高中物理动量守恒定律练习题
【单元练】高中物理选修1第一章【动量守恒定律】经典习题
![【单元练】高中物理选修1第一章【动量守恒定律】经典习题](https://img.taocdn.com/s3/m/73682e6824c52cc58bd63186bceb19e8b8f6ec46.png)
一、选择题1.甲乙是两个完全相同的小球,在同一位置以相等的速率抛出,甲被水平抛出,乙被斜上抛,只受到重力,则下列说法正确的是( ) A .两球落地时的速度相同 B .两球落地时的重力瞬时功率相等 C .两球落地时前的重力冲量相同 D .两球落地前的动量变化快慢相同D 解析:DA .根据动能定理可知,因重力做功相同2201122mv mv mgh -= 两球落地时的速度大小相同,方向不同,选项A 错误; B .根据P=mgv y平抛的小球有22y v gh =斜上抛的小球有2212y v v gh -=其中1v 为斜抛小球的竖直分量,因速度的竖直分量不同,则重力瞬时功率不相等,选项B 错误;C .两球在空中运动,竖直方向有平抛212h gt =斜抛运动2112h v t gt =-+的时间不相等,则根据I =mgt可知,落地时前的重力冲量不相同,选项C 错误; D .根据p mg t ∆=∆可得ΔΔpmg t= 则两球落地前的动量变化快慢相同,选项D 正确。
故选D 。
2.2020年5月5日,我国在海南文昌航天发射场使用“长征五号B”运载火箭,发射新一代载人飞船试验船。
假如有一宇宙飞船,它的正面面积为21m S =,以3710m /s v =⨯的速度进入宇宙微粒尘区,尘区每31m 空间有一微粒,每一微粒平均质量5210g m -=⨯,飞船经过区域的微粒都附着在飞船上,若要使飞船速度保持不变,飞船的推力应增加( ) A .0.49N B .0.98NC .490ND .980N B解析:B选在时间t ∆内与飞船碰撞的微粒为研究对象,其质量应等于底面积为S ,高为v t ∆的圆柱体内微粒的质量。
即M mSv t =∆研究对象初动量为零,末动量为Mv ,设飞船对微粒的作用力为F ,由动量定理得0F t Mv ∆=-则2Mv mSv t vF mSv t t⋅∆⋅===∆∆ 根据牛顿第三定律可知,微粒对飞船的反作用力大小也为2mSv ,则飞船要保持匀速飞行,牵引力应增加2F F mSv '==带入数据得0.98N F '=故选B 。
人教版高中物理选修一第一章《动量守恒定律》测试(有答案解析)
![人教版高中物理选修一第一章《动量守恒定律》测试(有答案解析)](https://img.taocdn.com/s3/m/11bde7ec650e52ea541898ea.png)
一、选择题1.(0分)[ID :127073]一水龙头的出水口竖直向下,横截面积为S ,且离地面高度为h 。
水从出水口均匀流出时的速度大小为v 0,在水落到水平地面后,在竖直方向的速度变为零,并沿水平方向朝四周均匀散开。
已知水的密度为ρ,重力加速度大小为g 。
水和地面的冲击时间很短,重力影响可忽略。
不计空气阻力和水的粘滞阻力。
则( )A .单位时间内流出水的质量为2S gh ρB .单位时间内流出水的质量为202S v gh ρ+C .地面受到水的冲击力大小为02Sv gh ρD .地面受到水的冲击力大小为2002Sv v gh ρ+2.(0分)[ID :127072]如图所示,质量相等的A 、B 两个球,原来在光滑水平面上沿同一直线相向做匀速直线运动,A 球的速度是6 m/s ,B 球的速度是-2 m/s ,A 、B 两球发生对心碰撞。
对于该碰撞之后的A 、B 两球的速度可能值,某实验小组的同学们做了很多种猜测,下面的猜测结果一定无法实现的是( )A .v A ′=-2 m/s ,vB ′=6 m/sB .v A ′=2 m/s ,v B ′=2 m/sC .v A ′=1 m/s ,v B ′=3 m/sD .v A ′=-3 m/s ,v B ′=7 m/s 3.(0分)[ID :127069]人从高处跳到较硬的水平地面时,为了安全,一般都是让脚尖先触地且着地时要弯曲双腿,这是为了( )A .减小地面对人的冲量B .减小人的动量的变化C .增加地面对人的冲击时间D .增大人对地面的压强 4.(0分)[ID :127066]在冰壶比赛中,球员手持毛刷擦刷冰面,可以改变冰壶滑行时受到的阻力。
如图a 所示,蓝壶静止在圆形区域内,运动员用等质量的红壶撞击蓝壶,两壶发生正碰。
若碰撞前、后两壶的v —t 图象如图b 所示。
关于冰壶的运动,下列说法正确的是( )A .碰撞后过程中,蓝壶受到的阻力比红壶的大B .碰撞后,蓝壶的运动的时间为6sC .碰撞后两壶相距的最远距离为1.1mD .两壶碰撞是弹性碰撞5.(0分)[ID :127059]如图所示,小球A 质量为2m ,小球B 质量为m ,小球B 置于光滑水平面上,小球A 从高为h 处由静止摆下到达最低点恰好与相撞,并粘合在一起继续摆动,若不计空气阻力,它们能上升的最大高度是( )A .hB .49hC .14hD .18h 6.(0分)[ID :127058]动量相等的甲、乙两车刹车后分别沿两水平路面滑行。
【单元练】(必考题)高中物理选修1第一章【动量守恒定律】经典测试题(答案解析)
![【单元练】(必考题)高中物理选修1第一章【动量守恒定律】经典测试题(答案解析)](https://img.taocdn.com/s3/m/cc9963d6185f312b3169a45177232f60ddcce7d7.png)
一、选择题1.如图所示,体积相同的匀质小球A和B并排悬挂,静止时悬线平行,两球刚好接触,悬点到球心的距离均为L,B球悬线右侧有一固定的光滑小铁钉P,O2P=3 4L。
现将A向左拉开60°角后由静止释放,A到达最低点时与B发生弹性正碰,碰后B做圆周运动恰能通过P点的正上方。
已知A的质量为m,取3=1.73,5=2.24,则B的质量约为()A.0.3m B.0.8mC.m D.1.4m B解析:B设A碰前的速度大小为v,碰撞后A、B球的速度分别为v1、v2,B通过最高点时的速度大小为v3,根据机械能守恒定律有mg(L–L cos60°)=12mv2得gLA、B发生弹性正碰,则mv=mv1+m2v212mv2=1221mv+12222m v得v2=22mvm m碰后B上摆到最高点的过程,有12222m v=m2g12L+12223m vB恰好能通过最高点,则m2g=m2234vL解得m2=(455–1)m≈0.8m故选B。
2.假设将来某宇航员登月后,在月球表面完成下面的实验:在固定的竖直光滑圆轨道内部最低点静止放置一个质量为m 的小球(可视为质点),如图所示,当给小球一瞬时冲量I 时,小球恰好能在竖直平面内做完整的圆周运动。
已知圆轨道半径为r ,月球的半径为R ,则月球的第一宇宙速度为( )A 5I Rm rB I R m rC I r m RD 5I rm RA解析:A小球获得瞬时冲量I 的速度为v 0,有00I p mv ∆=-=而小球恰好通过圆周的最高点,满足只有重力提供向心力2v mg m r=从最低点到最高点由动能定理可知220112=22mg r mv mv -⨯-解得22=5I g rm 月球的近地卫星最小发射速度即为月球的第一宇宙速度,满足21=v m g m R''解得15I Rv m r=故A 正确,BCD 错误。
故选A 。
3.人和冰车的总质量为M ,另一木球质量为m ,且M ∶m =31∶2。
高中物理动量守恒定律题20套(带答案)含解析
![高中物理动量守恒定律题20套(带答案)含解析](https://img.taocdn.com/s3/m/c8c9f9ad83c4bb4cf6ecd100.png)
高中物理动量守恒定律题20套(带答案)含解析一、高考物理精讲专题动量守恒定律1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求:(1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v;②23v 【解析】试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v =②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223v v =考点:动量守恒定律2.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求:(1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ;(2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1;(3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值.【答案】(1)24.610N F N -=⨯ (2)1 1.25B T = (3)127s 360t π=,001290143ββ==和 【解析】 【详解】解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111-22m gl m v m v μ=- 解得:17m/s v =碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v '=+取向左为正方向,由题意11m/s v =-', 解得:24m/s v =b 点:对Q ,由牛顿第二定律得:2222N v F m g m R-=解得:24.610N N F -=⨯(2)设Q 在c 点的速度为c v ,在b 到c 点,由机械能守恒定律:22222211(1cos )22c m gR m v m v θ-+=解得:2m/s c v =进入磁场后:Q 所受电场力22310N F qE m g -==⨯= ,Q 在磁场做匀速率圆周运动由牛顿第二定律得:2211c c m v qv B r =Q 刚好不从gh 边穿出磁场,由几何关系:1 1.6m r d == 解得:1 1.25T B = (3)当所加磁场22T B =,2221m cm v r qB == 要让Q 从gh 边穿出磁场且在磁场中运动的时间最长,则Q 在磁场中运动轨迹对应的圆心角最大,则当gh 边或ef 边与圆轨迹相切,轨迹如图所示:设最大圆心角为α,由几何关系得:22cos(180)d rr α-︒-= 解得:127α=︒ 运动周期:222m T qB π=则Q 在磁场中运动的最长时间:222127127•s 360360360m t T qB παπ===︒此时对应的β角:190β=︒和2143β=︒3.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。
高中物理专题:动量守恒经典题目
![高中物理专题:动量守恒经典题目](https://img.taocdn.com/s3/m/c9c099e725c52cc58ad6be4e.png)
高中物理专题:动量守恒经典题目1:小车置于光滑水平面上,一个人站在车上练习打靶,如图,除了子弹外,车、人、靶、枪的总质量为M。
n发子弹每发质量为m。
枪口和靶的距离为d。
子弹沿水平方向射出。
射中靶后即留在靶内。
待前一发打入靶中,再打下一发,n发子弹全部打完后,小车移动的总距离是多少?2:一辆平板车停在光滑水平面上,车上一人(原来也静止)用锤子敲打车的左端,在锤子连续敲打下,这辆板车将()A.左右振动B.向左运动C.向右运动D.静止不动3:质量为M的滑块带有半径为R的圆周的圆弧面,滑块静止在光滑水平面上,如图所示,质量为m的小球从离圆弧面上端h高处由静止开始落下,恰好从圆弧面最上端落入圆周内。
不计各处摩擦,试求小球从圆弧面最下端离开滑块时,滑块的速度多大?4:向空中发射一物体,不计空气阻力,当此物体的速度恰好沿水平方向时,物体炸裂成a、b两块,若质量较大的a块速度方向仍沿原来方向,则()A.b的速度方向一定与原速度方向相反B.从炸裂到落地的这段时间里,a飞行的水平距离一定比b大C.a、b一定同时到达水平地面D.在炸裂过程中,a、b受到的冲量一定相同5:运送人造地球卫星的火箭开始工作后,火箭做加速运动的原因是()A.燃料推动空气,空气反作用力推动火箭B.火箭发动机用力将燃料燃烧产生的气体向后推出,气体的反作用力推动火箭C.火箭吸入空气,然后向后排出,空气对火箭的反作用力推动火箭D.火箭燃料燃烧发热,加热周围空气,空气膨胀推动火箭6:如图所示,质量为m、半径为r的小球,放在内半径为R,质量为3m的大空心球内,大球开始静止在光滑水平面上,当小球由图中位置无初速度释放沿内壁滚到最低点时,大球移动的距离为多少?7:如图所示,一质量为m的玩具蛙蹲在质量为M的小车的细杆上,小车放在光滑的水平面上,若车长为L,细杆高为h且位于小车的中央,试问玩具蛙对地最小以多大的水平速度跳出才能落到地面上?专题:动量守恒之碰撞8:半径相等的两个小球甲和乙,在光滑水平面上沿同一直线相向运动。
高中物理-动量守恒定律测试题
![高中物理-动量守恒定律测试题](https://img.taocdn.com/s3/m/95cde6ae14791711cd791792.png)
高中物理-动量守恒定律测试题一、动量守恒定律 选择题1.如图所示,在光滑水平面上有质量分别为A m 、B m 的物体A ,B 通过轻质弹簧相连接,物体A 紧靠墙壁,细线连接A ,B 使弹簧处于压缩状态,此时弹性势能为p0E ,现烧断细线,对以后的运动过程,下列说法正确的是( )A .全过程中墙对A 的冲量大小为p02A B E m mB .物体B 的最大速度为p02A E mC .弹簧长度最长时,物体B 的速度大小为p02B A BB E m m m m +D .弹簧长度最长时,弹簧具有的弹性势能p p0E E > 2.如图所示为水平放置的固定光滑平行直轨道,窄轨间距为L ,宽轨间距为2L 。
