Hydrogen sulfide its production, release and functions

合集下载

全球天然氢气勘探开发利用进展及中国的勘探前景

全球天然氢气勘探开发利用进展及中国的勘探前景

第36卷第2期2024年3月岩性油气藏LITHOLOGIC RESERVOIRSV ol.36No.2Mar.2024收稿日期:2023-11-01;修回日期:2023-11-12;网络发表日期:2023-11-16基金项目:国家自然科学基金“特提斯演化控制下的油气差异富集机理与勘探领域”(编号:92255302)和中国石油集团公司科技重大专项“海外油气地质新理论资源评价新技术与超前选区研究”(编号:2023ZZ07)联合资助。

第一作者:窦立荣(1965—),男,博士,教授级高级工程师,主要从事全球油气资源评价与海外重点领域油气勘探关键技术研究。

地址:(100083)北京市海淀区学院路20号。

Email :**********************.cn 。

通信作者:李博(1993—),男,博士,工程师,主要从事油气伴生资源勘探与评价技术研究。

Emali :**********************.cn 。

文章编号:1673-8926(2024)02-0001-14DOI :10.12108/yxyqc.20240201引用:窦立荣,刘化清,李博,等.全球天然氢气勘探开发利用进展及中国的勘探前景[J ].岩性油气藏,2024,36(2):1-14.Cite :DOU Lirong ,LIU Huaqing ,LI Bo ,et al.Global natural hydrogen exploration and development situation and prospects in China [J ].Lithologic Reservoirs ,2024,36(2):1-14.全球天然氢气勘探开发利用进展及中国的勘探前景窦立荣1,刘化清1,李博1,齐雯1,孙东1,尹路1,韩双彪2(1.中国石油勘探开发研究院,北京100083;2.中国矿业大学(北京)地球科学与测绘工程学院,北京100083)摘要:在全球能源脱碳背景下,天然氢气作为一种一次能源,因其零碳、可再生的优点而备受关注,但中国目前还未开展专门针对天然氢气的勘探工作。

洋甘菊提取液MSDS英文版

洋甘菊提取液MSDS英文版

1. IDENTIFICATION OF THE SUBSTANCE/TREPARATION AND THE COMPANY/UNDERTAKING3.HAZARDS IDENTIFICATION4. FIRST AID MEASURESMATERIAL SAFETY DATA SHEETProduct name:Supplier:Tel:EMERGENCY OVERVIEW: May cause skin irritation and/or dermatitisPrinciple routes of exposure: Inhalation: Ingestion: Skin contact: Eye contact:SkinMay cause irritation of respiratory tract May be harmful if swallowed May cause allergic skin reaction Avoid contact with eyesStatements of hazard MAY CAUSE ALLERGIC SKIN REACTION.Statements of Spill of Leak Label Eliminate all ignition sources. Absorb and/or contain spill with inert materials (e.g., sand, vermiculite). Then place in appropriate container. For large spills, use water spray to disperse vapors, flush spill area. Prevent runoff from entering waterways or sewers.General advice:POSITION/INFORMATION ON INGREDIENTSInhalation:Skin contact:Ingestion:Eye contact:Protection of first – aiders:Medical conditions aggravated by exposure: In the case of accident or if you fell unwell, seek medical advice immediately (show the label where possible).Move to fresh air, call a physician immediately.Rinse immediately with plenty of water and seek medical adviceDo not induce vomiting without medical advice.In the case of contact with eyes, rinse immediately with plenty of water and seek medical advice.No information availableNone knownSuitable extinguishing media:Specific hazards:Special protective equipment for firefighters:Flash point:Autoignition temperature:NFPA rating Use dry chemical, CO2, water spray or “alcohol” foam Burning produces irritant fumes.As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gearNot determinedNot determinedNFPA Health: 1 NFPA Flammability: 1 NFPA Reactivity: 0Personal precautions: Environmental precautions: Methods for cleaning up: Use personal protective equipment.Prevent product from entering drains.Sweep up and shovel into suitable containers for disposalStorage:7. HANDLING AND STORAGE5.FIRE-FIGHTING MEASURES6. ACCIDENTAL RELEASE MEASURESRoom temperature Handling:Safe handling advice: Incompatible products:Use only in area provided with appropriate exhaust ventilation.Wear personal protective equipment.Oxidising and spontaneously flammable productsEngineering measures: Respiratory protection: Skin and body protection:Eye protection: Hand protection: Hygiene measures:Ensure adequate ventilation.Breathing apparatus only if aerosol or dust is formed. Usual safety precautions while handling the product will provide adequate protection against this potential effect. Safety glasses with side-shieldsPVC or other plastic material glovesHandle in accordance with good industrial hygiene and safety practice.Melting point/range: Boiling point/range: Density: Vapor pressure: Evaporation rate: Vapor density: Solubility (in water): Flash point:Autoignition temperature:No Data available at this time. No Data available at this time. No data available No data available No data available No data available No data available Not determined Not determinedStability: Stable under recommended storage conditions. Polymerization: None under normal processing.Hazardous decomposition products: Thermal decomposition can lead to release of irritating gases and vapours such as carbon oxides.Materials to avoid: Strong oxidising agents.10. STABILITY AND REACTIVITY9. PHYSICAL AND CHEMICAL PROPERTIES8. EXPOSURE CONTROLS/PERSONAL PROTECTION11. TOXICOLOGICAL INFORMATIONConditions to avoid: Exposure to air or moisture over prolonged periods.Product information Acute toxicityChronic toxicity:Local effects: Chronic exposure may cause nausea and vomiting, higher exposure causes unconsciousness.Symptoms of overexposure may be headache, dizziness, tiredness, nausea and vomiting.Specific effects:May include moderate to severe erythema (redness) and moderate edema (raised skin), nausea, vomiting,headache.Primary irritation: Carcingenic effects: Mutagenic effects: Reproductive toxicity:No data is available on the product itself. No data is available on the product itself. No data is available on the product itself. No data is available on the product itself.Mobility:Bioaccumulation: Ecotoxicity effects: Aquatic toxicity:No data available No data available No data availableMay cause long-term adverse effects in the aquatic environment.12. ECOLOGICAL INFORMATION13. DISPOSAL CONSIDERATIONSWaste from residues/unused products:Contaminated packaging:Waste disposal must be in accordance with appropriate Federal, State and local regulations. This product, if unaltered by use, may be disposed of treatment at a permitted facility or as advised by your local hazardous waste regulatory authority. Residue from fires extinguished with this material may be hazardous.Do not re-use empty containers.UN/Id No:Not regulated14. TRANSPORT INFFORMATIONDOTProper shipping name: Not regulatedTGD(Canada)WHMIS hazard class: Non - controlledIMDG/IMOIMDG – Hazard Classifications Not ApplicableIMO – labels:15. REGULATORY INFOTMATION International Inventories16. OTHER INFORMATIONPrepared by: Health & SafetyDisclaimer: The information and recommendations contained herein are based upon tests believed to be reliable.However, XABC does not guarantee the accuracy or completeness NOR SHALL ANY OF THIS INFORMATION CONSTITUTE A WARRANTY, WHETHER EXPRESSED OR IMPLIED, AS TO THE SAFETY OF THE GOOD, THE MERCHANTABILITY OF THE GOODS, OR THE FITNESS OF THE FITNESS OF THE GOODS FOR A PARTICULAR PURPOSE. Adjustment to conform to actual conditions of usage maybe required. XABC assumes no responsibility for results obtained or for incidental or consequential damages, including lost profits arising from the use of these data. No warranty against infringement of any patent, copyright or trademark is made or implied.End of safety data sheet。

石油化工专业术语-中英对照

石油化工专业术语-中英对照

English gathering & transmission and auxiliary works natural gas processing plant and auxiliary works utilities acrylonitrile alkali alloy-steel tube ammonia apparatus area project engineer aromatics atmospheric gas oil atmospheric residue atmospheric residue desulfurization austenitic stainless steel pipe battery limit by-product calcium carbon carbon steel carbon steel tube cast-iron pipe caustic soda center line chemical agent chlor-alkali chlorine coke coker gas oil combustible, flammable gas crude, crude oil demineralized water/softened water design pressure design regulation design temperature detail design detail design phase diesel dry gas element CONTRACT FINALISATION finish paint/top coat flue gas galvanized steel pipe gas gas export gasoline gathering& transmission and auxiliary works general plot grease gross weight guaranteed completion date guard gum

化学名称

化学名称

Sulfate/sulphate硫酸盐sulfide硫化物bisulfite 亚硫酸氢盐pyrosulfite焦亚硫酸盐disulfide二硫化物oxide氧化物dioxide二氧化物peroxide过氧化物carbonate碳酸盐percarbonate 过碳酸盐bicarbonate 碳酸氢盐phosphate磷酸盐Tripolyphosphate 三聚磷酸盐silicate硅酸盐nitrate硝酸盐Chloride氯化物methyl甲基carboxyl羧基glycol乙二醇/甘醇ester酯ether醚acid酸acetic乙酸PPA Polyphosphoric acid多聚磷酸PA Polyamide 尼龙/聚酰胺/聚酰胺树脂TDI Toluene Diisocyanate 甲苯二异氰qing酸酯DOP 邻苯二甲酸二辛脂/增塑剂(有机产品) It is colorless transparent透明or light yellow liquidDMDS Dimethyldisulfide二甲基二硫(有机产品) light yellow liquidTi02 Titanium dioxide 钛白粉CMC carboxyl methyl cellulose羧甲基纤维素疏松状白色或微黄色粉末SHMP Sodium hexametaphosphate 六偏磷酸钠/螯合剂STPP Sodium Tripolyphosphate三聚磷酸钠IPA Isopropanol 异丙醇TEG Triethylene glycol三乙二醇/三甘醇EDTA Ethylenediaminetetraacetic acid(有机产品)乙二胺四乙酸PVC Poly(vinyl chloride) 聚氯乙烯MEG Ethylene glycol 乙二醇/甘醇Poly(ethylene glycol) 聚乙二醇/氧化聚乙烯diethylene glycol 二乙二醇/二甘醇Carboxymethylcellulose sodium羧甲基纤维素钠lithopone立德粉/锌钡白zinc oxide氧化锌/锌白Zinc Phosphate 磷酸锌/磷锌白formic acid甲酸/蚁酸acetic acid乙酸/醋酸glacial acetic acid冰醋酸colorless无色and transparent liquid oxalic acid乙二酸/草酸transparent crystal or white powder Phosphoric Acid 磷酸Acrylic acid 丙烯酸Methacrylic acid 甲基丙烯酸Chromic Acid 铬酸Orthoboric acid/ Boric Acid 硼酸hydrofluoric acid 氢氟酸Acetylsalicylic acid 阿司匹林/乙酰水杨酸LABSA/ Dodecylbenzenesulfonic Acid十二烷基苯磺酸Stearic acid 硬脂酸pentaerythritol 季戊四醇white crystal or powderiron oxide red氧化铁红/三氧化二铁Iron oxide black 氧化铁黑/铁黑/氧化亚铁和三氧化铁加和Iron oxide monohydrate铁黄/含水三氧化二铁Calcium Chloride 氯化钙Magnesium chloride 氯化镁Zinc Chloride 氯化锌Polyaluminium Chloride聚合氯化铝/Polymerization alcl3 聚合氯化铝aluminum sulfate硫酸铝Zinc sulphate 硫酸锌Sodium bisulfite 亚硫酸氢钠sodium pyrosulfite/ Sodium metabisulfite焦亚硫酸钠Sodium Sulphate Anhydrous元明粉;无水芒硝;无水硫酸钠Magnesium sulfate anhydrous无水硫酸镁Magnesium Sulfate Heptahydrate七水硫酸镁Sulphur Black 硫化黑carbon black炭黑Mechanism of charcoal 机制木炭Paraffin 石蜡chrome green铬绿Acetone丙酮/二甲酮n-Butyl acetate 乙酸丁酯/醋酸丁酯Butyl Acrylate 丙烯酸丁酯/正丁基丙烯酸酯Ethyl acrylate烯丙酸乙酯/ 2-丙烯酸乙酯; 丙烯酸乙酯Sodium carbonate /Soda Ash Light and Dense轻质/重质纯碱/碳酸纳/苏打Zirconium Silicate 硅酸锆Hydrogen peroxide 过氧化氢/双氧水Xanthan gum 黄原胶Potassium Phosphate Monobasic磷酸二氢钾Sodium sulfide 硫化钠Sodium Tetraborate Decahydrate/ Borax 硼砂Arsenic Trioxide/ Arsenic(III) oxide 三氧化二砷/砒霜Cyanuramide 三聚氰胺Caustic Soda/ Sodium hydroxide氢氧化钠/烧碱/火碱Sodium lauryl sulfate 十二烷基硫酸钠/十二醇硫酸钠Carbon tetrachloride 四氯化碳/四氯甲烷Perchlorethylene 四氯乙烯/全氯乙烯Calcium carbide 碳化钙/电石Zeolite沸石/硅酸铝钾盐Ammonium Bicarbonate 碳酸氢铵Sodium bicarbonate 碳酸氢钠/小苏打Rubber accelerator橡胶促进剂/促进剂Potassium nitrate 硝酸钾/硝石Sodium nitrate 硝酸钠/钠硝石Magnesium oxide 氧化镁金红石钛白粉:金红石型钛白粉R217型纳米级钛白粉氯化法生产:CR-502与CR-503一样R1930 通用型R1931 专用型硫酸法生产:R218 通用型R216 通用型R288 塑钢专用型R299 色母粒专用型R909 油漆涂料专用型锐钛型钛白粉:A101 A102 BA01-01 纳米级钛白粉化纤级钛白粉陶瓷级钛白粉搪瓷级钛白粉A200 高分散A100 高白度B101 油漆涂料专用型PVC专用型色母粒专用型Dear,Have a nice day!Glad to hear that you are in the market for chemical products.We specialize in this field for many years,with a high quality and competitive price,the items we supply as Caustic soda,Titanium Dioxide, Phosphate,Plasticizer etc. Tianjin Changjietong Chemical Co.,Ltd is an oversize Chinese enterprises' company, which keeps an annual export value over US$ 13million.We are manufacture and exporter,the good we provide enjoy a high reputation.Should you have any question,please contact us.We look forward to receiving your early reply.Best Regards,。

制氢技术的生命周期评价研究进展

制氢技术的生命周期评价研究进展

2018年第37卷第6期 CHEMICAL INDUSTRY AND ENGINEERING PROGRESS·2147·化 工 进展制氢技术的生命周期评价研究进展谢欣烁,杨卫娟,施伟,张圣胜,王智化,周俊虎(浙江大学能源清洁利用国家重点实验室,浙江 杭州 310027)摘要:氢气既是理想高效的清洁能源,又是用途广泛的化工原料。

以传统能源制氢为主导的制氢产业具有高能耗高污染的弊端,在资源环保问题日益突出的当下,全方位对比研究各类制氢技术的优劣特征,为制氢产业提供健康发展的技术路线显得尤为重要。

本文主要以传统制氢技术(煤气化制氢、天然气制氢等)和新型制氢技术(热化学制氢、可再生能源发电制氢、生物质气化制氢等)为对象,对其生命周期评价方面的研究进展进行综述。

论文首先介绍了生命周期评价的研究过程和思路,阐述了各类制氢技术的基本原理和应用现状,重点研究了各类制氢技术的能耗和温室气体释放数据,同时结合生命周期成本分析,归纳了各制氢技术的制氢成本。

论文通过分析各类制氢技术的优劣性,总结得出新型制氢技术具有优秀的节能环保性,但制氢成本较高。

其中,风电制氢技术的环保性最佳,而核能热化学制氢在未来具有大规模应用的潜力。

根据当前制氢格局的发展状况和各类制氢技术的特点,论文最后作出了关于制氢技术发展的前景展望。

关键词:制氢;再生能源;生命周期评价;温室气体;能耗中图分类号:TQ116.2 文献标志码:A 文章编号:1000–6613(2018)06–2147–12 DOI :10.16085/j.issn.1000-6613.2017-1604Life cycle assessment of technologies for hydrogen production —a reviewXIE Xinshuo ,YANG Weijuan ,SHI Wei ,ZHANG Shengsheng ,WANG Zhihua ,ZHOU Junhu(State Key Laboratory of Clean Energy Utilization ,Zhejiang University ,Hangzhou 310027,Zhejiang ,China )Abstract :Hydrogen is considered to be an ideal energy carrier and a kind of useful chemical rawmaterial. Nowadays hydrogen is industrially produced mainly from fossil fuels ,which is not environmental enough. It is crucial to figure out the characteristics of different hydrogen production methods so as to provide a splendid technical roadmap. Hydrogen can be produced by variety of technologies and consume variety of energy sources ,such as renewables (e.g. biomass ,wind energy ,solar energy ),nuclear and fossils. In this article the environmental impacts of various hydrogen production technologies are evaluated and compared in the view of life cycle assessment. It introduces the theory of life cycle assessment as well as the principle and application of various hydrogen production methods. On the basis of life cycle cost analysis ,the costs of technologies for hydrogen production are also presented. According to the Globe Warming Potential and energy consumption data ,it is obtained that hydrogen production via renewable energy or nuclear energy has great environmental effects ,although most of these technologies are costly in the present. Furthermore ,wind-based hydrogen production can save most energy and cost little greenhouse emission ,while nuclear-base hydrogen production is expected to be widely applied in the future. Some conclusions of the prospects of hydrogen production are given out in the end.Key words :hydrogen production ;renewable energy ;life cycle assessment ;greenhouse gas ;energy consumption博士,教授,研究方向为能源与环境领域的燃烧科学与技术。

编码产品名称硫氢化钠

编码产品名称硫氢化钠

五、消防措施 适当的灭火剂:可用雾状水、干粉、泡沫等灭火。 化学品产生的具体危险:在高温高热下燃烧分解,释放出有毒气体。 消防人员的特殊防护行动:消防人员必须配戴空气呼吸器、消防衣及防护手套,根据着火原 因选择适当灭火剂,在安全距离以外的上风向灭火。
六、意外释放措施 人身防范、保护设备和应急程序:建议应急处理人员戴正压式呼吸器,穿防毒工作服。不 要直接接触泄漏物。 环境防范措施:隔离泄漏污染区,限制出入。 抑制和清洁的方法和材料:小量泄漏:避免扬尘,用洁净的铲子收集于干燥、洁净、有盖的 容器中,转移至安全场所。切勿使产品进入下水道等限制性区域。大量泄漏:用塑料布、帆 布覆盖。使用无火花工具收集回收或运至废物处理场所处置。
十四、运输信息 联合国编号:2949。 联合国正式运输名称:氢硫化钠,含结晶水不低于 25%。 运输危险分类:8。 包装类别(如果适用):II。 环境危险:/ 用户的特殊防范措施:/
十五、管理信息 国内化学品安全管理法规:本化学品安全数据单遵照了以下相关国家标准:GB 16483-2008、 GB 13690-2009、GB 6944-2012、GB/T 15098-2008、GB 18218-2009、GB 15258-2009、GB 190-2009、GB 191-2009、GB 12268-2008、GA 57-1993、GBZ 2-2007 以及相关法规:《铁路 危险货物运输管理规则》、《危险化学品安全管理条例》。
九物理及化学性质外观物理状态颜色等气味气味阈值ph熔点凝固点初始沸点和沸腾范围闪点蒸发速率易燃性固体气体上下易燃极限或爆炸极限蒸气压力蒸气密度相对密度可溶性分配系数
编 码: 产品名称:硫氢化钠
危险
儿童不得接触 使用前请读标签
可能腐蚀金属。吞咽会中毒。皮肤接触致命。造成严重皮肤灼伤和眼损伤。对水生生物有毒。

