1;②y=3(x -1)2+2;③y=(x +3)2-2x 2;④y=2x1+x . A .1个 B .2个 C .3个 D .4个考点2、三种函数解析式:(1)一般式: y=ax 2+bx+c (a ≠0),对称轴:直线x=ab2- 顶点坐标:( a b ac a b 4422--, ) (2)顶点式:()k h x a y +-=2(a ≠0), 对称轴:直线x=h 顶点坐标为(h ,k )(3)交点式:y=a (x-x1)(x-x2)(a ≠0),对称轴:直线x=22x1x + (其中x1、x2是二次函数与x 轴的两个交点的横坐标).例1:抛物线822--=x x y 的顶点坐标为____________;对称轴是___________。

二次函数知识点及典型例题

二次函数知识点及典型例题

二次函数一、二次函数的几何变换二、二次函数的图象和性质(Ⅰ) y=a(x-h)2+k (a≠0)的图象和性质(Ⅱ) y=ax2+bx+c (a≠0)的图象和性质(Ⅲ) a 、b 、c 的符号对抛物线形状位置的影响三、待定系数法求二次函数的解析式1、一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式。

2、顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式。

3、交点式:已知图像与x 轴的交点横坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=。

4、顶点在原点,可设解析式为y=ax 2。

5、对称轴是y 轴(或者顶点在y 轴上),可设解析式为y= ax 2+c 。

6、顶点在x 轴上,可设解析式为()2h x a y -=。

7、抛物线过原点,可设解析式为y=ax2+bx 。

四、抛物线的对称性1、抛物线与x 轴有两个交点(x 1,0)(x 2,0),则对称轴为x=2x x 21+。

2、抛物线上有不同的两个交点(m ,a )(n,a ),则对称轴为x=2nm +。

3、抛物线c bx ax y ++=2(a ≠0)与y 轴交点关于对称轴的对称点为(ab-, c)。

五、二次函数与一元二次方程的关系对于抛物线c bx ax y ++=2(a ≠0),令y=0,即为一元二次方程02=++c bx ax ,一元二次方程的解就是二次函数与x 轴交点的横坐标。

要分三种情况:1、 判别式△=b 2-4ac >0⇔抛物线与x 轴有两个不同的交点(ab 24acb -2+,0)(a b 24ac b --2,0)。

有韦达定理可知x 1+x 2=a b - ,x 1·x 2=ac 。

2、 判别式△=b 2-4ac=0⇔抛物线与x 轴有一个交点(ab 2-,0)。

3、 判别式△=b 2-4ac=0⇔抛物线与x 轴无交点。

六、二次函数与一元二次不等式的关系1、a >0:(1)02>c bx ax ++的解集为:x <x 1或x >x 2(x 1<x 2)。

二次函数知识点对应练习题

二次函数知识点对应练习题

一、二次函数的定义1、下列函数中,是二次函数的是 .①y=x 2-4x+1; ②y=2x 2; ③y=2x 2+4x ; ④y=-3x ;⑤y=-2x -1; ⑥y=mx 2+nx+p ; ⑦y =1x ; ⑧y=-5x 。

2、已知函数y=(m -1)x m2 +1+5x -3是二次函数,求m 的值。

二、二次函数的对称轴、顶点、最值1.抛物线y=2x 2+4x+m 2-m 经过坐标原点,则m 的值为 。

2.抛物y=x 2+bx+c 线的顶点坐标为(1,3),则b = ,c = .3.抛物线y =x 2+3x 的顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限4.若抛物线y =ax 2-6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( )5.抛物线y=x 2+2x -3的对称轴是 。

6.若二次函数y=3x 2+mx -3的对称轴是直线x =1,则m = 。

7.已知二次函数y=x 2-2ax+2a+3,当a= 时,该函数y 的最小值为0.8.已知二次函数y=mx 2+(m -1)x+m -1有最小值为0,则m = ______ 。

三、函数y=ax 2+bx+c 的图象和性质1.抛物线y=x 2+4x+9的对称轴是 。

2.通过配方,写出下列函数的开口方向、对称轴和顶点坐标:(1)y=12 x 2-2x+1 ; (2)y=-3x 2+8x -2; (3)y=-14x 2+x -4 3.已知函数y=2x 2,y=2(x -4)2,和y=2(x+1)2+3。

(1)分别说出各个函数图象的开口方、对称轴和顶点坐标。

(2)分析分别通过怎样的平移。

可以由抛物线y=2x 2得到抛物线y=2(x -4)2和y=2(x+1)2+3?4.试写出抛物线y=3x 2经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标。

(1)右移2个单位;(2)左移23个单位;(3)先左移1个单位,再右移4个单位。

四、二次函数的增减性1.二次函数y=3x 2-6x+5,当x>1时,y 随x 的增大而 ;当x<1时,y 随x 的增大而 ; 当x=1时,函数有最 值是 。

二次函数各知识点、考点、典型例题及对应练习(超全)

二次函数各知识点、考点、典型例题及对应练习(超全)

