2015届普通高等学校招生全国统一考试模拟信息卷数学(文)试题
2015年普通高等学校招生全国统一考试数学文试题(天津卷,含解析)
2015年普通高等学校招生全国统一考试数学文试题(天津卷,含解析)一、选择题(每小题5分,共40分)1.已知全集{1,2,3,4,5,6}U =,集合{2,3,5}A =,集合{1,3,4,6}B =,则集合A U B=()ð( ) (A) {3} (B) {2,5} (C) {1,4,6} (D){2,3,5} 【答案】B 【解析】试题分析:{2,3,5}A =,{2,5}U B =ð,则{}A 2,5U B =()ð,故选B. 考点:集合运算2.设变量,y x 满足约束条件2020280x x y x y ì-?ïï-?íï+-?ïî,则目标函数3y z x =+的最大值为( )(A) 7 (B) 8 (C) 9 (D)14【答案】C考点:线性规划3.阅读下边的程序框图,运行相应的程序,则输出i 的值为( ) (A) 2 (B) 3 (C) 4 (D)5【答案】C 【解析】试题分析:由程序框图可知:2,8;3,S 5;4, 1.i S i i S ====== 故选C. 考点:程序框图.4.设x R Î,则“12x <<”是“|2|1x -<”的( ) (A) 充分而不必要条件 (B)必要而不充分条件 (C)充要条件 (D)既不充分也不必要条件 【答案】A 【解析】试题分析:由2112113x x x -<⇔-<-<⇔<<,可知“12x <<”是“|2|1x -<”的充分而不必要条件,故选A.考点:1.不等式;2. 充分条件与必要条件.5. 已知双曲线22221(0,0)x y a b a b-=>>的一个焦点为(2,0)F ,且双曲线的渐近线与圆()222y 3x -+=相切,则双曲线的方程为( )(A)221913x y -= (B) 221139x y -= (C) 2213x y -= (D ) 2213y x -= 【答案】D考点:圆与双曲线的性质.6. 如图,在圆O 中,M ,N 是弦AB 的三等分点,弦CD ,CE 分别经过点M ,N ,若CM =2,MD =4,CN =3,则线段NE 的长为( ) (A)83 (B) 3 (C) 103 (D) 52【答案】A【解析】试题分析:由相交弦定理可18,33CM MD CM MD CN NE AB AB NE CN ⨯⨯=⨯=⨯⇒== 故选A. 考点:相交弦定理7. 已知定义在R上的函数||()21()x m f x m -=-为实数为偶函数,记0.5(log 3),a f =2b (log 5),c (2)f f m ==,则,,a b c ,的大小关系为( )(A) b c a << (B) b c a << (C) b a c << (D) b c a << 【答案】B 【解析】试题分析:由()f x 为偶函数得0m =,所以2,4,0a b c ===,故选B. 考点:1.函数奇偶性;2.对数运算. 8. 已知函数22||,2()(2),2x x f x x x ì-?ï=í->ïî,函数()3(2)g x f x =--,则函数y ()()f x g x =-的零点的个数为 (A) 2 (B) 3 (C)4 (D)5 【答案】A考点:函数与方程.二、填空题:本大题共6小题,每小题5分,共30分. 9. i 是虚数单位,计算12i2i-+ 的结果为 . 【答案】-i 【解析】试题分析:()2i i 212i i 2i i 2i 2i 2i-+---===-+++. 考点:复数运算.10. 一个几何体的三视图如图所示(单位:m ),则该几何体的体积为 3m .【答案】8π3【解析】试题分析:该几何体是由两个高为1的圆锥与一个高为2圆柱组合而成,所以该几何体的体积为318π2π1π2(m )33⨯⨯⨯+⨯= .考点:1.三视图;2.几何体的体积.11. 已知函数()()ln ,0,f x ax x x =∈+∞ ,其中a 为实数,()f x '为()f x 的导函数,若()13f '= ,则a 的值为 . 【答案】3 【解析】试题分析:因为()()1ln f x a x '=+ ,所以()13f a '==. 考点:导数的运算法则.12. 已知0,0,8,a b ab >>= 则当a 的值为 时()22log log 2a b ⋅取得最大值. 【答案】4 【解析】试题分析:()()()()22222222log log 211log log 2log 2log 164,244a b a b ab +⎛⎫⋅≤=== ⎪⎝⎭当2a b =时取等号,结合0,0,8,a b ab >>=可得4, 2.a b == 考点:基本不等式.13. 在等腰梯形ABCD 中,已知AB DC ,2,1,60,AB BC ABC ==∠= 点E 和点F 分别在线段BC 和CD 上,且21,,36BE BC DF DC == 则AE AF ⋅的值为 . 【答案】2918【解析】试题分析:在等腰梯形ABCD中,由AB DC ,2,1,60,AB BC ABC ==∠=得12AD BC ⋅=,1AB AD ⋅=,12DC AB = ,所以()()AE AF AB BE AD DF ⋅=+⋅+ 22121111129131231218331818AB BC AD AB AB AD BC AD AB BC AB ⎛⎫⎛⎫=+⋅+=⋅+⋅++⋅=++-= ⎪ ⎪⎝⎭⎝⎭考点:平面向量的数量积. 14. 已知函数()()sin cos 0,,f x x x x ωωω=+>∈R 若函数()f x 在区间(),ωω-内单调递增,且函数()f x 的图像关于直线x ω=对称,则ω的值为 .【答案】2【解析】试题分析:由()f x 在区间(),ωω-内单调递增,且()f x 的图像关于直线x ω=对称,可得π2ωω≤,且()222πsin cos sin 14f ωωωω⎛⎫=+=+= ⎪⎝⎭,所以2ππ42ωω+=⇒= 考点:三角函数的性质.三、解答题:本大题共6小题,共80分.15. (本小题满分13分)设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18,先采用分层抽样的方法从这三个协会中抽取6名运动员参加比赛. (I )求应从这三个协会中分别抽取的运动员人数;(II )将抽取的6名运动员进行编号,编号分别为123456,,,,,A A A A A A ,从这6名运动员中随机抽取2名参加双打比赛.(i )用所给编号列出所有可能的结果;(ii )设A 为事件“编号为56,A A 的两名运动员至少有一人被抽到”,求事件A 发生的概率. 【答案】(I )3,1,2;(II )(i )见试题解析;(ii )35【解析】试题分析:(I )由分层抽样方法可知应从甲、乙、丙这三个协会中分别抽取的运动员人数分别为3,1,2;(II )(i )一一列举,共15种;(ii )符合条件的结果有9种,所以()93.155P A ==. 试题解析:(I )应从甲、乙、丙这三个协会中分别抽取的运动员人数分别为3,1,2; (II )(i )从这6名运动员中随机抽取2名参加双打比赛,所有可能的结果为{}12,A A ,{}13,A A ,{}14,A A ,{}15,A A ,{}16,A A ,{}23,A A ,{}24,A A ,{}25,A A ,{}26,A A ,{}34,A A ,{}35,A A ,{}36,A A ,{}45,A A ,{}46,A A ,{}56,A A ,共15种.(ii )编号为56,A A 的两名运动员至少有一人被抽到的结果为{}15,A A ,{}16,A A , {}25,A A ,{}26,A A ,{}35,A A ,{}36,A A ,{}45,A A ,{}46,A A ,{}56,A A ,共9种,所以事件A 发生的概率()93.155P A == 考点:分层抽样与概率计算.16. (本小题满分13分)△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为12,cos ,4b c A -==-(I )求a 和sin C 的值; (II )求cos 26A π⎛⎫+⎪⎝⎭的值.【答案】(I )a =8,sin 8C =(II )16. 【解析】考点:1.正弦定理、余弦定理及面积公式;2三角变换. 17. (本小题满分13分)如图,已知1AA ⊥平面ABC ,11,BB AAAB =AC =3,1BC AA ==1BB = 点E ,F 分别是BC ,1AC 的中点. (I )求证:EF 平面11A B BA ; (II )求证:平面1AEA ⊥平面1BCB .(III )求直线11A B 与平面1BCB 所成角的大小.【答案】(I )见试题解析;(II )见试题解析;(III )30. 【解析】试题分析:(I )要证明EF 平面11A B BA , 只需证明1EFBA 且EF ⊄ 平面11A B BA ;(II )要证明平面1AEA ⊥平面1BCB ,可证明AE BC ⊥,1BB AE ⊥;(III )取1B C 中点N,连接1A N ,则11A B N ∠ 就是直线11A B 与平面1BCB 所成角,Rt△11A NB 中,由11111sin ,2A N AB N A B ∠==得直线11A B 与平面1BCB 所成角为30.试题解析:(I )证明:如图,连接1A B ,在△1A BC 中,因为E 和F 分别是BC ,1A C 的中点,所以1EF BA ,又因为EF ⊄ 平面11A B BA , 所以EF 平面11A B BA .(II )因为AB =AC ,E 为BC 中点,所以AE BC ⊥,因为1AA ⊥平面ABC ,11,BB AA 所以1BB ⊥平面ABC ,从而1BB AE ⊥,又1BC BB B = ,所以AE ⊥平面1BCB ,又因为AE ⊂平面1AEA ,所以平面1AEA ⊥平面1BCB.考点:1.空间中线面位置关系的证明;2.直线与平面所成的角18. (本小题满分13分)已知{}n a 是各项均为正数的等比数列,{}n b 是等差数列,且112331,2a b b b a ==+=,5237a b -=.(I )求{}n a 和{}n b 的通项公式;(II )设*,n n n c a b n N =?,求数列{}n c 的前n 项和.【答案】(I )12,n n a n -*=∈N ,21,n b n n *=-∈N ;(II )()2323n n S n =-+【解析】 试题分析:(I )列出关于q 与d 的方程组,通过解方程组求出q ,d ,即可确定通项;(II )用错位相减法求和.试题解析:(I )设{}n a 的公比为q ,{}n b 的公差为d ,由题意0q > ,由已知,有24232,310,q d q d ⎧-=⎨-=⎩ 消去d 得42280,q q --= 解得2,2q d == ,所以{}n a 的通项公式为12,n n a n -*=∈N , {}n b 的通项公式为21,n b n n *=-∈N .(II )由(I )有()1212n n c n -=- ,设{}n c 的前n 项和为n S ,则()0121123252212,n n S n -=⨯+⨯+⨯++-⨯ ()1232123252212,n n S n =⨯+⨯+⨯++-⨯两式相减得()()2312222122323,n n n n S n n -=++++--⨯=--⨯-所以()2323nn S n =-+ .考点:1.等差、等比数列的通项公式;2.错位相减法求和.19. (本小题满分14分) 已知椭圆22221(a b 0)x y a b+=>>的上顶点为B ,左焦点为F ,(I )求直线BF 的斜率;(II )设直线BF 与椭圆交于点P (P 异于点B ),故点B 且垂直于BF 的直线与椭圆交于点Q (Q 异于点B )直线PQ 与x 轴交于点M ,||=||PM MQ l . (i )求l 的值; (ii)若||sin PM BQP Ð,求椭圆的方程. 【答案】(I )2;(II )(i )78;(ii )22 1.54x y += 【解析】 试题分析:(I )先由c a = 及222,a b c =+得,2a b c ==,直线BF 的斜率()020b b k c c -===--;(II )先把直线BF ,BQ 的方程与椭圆方程联立,求出点P ,Q 横坐标,可得PM MQ λ=7.8M P P Q M Q x x x x x x -===-(ii )先由||sin PM BQP Ð得=||sin BP PQ BQP Ð=15||sin 7PM BQP?,由此求出c =1,故椭圆方程为221.54x y += 试题解析:(I )(),0F c - ,由已知c a =及222,a b c =+可得,2a b c == ,又因为()0,B b ,故直线BF 的斜率()020b bk c c-===-- .(II )设点()()(),,,,,P P Q Q M M P x y Q x y M x y ,(i )由(I )可得椭圆方程为22221,54x y c c+= 直线BF 的方程为22y x c =+ ,两方程联立消去y 得2350,x cx += 解得53P cx =-.因为BQ BP ⊥,所以直线BQ 方程为122y x c =-+ ,与椭圆方程联立消去y 得221400x cx -= ,解得4021Q c x = .又因为PM MQ λ= ,及0M x = 得7.8M P PQ MQ x x x x x x λ-===-(ii )由(i )得78PM MQ=,所以777815PM PM MQ ==++,即157PQ PM = ,又因为||sin =9PM BQP Ð,所以=||sin BP PQ BQP Ð=15||sin 73PM BQP?.又因为4223P P y x c c =+=-, 所以3BP c ==,1,c == 所以椭圆方程为221.54x y += 考点:直线与椭圆.20. (本小题满分14分)已知函数4()4,,f x x x x R =-?(I )求()f x 的单调性;(II )设曲线()y f x =与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为()y g x =,求证:对于任意的正实数x ,都有()()f x g x £;(III )若方程()=()f x a a 为实数有两个正实数根12x x ,,且12x x <,求证:1321-43a x x <-+.【答案】(I )()f x 的单调递增区间是(),1-∞ ,单调递减区间是()1,+∞;(II )见试题解析;(III )见试题解析. 【解析】试题解析:(I )由4()4f x x x =-,可得3()44f x x ¢=-,当()0f x '> ,即1x < 时,函数()f x 单调递增;当()0f x '< ,即1x > 时,函数()f x 单调递减.所以函数()f x 的单调递增区间是(),1-∞ ,单调递减区间是()1,+∞.(II )设()0,0P x ,则1304x = ,()012,f x '=- 曲线()y f x = 在点P 处的切线方程为()()00y f x x x '=- ,即()()()00g x f x x x '=-,令()()()F x f x g x =- 即()()()()0F x f x f x x x '=-- 则()()()0F x f x f x '''=-.由于3()44f x x =-在(),-∞+∞ 单调递减,故()F x '在(),-∞+∞ 单调递减,又因为()00F x '=,所以当()0,x x ∈-∞时,()0F x '>,所以当()0,x x ∈+∞时,()0F x '<,所以()F x 在()0,x -∞单调递增,在()0,x +∞单调递减,所以对任意的实数x ,()()00F x F x ≤= ,对于任意的正实数x ,都有()()f x g x £.考点:1.导数的几何意义;2.导数的应用.。