芳烃抽提溶剂环丁砜的劣化及其在线净化技术

芳烃抽提溶剂环丁砜的劣化及其在线净化技术

39环丁砜[1-3]作为抽提溶剂自20世纪60年代以来广泛应用于芳烃抽提工艺中,与其它抽提溶剂相比,环丁砜溶剂具有芳烃溶解能力强、芳烃选择性好、沸点高、稳定性优良的特点,无论是在液-液抽提工艺还是抽提-蒸馏工艺中大部分都使用其作为溶剂。

某公司85万t/a芳烃抽提装置采用北京石油化工科学研究院SED抽提蒸馏工艺[3],以环丁砜为抽提溶剂,该项目于2014年8月建成投产。

经过一段时间的运行,发现环丁砜溶剂的pH下降、颜色逐渐变深、变得浑浊、氯离子浓度富集,需要添加MEA来调节pH,中和酸性物质。

但是随着运行时间的延长,环丁砜持续劣化,氯离子进一步富集,已经无法通过简单添加MEA来解决问题。

环丁砜劣化生产的酸性物质,以及系统中富集的氯离子给装置带来严重腐蚀问题,换热器等设备被腐蚀发生泄漏,装置多次短期停工检修。

因此,公司决定增设一套环丁砜净化装置,用于脱除溶剂系统中积聚的酸性物质和氯离子,彻底解决环丁砜劣化带来的生产波动和腐蚀问题。

引起环丁砜劣化的原因有很多[4-5],目前最有效的解决办法是通过离子交换法[6-7]脱除其中的酸性物质,该方法是通过阴离子交换树脂将环丁砜中的酸性物质和氯离子交换脱除。

顾侃英等[6]利用阴离子交换树脂来脱除环丁砜中的酸性物质,并通过碱再生树脂达到连续脱除酸性物质和氯离子的目的,取得了很好的效果。

李明玉[7]研究了不同阴离子交换树脂对环丁砜脱除氯离子的影响,认为大孔阴离子交换树脂在一定的条件下具有非常优异的环丁砜脱氯能力。

本文针对某公司85万t/a芳烃抽提装置中环丁砜的劣化现象,在实验室模拟北京思践通科技发展有限公司在线环丁砜净化技术,研究脱除抽提贫液环丁砜中的酸性物质、悬浮物、浮油、氯离子等,指导在线环丁砜净化装置的运行,为芳烃抽提装置平稳运行提供了可靠的保障。

1 试验部分1.1 实验及装置环丁砜样品:取自某公司85万t/a芳烃抽提装置,密闭保存。

小型试验平台:1)活性炭吸附装置,20mm内径的玻璃砂芯层析柱中装入约30mL颗粒活性炭(椰壳,颗粒平均直径2mm),活性炭上方压入玻璃棉和磁珠固定;2)过滤装置,60mm的布氏漏斗中铺设2层0.5μm过滤精度的滤布,滤布包裹整个布氏漏斗内壁,确保过滤精度,用SHZ-Ⅲ型水循环式真空泵抽气过滤;3)离子交换装置,20mm内径的玻璃砂芯层析柱中装入约30mL Eliteru树脂,树脂上方压入玻璃棉和磁珠固定。

【托福听力资料】托福tpo15听力文本-lecture4

【托福听力资料】托福tpo15听力文本-lecture4

【托福听力资料】托福TPO15 听力文本-Lecture 4众所周知,托福TPO材料是备考托福听力最好的材料。

相信众多备考托福的同学也一直在练习这套材料,那么在以下内容中我们就为大家带来托福TPO听力练习的文本,希望能为大家的备考带来帮助。

TPO 15 Lecture 4 BiologyNarrator: Listen to part of a lecture in a biology class.Professor:OK. We’ve been talking till now about the two basic needs of a biologicalcommunity – an energy source to produce organic materials, you know uh, food forthe organisms, and the waste recycling or breakdown of materials back intoinorganic molecules, and about how all this requires photosynthesis when greenplants or microbes convert sunlight into energy, and also requiresmicroorganisms, bacteria, to secrete chemicals that break down or recycle theorganic material to complete the cycle. So, now we are done with this chapter ofthe textbook, we can just review for the weekly quiz and move on to the nextchapter, right? Well, not so fast. First, I ‘d like to talk about somediscoveries that have challenged one of these fundamental assumptions about whatyou need in order to have a biological community.And, well, there actually were quite a few surprises. It all began in 1977with the exploration of hydrothermal vents on the ocean floor. Hydrothermalvents are cracks in the Earth’s surface that occur, well, the ones we aretaiking about here are found deep at the bottom of the ocean. And these vents onthe ocean floor, they release this incredibly hot water, 3 to 4 times the temperature that you boil water at, because this water has been heated deep within the Earth.Well about 30 years ago, researchers sent a deep-sea vessel to explore the ocean’s depth, about 3 kilometers down, way deep to the ocean floor, No one had ever explored that far down before. Nobody expected there to be any life down there because of the conditions.First of all, sunlight doesn’t reach that far down so it ’ s totally dark. There couldn’t be any plant or animal life since there’s no sunlight, no source of energy to make food. If there was any life at all, it’d just be some bacteria breaking down any dead materials that might have fallen to the bottom of the ocean . And?Student 1 :And what about the water pressure? Didn ’ t we talk before about how the deeper down into the ocean you go, the greater the pressure? Professor :Excellent point! And not only the extreme pressure, but also the extreme temperature of the water around these vents. If the lack of sunlight didn’t rule out the existence of a biological community down there then these factors certainly would, or so they thought.Student 2:So you are telling us they did find organisms that could live under those conditions?Professor: They did indeed, something like 300 different species.Student 1 :But... but how could that be? I mean without sunlight, no energy,no no …Protessor:What they discovered was that microorganisms, bacteria, had taken over both functions of the biological community - the recycling of waste materials and the production of energy. They were the energy source. You see, it turns out that certain microorganisms are chemosynthetic - they don’t need sunlight because they take their energy from chemical reactions.So, as I said, unlike green plants which are photosynthetic and get their energy from sunlight, these bacteria that they found at the ocean floor, these are chemosynthetic, which means that they get their energy from chemical reactions. How does this work?As we said, these hydrothermal vents are releasing into the ocean depth this intensely hot water and here is the thing, this hot water contains a chemical called hydrogen sulfide, and also a gas , carbon dioxide. Now these bacteria actually combine the hydrogen sulfide with the carbon dioxide and this chemical reaction is what produces organic material which is the food for larger organisms. The researchers had never seen anything like it before.Student 2 : Wow! So just add a chemical to a gas, and bingo, you ’ ve got a food supply?ProfessorNot just that! W hat was even more surprising were all the large organisms that lived down there. The most distinctive of these was something called thetube worm. Here, let me show you a picture . The tube of the tube worm is really, really long. They can be up to one and a half meters long , and these tubes are attached to the ocean floor, pretty weird looking, huh?And another thing, the tube worm has no mouth or digestive organs. So you are asking how does it eat? Well, they have these special organs that collect the hydrogen sulfide and carbon dioxide and then transfer it to another organ, where billions of bacteria live. These bacteria that live inside the tube worms, the tube worms provide them with hydrogen sulfide and carbon dioxide. And the bacteria, well the bacteria kind of feed the tube worms through chemosynthesis, remember, that chemical reaction I described earlier.。