二次函数专题一:二次函数的图象与性质考点1.二次函数图象的对称轴和顶点坐标二次函数的图象是一条抛物线,它的对称轴是直线x=-2b a ,顶点坐标是(-2ba,244ac b a -).例 1 已知,在同一直角坐标系中,反比例函数5y x=与二次函数22y x x c =-++的图像交于点(1)A m -,.(1)求m 、c 的值;(2)求二次函数图像的对称轴和顶点坐标.考点2.抛物线与a 、b 、c 的关系抛物线y=ax 2+bx+c 中,当a>0时,开口向上,在对称轴x=-2ba的左侧y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a<0时,开口向下,在对称轴的右侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小.例2 已知2y ax bx =+的图象如图1所示,则y ax b =-的图象一定过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限考点3.二次函数的平移当k>0(k<0)时,抛物线y=ax 2+k (a ≠0)的图象可由抛物线y=ax 2向上(或向下)平移|k|个单位得到;当h>0(h<0)时,抛物线y=a (x-h )2(a ≠0)的图象可由抛物线y=ax 2向右(或向左)平移|h|个单位得到.例3 把抛物线y=3x 2向上平移2个单位,得到的抛物线是( ) A.y=3(x+2)2 B.y=3(x-2)2 C.y=3x 2+2 D.y=3x 2-2图1专题练习一1.对于抛物线y=13-x 2+103x 163-,下列说法正确的是( ) A.开口向下,顶点坐标为(5,3) B.开口向上,顶点坐标为(5,3) C.开口向下,顶点坐标为(-5,3) D.开口向上,顶点坐标为(-5,3) 2.若抛物线y=x 2-2x+c 与y 轴的交点为(0,-3),则下列说法不正确的是( ) A.抛物线开口向上 B.抛物线的对称轴是x=1 C.当x=1时,y 的最大值为-4D.抛物线与x 轴交点为(-1,0),(3,0)3.将二次函数y=x 2的图象向左平移1个单位长度,再向下平移2个单位长度后,所得图象的函数表达式是________.4.小明从图2所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有_______.(填序号)专题复习二:二次函数表达式的确定 考点1.根据实际问题模型确定二次函数表达式例1 如图1,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD ,设AB 边长为x 米,则菜园的面积y (单位:米2)与x (单位:米)的函数关系式为 (不要求写出自变量x 的取值范围).考点2.根据抛物线上点的坐标确定二次函数表达式1.若已知抛物线上三点的坐标,则可用一般式:y=ax 2+bx+c (a ≠0);2.若已知抛物线的顶点坐标或最大(小)值及抛物线上另一个点的坐标,则可用顶点式:y=a (x-h )2+k (a ≠0);3.若已知抛物线与x 轴的两个交点坐标及另一个点,则可用交点式:y=a (x-x 1)(x-x 2)(a ≠0). 例2 已知抛物线的图象以A (-1,4)为顶点,且过点B (2,-5),求该抛物线的表达式.图2ABCD图1菜园墙例3 已知一抛物线与x 轴的交点是A (-2,0)、B (1,0),且经过点C (2,8). (1)求该抛物线的解析式; (2)求该抛物线的顶点坐标. 专项练习二1.由于世界金融危机的不断蔓延,世界经济受到严重冲击.为了盘活资金,减少损失,某电器商场决定对某种电视机连续进行两次降价.若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数表达式为( )A.y=2a (x-1)B.y=2a (1-x )C.y=a (1-x 2)D.y=a (1-x )22.如图2,在平而直角坐标系xOy 中,抛物线y=x 2+bx+c 与x 轴交于A 、B 两点,点A 在x 轴负半轴,点B 在x 轴正半轴,与y 轴交于点C ,且tan ∠ACO=12,CO=BO ,AB=3,则这条抛物线的函数解析式是 .3.对称轴平行于y 轴的抛物线与y 轴交于点(0,-2),且x=1时,y=3;x=-1时y=1, 求此抛物线的关系式.4.推理运算:二次函数的图象经过点(03)A -,,(23)B -,,(10)C -,. (1)求此二次函数的关系式; (2)求此二次函数图象的顶点坐标;(3)填空:把二次函数的图象沿坐标轴方向最少..平移 个单位,使得该图象的顶点在原点. 专题三:二次函数与一元二次方程的关系考点1.根据二次函数的自变量与函数值的对应值,确定方程根的范围一元二次方程ax 2+bx+c=0就是二次函数y=ax 2+bx+c 当函数y 的值为0时的情况.例1 根据下列表格中二次函数y=ax 2+bx+c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx+c=0(a ≠0,a,b,c,为常数)的一个解x 的范围是( )x6.17 6.18 6.19 6.202y ax bx c =++0.03- 0.01- 0.02 0.04A.6 6.17x <<B.6.17 6.18x << C.6.18 6.19x <<D.6.19 6.20x <<图2考点2.根据二次函数的图象确定所对应的一元二次方程的根.二次函数y=ax 2+bx+c 的图象与x 轴的交点有三种情况:有两个交点、一个交点、没有交点;当二次函数y=ax 2+bx+c 的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax 2+bx+c=0的根.例2 已知二次函数y=-x 2+3x+m 的部分图象如图1所示,则关于x 的一元二次方程-x 2+3x+m=0的解为________.考点3.抛物线的交点个数与一元二次方程的根的情况当二次函数y=ax 2+bx+c 的图象与x 轴有两个交点时,则一元二次方程ax 2+bx+c=0有两个不相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴有一个交点时,则一元二次方程ax 2+bx+c=0有两个相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴没有交点时,则一元二次方程ax 2+bx+c=0没有实数根.反之亦然.例3 在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是( ) A.3B.2C.1D.0专项练习三1.抛物线y=kx 2-7x-7的图象和x 轴有交点,则k 的取值范围是________.2.已知二次函数22y x x m =-++的部分图象如图2所示,则关于x 的一元二次方程220x x m -++=的解为 .3.已知函数2y ax bx c =++的图象如图3所示,那么关于x 的方程220ax bx c +++= 的根的情况是( )A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根4. 二次函数2(0)y ax bx c a =++≠的图象如图4所示,根据图象解答下列问题:(1)写出方程20ax bx c ++=的两个根.(2)写出不等式20ax bx c ++>的解集.(3)写出y 随x 的增大而减小的自变量x 的取值范围.(4)若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围.图1。

二次函数知识点、考点、典型试题(附答案详解)

二次函数知识点、考点、典型试题(附答案详解)

二次函数知识点、考点、典型试题集锦(带详细解析答案)考点1:二次函数的图象和性质一、考点讲解:1.二次函数的定义:形如c bx ax y ++=2(a ≠0,a ,b ,c 为常数)的函数为二次函数.2.二次函数的图象及性质:⑴ 二次函数y=ax 2(a ≠0)的图象是一条抛物线,其顶点是原点,对称轴是y 轴;当a >0时,抛物线开口向上,顶点是最低点;当a <0时,抛物线开口向下,顶点是最高点;a 越小,抛物线开口越大.y=a(x -h)2+k 的对称轴是x=h ,顶点坐标是(h ,k )。

⑵ 二次函数c bx ax y ++=2的图象是一条抛物线.顶点为(-2b a ,244ac b a -),对称轴x=-2b a ;当a >0时,抛物线开口向上,图象有最低点,且x >-2b a ,y 随x 的增大而增大,x <-2ba ,y 随x 的增大而减小;当a <0时,抛物线开口向下,图象有最高点,且x >-2b a ,y 随x 的增大而减小,x <-2ba ,y 随x 的增大而增大.⑶ 当a >0时,当x=-2b a 时,函数有最小值244ac b a -;当a <0时,当 x=-2b a 时,函数有最大值244ac b a -。

3.图象的平移:将二次函数y=ax 2 (a ≠0)的图象进行平移,可得到y=ax 2+c ,y=a(x -h)2,y=a(x -h)2+k 的图象.⑴ 将y=ax 2的图象向上(c >0)或向下(c< 0)平移|c|个单位,即可得到y=ax 2+c 的图象.其顶点是(0,c ),形状、对称轴、开口方向与抛物线y=ax 2相同.⑵ 将y=ax 2的图象向左(h<0)或向右(h >0)平移|h|个单位,即可得到y=a(x -h)2的图象.其顶点是(h ,0),对称轴是直线x=h ,形状、开口方向与抛物线y=ax 2相同.⑶ 将y=ax 2的图象向左(h<0)或向右(h >0)平移|h|个单位,再向上(k>0)或向下(k<0)平移|k|个单位,即可得到y=a(x -h)2 +k 的图象,其顶点是(h ,k ),对称轴是直线x=h ,形状、开口方向与抛物线y=ax 2相同.注意:二次函数y=ax 2 与y=-ax 2 的图像关于x 轴对称。