2015年普通高等学校招生全国统一考试高三数学仿真卷文
2015年普通高等学校招生全国统一考试(仿真卷)数学试题卷(文史类)数学试题卷(文史类)共5页。
满分150分。
考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,将试题卷和答题卡一并交回。
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.已知全集{0,1,2,3,4},{1,2,3},{2,4},()U U A B C A B ===集合则为A .{4}B .φC .{0,2,4}D .{1,3}2.设n S 是等差数列{}n a 的前n 项和,1532,3a a a ==,则9S = A .90B .54C .54-D .72-3.下列结论错误..的是 A .命题“若2340x x --=,则4x =”的逆否命题为“若24,340x x x ≠--≠则”B .“4x =”是“2340x x --=”的充分条件C .命题“若0m >,则方程20x x m +-=有实根”的逆命题为真命题D .命题“若220m n +=,则00m n ==且”的否命题是“若220.00m n m n +≠≠≠则或”4.角α的终边经过点A ()a ,且点A 在抛物线214y x =-的准线上,sin α= A .12- B .12 C.5.如图给出的是计算1+13+15+17+19的值的一个程序框图, 则图中执行框中的①处和判断框中的②处应填的语句分别是 A .2,5?n n i =+> B .2,5?n n i =+= C .1,5?n n i =+= D .1,5?n n i =+>6.一个棱锥的三视图如图(单位为cm ),则该棱锥的全面积是 (单位:cm 2).A.B.C. D.7.设y x ,满足条件20360,(0,0)0,0x y x y z ax by a b x y -+≥⎧⎪--≤=+>>⎨⎪≥≥⎩若目标函数的最大值为12,则32a b+的最小值为 A .256B .83C .113D .48.设集合1[0,)2A =,1[,1]2B =,函数1,,()22(1),.x x A f x x x B ⎧+∈⎪=⎨⎪-∈⎩若0x A ∈,且0[()]f f x A ∈, 则0x 的取值范围是A .]41,0( B .]83,0[ C .)21,41( D .]21,41(9.设1F ,2F 分别为双曲线C :22221x y a b-=(0,0)a b >>的左、右焦点,且2F 恰为抛物线px y 22= 的焦点,设双曲线C 与该抛物线的一个交点为A ,若12AF F ∆是以1AF为底边的等腰三角形,则双曲线C 的离心率为( )B.1+1+D.210.已知向量2(1,cos ),(1,cos )(,1)3a b c θθ==-=,,若不等式()()b tc a t a b c -⋅≤+⋅对],0[πθ∈恒成立,则当实数t 取得最小值时θcos 的值为A .-1B .0C .23-D .32-二、填空题:本大题共6小题,每小题5分,请按要求作答5小题,共25分.把答案填写在答题卡相应位置上. 11.设i iz -+=11,则=||z .12.圆心为(0,2)的圆与两直线y =同时相切,切点分别为,A B ,则AB =____ 13.方程x a x +=-2)2(log 21有解,则a 的最小值为_________.14.如图所示,1OA =,在以O 为圆心,以OA 为半径的半圆弧上随机取一点B ,则AOB ∆的面积小于14的概率为 .15.设函数⎩⎨⎧<+≥-=0),1(0],[)(x x f x x x x f 其中][x 表示不超过x 的最大整数,如[-1.3]=-2,[1.3]=1,若函数)1()(+-=x k x f y 有3个不同零点,则实数k 的取值范围___.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分13分)从某校高三年级800名学生中随机抽取50名测量身高.据测量,被抽取的学生的身高全部介于155cm 和195cm 之间,将测量结果分成八组得到的频率分布直方图如图.(I )试估计这所学校高三年级800名学生中身高在180cm 以上(含180cm )的人数为多少;(II )在样本中,若学校决定身高在185cm 以上的学生中随机抽取2名学生接受某军校考官进行面试,求:身高在190cm 以上的学生中至少有一名学生接受面试的概率. 17.(本小题满分13分)已知{}n a 是各项均为正数的等比数列,112a =,且132,,a a a -成等差数列. (Ⅰ)求{}n a 的通项公式;(Ⅱ)求数列{}n a n -的前n 项和n S .18.(本小题满分13分)在三棱柱111ABC A B C -中,1AA ABC ⊥面,平面1A BC ,且垂足在直线1A B 上.(Ⅰ)求证:1BC A B ⊥;2AB BC ==,P 为AC 的中点,求点P19.(本小题满分12分)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,且△ABC 的面积为cos 2S B =. (Ⅰ)若2c a =,求角A ,B ,C 的大小;(Ⅱ)若2=a ,且43A ππ≤≤,求边c 的取值范围.20.(本小题满分12分)设函数()ln af x x x x=+,32()3g x x x =-- (Ⅰ)讨论函数()()f x h x x =的单调性(Ⅱ)如果对任意的1,[,2]2s t ∈,都有()()f s g t ≥成立,求实数a 的取值范围21.(本小题满分12分)设椭圆)0(1:2222>>=+Γb a b y a x 的左顶点为)0,2(-A ,离心率23=e ,过点)0,1(G 的直线交椭圆Γ于C B ,两点,直线AC AB ,分别交直线3=x于N M,两点。
2015高考数学模拟试卷及答案解析
2015高考文科数学模拟试卷及答案解析目录2015高考文科数学模拟试卷 ......................................................................... 1 2015高考文科数学模拟试卷答案解析 (5)2015高考文科数学模拟试卷(本试卷共4页,21小题,满分150分.考试用时120分钟.)参考公式:锥体的体积公式13V Sh =,其中S 为柱体的底面积,h 为锥体的高.一、选择题(本大题共10小题,每小题5分,满分50分.每小题给出的四个选项中,只有一项是符合题目要求.)1.复数1iZ i=+(其中i 为虚数单位)的虚部是 ( ) A.12- B.12i C.12 D.12i -2.已知集合(){}lg 3A x y x ==+,{}2B x x =≥,则A B =( ) A. (3,2]- B.(3,)-+∞ C.[2,)+∞ D.[3,)-+∞ 3.下列函数在定义域内为奇函数的是( ) A. 1y x x=+B. sin y x x =C. 1y x =-D. cos y x = 4.命题“21,11x x <<<若则-”的逆否命题是( )A.21,1,1x x x ≥≥≤-若则或B.若11<<-x ,则12<xC.若1x >或1x <-,则12>xD.若1x ≥或1x ≤-,则12≥x 5.若向量(1,2),BA =(4,5),CA =则BC =A.(5,7)B.(3,3)--C.(3,3)D.(5,7)--6.若函数32()22f x x x x =+--的一个正数零点附近的函数值用二分法计算,得数据如下:那么方程220x x x +--=的一个最接近的近似根为( ) A .1.2 B .1.3 C .1.4 D .1.57.执行如图所示的程序框图,若输入n 的值为7,则输出的s 的值为( ) A .22 B .16 C .15 D .11(7题) (8题)8.函数())(,0,)2f x x x Rπωϕωϕ=+∈><的部分图象如图所示,则,ωϕ的值分别是( ) A .2,3π-B.2,6π-C.4,6π-D. 4,3π9.若双曲线22221x y a b-= )A.2±B.12±D.2± 10.已知函数222,0()()()2(1),2,0x x x f x f a f a f x x x ⎧+≥⎪=-+≤⎨-<⎪⎩,若则实数a 的取值范围是 A.[)1,0- B.[]0,1 C.[]1,1- D.[]2,2-二、填空题:(本大题共5小题,考生作答4小题,每小题5分,满分20分.) (一)必做题(11~13题) 11. 计算33log 18log 2-= .12.变量x 、y 满足线性约束条件222200x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,则目标函数z x y =+的最大值为 .13(二)选做题:第14、15全答的,只计前一题的得分。
2015年普通高等学校招生全国统一考试(上海卷)数学(文)试题含精解析
2015年普通高等学校招生全国统一考试上海 数学试卷(文史类)一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对4分,否则一律得零分.1.函数x x f 2sin 31)(-=的最小正周期为_________.2.设全集R U =.若集合}4,3,2,1{=A ,}32|{≤≤=x x B ,则=B C A U ______.3.若复数z 满足i z z +=+13,其中i 为虚数单位,则=z ___________.4.设)(1x f -为12)(+=x x x f 的反函数,则=-)2(1f __________.5.若线性方程组的增广矩阵为122301c c ⎛⎫ ⎪⎝⎭、解为⎩⎨⎧==53y x ,则=-21c c ______. 6.若正三棱柱的所有棱长均为a ,且其体积为316,则=a .7.抛物线)0(22>=p px y 上的动点Q 到焦点的距离的最小值为1,则=p _____. 8.方程2)23(log )59(log 1212+-=---x x 的解为________.9. 若x ,y 满足⎪⎩⎪⎨⎧≥≤+≥-020y y x y x ,则目标函数y x f 2+=的最大值为________.10.在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为__________(结果用数值表示).9.已知点P 和Q 的横坐标相同,P 的纵坐标是Q 的纵坐标的2倍,P 和Q 的轨迹分别为双曲线1C 和2C .若1C 的渐近线方程为x y 3±=,则2C 的渐近线方程为 .10.设)(1x f -为22)(2x x f x +=-,]2,0[∈x 的反函数,则)()(1x f x f y -+=的最大值为_________.11.在62)12(x x +的二项展开式中,常数项等于________(结果用数值表示).12.已知双曲线1C 、2C 的顶点重合,1C 的方程为1422=-y x .若2C 的一条渐近线的斜率是1C 的一条渐近线的斜率的2倍,则2C 的方程为______________.13.已知平面向量a 、b 、c 满足⊥,且}3,2,1{|}||,||,{|=,则||++的最大值是________.14.已知函数x x f sin )(=.若存在1x ,2x ,⋅⋅⋅,m x 满足π6021≤≤≤≤≤m x x x ,且),2(12|)()(||)()(||)()(|*13221N m m x f x f x f x f x f x f m m ∈≥=-++-+-- ,则m 的最小值为________.二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.设1z ,C z ∈2,则“1z ,2z 均为实数”是“21z z -是实数”的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件16.下列不等式中,与不等式23282<+++x x x 解集相同的是( ) A.2)32)(8(2<+++x x x B.)32(282++<+x x x C.823212+<++x x x D.218322>+++x x x 17.已知点A 的坐标为)1,34(,将OA 绕坐标原点O 逆时针旋转3π至OB ,则点B 的纵坐标为( ) A.233 B.235 C.211 D.213 18.设),(n n n y x P 是直线)(12*N n n n y x ∈+=-与圆222=+y x 在第一象限的交点,则极限=--∞→11lim n n n x y ( ) A.1- B.21-C.1D.2三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)如图,圆锥的顶点为P ,底面圆为O ,底面的一条直径为AB ,C 为半圆弧AB 的中点,E 为劣弧CB 的中点.已知2=PO ,1=OA .求三棱锥AOC P -的体积,并求异面直线PA 和OE 所成角的大小.20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 已知函数xax x f 1)(2+=,其中a 为常数. (1)根据a 的不同取值,判断函数)(x f 的奇偶性,并说明理由;(2)若)3,1(∈a ,判断函数)(x f 在]2,1[上的单调性,并说明理由.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,O ,P ,Q 三地有直道相通,3=OP 千米,4=PQ 千米,5=OQ 千米.现甲、乙两警员同时从O 地出发匀速前往Q 地,经过t 小时,他们之间的距离为)((t f 单位:千米).甲的路线是OQ ,速度为5千米/小时,乙的路线是OPQ ,速度为8千米/小时,乙到达Q 地后在原地等待.设1t t =时,乙到达P 地;2t t =时,乙到达Q 地.(1)求1t 与)(1t f 的值; (2)已知警员的对讲机的有效通话距离是3千米,当21t t t ≤≤时,求)(t f 的表达式,并判断)(t f 在],[21t t 12[,]t t 上的最大值是否超过3?说明理由.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知椭圆1222=+y x ,过原点的两条直线1l 和2l 分别与椭圆交于点A 、B 和C 、D ,记AOC ∆的面积为S .(1)设),(11y x A ,),(22y x C .用A 、C 的坐标表示点C 到直线1l 的距离,并证明||211221y x y x S -=; (2)设1l :kx y =,)33,33(C ,31=S ,求k 的值; (3)设1l 与2l 的斜率之积为m .求m 的值,使得无论1l 和2l 如何变动,面积S 保持不变.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分, 第3小题满分8分.已知数列}{n a 与}{n b 满足)(211n n n n b b a a -=-++,*N n ∈.(1)若53+=n b n ,且11=a ,求}{n a 的通项公式;(2)设}{n a 的第0n 项是最大项,即)(*0N n a a n n ∈≥.求证:}{n b 的第0n 项是最大项;(3)设031<=λa ,)(*N n b n n ∈=λ.求λ的取值范围,使得对任意m ,*N n ∈,0≠n a ,且)6,61(∈n m a a .这样看来,一般来说,生活中,若如果我们听到坏消息怎么样出现了,我们就不得不考虑它出现了的事实。
2015年普通高等学校招生全国统一考试文科数学精彩试题及问题详解.