大环多胺

大环多胺

New1H-Pyrazole-Containing Polyamine Receptors Able ToComplex L-Glutamate in Water at Physiological pH ValuesCarlos Miranda,†Francisco Escartı´,‡Laurent Lamarque,†Marı´a J.R.Yunta,§Pilar Navarro,*,†Enrique Garcı´a-Espan˜a,*,‡and M.Luisa Jimeno†Contribution from the Instituto de Quı´mica Me´dica,Centro de Quı´mica Orga´nica Manuel Lora Tamayo,CSIC,C/Juan de la Cier V a3,28006Madrid,Spain,Departamento de Quı´mica Inorga´nica,Facultad de Quı´mica,Uni V ersidad de Valencia,c/Doctor Moliner50, 46100Burjassot(Valencia),Spain,and Departamento de Quı´mica Orga´nica,Facultad deQuı´mica,Uni V ersidad Complutense de Madrid,A V plutense s/n,28040Madrid,SpainReceived April16,2003;E-mail:enrique.garcia-es@uv.esAbstract:The interaction of the pyrazole-containing macrocyclic receptors3,6,9,12,13,16,19,22,25,26-decaazatricyclo-[22.2.1.111,14]-octacosa-1(27),11,14(28),24-tetraene1[L1],13,26-dibenzyl-3,6,9,12,13,16,-19,22,25,26-decaazatricyclo-[22.2.1.111,14]-octacosa-1(27),11,14(28),24-tetraene2[L2],3,9,12,13,16,22,-25,26-octaazatricyclo-[22.2.1.111,14]-octacosa-1(27),11,14(28),24-tetraene3[L3],6,19-dibenzyl-3,6,9,12,13,-16,19,22,25,26-decaazatricyclo-[22.2.1.111,14]-octacosa-1(27),11,14(28),24-tetraene4[L4],6,19-diphenethyl-3,6,9,12,13,16,19,22,25,26-decaazatricyclo-[22.2.1.111,14]-octacosa-1(27),11,14(28),24-tetraene5[L5],and 6,19-dioctyl-3,6,9,12,13,16,19,22,25,26-decaazatricyclo-[22.2.1.111,14]-octacosa-1(27),11,14(28),24-tetra-ene6[L6]with L-glutamate in aqueous solution has been studied by potentiometric techniques.The synthesis of receptors3-6[L3-L6]is described for the first time.The potentiometric results show that4[L4]containing benzyl groups in the central nitrogens of the polyamine side chains is the receptor displaying the larger interaction at pH7.4(K eff)2.04×104).The presence of phenethyl5[L5]or octyl groups6[L6]instead of benzyl groups4[L4]in the central nitrogens of the chains produces a drastic decrease in the stability[K eff )3.51×102(5),K eff)3.64×102(6)].The studies show the relevance of the central polyaminic nitrogen in the interaction with glutamate.1[L1]and2[L2]with secondary nitrogens in this position present significantly larger interactions than3[L3],which lacks an amino group in the center of the chains.The NMR and modeling studies suggest the important contribution of hydrogen bonding andπ-cation interaction to adduct formation.IntroductionThe search for the L-glutamate receptor field has been andcontinues to be in a state of almost explosive development.1 L-Glutamate(Glu)is thought to be the predominant excitatory transmitter in the central nervous system(CNS)acting at a rangeof excitatory amino acid receptors.It is well-known that it playsa vital role mediating a great part of the synaptic transmission.2However,there is an increasing amount of experimentalevidence that metabolic defects and glutamatergic abnormalitiescan exacerbate or induce glutamate-mediated excitotoxic damageand consequently neurological disorders.3,4Overactivation ofionotropic(NMDA,AMPA,and Kainate)receptors(iGluRs)by Glu yields an excessive Ca2+influx that produces irreversible loss of neurons of specific areas of the brain.5There is much evidence that these processes induce,at least in part,neuro-degenerative illnesses such as Parkinson,Alzheimer,Huntington, AIDS,dementia,and amyotrophic lateral sclerosis(ALS).6In particular,ALS is one of the neurodegenerative disorders for which there is more evidence that excitotoxicity due to an increase in Glu concentration may contribute to the pathology of the disease.7Memantine,a drug able to antagonize the pathological effects of sustained,but relatively small,increases in extracellular glutamate concentration,has been recently received for the treatment of Alzheimer disease.8However,there is not an effective treatment for ALS.Therefore,the preparation of adequately functionalized synthetic receptors for L-glutamate seems to be an important target in finding new routes for controlling abnormal excitatory processes.However,effective recognition in water of aminocarboxylic acids is not an easy task due to its zwitterionic character at physiological pH values and to the strong competition that it finds in its own solvent.9†Centro de Quı´mica Orga´nica Manuel Lora Tamayo.‡Universidad de Valencia.§Universidad Complutense de Madrid.(1)Jane,D.E.In Medicinal Chemistry into the Millenium;Campbell,M.M.,Blagbrough,I.S.,Eds.;Royal Society of Chemistry:Cambridge,2001;pp67-84.(2)(a)Standaert,D.G.;Young,A.B.In The Pharmacological Basis ofTherapeutics;Hardman,J.G.,Goodman Gilman,A.,Limbird,L.E.,Eds.;McGraw-Hill:New York,1996;Chapter22,p503.(b)Fletcher,E.J.;Loge,D.In An Introduction to Neurotransmission in Health and Disease;Riederer,P.,Kopp,N.,Pearson,J.,Eds.;Oxford University Press:New York,1990;Chapter7,p79.(3)Michaelis,E.K.Prog.Neurobiol.1998,54,369-415.(4)Olney,J.W.Science1969,164,719-721.(5)Green,J.G.;Greenamyre,J.T.Prog.Neurobiol.1996,48,613-63.(6)Bra¨un-Osborne,H.;Egebjerg,J.;Nielsen,E.O.;Madsen,U.;Krogsgaard-Larsen,P.J.Med.Chem.2000,43,2609-2645and references therein.(7)(a)Shaw,P.J.;Ince,P.G.J.Neurol.1997,244(Suppl2),S3-S14.(b)Plaitakis,A.;Fesdjian,C.O.;Shashidharan,S Drugs1996,5,437-456.(8)Frantz,A.;Smith,A.Nat.Re V.Drug Dico V ery2003,2,9.Published on Web12/30/200310.1021/ja035671m CCC:$27.50©2004American Chemical Society J.AM.CHEM.SOC.2004,126,823-8339823There are many types of receptors able to interact with carboxylic acids and amino acids in organic solvents,10-13yielding selective complexation in some instances.However,the number of reported receptors of glutamate in aqueous solution is very scarce.In this sense,one of the few reports concerns an optical sensor based on a Zn(II)complex of a 2,2′:6′,2′′-terpyridine derivative in which L -aspartate and L -glutamate were efficiently bound as axial ligands (K s )104-105M -1)in 50/50water/methanol mixtures.14Among the receptors employed for carboxylic acid recogni-tion,the polyamine macrocycles I -IV in Chart 1are of particular relevance to this work.In a seminal paper,Lehn et al.15showed that saturated polyamines I and II could exert chain-length discrimination between different R ,ω-dicarboxylic acids as a function of the number of methylene groups between the two triamine units of the receptor.Such compounds were also able to interact with a glutamic acid derivative which has the ammonium group protected with an acyl moiety.15,16Compounds III and IV reported by Gotor and Lehn interact in their protonated forms in aqueous solution with protected N -acetyl-L -glutamate and N -acetyl-D -glutamate,showing a higher stability for the interaction with the D -isomer.17In both reports,the interaction with protected N -acetyl-L -glutamate at physiological pH yields constants of ca.3logarithmic units.Recently,we have shown that 1H -pyrazole-containing mac-rocycles present desirable properties for the binding of dopam-ine.18These polyaza macrocycles,apart from having a highpositive charge at neutral pH values,can form hydrogen bonds not only through the ammonium or amine groups but also through the pyrazole nitrogens that can behave as hydrogen bond donors or acceptors.In fact,Elguero et al.19have recently shown the ability of the pyrazole rings to form hydrogen bonds with carboxylic and carboxylate functions.These features can be used to recognize the functionalities of glutamic acid,the carboxylic and/or carboxylate functions and the ammonium group.Apart from this,the introduction of aromatic donor groups appropriately arranged within the macrocyclic framework or appended to it through arms of adequate length may contribute to the recognition event through π-cation interactions with the ammonium group of L -glutamate.π-Cation interactions are a key feature in many enzymatic centers,a classical example being acetylcholine esterase.20The role of such an interaction in abiotic systems was very well illustrated several years ago in a seminal work carried out by Dougherty and Stauffer.21Since then,many other examples have been reported both in biotic and in abiotic systems.22Taking into account all of these considerations,here we report on the ability of receptors 1[L 1]-6[L 6](Chart 2)to interact with L -glutamic acid.These receptors display structures which differ from one another in only one feature,which helps to obtain clear-cut relations between structure and interaction(9)Rebek,J.,Jr.;Askew,B.;Nemeth,D.;Parris,K.J.Am.Chem.Soc.1987,109,2432-2434.(10)Seel,C.;de Mendoza,J.In Comprehensi V e Supramolecular Chemistry ;Vogtle,F.,Ed.;Elsevier Science:New York,1996;Vol.2,p 519.(11)(a)Sessler,J.L.;Sanson,P.I.;Andrievesky,A.;Kral,V.In SupramolecularChemistry of Anions ;Bianchi,A.,Bowman-James,K.,Garcı´a-Espan ˜a,E.,Eds.;John Wiley &Sons:New York,1997;Chapter 10,pp 369-375.(b)Sessler,J.L.;Andrievsky,A.;Kra ´l,V.;Lynch,V.J.Am.Chem.Soc.1997,119,9385-9392.(12)Fitzmaurice,R.J.;Kyne,G.M.;Douheret,D.;Kilburn,J.D.J.Chem.Soc.,Perkin Trans.12002,7,841-864and references therein.(13)Rossi,S.;Kyne,G.M.;Turner,D.L.;Wells,N.J.;Kilburn,J.D.Angew.Chem.,Int.Ed.2002,41,4233-4236.(14)Aı¨t-Haddou,H.;Wiskur,S.L.;Lynch,V.M.;Anslyn,E.V.J.Am.Chem.Soc.2001,123,11296-11297.(15)Hosseini,M.W.;Lehn,J.-M.J.Am.Chem.Soc.1982,104,3525-3527.(16)(a)Hosseini,M.W.;Lehn,J.-M.Hel V .Chim.Acta 1986,69,587-603.(b)Heyer,D.;Lehn,J.-M.Tetrahedron Lett.1986,27,5869-5872.(17)(a)Alfonso,I.;Dietrich,B.;Rebolledo,F.;Gotor,V.;Lehn,J.-M.Hel V .Chim.Acta 2001,84,280-295.(b)Alfonso,I.;Rebolledo,F.;Gotor,V.Chem.-Eur.J.2000,6,3331-3338.(18)Lamarque,L.;Navarro,P.;Miranda,C.;Ara ´n,V.J.;Ochoa,C.;Escartı´,F.;Garcı´a-Espan ˜a,E.;Latorre,J.;Luis,S.V.;Miravet,J.F.J.Am.Chem.Soc .2001,123,10560-10570.(19)Foces-Foces,C.;Echevarria,A.;Jagerovic,N.;Alkorta,I.;Elguero,J.;Langer,U.;Klein,O.;Minguet-Bonvehı´,H.-H.J.Am.Chem.Soc.2001,123,7898-7906.(20)Sussman,J.L.;Harel,M.;Frolow,F.;Oefner,C.;Goldman,A.;Toker,L.;Silman,I.Science 1991,253,872-879.(21)Dougherty,D.A.;Stauffer,D.A.Science 1990,250,1558-1560.(22)(a)Sutcliffe,M.J.;Smeeton,A.H.;Wo,Z.G.;Oswald,R.E.FaradayDiscuss.1998,111,259-272.(b)Kearney,P.C.;Mizoue,L.S.;Kumpf,R.A.;Forman,J.E.;McCurdy,A.;Dougherty,D.A.J.Am.Chem.Soc.1993,115,9907-9919.(c)Bra ¨uner-Osborne,H.;Egebjerg,J.;Nielsen,E.;Madsen,U.;Krogsgaard-Larsen,P.J.Med.Chem.2000,43,2609-2645.(d)Zacharias,N.;Dougherty,D.A.Trends Pharmacol.Sci.2002,23,281-287.(e)Hu,J.;Barbour,L.J.;Gokel,G.W.J.Am.Chem.Soc.2002,124,10940-10941.Chart 1.Some Receptors Employed for Dicarboxylic Acid and N -AcetylglutamateRecognitionChart 2.New 1H -Pyrazole-Containing Polyamine Receptors Able To Complex L -Glutamate inWaterA R T I C L E SMiranda et al.824J.AM.CHEM.SOC.9VOL.126,NO.3,2004strengths.1[L1]and2[L2]differ in the N-benzylation of the pyrazole moiety,and1[L1]and3[L3]differ in the presence in the center of the polyamine side chains of an amino group or of a methylene group.The receptors4[L4]and5[L5]present the central nitrogens of the chain N-functionalized with benzyl or phenethyl groups,and6[L6]has large hydrophobic octyl groups.Results and DiscussionSynthesis of3-6.Macrocycles3-6have been obtained following the procedure previously reported for the preparation of1and2.23The method includes a first dipodal(2+2) condensation of the1H-pyrazol-3,5-dicarbaldehyde7with the corresponding R,ω-diamine,followed by hydrogenation of the resulting Schiff base imine bonds.In the case of receptor3,the Schiff base formed by condensation with1,5-pentanediamine is a stable solid(8,mp208-210°C)which precipitated in68% yield from the reaction mixture.Further reduction with NaBH4 in absolute ethanol gave the expected tetraazamacrocycle3, which after crystallization from toluene was isolated as a pure compound(mp184-186°C).In the cases of receptors4-6, the precursor R,ω-diamines(11a-11c)(Scheme1B)were obtained,by using a procedure previously described for11a.24 This procedure is based on the previous protection of the primary amino groups of1,5-diamino-3-azapentane by treatment with phthalic anhydride,followed by alkylation of the secondary amino group of1,5-diphthalimido-3-azapentane9with benzyl, phenethyl,or octyl bromide.Finally,the phthalimido groups of the N-alkyl substituted intermediates10a-10c were removed by treatment with hydrazine to afford the desired amines11a-11c,which were obtained in moderate yield(54-63%).In contrast with the behavior previously observed in the synthesis of3,in the(2+2)dipodal condensations of7with 3-benzyl-,3-phenethyl-,and3-octyl-substituted3-aza-1,5-pentanediamine11a,11b,and11c,respectively,there was not precipitation of the expected Schiff bases(Scheme1A). Consequently,the reaction mixtures were directly reduced in situ with NaBH4to obtain the desired hexaamines4-6,which after being carefully purified by chromatography afforded purecolorless oils in51%,63%,and31%yield,respectively.The structures of all of these new cyclic polyamines have been established from the analytical and spectroscopic data(MS(ES+), 1H and13C NMR)of both the free ligands3-6and their corresponding hydrochloride salts[3‚4HCl,4‚6HCl,5‚6HCl, and6‚6HCl],which were obtained as stable solids following the same procedure previously reported18for1‚6HCl and2‚6HCl.As usually occurs for3,5-disubstituted1H-pyrazole deriva-tives,either the free ligands3-6or their hydrochlorides show very simple1H and13C NMR spectra,in which signals indicate that,because of the prototropic equilibrium of the pyrazole ring, all of these compounds present average4-fold symmetry on the NMR scale.The quaternary C3and C5carbons appear together,and the pairs of methylene carbons C6,C7,and C8are magnetically equivalent(see Experimental Section).In the13C NMR spectra registered in CDCl3solution, significant differences can be observed between ligand3,without an amino group in the center of the side chain,and the N-substituted ligands4-6.In3,the C3,5signal appears as a broad singlet.However,in4-6,it almost disappears within the baseline of the spectra,and the methylene carbon atoms C6and C8experience a significant broadening.Additionally,a remark-able line-broadening is also observed in the C1′carbon signals belonging to the phenethyl and octyl groups of L5and L6, respectively.All of these data suggest that as the N-substituents located in the middle of the side chains of4-6are larger,the dynamic exchange rate of the pyrazole prototropic equilibrium is gradually lower,probably due to a relation between proto-tropic and conformational equilibria.Acid-Base Behavior.To follow the complexation of L-glutamate(hereafter abbreviated as Glu2-)and its protonated forms(HGlu-,H2Glu,and H3Glu+)by the receptors L1-L6, the acid-base behavior of L-glutamate has to be revisited under the experimental conditions of this work,298K and0.15mol dm-3.The protonation constants obtained,included in the first column of Table1,agree with the literature25and show that the zwitterionic HGlu-species is the only species present in aqueous solution at physiological pH values(Scheme2and Figure S1of Supporting Information).Therefore,receptors for(23)Ara´n,V.J.;Kumar,M.;Molina,J.;Lamarque,L.;Navarro,P.;Garcı´a-Espan˜a,E.;Ramı´rez,J.A.;Luis,S.V.;Escuder,.Chem.1999, 64,6137-6146.(24)(a)Yuen Ng,C.;Motekaitis,R.J.;Martell,A.E.Inorg.Chem.1979,18,2982-2986.(b)Anelli,P.L.;Lunazzi,L.;Montanari,F.;Quici,.Chem.1984,49,4197-4203.Scheme1.Synthesis of the Pyrazole-Containing MacrocyclicReceptorsNew1H-Pyrazole-Containing Polyamine Receptors A R T I C L E SJ.AM.CHEM.SOC.9VOL.126,NO.3,2004825glutamate recognition able to address both the negative charges of the carboxylate groups and the positive charge of ammonium are highly relevant.The protonation constants of L 3-L 6are included in Table 1,together with those we have previously reported for receptors L 1and L 2.23A comparison of the constants of L 4-L 6with those of the nonfunctionalized receptor L 1shows a reduced basicity of the receptors L 4-L 6with tertiary nitrogens at the middle of the polyamine bridges.Such a reduction in basicity prevented the potentiometric detection of the last protonation for these ligands in aqueous solution.A similar reduction in basicity was previously reported for the macrocycle with the N -benzylated pyrazole spacers (L 2).23These diminished basicities are related to the lower probability of the tertiary nitrogens for stabilizing the positive charges through hydrogen bond formation either with adjacent nonprotonated amino groups of the molecule or with water molecules.Also,the increase in the hydrophobicity of these molecules will contribute to their lower basicity.The stepwise basicity constants are relatively high for the first four protonation steps,which is attributable to the fact that these protons can bind to the nitrogen atoms adjacent to the pyrazole groups leaving the central nitrogen free,the electrostatic repulsions between them being therefore of little significance.The remaining protonation steps will occur in the central nitrogen atom,which will produce an important increase in the electrostatic repulsion in the molecule and therefore a reduction in basicity.As stated above,the tertiary nitrogen atoms present in L 4-L 6will also contribute to this diminished basicity.To analyze the interaction with glutamic acid,it is important to know the protonation degree of the ligands at physiological pH values.In Table 2,we have calculated the percentages ofthe different protonated species existing in solution at pH 7.4for receptors L 1-L 6.As can be seen,except for the receptor with the pentamethylenic chains L 3in which the tetraprotonated species prevails,all of the other systems show that the di-and triprotonated species prevail,although to different extents.Interaction with Glutamate.The stepwise constants for the interaction of the receptors L 1-L 6with glutamate are shown in Table 3,and selected distribution diagrams are plotted in Figure 1A -C.All of the studied receptors interact with glutamate forming adduct species with protonation degrees (j )which vary between 8and 0depending on the system (see Table 3).The stepwise constants have been derived from the overall association constants (L +Glu 2-+j H +)H j LGlu (j -2)+,log j )provided by the fitting of the pH-metric titration curves.This takes into account the basicities of the receptors and glutamate (vide supra)and the pH range in which a given species prevails in solution.In this respect,except below pH ca.4and above pH 9,HGlu -can be chosen as the protonated form of glutamate involved in the formation of the different adducts.Below pH 4,the participation of H 2Glu in the equilibria has also to be considered (entries 9and 10in Table 3).For instance,the formation of the H 6LGlu 4+species can proceed through the equilibria HGlu -+H 5L 5+)H 6LGlu 4+(entry 8,Table 3),and H 2Glu +H 4L 4+)H 6LGlu 4(entry 9Table 3),with percentages of participation that depend on pH.One of the effects of the interaction is to render somewhat more basic the receptor,and somewhat more acidic glutamic acid,facilitating the attraction between op-positely charged partners.A first inspection of Table 3and of the diagrams A,B,and C in Figure 1shows that the interaction strengths differ markedly from one system to another depending on the structural features of the receptors involved.L 4is the receptor that presents the highest capacity for interacting with glutamate throughout all of the pH range explored.It must also be remarked that there are not clear-cut trends in the values of the stepwise constants as a function of the protonation degree of the receptors.This suggests that charge -charge attractions do not play the most(25)(a)Martell,E.;Smith,R.M.Critical Stability Constants ;Plenum:NewYork,1975.(b)Motekaitis,R.J.NIST Critically Selected Stability Constants of Metal Complexes Database ;NIST Standard Reference Database,version 4,1997.Table 1.Protonation Constants of Glutamic Acid and Receptors L 1-L 6Determined in NaCl 0.15mol dm -3at 298.1KreactionGluL 1aL 2aL 3bL 4L 5L 6L +H )L H c 9.574(2)d 9.74(2)8.90(3)9.56(1)9.25(3)9.49(4)9.34(5)L H +H )L H 2 4.165(3)8.86(2)8.27(2)8.939(7)8.38(3)8.11(5)8.13(5)L H 2+H )L H 3 2.18(2)7.96(2) 6.62(3)8.02(1) 6.89(5)7.17(6)7.46(7)L H 3+H )L H 4 6.83(2) 5.85(4)7.63(1) 6.32(5) 6.35(6) 5.97(8)L H 4+H )L H 5 4.57(3) 3.37(4) 2.72(8) 2.84(9) 3.23(9)L H 5+H )L H 6 3.18(3) 2.27(6)∑log K H n L41.135.334.233.634.034.1aTaken from ref 23.b These data were previously cited in a short communication (ref 26).c Charges omitted for clarity.d Values in parentheses are the standard deviations in the last significant figure.Scheme 2.L -Glutamate Acid -BaseBehaviorTable 2.Percentages of the Different Protonated Species at pH 7.4H 1L aH 2LH 3LH 4LL 11186417L 21077130L 3083458L 4083458L 51154323L 6842482aCharges omitted for clarity.A R T I C L E SMiranda et al.826J.AM.CHEM.SOC.9VOL.126,NO.3,2004outstanding role and that other forces contribute very importantly to these processes.26However,in systems such as these,which present overlapping equilibria,it is convenient to use conditional constants because they provide a clearer picture of the selectivity trends.27These constants are defined as the quotient between the overall amounts of complexed species and those of free receptor and substrate at a given pH[eq1].In Figure2are presented the logarithms of the effective constants versus pH for all of the studied systems.Receptors L1and L2with a nonfunctionalized secondary amino group in the side chains display opposite trend from all other receptors. While the stability of the L1and L2adducts tends to increase with pH,the other ligands show a decreasing interaction. Additionally,L1and L2present a close interaction over the entire pH range under study.The tetraaminic macrocycle L3is a better(26)Escartı´,F.;Miranda,C.;Lamarque,L.;Latorre,J.;Garcı´a-Espan˜a,E.;Kumar,M.;Ara´n,V.J.;Navarro,mun.2002,9,936-937.(27)(a)Bianchi,A.;Garcı´a-Espan˜a,c.1999,12,1725-1732.(b)Aguilar,J.A.;Celda,B.;Garcı´a-Espan˜a,E.;Luis,S.V.;Martı´nez,M.;Ramı´rez,J.A.;Soriano,C.;Tejero,B.J.Chem.Soc.,Perkin Trans.22000, 7,1323-1328.Table3.Stability Constants for the Interaction of L1-L6with the Different Protonated Forms of Glutamate(Glu) entry reaction a L1L2L3L4L5L6 1Glu+L)Glu L 3.30(2)b 4.11(1)2HGlu+L)HGlu L 3.65(2) 4.11(1) 3.68(2) 3.38(4) 3Glu+H L)HGlu L 3.89(2) 4.48(1) 3.96(2) 3.57(4) 4HGlu+H L)H2Glu L 3.49(2) 3.89(1) 2.37(4) 3.71(2)5HGlu+H2L)H3Glu L 3.44(2) 3.73(1) 2.34(3) 4.14(2) 2.46(4) 2.61(7) 6HGlu+H3L)H4Glu L 3.33(2) 3.56(2) 2.66(3) 4.65(2) 2.74(3) 2.55(7) 7HGlu+H4L)H5Glu L 3.02(2) 3.26(2) 2.58(3) 4.77(2) 2.87(3) 2.91(5) 8HGlu+H5L)H6Glu L 3.11(3) 3.54(2) 6.76(3) 4.96(3) 4.47(3) 9H2Glu+H4L)H6Glu L 2.54(3) 3.05(2) 3.88(2) 5.35(3) 3.66(4) 3.56(3) 10H2Glu+H5L)H7Glu L 2.61(6) 2.73(4) 5.51(3) 3.57(4) 3.22(8) 11H3Glu+H4L)H7Glu L 4.82(2) 4.12(9)a Charges omitted for clarity.b Values in parentheses are standard deviations in the last significantfigure.Figure1.Distribution diagrams for the systems(A)L1-glutamic acid, (B)L4-glutamic acid,and(C)L5-glutamicacid.Figure2.Representation of the variation of K cond(M-1)for the interaction of glutamic acid with(A)L1and L3,(B)L2,L4,L5,and L6.Initial concentrations of glutamate and receptors are10-3mol dm-3.Kcond)∑[(H i L)‚(H j Glu)]/{∑[H i L]∑[H j Glu]}(1)New1H-Pyrazole-Containing Polyamine Receptors A R T I C L E SJ.AM.CHEM.SOC.9VOL.126,NO.3,2004827receptor at acidic pH,but its interaction markedly decreases on raising the pH.These results strongly suggest the implication of the central nitrogens of the lateral polyamine chains in the stabilization of the adducts.Among the N-functionalized receptors,L4presents the largest interaction with glutamate.Interestingly enough,L5,which differs from L4only in having a phenethyl group instead of a benzyl one,presents much lower stability of its adducts.Since the basicity and thereby the protonation states that L4and L5 present with pH are very close,the reason for the larger stability of the L4adducts could reside on a better spatial disposition for formingπ-cation interactions with the ammonium group of the amino acid.In addition,as already pointed out,L4presents the highest affinity for glutamic acid in a wide pH range,being overcome only by L1and L2at pH values over9.This observation again supports the contribution ofπ-cation inter-actions in the system L4-glutamic because at these pH values the ammonium functionality will start to deprotonate(see Scheme2and Figure1B).Table4gathers the percentages of the species existing in equilibria at pH7.4together with the values of the conditional constant at this pH.In correspondence with Figure1A,1C and Figure S2(Supporting Information),it can be seen that for L1, L2,L5,and L6the prevailing species are[H2L‚HGlu]+and[H3L‚HGlu]2+(protonation degrees3and4,respectively),while for L3the main species are[H3L‚HGlu]+and[H4L‚HGlu]2+ (protonation degrees4and5,respectively).The most effective receptor at this pH would be L4which joins hydrogen bonding, charge-charge,andπ-cation contributions for the stabilization of the adducts.To check the selectivity of this receptor,we have also studied its interaction with L-aspartate,which is a competitor of L-glutamate in the biologic receptors.The conditional constant at pH7.4has a value of3.1logarithmic units for the system Asp-L4.Therefore,the selectivity of L4 for glutamate over aspartate(K cond(L4-glu)/K cond(L4-asp))will be of ca.15.It is interesting to remark that the affinity of L4 for zwiterionic L-glutamate at pH7.4is even larger than that displayed by receptors III and IV(Chart1)with the protected dianion N-acetyl-L-glutamate lacking the zwitterionic charac-teristics.Applying eq1and the stability constants reported in ref17,conditional constants at pH7.4of 3.24and 2.96 logarithmic units can be derived for the systems III-L-Glu and IV-L-Glu,respectively.Molecular Modeling Studies.Molecular mechanics-based methods involving docking studies have been used to study the binding orientations and affinities for the complexation of glutamate by L1-L6receptors.The quality of a computer simulation depends on two factors:accuracy of the force field that describes intra-and intermolecular interactions,and an adequate sampling of the conformational and configuration space of the system.28The additive AMBER force field is appropriate for describing the complexation processes of our compounds,as it is one of the best methods29in reproducing H-bonding and stacking stabiliza-tion energies.The experimental data show that at pH7.4,L1-L6exist in different protonation states.So,a theoretical study of the protonation of these ligands was done,including all of the species shown in5%or more abundance in the potentiometric measurements(Table4).In each case,the more favored positions of protons were calculated for mono-,di-,tri-,and tetraprotonated species.Molecular dynamics studies were performed to find the minimum energy conformations with simulated solvent effects.Molecular modeling studies were carried out using the AMBER30method implemented in the Hyperchem6.0pack-age,31modified by the inclusion of appropriate parameters. Where available,the parameters came from analogous ones used in the literature.32All others were developed following Koll-man33and Hopfinger34procedures.The equilibrium bond length and angle values came from experimental values of reasonable reference compounds.All of the compounds were constructed using standard geometry and standard bond lengths.To develop suitable parameters for NH‚‚‚N hydrogen bonding,ab initio calculations at the STO-3G level35were used to calculate atomic charges compatible with the AMBER force field charges,as they gave excellent results,and,at the same time,this method allows the study of aryl-amine interactions.In all cases,full geometry optimizations with the Polak-Ribiere algorithm were carried out,with no restraints.Ions are separated far away and well solvated in water due to the fact that water has a high dielectric constant and hydrogen bond network.Consequently,there is no need to use counteri-ons36in the modelization studies.In the absence of explicit solvent molecules,a distance-dependent dielectric factor quali-tatively simulates the presence of water,as it takes into account the fact that the intermolecular electrostatic interactions should vanish more rapidly with distance than in the gas phase.The same results can be obtained using a constant dielectric factor greater than1.We have chosen to use a distance-dependent dielectric constant( )4R ij)as this was the method used by Weiner et al.37to develop the AMBER force field.Table8 shows the theoretical differences in protonation energy(∆E p) of mono-,bi-,and triprotonated hexaamine ligands,for the (28)Urban,J.J.;Cronin,C.W.;Roberts,R.R.;Famini,G.R.J.Am.Chem.Soc.1997,119,12292-12299.(29)Hobza,P.;Kabelac,M.;Sponer,J.;Mejzlik,P.;Vondrasek,put.Chem.1997,18,1136-1150.(30)Cornell,W.D.;Cieplak,P.;Bayly,C.I.;Gould,I.R.;Merz,K.M.,Jr.;Ferguson,D.M.;Spelmeyer,D.C.;Fox,T.;Caldwell,J.W.;Kollman,P.A.J.Am.Chem.Soc.1995,117,5179-5197.(31)Hyperchem6.0(Hypercube Inc.).(32)(a)Fox,T.;Scanlan,T.S.;Kollman,P.A.J.Am.Chem.Soc.1997,119,11571-11577.(b)Grootenhuis,P.D.;Kollman,P.A.J.Am.Chem.Soc.1989,111,2152-2158.(c)Moyna,G.;Hernandez,G.;Williams,H.J.;Nachman,R.J.;Scott,put.Sci.1997,37,951-956.(d)Boden,C.D.J.;Patenden,put.-Aided Mol.Des.1999, 13,153-166.(33)/amber.(34)Hopfinger,A.J.;Pearlstein,put.Chem.1984,5,486-499.(35)Glennon,T.M.;Zheng,Y.-J.;Le Grand,S.M.;Shutzberg,B.A.;Merz,K.M.,put.Chem.1994,15,1019-1040.(36)Wang,J.;Kollman,P.A.J.Am.Chem.Soc.1998,120,11106-11114.Table4.Percentages of the Different Protonated Adducts[HGlu‚H j L](j-1)+,Overall Percentages of Complexation,andConditional Constants(K Cond)at pH7.4for the Interaction ofGlutamate(HGlu-)with Receptors L1-L6at Physiological pH[H n L‚HGlu]an)1n)2n)3n)4∑{[H n L‚HGlu]}K cond(M-1)L13272353 2.44×103L2947763 4.12×103L31101324 3.99×102L423737581 2.04×104L51010222 3.51×102L6121224 3.64×102a Charges omitted for clarity.A R T I C L E S Miranda et al. 828J.AM.CHEM.SOC.9VOL.126,NO.3,2004。