二次函数知识点训练及答案

二次函数知识点训练及答案

二次函数知识点训练及答案一、选择题1.如图,抛物线y =ax 2+bx+c (a >0)过原点O ,与x 轴另一交点为A ,顶点为B ,若△AOB 为等边三角形,则b 的值为( )A 3B .﹣3C .﹣3D .﹣3【答案】B【解析】【分析】 根据已知求出B (﹣2,24b b a a-),由△AOB 为等边三角形,得到2b 4a =tan60°×(﹣2b a ),即可求解;【详解】解:抛物线y =ax 2+bx+c (a >0)过原点O ,∴c =0,B (﹣2,24b b a a-), ∵△AOB 为等边三角形, ∴2b 4a=tan60°×(﹣2b a ), ∴b =﹣3故选B .【点睛】本题考查二次函数图象及性质,等边三角形性质;能够将抛物线上点的关系转化为等边三角形的边关系是解题的关键.2.对于二次函数()21202y ax a x a ⎛⎫=+-< ⎪⎝⎭,下列说法正确的个数是( ) ①对于任何满足条件的a ,该二次函数的图象都经过点()2,1和()0,0两点; ②若该函数图象的对称轴为直线0x x =,则必有001x <<;③当0x ≥时,y 随x 的增大而增大;④若()14,P y ,()()24,0Q m y m +>是函数图象上的两点,如果12y y >总成立,则112a ≤-. A .1个B .2个C .3个D .4个 【答案】B【解析】【分析】根据二次函数的图象与性质(对称性、增减性)逐个判断即可.【详解】 对于()21202y ax a x a ⎛⎫=+-< ⎪⎝⎭当2x =时,142(2)12y a a =+-=,则二次函数的图象都经过点()2,1当0x =时,0y =,则二次函数的图象都经过点()0,0则说法①正确 此二次函数的对称轴为1212124a x a a-=-=-+ 0a <Q1114a∴-+> 01x ∴>,则说法②错误 由二次函数的性质可知,抛物线的开口向下,当114x a <-+时,y 随x 的增大而增大;当114x a ≥-+时,y 随x 的增大而减小 因11104a-+>> 则当1014x a <-≤+时,y 随x 的增大而增大;当114x a≥-+时,y 随x 的增大而减小 即说法③错误 0m >Q44m ∴+>由12y y >总成立得,其对称轴1144x a=-+≤ 解得112a ≤-,则说法④正确 综上,说法正确的个数是2个故选:B .【点睛】本题考查了二次函数的图象与性质(对称性、增减性),熟练掌握二次函数的图象与性质是解题关键.3.如图,二次函数y =ax 2+bx +c 的图象过点(-1,0)和点(3,0),有下列说法:①bc <0;②a +b +c >0;③2a +b =0;④4ac >b 2.其中错误的是( )A .②④B .①③④C .①②④D .②③④【答案】C【解析】【分析】 利用抛物线开口方向得到0a >,利用对称轴在y 轴的右侧得到0b <,利用抛物线与y 轴的交点在x 轴下方得到0c <,则可对A 进行判断;利用当1x =时,0y <可对B 进行判断;利用抛物线的对称性得到抛物线的对称轴为直线12b x a=-=,则可对C 进行判断;根据抛物线与x 轴的交点个数对D 进行判断.【详解】解:Q 抛物线开口向上, 0a ∴>,Q 对称轴在y 轴的右侧,a ∴和b 异号,0b ∴<,Q 抛物线与y 轴的交点在x 轴下方,0c ∴<,0bc ∴>,所以①错误;Q 当1x =时,0y <,0a b c ∴++<,所以②错误;Q 抛物线经过点(1,0)-和点(3,0),∴抛物线的对称轴为直线1x =, 即12b a-=, 20a b ∴+=,所以③正确;Q 抛物线与x 轴有2个交点,∴△240b ac =->,即24ac b <,所以④错误.综上所述:③正确;①②④错误.故选:C .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数2(0)y ax bx c a =++≠,二次项系数a 决定抛物线的开口方向和大小;一次项系数b 和二次项系数a 共同决定对称轴的位置(左同右异).常数项c 决定抛物线与y 轴交点(0,)c .抛物线与x 轴交点个数由△决定.4.将抛物线243y x x =-+平移,使它平移后图象的顶点为()2,4-,则需将该抛物线( )A .先向右平移4个单位,再向上平移5个单位B .先向右平移4个单位,再向下平移5个单位C .先向左平移4个单位,再向上平移5个单位D .先向左平移4个单位,再向下平移5个单位【答案】C【解析】【分析】先把抛物线243y x x =-+化为顶点式,再根据函数图象平移的法则进行解答即可. 【详解】∵抛物线243y x x =-+可化为()221y x =--∴其顶点坐标为:(2,−1),∴若使其平移后的顶点为(−2,4)则先向左平移4个单位,再向上平移5个单位. 故选C.【点睛】本题考查二次函数图像,熟练掌握平移是性质是解题关键.5.如图,二次函数y =ax 2+bx +c 的图象过点A (3,0),对称轴为直线x =1,给出以下结论:①abc <0;②3a +c =0;③ax 2+bx ≤a +b ;④若M (﹣0.5,y 1)、N (2.5,y 2)为函数图象上的两点,则y 1<y 2.其中正确的是( )A .①③④B .①②3④C .①②③D .②③④【答案】C【解析】【分析】根据二次函数的图象与性质即可求出答案.【详解】解:①由图象可知:a <0,c >0, 由对称轴可知:2b a ->0, ∴b >0,∴abc <0,故①正确;②由对称轴可知:2b a -=1, ∴b =﹣2a ,∵抛物线过点(3,0),∴0=9a+3b+c ,∴9a ﹣6a+c =0,∴3a+c =0,故②正确;③当x =1时,y 取最大值,y 的最大值为a+b+c ,当x 取全体实数时,ax 2+bx+c≤a+b+c ,即ax 2+bx≤a+b ,故③正确;④(﹣0.5,y 1)关于对称轴x =1的对称点为(2.5,y 1):∴y 1=y 2,故④错误;故选:C .【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.6.如图是二次函数2y ax bx c =++的图象,有下面四个结论:0abc >①;0a b c ②-+>; 230a b +>③;40c b ->④,其中正确的结论是( )A .①②B .①②③C . ①③④D . ①②④【答案】D【解析】【分析】 根据抛物线开口方向得到a 0>,根据对称轴02b x a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >;1x =-时,由图像可知此时0y >,所以0a b c -+>;由对称轴123b x a =-=,可得230a b +=;当2x =时,由图像可知此时0y >,即420a bc ++>,将23a b =-代入可得40c b ->.【详解】①根据抛物线开口方向得到0a >,根据对称轴02b x a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >,故①正确.②1x =-时,由图像可知此时0y >,即0a b c -+>,故②正确.③由对称轴123b x a =-=,可得230a b +=,所以230a b +>错误,故③错误; ④当2x =时,由图像可知此时0y >,即420a bc ++>,将③中230a b +=变形为23a b =-,代入可得40c b ->,故④正确.故答案选D.【点睛】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。

二次函数知识点归纳及相关习题(含答案)