绝密★启封并使用完毕前2015年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷4至6页。
注意事项:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3. 考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x|x=3n+2,n ∈N},B={6,8,12,14},则集合A ⋂B中元素的个数为(A)5 (B)4 (C)3 (D)2(2)已知点A(0,1),B(3,2),向量AC=(-4,-3),则向量BC=(A)(-7,-4)(B)(7,4)(C)(-1,4)(D)(1,4)(3)已知复数z满足(z-1)i=i+1,则z=(A)-2-I (B)-2+I (C)2-I (D)2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A)103(B)15(C)110(D)120(5)已知椭圆E的中心在坐标原点,离心率为12,E的右焦点与抛物线C:y²=8x的焦点重合,A,B是C的准线与E的两个焦点,则|AB|= (A)3 (B)6 (C)9 (D)12(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛B.22斛C.36斛D.66斛(7)已知是公差为1的等差数列,则=4,= (A)(B)(C)10 (D)12(8)函数f(x)=的部分图像如图所示,则f(x)的单调递减区间为(A)(k-, k-),k(A)(2k-, 2k-),k(A)(k-, k-),k(A)(2k-, 2k-),k(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=(A)5 (B)6 (C)7 (D)8(10)已知函数,且f(a)=-3,则f(6-a)=(A)-74(B)-54(C)-34(D)-14(11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r=(A )1 (B) 2 (C) 4 (D) 8(12)设函数y=f (x )的图像关于直线y=-x 对称,且f (-2)+f (-4)=1,则a= (A )-1 (B )1 (C )2 (D )4第Ⅱ卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上作答。
2015年普通高等学校招生全国统一考试数学(文)全国2卷
2015年普通高等学校招生全国统一考试数学(文)全国2卷一、选择题(共12小题;共60分)1. 已知集合A=x−1<x<2,B=x0<x<3,则A∪B= ______A. −1,3B. −1,0C. 0,2D. 2,32. 若a为实数,且2+a i1+i=3+i,则a= ______A. −4B. −3C. 3D. 43. 根据下面给出的 2004 年至 2013 年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是______A. 逐年比较,2008 年减少二氧化硫排放量的效果最显著B. 2007 年我国治理二氧化硫排放显现成效C. 2006 年以来我国二氧化硫年排放量呈减少趋势D. 2006 年以来我国二氧化硫年排放量与年份正相关4. 已知a=1,−1,b=−1,2,则2a+b⋅a= ______A. −1B. 0C. 1D. 25. 设S n是等差数列a n的前n项和,若a1+a3+a5=3,则S5= ______A. 5B. 7C. 9D. 116. 一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为______A. 18B. 17C. 16D. 157. 已知三点A1,0,B 0,3,C 2,3,则△ABC外接圆的圆心到原点的距离为______A. 53B. 213C. 253D. 438. 下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a= ______A. 0B. 2C. 4D. 149. 已知等比数列a n满足a1=14,a3a5=4a4−1,则a2= ______A. 2B. 1C. 12D. 1810. 已知A,B是球O的球面上两点,∠AOB=90∘,C为该球面上的动点,若三棱锥O−ABC体积的最大值为36,则球O的表面积为______A. 36πB. 64πC. 144πD. 256π11. 如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f x,则y=f x的图象大致为______A. B.C. D.12. 设函数f x=ln1+x−11+x2,则使得f x>f2x−1成立的x的取值范围是______A. 13,1 B. −∞,13∪1,+∞C. −13,13D. −∞,−13∪13,+∞二、填空题(共4小题;共20分)13. 已知函数f x=ax3−2x的图象过点−1,4则a= ______.14. 若x,y满足约束条件x+y−5≤0,2x−y−1≥0,x−2y+1≤0,则z=2x+y的最大值为______.15. 已知双曲线过点4,,且渐近线方程为y=±12x,则该双曲线的标准方程为______.16. 已知曲线y=x+ln x在点1,1处的切线与曲线y=ax2+a+2x+1相切,则a= ______.三、解答题(共8小题;共104分)17. △ABC中D是BC上的点,AD平分∠BAC,BD=2DC.(1)求sin∠Bsin∠C;(2)若∠BAC=60∘,求∠B.18. 某公司为了了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对其产品的满意度的评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频率分布表.B地区用户满意度评分的频率分布表满意度评分分组50,6060,7070,8080,9090,100频数2814106(1)在图2中作出B地区用户满意度评分的频率分布直方图,并通过此图比较两地区满意度评分的平均值及分散程度;(不要求计算出具体值,给出结论即可)(2)根据用户满意度评分,将用户的满意度评分分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区的用户的满意度等级为不满意的概率大,说明理由.19. 如图,长方体ABCD−A1B1C1D1中AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法与理由);(2)求平面α把该长方体分成的两部分体积的比值.20. 已知椭圆C:x2a2+y2b2=1a>b>0的离心率为22,点2,2在C上.(1)求C的方程;(2)直线l不经过原点O,且不平行于坐标轴,l与C有两个交点A,B,线段AB中点为M,证明:直线OM的斜率与直线l的斜率乘积为定值.21. 已知f x=ln x+a1−x.(1)讨论f x的单调性;(2)当f x有最大值,且最大值大于2a−2时,求a的取值范围.22. 如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2EBCF的面积.23. 在直角坐标系xOy中,曲线C1:x=t cosα,y=t sinα,(t为参数,t≠0),其中0≤α<π.在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=23cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求 AB 的最大值.24. 设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则a+b>c+d;(2)a+b>c+d是 a−b < c−d 的充要条件.答案第一部分1. A2. D3. D4. C5. A6. D7. B8. B9. C 10. C11. B 12. A第二部分13. −214. 815. x24−y2=116. 8第三部分17. (1)由正弦定理得ADsin B =BDsin∠BAD,ADsin C=DCsin∠CAD.因为AD平分∠BAC,BD=2DC,所以sin Bsin C =DCBD=12.(2)因为∠C=180∘−∠BAC+∠B,∠BAC=60∘,所以sin C=sin∠BAC+∠B=32cos B+12sin B.由(1)知2sin B=sin C,所以tan B=33,所以∠B=30∘.18. (1)如图所示.B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值;B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散.(2)A地区用户满意度等级为不满意的概率大.记C A表示事件:“A地区用户满意度等级为不满意”;C B表示事件:“B地区用户满意度等级为不满意”.由直方图得P C A的估计值为0.01+0.02+0.03×10=0.6,P C B的估计值为0.005+0.02×10=0.25.所以A地区用户满意度等级为不满意的概率大.19. (1)交线围成的正方形EHGF如图.(2)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EHGF为正方形,所以EH=EF=BC=10.于是MH= EH2−EM2=6,AH=10,HB=6.故S四边形A1EHA =12×4+10×8=56,S四边形EB1BH=12×12+6×8=72.因为长方体被平面α分为两个高为10的直棱柱,所以其体积的比值为97(79也正确).20. (1)由题意有 a2−b2a =22,4a2+2b2=1,解得a2=8,b2=4,所以C的方程为x 28+y24=1.(2)设直线l:y=kx+m k≠0,m≠0,A x1,y1,B x2,y2,M x M,y M.将y=kx+m代入x 28+y24=1得2k2+1x2+4kmx+2m2−8=0.故x M=x1+x22=−2km2k+1,y M=k⋅x M+m=m2k+1.于是直线OM的斜率k OM=y Mx M =−12k,所以k l⋅k OM=−12k ⋅k=−12,所以直线OM的斜率与直线l的斜率的乘积为定值.21. (1)f x的定义域为0,+∞,fʹx=1x−a.若a≤0,则fʹx>0,所以单调递增.若a>0,则当x∈0,1a时,fʹx>0;当x∈1a,+∞ 时,fʹx<0.所以f x在0,1a 上单调递增,在1a,+∞ 上单调递减.(2)由(1)知,当a≤0时,f x在0,+∞上无最大值;当a>0时,f x在x=1a 处取得最大值,最大值为f1a=ln1a+a1−1a=−ln a+a−1.因此f1a>2a−2等价于ln a+a−1<0.令g a=ln a+a−1,则g a在0,+∞单调递增,g1=0.于是,当0<a<1时g a<0;当a>1时,g a>0.因此,a的取值范围是0,1.22. (1)∵△ABC为等腰三角形且BC为底边,∴AB=AC.又AB、AC切⊙O于E、F,∴AE=AF,∴在△AEF与△ABC中,∠AEF=12π−∠EAF=∠ABC,∴EF∥BC.(2)连接OE,则OE⊥AB.r,则在Rt△AEO中,AO2=AE2+OE2即2r2=232+r2,故r=2,∴∠EAO=π6,∠EOG=π3,∴∠ABC=π3,EF=23,在Rt△ODM中,OD=2−MD2=1,所以AD=5.∴△AEF与△ABC为等边三角形,∴S△AEF=34AE2=34×12=33,∵S△AEFS△ABC =AHAD2=925,∴S四边形EFCB =169×S△AEF=1633.23. (1)曲线C2的直角坐标方程为x2+y2−2y=0,曲线C3的直角坐标方程为x2+y2−23x= 0,x2+y2−2y=0x2+y2−23x=0.解得:x=0y=0或x=32y=32,所以C2与C3交点的直角坐标为0,0或32,32.(2)法一:曲线C1的极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤α<π.因此A的极坐标为2sinα,α,B的极坐标为23cosα,α ,所以AB=2sinα−23cosα=4sin α−π3,当α=5π6时,AB取得最大值,最大值为4.其他方法:C3的直角坐标方程为 x−32+y2=3.y=tanα⋅x,x−32+y2=3.x2+tan2α⋅x2=23x.∴B231+tan2α,23tanα1+tan2α.∵A2tanα1+tan2α,2tan2α1+tan2α,∴ AB =2tanα−2322+2tan2α−23tanα22=2tanα−2322.设2tanα−23=m,因为0≤α<π,所以tanα∈R,所以m∈R,∴tanα=m+232=m2+3,∴ AB = m 21+ m2+ 32= 4m2+ 3m +14.当 1m =−38时, AB 有最大值 AB max =4.24. (1) ∵ab >cd ,a ,b ,c ,d 为正数, ∴ ab > cd , ∴2 ab >2 cd . 又 ∵a +b =c +d ,∴a +2 ab +b >c +2 cd +d , 即 a + 2> c + d 2, ∴ a + b > c + d . (2)a +b >c + d⇔a +b +2 ab >c +d +2 cd⇔ ab > cd⇔ab >cd .a −b <c −d ⇔ a −b 2< c −d 2⇔ a +b 2−4ab < c +d 2−4cd ⇔ab >cd .∴ a + b > c + d 是 a −b < c −d 的充要条件.。
2015届高考模拟测试卷数学(文)试题附答案
2015届高考模拟测试卷数学(文)试题说明:本试题卷分选择题和非选择题两部分.全卷共4页,满分150分,考试时间120分钟.请考生按规定用笔将所有试题的答案涂、写在答题纸上. 参考公式:柱体的体积公式:V =Sh ,其中S 表示柱体的底面积,h 表示柱体的高.锥体的体积公式:V =31Sh ,其中S 表示锥体的底面积,h 表示锥体的高.球的表面积公式:S =4πR 2,其中R 表示球的半径. 球的体积公式:V =34πR 3 ,其中R 表示球的半径.第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数()2x f x =,则 2(log 0.5)f =A .1-B .12-C .12D .1 2.已知q 是等比数列}{n a 的公比,则“10,1a q >>”是“数列}{n a 是递增数列”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 3.已知函数2()(1)g x f x x =-+是定义在R 上的奇函数,若(1)1f =,则A .(1)1f -=-B .(2)1g =-C .()01g =-D . (3)9f -=-4.设不等式组518026030x y x y y +-≤⎧⎪+-≥⎨⎪-≥⎩表示的平面区域为M ,若直线:1l y kx =+上存在区域M 内的点,则k 的取值范围是 A .32[,]23-B .23[,]32- C .32(,][,)23-?? D .23(,][,)32-??5.边长为1的正四面体的三视图中,俯视图为边长为1的正三角形,则正视图的面积的取值范围是 A.1[,44 B.1[]42 C.[46D.3[84 6. 记O 为坐标原点,已知向量(3,2)OA =,(0,2)OB =-,点C 满足52AC =,则ABC ∠ 的取值范围为(A )π06⎡⎤⎢⎥⎣⎦, (B )π03⎡⎤⎢⎥⎣⎦, (C )π02⎡⎤⎢⎥⎣⎦, (D )ππ63⎡⎤⎢⎥⎣⎦,7.设()0,A b ,点B 为双曲线2222:1x y C a b-=0(>a ,)0>b 的左顶点,线段AB 交双曲线一条渐近线于C 点,且满足3cos 5OCB ∠=,则该双曲线的离心率为A.2 B .3 C .35D8.已知函数2()log ()f x ax =在1[,2]4x ∈上的最大值为()M a ,则()M a 的最小值是A .2B .32C .1D .12第Ⅱ卷(非选择题 共110分)二、 填空题: 本大题共7小题, 第9题每空2分,10—12题每空3分,13—15题每空4分,共36分. 9.已知集合2{|{|+230}A x N y B x Z x x =∈==∈-<,则A B =▲ ;AB = ▲ ;()Z A B =ð ▲ .10.数列{}n a 的前n 项和n S 满足212n S n An =+,若22a =,则=A ▲ ,数列11n n a a +禳镲镲睚镲镲铪的前n 项和=n T ▲ . 