硫化氢缓释探针英语

硫化氢缓释探针英语

硫化氢缓释探针英语The English translation for "硫化氢缓释探针" is "Hydrogen sulfide sustained-release probe".Hydrogen sulfide (H2S) is a colorless gas with a characteristic foul odor of rotten eggs. It is produced naturally in the body and has been found to play important roles in various physiological and pathological processes.A sustained-release probe refers to a device or substance that slowly releases or delivers a compound over anextended period of time. In the context of "硫化氢缓释探针", it likely refers to a tool or device designed to measure or monitor the sustained release of hydrogen sulfide in a particular environment or system.This type of probe could be used in scientific research, medical diagnostics, environmental monitoring, orindustrial processes to better understand the behavior and effects of hydrogen sulfide over time. It may have applications in studying conditions such as inflammation,cardiovascular disease, or even in environmental studies related to sulfur-containing compounds.In conclusion, "Hydrogen sulfide sustained-release probe" is the English translation for "硫化氢缓释探针", and it likely refers to a tool or device used to measure the sustained release of hydrogen sulfide in various contexts for research, diagnostic, or monitoring purposes.。

转石油专业词汇

转石油专业词汇

转石油专业词汇acidoil高含硫原油acidsulfatespring酸性硫酸盐水泉activesulphur活性硫airsweetening空气氧化脱硫醇AircoHooverSweetening艾尔科胡佛脱硫法alabandite硫锰矿alcoholethersulfate醇醚硫酸盐alkylpolyoxyethyleneethersulfate烷基聚氧乙烯醚硫酸盐alkylsulfate烷基硫酸盐alkylsulfhydryl烷基硫醇alkylsulfide硫醚alkylatedthiobisphenol烷基化硫化双酚allylisothiocyanate异硫代氰酸烯丙酯aluminiumpotassiumsulfate硫酸铝钾aluminiumsulphate硫酸铝amineunit醇胺脱硫化氢装置aminooxyethylenesulfate氨基氧乙烯硫酸盐ammoniumbisulfite亚硫酸氢铵ammoniumpersulfate过硫酸铵ammoniumsulfate硫酸铵ammoniumthiocyanate硫氰酸铵amylmercaptan戊基硫醇anaerobicsulfatereducer厌氧硫酸盐还原菌anglesite硫酸铅矿antimonypentasulfide五硫化锑bacterialdesulfurization微生物脱硫bariumsulfatescale硫酸钡垢bariumsulphate硫酸钡bariumsulphide硫化钡beltdetector硫化氢探测仪beta-uranopiliteβ-水硫铀矿bisulfate酸式硫酸盐bisulfide二硫化物bisulfitecooking亚硫酸氢盐蒸煮bisulfite亚硫酸氢盐bluestone天然硫酸铜;胆矾;蓝灰砂岩;硬粘土;青石brimstone硫磺brochantite水硫酸铜butylhydrogensulfate硫酸氢丁酯calciumsulfate硫酸钙calciumsulfide硫化钙calciumsulfite亚硫酸钙calciumsulphate硫酸钙carbonbisulfide二硫化碳carbondisulfide二硫化碳carbondisulphide二硫化碳cetylalcoholsulfate十六烷醇硫酸盐chemsweetprocess化学脱硫工艺chirvinskite含硫沥青ClaustailgasCBAprocess硫回收尾气低温吸附过程cobaltoussulphate硫酸钴combinedsulfur化合硫concentratedsulphuricacid浓硫酸cooperite天然硫砷化铂coppersulfateeletrode硫酸铜电极copper-coppersulfatecell铜-硫酸铜电池copperas硫酸亚铁coppercoppersulphatehalfelectrode铜硫酸铜半电极cupricsulfate硫酸铜cuprobond硫酸铜处理curedrubber硫化橡胶cyclicalsulfide环状硫化物desulfidation脱硫作用Desulfovibrio脱硫弧菌属desulfovibro硫酸盐还原菌desulfuration脱硫desulfurizationcatalyst脱硫催化剂desulfurizer脱硫塔desulphovibrio脱硫弧菌desulphurization脱硫desulphurize脱硫devulcanizing脱硫的diethylthiourea二乙基硫脲dihydrazinesulfate硫酸二联氨酯dimethylsulfide甲硫醚directdesulfurization直接脱硫disulfate焦硫酸盐;硫酸氢盐disulfide二硫化物dithiocarbamate二硫代氨基甲酸酯dithiocarbonate二硫代碳酸盐dithioglycidol二硫代缩水甘油dithionicacid连二硫酸doctornegative低硫的doctorpositive高硫的doctorsolution试硫液doctorsweet脱除硫醇的石油产品doctortest检硫醇试验dodecylmercaptans十二烷硫醇elementalsulfur元素硫elementarysulfur元素硫enargite硫砷铜矿Eshkamethod埃斯卡测硫法ethylmercaptan乙硫醇ethylsulfuricacid乙基硫酸fattyacidsulfate脂肪酸硫酸酯ferricsulfate硫酸铁ferricsulfide硫化铁ferroussulfate硫酸亚铁ferroussulfide硫化亚铁ferroussulphate硫酸亚铁fluegasdesulfurizationprocess烟道气脱硫过程formolitenumber硫酸甲醛值freesulfur单体硫fumingsulfuricacid发烟硫酸gascure气体硫化gassweetening天然气脱硫gersdorffite砷硫镍矿glazier'ssalt硫酸钾GR-P聚硫橡胶harbolite硫氢氮沥青HDS加氢脱硫highsulfate-resistantcement高抗硫水泥high-sulpurcrude高含硫原油hydrodesulfurization加氢脱硫过程hydrodesulphurization加氢脱硫hydrogensulfidecorrosion硫化氢腐蚀hydrogensulfidedetector硫化氢探测器hydrogensulfidestripping硫化氢脱除hydrogensulfide硫化氢hydrosulfate硫酸氢盐hydrosulfide氢硫化物hydrosulfite亚硫酸氢盐hydrosulphiteformaldehyde连二亚硫酸钠甲醛hydroxylaminesulfate羟胺硫酸盐hyposulfite连二亚硫酸盐indirectdesulfurization间接脱硫ironprotosulfide硫化亚铁ironsulfide硫化铁ironicsulfate硫酸铁isosulfurmap等含硫值图jamesonite脆硫锑铅矿juvenilehydrogensulfide深源硫化氢kerite硫沥青;沥青类kieserite水镁矾;硫镁矾lamptest灯法定硫试验latiumite硫硅碱钙石laurylmercaptan月桂基硫醇laurylsulfate月桂烷硫酸酯lignosulfite亚硫酸纸浆废液lowsulfurwaxyresidue低硫含蜡渣油low-sulphurcrude低硫原油magnesiumsulphate硫酸镁mayberyite富硫石油mercaptal缩硫醛mercaptansulfur硫醇硫mercaptan硫醇mercaptide硫醇盐mercaptol缩硫醇metabisulphite偏亚硫酸氢盐methionine甲硫氨酸methylmercaptan甲硫醇microbialdesulfurization微生物脱硫moderatesulfate-resistanttype中等抗硫酸盐型molybdenumdisulfide二硫化钼monocyclicsulfide单环硫化物MSR中等抗硫酸盐型mundic磁性硫化铁nitrosyl-sulfuricacid亚硝基硫酸non-sulfurmodifiedpolychloroprenerubber非硫调氯丁橡胶non-sulfurvulcanization非硫硫化oleum发烟硫酸one-componentpolysulfidesealant单组分聚硫密封剂onozote加填料的硫化橡胶organicsulfide有机硫化物organicsulfur有机硫organosulfuremission有机硫排放物overvulcanization过度硫化oxidationsweetening氧化脱硫permissiblesulphur允许含硫量persulfate过硫酸盐polyphenylenesulfide聚苯硫polysulfide多硫化合物potassiumpersulfate过硫酸钾presulfidedcatalyst经预硫化的催化剂presulfidingofcatalyst催化剂预硫化presulfurization预硫化quisqueite高硫钒沥青;硫沥青realgar鸡冠石;雄黄;二硫化二砷reducedcrudedirectdesulfurizationprocess重油直接脱硫过程revultex浓缩硫化乳胶rhodanate硫氰酸盐romanvitrilo硫酸铜RTV室温硫化S硫scorching过早硫化;灼热的;烧焦似的selexolprocess天然气脱硫skunkoil含硫原油smeller地质学家;含硫气井sodiumbisulfite亚硫酸氢钠sodiumhydrosulfite连二亚硫酸钠sodiumsulfate硫酸钠sodiumsulfide硫化钠sodiumsulfite亚硫酸钠sodiumsulfocyanate硫氰酸钠sodiumsulphate硫酸钠sodiumsulphide硫化钠sodiumsulphite亚硫酸钠sodiumthiocyanate硫氰酸钠sodiumthiosulfate硫代硫酸钠solar-poweredH2Sanalyzer太阳能硫化氢分析仪sourcorrosion含硫腐蚀sourcrudeoil含硫原油sourcrude含硫原油sourformation含硫层sourgaslinepipe含硫气体管线管sourgaswell含硫气井sourgas含硫气sourproduct含硫油品sourwaterstripping含硫污水汽提sourwater含硫污水sourwell含硫井SRB硫酸盐还原菌SSC硫化物应力裂纹stackdesulfurization排烟脱硫sticksulfur棒状硫磺stinkdamp硫化氢气strontiumsulfatescale硫酸锶垢strontiumsulfate硫酸锶Su硫sulf-=sulfa-或sulfo-硫的sulfaldehyde硫醛sulfamide硫酰胺;磺酰胺sulfateash硫酸化灰分sulfateion硫酸根离子sulfatereducers硫酸盐还原菌sulfatereducingbacteria硫酸盐还原菌sulfatereduction硫酸盐还原sulfateresiduetest硫酸化残渣试验sulfateresistantcement抗硫酸盐水泥sulfatescale硫酸盐垢sulfate硫酸盐;硫酸酯sulfate-sodiumtype硫酸钠水型sulfation硫化作用;硫酸化sulfidal胶状硫sulfidationcorrosion硫蚀sulfidation硫化sulfideembrittlement硫化氢致脆sulfide硫化物sulfide-stresscracking硫化物应力腐蚀开裂sulfidization硫化sulfinyl亚硫酰基sulfite亚硫酸盐;亚硫酸酯sulfo-硫代;磺基sulfocompound含硫化合物sulfoether硫醚sulforhodanide硫氰酸盐sulfurbybombmethod氧弹法测定的硫含量sulfurcontentbySchoeninger申宁格法测定的硫含量sulfurcontent含硫量sulfurcorrosion硫腐蚀sulfurdioxide二氧化硫sulfurelimination脱硫;去硫sulfurether硫醚sulfurgroup硫族sulfurhexafluoride六氟化硫sulfurisotoperatio硫同位素比值sulfuroxide硫的氧化物sulfurrecoveryfacility硫磺回收装置sulfurrecovery硫回收sulfurremoval脱硫sulfurtransfercatalyst硫转移催化剂sulfurtrioxide三氧化硫sulfur硫;用硫处理;用亚硫酸盐处理;用硫磺烟熏sulfur-bearingoil含硫石油sulfur-coatedurea含硫尿素sulfur-free不含硫的sulfur-phosphoroustypeadditive硫磷型添加剂sulfurated加硫的;硫化的sulfuration硫化作用sulfurator硫磺熏蒸器sulfuret硫化物;硫醚;硫化sulfurettedhydrogen硫化氢sulfuricacidalkylationprocess硫酸烷基化过程sulfuricacidprocess硫酸法sulfuricacid硫酸sulfuricanhydride三氧化硫sulfurizedbaseoil含硫原油sulfurizing渗硫sulfurousacid亚硫酸sulfurousfuel含硫燃料sulfurousgas含硫气体sulphateattack硫酸盐侵蚀sulphatereducingbacteria硫酸盐还原菌sulphatesalinity硫酸盐矿化度sulphate-ethoxylatedalcohols乙氧基化醇类的硫酸盐;乙氧基化醇类的硫酸酯sulphate-resistantcement抗硫酸盐水泥sulphating硫酸盐化;硫酸酯化sulphideattack硫化物的腐蚀作用sulphite亚硫酸盐sulpho-aluminouscement硫酸铝水泥sulphurdioxide二氧化硫sulphurremoval除硫sulphur硫sulphur-bearingcrude含硫原油sulphurate加硫;硫化sulphureous硫的;含硫的sulphuretted硫化的sulphuricacid硫酸sulphuricdioxide二氧化硫sulphurizedlubricant含硫润滑剂sulphurizing渗硫sulphurousacid亚硫酸sweetcorrosion无硫腐蚀sweetcrudeoil无硫原油sweetdrygas脱硫干气sweetgas无硫气;低硫气sweetoil无硫油;低硫油品sweetwell低硫井sweet甜的;新鲜的;脱去硫的油品sweetener脱硫设备sweetening脱硫;脱臭tert-butylmercaptan叔丁基硫醇thiacyclopentane硫杂环戊烷thio含硫的thioalcohol硫醇thiocarbamide硫脲thiocyanate硫氰酸盐thioelaterite硫弹性沥青thioester硫酯thioether硫醚thiogenicbacteria产硫细菌thiokerite九硫沥青thiokol聚硫橡胶thiol硫醇thionyl亚硫酸基thiophenicsulfur噻吩硫thiophenol硫酚thiophile新硫的thioretinite含硫树脂thiosulfate硫代硫酸盐thiosulfuricacid硫代硫酸thioureatypeaccelerator硫脲素促进剂thiourea硫脲thiourea-formaldehydeprecondensate硫脲甲醛预缩物trinascol稠硫沥青石油trinkerite富硫树脂trisulfide三硫化物tscherwinskite贫硫沥青tschirwinskite含硫沥青ullmanite锑硫镍矿undercuring欠处理;欠硫化;欠熟velikhovite氮硫沥青vishnevite硫碱钙霞石vitriol硫酸盐;矶;硫酸;刻薄vitriolicacid硫酸vitriolization硫酸处理;溶于硫酸volcanite火山岩;歪辉安山岩;辉石;含硒硫磺VR硫化橡胶vulcanizate硫化产品;硫化橡胶vulcanizationaccelerator硫化促进剂vulcanizationactivator硫化活化剂vulcanizationofrubber橡胶硫化vulcanizationretardant硫化延缓剂vulcanization硫化;硬化;热补vulcanizator硫化剂vulcanizedrubber硫化橡胶vulcanizer硫化剂vulcanizingagent硫化剂vulcanizingingredient硫化配合剂vultex硫化胶乳weidgerite硫弹沥青wetherilite硫弹沥青wiedgerite硫弹沥青wischnewite硫碱钙霞石zincdialkyldithiocarbamate二烷基二硫代氨基甲酸锌zincdialkyldithiophosphate二烷基二硫代磷酸锌AMGP墨西哥石油地质家协会AmocoInternationalOilCo.阿莫科国际石油公司ancestralpetroleum原石油AOCS美国石油化学家学会AOGA阿拉斯加石油与天然气协会APEA澳大利亚石油勘探协会APIBull美国石油学会通报APIChain美国石油学会标准链条APIconnection美国石油学会标准接头APIdegree美国石油学会规定之原油重度APIdrillpipethread美国石油学会标准钻杆螺纹APIhydrometer美国石油学会液体比重计APIPSD美国石油学会石油安全数据APIPub美国石油学会出版物APIRp美国石油学会推荐作法APIseparator美国石油学会标准分离器APISpec美国石油学会规范APIstandardgridpresentation美国石油学会标准测井曲线网格图APIStd美国石油学会标准APItestprocedure美国石油学会试验程序APItolerance美国石油学会公差APItubingthread美国石油学会油管螺纹API美国石油学会APIC美国石油工业委员会APIGU美国石油学会伽马测井标准单位APINU美国石油学会中子测井标准单位APOA北极石油经营者协会APPI亚洲石油价格指数APRT预收石油收入税ArabPetroleumCongress阿拉伯石油会议ArabianOilCo.Ltd.阿拉伯石油有限公司araeopicnometer石油比重计arcticoil北极地区用油;靠近北极区开采的石油aromaticpetroleumsolvent芳族石油溶剂ARTEP石油开采技术研究协会artificialasphalt人造石油沥青ASCOPE东南亚国家联盟石油理事会ASPG阿尔伯达石油地质家学会asphaltbasepetroleum沥青基石油ASSOPO海运和海上石油作业安全自动化Banoco巴林国家石油公司baseroyalty石油产地使用费bergbalsam石油blackgoldofTransylvania石油blackgold石油bloom花;兴旺时期;石油荧光;喷霜blueskypeddler不倦的石油业发起人BO石油桶数boomtown石油城;发展快的城市BP英国石油公司BrazilianPetroleumCo.巴西石油公司BritishPetroleumCompanyp.l.c.英国石油公司brownpetroleum褐石油bubblepointoil饱和石油bulkplant油库;石油销售站burningwaters石油CALTEX加利福尼亚-得克萨斯石油公司cheapoil廉价石油chemofining石油加工化学;石油化学合成ChinaNationalOffshoreOilCorp.中国海洋石油总公司ChinaNationalPetroleumCorp.中国石油天然气总公司ChinaPetroChemicalCorporation中国石油化工总公司CNOGEDC中国石油天然气勘探开发公司CNOOC中国海洋石油总公司CodeAPI美国石油学会的标准cold-testoil低凝点石油CompaynieFrancaisedesPetroles法国石油公司conventionaloil常规石油COOLC中国海洋石油测井公司coplusoryoilstockobligations强制石油储备CouncilofPetroleumAccountantsSocietiesofNorthAmerica北美石油会计协会CPS中国石油学会CSPG加拿大石油地质学家学会cutoil乳化石油darkpetroleumoils暗色石油油料degradedoil降解石油DenNorskeStatsOljeselskapa.s.挪威国家石油公司doctorsweet脱除硫醇的石油产品dollaroil美元石油domesticoil国产石油EAPG欧洲石油地学家和工程师协会EAPG欧洲石油地质学家协会Easternoil美国东部石油公司economicallyrecoverableoil经济上有开采价值的石油EgyptianGeneralPetroleumCorp.