二次函数知识点归纳及相关习题(含答案)
2

a 的符号
开口方向 向上
顶点坐标
对称轴
性质
a0
0 ,0 0 ,0
y轴
x 0 时, y 随 x 的增大而增大; x 0 时, y 随 x 的增大而减小;x 0 时,y 有最小值 0 . x 0 时, y 随 x 的增大增大而减小; x 0 时, y 随 x 的增大而增大; x 0 时, y 有最 大值 0 .
2
二次函数图象的对称:二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达
关于 x 轴对称 y ax 2 bx c 关于 x 轴对称后,得到的解析式是 y ax 2 bx c ;
y a x h k 关于 x 轴对称后,得到的解析式是 y a x h k ;
2
二次函数由特殊到一般, 可分为以下几种形式: ① y ax ; ② y ax k ; ③ y ax h ;
2 2
2
b 4ac b 2 . ,k 2a 4a
2

顶点式: y a( x h) 2 k ( a , h , k 为常数, a 0 ) ; 两根式: y a( x x1 )( x x2 ) ( a 0 , x1 , x2 是抛物线与 x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式, 但并非所有的二次函数都可以写成交 2 点式,只有抛物线与 x 轴有交点,即 b 4ac 0 时,抛物线的解析式才可以用交点式表示.二次 函数解析式的这三种形式可以互化. 二次函数 y ax 的性质
抛物线与 x 轴的交点:二次函数 y ax bx c 的图像与 x 轴的两个交点的横坐标 x1 、 x 2 ,

二次函数的练习题及答案

二次函数的练习题及答案

二次函数的练习题及答案二次函数是高中数学中的重要内容,也是考试中常考的知识点之一。

掌握好二次函数的相关概念和解题方法,对于提高数学成绩和解决实际问题都有很大的帮助。

本文将通过一些练习题和答案的形式,帮助读者巩固和加深对二次函数的理解。

1. 练习题一:已知二次函数y = ax^2 + bx + c的图像经过点(1,4)和(2,1),求a、b、c的值。

解法:根据已知条件,将点(1,4)和(2,1)带入二次函数的方程,得到两个方程:a +b +c = 44a + 2b + c = 1解这个方程组,可以得到a、b、c的值。

2. 练习题二:已知二次函数y = ax^2 + bx + c的图像与x轴有两个交点,且交点的横坐标分别为2和5,求a、b、c的值。

解法:根据已知条件,可以得到两个方程:4a + 2b + c = 025a + 5b + c = 0同样地,解这个方程组,可以得到a、b、c的值。

3. 练习题三:已知二次函数y = ax^2 + bx + c的图像经过点(-1,0),且在点(2,3)处的切线斜率为4,求a、b、c的值。

解法:根据已知条件,可以得到两个方程:a -b +c = 04a + 2b + c = 3同样地,解这个方程组,可以得到a、b、c的值。

通过以上几个练习题,我们可以看到,解二次函数的题目,关键在于将已知条件转化为方程,然后通过解方程组得到未知数的值。

这是一个基本的解题思路,需要我们熟练掌握。

除了解题方法,我们还可以通过一些图像来加深对二次函数的理解。

例如,我们可以画出二次函数y = x^2 + x - 2的图像,观察图像的开口方向、顶点位置以及与x轴的交点等特征。

这样可以帮助我们更好地理解二次函数的性质和特点。

此外,二次函数还有一些重要的应用,例如在物理学中,二次函数可以用来描述自由落体运动的轨迹;在经济学中,二次函数可以用来描述成本、收益等与产量之间的关系。

通过了解这些应用,我们可以将抽象的数学知识与实际问题联系起来,提高数学的应用能力。

二次函数知识点总结及典型练习

二次函数知识点总结及典型练习

二次函数知识点总结及典型练习二次函数知识点总结及典型练习二次函数知识点总结一.定义:一般地,如果ya某2b某c(a,b,c是常数,a0),那么y叫做某的二次函数.练习:当m取何值时,函数是y(m2)某m22是二次函数?二、几种特殊的二次函数的图像特征如下:函数解析式开口方对称轴顶点坐标向某0(0,0)(y轴)ya某2当a0某0(y轴)(0,k)ya某2k时2某m(m,0)ya某m开口向2某m上(m,k)ya某mk当a0ya某某1某某2时某某2某12开口向2b下ya某2b某cb4acb某,()最值2a2a4a二次函数的最值问题(1)一般式:y=a某2+b某+c中,当a>0时,某=___________,y时,某=___________,y 最大=___________.(2)顶点式:ya某mk,若a>0,当某=___________,y2最小最小=___________;当a2.抛物线y=某2+a某+b向左平移2个单位再向上平移3个单位得到抛物线y=某2-2某+1,则()A.a=2,b=-2B.a=-6,b=6C.a=-8,b=14D.a=-8,b=18四、函数的增减性1.已知(-2,y1),(-1,y2),(3,y3)是二次函数y=某2-4某+m上的点,则y1,y2,y3从小到大用“2.已知二次函数y=a某+b某+c的图象如图所示,下面结论:(1)a+b+c0;(3)abc>0;(4)b=2a.其中正确的结论有()A.4个B.3个C.2个D.1个3.已知二次函数y=a某2+b某+c(a≠0)的图象如右上图所示,给出以下结论:①a+b+c八.求当某为何值时,y>0,y=0,y扩展阅读:二次函数知识点总结及典型练习二次函数知识点总结一.定义:一般地,形如___________________________________,那么y 叫做某的二次函数.练习:当m取何值时,函数是y(m2)某二、几种特殊的二次函数的图像特征如下:函数解析式ya某2m22是二次函数?开口方向对称轴顶点坐标最值当a0时开ya某2k口_______ya某m2ya某hk2当a0时开口________ya某某1某某2ya某2b某c二次函数的最值问题(1)一般式:y=a某2+b某+c中,当a>0时,某=___________,y时,某=___________,y最大=___________.(2)顶点式:ya某hk,若a>0,当某=___________,y2最小最小=___________;当a1.抛物线y11(某2)21可由抛物线y某2()而得到。

二次函数知识点及重点题练习答案解析

二次函数知识点及重点题练习答案解析
在第一象限内,图象都下凹.
答案
基础训练
1
3
1.函数 y= 的大致图象是( B ).
【解析】取值验证可知,函数
1
y= 3 的大致图象是选项
B 中的图象.
答案
解析
2
2.若二次函数 y=-2x -4x+t 的图象的顶点在 x 轴上,则 t 的值是( C ).
A.-4
B.4
C.-2
D.2
【解析】∵二次函数的图象的顶点在 x 轴上,∴Δ=16+8t=0,可
2.五种常见幂函数的图象
答案
3.幂函数的性质
(1)当 α>0 时,幂函数 y=xα 的图象过点 (0,0) 和 (1,1) ,在(0,+∞)上
是 增函数 .在第一象限内,当 α>1 时,图象下凹,当 0<α<1 时,图象上凸.
(2)当 α<0 时,幂函数 y=xα 的图象过点 (1,1) ,在(0,+∞)上是 减函数 .
4
2
∴h(m)=
-2m +
2
17 3
4
, < m ≤ 1,
4
3
-3 + 4m + 2,0 < m ≤ .
4
点拨:解决二次函数最值问题的关键是抓住“三点一轴”,其中“三点”
是指区间的两个端点和抛物线的顶点,“一轴”指的是对称轴,结合配方法,
根据函数的单调性及分类讨论思想即可解题.
点拨
【追踪训练 2】已知函数 f(x)=-x2+2ax+1-a 在[0,1]上的最大值为 2,求
当 a≠0 时,f(x)图象的对称轴为直线
3-
x= ,