11.设12,F F 分别是椭圆2212516x y+=的左右焦点,P 为椭圆上任一点,则1||PF 的取值范围是 ▲ ,若M 是1PF 的中点,||3OM =,则1||PF = ▲ . 12.已知函数()2sin(5)6f x x π=+,则()f x 的对称中心是 ▲ ,将函数()f x 的图象上每一点的横坐标伸长到原来的5倍(纵坐标不变),得到函数()h x ,若2()322h ππαα⎛⎫=-<< ⎪⎝⎭,则sin α的值是 ▲ .13.已知三棱锥A BCD -的顶点都在球O 的球面上,,AB BCD ⊥平面90BCD ∠=,2AB BC CD ===,则球O 的表面积是 ▲ .14. ABC ∆的三边,,a b c 成等差数列,且22221++=a b c ,则b 的最大值是 ▲ .(第7题)15.过点(2,0)引直线l与曲线y =A 、B 两点,O 为坐标原点,当AOB∆面积取得最大值时,直线l 斜率为 ▲ .三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤. 16.(本题满分15分)已知向量=sin ,cos 6m x x π⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,()cos ,cos n x x =.若函数()14f x m n =⋅-. (Ⅰ)求,42x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()f x 的值域;(Ⅱ) 在ABC ∆中,a b c 、、分别是角A B C 、、的对边,若()14f A =且=2AC AB -,求BC 边上中线长的最大值.17.(本题满分15分)已知等比数列{}n a 满足13223a a a +=,且32a +是24,a a 的等差中项.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若21log n n nb a a =+,12n n S b b b =+++,求使12470n n S +-+<成立的正整数n 的最小值.18.(本题满分15分)如图,三棱锥P ABC -中,BC ⊥平面PAB .6PA PB AB BC ====,点M ,N分别为PB ,BC 的中点. (Ⅰ)求证:AM PBC ⊥平面;(Ⅱ)E 在线段AC 上的点,且//平面AM PNE . ①确定点E 的位置; ②求直线PE 与平面PAB 所成角的正切值. 19.(本题满分15分)已知抛物线2:2(0)y px p Γ=>的焦点为F ,()00,A x y 为Γ上异于原点的任意一点, D为x 的正半轴上的点,且有||||FA FD =. 若03x =时,D 的横坐标为5. (Ⅰ)求Γ的方程;(Ⅱ)直线AF 交Γ于另一点B ,直线AD 交Γ 于另一点C . 试求 ABC ∆的面积S 关于0x 的 函数关系式()0S f x =,并求其最小值.20.(本题满分14分)考查函数()f x 在其定义域I 内的单调性情况:若()f x 在I 内呈先减再增,则称()f x 为“V 型”函数;若()f x 在I 内呈减-增-减增,则称()f x 为“W 型”函数. 给定函数()()22,f x x ax b a b R =++∈.(Ⅰ)试写出这样的一个实数对(),a b ,使函数()fx 为R 上的“V型”函数,且()f x 为R上的“W 型”函数.(写出你认为正确的一个即可,不必证明) (Ⅱ)若()f x 为R 上的“W 型”函数,若存在实数m ,使()14f m ≤与()114f m +≤能同时成立,求实数2b a -的取值范围.参考答案说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容制订相应的评分细则.二、对计算题,当考生的题答在某一步出现错误时,如果后续部分的解答未改变该题的内容与难度,可视影响的程度决定后续部分的给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数.一、选择题:本题考查基本知识和基本运算.每小题5分,满分40分.1.C 2.A 3.D 4.C 5.C 6. A 7.D 8.B二、 填空题: 本大题共7小题, 前4题每空3分,后3题每空4分, 共36分. 9.{2,1,0,1,2,}--,{0},{2,1}--10.12A =,1n n T n =+11. [2,8];412.(,0)305k k Z ππ-+∈, 13. 12π14.15. 3-三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤. 16.(本题满分15分)答案:(1)()1sin 226f x x π⎛⎫=+ ⎪⎝⎭……3分,sin 26x π⎛⎫+ ⎪⎝⎭的范围是2⎡⎤-⎢⎥⎣⎦…….5分值域12⎡⎤⎢⎥⎣⎦………7分; (2)3A π=………9分,由224b c bc +-=得228b c +≤………………12分分 17.(本题满分15分)(1)132324232(2)a a a a a a +=⎧⎨+=+⎩1q ∴=(舍)或2q =,2n n a =………………7分(2)2n n b n =-,1(1)222n n n n S ++=--1(1)2474502n n n n S ++-+=-<, 2900n n +->,9n ∴>,又n N *∈,10n =………………8分18.如图,三棱锥P ABC -中,BC ⊥平面PAB .6PA PB AB BC ====,点M ,N分别为PB ,BC 的中点. (Ⅰ)求证:AM PBC ⊥平面;(Ⅱ)E 在线段AC 上的点,且//平面AM PNE. ①确定点E 的位置; ②求直线PE 与平面PAB 所成角的正切值.答案:(1) PA AB AM PB PM MB BC PAB AM BC AM PBC AM PAB PB BC B =⎫⎫⇒⊥⎬⎪=⎭⎪⎪⊥⎫⎪⇒⊥⇒⊥⎬⎬⊂⎭⎪⎪=⎪⎪⎭平面平面平面 5分(2)连MC 交PN 于F ,则F 是PBC ∆的重心,且13MF MC =,////AM PEN AMC PEN EF AM EF AM AMC ⎫⎪=⇒⎬⎪⊂⎭平面平面平面平面所以123AE AC ==, 9分 作EH AB ⊥于H ,则//EH BC ,所以EH PAB ⊥平面,所以,EPH ∠是直线PE 与平面PAB 所成角. 12分且123EH BC ==,123AH AB ==, PH ∴=,tan EH EPH PH ∴∠==. 所以,直线PE 与平面PAB 所成角的正切值为7. 15分PAB MNCE(本题亦可用空间向量求解)19.(本题满分15分)解:(1)由题意知(,0)2PF ,设(5,0)D , 因为||||FA FD =,由抛物线的定义得:3|5|22p p +=-, 解得2p =,所以抛物线Γ的方程为24y x =. …………5分(2)知(1,0)F , 设0000(,)(0),(,0)(0)D D A x y x y D x x ≠>,因为||||FA FD =, 则0|1|1D x x -=+,由0D x >,得02D x x =+,故0(2,0)D x +,…………6分设直线AB 方程为:1x t y =+ ,联立24y x =,得:2440y ty --=,设()11,B x y ,则014y y =-,从而220101144y y x x =⋅=, 110014,x y x y ∴==-, 由抛物线的定义得 000011||||||(1)(1)2AB AF BF x x x x =+=+++=++ ……9分 由于02ADyk =-,直线AD 的方程为000()2y y y x x -=--,由于00y ≠,可得0022x y x y =-++.代入抛物线方程得2008840y y x y +--=,设22(,)C x y 所以0208y y y +=-,可求得2008y y y =--,20044x x x =++, ………11分 所以点C 到直线AB :1x t y =+的距离为,其中0011AFx t k y -==0048|4()1|x t y d ++++-==2000418|4()()1|x y x -++++-==. 则ABC∆的面积为1112)1622S AB d xx=⋅=⨯++≥,………14分当且仅当1xx=,即1x=时等号成立.所以ABC∆的面积的最小值为16. ………15分20.(本题满分14分)解析:(Ⅰ)结合图像,若()f x为R上的“V型”函数,则()()2222f x x ax b x a b a=++=++-的对称轴0x a=-≤,即0a≥()f x为R上的“W型”函数,则()2minf x b a=-<,即2b a<.综上可知,只需填满足2ab a≥⎧⎨<⎩的任何一个实数对(),a b均可…………(5分)(Ⅱ)结合图像,()14f m≤与()114f m+≤能同时成立等价于函数()f x的图像上存在横坐标差距为1的两点,此时它们的函数值均小于等于14.由于()f x为R上的“W型”函数,则20b a-<,下面分两种情形讨论:…………(7分)①当214b a-<-<,即2214a b a-<<时,由2124x ax b++=,得两根:12x a x a=--=-+由于211x x-=>,故必在区间()12,x x内存在两个实数,1m m+,能使()14f m≤与()114f m+≤同时成立…………(10分)②当214b a-≤-时,令2124x ax b++=,得:12x a x a=-=-+令21 24x ax b++=-,得:34x a x a=--=-+由于211x x-=≥>243112 x x x x-=-==≤故只需431x x-=≤,得:212a b-≤,结合前提条件,即21124b a-≤-≤-时,必存在(][)1342,,1,m x x m x x∈+∈,能使()14f m≤与()114f m+≤同时成立综合①②可知,所求的取值范围为212b a-≤-<…………(14分)。
2015届高三数学模拟考试(文)试题 Word版含答案
22-=++++n(ad bc )K (a b )(c d )(a c )(b d )2015届高三年级模拟考试数学(文)试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其它题为必考题。
第Ⅰ卷(选择题)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集为R ,集合A {}|33x x =-<<,{}15B x x =-<≤,则()R A C B =A.(]3,1--B.(3,1)--C.(3,0)-D.(3,3)-2.设i 是虚数单位,复数z=31()2+的值是A .i -B .iC .1-D .13.若p 是真命题,q 是假命题,则A .p q ∧是真命题B . p q ∨是假命题C .p ⌝是真命题D .q ⌝是真命题4.某程序框图如图2所示,现将输出(,)x y 值依次记为:1122(,),(,),,(,),n n x y x y x y 若程序运行中输出的一个数组是(,10),x -则数组中的x =A .32B .24C .18D .165.设3log a π=,13log b π=,3c π-=,则A.a b c >>B.b a c >>C.a c b>> D.c b a >>6.下列函数中,最小正周期为π,且图象关于直线3π=x 对称的是A .si n (2)3π=-y x B .s i n (2)6π=-y x C .si n (2)6π=+y x D .s in ()23π=+x y7.为大力提倡“厉行节约,反对浪费”,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:附:参照附表,得到的正确结论是A .在犯错误的概率不超过l %的前提下,认为“该市居民能否做到…光盘‟与性别有关”B .在犯错误的概率不超过l %的前提下,认为“该市居民能否做到…光盘‟与性别无关”C .有90%以上的把握认为“该市居民能否做到…光盘‟与性别有关”D .有90%以上的把握认为“该市居民能否做到…光盘‟与性别无关” 8.定义在R 上的奇函数()f x 满足(2)()f x f x -=-,且在[0,1]上是增函数,则有A .113()()()442f f f <-<B .113()()()442f f f -<<C .131()()()424f f f <<-D .131()()()424f f f -<<9.如图,在4,30,ABC AB BC ABC AD ∆==∠=o 中,是边BC 上的高,则AD AC ⋅的值等于A .0B .4C .8D .4-10.若0a >,0b >,2a b +=,则下列不等式中: ①1ab ≤222a b +≥;④112a b+≥.对一切满足条件的a ,b 恒成立的序号是A.①②B.①③C.①③④D.②③④11.已知双曲线2222:1x y C a b-=的左、右焦点分别是12,F F ,正三角形12AF F 的一边1AF 与双曲线左支交于点B ,且114AF BF =,则双曲线C 的离心率的值是A .123+ BC .1313+ D12.已知函数()sin ()f x x x x R =+∈,且22(23)(41)0f y y f x x -++-+≤,则当1y ≥时,1yx +的取值范围是 A .4[0,]3 B .3[0,]4 C .14[,]43 D .13[,]44第Ⅱ卷(非选择题)二、填空题:本大题共4小题,每小题 5分,共20分。
2015年高考模拟考试数学(文科)试卷附答案
2015年高考模拟考试数学(文科)试卷注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第I 卷一.选择题(本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.)1、设集合{}062≤-+=x x x A ,集合B 为函数11-=x y 的定义域,则=B A ( )A. B. C. D.2、若复数z 满足i iz 42+=,则在复平面内z 对应的点的坐标是( ) A .()4,2 B .()4,2- C .()2,4- D .()2,43、一枚质地均匀的正方体骰子,六个面上分别刻着一点至六点.甲乙两人各掷骰子一次,则甲掷骰子向上的点数大于乙的概率为( ) A .29 B .14 C .512 D .124、变量x 、y 满足条件⎪⎩⎪⎨⎧->≤≤+-1101x y y x ,则22)2(y x +-的最小值为( )A .223 B .5 C .29 D .55、将函数sin()()6y x x R π=+∈的图象上所有的点向左平移4π个单位长度,再把图象上各点的横坐标扩大到原来的2倍,则所得的图象的解析式为( )A .5sin(2)()12y x x R π=+∈ B .5sin()()212x y x R π=+∈C .sin()()212x y x R π=-∈D .5sin()()224x y x R π=+∈6、某校通过随机询问100名性别不同的学生是否能做到“光盘”行动,得到如下联表:附:22112212211212()n n n n n K n n n n ++++-=,则下列结论正确的是( )A .在犯错误的概率不超过1%的前提下,认为“该校学生能否做到…光盘‟与性别无关”B .有99%以上的把握认为“该校学生能否做到…光盘‟与性别有关”C .在犯错误的概率不超过10%的前提下,认为“该校学生能否做到…光盘‟与性别有关”D .有90%以上的把握认为“该校学生能否做到…光盘‟与性别无关”7、已知向量(sin 2)θ=-,a ,(1cos )θ=,b ,且⊥a b ,则2sin 2cos θθ+的值为 A .1 B .2 C .12D .3 8、如图所示程序框图中,输出=S ( ) A.45 B. 55- C. 66- D. 669、某几何体的三视图如图所示,且该几何体的体积是3, 则正视图中的x 的值是( ) A .2 B .29 C .23D .310、下图可能是下列哪个函数的图象( )A .221xy x =-- B .2sin 41x x xy =+C .2(2)xy x x e =- D .ln x y x=第8题图第10题图 第9题图11、已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别为12F F 、,这两条曲线在第一象限的交点为P ,12PF F ∆是以1PF 为底边的等腰三角形。
2015年普通高等学校招生全国统一考试文科数学试题及答案.