埃及石油总公司ESSOOil埃索石油公司exploitableoil可采石油fieldcontrolofpetroleumproducts石油产品质量的现场控制fixeddesignationofstandardtest石油产品标准试验法编号FOCB联邦石油储备局fossiloil石油freakoil非商品性石油产品;中间产品freakstocks非商品性石油产品freshoil新采石油gasfamily石油气族gasliquids液化石油气gas-oilfluidviscosity含溶解气石油的粘度generalpetrochemicalworks石油化工总厂genesisofoil石油的成因geoline凡士林;石油GulfOilCorporation海湾石油公司gushinggold石油habitatofoil石油产地heavyasphaltcrude沥青基重质石油homepetroleumindustry本国石油工业hybrid-baseoil混合基石油hydrocarbonblack石油炭黑IFP法国石油研究院IFPCW国际石油及化学工作者联合会IMFPetroleumFund国际货币基金组织石油基金immatureoil不成熟石油in-situoilviscosity地下石油粘度inactiveoil不旋光石油IndependentOilCompany独立石油公司Independents独立石油公司indexofoilprice石油价格指数initialoilinplace原始石油地质储量inoilpayment以石油支付inspissatedoil风化石油InstituteofPetroleum石油学会integratedoilcompany一体化石油公司InternationalFederationofPetroleumandChemicalWorkers国际石油及化学工作者联合会internationaloilcartel国际石油卡特尔InternationalPetroleumExchange国际石油交易所internationalpetroleummarket国际石油市场InterstateOilCompactCommission州际石油契约委员会InterstateOilCompact州际石油协议IOCC州际石油契约委员会IOIP石油地质储量IOSA国际石油勘查者协会IP石油学会IPA美国独立石油协会IPAA美国独立石油公司协会IPE国际石油百科全书IPE国际石油展览会IPEC非欧佩克石油输出国IPIECA国际石油工业环境保护协会IPT石油工艺师学会IraqNationalOilCo.伊拉克国家石油公司ISPG沉积和石油地质研究所JapanNationalOilCorporation日本石油公司JPI日本石油学会JPT石油工艺杂志jug检波器;水罐;小型地震仪;储存天然气或其它石油产品的垂直溶洞KOC科威特石油公司KPC科威特石油公司KuwaitNationalPetroleumCompany科威特国家石油公司L.O.O.P路易斯安那州海上石油港L.P.石油醚LibyanNationalOilCorporation利比亚国家石油公司ligarine石油醚lightpetroleum石油醚liquefiedpetroleumgas液化石油气liveoil含气石油lossesofpetroleumproducts石油产品损耗low-densityoil轻质石油low-gradeoil低级石油LPG液化石油气LPG-airmixtures液化石油气与空气混合物LPGA液化石油气协会mahoganysulfonate石油磺酸盐MajorOilCompany国际大石油公司malthenes石油脂manustester石油闪点测定器marineoil海洋石油marinepetroleumexploitation海洋石油开采markovnikite富萘石油mayberyite富硫石油methaneoil甲烷族石油micrococcuspetrol石油菌migrationofoil石油的运移migratoryoil运移的石油mineralearthoil石油mineralether石油醚mineralspirit石油溶剂油MinistryofPetroleumIndustry石油工业部mixedasphalticbaseoil混合沥青基石油mixedbaseoil混合基石油mixedoildrillingrig复合式石油钻井钻机MobilOilCorp.美孚石油公司motheroil原生石油N.P.I.国家石油学会N.P.R.A.全国石油炼油商协会NACOPS国家石油统计咨询委员会naphthabitumen石油沥青naphthenicbaseoil环烷基石油naphthology石油学nascentoil初生石油NationalCongressofPetroleumRetailers全国石油零售商协会NationalIranianOilCo.伊朗国家石油公司NationalOilCompany国家石油公司NationalOilMarketersAssociation全国石油批发商协会NationalPetroleumRefinersAssociation全国石油炼制者协会nationalpetroleumreserve国家石油储备needlecoke针状结晶石油焦neo-petroleum新生石油NGPA加拿大天然气和石油协会NIPER国家石油和能源研究所NLPGA全国液化石油气协会non-APItubing非美国石油学会标准油管non-APItubular非美国石油学会标准管材non-asphalticbaseoil非沥青基石油non-paraffinousoil不含蜡石油nonoil非石油的nonrecoverableoil不可采出的石油NPAcolor美国石油协会色度NPA全国石油协会NPC全国石油委员会NPD挪威石油董事会NPR海军石油储备NPRA阿拉斯加国家石油储备NPS挪威石油学会NPX美国石油实验法O石油OAPEC阿拉伯石油输出国组织OccidentalPetroleumCorporation西方石油公司OCTG石油管材OF石油燃料off-testproduct未经检验的石油产品offshoreoilexploitation海上石油开采offshoreoil海上石油offshorepetroleumresources海洋石油资源OGDC石油和天然气开发公司OIC石油工业委员会OIC石油信息委员会OIIC石油工业情报委员会OIIP石油地质储量oilaccumulation石油积聚oilasphalt石油沥青oilbase油基;石油特性oilboom拦油栅;石油热oilboycott石油抵制oilbroker石油经纪人oilcoldtest石油产品浊点或凝固点测定oilcompany石油公司oilconcession石油特许权oilconservation石油资源保护oilconsumingcountries石油消费国oilcountrytubulargoods石油管材oilcrisis石油危机oildeficit石油逆差oildehydrating石油脱水oildehydrator石油脱水器oildelivery石油输送oildemand石油需求oildeposit石油矿床oildevelopment石油开发oildewaxing石油脱蜡oildistillate石油馏分oildollar石油美元oilembargo石油禁运oilemplacement石油侵位oilengineer石油工程师oilentrapment石油捕集作用oilequipment石油设备oilexchange石油交易所oilexploration石油勘探oilexportiogcountries石油出口国oilextraction石油抽提oilfinder石油勘探工作者oilfire石油火焰;石油燃烧造成的火灾oilfuel石油燃料oilgastar石油裂解焦油oilgas石油裂解气oilgasification石油气化oilgauge油表;油尺;油面指示器;石油比重计oilgenerationzone石油生成带oilgeneration石油生成oilgenesis石油成因oilgeology石油地质oilglut石油过剩oilgradientline石油梯度线oilhydrometer石油比重测定仪oilinreserve储存油;尚未能利用的石油储量oilinsitu原地石油储量oilindication石油显示oilindustry石油工业oilinitiallyinplace原始石油地质储量oilmagnate石油大王oilmarketsimulation石油市场模拟oilmarketer石油销售商oilmeasurement石油计量oilmeter石油计量器oilmigration石油运移oilminingmethod石油采矿法oilmoney石油资金oilorigin石油成因oilpackage石油产品容器oilpatch含油岩屑;油斑;石油勘探、开采和油田管道铺设所涉及的地域;油田oilpayment产量提成;以石油支付oilpermit石油装载许可证oilpitch石油沥青oilpollution石油污染oilpotential潜在石油储量oilpower石油动力;石油动力机oilproducer石油生产商;产油井oilproduction石油开采;采油量oilpromoter石油推销人;卖油再钻新井油商oilproperties石油性质oilprospecting石油勘探oilpuncher石油经纪商oilreserves石油储量oilresources石油资源oilroyalty石油矿区使用费oilsearch石油普查oilselfsufficiency石油自给oilsharemarkets石油股票市场oilshock石油冲击oilshortage石油不足oilshrinkageloss石油收缩损失oilshrinkage石油收缩oilstockmarket石油股票市场oilstorage石油储存;储油库oilstoring石油储存oiltrap石油圈闭;隔油池oilvapour石油蒸汽oilweapon石油武器oil油;石油oil-fueldepot石油燃料库oil-impregnation石油浸染oil-rich富含石油的oil-transferring石油输送;油传送OIP石油地质储量OLC近海石油后勤会议OMS石油市场模拟onshoreoilterminal陆岸石油集输终端OOIP原始石油地质储量OPEC石油输出国组织OrganizationofArabPetroleunExportingCountries阿拉伯石油输出国组织OrganizationofPetroleumExportingCountries石油输出国组织originofoil石油成因originofpetroleum石油生成originaloilvolumefactor原始石油体积系数P.A.D.国防石油管理局P.D.S.石油数据系统PanAm.泛美石油公司paperbarrel纸面石油PAW战时石油管理PCWPC世界石油会议常设理事会PE石油工程师PennzoilCo.宾索石油公司PermanentCounciloftheWorldPetroleumCongress世界石油会议常设理事会PES石油工程学会PESA石油设备供应商协会pet石油Pet.Engr.石油工程师pet.pord石油产品petro-technology石油技术petrobitumen石油沥青PetroCanada加拿大石油公司petrochemicalcomplex石油化工petrochemicalequipment石油化工设备petrochemicalplant石油化工厂petrochemicalprocess石油化工过程petrochemicalprocessing石油化学加工petrochemicalunit石油化工装置petrochemicalwastedisposal石油化学废料处置petrochemical岩石化学的;石油化学的;石油化学产品petrochemicals石油化学产品petrochemistry岩石化学;石油化学petrodollars石油美元petrogenicgas石油气petrolene石油烯;软沥青PetroleosMexicanos墨西哥石油公司petroleumaccumulation石油聚集petroleumadditive石油添加剂petroleumaromatics石油芳烃petroleumasphalt石油沥青petroleumbaserustpreventive石油基防锈剂petroleumbase石油基petroleumbenzine石油醚petroleumbitumen石油沥青petroleumblack石油烟黑petroleumbloom石油萤光petroleumchemicals石油化学品petroleumcloudpointtester石油浊点测定仪petroleumcoal固体石油petroleumcoke石油焦petroleumcomposition石油组成petroleumcontract石油合同petroleumconvertibility石油可逆性petroleumcuts石油馏分petroleumdemand石油需求petroleumderivative石油衍生物petroleumdrilling石油钻井petroleumemulsionbreaker石油破乳装置petroleumenergyelasticity石油能源弹性值petroleumengineer石油工程师petroleumengineeringeconomics石油工程经济学petroleumengineering石油工程petroleumetherinsolubles石油醚不溶物petroleumether石油醚petroleumexhaust石油废气petroleumexplorationhydrodynamics石油勘探流体动力学petroleumexploration-orientedhydrodynamicevaluation石油勘探水动力评价petroleumfermentationprocess石油发酵过程petroleumfermentation石油发酵petroleumfraction石油馏分petroleumgasoil石油气体油petroleumgas石油气petroleumgenesis石油形成petroleumgeochemistry石油地球化学petroleumgeologist石油地质学家petroleumgeology石油地质学petroleumgeophysics石油地球物理学petroleumhydrocarbon石油烃petroleumhydrogeology石油水文地质学petroleumindustry石油工业petroleummicrobiology石油微生物学petroleummicroorganism石油微生物petroleummigration石油运移petroleumminingmachinery石油机械petroleumnitrogenbase石油中的含氮碱petroleumoperation石油作业petroleumorigin石油生成petroleumpipeline石油管道petroleumpitchenamel石油沥青漆petroleumprocessing石油加工petroleumproductionact石油生产法petroleumproducts石油产品petroleumprospecting石油勘探petroleumrefinery石油炼厂petroleumrefining石油加工petroleumregulation石油管理法规petroleumreserves石油储量petroleumresin石油树脂petroleumresources石油资源petroleumrevenuetax石油所得税petroleumseries石油系列petroleumsolvent石油溶剂petroleumspirit石油溶剂petroleumsulfonateflood石油磺酸盐溶液驱油petroleumtransport石油运输petroleumtrap石油圈闭petroleumvapor石油蒸气petroleum石油petroleum-associatedwater石油伴生水petroleum-in-place石油地质储量petroleum-likehydrocarbon类石油烃petrolic石油的petroligenicnaturalgas石油天然气petrolite石油岩petrolwumtarsand含石油沥青的岩石或砂petromoney石油资金petronol液体石油脂petroporphyrin石油卟啉;岩卟啉petropower石油权力petroprotein石油蛋白PGRT石油和天然气收益税PhillipsPetroleumCompany菲利普斯石油公司physicaloil实物石油PIB石油情报局postedoilprice石油标价postlithifactionoil岩化期后石油prelithifactionoil岩化期前石油PRI石油开采学会productspipelineoperation石油成品的顺序输送prospectiveoil远景石油储量protopetroleum原生石油PRT石油收入税pteroleumbase石油基地rationingofpetroleumproducts石油产品定量分配realoillosses实际石油损耗recoverableoil可采石油remainingrecoverableoilinplace地下剩余可采石油reservoiroilviscosity储层石油粘度rockoil石油royaltyoil政府拥有的石油saponatedpetroleum皂化石油searchforoil勘查石油semi-asphalticflux半石油沥青SevenSisters=SevenMajors石油七姐妹ShellOilCo.壳牌石油公司sherwoodoil石油醚singletrainLPGplant单套液化石油气装置Sojuznefteexport苏联石油机关solidpetroleum固态石油SPD补充石油税SPE石油工程师学会specificationsAPI美国石油学会规范SPEE石油评价工程师学会spongecoke海绵状石油焦spotoilmarket石油现货市场spotsample个别试样;代表在容器一定水平面上的石油产品质量的试样SPR石油战略储备SPR战略石油储备StandardOilCo.ofCalifornia加利福尼亚美孚石油公司StandardOilCompany俄亥俄美孚石油公司sterlingoil英磅石油stickyoil高粘度石油stoneoil石油storagejug地下液化石油气储穴strategicoilinventory石油战略储备strategicoilreserve石油战略储备strippedoil脱去汽油的石油sulfur-bearingoil含硫石油supplementarypetroleumduty补充石油税SUPRI斯坦福大学石油研究所surplusofoilproduction石油生产过剩syngeneticoil同生石油tailoftender石油成品管输时的尾部tankvolume储罐容积;油罐中油的体积;换算成标准条件下的石油体积TeikokuOilCo.Ltd.帝国石油有限公司Tertiarycrudes第三纪石油theoryofinorganicorigin石油无机成因说theoryoforganicorigin石油有机成因说thinnedoil稀释石油TOTAL道达尔石油公司tradingoil纸面石油transitrevenuesfromoil石油过境税trappingofoil石油圈闭作用travelofoil石油运移trinascol稠硫沥青石油uncompensateddrainage无赔偿的石油流失undergroundliquefiedpetroleumgasstorage地下液化石油气库;液化石油气地下储存unrecoveredoil残留石油vaseline石油冻;矿脂;凡士林venturaite富氮石油virginoil未开采的石油virgintankoil换算成地面条件下的未开采石油warrenite含石蜡和异构石蜡混合物的气态或液态沥青;石蜡石油waxcontainingasphalt含蜡石油沥青wetbarrel实物石油whitespirit石油溶剂WPC世界石油大会youngeroil初期石油特别声明:1:资料来源于互联网,版权归属原作者2:资料内容属于网络意见,与本账号立场无关3:如有侵权,请告知,立即删除。

hydro开头的单词

hydro开头的单词

Hydro开头的英语单词1、Hydrogen(气)元嘉周期表中第一种元案,化学符号为H。

2、Hydrolysis(水解)一种化学反应过程,涉及将水分子分解,使其成为原子或离子的一部分。

3、Hydroxide(轻基)由氧和氢组成的单质根离子,在化合物中常以OH-的形式有在。

4、Hydrosphere(水圈)指地球上所有含水体系的总称,包括海洋、河流、湖泊、地下水等。

5、Hydrocarbon(烃)由碳利氢组成的有机化合物,包括烷烃、烯烃、快经等。

6、Hydrogenation(加氢)一种化学反应过程,涉及在分子中添加氢原子,通常使用催化剂来促进反应。

7、Hydrothermal(热液的)描述在高温高压下与水相联系的物质或过程。

8、Hydrate(水合物)由化合物和水分子组成的化合物,通常以分子式的形式表示为“化合物·nHO”。

9、Hydrostatic(水压的)由于水的静态压力产生的力或压力。

10、Hydrophilic(亲水的)指可以与水很好地相容或混合的化合物或物质。

11、hydrous(含水的)hydr“水”;ous 为形容词后缀,表示“具有…性质或特征”,如anxious adj.“忧虑的;焦急的”,joyous adj.“快乐的;高兴的”。

12、carbohydrate(碳水化合物)carb/carbo,表示“碳”,如carbon n.“碳”,carbide n.“碳化物”;hydr“水”;ate这里是名词后缀,表示“人或物”,如graduate n.“毕业生”,certificate n.“证书;文凭”。

13、hydroplane(水上滑艇;水上飞机)hydro“水”;plane:n.“飞机”。

14、hydroelectric(水力发电的)hydro“水”;electric adj.“电的;发电的”。

15、hydrogen(氢;氢气)hydr“水”;gen=birth,produce,表示“出生,产生”,如engender vt. “使产生;造成”,gene n.“基因”;该词解释:因为氢气有燃烧生成水的特性,故用此二词根构词,意为“生成水的物质”。

巴斯夫 Hydrosulfite F 安全技术说明书

巴斯夫 Hydrosulfite F 安全技术说明书

安全技术说明书页: 1/13 巴斯夫安全技术说明书按照GB/T 16483编制日期 / 本次修订: 04.04.2022版本: 12.2日期/上次修订: 24.11.2021上次版本: 12.1日期 / 首次编制: 06.05.2006产品: Hydrosulfite F(30667828/SDS_GEN_CN/ZH)印刷日期 29.10.20231. 化学品及企业标识Hydrosulfite F推荐用途和限制用途: 化学品, 纺织工业用助剂, 造纸化学品推荐用途: 还原剂, 漂白剂, 仅用于工业用途, 无机还原剂公司:巴斯夫(中国)有限公司中国上海浦东江心沙路300号邮政编码 200137电话: +86 21 20391000传真号: +86 21 20394800E-mail地址: **********************紧急联络信息:巴斯夫紧急热线中心(中国)+86 21 5861-1199巴斯夫紧急热线中心(国际):电话: +49 180 2273-112Company:BASF (China) Co., Ltd.300 Jiang Xin Sha RoadPu Dong Shanghai 200137, CHINA Telephone: +86 21 20391000Telefax number: +86 21 20394800E-mail address: ********************** Emergency information:Emergency Call Center (China):+86 21 5861-1199International emergency number: Telephone: +49 180 2273-1122. 危险性概述纯物质和混合物的分类:巴斯夫安全技术说明书日期 / 本次修订: 04.04.2022版本: 12.2产品: Hydrosulfite F(30667828/SDS_GEN_CN/ZH)印刷日期 29.10.2023自热物质及其混合物: 分类1急性毒性: 分类5 (口服)皮肤腐蚀/刺激: 分类3严重损伤/刺激眼睛: 分类2A对水环境的急性危害: 分类3标签要素和警示性说明:图形符号:警示词:危险危险性说明:H251自热;可能燃烧。