二次函数知识点总结及典型练习

二次函数知识点总结及典型练习

二次函数知识点总结及典型试题知识点一:二次函数解析式种类⑴一般式:y=ax 2+bx+c(a≠0,a 、b 、c 为常数) ⑵顶点式:y=a(x-h)2+k (a ≠0) ⑶特殊式:y=ax 2;y=ax 2+c ;y=ax 2+bx (a ≠0) ⑷交点式:y=a(x-x 1)(x-x 2) (a ≠0)1.函数y=(m +2)x 22 m +2x -1是二次函数,求m 的值.2.函数y=(m -n )x 2+mx +n 是二次函数的条件是( )A .m 、n 为常数,且m ≠0B .m 、n 为常数,且m ≠nC .m 、n 为常数,且n ≠0D .m 、n 可以为任何常数3.用配方法将二次函数y=4x 2-24x+26写成y=a(x-h)2+k 的形式是4. 用配方法将二次函数y=2x 2﹣4x ﹣6化为y=a (x ﹣h )2+k 的形式。

5.利用配方法将二次函数y=x 2+2x +3化为y=a (x ﹣h )2+k (a ≠0)的形式为( )A .y=(x ﹣1)2﹣2B .y=(x ﹣1)2+2C .y=(x +1)2+2D .y=(x +1)2﹣26.将二次函数y=x 2﹣2x +3化为y=(x ﹣h )2+k 的形式,结果为( )A .y=(x +1)2+4B .y=(x ﹣1)2+4C .y=(x +1)2+2D .y=(x ﹣1)2+2 知识点二:二次函数图象的画法⑴描点法(列表、描点、连线)⑵平移法:y=ax 2→y=ax 2+c ; y=ax 2→y=a(x+h)2; y=ax 2→y=a(x+h)2→y=a(x+h)2+k 具体步骤:第一步:将一般式变形为顶点式(配方法)第二步:找出原型函数并用描点法画出其图象第三步:先左右平移,再上下平移。

(移动规律是“上加下减,左加右减”)。

(3)四点法(与x 轴交点坐标,与y 轴交点坐标,顶点坐标)1.函数y=1/2(x+3)2-2的图象可由函数y=1/2x 2的图象向 平移3个单位,再向 平移2个单位得到。

二次函数知识点及练习

二次函数知识点及练习

二次函数综合一、二次函数的定义定义:形如2y ax bx c =++〔0a ≠,a ,b ,c 为常数〕的函数称为二次函数。

注意点: 1、二次项系数不等于零;2、强调未知数最高次幂为2; 3、先化简成一般式,再判断是否为二次函数。

练习:1.以下各式中,y 是x 的二次函数的是 ( ) A .21y x =B .()()22+121y x x =--+C .()212y x x =-+-D .223y x x =+.3()()m y m n x m n x-=++-为二次函数,那么m 的值为 ,n 的取值范围为 .二、二次函数的图像及性质 【1】函数四要素1、开口:① 0a >,开口向上;0a <,开口向下;② ||a 越大开口越小;③ ||a 相等:开口大小、形状都一样。

2、对称轴:abx 2-=,是一条平行于y 轴的直线。

3、顶点坐标2424b ac b aa ⎛⎫-- ⎪⎝⎭, 。

4、24b ac ∆=-〔用于判断二次函数及x 轴交点的个数〕。

0∆>,抛物线及x 轴有两个交点;0∆=,抛物线及x 轴有一个交点,即顶点在x 轴上;0∆<,抛物线及x 轴没有交点。

练习:225y x x =-+的开口方向是 ,顶点坐标是 对称轴是 ;c bx ax y ++=2的顶点坐标为〔1,4〕,且及22x y =的开口大小一样,方向相反,那么该二次函数的解析式 。