轨道处于竖直向下的磁感应强度为B 的匀强磁场中,质量分别为m 、2m 的金属棒a 、b 垂直于导轨静止放置,其电阻分别为R 、2R ,现给a 棒一向右的初速度v 0,经t 时间后两棒达到匀速运动两棒运动过程中始终相互平行且与导轨良好接触,不计导轨电阻,b 棒一直在宽轨上运动。
下列说法正确的是( )A .a 棒开始运动时的加速度大小为2203B L v RmB .b 棒匀速运动的速度大小为03v C .整个过程中通过b 棒的电荷量为023mv BL D .整个过程中b 棒产生的热量为203mv 3.如图,在光滑的水平面上有一个长为L 的木板,小物块b 静止在木板的正中间,小物块a 以某一初速度0v 从左侧滑上木板。
已知物块a 、b 与木板间的摩擦因数分别为a μ、b μ,木块与木板质量均为m ,a 、b 之间的碰撞无机械能损失,滑动摩擦力等于最大静摩擦力。
下列说法正确的是( )A .若没有物块从木板上滑下,则无论0v 多大整个过程摩擦生热均为2013mvB .若22ab a μμμ<≤,则无论0v 多大,a 都不会从木板上滑落C .若032a v gL μ≤,则ab 一定不相碰 D .若2b a μμ>,则a 可能从木板左端滑落4.如图甲所示,质量M =2kg 的木板静止于光滑水平面上,质量m =1kg 的物块(可视为质点)以水平初速度v 0从左端冲上木板,物块与木板的v -t 图象如图乙所示,重力加速度大小为10m/s 2,下列说法正确的是( )A .物块与木板相对静止时的速率为1m/sB .物块与木板间的动摩擦因数为0.3C .木板的长度至少为2mD .从物块冲上木板到两者相对静止的过程中,系统产生的热量为3J5.如图所示,在光滑的水平面上放有一质量为M 的物体P ,物体P 上有一半径为R 的光滑四分之一圆弧轨道, 现让质量为m 的小滑块Q (可视为质点)从轨道最高点由静止开始下滑至最低点的过程中A .P 、Q 组成的系统动量不守恒,机械能守恒B .P 移动的距离为m M m+R C .P 、Q 组成的系统动量守恒,机械能守恒D .P 移动的距离为M m M+R 6.如图所示,两个小球A 、B 在光滑水平地面上相向运动,它们的质量分别为m A =4kg ,m B =2kg ,速度分别是v A =3m/s (设为正方向),v B =-3m/s .则它们发生正碰后,速度的可能值分别为()A.v A′=1 m/s,v B′=1 m/sB.v A′=4 m/s,v B′=-5 m/sC.v A′=2 m/s,v B′=-1 m/sD.v A′=-1 m/s,v B′=-5 m/s7.如图所示,小车质量为M,小车顶端为半径为R的四分之一光滑圆弧,质量为m的小球从圆弧顶端由静止释放,对此运动过程的分析,下列说法中正确的是(g为当地重力加速度)()A.若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为mgB.若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为32 mgC.若地面光滑,当小球滑到圆弧最低点时,小车速度为2()gRmM M m+D.若地面光滑,当小球滑到圆弧最低点时,小车速度为2()gRMm M m+8.如图所示,在光滑的水平面上有体积相同、质量分别为m=0.1kg和M=0.3kg的两个小球A、B,两球之间夹着一根压缩的轻弹簧(弹簧与两球不相连),A、B两球原来处于静止状态.现突然释放弹簧,B球脱离弹簧时的速度为2m/s;A球进入与水平面相切、半径为0.5m的竖直面内的光滑半圆形轨道运动,PQ为半圆形轨道竖直的直径,不计空气阻力,g 取10m/s2,下列说法正确的是()A.A、B两球离开弹簧的过程中,A球受到的冲量大小等于B球受到的冲量大小B.弹簧初始时具有的弹性势能为2.4JC.A球从P点运动到Q点过程中所受合外力的冲量大小为1N∙sD.若逐渐增大半圆形轨道半径,仍然释放该弹簧且A球能从Q点飞出,则落地的水平距离将不断增大9.如图所示,两滑块A、B位于光滑水平面上,已知A的质量M A=1k g,B的质量M B=4k g.滑块B的左端连有轻质弹簧,弹簧开始处于自由伸长状态.现使滑块A以v =5m/s 速度水平向右运动,通过弹簧与静止的滑块B 相互作用(整个过程弹簧没有超过弹性限度),直至分开.则( )A .物块A 的加速度一直在减小,物块B 的加速度一直在增大B .作用过程中弹簧的最大弹性势能2J p E =C .滑块A 的最小动能为 4.5J KA E =,滑块B 的最大动能为8J KB E =D .若滑块A 的质量4kg A M =,B 的质量1kg B M =,滑块A 的最小动能为18J KAE =,滑块B 的最大动能为32J KB E =10.如图所示,离地H 高处有一个质量为m 、带电量为q +的物体处于电场强度随时间变化规律为0E E kt =-(0E 、k 均为大于零的常数,电场方向以水平向左为正)的电场中,物体与竖直绝缘墙壁间的动摩擦因数为μ,已知0qE mg μ<.t=0时,物体从墙上由静止释放,若物体所受的最大静摩擦力等于滑动摩擦力,当物体下滑4H 后脱离墙面,此时速度大小为2gH ,物体最终落在地面上.则下列关于物体的运动说法正确的是A .当物体沿墙壁下滑时,物体先加速运动再做匀速直线运动B .摩擦力对物体产生的冲量大小为202E q k μ C .摩擦力所做的功18W mgH = D .物体与墙壁脱离的时刻为gH t = 11.如图所示,半径为R 、质量为M 的14一光滑圆槽静置于光滑的水平地面上,一个质量为m 的小木块从槽的顶端由静止滑下,直至滑离圆槽的过程中,下列说法中正确的是A .M 和m 组成的系统动量守恒B .m 飞离圆槽时速度大小为2gRM m M+ C .m 飞离圆槽时速度大小为2gRD .m 飞离圆槽时,圆槽运动的位移大小为m R m M+ 12.质量为m 、半径为R 的小球,放在半径为3R 、质量为3m 的大空心球内,大球开始静止在光滑水平面上。
选修1高中物理动量守恒定律试题(含答案)
![选修1高中物理动量守恒定律试题(含答案)](https://img.taocdn.com/s3/m/39a7b441ba0d4a7302763afa.png)
选修1高中物理动量守恒定律试题(含答案)一、动量守恒定律 选择题1.一个物体以某一初速度从粗糙斜面的底部沿斜面向上滑,物体滑到最高点后又返回到斜面底部,则下述说法中正确的是()A .上滑过程中重力的冲量小于下滑过程中重力的冲量B .上滑过程中摩擦力的冲量与下滑过程中摩擦力的冲量大小相等C .上滑过程中合力的冲量大于下滑过程中合力的冲量D .上滑与下滑的过程中合外力冲量的方向相同2.一质量为m 的物体静止在光滑水平面上,现对其施加两个水平作用力,两个力随时间变化的图象如图所示,由图象可知在t 2时刻物体的( )A .加速度大小为0t F F m -B .速度大小为()()021t F F t t m --C .动量大小为()()0212tF F t t m -- D .动能大小为()()220218tF F t t m --3.如图所示,两个小球A 、B 在光滑水平地面上相向运动,它们的质量分别为m A =4kg ,m B =2kg ,速度分别是v A =3m/s (设为正方向),v B =-3m/s .则它们发生正碰后,速度的可能值分别为( )A .v A ′=1 m/s ,vB ′=1 m/sB .v A ′=4 m/s ,v B ′=-5 m/sC .v A ′=2 m/s ,v B ′=-1 m/sD .v A ′=-1 m/s ,v B ′=-5 m/s4.如图所示,轻弹簧的一端固定在竖直墙上,一质量为2m 的光滑弧形槽静止放在足够长的光滑水平面上,弧形槽底端与水平面相切,一质量为m 的小物块从槽上高h 处开始下滑,重力加速度为g ,下列说法正确的是A .物体第一次滑到槽底端时,槽的动能为3mghB .物体第一次滑到槽底端时,槽的动能为6mgh C .在压缩弹簧的过程中,物块和弹簧组成的系统动量守恒D .物块第一次被弹簧反弹后能追上槽,但不能回到槽上高h 处5.如图所示,光滑水平面上有一质量为m =1kg 的小车,小车右端固定一水平轻质弹簧,弹簧左端连接一质量为m 0=1kg 的物块,物块与上表面光滑的小车一起以v 0=5m/s 的速度向右匀速运动,与静止在光滑水平面上、质量为M =4kg 的小球发生弹性正碰,若碰撞时间极短,弹簧始终在弹性限度内.则( )A .碰撞结束时,小车的速度为3m/s ,速度方向向左B .从碰后瞬间到弹簧最短的过程,弹簧弹力对小车的冲量大小为4N·sC .小车的最小速度为1m/sD .在小车速度为1m/s 时,弹簧的弹性势能有最大值6.如图所示,一个质量为M 的木箱静止在光滑水平面上,木箱内粗糙的底板上放着一个质量为m =2M 的小物块.现使木箱瞬间获得一个水平向左、大小为v 0的初速度,下列说法正确的是A .最终小物块和木箱都将静止B .最终小物块和木箱组成的系统损失机械能为203Mv C .木箱速度水平向左、大小为02v 时,小物块的速度大小为04v D .木箱速度水平向右、大小为03v . 时,小物块的速度大小为023v 7.一粒钢珠从静止状态开始自由下落,然后陷入泥潭中.若把它在空中自由下落的过程称为Ⅰ,进入泥潭直到停止的过程称为Ⅱ,忽略空气阻力,则( )A .过程Ⅰ中钢珠动量的改变量小于重力的冲量B .过程Ⅱ中钢珠所受阻力的冲量大小等于过程Ⅰ中重力冲量的大小C .过程Ⅱ中阻力的冲量大小等于过程Ⅰ与过程Ⅱ重力冲量的大小D .过程Ⅱ中钢珠的动量改变量等于阻力的冲量8.如图所示,轻弹簧的一端固定在竖直墙上,一质量为m 的光滑弧形槽静止放在足够长的光滑水平面上,弧形槽底端与水平面相切。
高中物理动量守恒定律练习题
![高中物理动量守恒定律练习题](https://img.taocdn.com/s3/m/fbb7b0164a35eefdc8d376eeaeaad1f3469311c8.png)
一、系统、内力和外力┄┄┄┄┄┄┄┄①1.系统:相互作用的两个(或多个)物体组成的一个整体。
2.内力:系统内部物体间的相互作用力。
3.外力:系统以外的物体对系统内部的物体的作用力。
[说明]1.系统是由相互作用、相互关联的多个物体组成的整体。
2.组成系统的各物体之间的力是内力,将系统看作一个整体,系统之外的物体对这个整体的作用力是外力。
①[填一填]如图,马路上有三辆车发生了追尾事故,假如把前面两辆车看作一个系统,则前面两辆车之间的撞击力是________,最终一辆车对前面两辆车的撞击力是________(均填“内力”或“外力”)。
答案:内力外力二、动量守恒定律┄┄┄┄┄┄┄┄②1.内容:假如一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。
2.表达式:对两个物体组成的系统,常写成:p1+p2=或m1v1+m2v2=。
3.适用条件:系统不受外力或者所受外力的矢量和为0。
4.动量守恒定律的普适性动量守恒定律是一个独立的试验规律,它适用于目前为止物理学探讨的一切领域。
[留意]1.系统动量是否守恒要看探讨的系统是否受外力的作用。
2.动量守恒是系统内各物体动量的矢量和保持不变,而不是系统内各物体的动量不变。
②[判一判]1.一个系统初、末状态动量大小相等,即动量守恒(×)2.两个做匀速直线运动的物体发生碰撞,两个物体组成的系统动量守恒(√)3.系统动量守恒也就是系统的动量变更量为零(√)1.对动量守恒定律条件的理解(1)系统不受外力作用,这是一种志向化的情形,如宇宙中两星球的碰撞,微观粒子间的碰撞都可视为这种情形。
(2)系统受外力作用,但所受合外力为零。
像光滑水平面上两物体的碰撞就是这种情形。
(3)系统受外力作用,但当系统所受的外力远远小于系统内各物体间的内力时,系统的总动量近似守恒。
例如,抛出去的手榴弹在空中爆炸的瞬间,弹片所受火药爆炸时的内力远大于其重力,重力可以忽视不计,系统的动量近似守恒。
动量守恒测试题及答案高中
![动量守恒测试题及答案高中](https://img.taocdn.com/s3/m/def95e6f3868011ca300a6c30c2259010302f374.png)
动量守恒测试题及答案高中1. 动量守恒定律适用于哪些情况?2. 一个质量为2kg的物体以5m/s的速度向北运动,与一个质量为3kg 的物体以3m/s的速度向南运动相撞。
如果两物体发生完全非弹性碰撞,请计算碰撞后两物体的共同速度。
3. 一个质量为5kg的物体以10m/s的速度向东运动,撞击一个静止的质量为3kg的物体。
如果碰撞是完全弹性的,请计算碰撞后两物体的速度。
4. 一辆质量为1000kg的汽车以20m/s的速度行驶,突然刹车。
如果刹车过程中动量守恒,计算汽车在刹车过程中受到的平均冲击力(假设刹车过程持续了0.5秒)。
5. 一个质量为0.5kg的足球以15m/s的速度被踢出,如果足球在撞击墙壁后以相同的速率反弹回来,计算墙壁对足球的平均作用力(假设作用时间为0.1秒)。
答案1. 动量守恒定律适用于没有外力作用或外力之和为零的系统。
在这种情况下,系统的总动量在时间上保持不变。
2. 碰撞前总动量为 \( P_{\text{总}} = (2 \times 5) - (3 \times3) = 10 - 9 = 1 \) kg·m/s。
因为完全非弹性碰撞后两物体粘在一起,所以共同速度 \( v \) 为 \( P_{\text{总}} / (2 + 3) = 1 /5 = 0.2 \) m/s,方向向北。
3. 碰撞前总动量为 \( P_{\text{总}} = 5 \times 10 = 50 \)kg·m/s。
碰撞后两物体的总动量仍为50 kg·m/s。
设碰撞后5kg物体速度为 \( v_1 \),3kg物体速度为 \( v_2 \),则 \( 5v_1 + 3v_2= 50 \)。
由于完全弹性碰撞,还满足 \( \frac{5}{3} =\frac{v_1}{v_2} \)。
解得 \( v_1 = 10 \) m/s,\( v_2 = 6 \)m/s。
4. 汽车的初始动量为 \( P_{\text{初}} = 1000 \times 20 = 20000 \) kg·m/s。