绝密★启封并使用完毕前2015年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷4至6页。
页。
注意事项:1. 1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2. 2. 第Ⅰ卷每小题选出答案后,用第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答毫米黑色签字笔书写作答..若在试题卷上作答,答案无效。
答,答案无效。
3. 3. 考试结束,监考员将试题卷、答题卡一并收回。
考试结束,监考员将试题卷、答题卡一并收回。
考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x|x=3n+2,n ÎN},B={6,8,12,14},N},B={6,8,12,14},则集合则集合A ÇB 中元素的个数为中元素的个数为(A )5(B )4(C )3(D )2(2)已知点A (0,10,1)),B (3,23,2)),向量AC =(-4-4,,-3-3)),则向量BC = (A )(-7-7,,-4-4)) ((B )(7,47,4)) ((C )(-1,4-1,4)) ((D )(1,4) (3)已知复数z 满足(满足(z-1z-1z-1))i=i+1i=i+1,则,则z=((A )-2-I -2-I ((B )-2+I -2+I ((C )2-I 2-I ((D )2+i(4)如果3个整数可作为一个直角三角形三条边的边长,个整数可作为一个直角三角形三条边的边长,则称这则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为个数构成一组勾股数的概率为 ((A )103((B )15((C )110((D )120(5)已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y ²=8x 的焦点重合,的焦点重合,A A ,B 是C 的准线与E 的两个焦点,则的两个焦点,则|AB|= |AB|=((A )3 3 ((B )6 6 ((C )9 9 ((D )12(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题::“今有委米依垣内角,下周八尺,高五尺。
2015年普通高等学校招生全国统一考试(全国新课标II卷)数学试题 (文科)解析版
2015年普通高等学校招生全国统一考试全国新课标 II 卷文 科 数 学一、选择题:本大题共12道小题,每小题5分,共60分. 1.已知集合{}|12A x x =-<<,{}|03B x x =<<,则A B =( )A .()1,3-B .()1,0-C .()0,2D .()2,3【答案】A考点:集合运算.2. 若为a 实数,且2i3i 1ia +=++,则a =( ) A .4- B .3- C .3 D .4【答案】D【解析】试题分析:由题意可得()()2i 1i 3i 24i 4a a +=++=+⇒= ,故选D.考点:复数运算.3. 根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化碳排放量的效果最显著B .2007年我国治理二氧化碳排放显现成效C .2006年以来我国二氧化碳年排放量呈减少趋势D .2006年以来我国二氧化碳年排放量与年份正相关 【答案】 D考点:柱形图4. 已知()1,1=-a ,()1,2=-b ,则(2)+⋅=a b a ( )A .1-B .0C .1D .2【答案】C 【解析】试题分析:由题意可得22=a ,3,⋅=-a b 所以()222431+⋅=+⋅=-=a b a a a b .故选C.考点:向量数量积.5. 设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( ) A .5 B .7 C .9 D .11【答案】A 【解析】试题解析:13533331a a a a a ++==⇒=,()15535552a a S a +===.故选A. 考点:等差数列6. 一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )1A.8 1B.7 1C.6D.15【答案】D【解析】试题分析:截去部分是正方体的一个角,其体积是正方体体积的16,所以截去部分体积与剩余部分体积的比值为15 ,故选D.考点:三视图7. 已知三点(1,0),A B C ,则△ABC 外接圆的圆心到原点的距离为( )5A.3 4D.3 【答案】B考点:直线与圆的方程.8. 右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b 分别为14,18,则输出的a 为( )A.0B. 2C.4D.14【答案】B 【解析】试题分析:由题意输出的a 是18,14的最大公约数2,故选B. 考点:1. 更相减损术;2.程序框图.9.已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =( )A.2B.1C.12 1D.8【答案】C【解析】试题分析:由题意可得()235444412a a a a a ==-⇒=,所以34182a q q a ==⇒= ,故2112a a q ==,选C.考点:等比数列.10. 已知B A ,是球O 的球面上两点,︒=∠90AOB ,C 为该球面上的动点.若三棱锥ABC O -体积的最大值为36,则球O 的表面积为( )A.π36B. π64C.π144D. π256【答案】C考点:球与几何体的切接.11. 如图,长方形的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠= ,将动点P 到A ,B 两点距离之和表示为x 的函数()f x ,则的图像大致为( )A .B .C .D .【答案】B考点:函数图像12. 设函数21()ln(1||)1f x x x =+-+,则使得()(21)f x f x >-成立的x 的取值范围是( )A .1,13⎛⎫ ⎪⎝⎭B .()1,1,3⎛⎫-∞+∞ ⎪⎝⎭C .11,33⎛⎫-⎪⎝⎭ D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【答案】A 【解析】试题分析:由21()ln(1||)1f x x x=+-+可知()f x 是偶函数,且在[)0,+∞是增函数,所以 ()()()()121212113f x f x f x f x x x x >-⇔>-⇔>-⇔<< .故选A.考点:函数性质二、填空题:本大题共4小题,每小题5分,共20分13. 已知函数()32f x ax x =-的图像过点(-1,4),则a = .【答案】-2 【解析】试题分析:由()32f x ax x =-可得()1242f a a -=-+=⇒=- .考点:函数解析式14. 若x ,y 满足约束条件50210210x y x y x y +-≤⎧⎪--≥⎨⎪-+≤⎩,则z =2x +y 的最大值为 .【答案】8考点:线性规划15. 已知双曲线过点(,且渐近线方程为12y x =±,则该双曲线的标准方程为 .【答案】2214x y -=考点:双曲线几何性质16. 已知曲线ln y x x =+在点()1,1 处的切线与曲线()221y ax a x =+++ 相切,则a = . 【答案】8 【解析】试题分析:由11y x'=+可得曲线ln y x x =+在点()1,1处的切线斜率为2,故切线方程为21y x =-,与()221y ax a x =+++ 联立得220ax ax ++=,显然0a ≠,所以由2808a a a ∆=-=⇒=.考点:导数的几何意义.三、解答题17(本小题满分12分)△ABC 中D 是BC 上的点,AD 平分∠BAC ,BD =2DC .(I )求sin sin BC∠∠ ;(II )若60BAC ∠=,求B ∠.【答案】(I )12;30.考点:解三角形试题解析:(I )由正弦定理得,,sin sin sin sin AD BD AD DCB BADC CAD==∠∠∠∠ 因为AD 平分∠BAC ,BD =2DC ,所以sin 1.sin 2B DC C BD ∠==∠.(II )因为()180,60,C BAC B BAC ∠=-∠+∠∠=所以()1sin sin sin .2C BAC B B B ∠=∠+∠=∠+∠ 由(I )知2sin sin B C ∠=∠,所以tan 30.B B ∠=∠= 考点:解三角形18. (本小题满分12分)某公司为了了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对其产品的满意度的评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频率分布表.A 地区用户满意度评分的频率分布直方图(I )在答题卡上作出B 地区用户满意度评分的频率分布直方图,并通过此图比较两地区满意度评分的平均值及分散程度.(不要求计算出具体值,给出结论即可)B 地区用户满意度评分的频率分布直方图(II)根据用户满意度评分,将用户的满意度评分分为三个等级:估计那个地区的用户的满意度等级为不满意的概率大,说明理由.【答案】(I)见试题解析(II)A地区的用户的满意度等级为不满意的概率大.考点:1.频率分布直方图;2.概率估计.19. (本小题满分12分)如图,长方体1111ABCD A B C D -中AB =16,BC =10,18AA =,点E ,F 分别在1111,A B D C 上,11 4.A E D F ==过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(I )在图中画出这个正方形(不必说明画法与理由); (II )求平面α把该长方体分成的两部分体积的比值. 【答案】(I )见试题解析(II )97 或79考点:1.几何体中的截面问题;2.几何体的体积20. (本小题满分12分)已知椭圆()2222:10x y C a b a b +=>> ,点(在C 上.(I )求C 的方程; (II )直线l 不经过原点O ,且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 中点为M ,证明:直线OM 的斜率与直线l 的斜率乘积为定值.【答案】(I )2222184x y +=(II )见试题解析考点:直线与椭圆21. (本小题满分12分)已知()()ln 1f x x a x =+-. (I )讨论()f x 的单调性;(II )当()f x 有最大值,且最大值大于22a -时,求a 的取值范围. 【答案】(I )0a ≤,()f x 在()0,+∞是单调递增;0a >,()f x 在10,a ⎛⎫⎪⎝⎭单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭单调递减;(II )()0,1. 【解析】考点:导数的应用.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号22. (本小题满分10分)选修4-1:几何证明选讲如图O是等腰三角形AB C内一点,圆O与△ABC的底边BC交于M,N两点,与底边上的高交于点G,且与AB,AC分别相切于E,F两点.(I)证明EF BC;(II)若AG等于圆O半径,且AE MN【答案】(I)见试题解析;(II考点:1.几何证明;2.四边形面积的计算.23. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩ (t 为参数,且0t ≠ ),其中0απ≤<,在以O为极点,x 轴正半轴为极轴的极坐标系中,曲线23:2sin ,:.C C ρθρθ== (I )求2C 与3C 交点的直角坐标;(II )若1C 与 2C 相交于点A ,1C 与3C 相交于点B ,求AB 最大值.【答案】(I )()30,0,2⎫⎪⎪⎭;(II )4. 【解析】试题分析:(I )把2C 与3C 的方程化为直角坐标方程分别为2220x y y +-=,220x y +-=,联立解考点:参数方程、直角坐标及极坐标方程的互化.24. (本小题满分10分)选修4-5:不等式证明选讲设,,,a b c d 均为正数,且a b c d +=+.证明:(I )若ab cd > ,+>;(II )>是a b c d -<-的充要条件. 【答案】【解析】试题分析:(I )由a b c d +=+及ab cd >,可证明22>,开方即得>(II )本小题可借助第一问的结论来证明,但要分必要性与充分性来证明. 试题解析:解:(I )因为22a b c d =++=++考点:不等式证明.。
2015年普通高等学校招生全国统一考试 全国卷2 数学试卷含答案(文科)
2015年普通高等学校招生全国统一考试(课标全国卷Ⅱ)文数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B=()A.(-1,3)B.(-1,0)C.(0,2)D.(2,3)2.若a为实数,且=3+i,则a=( )A.-4B.-3C.3D.43.根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关4.向量a=(1,-1),b=(-1,2),则(2a+b)·a=()A.-1B.0C.1D.25.设S n是等差数列{a n}的前n项和.若a1+a3+a5=3,则S5=( )A.5B.7C.9D.116.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )A. B. C. D.7.已知三点A(1,0),B(0,),C(2,),则△ABC外接圆的圆心到原点的距离为( )A. B. C. D.8.下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=( )A.0B.2C.4D.149.已知等比数列{a n}满足a1=,a3a5=4(a4-1),则a2=( )A.2B.1C.D.10.已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点.若三棱锥O-ABC体积的最大值为36,则球O的表面积为( )A.36πB.64πC.144πD.256π11.如图,长方形ABCD的边AB=2,BC=1,O是AB的中点.点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为( )12.设函数f(x)=ln(1+|x|)-,则使得f(x)>f(2x-1)成立的x的取值范围是( )A.,B.- ,∪(1,+ )C.-,D.- ,-∪,第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.已知函数f(x)=ax3-2x的图象过点(-1,4),则a= .14.若x,y满足约束条件-,--,-,则z=2x+y的最大值为.15.已知双曲线过点(4,),且渐近线方程为y=±x,则该双曲线的标准方程为.16.已知曲线y=x+ln x在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a= .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC.(Ⅰ)求;(Ⅱ)若∠BAC=60°,求∠B.某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表.B地区用户满意度评分的频数分布表(Ⅰ)作出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(Ⅱ)根据用户满意度评分,将用户的满意度分为三个等级:估计哪个地区用户的满意度等级为不满意的概率大?说明理由.如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说明画法和理由);(Ⅱ)求平面α把该长方体分成的两部分体积的比值.20.(本小题满分12分)已知椭圆C:+=1(a>b>0)的离心率为,点(2,在C上.(Ⅰ)求C的方程;(Ⅱ)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与直线l的斜率的乘积为定值.21.(本小题满分12分)已知函数f(x)=ln x+a(1-x).(Ⅰ)讨论f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.