假设抛物线234y x ax =++的顶点在x 轴的负半轴上,那么a = ; 3.〔2021•烟台〕二次函数()2231y x =-+,以下说法:①其图象的开口向下;②其图象顶点坐标为〔3,﹣1〕;③其图象的对称轴为直线﹣3;④当x <3时,y 随x 的增大而减小.那么其中说法正确的有〔 〕 A .1个 B .2个 C .3个 D .4个4.抛物线()2323y x m x =-+-的顶点在y 轴上,那么m = ;【2】函数平移方法一:顶点式平移: ()2y a x h k =-+ 方法二:一般式平移:〔1〕c bx ax y ++=2沿y 轴平移:向上〔下〕平移m 个单位:c bx ax y ++=2变成m c bx ax y +++=2〔或m c bx ax y -++=2〕;〔2〕c bx ax y ++=2沿x 轴平移:向左〔右〕平移m 个单位:c bx ax y ++=2变成c m x b m x a y ++++=)()(2〔或c m x b m x a y +-+-=)()(2〕平移规律:在原有函数的根底上“值正右移,负左移;值正上移,负下移〞.概括成八个字“左加右减,上加下减〞. 练习:23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为〔 〕A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =--22y x mx n =-+向上平移2个单位长度,再向左平移3个单位长度得到抛物线2241y x x =-+,那么m = ,n = ;【3】a ,b ,c 符号判断及相关代数式及0的大小比拟练习:2()y a x m n =++的图象如图,那么一次函数y mx n =+的图象经过〔〕A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限2(0)y ax bx c a =++≠的图象如下图,那么以下结论:0ac >①;②方程20ax bx c ++=的两根之和大于0;y ③随x 的增大而增大;④0a b c -+<,其中正确的个数〔 〕A .4个B .3个C .2个D .1个2的局部图象,由图象可知不等式2<0的解集是〔 〕A .﹣1<x <5B .x >5C .x <﹣1且x >5D .x <﹣1或x >5OyxxyO52xyO题1 题2题3 4.抛物线的图角如图,那么以下结论:①>0;②;③>;④<1.其中正确的结论是〔 〕.〔A 〕①② 〔B 〕②③ 〔C 〕②④ 〔D 〕③④5.设A 1(2)y -,,B 2(1)y ,,C 3(2)y ,是抛物线2(1)y x a =-++上的三点,那么1y ,2y ,3y 的大小关系为〔 〕A .213y y y >>B .312y y y >>C .321y y y >>D .312y y y >>6.二次函数2y ax bx c =++的图像如下图,那么一次函数y bx c =+和反比例函数a y x=在同一平面直角坐标系中的图像大致是〔 〕Oyxy x O y x O yxx y OOA .B .C .D .7.设二次函数2,当x ≤1时,总有y ≥0,当1≤x ≤3时,总有y ≤0,那么c 的取值范围是〔 〕A .3B .c ≥3C .1≤c ≤3D .c ≤3三、二次函数解析式的表示方法1. 一般式:2y ax bx c =++〔a ,b ,c 为常数,0a ≠〕;2. 顶点式:2()y a x h k =-+〔a ,h ,k 为常数,0a ≠〕;*3. 交点式:12()()y a x x x x =--〔0a ≠,1x ,2x 是抛物线及x 轴两交点的横坐标〕.练习:A 〔0,3〕、B 〔1,3〕、C 〔-1,1〕三点,求该二次函数的解析式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数各知识点练习题(十份)强化练习一 一、选择题:1.对于任意实数m ,下列函数一定是二次函数的是( )A .22)1(x m y -=B .22)1(x m y +=C .22)1(x m y +=D .22)1(x m y -= 2.下列各式中,y 是x 的二次函数的是 ( )A .xy=x 2+1 B.x 2+y –2= 0 C.y 2–ax =–2 D.x 2–y 2+1=03.若二次函数y =(m + 1)x 2 + m 2– 2m – 3的图象经过原点,则m 的值必为 ( ) A .– 1和3 B.– 1 C.3 D.无法确定 4.对于抛物线y=x 2+2和y=x 2的论断:(1)开口方向不同;(2)形状完全相同;(3)对称轴相同.其中正确的有( )A .0个B .1个C .2个D .3个5.根据如图的程序计算出函数值,若输 入的x 的值为32,则输出的结果为( ). A .72 B.94 C.12 D.92二、填空题:6.当=m 时,函数m x m x m m y +-+--=)2()32(22是二次函数. 7.当k 为 值时,函数1)1(2+-=+kkx k y 为二次函数.8.如果函数1)3(232++-=+-mx x m y m m是二次函数,那么m 的值为 .9.已知函数72)3(--=mx m y 是二次函数,则m 的值为 .10.已知抛物线y =(m – 1)x 2,且直线y = 3x + 3 – m 经过一、二、三象限,则m 的范围是 .11.若函数y =(m 2 – 1)x 3 +(m + 1)x 2的图象是抛物线,则m = . 12.已知函数mmmx y -=2,当m= 时,它是二次函数;当m= 时,抛物线的开口向上;当m= 时,抛物线上所有点的纵坐标为非正数. 13.抛物线9)1(22-++=k x k y ,开口向下,且经过原点,则k= .14.点A (-2,a )是抛物线2x y =上的一点,则a= ; A 点关于原点的对称点B 是 ;A 点关于y 轴的对称点C 是 ;其中点B 、点C 在抛物线2x y =上的是输入x y=x+2 -2≤x ≤-1 y=x 2 -1<x ≤1 y=x+21<x ≤2输出y 值第5题图.15.若抛物线c x x y +-=42的顶点在x 轴上,则c 的值是 .16.已知函数42)1(22-++-=m x x m y .当m 时,函数的图象是直线;当m时,函数的图象是抛物线;当m 时,函数的图象是开口向上且经过原点的抛物线.一、选择题1.在同一坐标系中,作y = 2x 2,y = – 2x 2,y = 12 x 2的图象,它们的共同特点是( )A.都是关于x 轴对称,抛物线开口向上B.都是关于y 轴对称,抛物线开口向下C.都是关于原点对称,抛物线的顶点都是原点D.都是关于y 轴对称,抛物线的顶点都是原点2.已知原点是抛物线y =(m + 1)x 2的最高点,则m 的范围是 ( ) A .m <– 1 B.m <1 C.m >– 1 D.m >– 23.已知二次函数y = – a x 2,下列说法不正确的是 ( ) A .当a >0,x ≠0时,y 总取正值 B .当a <0,x <0时,y 随x 的增大而减小C .当a <0时,函数图象有最低点,即y 有最小值D .当a <0时,y = – a x 2的图象的对称轴是y 轴4.对于y = ax 2(a ≠0)的图象,下列叙述正确的是( ) A.a 越大开口越大,a 越小开口越小 B.a 越大开口越小,a 越小开口越大C.| a |越大开口越小,| a |越小开口越大D.| a |越大开口越大,| a |越小开口越小 5.直线y = ax 与抛物线y = ax 2(a ≠0) ( ) A.只相交于一点(1,a ) B.相交于两点(0,0),(1,a ) C.没有交点 D.只相交于一点(0,0)6.在半径为4cm 的圆中,挖去一个半径为x cm 的圆面,剩下圆环的面积为y cm 2,则y 与x 的函数关系式为 ( ) A.y = πx 2 – 4 B.y =π(2 – x ) 2 C.y = – ( x + 4 ) 2 D.y = –πx 2 + 16π 二、填空题 7.函数232x y =的开口 ,对称轴是 ,顶点坐标是 . 8.当m= 时,抛物线mm x m y --=2)1(开口向下.9.已知函数1222)(--+=k kx k k y 是二次函数,它的图象开口 ,当x 时,y 随x的增大而增大. 10.已知抛物线102-+=k kkx y 中,当0>x 时,y 随x 的增大而增大,则k 值为 .11.已知抛物线2ax y =经过点(1,3),当y=9时,x 的值为 .12.