高中物理动量守恒定律真题汇编(含答案)
![高中物理动量守恒定律真题汇编(含答案)](https://img.taocdn.com/s3/m/62fd8a22ad51f01dc381f192.png)
高中物理动量守恒定律真题汇编(含答案)一、高考物理精讲专题动量守恒定律1.如下图,质量为 M=2kg 的小车静止在光滑的水平地面上,其AB 局部为半径R=0.3m一一1 一的光滑一圆孤,BC 局部水平粗糙,BC 长为L=0.6m .一可看做质点的小物块从A 点由静止4(1)小物块与小车 BC 局部间的动摩擦因数;(2)小物块从A 滑到C 的过程中,小车获得的最大速度.【答案】(1) 0.5 (2) 1m/s 【解析】解:(1)小物块滑到C 点的过程中,系统水平方向动量守恒那么有: (M m)v 0所以滑到C 点时小物块与小车速度都为 0由能量守恒得:mgR mgLR解得: R 0.5L(2)小物块滑到B 位置时速度最大,设为 必,此时小车获得的速度也最大,设为V 2由动量守恒得:mv 1 Mv 2121 2 由能重寸恒得:mgR — mv 1— Mv 2 22联立解得:v 2 1m / s2.如下图,一个带圆弧轨道的平台固定在水平地面上,光滑圆弧 MN 的半径为R=3.2m,水平局部NP 长L=3.5m,物体B 静止在足够长的平板小车 C 上,B 与小车的接触 面光滑,小车的左端紧贴平台的右端.从 M 点由静止释放的物体 A 滑至轨道最右端P 点后 再滑上小车,物体 A 滑上小车后假设与物体 B 相碰必粘在一起,它们间无竖直作用力. A 与释放,滑到C 点刚好相对小车停止.小物块质量 m=1kg,取 g=10m/s 2.求:平台水平轨道和小车上外表的动摩擦因数都为0.4,且最大静摩擦力与滑动摩擦力大小相取 g=10m/s 2,求等.物体A 、B 和小车C 的质量均为1kg,K(1)物体A 进入N 点前瞬间对轨道的压力大小?考点:牛顿第二定律;动量守恒定律;能量守恒定律(2)物体A 在NP 上运动的时间? (3)物体A 最终离小车左端的距离为多少?【答案】(1)物体A 进入N 点前瞬间对轨道的压力大小为30N ;(2)物体A 在NP 上运动的时间为 0.5s (3)物体A 最终离小车左端的距离为33m 16【解析】试题分析:(1)物体A 由M 到N 过程中,由动能定理得: 在N 点,由牛顿定律得 F N -m A g=m A 联立解得F N =3m A g=30N由牛顿第三定律得,物体 A 进入轨道前瞬间对轨道压力大小为:(2)物体A 在平台上运动过程中2m A gR=m A v NF N ' =3A g=30N(imAg=mAa 2 L=v N t-at 代入数据解得t=0.5s t=3.5s (不合题意,舍去)(3)物体A 刚滑上小车时速度 v 〔= v N -at=6m/s从物体A 滑上小车到相对小车静止过程中,小车、物体 A 组成系统动量守恒,而物体 B 保持静止(m A + m C )v 2= m A v 1小车最终速度 v 2=3m/s此过程中A 相对小车的位移为 L 1,那么,1 2 129mgL 1 — mv 1 - 2mv 2 解得:L [=1m2 24物体A 与小车匀速运动直到 A 碰到物体B, A, B 相互作用的过程中动量守恒:(m A + m B )v 3= m A V 2此后A, B 组成的系统与小车发生相互作用,动量守恒,且到达共同速度V 4(m A + m B )v 3+m C v 2=" (m" A +m B +m C ) v 4此过程中A 相对小车的位移大小为L 2,那么mgL 2 1mv 22 1 2 22mv 3213mv 42解得:23 1_2= — m16物体A 最终离小车左端的距离为,33 x=L i -L 2=— m163.光滑水平轨道上有三个木块A 、B 、 C,质量分别为 m A 3m 、m Bmb m ,开始时B 、C 均静止,A 以初速度V o 向右运动, 起,此后A 与B 间的距离保持不变.求A 与B 相撞后分开,B 又与C 发生碰撞并粘在一 B 与C碰撞前B 的速度大小.239 _94PU 经过 次a 盘变和 次3盘变,取后变成铅的同位 素.(填入铅的三种同位素 206 Pb 、282Pb 、282Pb 中的一种)(2)某同学利用如下图的装置验证动量守恒定律.图中两摆摆长相同,悬挂于同一高度,A 、B 两摆球均很小,质量之比为 1 :2.当两摆均处于自由静止状态时,其侧面刚好 接触.向右上方拉动 B 球使其摆线伸直并与竖直方向成 45.角,然后将其由静止释放.结果观察到两摆球粘在一起摆动,且最大摆角成 30..假设本实验允许的最大误差为土猊,此 实验是否成功地验证了动量守恒定律? 【解析】【详解】(1)设发生了 x 次“衰变和y 次3衰变,【解析】 【分析】设A 与B 碰撞后,A 的速度为V A , B 与C 碰撞前B 的速度为%, B 与C 碰撞后粘在一起的 速度为V,由动量守恒定律得: 对A 、B 木块:m A V o对B 、C 木块:M B由A 与B 间的距离保持不变可知 v A v 联立代入数据得:m A V A m B V Bmb4 .[物理出彳3—5] (1)天然放射性元素207【答案】(1) 8, 4, 82Pb ; (2)根据质量数和电荷数守恒可知,2x-y+82=94, 239=207+4x;由数学知识可知,x=8, y=4.假设是铅的同位素206,或208,不满足两数守恒, 因此最后变成铅的同位素是282Pb(2)设摆球A 、B 的质量分别为 m A 、m B,摆长为l, B 球的初始高度为h i,碰撞前B 球 的速度为V B .在不考虑摆线质量的情况下,根据题意及机械能守恒定律得h 1 l(1 cos45)①1 22m B V B m B ghi ②设碰撞前、后两摆球的总动量的大小分别为P i 、P 2.有 P i = m B V B ③所以,此实验在规定的范围内验证了动量守恒定律.5.氢是一种放射性气体,主要来源于不合格的水泥、墙砖、石材等建筑材料.呼吸时氨气 会随气体进入肺脏,氢衰变时放出射线,这种射线像小 炸弹〞一样轰击肺细胞,使肺细胞受损,从而引发肺癌、白血病等.假设有一静止的氢核222Rn 发生 衰变,放出一个速度为V .、质量为m 的 粒子和一个质量为 M 的反冲核针288 Po 此过程动量守恒,假设氢核发 生衰变时,释放的能量全部转化为粒子和针核的动能.(1)写衰变方程;联立①②③式得同理可得联立④⑤式得代人条件得由此可以推出 P m B J 2gl (1 cos45 ) ④F 2 (m A m B R2gl(1 cos30 )⑤P 2 m A m B 1 cos30 - - -------- J d P 1 m B . 1 cos452P2… —1.03⑦P(2)求出反冲核针的速度;(计算结果用题中字母表示相反;(3) m 【解析】 【分析】 【详解】(1)由质量数和核电荷数守恒定律可知,核反响方程式为222 218 4..86Rn 84 Po+2He (2)核反响过程动量守恒,以 a 离子的速度方向为正方向 由动量守恒定律得mv 0 Mv 0解得vmv 0■,负号表示方向与 a 离子速度方向相反 M(3)衰变过程产生的能量21 2 1 2M m mv oE -mv 2 - Mv 2-2 22M由爱因斯坦质能方程得2E mc解得M m mv 2m ------------ 5——2Mc 26.如下图,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A 点由静止出发绕.点下摆,当摆到最低点 B 时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处 A.求男演员落地点 C 与O 点的水平距离s.男演员质量 m 1 和女演员质量 m 2之比m 1 :m 2=2,秋千的质量不计,秋千的摆长为R, C 点比.点低5R.【答案】8R 【解析】【分析】 【详解】两演员一起从从 A 点摆到B 点,只有重力做功,机械能守恒定律,设总质量为 m,那么12(3)求出这一衰变过程中的质量亏损.(计算结果用题中字母表示)2222184 ..【答木】(1) 86 Rn 84 Po 2 He ; (2) vmv o负号表示方向与“离子速度方向2M m mv 0 2Mc 2mgR -mv1 2女演员刚好能回到高处,机械能依然守恒:m2gR -m2v12女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒:(m l m2) v m2v l m1v2③根据题意:m1 :m2 2有以上四式解得:v22 2gR1c 8R接下来男演员做平抛运动:由4R -gt2,得t —2 . g因而:s v2t 8R;【点睛】两演员一起从从A点摆到B点,只有重力做功,根据机械能守恒定律求出最低点速度;女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒,由于女演员刚好能回到高处,可先根据机械能守恒定律求出女演员的返回速度,再根据动量守恒定律求出男演员平抛的初速度,然后根据平抛运动的知识求解男演员的水平分位移;此题关键分析求出两个演员的运动情况,然后对各个过程分别运用动量守恒定律和机械能守恒定律列式求解.7.光滑水平面上质量为1kg的小球A,以2.0m/s的速度与同向运动的速度为 1.0m/s、质量为2kg的大小相同的小球B发生正碰,碰撞后小球B以1.5m/s的速度运动.求:I~~J S I(1)碰后A球的速度大小;(2)碰撞过程中A、B系统损失的机械能.【答案】V A 1.0m/s, E损0.25J【解析】试题分析:(1)碰撞过程中动量守恒,由动量守恒定律可以求出小球速度.(2)由能量守恒定律可以求出损失的机械能.解:(1)碰撞过程,以A的初速度方向为正,由动量守恒定律得:m A V A+m B V B=m A V A+m B v B代入数据解:v A=1.0m/s②碰撞过程中A、B系统损失的机械能量为:_1 2,1 2 _ 1 y 2 _ 1 ,2KE损一]山正且? /8 ①山尸A/㈤胪B代入数据解得:E 损=0.25J 答:①碰后A 球的速度为1.0m/s ;②碰撞过程中A 、B 系统损失的机械能为 0.25J.【点评】小球碰撞过程中动量守恒、机械能不守恒,由动量守恒定律与能量守恒定律可以 正确解题,应用动量守恒定律解题时要注意正方向的选择.8 .如下图,光滑的水平地面上有一木板,其左端放有一重物,右方有一竖直的墙.重物质量为木板质量的2倍,重物与木板间的动摩擦因数为科使木板与重物以共同的速度 v o 向右运动,某时刻木板与墙发生碰撞,碰撞时间极短,碰撞后木板以原速率反弹长,重物始终在木板上.重力加速度为g.求木板从第一次与墙碰撞到再次碰撞所经历的时间4V 0 3~g解:木板第一次与墙碰撞后,向左匀减速直线运动,直到静止,再反向向右匀加速直线运动直到与重物有共同速度,再往后是匀速直线运动,直到第二次 撞墙. 木板第一次与墙碰撞后,重物与木板相互作用直到有共同速度V,动量守恒,有:2mv o - mv o = (2m+m) v, 解得: v=^-木板在第一个过程中,用动量定理,有: mv - m ( - v 0)=科2mgt…〜一 一 1? 1 2八用动能TE 理,有: -mv --IDV O =-科 2mgs木板在第二个过程中,匀速直线运动,有: s=vt 2,,一,…~、2v n 2v n I 4V n木板从第一次与墙碰撞到再次碰撞所经历的时间t=t l +t 2=—-+——-=一-3|Xg_ ……入……工……L,[W答:木板从第一次与墙碰撞到再次碰撞所经历的时间为34M【点评】此题是一道考查动量守恒和匀变速直线运动规律的过程复杂的好题,正确分析出 运动规律是关键.9 .如下图,带有 1光滑圆弧的小车 A 的半径为R,静止在光滑水平面上.滑块C 置于4木板B 的右端,A 、B 、C 的质量均为 m, A 、B 底面厚度相同.现 B 、C 以相同的速度向右 匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高.设木板足够处.那么:(重力加速度为 g)(1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【解析】此题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为vo, AB 相碰过程中动量守恒,设碰后 AB 总体速度u,由12 1 2 12-mv 0 - 2mu - 3mu mgR 2 2 2解得 v o 2.3gR(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有 mv 0 2mu mv 1 2mv 210.如下图,在光滑的水平面上,质量为 4m 、长为L 的木板右端紧靠竖直墙壁,与墙壁 不粘连.质量为 m 的小滑块(可视为质点)以水平速度 v 0滑上木板左端,滑到木板右端时 速度恰好为零.现小滑块以水平速度 v 滑上木板左端,滑到木板右端时与竖直墙壁发生弹性碰撞,小滑块弹回后,刚好能够滑到木板左端而不从木板上落下,求 一的值. 0v 1【答案]一二三 %- 【解析】1 2试题分析:小滑块以水平速度 v 0右滑时,有:fL =0- - mv 2 (2分)2mv o 2mu ,解得 uV2C 滑到最高点的过程mv o 2mu 3mu1 2—mv 0 2-2mu 21mv ; - 2mv 2 2 22 解得:v 1 mgR, 35,3gR31 o 1 o小滑块以速度v 滑上木板到运动至碰墙时速度为vi,那么有 fL = — mv 1-—mv (2分)2 2滑块与墙碰后至向左运动到木板左端,此时滑块、木板的共同速度为 丫2,那么有 mv i =(m 4m)v 2(2 分)1 2 1 2由总能重寸恒可得:fL= —mv 1 -- (m 4m)v 2 (2分)2 2 v 3上述四式联立,解得 一一(1分)v o 2考点:动能定理,动量定理,能量守恒定律.11.