药用级海藻酸钠cas9005

药用级海藻酸钠cas9005

药用级海藻酸钠cas9005药用级海藻酸钠cas9005-38-3用途海藻酸钠又称藻朊酸钠、褐藻酸钠、藻酸钠、褐藻胶、海带胶、藻酸钠。

主要组成是海藻酸的钠盐,是聚糖醛酸的混合物。

是从海带等褐色海藻中提取的一种胶。

呈白色或淡黄色粉末,无臭、无味,有吸潮性,相对密度1.59,积累密度87.39kg/m3,湿含量13%,灰分23%,致黑温度150℃,炭化温度340℃(460℃),灰化温度480℃,燃烧热10.46J/g,不溶于乙醇、乙或氯仿等。

溶于热水及冷水,1%水溶液pH值为6~8,可形成粘稠胶体溶液,且易与蛋白质、淀粉、果胶、阿拉伯胶、羧甲基纤维素、蔗糖、丙三醇及山梨醇等共混。

不溶于pH小于3的稀酸。

当pH为6~9时,其黏度稳定,加热至80℃以上其黏度下降[9005-38-3]本品系从褐色海藻植物中用稀碱提取精制而得,其主要成分为海藻酸的钠盐。

【性状】本品为白色至浅棕黄色粉末。

本品在水中溶胀成胶体溶液,在乙醇中不溶。

【鉴别】(1)取本品0.2g,加水20ml,时时振摇至分散匀称,作为供试品溶液。

取5ml,加5%氯化钙溶液 1 ml,即生成大量胶状沉淀。

(2)取鉴别(1)项下的供试品溶液5ml,加稀硫酸1ml,即生成大量胶状沉淀。

(3)取本品约10mg,加水5ml,加新制的1%1,3-二羟基萘的乙醇溶液1ml与盐酸5ml,摇匀,煮沸3分钟,冷却,加水5ml与异丙醚15ml,振摇。

同时做空白试验。

上层溶液应显深紫色。

(4)取炽灼残渣项下的残渣,加水5ml使溶解,显钠盐的鉴别反应(通则0301)。

甜菊素药用级辅料(2023药典)1kg/袋 25kg/桶糖精钠药用级辅料(2023药典)1kg/袋 25kg/桶无水碳酸钠药用级辅料(2023药典)500g/瓶 25kg/桶DL-酒石酸药用级辅料(2023药典)500g/瓶 25kg/桶氨丁三醇 1kg25kg(2023药典)麦芽糊精药用级辅料(2023药典)500g/瓶 25kg/桶聚丙烯酸树脂药用级辅料(2023药典)500g/瓶 5kg/袋黄原胶药用级辅料(2023药典)500g/袋10kg/桶注射级芝麻油/麻油 1kg 25kg注射级丙二醇 500ml 20kg注射级橄榄油 1L 25kg注射级羟丙基倍他环糊精 1kg25kg注射级聚乙二醇400 20kg/箱注射级聚乙二醇300薄荷脑 250g 25kg薄荷油/薄荷素油 500ml 25kg。

Perfemiker],67-03-8,盐酸硫胺,技术规格说明书(SDS)

Perfemiker],67-03-8,盐酸硫胺,技术规格说明书(SDS)

67-03-8|盐酸硫胺,技术规格说明书(SDS)简介:盐酸硫胺,Thiamine hydrochloride 是必需的微量营养素,作为许多中枢代谢酶的辅因子。

盐酸硫胺物理化学性质:盐酸硫胺详细介绍:等级:reagent grade测定:≥99% (HPLC)形式:powdertechnique(s):HPLC: suitable颜色:whitemp:250 °C (dec.) (lit.)溶解性:H2O: 50 mg/mL, clear, colorlessSMILES string:CC1=NC(N)=C(C[N+]2=CSC(CCO)=C2C)C=N1.Cl.[Cl-]一般描述:硫胺素是一种水溶性维生素B复合物。

在结构上,它是由五元噻唑环和六元氨基嘧啶环通过甲基连接而成的。

硫胺素天然存在于水果、蔬菜、家禽和蛋中。

应用:盐酸硫胺素已被用作纯化学物质培养基和细菌生长培养基的维生素补充剂。

包装:1 kg in poly drum5, 10, 25, 100, 250 g in poly bottle生化/生理作用:硫胺素是碳水化合物代谢所必需的辅酶。

硫胺素缺乏可导致脚气病,这是一种神经和心血管疾病。

由摄入量或合成量减少导致缺乏时,应给予硫胺素用药。

硫胺素转运蛋白基因SLC19A2的先天性缺陷可引起硫胺素反应性巨幼红细胞性贫血综合征(TRMA)。

硫胺素可模拟大脑中的乙酰胆碱,并可能在阿尔茨海默病中发挥作用。

反刍动物的硫胺素缺乏可导致脊髓灰质炎。

查询关键词:“67-03-8,盐酸硫胺,Thiamine Hydrochloride,Sigma-Aldrich,上海现货”。

盐酸硫胺参考文献:[1]. Moulin M, et al. Analysis of Chlamydomonas thiamin metabolism in vivo reveals riboswitch plasticity. Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):14622-7.产品技术规格说明书由上海创赛科技有限公司收集整理,仅做参考使用。

实验室致癌物质和诱发畸变物质PPT文档18页

实验室致癌物质和诱发畸变物质PPT文档18页
laboratory use. CAUTION: The gas can be easily synthesized by action of
dilute acids on sulfides. Waste gas should be passed through scrubbers before venting. H2S也是非常毒的,吸入是有麻醉作用。H2S其他在含硫物质 与稀酸作用的时候很容易生成。
b) Organic Peroxides 有机过氧化物
Some organic peroxides are very unstable and very dangerous. Due to their high sensitivity to heat, friction, impact, sparks, light, and oxidizing and reducing agents, they can cause violent explosions.
严格的讲,任何可挥发性、吸入时有害的药品,都必须在通 风性好的地方或者是通风橱中处理。
a) Benzene:
Benzene is particularly dangerous since it causes blood diseases. Avoid using it as a solvent. Chronic poisoning is possible following. prolonged inhalation of minute quantities of benzene. Avoid skin contact. It is a known carcinogen.
有害物质
HAZARDOUS SUBSTANCES
(TOXIC, DANGEROUS, CARCINOGENIC, AND MUTAGENIC/TERATOGENIC)

Hi-Yield 镁化酸钠商品安全数据表说明书

Hi-Yield 镁化酸钠商品安全数据表说明书

Hi-Yield® Magnesium SulfateVoluntary Purchasing Groups, Inc. 230 FM 87Bonham, Texas 75418Effective Date: March 15, 2010PRODUCT: Hi-Yield® Magnesium SulfateCOMPANY IDENTIFICATION:Voluntary Purchasing Groups, Inc. 230 FM 87 Bonham, TX. 75418*Under the Toxic Substances Control Act (TSCA), hydrates are considered as mixtures of their anhydrous salt and water. Accordingly, the CAS numbers 7487-88-9, 7732-18-5 are used for purposes on TSCA.Emergency Overview: White or transparent crystalline odorless powder. Noncombustible. At very high temperatures, magnesium oxide, sulfur dioxide, and sulfur trioxide may be generated. Causes mild eye irritation. Eye Contact: Causes mild irritation to the eyes. Skin Contact: No known adverse effects.Inhalation: Causes nausea, vomiting, abdominal cramps, and diarrhea. Ingestion: Causes nausea, vomiting, abdominal cramps, and diarrhea.Chronic Hazards: No known chronic hazards. Not listed by NTP, IARC, or OSHA as a carcinogen. Physical Hazards: Spilled material can be slippery. Eye: In case of contact, immediately flush eyes with plenty of water for at least 15 minutes. Seek medical attention if irritation persists. Skin: Not applicable.Inhalation: Remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Seek medical attention.Ingestion: If large quantities of this material are swallowed, call a physician immediately. Do NOT induce vomiting unless directed to do so by a physician. Never give anything by mouth to an unconscious person. Flammable Limits: This material is noncombustible.Extinguishing Media: This material is compatible with all extinguishing media.Hazards to Fire-Fighters: See Section 3 for information on hazards when this material is present in the area of a fire. Fire-Fighting Equipment: The following protective equipment for fire fighters is recommended when this material is present in the area of a fire: chemical goggles, body-covering protective clothing, self-contained breathing apparatus. Personal Protection: Wear chemical goggles, See section 8Environmental Hazards: Sinks and mixes with water. No adverse effects known. Not a listed toxic chemical under SaraHi-Yield® Magnesium SulfateVoluntary Purchasing Groups, Inc. 230 FM 87Bonham, Texas 75418Effective Date: March 15, 2010Title III, § 313 40CFR Part 372. Not a CERCLA Hazardous Substance under 40 CFR Part 302.Small Spill Clean Up: Carefully shovel or sweep up spilled material and place in suitable container. Avoid generating dust. Use appropriate Personal Protective Equipment (PPE).Large Spill Clean Up: Keep unnecessary people away; isolate hazard area and deny entry. Do not touch or walk through spilled material and place in suitable container. Avoid generating dust. Use appropriate Personal Protective Equipment (PPE)CERCLA RQ: There is no CERCLA Reportable Quantity for this material.Handling: Avoid breathing dust. Promptly clean up spills. Storage: Keep containers closed. Protect from extremes oftemperature and humidity during storage. Recommend storage conditions 68-110°F and 54-87% relative humidity.Engineering Controls: Use with adequate ventilation. Safety shower and eyewash fountain should be within direct access.Respiratory Protection: Use a NIOSH-approved dust respirator where dust occurs. Observe OSHA regulations for Respirator use (29 CFR § 1910.134)Skin Protection: Wear gloves if abrasion or irritation occurs.Eye Protection: Wear chemical goggles. Appearance: Crystalline odorless powder. Color: White or transparent. Odor: Odorless.pH: Approximately 6-7Specific Gravity: 1.76 g/cm 3, Bulk Density approximately 1.05 g/cm 3.Solubility in Water: 71g/100ml at 20°C, 91g/100ml at 40°C. Stability: This material is stable under all conditions of use and storage. Conditions to Avoid: None.Materials to Avoid: Metal hydrides and other water reactive materials.Hazardous Decomposition Products:At very high temperatures, magnesium oxide, sulfur dioxide, and sulfur trioxide may be generated.Acute Data:When tested for primary irritation potential, this material caused mild eye irritation. RTECS reports Oral TDLo=428 mg/kg in men 351 mg/kg in women. Eco toxicity: Data not available.Environmental Fate: This material is not persistent in aquatic systems and does not contribute to BOD. It does not bioconcentrate up the food chain.Physical/Chemical: Sinks and mixes with water. Classification: Disposed material is not a RCRA hazardous waste.Hi-Yield® Magnesium Sulfate Voluntary Purchasing Groups, Inc. 230 FM 87Bonham, Texas 75418Effective Date: March 15, 2010Disposal Method: Dispose in accordance with local, state, and Federal regulations.DOT UN Status: This material is not regulated hazardous material for transportation.CERCLA: No CERCLA Reportable Quantity has been established for this material.SARA TITLE III: Not an Extremely Hazardous Substance under §302. Not a Toxic Chemical under §313. Hazard Categories under §311/312: AcuteTSCA: All ingredients of this material are listed on the TSCA inventory.FDA: Magnesium sulfate is an FDA GRAS substance pursuant to 21 CFR 184.1443. Epsom salt, Agricultural grade is not a suitable grade of magnesium sulfate for pharmaceutical uses.The information on this safety data sheet is believed to be accurate and it is the best information available to Voluntary Purchasing Groups, Inc. This document is intended only as a guide to the appropriate precautions for handling a chemical by a person trained in chemical handling. Voluntary Purchasing Groups, Inc. makes no warranty or merchantability or any other warranty, express or implied with respect to such information or the product to which it relates, and we assume no liability resulting from the use or handling of the product to which this safety data sheet relates. Users and handlers of this product shot make their own investigations to determine the suitability of the information provided herein for their own purposes.。

应用化学专业英语词汇

应用化学专业英语词汇

Toxic chemicals:有毒化学品Chemical pollution:化学污染Physical property :物性Natural changes: 自然变化Scientific fields:科学领域Isolate:分离Determine:测定Synthesize:合成Fundamental principles:基本原理Investigation:研究Utilize:利用➢化学式书写的基本规则➢如何写化学式➢命名化合物➢二元化合物:氧化物,盐,酸(1)阴离子元素加后缀–ide(2)多价态元素加前缀:mono-, di-, tri-, tetra-, penta-, hexa-(3)低价氧化态后缀–ous,高价氧化态后缀–ic➢氧化物➢盐➢酸:基础元素(前缀hydro-, 后缀-ic)+ acid➢氢氧化物(碱):金属元素(价态)+ hydroxide➢含氧酸及其盐(1)基本元素仅有一种氧化态酸:基础元素加后缀-ic + acid盐:阳离子元素+基础元素加后缀-ate(2)基本元素有二种氧化态酸:基础元素加后缀(-ous低价态,-ic高价态)+ acid盐:阳离子元素+ 基础元素加后缀(-ite低价态, -ate高价态)(3)基本元素有多种氧化态酸:最低氧化态基础元素(前缀hypo-, 后缀-ous)+ acid较低氧化态基础元素加后缀-ous+ acid较高氧化态基础元素加后缀-ic + acid最高氧化态基础元素(前缀per-, 后缀-ic)+ acid盐:最低氧化态阳离子元素+ 基础元素(前缀hypo-, 后缀-ite)较低氧化态阳离子元素+ 基础元素加后缀-ite较高氧化态阳离子元素+ 基础元素加后缀-ate最高氧化态阳离子元素+ 基础元素(前缀per-, 后缀-ate)➢不同水分子含量的酸较低水含量前缀meta-较高水含量前缀ortho-➢不同基本元素形成的酸前缀di-, pyro-➢含硫的酸:源于含氧酸中的氧被硫取代,使用前缀thio-➢含氢盐(酸式盐):源于含有1个以上氢原子酸中的氢原子被金属离子取代,形成酸式盐,氢原子以及金属离子使用前缀di-, (bi-),tri-➢配位化合物的命名阳离子+ [ 配体及中心原子] (氧化数)Chemical formulas:化学式anion: 阴离子Oxidation number:氧化值sulphate: 硫酸盐Sodium:钠cation: 阳离子Covalent bond:共价键electroneutral: 电中性的Electronegative atom:电负性原子mono-一Hydrogen: 氢di-二Hydrides: 氢化物tri-三Oxidation:氧化tetra- 四前缀Peroxides:过氧化物penta-五Superoxide:超氧化物hexa-六Positive:正oxidation state:氧化态Periodic table:周期表trivial names:俗名Noble gases: 惰性气sulphide: 硫化物Transition elements:过渡元素hydroxides:氢氧化物Ion: 离子caustic soda solution:苛性钠溶液Combining capacity:结合能力phosphorus: 磷Coordination (complex) compound: 配位化合物vacant orbital:空轨道Unshared pair of electrons:未共用电子对Ethene:乙烯Propene:丙烯butene :丁烯Single bond:单键double bond:双键triple bond:三键Benzene:苯Symmetrical:对称的Naphthalene: 萘functional group :官能团hydroxyl :羟基Carbohydrates: 碳水化合物,糖类Sucrose: 蔗糖glucose :葡萄糖alcohols:醇ether:醚ketone:酮aldehyde:醛fatty acids:脂肪酸esters:酯diethyl :二乙基hexagonal :六边的Formaldehyde: 甲醛methyl :甲基acetate :醋酸盐pentagonal :五边形的amines :胺类ammonia :氨amino acid :氨基酸methylamine :甲胺glycine :甘氨酸vitamin :维生素chlorophyll :叶绿素alkali :碱enzyme :酶-ane:-烷-ene:烯-yne:炔cyclo-:环-Meth-:甲eth-:乙propyl-:丙but-:丁Pent(a)-:戊hex-:己hepta-:庚oct-:辛non-:壬deca-:葵skeleton:骨架-yl: (烷)基methyl:甲基ethyl:乙基alkyl :烷基side chains: 侧链substituent:取代基cis and trans isomers :顺式和反式异构体enantiomers :对映异构体di-:二tri- : 三tetra- : 四penta-: 五straight-chain:直链iso-:异primary carbon:伯碳secondary carbon:仲碳tertiary carbon:叔碳allyl :烯丙基methylene :亚甲基ethylidene :亚乙基Ethylene:次乙基hybridization :杂化cycloalkane :环烷alkene :烯烃geometric isomer:几何异构体chiral carbon:手性碳clockwise direction:顺时针方向counterclockwise direction :逆时针方向Glyceraldehyde:甘油醛substitution reaction :取代反应nucleophilic substitution:亲核取代nucleophile :亲核试剂dissociate :离解carbocation :碳正离子Intermediate:中间体substrate :底物leaving group :离去基团electrophilic substitution:亲电取代carbanion :碳负离子addition reaction :加成反应addition product:加成物attacking reagent:进攻试剂free radical:自由基migration:移动elimination reaction:消去反应adjacent carbon:相邻碳rearrangement reaction:重排反应酸酐acid anhydride 酸性化物acid halide乙醇alcohol 乙醛aldehyde脂肪族aliphatic 烷烃alkane烯烃alkene 醇盐alkoxide烷基alkyl 炔烃alkyne烯丙基allyl 氨基化合物amide胺amine 氨基酸amino acid氨(络)合物ammine 芳烃arene芳香环aromatic ring 芳基aryl含氮的azo 羰基carbonyl羧酸carboxylic acid 胡萝卜素carotene螯合物chelate 手性chiral构象异构体conformer 配位数coordination number晶体场稳定化能crystal filed splitting energy右旋性的dextrorotary重氮化作用diazonium salt二氯甲烷dichloromethane 酯ester脂肪酸fatty acid 自由基free radical官能团functional group 甘油glycerol杂环的heterocyclic 高自旋配合物high spin complex 同系物homolog 烃hydrocarbon诱导效应inductive effect 酮ketone左旋的levorotatory 配体ligand低自旋配合物low spin complex 甲基methyl分子筛molecular sieve 单齿配位物monodentate辛烷octane 旋光性optical activity石蜡paraffin 苯酚phenol苯基Phenyl 多配位基的polydentate聚合物Polymer 丙烷propane外消旋的Racemic 共振效应resonance effect过氧化物superoxide互变异构体tautomer薄层分析法thin layer chromatography甘油三(酸)酯triglyceride不饱和化合物unsaturated compound水煤气water gas两性离子zwitterionbeaker 烧杯phenolphthalein indicator 酚酞指示剂Pipette 移液管acetic acid 醋酸pH meter pH计standard titration curve 标准滴定曲线benzoic acid 苯甲酸ethyl alcohol 乙醇qualitative organic analysis 定性有机分析Unambiguous 明确的characterize 表征structure determination 结构测定bunsen burners 煤气喷灯tripod supports 三角支架wash bottles 洗瓶dropper 滴管transfer pipette 移液管hot plate 轻便电炉wire gauzes 石棉网test tube brush 试管刷test tube rack 试管架ring stand with rings 带环环架filter paper 滤纸utility clamp 铁试管夹clamp holder 夹柄buret clamp 滴定管夹extension clamp 万能夹ring clamp 环形夹子pinchcock 弹簧夹pinch clamp 弹簧节流夹tubing clamp 管夹hose clamp 软管夹test tube clamp 试管夹cork borer set木塞钻孔器套件cork stopper 软木塞rubber stopper 橡胶塞laboratory jack 实验升降台spatulas 刮刀beaker tongs 烧杯钳crucible tongs 坩埚钳Forceps 医用钳tweezer 镊子watch glasses 表面皿goggles 护目镜carbon stirring rod 碳搅拌棒fume hoods 通风橱capillary melting point tube 毛细管熔点管Caliper 卡尺table balance 托盘天平analytical balance 分析天平top pan balance 市秤magnetic stirrers 电磁搅拌器Fahrenheit thermometer 华氏温度计celsius 摄氏度bulb pipettor 球形移液器magnetic stir bar 磁搅拌子Mortars 碾钵pestles 捣锤spotting plates 滴试板alcohol lamp 酒精灯Spectrophotometers 分光光度计connection tube 连接管rubber tube 橡皮管adapter 接合器Socket 套接口ball joint 球形接头Stopper 塞子adaptor 转接口splash heads 防溅头thermometer pocket温度计插孔air leak tube 空气渗漏管distill head 蒸馏头melting point tube 熔点管burettes 滴管Stopcock 活塞aspirating stopcock 吸气式移液管measuring cylinder 量筒volumetric flask 容量瓶centrifuge tube 离心管graduated 有刻度的chromatography colum 层析柱filter funnel 过滤漏斗pressure equalizing funnel 均压漏斗powder funnel 药粉漏斗separating funnel 分液漏斗dropping funnel 滴液漏斗rotary evaporator 旋转蒸发仪spectrophotometer 分光光度计crystallizing dishes with spout 带喷嘴的结晶皿petri dishes 培养皿evaporating dishes 蒸发皿drying tube 干燥管condenser 冷凝管Reflux 回流erlenmeyer flask 锥形烧瓶round bottom flask 圆底烧瓶flat bottom flask 平底烧瓶distillation flask 蒸馏烧瓶filtration flask 过滤瓶round bottom flask 圆底烧瓶weighing bottles 称量瓶reagent bottle 试剂瓶aspirator bottle 蒸馏水瓶BOD bottle 生化需氧量瓶dropping bottle 滴瓶specific gravity bottle 比重瓶glass desiccator 玻璃干燥器Beaker 烧杯extractor 萃取器dry tower 干燥塔vaccume dessicator 真空干燥器gas washing bottle 气泡吸收瓶distilling receiver 蒸馏接收器。