请从下面所给的22、23、24三题中选定一题作答,多答按所答第一题评分.22.(本小题满分10分)选修4—1:几何证明选讲如图,O为等腰三角形ABC内一点,☉O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(Ⅰ)证明:EF∥BC;(Ⅱ)若AG等于☉O的半径,且AE=MN=2求四边形EBCF的面积.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy中,曲线C1:,(t为参数,t≠0),其中0≤α<π.在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sin θ,C3:ρ=2cos θ. (Ⅰ)求C2与C3交点的直角坐标;(Ⅱ)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.24.(本小题满分10分)选修4—5:不等式选讲设a,b,c,d均为正数,且a+b=c+d.证明:(Ⅰ)若ab>cd,则++(Ⅱ)+>+是|a-b|<|c-d|的充要条件.2015年普通高等学校招生全国统一考试(课标全国卷Ⅱ)一、选择题1.A 因为A=(-1,2),B=(0,3),所以A∪B=(-1,3),故选A.2.D 由已知得2+ai=(1+i)(3+i)=2+4i,所以a=4,故选D.3.D 由已知柱形图可知A、B、C均正确,2006年以来我国二氧化硫年排放量呈减少趋势,所以排放量与年份负相关,∴D不正确.4.C 因为2a+b=2(1,-1)+(-1,2)=(2,-2)+(-1,2)=(1,0),所以(2a+b)·a=(1,0)·(1,-1)=1×1+0×(-1)=1.故选C.5.A ∵{a n}为等差数列,∴a1+a5=2a3,得3a3=3,则a3=1,∴S5=()=5a3=5,故选A.6.D 如图,由已知条件可知,在正方体ABCD-A1B1C1D1中,截去三棱锥A-A1B1D1后剩余的部分即为题中三视图对应的几何体,设该正方体的棱长为a,则截去部分的体积为a3,剩余部分的体积为a3-a3=a3.它们的体积之比为.故选D.评析本题主要考查三视图和体积的计算;考查空间想象能力.7.B 在平面直角坐标系xOy中画出△ABC,易知△ABC是边长为2的正三角形,其外接圆的圆心为D,.因此|OD|===.故选B.8.B 执行程序框图:当a=14,b=18时,a<b,则b=18-14=4;当a=14,b=4时,a>b,则a=14-4=10;当a=10,b=4时,a>b,则a=10-4=6;当a=6,b=4时,a>b,则a=6-4=2;当a=2,b=4时,a<b,则b=4-2=2,此时a=b=2,输出a为2,故选B.评析本题主要考查程序框图,属容易题.9.C 设{a n}的公比为q,由等比数列的性质可知a3a5=,∴=4(a4-1),即(a4-2)2=0,得a4=2,则q3===8,得q=2,则a2=a1q=×2=,故选C.10.C 因为△AOB的面积为定值,当OC垂直于平面AOB时,三棱锥O-ABC的体积取得最大值.由R3=36得R=6.从而球O的表面积S=4πR2=144π.故选C.11.B 当点P与C、D重合时,易求得PA+PB=1+;当点P为DC中点时,PA+PB=2PA=2.显然,1+,故当x=时, f(x)不取最大值,故C、D选项错误.当x∈,时, f(x)=tan x+,不是一次函数,排除A.故选B.评析做选择题可以取特殊位置进行研究.12.A 当x>0时,f(x)=ln(1+x)-,∴f '(x)=+()>0,∴f(x)在(0,+ )上为增函数,∵f(-x)=f(x),∴f(x)为偶函数,由f(x)>f(2x-1)得f(|x|)>f(|2x-1|),∴|x|>|2x-1|,即3x2-4x+1<0,解得<x<1,故选A.二、填空题13.答案-2解析因为函数f(x)=ax3-2x的图象过点(-1,4),所以4=a×(-1)3-2×(-1),故a=-2. 14.答案8解析由约束条件画出可行域(如图所示).解方程组-,-得A(3,2).当动直线2x+y-z=0经过点A(3,2)时,z max=2×3+2=8.评析本题考查了简单的线性规划,考查了数形结合的思想方法.15.答案-y2=1解析根据渐近线方程为x±2y=0,可设双曲线方程为x2-4y2=λ(λ≠0).因为双曲线过点(4,),所以42-4×()2=λ,即λ=4.故双曲线的标准方程为-y2=1.16.答案8解析令f(x)=x+ln x,求导得f '(x)=1+, f '(1)=2,又f(1)=1,所以曲线y=x+ln x在点(1,1)处的切线方程为y-1=2(x-1),即y=2x-1.设直线y=2x-1与曲线y=ax2+(a+2)x+1的切点为P(x0,y0),则y'|=2ax0+a+2=2,得a(2x0+1)=0,∴a=0或x0=-,又a+(a+2)x0+1=2x0-1,即a+ax0+2=0,当a=0时,显然不满足此方程,∴x0=-,此时a=8.评析本题主要考查导数的几何意义,能够利用点斜式求出切线方程是解题关键.三、解答题17.解析(Ⅰ)由正弦定理得=,=.因为AD平分∠BAC,BD=2DC,所以==.(Ⅱ)因为∠C=180°-(∠BAC+∠B),∠BAC=60°,所以sin∠C=sin(∠BAC+∠B)=cos∠B+sin∠B.由(Ⅰ)知2sin∠B=sin∠C,所以tan∠B=,即∠B=30°.评析本题考查了正弦定理;考查了解三角形的能力.属中档题.18.解析(Ⅰ)通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值;B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散.(Ⅱ)A地区用户的满意度等级为不满意的概率大.记C A表示事件:“A地区用户的满意度等级为不满意”;C B表示事件:“B地区用户的满意度等级为不满意”.由直方图得P(C A)的估计值为(0.01+0.02+0.03)×10=0.6,P(C B)的估计值为(0.005+0.02)×10=0.25.所以A地区用户的满意度等级为不满意的概率大.19.解析(Ⅰ)交线围成的正方形EHGF如图:(Ⅱ)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EHGF为正方形,所以EH=EF=BC=10.于是MH=-=6,AH=10,HB=6.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为也正确.20.解析(Ⅰ)由题意有-=,+=1,解得a2=8,b2=4.所以C的方程为+=1.(Ⅱ)设直线l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M).将y=kx+b代入+=1得(2k2+1)x2+4kbx+2b2-8=0.故x M==-,y M=k·x M+b=.于是直线OM的斜率k OM==-,即k OM·k=-.所以直线OM的斜率与直线l的斜率的乘积为定值.评析本题考查了椭圆的方程、直线与椭圆的位置关系;考查了定值问题的解题方法.利用韦达定理解决线段的中点是求解关键.21.解析(Ⅰ)f(x)的定义域为(0,+ ),f '(x)=-a.若a≤0,则f '(x)>0,所以f(x)在(0,+ )上单调递增.若a>0,则当x∈,时,f '(x)>0;当x∈,时,f '(x)<0.所以f(x)在,上单调递增,在,上单调递减.(Ⅱ)由(Ⅰ)知,当a≤0时,f(x)在(0,+ )上无最大值;当a>0时,f(x)在x=处取得最大值,最大值为f=ln+a-=-ln a+a-1.因此f>2a-2等价于ln a+a-1<0.令g(a)=ln a+a-1,则g(a)在(0,+ )上单调递增,g(1)=0.于是,当0<a<1时,g(a)<0;当a>1时,g(a)>0.因此,a的取值范围是(0,1).22.解析(Ⅰ)由于△ABC是等腰三角形,AD⊥BC,所以AD是∠CAB的平分线.又因为☉O分别与AB,AC相切于点E,F,所以AE=AF,故AD⊥EF.从而EF∥BC.(Ⅱ)由(Ⅰ)知,AE=AF,AD⊥EF,故AD是EF的垂直平分线.又EF为☉O的弦,所以O在AD上. 连结OE,OM,则OE⊥AE.由AG等于☉O的半径得AO=2OE,所以∠OAE=30°.因此△ABC和△AEF都是等边三角形.因为AE=2,所以AO=4,OE=2.因为OM=OE=2,DM=MN=,所以OD=1.于是AD=5,AB=.所以四边形EBCF的面积为××-×(2)2×=.评析本题考查了直线和圆的位置关系,考查了圆的初步知识.23.解析(Ⅰ)曲线C 2的直角坐标方程为x2+y2-2y=0,曲线C3的直角坐标方程为x2+y2-2x=0.联立-,-,解得,或,.所以C2与C3交点的直角坐标为(0,0)和,.(Ⅱ)曲线C1的极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤α<π.因此A的极坐标为(2sin α,α),B的极坐标为(2cos α,α).所以|AB|=|2sin α-2cos α|=4-.当α=时,|AB|取得最大值,最大值为4.评析本题考查了极坐标和参数方程,考查了最值问题.利用极径的几何意义建立关系式是求解关键.24.证明(Ⅰ)因为(+)2=a+b+2,(+)2=c+d+2,由题设a+b=c+d,ab>cd得(+)2>(+)2.因此+>+.(Ⅱ)(i)若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.因为a+b=c+d,所以ab>cd.由(Ⅰ)得++.(ii)若++则(+2>(+)2,即a+b+2因为a+b=c+d,所以ab>cd.于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,+>+是|a-b|<|c-d|的充要条件.评析本题主要考查不等式证明,对带有根号、绝对值的不等式,平方作差比较是常用的方法.。
2015年普通高等学校招生全国统一考试数学文试题(陕西卷,含解析)
2015年普通高等学校招生全国统一考试(陕西卷)文科数学一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(本大题共10小题,每小题5分,共50分).1. 设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞ 【答案】A考点:集合间的运算.2. 某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A .93B .123C .137D .167(高中部)(初中部)男男女女60%70%【答案】C 【解析】试题分析:由图可知该校女教师的人数为11070%150(160%)7760137⨯+⨯-=+= 故答案选C 考点:概率与统计.3. 已知抛物线22(0)y px p =>的准线经过点(1,1)-,则抛物线焦点坐标为( ) A .(1,0)- B .(1,0) C .(0,1)- D .(0,1) 【答案】B【解析】试题分析:由抛物线22(0)y px p =>得准线2px =-,因为准线经过点(1,1)-,所以2p =,所以抛物线焦点坐标为(1,0),故答案选B 考点:抛物线方程.4.设10()2,0xx f x x ⎧≥⎪=⎨<⎪⎩,则((2))f f -=( ) A .1- B .14 C .12 D .32【答案】C考点:1.分段函数;2.函数求值.5. 一个几何体的三视图如图所示,则该几何体的表面积为( ) A .3π B .4π C .24π+ D .34π+【答案】D【解析】试题分析:由几何体的三视图可知该几何体为圆柱的截去一半,所以该几何体的表面积为21121222342πππ⨯⨯+⨯⨯⨯+⨯=+,故答案选D考点:1.空间几何体的三视图;2.空间几何体的表面积. 6. “sin cos αα=”是“cos20α=”的( )A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要 【答案】A考点:1.恒等变换;2.命题的充分必要性.7. 根据右边框图,当输入x 为6时,输出的y =( ) A .1 B .2 C .5 D .10【答案】D 【解析】试题分析:该程序框图运行如下:6330x =-=>,330x =-=,0330x =-=-<,2(3)110y =-+=,故答案选D .考点:程序框图的识别.8. 对任意向量,a b ,下列关系式中不恒成立的是( )A .||||||a b a b ∙≤B .||||||||a b a b -≤-C .22()||a b a b +=+D .22()()a b a b a b +-=- 【答案】B考点:1.向量的模;2.数量积.9. 设()sin f x x x =-,则()f x =( )A .既是奇函数又是减函数B .既是奇函数又是增函数C .是有零点的减函数D .是没有零点的奇函数 【答案】B 【解析】 试题分析:()sin ()()sin()sin (sin )()f x x x f x x x x x x x f x =-⇒-=---=-+=--=-又()f x 的定义域为R 是关于原点对称,所以()f x 是奇函数;()1cos 0()f x x f x '=-≥⇒是增函数.故答案选B 考点:函数的性质.10. 设()ln ,0f x x a b =<<,若p f =,()2a b q f +=,1(()())2r f a f b =+,则下列关系式中正确的是( )A .q r p =<B .q r p =>C .p r q =<D .p r q => 【答案】C 【解析】试题分析:1ln 2p f ab===;()ln 22a b a bq f ++==;11(()())ln 22r f a f b ab=+=因为2a b +>()ln f x x =是个递增函数,()2a bf f +>所以q p r >=,故答案选C考点:函数单调性的应用.11. 某企业生产甲乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品需原料及每天原料的可用限额表所示,如果生产1吨甲乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A.12万元 B .16万元 C .17万元 D .18万元【答案】D当直线340x y z +-=过点(2,3)A 时,z 取得最大值324318z =⨯+⨯= 故答案选D 考点:线性规划.12. 设复数(1)z x yi =-+(,)x y R ∈,若||1z ≤,则y x ≥的概率( )A .3142π+B . 112π+C .1142π-D . 112π-【答案】C 【解析】试题分析:22(1)||1(1)1z x yi z x y =-+⇒=≤⇒-+≤如图可求得(1,1)A ,(1,0)B ,阴影面积等于21111114242ππ⨯-⨯⨯=-若||1z ≤,则y x ≥的概率211142142πππ-=-⨯ 故答案选C考点:1.复数的模长;2.几何概型.填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分).13、中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为________ 【答案】5考点:等差数列的性质.14、如图,某港口一天6时到18时的谁深变化曲线近似满足函数y =3sin(6πx +Φ)+k ,据此函数可知,这段时间水深(单位:m)的最大值为____________.【答案】8【解析】试题分析:由图像得,当sin()16xπ+Φ=-时min2y=,求得5k=,当sin()16xπ+Φ=时,max3158y=⨯+=,故答案为8.考点:三角函数的图像和性质.15、函数xy xe=在其极值点处的切线方程为____________.【答案】1 ye =-考点:导数的几何意义.16、观察下列等式:1-11 22 =1-11111 23434 +-=+1-11111111 23456456 +-+-=++…………据此规律,第n个等式可为______________________.【答案】11111111 1234212122n n n n n -+-+⋅⋅⋅+-=++⋅⋅⋅+-++【解析】试题分析:观察等式知:第n个等式的左边有2n个数相加减,奇数项为正,偶数项为负,且分子为1,分母是1到2n的连续正整数,等式的右边是111122n n n++⋅⋅⋅+++.