如下图,一质量为 M 的平板车B 放在光滑水平面上,在其右端放一质量为 m 的小 木块A, m 〈M,A 、B 间粗糙,现给 A 和B 以大小相等、方向相反的初速度 v0,使A 开始向 左运动,B 开始向右运动,最后 A 不会1t 离B,求:(1) A 、B 最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车的速度大小和方向.…… M m2Mm 2【答案】(1) ------------------------- v 0 (2) -------------- v 0M m 2 Mg【解析】试题分析:(1)由A 、B 系统动量守恒定律得:Mv0 —mv0= (M +m ) v ①一 M -w所以v=- ---------- v0 方向向右(2) A 向左运动速度减为零时,到达最远处,设此时速度为 Mv 0 mv 0Mv0 — mv0="Mv' v -------------------- 方 向向右M考点:动量守恒定律;点评:此题主要考查了动量守恒定律得直接应用,难度适中.12.如下图,粗细均匀的圆木棒 A 下端离地面高 H,上端套着一个细环 B. A 和B 的质 量均为m, A 和B间的滑动摩擦力为f,且fvmg.用手限制A 和B 使它们从静止开始自由 下落.当A 与地面碰撞后,A 以碰撞地面时的速度大小竖直向上运动,与地面发生碰撞时 间极短,空气阻力不计,运动过程中 A 始终呈竖直状态.求:假设 A 再次着地前B 不脱离A, A 的长度应满足什么条件?v'那么由动量守恒定律得:r~丘7 --------------(mg + D【解析】试题分析:设木棒着地时的速度为l v°,由于木棒与环一起自由下落,那么也=\Z两木棒弹起竖直上升过程中,由牛顿第二定律有:对木棒:『+ mg ai = -解得:山,方向竖直向下对环:・_ mg-/解得上m方向竖直向下可见环在木棒上升及下降的全过程中一直处于加速运动状态,所以木棒从向上弹起到再次着地的过程中木棒与环的加速度均保持不变2 vo木棒在空中运动的时间为在这段时间内,环运动的位移为--■ . ■要使环不碰地面,那么要求木棒长度不小于x,即,兰冈L>...................解得:+考点:考查了牛顿第二定律与运动学公式的综合应用【名师点睛】连接牛顿第二定律与运动学公式的纽带就是加速度,所以在做这一类问题时,特别又是多过程问题时,先弄清楚每个过程中的运动性质,根据牛顿第二定律求加速度然后根据加速度用运动学公式解题或者根据运动学公式求解加速度然后根据加速度利用牛顿第二定律求解力。
高中物理选修一第一章《动量守恒定律》测试卷(包含答案解析)
![高中物理选修一第一章《动量守恒定律》测试卷(包含答案解析)](https://img.taocdn.com/s3/m/563ccc2176a20029bc642db5.png)
一、选择题1.(0分)[ID:127070]静止在光滑水平面上的物体,受到水平拉力F的作用,拉力F随时间t变化的图象如图所示,则下列说法中正确的是()A.0~4s内物体的位移为零B.0~4s内拉力对物体做功不为零C.4s末物体的动量为零D.0~4s内拉力对物体的冲量不为零2.(0分)[ID:127067]在光滑水平面上,有两个小球A、B沿同一直线同向运动(B在前),已知碰前两球的动量分别为p A=12kg·m/s、p B=13kg·m/s,碰后它们的动量变化分别为Δp A、Δp B,下列数值可能正确的是()A.Δp A=-3kg·m/s、Δp B=3kg·m/s B.Δp A=3kg·m/s、Δp B=-3kg·m/sC.Δp A=-24kg·m/s、Δp B=24kg·m/s D.Δp A=24kg·m/s、Δp B=-24kg·m/s3.(0分)[ID:127051]如图所示,A、B、C三球的质量分别为m、m、2m,三个小球从同一高度同时出发,其中A球有水平向右的初速度v0, B、C由静止释放。
三个小球在同一竖直平面内运动,小球与地面之间、小球与小球之间的碰撞均为弹性碰撞,则小球与小球之间最多能够发生碰撞的次数为( )A.2次B.3次C.4次D.5次4.(0分)[ID:127043]质量为M的物块以速度v运动,与质量为m的静止物块发生正碰,碰撞后两者的动量正好相等,两者质量M与m的比值可能为()A.2 B.4 C.6 D.85.(0分)[ID:127042]一质量为2kg的物块在合外力F的作用下从静止开始沿直线运动。
F 随时间t变化的图线如图所示,则()A .1s t =时物块的速率为2m/sB .2s t =时物块的动量大小为2kg·m/sC .3s t =时物块的动量大小为3kg·m/sD .4s t =时物块的速度为零6.(0分)[ID :127035]光滑绝缘水平桌面上存在与桌面垂直方向的匀强磁场,有一带电粒子在桌面上做匀速圆周运动,当它运动到M 点,突然与一不带电的静止粒子发生正碰合为一体(碰撞时间极短),则粒子的运动轨迹应是图中的哪一个(实线为原轨迹,虚线为碰后轨迹)( )A .B .C .D . 7.(0分)[ID :127030]质量相等的A 、B 两个物体放在同一水平面上,分别受到水平拉力F 1、F 2的作用而从静止开始做匀加速直线运动,经过时间t 0和4t 0,A 、B 的速度分别达到2v 0和v 0时,分别撤去拉力,以后物体继续做匀减速直线运动直至停止,两个物体速度随时间变化的图像如图所示,设F 1和F 2的冲量分别为I 1和I 2,F 1和F 2做的功分别为W 1和W 2,则下列结论正确的是( )A .I 1>I 2,W 1>W 2B .I 1<I 2,W 1>W 2C .I 1<I 2,W 1<W 2D .I 1>I 2,W 1<W 28.(0分)[ID :127029]由我国自主研发制造的世界上最大的海上风电机SL5000,它的机舱上可以起降直升机,叶片直径128米,风轮高度超过40层楼,是世界风电制造业的一个奇迹。
高三复习高中物理重点知识习题 动量守恒定律 - (含答案)
![高三复习高中物理重点知识习题 动量守恒定律 - (含答案)](https://img.taocdn.com/s3/m/19f7bf2c7fd5360cba1adbb6.png)
第七章动量守恒定律考点一:动量、动量变化量与冲量、动量定理1. (多选)如图所示,两个质量相等的物体在同一高度沿倾角不同的两个光滑斜面由静止开始自由下滑,不计空气阻力,在它们到达斜面底端的过程中()A.重力的冲量相同B.斜面弹力的冲量不同C.斜面弹力的冲量均为零D.合力的冲量不同答案BD2.(多选)质量为m的物块以初速度v0从光滑斜面底端向上滑行,到达最高位置后再沿斜面下滑到底端,则物块在此运动过程中()A.上滑过程与下滑过程中物块所受重力的冲量相同B.整个过程中物块所受弹力的冲量为零C.整个过程中物块合外力的冲量为零D.若规定沿斜面向下为正方向,则整个过程中物块合外力的冲量大小为2mv0 答案AD3.如图所示,质量为m的物体,在大小确定的水平外力F作用下,以速度v沿水平面匀速运动,当物体运动到A点时撤去外力F,物体由A点继续向前滑行的过程中经过B点,则物体由A点到B点的过程中,下列说法正确的是()A.v越大,摩擦力对物体的冲量越大,摩擦力做功越多B.v越大,摩擦力对物体的冲量越大,摩擦力做功与v的大小无关C.v越大,摩擦力对物体的冲量越小,摩擦力做功越少D.v越大,摩擦力对物体的冲量越小,摩擦力做功与v的大小无关答案D4. (多选)几个水球可以挡住一颗子弹?《国家地理频道》的实验结果是:四个水球足够!完全相同的水球紧挨在一起水平排列,子弹在水球中沿水平方向做匀变速直线运动,恰好能穿出第4个水球,则可以判断的是()A.子弹在每个水球中的速度变化相同B.子弹在每个水球中运动的时间不同C.每个水球对子弹的冲量不同D.子弹在每个水球中的动能变化相同答案BCD5. (多选)一质量为2 kg的物块在合外力F的作用下从静止开始沿直线运动。
F随时间t变化的图线如图所示,则() 答案ABA.t=1 s时物块的速率为1 m/sB.t=2 s时物块的动量大小为4 kg·m/sC.t=3 s时物块的动量大小为5 kg·m/sD.t=4 s时物块的速度为零6. (多选)一质点静止在光滑水平面上,现对其施加水平外力F,力F随时间按正弦规律变化,如图5所示,下列说法正确的是()A.第2 s 末,质点的动量为0B.第4 s 末,质点回到出发点C.在0~2 s 时间内,力F 的功率先增大后减小D.在1~3 s 时间内,力F 的冲量为0 答案 CD7.质量为1 kg 的物体做直线运动,其速度—时间图象如图所示。
高中物理动量守恒定律解题技巧及练习题(含答案)
![高中物理动量守恒定律解题技巧及练习题(含答案)](https://img.taocdn.com/s3/m/69b5d1cd10661ed9ac51f392.png)
高中物理动量守恒定律解题技巧及练习题(含答案)一、高考物理精讲专题动量守恒定律1.如下图,质量M=1kg的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽局部嵌有cd 和ef两个光滑半圆形导轨,c与e端由导线连接,一质量m=lkg的导体棒自ce端的正上方h=2m处平行ce由静止下落,并恰好从ce端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好.磁场的磁感应强度B=0.5T,导轨的间距与导体棒的长度均为L=0.5m,导轨的半径r=0.5m ,导体棒的电阻R=1 Q,其余电阻均不计,重力加速度g=10m/s2,不计空气阻力.⑴求导体棒刚进入凹槽时的速度大小;(2)求导体棒从开始下落到最终静止的过程中系统产生的热量;(3)假设导体棒从开始下落到第一次通过导轨最低点的过程中产生的热量为16J,求导体棒第一次通过最低点时回路中的电功率.9 _【答案】(1) v 2、10m/s (2)25J (3)P - W4【解析】【详解】解:⑴根据机械能守恒定律,可得:mgh - mv2 2解得导体棒刚进入凹槽时的速度大小:v 2g0m / s(2)导体棒早凹槽导轨上运动过程中发生电磁感应现象,产生感应电流,最终整个系统处于静止,圆柱体停在凹槽最低点根据水平守恒可知,整个过程中系统产生的热量:Q mg(h r) 25J(3)设导体棒第一次通过最低点时速度大小为V I ,凹槽速度大小为v2,导体棒在凹槽内运动时系统在水平方向动量守恒,故有:mv1 Mv?1 2 1 2由能重寸恒可得:一mv1 mv2 mg(h r) Q12 2导体棒第一次通过最低点时感应电动势: E BLv1 BLv2E2回路电功率:P. ........ . 9联立解得:P -W42.如图,两块相同平板P i、P2置于光滑水平面上,质量均为m = 0.1kg. P2的右端固定一轻质弹簧,物体P置于P i的最右端,质量为M = 0.2kg且可看作质点.P i与P以共同速度vo= 4m/s向右运动,与静止的P2发生碰撞,碰撞时间极短,碰撞后P i与P2粘连在一起,压缩弹簧后被弹回(弹簧始终在弹性限度内).平板P i的长度L=1m , P与P i之间的动摩擦因数为科=0.2, P2上外表光滑.求:-厂। A B vWm(i)P i、P2刚碰完时的共同速度v i;(2)此过程中弹簧的最大弹性势能E P.(3)通过计算判断最终P能否从P i上滑下,并求出P的最终速度V2.【答案】(i) v i=2m/s (2)E P=0.2J (3)v2=3m/s【解析】【分析】【详解】(i) P i、P2碰撞过程,由动量守恒定律mV. 2mM解得V i v°- 2m / s,方向水平向右;2(2)对P i、P2、P系统,由动量守恒定律2mv i Mv o (2m M )V2…3斛得v2 -v0 3m/s,方向水平向右,4i o i o i o此过程中弹簧的最大弹性势能E P -?2mv i2 + -Mv2 — (2m M )v22 0.2J -2 2 2(3)对P i、F2、P系统,由动量守恒定律2mv i Mv o 2mv3 Mv?i o i o i c 1c由能重寸恒TH律得一2mv〔+ Mv 02mv3Mv2 + Mg L2 2 2 2解得P的最终速度v2 3m/s 0,即P能从P i上滑下,P的最终速度v2 3m/s3.光滑水平面上质量为ikg的小球A, 量为2kg的大小相同的小球B发生正碰I~~H J I,,,,,.Cbr,〞(i)碰后A球的速度大小;(2)碰撞过程中A、B系统损失的机械能. 以2.0m/s的速度与同向运动的速度为i.0m/s、质,碰撞后小球B以i.5m/s的速度运动.求:【答案】v A i.0m/s, E损0.25J【解析】试题分析:(1)碰撞过程中动量守恒,由动量守恒定律可以求出小球速度.(2)由能量守恒定律可以求出损失的机械能.解:(1)碰撞过程,以A的初速度方向为正,由动量守恒定律得:m A V A+m B V B=m A V A+m B v B代入数据解:v A=1.0m/s②碰撞过程中A、B系统损失的机械能量为:甘-1 2 1 2 _1 / 2 _1 」E损-彳与口『 A彳叫.B代入数据解得:E损=0.25J答:①碰后A球的速度为1.0m/s;②碰撞过程中A、B系统损失的机械能为0.25J.【点评】小球碰撞过程中动量守恒、机械能不守恒,由动量守恒定律与能量守恒定律可以正确解题,应用动量守恒定律解题时要注意正方向的选择.4.在日常生活中,我们经常看到物体与物体间发生反复的屡次碰撞.如下图,一块外表水平的木板静止放在光滑的水平地面上,它的右端与墙之间的距离L= 0.08 m.现有一小物块以初速度vo = 2 m/s从左端滑上木板,木板和小物块的质量均为 1 kg,小物块与木板之间的动摩擦因数-0.1,木板足够长使得在以后的运动过程中小物块始终不与墙接触, 木板与墙碰后木板以原速率反弹,碰撞时间极短可忽略,取重力加速度g=10 m/s2.求:可________________ 「J(1)木板第一次与墙碰撞时的速度大小;(2)从小物块滑上木板到二者到达共同速度时,木板与墙碰撞的总次数和所用的总时间;(3)小物块和木板到达共同速度时 ,木板右端与墙之间的距离.