如果抛物线y = ax 2和直线y = x + b 都经过点P (2,6),则a = ,b = .13.把函数y = – 3x 2的图象沿x 轴对折,得到的图象的解析式是 .14.经过A (0,1)点作一条与x 轴平行的直线与抛物线y = 4x 2相交于点M 、N ,则M 、N 两点的坐标分别为 . 15.函数y = - ( 2 x ) 2的图象是 ,顶点坐标是 ,对称轴是 ,开口向 ,当x = 时,函数有最 值;在对称轴左侧,y 随x 的增大而 ,在对称轴右侧,y 随x 的增大而 .一、选择题1.(宁安市实验区2004年中考)函数42-=x y 的图象与y 轴的交点坐标是 ( )A.(2,0)B.(2-,0)C.(0,4)D.(0,4-)2.在同一坐标系中,函数23x y =,23x y -=,231x y =的图象的共同特点是( ) A.都是关于x 轴对称,抛物线开口向上 B.都是关于y 轴对称,抛物线开口向下C.都是关于原点对称,抛物线的顶点都是原点D.都是关于y 轴对称,抛物线的顶点都是原点3.在同一直角坐标系中,y=ax 2+b 与y=ax+b(a 、b 都不为0)的图象的大致位置是( )二、填空题 4.抛物线9412-=x y 的开口向 ,对称轴是 ,顶点坐标是 ,它可以看作是由抛物线241x y =向 平移 个单位得到的.5.函数332+-=x y ,当x 时,函数值y 随x 的增大而减小.当x 时,函数取得最 值y= .6.如果将二次函数22y x =的图象沿y 轴向上平移1个单位,那么所得图象的函数解析式 是 .填空题1.抛物线2)1(-=x y 的开口 ,对称轴是 ,顶点坐标是 ,它可以看作是由抛物线2x y =向 平移 个单位得到的.2.函数2)1(3+-=x y ,当x 时,函数值y 随x 的增大而减小.当x 时,函数取得最 值,最 值y= .3.将抛物线2ax y =向左平移后所得新抛物线的顶点横坐标为-2,且新抛物线经过点 (1,3),则a 的值为 .一、选择题1.将抛物线1)4(22--=x y 如何平移可得到抛物线22x y =( ) A .向左平移4个单位,再向上平移1个单位 B .向左平移4个单位,再向下平移1个单位 C .向右平移4个单位,再向上平移1个单位 D .向右平移4个单位,再向下平移1个单位 2.二次函数2)1(212+-=x y 的图象可由221x y =的图象( )A .向左平移1个单位,再向下平移2个单位得到B .向左平移1个单位,再向上平移2个单位得到C .向右平移1个单位,再向下平移2个单位得到D .向右平移1个单位,再向上平移2个单位得到3.把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,得到抛物线532+-=x x y ,则有( )A .b =3,c=7B .b= -9,c= -15C .b=3,c=3D .b= -9,c=21 二、填空题4.把函数22x y =的图象向右平移3个单位,再向下平移2个单位,得到的二次函数解析式是 .5.抛物线m x x y +-=42的顶点在x 轴上,其顶点坐标是 ,对称轴是 .6.把抛物线223x y -=向左平移3个单位,再向下平移4个单位,所得的抛物线的函数关系式为 . 7.抛物线22121x x y -+=可由抛物线221x y -=向 平移 个单位,再向 平移 个单位而得到.强化练习六 一、选择题1.二次函数y=x 2-2x+1的顶点在( )A .第一象限 B.x 轴上 C.y 轴上 D.第四象限2.下列关于抛物线y=x 2+2x+1的说法中, 正确的是( )A .开口向下 B.对称轴是直线x=1 C.与x 轴有两个交点 D.顶点坐标是(-1,0) 3.若抛物线y=x 2-2mx+m 2+m+1的顶点在第二象限,则常数m 的取值范 围是( ) A .m<-1或m>2 B.-1<m<2 C.-1<m<0 D.m>14.二次函数y=1-6x-3x 2的顶点坐标和对称轴分 别是( ) A.顶点(1,4) 对称轴x=1 B.顶点(-1,4) 对称轴x= -1 C.顶点(1,4) 对称轴x=4 D.顶点(-1,4) 对称轴x=45.如图,观察二次函数y=ax 2+bx+c 的图象可知点(b ,c )一定在第( )象限. A.一 B.二 C.三 D.四6.为了备战世界杯,中国足球队在某次集训中,一 队员在距离球门12米处挑射,正好射中了2.4米高的球门横梁.若足球运行的路线是抛物线c bx ax y ++=2(如图),则下列结论:①a <601-;②601-<a <0; ③a-b+c >0;④0<b<-12a.其中正确的是( )A .①③B .①④C .②③ D.②④二、填空题7.二次函数x x y 22--=的对称轴是 .8.二次函数1222--=x x y 的图象的顶点是 ,当x 时,y 随x 的增大而减小. 9.抛物线642--=x ax y 的顶点横坐标是-2,则a = .10.抛物线c x ax y ++=22的顶点是)1,31(-,则a = ,c = .11.若抛物线y=(m-1)x 2+2mx+2m-1的图象的最低点的纵坐标为零,则m=_______.12.已知抛物线y=ax 2+bx+c 经过点A(-2,7),B(6,7),C(3,-8),则该抛物线上纵坐标为-8的另一点的坐标是_________.xyO 第5题图强化练习七 一、选择题1.已知二次函数b x a y +-=2)1(有最小值–1,则a 与b 之间的大小关系是( ) A .a <b B .a=b C .a >b D .不能确定2.二次函数)0(2≠++=a c bx ax y ,当x=1时,函数y 有最大值,设),(11y x ,(),22y x是这个函数图象上的两点,且211x x <<,则( )A.21,0y y a >>B.21,0y y a <>C.21,0y y a <<D.21,0y y a >< 3.抛物线1422-+=x x y 的顶点关于原点对称的点的坐标是( ) A.(-1,3) B.(-1,-3) C.(1,3) D.(1,-3) 二、填空题4.抛物线422-+=x x y 的开口向 ;对称轴是 ;顶点为 . 5.对于二次函数m x x y +-=22,当x= 时,y 有最小值. 6.已知二次函数m x x y +-=62的最小值为1,则m = . 7.如图,矩形ABCD 的长AB =4cm ,宽AD =2cm.O 是AB 的中点,OP ⊥AB ,两半圆的直径分别为AO 与OB .抛物线的顶点是O ,关于OP 对称且经过C 、D 两点,则图中阴影部分的面积是 cm 2. 8.二次函数3)1(212-+=x y 的对称轴是 ,在对称轴的左侧,y 随x 的增大而 . 9.抛物线122--=x x y 的对称轴是 ,根据图象可知,当x 时,y 随x 的增大而减小. 三、解答题: 10.某产品每件成本是120元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间关系如下表:x (元) 130 150 165y (件) 70 50 35AC BD Pxy (第6题)ABCD P 若日销售量y 是销售价x 的一次函数,要获得最大销售利润,每件产品的销售价定为多少元?此时每日销售利润是多少?11.如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AB =2,DC =22,点P 在边BC 上运动(与B 、C 不重合),设PC =x ,四边形ABPD 的面积为y.⑴求y 关于x 的函数关系式,并写出自变量x 的取值范围; ⑵若以D 为圆心,12为半径作⊙D ,以P 为圆心,以PC 的长为半径作⊙P ,当x为何值时,⊙D 与⊙P 相切?并求出这两圆相切时四边形ABPD 的面积.12.某食品零售店为仪器厂代销一种面包,未售出的面包可退回厂家,统计销售情况发现:当这种面包的单价定为7角时,每天卖出160个.在此基础上,这种面包的单价每提高1角时,该零售店每天就会少卖出20个.考虑了所有因素后该零售店每个面包的成本是5角. 设这种面包的单价为x (角),零售店每天销售这种面包所获得的利润为y (角).⑴用含x 的代数式分别表示出每个面包的利润与卖出的面包个数; ⑵求y 与x 之间的函数关系式;⑶当面包单价定为多少时,该零售店每天销售这种面包获得的利润最大?最大利润为多少?强化练习八 一、选择题1.已知:函数c bx ax y ++=2的图象如图:那么 函数解析式为( )A .322++-=x x yB .322--=x x yC .322+--=x x y D.322---=x x y2.