故答案为11111111 1234212122n n n n n -+-+⋅⋅⋅+-=++⋅⋅⋅+-++考点:归纳推理.三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分) 17.ABC ∆的内角,,A B C 所对的边分别为,,a b c,向量()m a =与(cos ,sin )n A B =平行. (I)求A ; (II)若2a b ==求ABC ∆的面积.【答案】(I)3A π=;(II) 2.试题解析:(I)因为//m n,所以sin cos 0a B A -=由正弦定理,得sin sin cos 0A B B A -=, 又sin 0B ≠,从而tan A =,由于0A π<<所以3A π=(II)解法一:由余弦定理,得2222cos a b c bc A =+-,而2a b ==,3A π=,得2742c c =+-,即2230c c --=因为0c >,所以3c =,故ABC ∆面积为1sin 2bc A =.解法二:由正弦定理,得2sin sin3Bπ=从而sin 7B =又由a b >知A B >,所以cos B =故sin sin()sin()3C A B B π=+=+sin coscos sin33B B ππ=+=,所以ABC ∆面积为1sin 22ab C =. 考点:1.正弦定理和余弦定理;2.三角形的面积.18.如图1,在直角梯形ABCD 中,//,,2AD BC BAD AB BC π∠==12AD a ==,E 是AD 的中点,O 是OC 与BE 的交点,将ABE ∆沿BE 折起到图2中1A BE ∆的位置,得到四棱锥1A BCDE-.(I)证明:CD ⊥平面1AOC ;(II)当平面1A BE ⊥平面BCDE 时,四棱锥1A BCDE-的体积为,求a 的值.【答案】(I) 证明略,详见解析;(II) 6a =.(II)由已知,平面1A BE ⊥平面BCDE ,且平面1A BE平面BCDE BE = ,又由(I)知,1A O BE⊥,所以1AO ⊥平面BCDE ,即1A O是四棱锥1A BCDE-的高,易求得平行四边形BCDE 面积2S BC AB a =⋅=,从而四棱锥1A BCDE -的为31136V S A O =⨯⨯=,由33=6a =.(II)由已知,平面1A BE ⊥平面BCDE ,且平面1A BE平面BCDE BE =又由(I)知,1AO BE ⊥,所以1AO ⊥平面BCDE ,即1A O是四棱锥1A BCDE-的高,由图1可知,122AO AB ==,平行四边形BCDE 面积2S BC AB a =⋅=,从而四棱锥1A BCDE-的为231113326V S AO a a =⨯⨯=⨯⨯=,由3=6a =.考点:1.线面垂直的判定;2.面面垂直的性质定理;3.空集几何体的体积.(I)在4月份任取一天,估计西安市在该天不下雨的概率;(II)西安市某学校拟从4月份的一个晴天开始举行连续两天的运动会,估计运动会期间不下雨的概率.【答案】(I) 1315; (II) 78.【解析】试题分析:(I)在容量为30的样本中,从表格中得,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率是26133015=. (II)称相邻两个日期为“互邻日期对”(如1日与2日,2日与3日等)这样在4月份中,前一天为晴天的互邻日期对有16对,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为147168=,以频率估计概率,运动会期间不下雨的概率为78.试题解析:(I)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率是1315.(II)称相邻两个日期为“互邻日期对”(如1日与2日,2日与3日等)这样在4月份中,前一天为晴天的互邻日期对有16对,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为78,以频率估计概率,运动会期间不下雨的概率为78.考点:概率与统计.20.如图,椭圆2222:1(0)x y E a b a b +=>>经过点(0,1)A -,且离心率为2.(I)求椭圆E 的方程;(II)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同两点,P Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.【答案】(I) 2212x y +=; (II)证明略,详见解析.【解析】试题分析:(I)由题意知1c b a ==,由222a b c =+,解得a =为2212x y +=;(II) 设()()1122,P x y Q x y ,120x x ≠由题设知,直线PQ 的方程为(1)1(2)y k x k =-+≠,代入2212x y +=,化简得22(12)4(1)2(2)0k x k k x k k +--+-=,则1212224(1)2(2),1212k k k k x x x x k k --+==++,由已知∆>, 从而直线AP与AQ的斜率之和121212111122AP AQ y y kx k kx kk k x x x x +++-+-+=+=+化简得12122(2)AP AQ x x k k k k x x ++=+-()4(1)222(21)22(2)k k k k k k k k -=+-=--=-.试题解析:(I)由题意知1c b a ==,综合222a b c =+,解得a =,所以,椭圆的方程为2212x y +=.(II)由题设知,直线PQ 的方程为(1)1(2)y k x k =-+≠,代入2212x y +=,得22(12)4(1)2(2)0k x k k x k k +--+-=, 由已知0∆>,设()()1122,P x y Q x y ,120x x ≠则1212224(1)2(2),1212k k k k x x x x k k --+==++,从而直线AP 与AQ 的斜率之和121212111122AP AQ y y kx k kx kk k x x x x +++-+-+=+=+121212112(2)2(2)x x k k k k x x x x ⎛⎫+=+-+=+- ⎪⎝⎭()4(1)222(21)22(2)k k k k k k k k -=+-=--=-. 考点:1.椭圆的标准方程;2.圆锥曲线的定值问题. 21. 设2()1,, 2.n n f x x x x n N n =+++-∈≥(I)求(2)n f ';(II)证明:()n f x 在20,3⎛⎫ ⎪⎝⎭内有且仅有一个零点(记为n a ),且1120233nna ⎛⎫<-< ⎪⎝⎭. 【答案】(I) (2)(1)21n n f n '=-+ ;(II)证明略,详见解析.【解析】试题分析:(I)由题设1()12n n f x x nx -'=+++,所以1(2)1222n n f n -'=+⨯++,此式等价于数列1{2}n n -⋅的前n 项和,由错位相减法求得(2)(1)21n n f n '=-+;(II)因为(0)10f =-<,2222()12120333n n f ⎛⎫⎛⎫=-⨯≥-⨯> ⎪ ⎪⎝⎭⎝⎭,所以()n f x 在2(0,)3内至少存在一个零点,又1()120n n f x x nx-'=+++>,所以()n f x 在2(0,)3内单调递增,因此,()n f x 在2(0,)3内有且只有一个零点n a ,由于1()11n n x f x x -=--,所以10()11n n n n n a f a a -==--,由此可得1111222n n n a a +=+>故1223n a <<,继而得111112120222333n nn nn a a ++⎛⎫⎛⎫<-=<⨯=⨯ ⎪ ⎪⎝⎭⎝⎭.试题解析:(I)由题设1()12n n f x x nx -'=+++,所以1(2)1222n n f n -'=+⨯++ ①由22(2)12222nn f n'=⨯+⨯++ ②①-②得21(2)12222n nn f n -'-=++++-2122(1)2112n n n n -=-⋅=---,所以(2)(1)21n n f n '=-+(II)因为(0)10f =-<222133222()112120233313nn n f ⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎛⎫⎛⎫⎝⎭=-=-⨯≥-⨯> ⎪ ⎪⎝⎭⎝⎭-,所以()n f x 在2(0,)3内至少存在一个零点, 又1()120n n f x x nx -'=+++>所以()n f x 在2(0,)3内单调递增,因此,()n f x 在2(0,)3内有且只有一个零点n a , 由于1()11nn x f x x -=--,所以10()11nn n n na f a a -==--由此可得1111222n n n a a +=+>故1223n a <<所以111112120222333n nn n n a a ++⎛⎫⎛⎫<-=<⨯=⨯ ⎪⎪⎝⎭⎝⎭考点:1.错位相减法;2.零点存在性定理;3.函数与数列.考生注意:请在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时用2B 铅笔在答题卡上把所选题目的题是以后的方框涂黑.22. 选修4-1:几何证明选讲如图,AB 切O 于点B ,直线AO 交O 于,D E 两点,,BC DE ⊥垂足为C . (I)证明:CBD DBA ∠=∠ (II)若3,AD DC BC ==O 的直径.【答案】(I)证明略,详见解析; (II)3. 【解析】试题分析::(I)因为DE 是O 的直径,则90BED EDB ∠+∠=︒,又BC DE ⊥,所以90CBD EDB ∠+∠=︒,又AB 切O 于点B ,得D B A B E D ∠=∠,所以CBD DBA ∠=∠;(II)由(I)知BD 平分CBA ∠,则3BA ADBC CD ==,又BC =,从而AB =,由222AB BC AC =+,解得4AC =,所以3AD =,由切割线定理得2AB AD AE =⋅,解得6AE =,故3DE AE AD =-=,即O 的直径为3.试题解析:(I)因为DE 是O 的直径, 则90BED EDB ∠+∠=︒又BC DE ⊥,所以90CBD EDB ∠+∠=︒ 又AB 切O 于点B , 得DBA BED ∠=∠ 所以CBD DBA ∠=∠ (II)由(I)知BD 平分CBA ∠,则3BA ADBC CD ==,又BC =,从而AB =所以4AC == 所以3AD =,由切割线定理得2AB AD AE =⋅即26AB AE AD ==,故3DE AE AD =-=, 即O 的直径为3.考点:1.几何证明;2.切割线定理.23. 选修4-4:坐标系与参数方程在直角坐标版权法xOy吕,直线l的参数方程为132(2x tty⎧=+⎪⎪⎨⎪=⎪⎩为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,C的极坐标方程为ρθ=.(I)写出C的直角坐标方程;(II)P为直线l上一动点,当P到圆心C的距离最小时,求点P的坐标.【答案】(I)(223x y+-=;(II)(3,0).【解析】试题分析:(I)由ρθ=,得2sinρθ=,从而有22x y+=,所以(223x y+-=(II)设13,22P t⎛⎫+⎪⎝⎭,又C,则PC==,故当0t=时,PC取得最小值,此时P点的坐标为(3,0).试题解析:(I)由ρθ=,得2sinρθ=,从而有22x y+=所以(223x y+-=(II)设132P t⎛⎫+⎪⎝⎭,又C,则PC==,故当0t=时,PC取得最小值,此时P点的坐标为(3,0).考点:1. 坐标系与参数方程;2.点与圆的位置关系.24. 选修4-5:不等式选讲已知关于x的不等式x a b+<的解集为{|24}x x<<(I)求实数,a b的值;(II)+.【答案】(I)3,1a b=-=;(II)4.【解析】试题分析:(I)由x a b+<,得b a x b a--<<-,由题意得24b ab a--=⎧⎨-=⎩,解得3,1 a b=-=;(II)柯西不等式得+221≤4==,1=即1t=时等号成立,故min4+=.试题解析:(I)由x a b+<,得b a x ba--<<-则24b ab a--=⎧⎨-=⎩,解得3, 1.a b=-=+=≤4===即1t=时等号成立,故min4=考点:1.绝对值不等式;2.柯西不等式.。
2015年普通高等学校招生全国统一考试数学文试题精品解析(新课标Ⅰ卷)
2015年高考新课标Ⅰ卷文数试题解析(精编版)(解析版)一、选择题:每小题5分,共60分1、已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为( )(A ) 5 (B )4 (C )3 (D )2 【答案】D2、已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC =( ) (A ) (7,4)-- (B )(7,4) (C )(1,4)- (D )(1,4)3、已知复数z 满足(1)1z i i -=+,则z =( )(A ) 2i -- (B )2i -+ (C )2i - (D )2i +4、如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()(A)310(B)15(C)110(D)1205、已知椭圆E的中心为坐标原点,离心率为12,E的右焦点与抛物线2:8C y x=的焦点重合,,A B是C的准线与E的两个交点,则AB= ( )(A)3(B)6(C)9(D)12【答案】B6、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( )(A )14斛 (B )22斛 (C )36斛 (D )66斛7、已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( ) (A )172 (B )192(C )10 (D )128、函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为( )(A )13(,),44k k k Z ππ-+∈ (B )13(2,2),44k k k Z ππ-+∈ (C )13(,),44k k k Z -+∈ (D )13(2,2),44k k k Z -+∈9、执行右面的程序框图,如果输入的0.01t =,则输出的n =( )(A ) 5 (B )6 (C )10 (D )12 【答案】C【解析】执行第1次,t =0.01,S=1,n =0,m =12=0.5,S =S -m =0.5,2mm ==0.25,n =1,S =0.5>t =0.01,是,循环, 执行第2次,S =S -m =0.25,2mm ==0.125,n =2,S=0.25>t =0.01,是,循环, 执行第3次,S =S -m =0.125,2mm ==0.0625,n =3,S=0.125>t =0.01,是,循环,执行第4次,S=S-m =0.0625,2mm ==0.03125,n =4,S=0.0625>t =0.01,是,循环, 执行第5次,S=S-m =0.03125,2mm==0.015625,n =5,S=0.03125>t =0.01,是,循环,执行第6次,S=S-m =0.015625,2mm ==0.0078125,n =6,S=0.015625>t =0.01,是,循环,执行第7次,S=S-m =0.0078125,2mm ==0.00390625,n=7,S=0.0078125>t =0.01,否,输出n =7,故选C.【考点定位】程序框图【名师点睛】本题是已知程序框图计算输出结果问题,对此类问题,按程序框图逐次计算,直到输出时,即可计算出输出结果,是常规题,程序框图还可考查已知输入、输出,不全框图或考查程序框图的意义,处理方法与此题相同.10、已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩ ,且()3f a =-,则(6)f a -=( )(A )74-(B )54- (C )34- (D )14- 11、圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1 (B )2 (C )4 (D )812、设函数()y f x =的图像与2x ay +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =( )(A ) 1- (B )1 (C )2 (D )4二、填空题:本大题共4小题,每小题5分13、数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = .14、已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则 a=.15、若x ,y 满足约束条件20210220x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则z =3x +y 的最大值为 .