【答案】(1) 0.4 s 0.4 m/s (2) 1.8 s. (3) 0.06 m【解析】试题分析:(1)物块滑上木板后,在摩擦力作用下,木板从静止开始做匀加速运动,设木板加速度为a,经历时间T后与墙第一次碰撞,碰撞时的速度为V I那么mg ma,解得a g 1m/s2①,1 , 2 LL - at ②,v1 at ③ 2联立①②③ 解得t 0.4s, v1 0.4m/s④(2)在物块与木板两者到达共同速度前,在每两次碰撞之间,木板受到物块对它的摩擦力作用而做加速度恒定的匀减速直线运动,因而木板与墙相碰后将返回至初态,所用时间也为T.设在物块与木板两者到达共同速度v前木板共经历n次碰撞,那么有:v V O 2nT t a a t ⑤式中At是碰撞n次后木板从起始位置至到达共同速度时所需要的时间.由于最终两个物体一起以相同的速度匀速前进,故⑤ 式可改写为2v V o 2nTa⑥由于木板的速率只能处于 .到v1之间,故有0 v02nTa 2v1⑦求解上式得1.5 n 2.5由于n是整数,故有n=2®由①⑤⑧ 得:t 0.2s⑨;v 0.2m/s⑩从开始到物块与木板两者到达共同速度所用的时间为:t 4T t 1.8s (11)即从物块滑上木板到两者到达共同速度时,木板与墙共发生三次碰撞,所用的时间为1. 8s.............. 一…,……、、,,一 1 2(3)物块与木板到达共同速度时,木板与墙之间的距离为s L — a t2 (12)2联立①与(12)式,并代入数据得s 0.06m即到达共同速度时木板右端与墙之间的距离为0. 06m.考点:考查了牛顿第二定律,运动学公式【名师点睛】此题中开始小木块受到向后的摩擦力,做匀减速运动,长木板受到向前的摩擦力做匀加速运动;当长木板反弹后,小木块继续匀减速前进,长木板匀减速向左运动, 一直回到原来位置才静止;之后长木板再次向右加速运动,小木块还是匀减速运动;长木板运动具有重复性,由于木板长度可保证物块在运动过程中不与墙接触,故直到两者速度相同,一起与墙壁碰撞后反弹;之后长木板向左减速,小木块向右减速,两者速度一起减为零.5.如下图,固定的光滑圆弧面与质量为6kg的小车C的上外表平滑相接,在圆弧面上有一个质量为2kg的滑块A,在小车C的左端有一个质量为2kg的滑块B,滑块A与B均可看做质点.现使滑块A从距小车的上外表高h=1.25m处由静止下滑,与B碰撞后瞬间粘合在一起共同运动,最终没有从小车C上滑出.滑块A、B与小车C的动摩擦因数均为斤0.5,小车C与水平地面的摩擦忽略不计,取g=10m/s2.求:(1)滑块A与B弹性碰撞后瞬间的共同速度的大小;【试题分析】(1)根据机械能守恒求解块A滑到圆弧末端时的速度大小,由动量守恒定律求解滑块A与B碰撞后瞬间的共同速度的大小;(2)根据系统的能量守恒求解小车C上外表的最短长度.(1)设滑块A滑到圆弧末端时的速度大小为v i,由机械能守恒定律有:m A gh — m A V i2代入数据解得v i ,2gh 5m/s .设A、B碰后瞬间的共同速度为V2,滑块A与B碰撞瞬间与小车C无关,滑块A与B组成的系统动量守恒, m A V i m A m B V2代入数据解得V2 2.5m/s .(2)设小车C的最短长度为L,滑块A与B最终没有从小车C上滑出,三者最终速度相同设为V3,根据动量守恒定律有:m A m B v2m A m B m C v31 2 1 2根据能重寸恒TH律有:m A m B gL= m A m B v2m A m B m C v;2 2联立以上两代入数据解得L 0.375m【点睛】此题要求我们要熟练掌握机械能守恒、能量守恒和动量守恒的条件和公式,正确把握每个过程的物理规律是关键.6.如下图,一轻质弹簧的一端固定在滑块B上,另一端与滑块C接触但未连接,该整体静止放在离地面高为H的光滑水平桌面上.现有一滑块A从光滑曲面上离桌面h高处由静止开始滑下,与滑块B发生碰撞并粘在一起压缩弹簧推动滑块C向前运动,经一段时间,滑块C脱离弹簧,继续在水平桌面上匀速运动一段后从桌面边缘飞出.(1)滑块A与滑块B碰撞结束瞬间的速度V;(2)被压缩弹簧的最大弹性势能E pmax;(3)滑块C落地点与桌面边缘的水平距离s.【答案】(1) v 1V l I J2gh (2) mg" (3)—VHh 3 3 6 3【解析】【详解】解:(1)滑块A从光滑曲面上h高处由静止开始滑下的过程,机械能守恒,设其滑到底面的1 2速度为v1,由机械能守恒定律有:m A gh —m A%解之得:v 1 2gh滑块A 与B 碰撞的过程, A 、B 系统的动量守恒,碰撞结束瞬间具有共同速度设为 v,由动量守恒定律有: m A v 1 m A m B v1 1 ----- 斛之信:vV i — 2gh 3 3 ,(2)滑块A 、B 发生碰撞后与滑块 C 一起压缩弹簧,压缩的过程机械能守恒,被压缩弹簧的 弹性势能最大时,滑块 A 、B 、C 速度相等,设为速度 V 2 由动量守恒定律有:m A v 1 m A m B m C v 2122由机械能寸恒TH 律有: E Pmax (m A m B )v m A m B m C v 221解得被压缩弹簧的最大弹性势能:E Pmax -mgh Pmax6(3)被压缩弹簧再次恢复自然长度时,滑块C 脱离弹簧,设滑块 A 、B 的速度为V3,滑块C 的速度为V4,分别由动量守恒定律和机械能守恒定律有:121 21 2-m A m B v m A m B v -m e v^ 2221 -------解之得:v 3 0, v 4 -42gh3 . 滑块C 从桌面边缘飞出后做平抛运动:s v 4t12H2g t2解之得滑块C 落地点与桌面边缘的水平距离:s — JHh3R= 0.4 m 的四分之一圆弧轨道 AB 在最低点B 与光滑水平轨道BC 相切.质量m 2 = 0.2 kg 的小球b 左端连接一轻质弹簧,静止在光滑水平轨道上,另 一质量m 〔 = 0.2 kg 的小球a 自圆弧轨道顶端由静止释放,运动到圆弧轨道最低点 B 时对轨道的压力为小球a 重力的2倍,忽略空气阻力,重力加速度(1)小球a 由A 点运动到B 点的过程中,摩擦力做功 W f ;(2)小球a 通过弹簧与小球b 相互作用的过程中,弹簧的最大弹性势能 E p ; (3)小球a 通过弹簧与小球 b 相互作用的整个过程中,弹簧对小球 b 的冲量I .【答案】(1)四:(2) E P =0.2J ⑶ I=0.4N?sm A m B v m A m B v m C v 47.如下图,内壁粗糙、半径g= 10 m/s 2.求:【解析】(1)小球由静止释放到最低点B的过程中,据动能定理得小球在最低点B时: 据题意可知乐=2四乱联立可得悭f=-0网(2)小球a与小球b把弹簧压到最短时,弹性势能最大,二者速度相同,此过程中由动量守恒定律得::,1 1=4mi + m* 超 + & 由机械能守恒定律得2 2户弹簧的最大弹性势能E p=0.4J小球a与小球b通过弹簧相互作用的整个过程中, a球最终速度为由动量守恒定律啊也=mi0 + m*4由能量守恒定律: 根据动量定理有:得小球a通过弹簧与小球b相互作用的整个过程中,弹簧对小球b的冲量I的大小为I=0.8N s8.如下图,在沙堆外表放置一长方形木块A,其上面再放一个质量为m=0.10kg的爆竹B,木块的质量为M=6.0kg.当爆竹爆炸时,因反冲作用使木块陷入沙中深度h=5cm,而木块所受的平土阻力为f=80N .假设爆竹的火药质量以及空气阻力可忽略不计, g取10m/s2,求爆竹能上升的最大高度.【答案】h 60m【解析】试题分析:木块下陷过程中受到重力和阻力作用,根据动能定理可得1 2 ,、(mg f )h 0 Mv1 (1)2爆竹爆炸过程中木块和爆竹组成的系统动量守恒,故有mv2 Mv i (2)爆竹完后,爆竹做竖直上抛运动,故有v2 2gh(3)联立三式可得:h 600m考点:考查了动量守恒定律,动能定理的应用点评:根底题,比拟简单,此题容易错误的地方为在A下降过程中容易将重力丢掉9.在竖直平面内有一个半圆形轨道ABC,半彳空为R,如下图,A、C两点的连线水平,B点为轨道最低点.其中AB局部是光滑的,BC局部是粗糙的.有一个质量为m的乙物体静止在B处,另一个质量为2m的甲物体从A点无初速度释放,甲物体运动到轨道最低点与乙物体发生碰撞,碰撞时间极短,碰撞后结合成一个整体,甲乙构成的整体滑上BC轨道,最高运动到D点,OD与OB连线的夹角0 60°甲、乙两物体可以看作质点,重力加速度为g,求:(1)甲物与乙物体碰撞过程中,甲物体受到的冲量.(2)甲物体与乙物体碰撞后的瞬间,甲乙构成的整体对轨道最低点的压力.(3)甲乙构成的整体从B运动到D的过程中,摩擦力对其做的功.【答案】⑴—mj2gR ,方向水平向右.(2)压力大小为:一mg ,方向竖直向3 31下.(3)W f= - mgR .【解析】【分析】(1)先研究甲物体从A点下滑到B点的过程,根据机械能守恒定律求出A刚下滑到B点时的速度,再由动量守恒定律求出碰撞后甲乙的共同速度,即可对甲,运用动量定理求甲物与乙物体碰撞过程中,甲物体受到的冲量.(2)甲物体与乙物体碰撞后的瞬间,对于甲乙构成的整体,由牛顿第二定律求出轨道对整体的支持力,再由牛顿第三定律求得整体对轨道最低点的压力.(3)甲乙构成的整体从B运动到D的过程中,运用动量定理求摩擦力对其做的功.【详解】1甲物体从A点下滑到B点的过程,1 2根据机械能守恒定律得:2mgR — 2mv2,2解得:v0"2gR,甲乙碰撞过程系统动量守恒,取向左方向为正,根据动量守恒定律得:2mv o m 2m mv ,解得:v —J2gR ,甲物与乙物体碰撞过程,对甲,由动量定理得:I甲2mv 2mv0 2 m,2gR ,方向:水平向右;2甲物体与乙物体碰撞后的瞬间,对甲乙构成的整体,2由牛顿第二定律得:F m 2mg m 2m —R (17)斛得:F —mg,根据牛顿第三定律,对轨道的压力F' F ——mg 方向:竖直向下;3o _ _ 1 _ 23对整体,从B到D过程,由动能定理得:3mgR 1 cos60 W f 0 — 3mv2一... ... ...................... 1 _解得,摩擦力对整体做的功为:W f -mgR ;6【点睛】解决此题的关键按时间顺序分析清楚物体的运动情况,把握每个过程的物理规律,知道碰撞的根本规律是动量守恒定律 .摩擦力是阻力,运用动能定理是求变力做功常用的方法.10.如下图,一质量为m=1 5kg的滑块从倾角为 .=37.的斜面上自静止开始滑下,斜面末端水平(水平局部光滑,且与斜面平滑连接,滑块滑过斜面末端时无能量损失),滑块离开斜面后水平滑上与平台等高的小车.斜面长s=10m,小车质量为M=3 5kg,滑块与斜面及小车外表的动摩擦因数科=0. 35,小车与地面光滑且足够长,取g=10m/s2.求:(1)滑块滑到斜面末端时的速度(2)当滑块与小车相对静止时,滑块在车上滑行的距离【答案】(1) 8 m/s (2) 6. 4m【解析】试题分析:(1)设滑块在斜面上的滑行加速度a,由牛顿第二定律,有mg (sin 0 -cos 0 ) =ma代入数据得:a=3. 2m/s2又:s= — at22解得t=2 . 5s到达斜面末端的速度大小v 0=at=8 m/s(2)小车与滑块到达共同速度时小车开始匀速运动,该过程中小车与滑块组成的系统在水平方向的动量守恒,那么:mv= (m+M v代入数据得:v=2 . 4m/s滑块在小车上运动的过程中,系统减小的机械能转化为内能,得:mgL= 1 mv o2- 1 〔m+M v2 2 2代入数据得:L=6. 4m考点:牛顿第二定律;动量守恒定律;能量守恒定律【名师点睛】此题考查动量守恒定律及功能关系的应用,属于多过程问题,需要分阶段求解;解题时需选择适宜的物理规律,用牛顿定律结合运动公式,或者用动量守恒定律较简单,此题是中档题.11.如下图,小球A质量为m,系在细线的一端,线的另一端固定在.点,.点到水平面的距离为h.物块B质量是小球的5倍,置于粗糙的水平面上且位于.点正下方,物块与水平面间的动摩擦因数为也现拉动小球使线水平伸直,小球由静止开始释放,运动到最低点时与物块发生正碰〔碰撞时间极短〕,反弹后上升至最高点时到水平面的距离为小球与物块均视为质点,不计空气阻力,重力加速度为g,求碰撞过程物块获得的冲16量及物块在地面上滑行的距离.气—一1 : hI**+ 'pl Ih【答案】——16【解析】【分析】对小球下落过程由机械能守恒定律可求得小球与物块碰撞前的速度;对小球由机械能守恒可求得反弹的速度,再由动量守恒定律可求得物块的速度;对物块的碰撞过程根据动量定理列式求解获得的冲量;对物块滑行过程由动能定理可求得其滑行的距离.【详解】小球的质量为m,设运动到最低点与物块相撞前的速度大小为v i,取小球运动到最低点时的重力势能为零,根据机械能守,值定律有:mgh=1mv i22解得:v i= 2ghh 1 ’2设碰撞后小球反弹的速度大小为V1,同理有:mg —— mv i16 2解得:〃1 =,设碰撞后物块的速度大小为V2,取水平向右为正方向,由动量守恒定律有:mv1=-mv' 1+5mv2解得:V2= 'g h由动量定理可得,碰撞过程滑块获得的冲量为I=5mv2=l m,2gh物块在水平面上滑行所受摩擦力的大小为F=5科mg设物块在水平面上滑行的时间为t,由动能定理有:1 2Fs 0 5mv22…口h解得:s16【点睛】此题综合考查动量守恒定律、机械能守恒定律及动能定理,要注意正确分析物理过程,选择适宜的物理规律求解.12.如下图,粗细均匀的圆木棒A下端离地面高H,上端套着一个细环B. A和B的质量均为m, A和B间的滑动摩擦力为f,且fvmg.用手限制A和B使它们从静止开始自由下落.当A与地面碰撞后,A以碰撞地面时的速度大小竖直向上运动,与地面发生碰撞时间极短,空气阻力不计,运动过程中A始终呈竖直状态.求:假设A再次着地前B不脱离A, A的长度应满足什么条件?y.8m好〞---------q【答案](mg + D【解析】试题分析:设木棒着地时的速度为l v°,由于木棒与环一起自由下落,那么即寸期木棒弹起竖直上升过程中,由牛顿第二定律有:对木棒:『+ mgwi=z:-解得:m,方向竖直向下对环:・mg 7G2 = ---------解得瓶方向竖直向下可见环在木棒上升及下降的全过程中一直处于加速运动状态,所以木棒从向上弹起到再次着地的过程中木棒与环的加速度均保持不变木棒在空中运动的时间为在这段时间内,环运动的位移为-- ■-要使环不碰地面,那么要求木棒长度不小于X,即12弁8叫?〞LW解得:Op +「考点:考查了牛顿第二定律与运动学公式的综合应用【名师点睛】连接牛顿第二定律与运动学公式的纽带就是加速度,所以在做这一类问题时,特别又是多过程问题时,先弄清楚每个过程中的运动性质,根据牛顿第二定律求加速度然后根据加速度用运动学公式解题或者根据运动学公式求解加速度然后根据加速度利用牛顿第二定律求解力。