危险化学品事故泄漏首次隔离与防护距离

危险化学品事故泄漏首次隔离与防护距离

首次隔首次隔离距离距离(m)白天夜晚(m)白天夜晚1氨,无水氨Ammonia,anhydrous30 0.2 0.2 60 0.51.12液氨,无水氨,无水液化氨溶液 Ammonia,anhydrous,liquefied30 0.2 0.2 60 0.51.13液氨,无水液化氨溶液,氨含量>50% Ammonia,solution,with more than 50% Ammonia 30 0.2 0.2 60 0.51.14无水氨 anhydrous ammonia30 0.3 0.2 60 0.51.15液化无水氨 Anhydrous ammonia,liquefied 30 0.2 0.2 60 0.51.16三氟化硼Boron trifluoride30 0.3 0.6 215 1.65.17三氟化硼,压缩气体 Boron trifluoride,compressed 30 0.2 0.6 215 1.65.18一氧化碳Carbon monoxide30 0.2 0.2 125 0.61.89一氧化碳压缩气体Carbon monoxide,compressed 30 0.2 0.2 125 0.61.810氯,氯气 Chlorine 30 0.3 1.1 2752.76.811煤气Coal gas30 0.2 0.2 60 0.30.512煤气,压缩的 Coal gas,compressed 30 0.2 0.2 60 0.30.513氰Cyanogen30 0.3 1.1 305 3.17.714氰,液化氰 Cyanogen,liquefied 30 0.2 1.1 305 3.17.715氰气Cyanogen gas 30 0.2 1.1 305 3.17.716环氧乙烷,氧丙烷 Ethylene oxide30 0.2 0.2 60 0.51.8含氮气的环氧乙烷,充氮气的环氧乙危险化学品事故泄漏首次隔离与防护距离范围(km)范围(km)序号中文名称英文名称小泄露大泄露下风向撤离下风向撤离。

梯希爱(上海)化成工业发展有限公司月桂酸钠产品说明书

梯希爱(上海)化成工业发展有限公司月桂酸钠产品说明书

梯希爱(上海)化成工业发展有限公司修订日期修订日期:: 10/08/2018化学品安全技术说明书修改号码修改号码:: 1修订日期修订日期:: 10/08/2018Page 1 of 42. 危险性概述G H S 分类 物理性危害未分类 健康危害皮肤腐蚀/刺激第2级严重损伤/刺激眼睛第1级 环境危害急性水生毒性第2级 慢性水生毒性第2级G H S 标签元素 图标或危害标志信号词危险危险描述造成皮肤刺激造成严重眼损伤对水生生物有毒性长期影响对水生生物有毒性防范说明 [预防]避免释放到环境中。

作业后彻底洗手和洗脸。

戴防护手套、面部防护。

[急救措施]如果皮肤沾染:用大量水冲洗。

如果发生皮肤刺激:求医或就诊。

脱掉受沾染的衣物,且清洗后方能再次使用。

如果进入眼睛:用水小心冲洗几分钟。

如果戴有隐形眼镜且可方便取出,取出隐形眼镜。

继续冲洗。

立刻呼叫中毒控制中心或者医生。

收集溢出物。

[废弃处置]内容物和容器的废弃处置,请遵守当地、地区和国家的法律法规。

1. 化学品及企业标识产品名称产品名称::月桂酸钠T C I 产品编码产品编码::L0016公司:梯希爱(上海)化成工业发展有限公司地址:上海化学工业区普工路96号部门:营业部电话号码:************传真号码:************e-mail:*************************应急电话应急电话::*************修改号码修改号码::1梯希爱(上海)化成工业发展有限公司修改号码修改号码::1修订日期修订日期::10/08/2018Page 2 of 4 3.成分/组成信息单一物质/混和物单一物质化学名(中文名):月桂酸钠百分比百分比::>97.0%(T)CAS RN:629-25-4俗名俗名::Lauric Acid Sodium Salt分子式分子式::C12H23NaO24.急救措施吸入吸入::将受害者移到新鲜空气处,保持呼吸通畅,休息。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