若所求的二次函数的图象与抛物线1422--=x x y 有相同的顶点,并且在对称轴的左侧,y 随x 的增大而增大;在对称轴的右侧,y 随x 的增大而减小,则所求二次函数的函数关系式为 ( )A .y=-x 2+2x-4 B.y=ax 2-2ax-3(a >0) C .y=-2x 2-4x-5 D. y=ax 2-2ax+a-3(a <0) 二、解答题3.如图,在直角坐标系中,Rt △AOB 的顶点坐标分别为A(0,2),O(0,0),B(4,0),把△AOB 绕O 点按逆时针方向旋转90°得到△COD. (1) 求C ,D 两点的坐标;(2) 求经过C ,D ,B 三点的抛物线的解析式;(3)设(2)中抛物线的顶点为P ,AB 的中点为M ,试判断△PMB 是钝角三角形.直角三角形还是锐角三角形,并说明理由.4.已知抛物线2(1)8y a x x b =-++的图象的一部分如图所示,抛物线的顶点在第一象限,且经过点A(0,-7)和点B. (1)求a 的取值范围;(2)若OA=2OB ,求抛物线的解析式.5.已知二次函数322+--=x x y 的图象与x 轴相交于A.B 两点,与y 轴交于C 点(如图所示),点D 在二次函数的图象上,且D 与C 关于对称轴对称,一次函数的图象过点B ,D.(1)求点D 的坐标;(2)求一次函数的解析式;(3)根据图象写出使一次函数值大于二次函数值的x 的取值范围;3 o-13 yx第1题图AB第6题图6.某涵洞是抛物线形,它的截面如图所示,现测得水面宽1.6m ,涵洞顶点O 到水面的距离为2.4m ,在图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么?7.如图,一位运动员推铅球,铅球行进高度y (m )与水平距离x (m )之间的关系是35321212++-=x x y ,问此运动员把铅球推出多远?8.某化工材料经销公司购进了一种化工原料共7000千克,购进价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价定为70元时,日均销售60千克;单价每降低1元,日均多售出2千克.在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算).设销售单价为x 元,日均获利为y 元.(1)求y 关于x 的二次函数关系式,并注明x 的取值范围;(2)将(1)中所求出的二次函数配方成ab ac a b x a y 44)2(22-++=的形式,写出顶点坐标;在直角坐标系画出草图;观察图象,指出单价定为多少元时日均获利最多,是多少?9.某公司生产的某种产品,它的成本是2元,售价是3元,年销售量为100万件.为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x (十万元)时,产品的年销售量将是原销售量的y 倍,且y 是x 的二次函数,它们的关系如下表:X (十万元)12…y11.51.8…(1)求y 与x 的函数关系式;(2)如果把利润看作是销售总额减去成本费和广告费,试写出年利润S (十万元)与广告费x (十万元)的函数关系式;(3)如果投入的年广告费为10~30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大?x O 第7题图 第10题图10.如图,在正方形ABCD 中,AB=2,E 是AD 边上一点(点E 与点A ,D 不重合).BE 的垂直平分线交AB 于M ,交DC 于N .(1)设AE=x ,四边形ADNM 的面积为S ,写出S 关于x 的函 数关系式;(2)当AE 为何值时,四边形ADNM 的面积最大?最大值是多 少?11.已知抛物线y =x 2-2x +m 与x 轴交于点A (x 1,0),B (x 2,0)(x 2>x 1),(1) 若点P (-1,2)在抛物线y =x 2-2x +m 上,求m 的值;(2)若抛物线y =ax 2+bx +m 与抛物线y =x 2-2x +m 关于y 轴对称,点Q 1(-2,q 1),Q 2(-3,q 2)都在抛物线y =ax 2+bx +m 上,则q 1,q 2的大小关系是(请将结论写在横线上,不要求写解答过程);(3)设抛物线y =x 2-2x +m 的顶点为M ,若△AMB 是直角三角形,求m 的值.12.某工厂现有80台机器,每台机器平均每天生产384件产品,现准备增加一批同类机器以提高生产总量,在试生产中发现,由于其它生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品.(1)如果增加x 台机器,每天的生产总量为y 个,请你写出y 与x 之间的关系式;(2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?13.某校初三年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高920m ,与篮圈中心的水平距离为7m ,当球出手后水平距离为4m 时到达最大高度4m ,设篮球运行的轨迹为抛物线,篮圈距地面3m.(1)建立如图的平面直角坐标系,问此球能否准确投中?(2)此时,若对方队员乙在甲前面1m 处跳起盖帽拦截,已知乙的最大摸高为3.1m ,那么他能否获得成功?14. 已知抛物线y=x 2+(2n-1)x+n 2-1 (n 为常数).(1)当该抛物线经过坐标原点,并且顶点在第四象限时, 求出它所对应的函数关系式;(2)设A 是(1)所确定的抛物线上位于x 轴下方.且在对称轴左侧的一个动点,过A 作x 轴的平行线,交抛物线于另一点D ,再作AB ⊥x 轴于B ,DC ⊥x 轴于C.①当BC=1时,求矩形ABCD 的周长;②试问矩形ABCD 的周长是否存在最大值?如果存在,请求出这个最大值,并指出此时A 点的坐标;如果不存在,请说明理由. 15.甲车在弯路作刹车试验,收集到的数据如下表所示: 速度x (千米/小时) 0 5 10 152025…354X(千米/时)5 O 15 10 20 25 3421546354第15题图 y (米)刹车距离y (米)26…(1)请用上表中的各对数据(x ,y )作为点的坐标,在图10所示的坐标系中画出甲车刹车距离y (米)与速度x (千米/时)的函数图象,并求函数的解析式.(2)在一个限速为40千米/时的弯路上,甲、乙两车相向而行,同时刹车,但还是相撞了.事后测得甲、乙两车的刹车距离分别为12米和10.5米,又知乙车的刹车距离y (米)与速度x (千米/时)满足函数14y x =,请你就两车的速度方面分析相撞的原因. 16.已知二次函数c bx ax y ++=2.(1)当a=1,b=一2,c=1时,请在如图的直角坐标系中画出此时二次函数的图象;(2)用配方法求该二次函数的图象的顶点坐标.34154第16题图强化练习九一、选择题:1.二次函数y=x 2-3x 的图象与x 轴两个交点的坐标分别为( )A.(0,0),(0,3)B.(0,0),(3,0)C.(0,0),(-3,0)D.(0,0),(0,-3)2.y=14x 2-7x-5与y 轴的交点坐标为( ). A .-5 B.(0,-5) C.(-5,0) D.(0,-20)3.抛物线22n mx x y --=)0(≠mn 的图象与x 轴交点为( )A .二个交点B .一个交点C . 无交点D .不能确定4.函数m x mx y 22-+=(m 是常数)的图象与x 轴的交点有( )A .0个B .1个C .2个D .1个或2个5.若抛物线c bx ax y ++=2的所有点都在x 轴下方,则必有 ( )A.04,02>-<ac b aB.04,02>->ac b aC.04,02<-<ac b aD.04,02<->ac b a二、填空题6.抛物线5232--=x x y 与y 轴的交点坐标为 ,与x 轴的交点坐标为 .7.已知方程05322=--x x 的两根是25,-1,则二次函数5322--=x x y 与x 轴的两个交点间的距离为 .三、解答题8.函数132++-=x ax ax y 的图象与x 轴有且只有一个交点,求a 的值及交点坐标.强化练习十1.已知二次函数432--=x x y 的图象如图,(1)则方程0432=--x x 的解是 ,(2)不等式0432>--x x 的解集是 ,(3)不等式0432<--x x 的解集是 .2.利用函数的图象,求方程组22.y x y x =-+⎧⎨=⎩,的解.。

相关文档
最新文档