高中物理动量守恒定律试题(有答案和解析)含解析
![高中物理动量守恒定律试题(有答案和解析)含解析](https://img.taocdn.com/s3/m/cf8c298259eef8c75ebfb388.png)
高中物理动量守恒定律试题(有答案和解析)含解析一、高考物理精讲专题动量守恒定律1.如图所示,质量为M=1kg 上表面为一段圆弧的大滑块放在水平面上,圆弧面的最底端刚好与水平面相切于水平面上的B 点,B 点左侧水平面粗糙、右侧水平面光滑,质量为m=0.5kg 的小物块放在水平而上的A 点,现给小物块一个向右的水平初速度v 0=4m/s ,小物块刚好能滑到圆弧面上最高点C 点,已知圆弧所对的圆心角为53°,A 、B 两点间的距离为L=1m ,小物块与水平面间的动摩擦因数为μ=0.2,重力加速度为g=10m/s 2.求: (1)圆弧所对圆的半径R ;(2)若AB 间水平面光滑,将大滑块固定,小物块仍以v 0=4m/s 的初速度向右运动,则小物块从C 点抛出后,经多长时间落地?【答案】(1)1m (2)428225t s = 【解析】 【分析】根据动能定理得小物块在B 点时的速度大小;物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒和系统机械能守恒求出圆弧所对圆的半径;,根据机械能守恒求出物块冲上圆弧面的速度,物块从C 抛出后,根据运动的合成与分解求落地时间; 【详解】解:(1)设小物块在B 点时的速度大小为1v ,根据动能定理得:22011122mgL mv mv μ=- 设小物块在B 点时的速度大小为2v ,物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒则有:12()mv m M v =+ 根据系统机械能守恒有:2201211()(cos53)22mv m M v mg R R =++- 联立解得:1R m =(2)若整个水平面光滑,物块以0v 的速度冲上圆弧面,根据机械能守恒有:2200311(cos53)22mv mv mg R R =+- 解得:322/v m s =物块从C 抛出后,在竖直方向的分速度为:38sin 532/5y v v m s =︒= 这时离体面的高度为:cos530.4h R R m =-︒=212y h v t gt -=-解得:4282t s +=2.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。
高中物理动量守恒定律真题汇编(含答案)含解析
![高中物理动量守恒定律真题汇编(含答案)含解析](https://img.taocdn.com/s3/m/f8c266a810661ed9ac51f38e.png)
高中物理动量守恒定律真题汇编(含答案)含解析一、高考物理精讲专题动量守恒定律1.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求:(1)A球与B球碰撞中损耗的机械能;(2)在以后的运动过程中弹簧的最大弹性势能;(3)在以后的运动过程中B球的最小速度.【答案】(1);(2);(3)零.【解析】试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:碰后A、B的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A 、B 已由向左的共同速度减小到零后反向加速到向右的,故B的最小速度为零 .考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A 、B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答2.如图所示,一辆质量M=3 kg 的小车A 静止在光滑的水平面上,小车上有一质量m=l kg 的光滑小球B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p =6J ,小球与小车右壁距离为L=0.4m ,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:①小球脱离弹簧时的速度大小;②在整个过程中,小车移动的距离。
高中物理选择性必修一第一章 动量守恒定律 单元测试(含答案)
![高中物理选择性必修一第一章 动量守恒定律 单元测试(含答案)](https://img.taocdn.com/s3/m/8418855f0640be1e650e52ea551810a6f524c826.png)
高中物理选择性必修一第一章一、选择题(1-7单选题,8-10多选题)1.2024年春天,中国航天科技集团研制的50kW级双环嵌套式霍尔推力器,成功实现点火并稳定运行,标志着我国已跻身全球嵌套式霍尔电推进技术领先行列。
嵌套式霍尔推力器不用传统的化学推进剂,而是使用等离子体推进剂,它的一个显著优点是“比冲”高。
比冲是航天学家为了衡量火箭引擎燃料利用效率引入的一个物理量,英文缩写为I sp,是单位质量的推进剂产生的冲量,比冲这个物理量的单位应该是( )A.m/s B.kg⋅m/s2C.m/s2D.N⋅s2.物理在生活和生产中有广泛应用,以下实例没有利用反冲现象的是( )A.乌贼喷水前行B.电风扇吹风C.火箭喷气升空D.飞机喷气加速3.如图所示,小车与木箱紧挨着静止在光滑的水平冰面上,现有一男孩站在小车上用力向右迅速推出木箱。
关于上述过程,下列说法中正确的是( )A.男孩和木箱组成的系统动量守恒B.小车与木箱组成的系统动量守恒C.男孩、小车与木箱三者组成的系统动量守恒D.木箱的动量增量与男孩、小车的总动量增量大小不相等4.人从高处跳到较硬的水平地面时,为了安全,一般都是让脚尖先触地且着地时要弯曲双腿,这是为了( )A.减小地面对人的冲量B.减小人的动量的变化C.增加人对地面的冲击时间D.增大人对地面的压强5.在光滑的水平面上,质量为m1的小球以速率v0向右运动。
在小球的前方有一质量为m2的小球处于静止状态,如图所示,两球碰撞后粘合在一起,两球继续向右运动,则两球碰撞后的速度变为( )A.仍为v0B.m1v0(m1+m2)C.m2v0(m1+m2)D.v0(m1+m2)6.重量为mg的物体静止在水平地面上,物体与地面之间的最大静摩擦力为F m,从0时刻开始,物体受到水平拉力F的作用,F与时间t的关系如图a所示,为了定性地表达该物体的运动情况,在图b所示的图象中,纵轴y应为该物体的()A.动量大小P B.加速度大小a C.位移大小xD.动能大小E k7.一质量为0.1kg的小球自t=0时刻从水平地面上方某处自由下落,小球与地面碰后反向弹回,不计空气阻力,也不计小球与地面弹性碰撞的时间,小球距地面的高度h与运动时间t关系如图所示,取g=10m/s2.则()A .小球第一次与地面弹性碰撞后的最大速度为10m /sB .小球与地面弹性碰撞前后动量守恒C .小球第一次与地面弹性碰撞时机械能损失了19JD .小球将在t =6s 时与地面发生第四次弹性碰撞8.如图所示,质量为M 的带有四分之一光滑圆弧轨道的小车静止置于光滑水平面上,圆弧的半径为R(未知),一质量为m 的小球以速度v 0水平冲上小车,恰好达到圆弧的顶端,此时M 向前走了0.25R ,接着小球又返回小车的左端。
【单元练】(必考题)高中物理选修1第一章【动量守恒定律】复习题(含答案解析)
![【单元练】(必考题)高中物理选修1第一章【动量守恒定律】复习题(含答案解析)](https://img.taocdn.com/s3/m/9b1f8ca6f424ccbff121dd36a32d7375a417c659.png)
一、选择题1.一质量为m 的铁锤,以速度v 竖直打在木桩上,经过t ∆时间后停止,则在打击时间内,铁锤对木桩的平均冲力的大小是( ) A . mg t ∆ B .mv t∆ C .mvmg t+∆ D .mvmg t-∆ C 解析:C对铁锤应用动量定理,设木桩对铁锤的平均作用力为F ,以向上为正方向,则有()0()F mg t mv -∆=--解得mvmg F t+∆=由牛顿第三定律,铁锤对木桩的平均冲力大小为mvmg t+∆ 故选C 。
2.人从高处跳到较硬的水平地面时,为了安全,一般都是让脚尖先触地且着地时要弯曲双腿,这是为了( ) A .减小地面对人的冲量 B .减小人的动量的变化 C .增加地面对人的冲击时间 D .增大人对地面的压强C解析:C设人的质量为m ,着地前速度大小为v ,着地时间为t ,地面对人冲量大小为I ,作用力大小为F ,取竖直向下方向为正方向;AB .人着地过程,人的动量从一定值减到零,动量的变化量不变,根据动量定理得0mgt I mv -=-得到地面对人的冲量I mgt mv =+m 、v 一定,t 延长,则I 增大,故AB 错误;C .让脚尖先触地且着地时要弯曲双腿,增加地面对人的冲击时间,故C 正确;D .根据动量定理得0mgt Ft mv -=-得到mv F mg t=+t 增大,则F 减小,人对地面的压强减小,故D 错误; 故选C 。
3.如图所示,将一光滑的质量为4m 半径为R 的半圆槽置于光滑水平面上,在槽的左侧紧挨有一个质量为m 的物块,今让一质量也为m 的小球自左侧槽口A 的正上方高R 处从静止开始落下,与半圆槽相切自A 点进入槽内,则以下结论中正确的是( )A .小球在半圆槽内第一次到最低点B 的运动过程中,槽的支持力对小球不做功 B .小球第一次运动到半圆槽的最低点B 时,小球与槽的速度大小之比为4:1C .小球第一次从C 点滑出后将做竖直上抛运动D .物块最终的动能为15mgRD 解析:DA .小球从A 到B 的过程中,小球对半圆槽的压力方向向左下方,所以半圆槽要向左推动物块一起运动,因而小球参与了两个运动,一个是沿半圆槽的圆周运动,另一个是与半圆槽一起向左运动,小球所受支持力方向与速度方向并不垂直,而是大于90,故槽的支持力对小球做负功,故A 错误;B .由于小球、半圆槽和物块组成的系统在水平方向不受外力,故球、半圆槽和物块在水平方向动量守恒,取向右为正,则有12(4)0mv m m v -+=解得12:5:1v v =,故B 错误;CD .小球从A 到B 的过程,根据系统机械能守恒得2212112(4)22mg R mv m m v =++联立C 选选项中式子解得1103gR v =211053gR v =当小球从B 到C 的过程中,小球对半圆槽有向右下方的压力,半圆槽开始减速,与物块分离,则物块最终以211053gRv =221215k mgRE mv ==由于小球、半圆槽和物块组成的系统在水平方向不受外力,故球、半圆槽和物块在水平方向动量守恒,小球第一次到达C 点时,因为小物块速度不为0,则小球和半圆槽的水平速度也不可能为0,故小球第一次从C 点滑出后不可能做竖直上抛运动,故C 错误,D 正确。
高中物理-课时作业29动量守恒定律
![高中物理-课时作业29动量守恒定律](https://img.taocdn.com/s3/m/635ab8d40066f5335b812178.png)
课时作业(二十九) 动量守恒定律[基础训练]1.(2020北京大兴区期末)以下实例中不是利用反冲现象的是( )A .当枪发射子弹时,枪身会同时向后运动B .乌贼向前喷水从而使自己向后游动C .火箭中的燃料燃烧向下喷气推动自身向上运动D .战斗机在紧急情况下抛出副油箱以提高机身的灵活性答案:D 解析:当枪发射子弹时,枪身会同时向后运动,是一种反冲现象,A 正确.乌贼向前喷水从而使自己向后游动,运用了反冲运动的原理,B 正确.火箭升空通过喷气的方式改变速度,是利用了反冲原理,C 正确.战斗机在紧急情况下抛出副油箱以提高机身的灵活性,是通过减小机身的质量来改变惯性,不是利用反冲原理,D 错误.2.(2020辽宁沈阳一模)(多选)如图所示,放在光滑水平桌面上的A 、B 木块之间夹一被压缩的弹簧.现释放弹簧,A 、B 木块被弹开后,各自在桌面上滑行一段距离后飞离桌面.A 落地点距桌边水平距离为0.5 m ,B 落地点距桌边水平距离为1 m ,则( )A .A 、B 离开弹簧时的速度大小之比为1∶2B .A 、B 离开弹簧时的速度大小之比为1∶1C .A 、B 质量之比为1∶2D .A 、B 质量之比为2∶1答案:AD 解析:A 和B 离开桌面后做平抛运动,已知下落的高度相同,则它们的运动时间相等,由x =v 0t 得A 、B 离开弹簧时的速度大小之比为v A v B =x A x B=0.51=12,故A 正确,B 错误;弹簧弹开物体的过程,两物体及弹簧组成的系统动量守恒,取向左为正方向,由动量守恒定律得m A v A -m B v B =0,则A 、B 质量之比为m A m B =v B v A=21,故C 错误,D 正确. 3.(2020山东威海模拟)如图所示,B 、C 、D 、E 、F 5个小球并排放置在光滑的水平面上,B 、C 、D 、E 4个球质量相等,而F 球质量小于B 球质量,A 球的质量等于F球质量.A球以速度v0向B球运动,所发生的碰撞均为弹性碰撞,则碰撞之后()A.3个小球静止,3个小球运动B.4个小球静止,2个小球运动C.5个小球静止,1个小球运动D.6个小球都运动答案:A解析:因A、B质量不等,m A<m B,A、B相碰后A向左运动,B 向右运动.B、C、D、E质量相等,弹性碰撞后,不断交换速度,最终E有向右的速度,B、C、D静止.E、F质量不等,m E>m F,则E、F都向右运动.