REVIEW ARTICLEHydrogen sulfide:its production,release and functionsHideo KimuraReceived:31October 2009/Accepted:29January 2010ÓSpringer-Verlag 2010Abstract Hydrogen sulfide (H 2S),which is a well-known toxic gas,has been recognized as a signal molecule as well as a cytoprotectant.It is produced by three enzymes,cystathionine b -synthase,cystathionine c -lyase and 3-mercaptopyruvate sulfurtransferase along with cysteine aminotransferase.In addition to an immediate release of H 2S from producing enzymes,it can be stored as bound sulfane sulfur,which may release H 2S in response to physiological stimuli.As a signal molecule,it modulates neuronal transmission,relaxes smooth muscle,regulates release of insulin and is involved in inflammation.Because of its reputation as a toxic gas,the function as a cytopro-tectant has been overlooked:the nervous system and car-diovascular system are protected from oxidative stress.In this review,enzymatic production,release mechanism and functions of H 2S are focused on.Keywords H 2S ÁCystathionine b -synthase ÁCystathionine c -lyase Á3-Mercaptopyruvate sulfurtransferase ÁBound sulfane sulfur ÁNeuromodulator ÁNeuroprotectant ÁCardioprotectant ÁSmooth muscle relaxant ÁEDRFIntroductionThe first toxic gas identified as a signal molecule is nitric oxide (NO),which is produced from arginine by NO syn-thase (Furchgott and Zawadzki 1980).Another toxic gas,carbon monoxide (CO),is produced from biliverdin by heme oxygenase (Verma et al.1993).Both NO and CO were identified as smooth muscle relaxants,and recognized later as neurotransmitters (O’Dell et al.1991;Stevens and Wang 1993).Hydrogen sulfide (H 2S),which is produced from cysteine or homocysteine,was initially found to be a neuromodulator (Abe and Kimura 1996).It facilitates the induction of hippocampal long-term potentiation (LTP)by enhancing the activity of NMDA receptors in neurons and increases the influx of Ca 2?into astrocytes.Like NO and CO,H 2S relaxes the thoracic aorta,portal vein and the ileum,which mainly express cystathionine c -lyase (CSE)(Hosoki et al.1997).Hypertension is observed in CSE knockout mice,confirming that H 2S is a smooth muscle relaxant and suggesting that it may regulate blood pressure (Yang et al.2008).Enzymatic regulation of H 2S productionH 2S can be produced from cysteine by pyridoxal-50-phos-phate (PLP)-dependent enzymes,including cystathionine b -synthase (CBS)and cystathionine c -lyase (CSE)(Abe and Kimura 1996;Hosoki et al.1997;Stipanuk and Beck 1982;Zhao et al.2001).CBS and CSE are expressed in many tissues including the liver and the kidney.Although the expression of CSE in the brain is controversial,both CBS and CSE were reported to be expressed in the brain and produce H 2S from cysteine (Abe and Kimura 1996;Diwakar and Ravindranath 2007;Ishii et al.2004;Vitvit-sky et al.2006).CBS and CSE also catalyze the conden-sation reaction of homocysteine with cysteine to produce H 2S (Chen et al.2004;Chiku et al.2009).H 2S production by CBS changes depending on the extent of allosteric activation of S -adenosylmethionine,and the contribution ofH.Kimura (&)National Institute of Neuroscience,4-1-1Ogawahigashi,Kodaira,Tokyo 187-8502,Japan e-mail:kimura@ncnp.go.jpAmino AcidsDOI 10.1007/s00726-010-0510-xCBS is decreased under hyperhomocysteinemic conditions (Singh et al.2009).Cystathionine b-synthase(CBS)is expressed in the liver,kidney,brain,ileum,uterus,placenta and pancreatic islets.In the brain,CBS is mainly localized to the cere-bellar Bergmann glia and astrocytes(Enokido et al.2005; Ichinohe et al.2005).CBS is localized to neuroepithelial cells in the ventricular zone at the early developmental stages,but its localization changes to radial glial cells and astrocytes during the late embryonic and neonatal periods. The expression of CBS is enhanced by epidermal growth factor(EGF),transforming growth factor-a(TGF-a),cyclic adenosine monophosphate(cAMP)and dexamethasone in astrocytes(Enokido et al.2005).In addition to the transcriptional up-regulation of CBS,a CBS activator, S-adenosyl methionine enhances the enzymatic production of H2S(Abe and Kimura1996).Cystathionine c-lyase(CSE)produces H2S from cys-teine or homocysteine.Under normal conditions,approxi-mately70%of H2S is produced from cysteine and the remaining30%is from homocysteine.However,under conditions with higher concentrations of homocysteine such as homocysteinemia,homocysteine rather than cys-teine becomes the preferred source for H2S production (Chiku et al.2009).Cystathionine c-lyase(CSE)is expressed in the liver, kidney,thoracic aorta,ileum,portal vein,uterus,brain as well as pancreatic islets and the placenta(Diwakar and Ravindranath2007;Hosoki et al.1997;Kaneko et al.2006; Patel et al.2009;Vitvitsky et al.2006).The expression of CSE is increased by the NO donor,S-nitroso-N-acetyl-penicillamine(SNAP),and the enzymatic activity of CSE is enhanced by another NO donor,sodium nitroprusside (SNP)(Zhao et al.2001),although these effects of NO on CSE are controversial(Chiku et al.2009).Although the requirement for Ca2?concentrations was high(1mM),a recent study showed that CSE activity was regulated by calcium calmodulin(Yang et al.2008).Since the interac-tion between CSE and calmodulin is abolished by EGTA and the calmodulin inhibitor W7,the enhanced activity of CSE may be caused by its direct binding to calmodulin.We recently found that H2S is produced from cysteine with brain homogenates of CBS knockout mice and that the production depends on the presence of a-ketoglutarate (Shibuya et al.2009b).These observations suggest that there is another H2S-producing enzyme,which is neither CBS nor CSE,in the brain.3-Mercaptopyruvate sulfur-transferase(3MST)along with cysteine aminotransferase (CAT),which is identical with aspartate aminotransferase (AAT),can produce H2S from cysteine in the presence of a-ketoglutarate(Cooper1983;Frendo and Wrobel1997; Kuo et al.1983).The production of H2S by3MST along with CAT in the presence of cysteine and a-ketoglutarate supports the existence of3MP,which has not been iden-tified.The existence of3MP has been implicated based solely on the release of mercaptolactate-cysteine disulfide, a metabolite of3MP,to urine.Our observation that the pathway produces H2S even without the addition of3MP indicates the existence of3MP as an intermediate(Shibuya et al.2009b).3MST is localized to the liver,kidney,heart,lung, thymus,testis,thoracic aorta and the brain(Nagahara et al. 1998;Shibuya et al.2009a,b).3MST with CAT efficiently produces H2S from cysteine and a-ketoglutarate,and this production is suppressed by a competition with aspartate, a preferred substrate for CAT or AAT.Mechanism of H2S releaseThere are at least two mechanisms for the release of H2S. H2S is immediately released after its production by enzymes.Another possible mechanism is that the pro-duced H2S is stored and released in response to a phys-iologic signal.Two forms of sulfur stores in cells have been identified(Ogasawara et al.1993;Toohey1989). Acidic conditions release H2S from acid-labile sulfur. Another form of storage is called bound sulfane sulfur, which releases H2S under the reducing conditions(Oga-sawara et al.1994).Acid-labile sulfur is mainly sulfur atoms in the iron–sulfur complexes,which play a critical role in a wide range of redox reactions in enzymes of the respiratory chain in mitochondria.The critical pH below which H2S is released from acid-labile sulfur is 5.4 (Ishigami et al.2009).Because mitochondrial pH is between7and8,which is higher than the critical pH, acid-labile sulfur may not release H2S under physiologic conditions.The sulfur of H2S can be incorporated into proteins as bound sulfane sulfur,which is divalent sulfur bound only to the other sulfur,such as outer sulfur atoms of the persul-fides and inner chain atoms of polysulfides.Cysteine is metabolized to produce sulfide that is incorporated into a pool of bound sulfane sulfur(Daniels and Stipanuk1982). Exogenously applied free H2S is immediately absorbed in a sulfur store as bound sulfane sulfur,suggesting that enzy-matically produced H2S may also be stored as bound sul-fane sulfur(Ishigami et al.2009).Cells expressing3MST and CAT increase the levels of bound sulfane sulfur,while cells expressing a defective mutant of3MST,which does not produce H2S,maintain the levels of bound sulfane sulfur at the control levels(Nagahara and Nishino1996; Shibuya et al.2009b).The intracellular levels of bound sulfane sulfur are dependent on the H2S producing activity of3MST,and that H2S produced by3MST is stored as bound sulfane sulfur in the cells(Fig.1).H.KimuraIn the presence of major cellular reducing substances, glutathione and cysteine at their physiologic concentra-tions,H2S is released from lysates of cultured neurons and astrocytes at pH8.4(Ishigami et al.2009).Because the reducing activity of thiols is greater in alkaline conditions than at a neutral pH,H2S release is observed at pH higher than8.4.Although the systemic pH approximately changes up to0.2in either alkalosis or acidosis,it is possible that pH can locally be changed more greatly.When neurons are excited,sodium ions enter and potassium ions exit from cells,resulting in high potassium concentrations in the extracellular environment.It depolarizes the membrane of surrounding astrocytes and activates their Na?/HCO3-cotransporters.Entrance of HCO3-causes the alkaliniza-tion of the cells(Brookes and Turner1994).Although H2S has not been detected,approximately10%of the primary cultures of astrocytes responded well to10mM K?and shifted their intracellular pH to8.4(Ishigami et al.2009). Neuromodulator,the signal function in the nervous cellsSince H2S is enzymatically produced from cysteine,H2S was predicted to have a physiological function in the brain (Abe and Kimura1996).The studies of H2S toxicity showed that H2S suppressed synaptic potentials and mod-ified K?channels(Kombian et al.1993).Although H2S does not affect the excitatory postsynaptic potentials(EP-SPs)at low concentrations,it induces hippocampal LTP when simultaneously applied with a weak titanic stimula-tion,which alone does not induce LTP(Abe and Kimura 1996).LTP induced in the presence of H2S shares common mechanisms with LTP induced by a regular electrical stimulation.H2S activates LTP at active,but not quiescent, synapses,and may be involved in associative learning as defined by Hebb in which the synergistic effect is observed between two inputs simultaneously entered into the same neuron(Hebb1949).Although H2S,like other gaseous messengers,NO and CO,facilitates the induction of LTP (O’Dell et al.1991;Stevens and Wang1993),the mecha-nism of action of H2S is different from those of NO and CO.NO and CO activate soluble guanylyl cyclase and increase intracellular cGMP(Verma et al.1993),while H2S does not(Abe and Kimura1996).It is well known that the activation of NMDA receptors is required for the induction of LTP.NO and CO,which function as retrograde neuro-transmitters,do not require NMDA receptor activation (Zhuo et al.1993),while H2S does not facilitate the LTP induction under the blockade of NMDA receptors(Abe and Kimura1996).H2S facilitates the induction of LTP by enhancing the activity of NMDA receptors.Disulfide bonds play a role in modulating the function of many proteins,including NMDA receptors(Aizenman et al.1989).It is possible that H2S reduces disulfide bonds or makes bound sulfane sulfur in NMDA receptors.A high concentration of dithiothreitol(DTT)facilitates the induction of LTP,while even a low concentration of H2S further facilitates the induction of the greater amplitudes of LTP.Since H2S further facilitates the induction of LTP enhanced by DTT,mere reducing activity of H2S may not contribute to its facilitating effect on the induction of LTP. The formation of bound sulfane sulfur at thiols of NMDA receptors may be a possible mechanism.Glial mediator for the interaction with neurons Although cells with no electrical changes have been thought to be glia,recent studies have shown that glia are electrically active cells,which have neurotransmitter receptors and respond to transmitters(Cornell-Bell et al. 1990).There are reciprocal interactions between neurons and glia.Neural activity evokes glial calcium waves,and glial calcium waves drive neuronal activity(Dani et al. 1992).The glia communicate with each other by propa-gating their signals as Ca2?waves(Parri et al.2001).The Ca2?waves often appear to be initiated at sites of contact with neurons,suggesting that the glial Ca2?waves are initiated by neuronal excitation(Charles1994).Astrocytes,a type of glia,respond to a neurotransmitter released from neurons.In neurons,H2S shows modulatory function by enhancing the activity of NMDA receptors activated by a neurotransmitter,glutamate(Abe and Kim-ura1996).In astrocytes,H2S elicits direct activation of Ca2?influx(Nagai et al.2004).Because astrocytes elicit intercellular Ca2?waves by electrical stimulation ofnearby Production,release and functions of H2Sneurons as well as by the activation of neurons by NMDA, it has been suggested that astrocytes respond directly to a neurotransmitter released from neurons(Dani et al.1992; Haydon2001).NMDA induces Ca2?waves in astrocytes only in the presence of neurons,and TTX suppresses the induction,suggesting that neuronal excitation is required to release H2S(Nagai et al.2004).Neuronal excitation induces Ca2?waves in astrocytes,which are propagated to neighboring astrocytes and reach nearby synapse and may modulate its activity.Although the sensitive molecule or receptors for H2S in astrocytes has not been identified,considering the facts that responses to H2S were suppressed by La3?,Gd3? and ruthenium red,which are known as blockers of voltage-dependent Ca2?channels or TRP channels,TRP channels may mediate the responses to H2S(Nagai et al. 2004).Contraction of the detrusor muscle is regulated by capsaicin-sensitive primary afferent neurons in the urinary bladder.Contraction induced by H2S is suppressed by unselective TRP channel blocker,ruthenium red,suggest-ing that TRP channels may be involved in the responses to H2S(Patacchini et al.2005).The release of a neuropeptide and contraction induced by H2S in the airways are signi-ficantly attenuated by a TRPV1channel blocker,capsaze-pine.TRPV1channels may mediate contraction induced by H2S.The other example that supports TRP channels as a group of H2S-sensitive molecules or receptors is that CHO cells expressing TRPA1channels respond to NaHS(Streng et al.2008).Smooth muscle relaxantThe production of H2S by the thoracic aorta,portal vein and the ileum was suppressed by CSE inhibitors,and H2S relaxes these tissues(Hosoki et al.1997).Relaxation occurs mostly by opening ATP-dependent K?channels in a non-ATP-associated manner(Zhao et al.2001).Deficiency of CSE causes hypertension in mice,suggesting that H2S is a phys-iologic vascular smooth muscle relaxant and may regulate blood pressure(Yang et al.2008).Smooth muscle of the other tissue that was recently demonstrated to be regulated by H2S is the corpus cavernosum smooth muscle(di Villa Bianca et al.2009).Both CBS and CSE are expressed in human penile tissue,and homogenates of the tissue produce H2S.Exogenously applied H2S and cysteine cause a con-centration-dependent relaxation of strips of human corpus cavernosum.Cysteine-induced relaxation is suppressed by a CBS inhibitor,aminooxyacetate.In rats,H2S and cysteine promote penile erection,and the response to cysteine is blocked by a CSE inhibitor,propargylglycine.A functional cysteine/H2S pathway may be involved in mediating penile erection in humans and other mammals.Although the relaxation effect of H2S alone is weak, there is a synergy between NO and H2S on vascular smooth muscle relaxation(Hosoki et al.1997).A similar syner-gistic effect between H2S and NO was observed in the inhibition of the twitch responses of the ileum to electrical stimulation(Teague et al.2002).In addition to the syner-gistic effect of H2S with NO,CSE activity is also enhanced by NO.CSE contains12cysteine residues that are potential targets for S-nitrosation,which may enhance the activity of CSE(Koenitzer et al.2007).H2S-induced vasorelaxation was partially attenuated either by removal of the endo-thelium,by blockade of NO synthase or by the Ca2?-dependent K?channel blockers,suggesting that H2S might stimulate endothelial cells to release certain factors that facilitate the relaxation of smooth muscle(Zhao and Wang 2002).This observation also supports thefinding that H2S enhances relaxation activity of NO.Oxygen modulates the sensitivity of vessels to H2S-induced relaxation.H2S relaxes vessels under physiological O2conditions(Koenitzer et al.2007)and causes contraction of aortic smooth muscle at high O2levels,while H2S induces rapid relaxation at lower physiological O2levels. Peripheral vessels with a smaller diameter and wall thick-ness have greater proportion of smooth muscle cells than collagen compared with the aorta and higher rate of O2 consumption.However,the levels of O2in periphery are lower.Peripheral arteries normally operate at lower O2 concentrations than the aorta,and H2S efficiently relaxes arteries under low O2conditions.S-nitrosothiols in vascular tissue caused by liberated NO may also contribute to vessel tone(Koenitzer et al.2007).H2S catalyzes the release of NO from S-nitrosoglutathione in an O2-dependent manner (Koenitzer et al.2007).This observation further supports the interaction between H2S and NO.In contrast to these observations,H2S has been reported to suppress the activity of NO to relax smooth muscle.For example,H2S may induce vascular constriction by scav-enging endothelial NO and increase the mean arterial pressure in rats(Ali et al.2006).Pretreatment with H2S inhibits the relaxation of aortic tissues induced by SNP (Zhao and Wang2002).A candidate of EDRFsSince the relaxation effect of H2S on vascular smooth muscle was not affected or slightly enhanced in the pres-ence of endothelium,it was thought that exogenously applied H2S might stimulate the endothelium to release EDRF or EDHF and interact with them(Hosoki et al.1997; Zhao et al.2001).Because H2S still significantly relaxes vascular tissues after endothelium removal,the contribu-tion of endothelium to the relaxation effect of exogenouslyH.Kimuraapplied H2S must be low(Hosoki et al.1997;Zhao and Wang2002).The possibility that EDRF is not identical to NO has been raised based on the following observations.NO relaxed nonvascular smooth muscles,but EDRF released from cultured endothelial cells did not(Shikano et al. 1988).The activity of EDRF is lost on passage over anionic exchange resins,but that of NO is not.In addition,EDRF hyperpolarizes smooth muscle,but NO does not have such an effect.These observations suggest that EDRF consists of more than one component.One of components,which could cause hyperpolarizing of the membrane of the smooth muscle,is designated as EDHF(Chen et al.1988). Although H2S has properties similar to those of EDRF(its major producing enzyme CSE is localized to the smooth muscle),it has not been thought to be a component of EDRF(Hosoki et al.1997;Zhao et al.2001).Although species were different,it was recently reported that CSE was found in endothelial cells of mice,bovine and humans (Yang et al.2008).Western blot analysis and immuno-histochemistry in rats show that3MST and CAT,which we recently demonstrated as H2S producing enzymes in the brain,are localized to the vascular endothelium(Shibuya et al.2009a,b).Lysates of endothelial cells produce H2S from3MP as a substrate and also from cysteine in the presence of a-ketoglutarate.Since H2S production in endothelium is highly dependent on a-ketoglutarate,3MST along with CAT rather than CSE may be a major enzyme that produces H2S in the endothelium at least in rats.H2S is a candidate for a component of EDRFs(Shibuya et al. 2009a)(Fig.2).Neuroprotectant,the cytoprotective function in the nervous cellsCells can be rescued from oxidative stress by mechanisms that are either dependent on or independent of glutathione metabolism.Vitamine E protects cells from oxidative glutamate toxicity by acting directly as an antioxidant even when the intracellular glutathione levels are decreased (Murphy et al.1989).In contrast,dihydroxyphenylglycine, an agonist of group1metabotropic glutamate receptors, protects neurons by up-regulating glutathione(Sagara and Schubert1998).Extracellular H2S protects cells from oxidative stress by enhancing the production of glutathi-one,and H2S produced by3MST and CAT may suppress oxidative stress in mitochondria(Kimura et al.2010; Kimura and Kimura2004).There are two forms of glutamate toxicity:ionotropic receptor-initiated excitotoxicity and non-receptor mediated oxidative glutamate toxicity(Choi1988;Murphy et al. 1989).Oxidative glutamate toxicity is a well-studied pro-grammed cell death pathway that is independent of iono-tropic glutamate receptors(Murphy et al.1989).It has been observed in primary cultures of neuronal cells(Kimura and Kimura2004),neuronal cell lines(Kimura et al.2006; Murphy et al.1989)and brain slices(Vornov and Coyle 1991).Sulfur-containing substances,dimethylsulphoniopro-pionate(DMSP)and its enzymatic cleavage product dim-ethylsulphide(DMS),have recently been identified as endogenous scavengers for hydroxyl radicals and other reactive oxygen species in marine algae(Sunda et al. 2002).H2S,a reducing agent that readily reacts with hydrogen peroxide,may suppress reactive oxygen species (Devai and Delaune2002).H2S-producing enzymes3MST and CAT are mainly localized to the mitochondria,which are a major source of oxidative stress and play a key role in cell death pathways(Shibuya et al.2009b).Most of cell death signals may converge on the mitochondria(Murphy and Steenbergen2007).Perturbation of the mitochondrial function causes the release of apoptogenic factors such as cytochrome C into the cytosol and ultimately results in cell death.Mitochondrial dysfunction caused by oxidative stress leads to numerous neurodegenerative diseases(Lin and Beal2006).Neuronal cells expressing3MST and CAT show significant resistance against oxidative glutamate toxicity(Kimura et al.2010),suggesting that H2S produced by3MST along with CAT can scavenge reactive oxygen species in mitochondria and protect cells from oxidative stress.H2S increases the levels of glutathione,which is decreased under oxidative stress caused by glutamate (Kimura and Kimura2004).The gradient of glutamate drives cystine import by cystine/glutamate antiporter that can be impaired under conditions where extracellular glu-tamate concentrations are increased(Bannai and Kitamura 1980).Elevated extracellular glutamate inhibits the import of cystine that is a substrate for the production of gluta-thione.H2S enhances the activity of cystine/glutamate antiporter to increase the levels of cysteine,resulting inthe Production,release and functions of H2Sincreased production of glutathione(Kimura and Kimura 2004).In addition to the cystine transport,cysteine is also efficiently transported into cells by H2S.It has been thought that cysteine normally exists as its oxidized form, cystine,in the extracellular space.However,significant amounts of cysteine(approximately20l M)were mea-sured in plasma and blood(Richie and Lang1987).H2S produced in the cells can be released into the extracellular space and reduces cystine to cysteine that can readily be imported into cells by cysteine transporters and used for glutathione production(Kimura et al.2010;Mathai et al. 2009).Glutathione is produced through sequential metabolism by two enzymes,c-glutamyl cysteine synthetase(c-GCS) and glutathione synthetase(GS).H2S enhances the activity of c-GCS and increases the levels of c-glutamyl cysteine, but it has no effect on GS(Kimura and Kimura2004) (Fig.3).The levels of c-GCS mRNA or protein are not changed in cells exposed to H2S,and the activity of c-GCS in brain homogenates is not affected in the presence of H2S (Kimura et al.2010).These observations indicate that the enhancement of c-GCS activity by H2S is caused by neither transcriptional regulation nor the direct contact of H2S with c-GCS.Since the activity of c-GCS is enhanced only when cells are exposed to H2S,it may activate some receptors on the cell surface to initiate an intracellular signal that may enhance the activity of the enzyme.In addition to the protection from oxidative glutamate toxicity,H2S protects cells from broader oxidative stress including that caused by H2O2(Kimura et al.2010). Another example of protection from cell injury is that H2S suppresses cell death induced by rotenone,a commonly used toxin to establish Parkinson’s disease models by stabilizing mitochondrial membrane potential(Hu et al. 2009).H2S protects fetal brains by reinstating GSH levels decreased by oxidative stress caused by ischemia–reper-fusion of maternal–fetal blood supply(Kimura et al.2010). All the fetal brains24h after reperfusion from the ischemia were macerated,and the GSH levels in the fetal brains were severely decreased to24%of the control.In contrast, brains of only one-fourth of fetuses were macerated by a treatment of NaHS prior to the ischemia–reperfusion. Although the GSH levels of macerated brains even with an NaHS application before ischemia–reperfusion were decreased to36%of that of the control,those of non-macerated brains were maintained at approximately90%of that of the control.These in vivo data support the in vitro results that H2S protects brains by reinstating the GSH levels decreased by oxidative stress(Kimura et al.2010).In addition to mechanisms of suppressing oxidative stress in mitochondria and increasing glutathione levels, H2S also protects cells by stabilizing membrane potentials (Kimura et al.2006).K ATP channels are involved in pro-tection against ischemia and excitotoxicity(Heurteaux et al.1993).A K ATP channel opener,pinacidil,suppresses glutamate toxicity,and the protection is increased by the simultaneous application of H2S(Kimura et al.2006). Because a blocker selective to mitochondrial K ATP chan-nels,5-hydroxydecanate,does not modulate protection by H2S,K ATP channels localized to plasma membrane,but not those to mitochondria,may mediate H2S-induced neuroprotection.CFTR Cl-channels and a component of K ATP channels belong to the ATP-binding cassette superfamily,and both channels share significant sequence homologies(Higgins 1995).The Cl-channel blockers suppress protection by H2S,and an opener of Cl-channels efficiently suppresses glutamate toxicity(Kimura et al.2006).CFTR Cl-chan-nels are also involved in protection by H2S against oxi-dative stress with the same mechanism as with K ATP channels.Cardioprotectant,the cytoprotective function in the cardiovascular cellsAs H2S protects neurons from oxidative stress(Kimura and Kimura2004),it protects cardiac muscle from ischemic injury.Exogenously applied H2S decreases the myocardial necrosis induced by isoproterenol and the rate of mortality (Geng et al.2004).It also attenuated the isoproterenol-induced decrease in myocardial contractility.NaHS decreased the size of infarction induced by left coronary artery ligation and the protection was abolished by K ATP channel blockers(Johansen et al.2006).The activationof H.KimuraK ATP as well as CFTR Cl channels protects neurons from oxidative stress by stabilizing membrane potential(Kimura et al.2006),and the same mechanism may be also involved in the protection of the myocardium from ischemic injury. Episodes of sublethal ischemia make myocardium less sensitive to the subsequent more severe ischemic insult. Blockade of H2S production by propargylglycine,a CSE inhibitor,reduced the protective effect of ischemic pre-conditioning(Bian et al.2006).Application of H2S at the time of reperfusion limits infarct size and preserves left ventricular function(Elrod et al.2007).Cardiac-specific transgenic mice with over-expression of CSE increased myocardial levels of H2S and have a reduction in infarct size after ischemia reperfusion injury.Histological analysis shows that the administration of H2S substantially decreased hemorrhage and necrosis as well as the number of leukocytes within the ischemic zone. H2S also decreased myocardial levels of interleukin-1b and leukocyte-–endothelial cell interactions in vivo.Inhibition of leukocyte transmigration is one possible mechanism by which H2S restrains the extent of inflammation and limits the extent of myocardial infarction(Elrod et al.2007). Another important function of H2S is the preservation of mitochondrial function.H2S reversibly decreased mito-chondrial oxygen consumption in a dose-dependent man-ner.Mitochondria isolated from mice applied H2S at the time of reperfusion displayed preserved mitochondrial function,and mitochondrial swelling was decreased and matrix density increased in mice receiving H2S(Elrod et al. 2007).ConclusionH2S is produced by three enzymes,CBS,CSE and3MST. Although CSE has been reported to be regulated by cal-cium/calmodulin,the regulation of the activity of CBS and 3MST has not been understood well.H2S may function as a signal molecule immediately after release from the enzyme;it is also stored as bound sulfane sulfur,which may in turn release H2S when cells receive a certain physiological signals.Although the levels of free H2S were thought to be relatively high,it was recently clarified that free H2S is maintained at low levels in the basal conditions that may be necessary for cells to properly respond to H2S (Furne et al.2008;Ishigami et al.2009).The long exposure to relatively high concentrations of H2S may cause desensitization of sensitive molecules or exert toxic effects.H2S was initially found as a neuromodulator,which facilitated the induction of hippocampal LTP by enhancing NMDA-induced currents.The direct effect of H2S was found on astrocytes.H2S induces the influx of Ca2?,which propagates as calcium waves to the surrounding astrocytes.There are reciprocal interactions between glial calcium waves and neuronal activity,and glial cells are integral modulatory elements in synaptic transmission.H2S may mediate the interaction and modulate synaptic activity.H2S also functions as signal molecule in smooth muscle relaxation.It relaxes tissues consisting of smooth muscle, including the thoracic aorta.Since CSE was the only enzyme known to be expressed in smooth muscle,but not in endothelium of the thoracic aorta in rats,H2S has not been thought to be a component of EDRFs.However, recently3MST and CAT were found to be localized to the endothelium and even CSE was reported to be in the endothelium of mice,humans and bovine.Based on these observations,it has been proposed that H2S is a candidate of EDRFs.In addition to the function as a signal molecule,H2S also functions as a cytoprotectant in neurons and cardiac mus-cle.It increases the levels of glutathione and redistributes it to the mitochondria.H2S produced by3MST and CAT, which localize to the mitochondria,also suppresses oxi-dative stress in mitochondria and preserves the function of this organelle.The application of H2S and the regulation of endogenous production may be of clinical benefit. Acknowledgments This work was supported by a grant from the National Institute of Neuroscience.ReferencesAbe K,Kimura H(1996)The possible role of hydrogen sulfide as an endogenous neuromodulator.J Neurosci16:1066–1071 Aizenman E,Lipton SA,Loring RH(1989)Selective modulation of NMDA responses by reduction and oxidation.Neuron2:1257–1263Ali MY,Ping CY,Mok YY,Ling L,Whiteman M,Bhatia M,Moore PK(2006)Regulation of vascular nitric oxide in vitro and in vivo;a new role for endogenous hydrogen sulphide?Br J Pharmacol149:625–634Bannai S,Kitamura E(1980)Transport interaction of L-cystine and L-glutamate in human diploidfibroblasts in culture.J Biol Chem 255:2372–2376Bian JS,Yong QC,Pan TT,Feng ZN,Ali MY,Zhou S,Moore PK (2006)Role of hydrogen sulfide in the cardioprotection caused by ischemic preconditioning in the rat heart and cardiac myocytes.J Pharmacol Exp Ther316:670–678Brookes N,Turner RJ(1994)K(?)-induced alkalinization in mouse cerebral astrocytes mediated by reversal of electrogenic Na(?)-HCO3-cotransport.Am J Physiol267:C1633–C1640Charles AC(1994)Glia-neuron intercellular calcium signaling.Dev Neurosci16:196–206Chen G,Suzuki H,Weston AH(1988)Acetylcholine releases endothelium-derived hyperpolarizing factor and EDRF from rat blood vessels.Br J Pharmacol95:1165–1174Chen X,Jhee KH,Kruger WD(2004)Production of the neuromod-ulator H2S by cystathionine beta-synthase via the condensation of cysteine and homocysteine.J Biol Chem279:52082–52086 Chiku T,Padovani D,Zhu W,Singh S,Vitvitsky V,Banerjee R (2009)H2S biogenesis by human cystathionine gamma-lyaseProduction,release and functions of H2S。

相关文档
最新文档