所以B、C、D静止,A向左运动,E、F向右运动.故A正确,B、C、D错误.4.(2020山东师大附中五模)如图所示,物体A、B的质量分别为m、2m,物体B置于水平面上,B物体上部半圆形槽的半径为R,将物体A从B圆槽的右侧最顶端由静止释放,一切摩擦均不计.则下列选项正确的是()A.A不能到达B圆槽的左侧最高点B.A运动到圆槽最低点时的速度为2gRC.B向右匀速运动D.B向右运动的最大位移大小为2 3R答案:D解析:设A到达左侧位置最高点时的速度为v,此时A、B速度相同,A、B组成的系统在水平方向上动量守恒,根据动量守恒定律知,系统初动量为零,则系统末动量为零,即v=0,根据能量守恒定律知,A能到达B圆槽左侧的最高点,故A、C错误.设A到达最低点时的速度为v,根据动量守恒定律得0=m v-2m v′,解得v′=v2,根据能量守恒定律得mgR=12m v2+12·2m⎝⎛⎭⎪⎫v22,解得v=4gR3,故B错误.当A运动到左侧最高点时,B向右运动的位移最大,设B向右运动的最大位移为x,根据动量守恒定律可知A、B的水平速度始终满足m v Ax -2m v Bx=0,则有m v Ax t-2m v Bx t=0,则有m(2R-x)=2mx,解得x=23R,故D正确.5.(2020福建厦门质检)(多选)如图所示,一质量M=2.0 kg的长木板B放在光滑水平地面上,在其右端放一个质量m=1.0 kg的小物块A.给A和B大小均为3.0 m/s、方向相反的初速度,使A开始向左运动,B开始向右运动,A始终没有滑离B板.下列说法正确的是()A.A、B共速时的速度大小为1 m/sB.在小物块A做加速运动的时间内,木板B速度大小可能是2 m/sC.从A、B开始运动到A、B共速的过程中,木板B对小物块A的水平冲量大小为2 N·sD.从A、B开始运动到A、B共速的过程中,小物块A对木板B的水平冲量方向向左答案:AD解析:设水平向右为正方向,根据动量守恒定律得M v-m v=(M +m)v共,解得v共=1 m/s,故A正确;设小物块向左减速到速度为零时长木板速度大小为v1,根据动量守恒定律得Mv-mv=Mv1,解得v1=1.5 m/s,所以当小物块反向加速的过程中,木板继续减速,木板的速度必然小于1.5 m/s,故B 错误;根据动量定理,A、B两物体相互作用的过程中,木板B对小物块A的水平冲量I=m v共-(-m v)=4 N·s,故C错误;设水平向右为正方向,根据动量定理,A对B的水平冲量I′=M v共-M v=-4 N·s,负号代表与正方向相反,即向左,故D正确.6.(2020湖南师大附中摸底考试)如图所示,质量为M的木块位于光滑水平面上,在木块与墙之间用轻弹簧连接,木块静止在A位置.现有一质量为m的子弹以水平速度v0射向木块并嵌入其中,则木块回到A位置时的速度大小v以及在此过程中墙对弹簧的冲量I的大小分别为()A.m v0M+m,0 B.m v0M+m,2m2v0M+mC.m v0M+m,2m v0D.m v0M,2m v0答案:C解析:子弹射入木块过程由于时间极短,子弹与木块之间的内力远大于系统外力,系统动量守恒,由动量守恒定律得m v0=(M+m)v′,解得v′=m v0M+m;子弹嵌入木块后,子弹和木块组成的系统在弹簧弹力的作用下先做减速运动,后做反向加速运动,回到A位置时速度大小不变,即当木块回到A位置时的速度大小v=m v0M+m,子弹、木块和弹簧组成的系统受到的合力即可看作墙对弹簧的作用力,根据动量定理得I=-(M+m)v-m v0=-2m v0(注意矢量运算),所以墙对弹簧的冲量I的大小为2m v0,C项正确.7.(2020山西重点中学协作体联考)如图所示,在水平面上依次放置小物块C 和A以及曲面劈B,其中A与C的质量相等均为m,曲面劈B的质量M=3m,劈B的曲面下端与水平面相切,且劈B足够高,各接触面均光滑.现让小物块C 以水平速度v0向右运动,与A发生碰撞,碰撞后两个小物块粘在一起又滑上劈B.求:(1)碰撞过程中系统损失的机械能;(2)碰后物块A与C在曲面劈B上能够达到的最大高度.答案:(1)14m v2(2)3v2040g解析:(1)小物块C与A发生碰撞粘在一起,以水平向右为正方向,由动量守恒定律得m v0=2m v解得v=12v0碰撞过程中系统损失的机械能为E损=12m v2-12(2m)v2解得E损=14m v 2 0 .(2)当A、C上升到最大高度时,A、B、C组成的系统速度相等,根据动量守恒定律得m v0=(m+m+3m)v1解得v1=15v0由能量守恒定律得2mgh=12×2m×⎝⎛⎭⎪⎫12v02-12×5m×⎝ ⎛⎭⎪⎫15v02解得h=3v2040g.[能力提升]8.(2020山东师大附中模拟)(多选)在光滑的水平面上,质量为m的子弹以初速度v0射击质量为M的木块,最终子弹未能射穿木块,射入的深度为d,木块在加速运动中的位移为s,则以下说法正确的是()A.子弹动能的亏损大于系统动能的亏损B.子弹动量的减少量等于木块动量的增加量C.摩擦力对木块做的功一定等于摩擦力对子弹做的功D.位移s一定大于深度d答案:AB解析:子弹射入木块的过程中,子弹损失的动能转化为木块的动能和系统的内能,故子弹减少的动能大于系统减少的动能,即产生的内能,故A 正确;水平面光滑,则系统在水平方向的动量守恒,由动量守恒定律可知,子弹动量的减少量等于木块动量的增加量,故B正确;子弹射入木块的过程中,子弹克服阻力做的功,一部分转化为木块的动能,另一部分转化为内能,根据动能定理可知摩擦力对木块做的功等于木块动能的增加量,因此摩擦力对木块做的功一定小于摩擦力对子弹做的功,故C错误;设子弹与木块之间的相互作用力为f,子弹和木块达到的共同速度大小为v,由动能定理,对子弹有-f(s+d)=12m v2-12m v20,对木块有fs=12M v2,根据动量守恒定律得m v0=(M+m)v,联立方程解得s d=m M+m ,因为mm+M<1,所以s<d,故D错误.9.(2020山东济南模拟)(多选)如图所示,一质量为3m的容器静止在光滑水平面上,该容器的内壁是半径为R的光滑半球面,在容器内壁的最高点由静止释放一质量为m的小滑块P,重力加速度为g.下列说法正确的是()A.P滑到最低点时的动能为mgRB.P从开始到最低点过程中机械能减少了mgR 4C.P经过最低点后沿内壁继续上滑的最大高度小于RD.P经过最低点后沿内壁继续上滑的最大高度等于R答案:BD解析:滑块P下滑的过程中,滑块和半球面在水平方向动量守恒,即当滑块到达最低点时,半球面有向左的速度,由机械能守恒定律可知,P滑到最低点时的动能小于mgR,根据动量守恒定律得m v1=3m v2,由机械能守恒定律得mgR=12m v 21+12·3m v22,联立解得v1=32gR,v2=16gR,则P从开始到最低点过程中机械能减少了ΔE1=mgR-12m v 21=14mgR,选项A错误,B正确;由动量守恒定律可知,当小滑块P滑到最高点与容器共速,且速度为零,根据能量守恒定律可知滑块仍能沿内壁上滑到距容器底部高R处,选项D正确,C错误.10.(2020黑龙江牡丹江联考)(多选)小车静止在光滑水平面上,站在车上的人练习打靶,靶装在车上的另一端,如图所示,已知车、人、枪和靶的总质量为M(不含子弹),每颗子弹质量为m,共n发,打靶时,枪口到靶的距离为d,若每发子弹打入靶中就留在靶里,且待前一发打入靶中后,再打下一发,则以下说法正确的是()A.打完n发子弹后,小车将以一定速度向右匀速运动B.打完n发子弹后,小车应停在射击之前位置的右方C.在每一发子弹的射击过程中,小车所发生的位移相同,大小均为md nm+MD.在每一发子弹的射击过程中,小车所发生的位移不相同,应越来越大答案:BC解析:子弹、枪、人、车和靶组成的系统,水平方向不受外力,水平方向动量守恒,子弹射击前系统总动量为零,由动量守恒定律知,子弹射入靶后总动量也为零,故打完n发子弹后,小车仍静止,A错误;设子弹射出枪口时的速度为v,车后退的速度大小为v′,以水平向左的方向为正方向,根据动量守恒定律得0=m v-[M+(n-1)m]v′①子弹匀速前进的同时,车匀速后退,故v t+v′t=d ②联立解得v′=m vM+(n-1)m,t=dv+m vM+(n-1)m故车后退的距离为Δs=v′t=m vM+(n-1)m×dv+m vM+(n-1)m=mdM+nm,每颗子弹从发射到击中靶的过程,车均后退Δs,故n颗子弹发射完毕后,小车后退的位移为s=n·Δs=nmdM+nm故B、C正确,D错误.11.(2020山东烟台模拟)在光滑水平面上有三个弹性小钢球a、b、c处于静止状态,质量分别为2m、m和2m.其中a、b两球间夹一被压缩了的弹簧,两球通过左右两边的光滑挡板束缚着.若某时刻将挡板撤掉,弹簧便把a、b两球弹出,两球脱离弹簧后,a球获得的速度大小为v,若b、c两球相距足够远,则b、c 两球相碰后()A.b球的速度大小为13v,运动方向与原来相反B.b球的速度大小为23v,运动方向与原来相反C.c球的速度大小为8 3 vD.c球的速度大小为2 3 v答案:B解析:设b球脱离弹簧时的速度为v0,b、c两球相碰后b、c的速度分别为v b和v c,取向右为正方向,弹簧将a、b两球弹出过程,由动量守恒定律得0=-2m v+m v0,解得v0=2v,b、c两球相碰过程,由动量守恒定律和机械能守恒定律m v0=m v b+2m v c,12m v 2=12m v2b+12·2m v2c,联立解得v b=-23v(负号表示方向向左,与原来相反),v c=43v,故B正确.12.(2020河南八市测评)质量为M=4 kg的长木板A静止在光滑水平面上,质量为m1=4 kg的小物块B位于木板A的左端,质量为m2=4 kg的小物块C位于木板A的右端,物块B与木板A间的动摩擦因数为μ=0.5,C物块下表面光滑.某时刻,使物块B以v1=2 m/s的速度从左向右运动,同时使物块C以v2=2 m/s 的速度从右向左运动,已知当A、B速度相等时B与C发生碰撞,碰后B、C粘在一起运动,重力加速度取g=10 m/s2,B、C均可看成质点,木板足够长,则:(1)木板A的最大速度为多少?(2)A、B间因摩擦产生的热量为多少?答案:(1)1 m/s(2)7 J解析:(1)以水平向右为正方向,B、C碰撞前,A做加速运动,B、C碰撞后,A做减速运动,故A、B速度相等时,A的速度v最大,对A、B系统,由动量守恒定律得m1v1=(m1+M)v,代入数据得v=1 m/s.(2)B、C碰撞过程动量守恒,设碰后瞬间共同速度为v′,由动量守恒定律可知m1v-m2v2=(m1+m2)v′,代入数据得v′=-0.5 m/s.碰撞过程中损失的能量为ΔE1=12m1v2+12m2v22-12(m1+m2)v′2,代入数据得ΔE1=9 J.当A、B、C相对静止时,系统机械能不再减小,对A、B、C组成的系统由动量守恒定律可知m1v1-m2v2=(m1+m2+M)v″,代入数据得v″=0.A、B间因摩擦产生的热量为Q=12m1v21+12m2v22-ΔE1,代入数据得Q=7 J.。
高中物理动量定理专项训练100(附答案)含解析
![高中物理动量定理专项训练100(附答案)含解析](https://img.taocdn.com/s3/m/4e2d95d0852458fb760b5692.png)
高中物理动量定理专项训练100(附答案)含解析一、高考物理精讲专题动量定理1.如图所示,光滑水平面上有一轻质弹簧,弹簧左端固定在墙壁上,滑块A以v0=12 m/s 的水平速度撞上静止的滑块B并粘在一起向左运动,与弹簧作用后原速率弹回,已知A、B 的质量分别为m1=0.5 kg、m2=1.5 kg。
求:①A与B撞击结束时的速度大小v;②在整个过程中,弹簧对A、B系统的冲量大小I。
【答案】①3m/s;②12N•s【解析】【详解】①A、B碰撞过程系统动量守恒,以向左为正方向由动量守恒定律得m1v0=(m1+m2)v代入数据解得v=3m/s②以向左为正方向,A、B与弹簧作用过程由动量定理得I=(m1+m2)(-v)-(m1+m2)v代入数据解得I=-12N•s负号表示冲量方向向右。
2.一质量为0.5kg的小物块放在水平地面上的A点,距离A点5m的位置B处是一面墙,如图所示,物块以v0=9m/s的初速度从A点沿AB方向运动,在与墙壁碰撞前瞬间的速度为7m/s,碰后以6m/s的速度反向运动直至静止.g取10m/s2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05s,求碰撞过程中墙面对物块平均作用力的大小F.μ=(2)F=130N【答案】(1)0.32【解析】试题分析:(1)对A到墙壁过程,运用动能定理得:,代入数据解得:μ=0.32.(2)规定向左为正方向,对碰墙的过程运用动量定理得:F△t=mv′﹣mv,代入数据解得:F=130N.3.汽车碰撞试验是综合评价汽车安全性能的有效方法之一.设汽车在碰撞过程中受到的平均撞击力达到某个临界值F0时,安全气囊爆开.某次试验中,质量m1=1 600 kg的试验车以速度v1 = 36 km/h正面撞击固定试验台,经时间t1 = 0.10 s碰撞结束,车速减为零,此次碰撞安全气囊恰好爆开.忽略撞击过程中地面阻力的影响.(1)求此过程中试验车受到试验台的冲量I0的大小及F0的大小;(2)若试验车以速度v1撞击正前方另一质量m2 =1 600 kg、速度v2 =18 km/h同向行驶的汽车,经时间t2 =0.16 s两车以相同的速度一起滑行.试通过计算分析这种情况下试验车的安全气囊是否会爆开.【答案】(1)I0 = 1.6×104 N·s ,1.6×105 N;(2)见解析【解析】【详解】(1)v1 = 36 km/h = 10 m/s,取速度v1 的方向为正方向,由动量定理有-I0 =0-m1v1 ①将已知数据代入①式得I0 = 1.6×104 N·s ②由冲量定义有I0 = F0t1 ③将已知数据代入③式得F0 = 1.6×105 N ④(2)设试验车和汽车碰撞后获得共同速度v,由动量守恒定律有m1v1+ m2v2 = (m1+ m2)v⑤对试验车,由动量定理有-Ft2 = m1v-m1v1 ⑥将已知数据代入⑤⑥式得F= 2.5×104 N ⑦可见F<F0,故试验车的安全气囊不会爆开⑧4.如图所示,质量M=1.0kg的木板静止在光滑水平面上,质量m=0.495kg的物块(可视为质点)放在的木板左端,物块与木板间的动摩擦因数μ=0.4。
【单元练】人教版高中物理选修1第一章【动量守恒定律】经典练习题(含答案解析)
![【单元练】人教版高中物理选修1第一章【动量守恒定律】经典练习题(含答案解析)](https://img.taocdn.com/s3/m/36040eee112de2bd960590c69ec3d5bbfd0ada62.png)
一、选择题1.A 、B 两球沿一直线运动并发生正碰。
如图所示为两球碰撞前后的位移—时间图象。
a 、b 分别为A 、B 两球碰撞前的位移—时间图线,c 为碰撞后两球共同运动的位移—时间图线,若A 球质量是m =2 kg ,则由图可知( )A .A 、B 碰撞前的总动量为3 kg·m/s B .碰撞时A 对B 所施冲量为4 N·sC .碰撞前后A 的动量变化为6 kg·m/sD .碰撞中A 、B 两球组成的系统损失的动能为10 J D 解析:D由x -t 图像可知,碰撞前有:A 球的速度410m/s 3m/s 2A A A x v t ∆-===-∆ B 球的速度4m/s 2m/s 2B B B x v t ∆===∆ 碰撞后A 、B 两球的速度相等,为24m/s 1m/s 2C A B C x v v v t ∆-'='====-∆ A .对A 、B 组成的系统,由动量守恒定律()A B B B mv m v m m v +=+得4kg 3B m =A 与B 碰撞前的总动量为4102(3)kg m/s 2kg m/s kg m/s 33A B B p mv m v ==⨯-⋅+⨯⋅=⋅+-总A 错误;B .由动量定理可知,碰撞时A 对B 所施冲量为4kg m/s 4N s B B I p =∆=-⋅=-⋅B 错误;C .碰撞前后A 的动量变化4kg m/s A A p mv mv ∆=-=⋅C 错误;D .碰撞中A 、B 两球组成的系统损失的动能()222111222k A B B B E mv m v m m v ∆=+-+ 代入数据解得10J k E ∆=D 正确。
故选D 。
2.一弹簧枪对准以6m/s 的速度沿光滑桌面迎面滑来的木块,发射一颗速度为12m/s 的铅弹,铅弹射入木块后未穿出,木块继续向前运动,速度变为4m/s ,如果想让木块停止运动,并假定铅弹射入木块后都不会穿出,则应再向木块迎面射入的铅弹数为( ) A .3颗 B .4颗 C .5颗 D .6颗A解析:A以木块的初速度方向为正方向,设木块的初速度为v ,子弹的初速度为v 0,第一颗铅弹打入木块后,铅弹和木块的共同速度为v 1,铅弹和木块的质量分别为m 1和m 2,由动量守恒定律可得m 2v −m 1v 0=(m 1+m 2)v 1 6m 2−12m 1=4(m 1+m 2)解得m 2=8m 1设要使木块停下,总共至少打入n 颗铅弹,以木块与铅弹组成的系统为研究对象,由动量守恒定律得m 2v −nm 1v 0=0解得n =4要使木块停下,总共至少打入4颗铅弹,还需要再打入3颗铅弹,A 正确,BCD 错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、系统、内力和外力┄┄┄┄┄┄┄┄①1.系统:相互作用的两个(或多个)物体组成的一个整体。
2.内力:系统内部物体间的相互作用力。
3.外力:系统以外的物体对系统内部的物体的作用力。
[说明]1.系统是由相互作用、相互关联的多个物体组成的整体。
2.组成系统的各物体之间的力是内力,将系统看作一个整体,系统之外的物体对这个整体的作用力是外力。
①[填一填]如图,公路上有三辆车发生了追尾事故,如果把前面两辆车看作一个系统,则前面两辆车之间的撞击力是________,最后一辆车对前面两辆车的撞击力是________(均填“内力”或“外力”)。
答案:内力外力二、动量守恒定律┄┄┄┄┄┄┄┄②1.内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。
2.表达式:对两个物体组成的系统,常写成:p1+p2=或m1v1+m2v2=。
3.适用条件:系统不受外力或者所受外力的矢量和为0。
4.动量守恒定律的普适性动量守恒定律是一个独立的实验规律,它适用于目前为止物理学研究的一切领域。
[注意]1.系统动量是否守恒要看研究的系统是否受外力的作用。
2.动量守恒是系统内各物体动量的矢量和保持不变,而不是系统内各物体的动量不变。
②[判一判]1.一个系统初、末状态动量大小相等,即动量守恒(×)2.两个做匀速直线运动的物体发生碰撞,两个物体组成的系统动量守恒(√)3.系统动量守恒也就是系统的动量变化量为零(√)1.对动量守恒定律条件的理解(1)系统不受外力作用,这是一种理想化的情形,如宇宙中两星球的碰撞,微观粒子间的碰撞都可视为这种情形。
(2)系统受外力作用,但所受合外力为零。
像光滑水平面上两物体的碰撞就是这种情形。
(3)系统受外力作用,但当系统所受的外力远远小于系统内各物体间的内力时,系统的总动量近似守恒。
例如,抛出去的手榴弹在空中爆炸的瞬间,弹片所受火药爆炸时的内力远大于其重力,重力可以忽略不计,系统的动量近似守恒。
(4)系统受外力作用,所受的合外力不为零,但在某一方向上合外力为零,则系统在该方向上动量守恒。
2.关于内力和外力的两点提醒(1)系统内物体间的相互作用力称为内力,内力会改变系统内单个物体的动量,但不会改变系统的总动量。
(2)系统的动量是否守恒,与系统的选取有关。
分析问题时,要注意分清研究的系统,系统的内力和外力,这是正确判断系统动量是否守恒的关键。
[典型例题]例 1.[多选]如图所示,光滑水平面上两小车中间夹一压缩了的轻弹簧,两手分别按住小车,使它们静止,对两车及弹簧组成的系统,下列说法中正确的是()A.两手同时放开后,系统总动量始终为零B.先放开左手,后放开右手,此后动量不守恒C.先放开左手,后放开右手,总动量向左D.无论是否同时放手,只要两手都放开后,在弹簧恢复原长的过程中,系统总动量都保持不变,但系统的总动量不一定为零[解析]当两手同时放开时,系统的合外力为零,所以系统的动量守恒,又因为开始时总动量为零,故系统总动量始终为零,A正确;先放开左手,左边的小车就向左运动,当再放开右手后,系统所受合外力为零,故系统的动量守恒,则放开左手时总动量方向向左,放开右手后总动量方向也向左,故B错误,C、D正确。
[答案]ACD[点评]1.两手都放开后,系统在水平方向上不受外力,合外力为零,系统动量守恒。
2.只放开左手,系统在水平方向上受到右手向左的作用力、合外力不为零,系统动量不守恒。
1.[多选]如图所示,A、B为两质量相等的物体,原来静止在平板小车C上,A和B间夹一被压缩了的轻弹簧。
A、B与平板车上表面动摩擦因数之比为3∶2,地面光滑。
当弹簧突然释放后,A、B相对C滑动的过程中以下说法中正确的是()A.A、B系统动量守恒B.A、B、C系统动量守恒C.小车向左运动D.小车向右运动解析:选BC弹簧释放后伸长时,A受摩擦力F f A=μA mg向右,B受摩擦力F f B=μB mg向左,μA>μB,则F f A>F f B,故A、B受的合力向右,由牛顿第三定律可知:小车受的摩擦力向左,故小车向左运动,C正确,D错误;由于A、B、C组成的系统合外力为0,故总动量守恒,且一直为0,A错误,B正确。
1.动量守恒定律不同表现形式的表达式的含义(1)p=p′:系统相互作用前的总动量p等于相互作用后的总动量p′。
(2)Δp1=-Δp2:相互作用的两个物体组成的系统,一个物体的动量变化量与另一个物体的动量变化量大小相等、方向相反。
(3)Δp=0:系统总动量增量为零。
(4)m1v1+m2v2=m1v′1+m2v′2:相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和。
2.应用动量守恒定律的解题步骤[典型例题]例2.如图所示,光滑水平轨道上放置长木板A(上表面粗糙)和滑块C,滑块B置于A的左端,三者质量分别为m A=2 kg、m B=1 kg、m C=2 kg。
开始时C静止,A、B一起以v0=5 m/s 的速度匀速向右运动,A与C发生碰撞(时间极短)后C向右运动,经过一段时间,A、B再次达到共同速度一起向右运动,且恰好不再与C碰撞。
求A与C发生碰撞后瞬间A的速度大小。
[解析]长木板A与滑块C处于光滑水平面上,两滑块碰撞时间极短,碰撞过程中滑块B 与长木板A间的摩擦力可以忽略不计,设碰后瞬间A、C的速度分别为v A、v C,长木板A与滑块C组成的系统在碰撞过程中动量守恒,则m A v0=m A v A+m C v CA、C碰撞后,对于长木板A与滑块B组成的系统,在两者达到共同速度v之前系统所受合力为零,系统动量守恒,则m A v A+m B v0=(m A+m B)v长木板A和滑块B达到共同速度后,恰好不再与滑块C碰撞,则最后三者速度相等,即v C =v解得v A=2 m/s[答案] 2 m/s[点评]处理动量守恒问题的一般思路1.选取合适的系统为研究对象,判断题目涉及的物理过程是否满足动量守恒的条件。
2.确定物理过程及其系统内物体对应的初、末状态的动量。
3.确定正方向,选取恰当的动量守恒的表达式列式求解。
[即时巩固]2.[多选](2016·佛山高二检测)两位同学穿旱冰鞋,面对面站立不动,互推后向相反的方向运动,不计摩擦阻力,下列判断正确的是()A.互推后两位同学总动量增加B.互推后两位同学动量大小相等,方向相反C.分离时质量大的同学的速度大一些D.分离时质量大的同学的速度小一些解析:选BD互推后两位同学动量大小相等,方向相反,并且两位同学的总动量为0,故A错误,B正确;根据动量守恒定律有:0=m1v1+m2v2,则分离时质量大的同学的速度小一些,故C错误,D正确。
1.关于动量守恒的条件,下面说法正确的是()A.只要系统内有摩擦力,动量就不可能守恒B.只要系统所受合外力为零,系统动量就一定守恒C.只要系统中的各个物体有加速度,动量就一定不守恒D.只要系统合外力不为零,则系统在任何方向上动量都不可能守恒解析:选B系统动量守恒的条件是系统所受合外力为零,故A错误,B正确;对于所受合外力为零的系统,系统中的某个物体所受合外力可以不为零,可以有加速度,故C错误;若系统合外力不为零,但在某一方向上合外力为零,则系统在这一方向上动量守恒,D错误。
2.(2016·秦皇岛高二检测)如图所示,在光滑水平面上,用等大异向的F1、F2分别同时作用于A、B两个静止的物体上,已知m A<m B,经过相同的时间后同时撤去两力,以后两物体相碰并粘为一体,则粘合体最终将()A.静止B.向右运动C.向左运动D.无法确定解析:选A选取A、B两个物体组成的系统为研究对象,根据动量定理,整个运动过程中,系统所受的合外力为零,所以动量改变量为零,初始时刻系统静止,总动量为零,最后粘合体的动量也为零,即粘合体静止,所以选项A正确。
3.如图所示,游乐场上,两位同学各驾着一辆碰碰车迎面相撞,此后,两车以共同的速度运动;设甲同学和他的车的总质量m1=150 kg,碰撞前向右运动,速度的大小v1=4.5 m/s,乙同学和他的车的总质量m2=200 kg,碰撞前向左运动,速度的大小v2=4.25 m/s,则碰撞后两车共同的运动速度为(取向右为正方向)()A.1 m/s B.0.5 m/sC.-1 m/s D.-0.5 m/s解析:选D由两车碰撞过程动量守恒得m1v1-m2v2=(m1+m2)v,解得v=m1v1-m2v2m1+m2=-0.5 m/s,D正确。
4.(2016·南京高二检测)某同学质量为60 kg,在军事训练中要求他从岸上以2 m/s的速度跳到一艘向他缓缓飘来的小船上,然后去执行任务。
小船的质量是140 kg,原来的速度是0.5 m/s。
该同学上船后又跑了几步,最终停在船上。
不计阻力,则此时小船的速度是()A.0.25 m/s,方向与该同学原来的速度方向相同B.0.25 m/s,方向与该同学原来的速度方向相反C.0.5 m/s,方向与该同学原来的速度方向相同D.0.5 m/s,方向与该同学原来的速度方向相反解析:选A由题意可知,该同学和小船组成的系统动量守恒。
设该同学原来运动的方向为正方向。
根据动量守恒定律m1v1+m2v2=(m1+m2)v′,v′=m1v1+m2v2m1+m2=120-70200m/s=0.25 m/s,解得结果为正值,表明最终小船的速度方向与该同学原来的速度方向相同,故A正确。
5.如图所示,甲车的质量是2 kg,静止在光滑水平面上,上表面光滑,右端放一个质量为1 kg的小物体。
乙车质量为4 kg,以5 m/s的速度向左运动,与甲车碰撞以后甲车获得4 m/s的速度,物体滑到乙车上。
若乙车足够长,则物体的最终速度大小为多少?解析:乙车与甲车碰撞动量守恒,则m乙v乙=m乙v′乙+m甲v′甲小物体m在乙车上滑动至有共同速度v,对小物体与乙车由动量守恒定律得m乙v′乙=(m +m乙)v代入数据解得v=2.4 m/s答案:2.4 m/s[基础练]一、选择题1.(2016·朝阳高二检测)下列四幅图所反映的物理过程中,系统动量守恒的是()A.只有甲、乙正确B.只有丙、丁正确C.只有甲、丙正确D.只有乙、丁正确解析:选C甲中子弹和木块组成的系统所受外力为零,故动量守恒;乙中剪断细线时,墙对系统有作用力,故动量不守恒;丙中系统所受外力为零,故系统动量守恒;丁中斜面固定,系统所受外力不为零,动量不守恒,故只有选项C正确。
2.[多选]若用p1、p2表示两个在同一直线上运动并相互作用的物体的初动量,p′1、p′2表示它们的末动量,Δp1、Δp2表示它们相互作用过程中各自动量的变化,则下列式子能表示动量守恒的是()A.Δp1=Δp2B.p1+p2=p′1+p′2C.Δp1+Δp2=0D.Δp1+Δp2=常数(不为零)解析:选BC动量守恒的含义是两物体相互作用前的总动量等于其相互作用后的总动量,因此有p1+p2=p′1+p′2,变形后有p′1-p1+p′2-p2=0,即Δp1+Δp2=0,故B、C正确,D错误;上式可以变形为Δp1=-Δp2,A错误。