【答案】4【解析】作出可行域如图中阴影部分所示,作出直线0l :30x y +=,平移直线0l ,当直线l :z =3x +y 过点A时,z 取最大值,由2=021=0x y x y +-⎧⎨-+⎩解得A (1,1),∴z =3x +y 的最大值为4.【考点定位】简单线性规划解法【名师点睛】对线性规划问题,先作出可行域,在作出目标函数,利用z 的几何意义,结合可行域即可找出取最值的点,通过解方程组即可求出做最优解,代入目标函数,求出最值,要熟悉相关公式,确定目标函数的意义是解决最优化问题的关键,目标函数常有距离型、直线型和斜率型.16、已知F 是双曲线22:18y C x -=的右焦点,P 是C 左支上一点,()0,66A ,当APF ∆周长最小时,该三角形的面积为 . 【答案】126【解析】设双曲线的左焦点为1F ,由双曲线定义知,1||2||PF a PF =+,∴△APF 的周长为|PA |+|PF |+|AF |=|PA |+12||a PF ++|AF |=|PA |+1||PF +|AF |+2a , 由于2||a AF +是定值,要使△APF 的周长最小,则|PA |+1||PF 最小,即P 、A 、1F 共线,∵()0,66A ,1F (-3,0),∴直线1AF 的方程为1366x y +=-,即326y x =-代入2218y x -=整理得266960y y +-=,解得26y =或86y =-(舍),所以P 点的纵坐标为26,∴11APF AFF PFF S S S ∆∆∆=-=1166662622⨯⨯-⨯⨯=126. 【考点定位】双曲线的定义;直线与双曲线的位置关系;最值问题【名师点睛】解决解析几何问题,先通过已知条件和几何性质确定圆锥曲线的方程,再通过方程研究直线与圆锥曲线的位置关系,解析几何中的计算比较复杂,解决此类问题的关键要熟记圆锥曲线的定义、标准方程、几何性质及直线与圆锥曲线位置关系的常见思路. 三、解答题: 解答应写出文字说明,证明过程或演算步骤.17、(本小题满分12分)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =. (I )若a b =,求cos ;B (II )若90B =,且2,a = 求ABC ∆的面积.【答案】(I )14(II )1(II )由(1)知22b ac .因为B 90°,由勾股定理得222ac b .故222ac ac ,得2c a .所以ABC 的面积为1.【考点定位】正弦定理;余弦定理;运算求解能力【名师点睛】解三角形问题的主要工具就是正弦定理、余弦定理,在解题过程中要注意边角关系的转化,根据题目需要合理选择合理的变形复方向,本题考查利用正余弦定理解三角形和计算三角形面积,是基础题.18. (本小题满分12分)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I )证明:平面AEC ⊥平面BED ;(II )若120ABC ∠=,,AE EC ⊥ 三棱锥E ACD -6. 【答案】(I )见解析(II )3+25(II )设AB =x ,在菱形ABCD 中,由ABC =120°,可得AG =GC =32x ,GB =GD =2x . 因为AE EC ,所以在Rt AEC 中,可得EG =32x . 由BE 平面ABCD ,知EBG 为直角三角形,可得BE =22x . 由已知得,三棱锥E-ACD 的体积3116632243E ACDV AC GD BE x .故x =2 从而可得AE =EC =ED =6.所以EAC 的面积为3,EAD 的面积与ECD 的面积均为5. 故三棱锥E-ACD 的侧面积为3+25.【考点定位】线面垂直的判定与性质;面面垂直的判定;三棱锥的体积与表面积的计算;逻辑推理能力;运算求解能力【名师点睛】对空间面面垂直问题的证明有两种思路,思路1:几何法,先由线线垂直证明线面垂直,再由线面垂直证明面面垂直;思路2:利用向量法,通过计算两个平面的法向量,证明其法向量垂直,从而证明面面垂直;对几何体的体积和表面积问题,常用解法有直接法和等体积法.19.(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的宣传费i x 和年销售量()1,2,,8i y i =数据作了初步处理,得到下面的散点图及一些统计量的值.x y w821()ii x x =-∑821()ii w w =-∑81()()iii x x y y =--∑ 81()()i ii w w yy =--∑46.6 56.3 6.8 289.8 1.6 1469 108.8表中i w i x ,w =1881ii w=∑(I )根据散点图判断,y a bx =+与y c x =+y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由);(II )根据(I )的判断结果及表中数据,建立y 关于x 的回归方程;(III )已知这种产品的年利润z 与x ,y 的关系为0.2z y x =- ,根据(II )的结果回答下列问题: (i )当年宣传费90x =时,年销售量及年利润的预报值时多少? (ii )当年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据11(,)u v ,22(,)u v ,……,(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分别为:121()()=()niii nii u u v v u u β==---∑∑,=v u αβ-【答案】(Ⅰ)y c x =+适合作为年销售y 关于年宣传费用x 的回归方程类型(Ⅱ)100.668y x =+(Ⅲ)46.24(Ⅲ)(ⅰ)由(Ⅱ)知,当x =49时,年销售量y 的预报值100.66849y =+,576.60.24966.32z =⨯-=. ……9分(ⅱ)根据(Ⅱ)的结果知,年利润z 的预报值0.2(100.668)13.620.12z x x x x =+-=-+,x 13.6=6.82,即46.24x =时,z 取得最大值. 故宣传费用为46.24千元时,年利润的预报值最大.……12分【考点定位】非线性拟合;线性回归方程求法;利用回归方程进行预报预测;应用意识【名师点睛】本题考查了非线性拟合及非线性回归方程的求解与应用,是源于课本的试题类型,解答非线性拟合问题,先作出散点图,再根据散点图选择合适的函数类型,设出回归方程,利用换元法将非线性回归方程化为线性回归方程,求出样本数据换元后的值,然后根据线性回归方程的计算方法计算变换后的线性回归方程系数,即可求出非线性回归方程,再利用回归方程进行预报预测,注意计算要细心,避免计算错误.20.(本小题满分12分)已知过点()1,0A 且斜率为k 的直线l 与圆C :()()22231x y -+-=交于M ,N 两点.(I )求k 的取值范围;(II )12OM ON ⋅=,其中O 为坐标原点,求MN .【答案】(I)4747,33(II )2(II )设1122(,),(,)M x y N x y . 将1ykx 代入方程22231x y ,整理得22(1)-4(1)70k x k x ,所以1212224(1)7,.11k x x x x k k21212121224(1)1181k k OM ON x x y y k x x k x x k , 由题设可得24(1)8=121k k k ,解得=1k ,所以l 的方程为1y x .故圆心在直线l 上,所以||2MN .【考点定位】直线与圆的位置关系;设而不求思想;运算求解能力【名师点睛】直线与圆的位置关系问题是高考文科数学考查的重点,解决此类问题有两种思路,思路1:将直线方程与圆方程联立化为关于x 的方程,设出交点坐标,利用根与系数关系,将1212,x x y y 用k 表示出来,再结合题中条件处理,若涉及到弦长用弦长公式计算,若是直线与圆的位置关系,则利用判别式求解;思路2:利用点到直线的距离计算出圆心到直线的距离,与圆的半径比较处理直线与圆的位置关系,利用垂径定理计算弦长问题.21.(本小题满分12分)设函数()2ln xf x ea x =-.(I )讨论()f x 的导函数()f x '的零点的个数; (II )证明:当0a >时()22lnf x a a a≥+.试题解析:(I )()f x 的定义域为0+,,2()=20xaf x ex x. 当0a时,()0f x ,()f x 没有零点;当0a时,因为2x e 单调递增,ax单调递增,所以()f x 在0+,单调递增.又()0f a ,当b 满足04a b且14b 时,(b)0f ,故当0a 时,()f x 存在唯一零点.请考生在(22)、(23)、(24)三题中任选一题作答。
普通高等学校招生全国统一考试数学模拟试卷(文科).docx
高中数学学习材料唐玲出品2015年普通高等学校招生全国统一考试数学模拟试卷(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟。
考生注意事项:答题前,务必在试题卷、答题卡规定填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。
务必在答题卡背面规定的地方填写姓名和座位号后两位。
答第Ⅰ卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出书写的答案无效........。
....、草稿纸上答题无效.........,在试题卷考试结束后,务必将试题卷和答题卡一并上交。
一.选择题(共10小题)1.(2015•烟台一模)设i是虚数单位,a∈R,若是一个纯虚数,则实数a的值为()A.B.﹣1 C.D.12.(2015•济宁二模)已知集合A={x|x2≥1},B={x|y=},则A∩∁R B=() A.(2,+∞)B.(﹣∞,﹣1]∪(2,+∞)C.(﹣∞,﹣1)∪(2,+∞)D.[﹣1,0]∪[2,+∞)3.(2013•安徽)若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为()A.B.C.D.4.(2015•德州一模)若a=20.5,b=ln2,c=0.5e(e是自然对数的底),则() A. a<b<c B.b>a>c C.a>c>b D.a>b>c5.(2015•烟台一模)已知点 M(x,y)的坐标满足,N点的坐标为(1,﹣3),点 O为坐A. 12 B.5C.﹣6 D.﹣216.(2015•怀化二模)某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值是()A. 2 B.C.D.37.(2015•菏泽二模)如图程序框图中,若输入m=4,n=10,则输出a,i的值分别是() A. 12,4 B.16,5 C.20,5 D.24,6 8.(2015•烟台一模)已知P(x,y)是直线kx+y+4=0(k>0)上一动点,PA是圆C:x2+y2﹣2y=0的一条切线,A是切点,若PA长度最小值为2,则k的值为()A. 3 B.C.2D.29.(2015•青岛一模)函数y=4cosx﹣e|x|(e为自然对数的底数)的图象可能是()A.B.C.D.10.(2014•东营二模)偶函数f(x)满足f(x﹣1)=f(x+1),且在x∈[0,1]时,f(x)=x2,则关于x的方程f(x)=在[﹣2,3]上的根的个数是()A. 3 B.4C.5D.6二.填空题(共5小题)11.(2015•烟台一模)函数的定义域为.12.(2015•湖北模拟)平面向量与的夹角为60°,=(2,0),||=1 则|+2|= .13.(2015•潍坊一模)已知x>0,y>0,且2x+y=1,则+的最小值是.14.(2015•烟台一模)已知抛物线y2=2px的焦点F与双曲线﹣=1的右焦点重合,抛物线的准线与x轴的焦点为K,点A在抛物线上,且|AK|=|AF|,则△AFK的面积为.15.(2015•青岛一模)若X是一个集合,τ是一个以X的某些子集为元素的集合,且满足:①X属于τ,∅属于τ;②τ中任意多个元素的并集属于τ;③τ中任意多个元素的交集属于τ.则称τ是集合X上的一个拓扑.已知集合X={a,b,c},对于下面给出的四个集合τ:①τ={∅,{a},{c},{a,b,c}};②τ={∅,{b},{c},{b,c},{a,b,c}};③τ={∅,{a},{a,b},{a,c}};④τ={∅,{a,c},{b,c},{c},{a,b,c}}.其中是集合X上的拓扑的集合τ的序号是.三.解答题(共6小题)16.(2015•威海一模)△ABC中,A,B,C所对的边分别为a,b,c,,sin(B﹣A)=cosC.(Ⅰ)求A,B,C;(Ⅱ)若S△ABC=3+,求a,c.17.(2015•海南模拟)某商区停车场临时停车按时段收费,收费标准为:每辆汽车一次停车不超过1小时收费6元,超过1小时的部分每小时收费8元(不足1小时的部分按1小时计算).现有甲、乙二人在该商区临时停车,两人停车都不超过4小时.(Ⅰ)若甲停车1小时以上且不超过2小时的概率为,停车付费多于14元的概率为,求甲停车付费恰为6元的概率;(Ⅱ)若每人停车的时长在每个时段的可能性相同,求甲、乙二人停车付费之和为36元的概率.18.(2015•泰安一模)如图正方形ABCD的边长为ABCD的边长为2,四边形BDEF是平行四边形,BD 与AC交于点G,O为GC的中点,FO=,且FO⊥平面ABCD.(Ⅰ)求证:AE∥平面BCF;(Ⅱ)求证CF⊥平面AEF.19.(2015•烟台一模)已知数列{a n}的前n项和为S n,a n.S n满足(t﹣1)S n=t(a n﹣2)(t为常数,t≠0且t≠1).(1)求数列{a n}的通项公式;(2)设b n=(﹣a n)•log3(1﹣S n),当t=时,求数列{b n}的前n项和T n.20.(2015•潍坊一模)椭圆=1的左右焦点分别为F1,F2,直线l:x+my=恒过椭圆的右焦点F2,且与椭圆交于P,Q两点,已知△F1PQ的周长为8,点O为坐标原点.(1)求椭圆C的方程;(2)若直线l:y=kx+t与椭圆C交于M,N两点,以线段OM,ON为邻边作平行四边形OMGN其中G在椭圆C上,当≤|t|≤1时,求|OG|的取值范围.21.(2015•菏泽二模)已知函数f(x)=x﹣alnx(a∈R).(Ⅰ)当a=2时,求曲线f(x)在x=1处的切线方程;(Ⅱ)设函数h(x)=f(x)+,求函数h(x)的单调区间;(Ⅲ)若g(x)=﹣,在[1,e](e=2.71828…)上存在一点x0,使得f(x0)≤g(x0)成立,求a 的取值范围.2015年山东省高考数学(文科)模拟试卷参考答案一.选择题(共10小题)题号 1 2 3 4 5 6 7 8 9 10 答案 C B D D D D C D A C二.填空题(共5小题)题号11 12 13 14 15答案{x|x>2且x≠3}2832②④三.解答题(共6小题)16.解:(Ⅰ)∵,∴,∴sinCcosA+sinCcosB=cosCsinA+cosCsinB,即 sinCcosA﹣cosCsinA=cosCsinB﹣sinCcosB,得 sin(C﹣A)=sin(B﹣C).∴C﹣A=B﹣C,或C﹣A=π﹣(B﹣C)(不成立).即 2C=A+B,得,∴,∵,则,或(舍去)∴.(Ⅱ)∵又∵,即,∴.17.解:(Ⅰ)设“甲临时停车付费恰为6元”为事件A,则.所以甲临时停车付费恰为6元的概率是.则甲、乙二人的停车费用构成的基本事件空间为:(6,6),(6,14),(6,22),(6,30),(14,6),(14,14),(14,22),(14,30),(22,6),(22,14),(22,22),(22,30),(30,6),(30,14),(30,22),(30,30),共16种情形.其中,(6,30),(14,22),(22,14),(30,6)这4种情形符合题意.故“甲、乙二人停车付费之和为36元”的概率为.18.(Ⅰ)证明:取BC中点H,连结OH,则OH∥BD,又四边形ABCD为正方形,∴AC⊥BD,∴OH⊥AC,∴以O为原点,建立如图所示的直角坐标系,则A(3,0,0),E(1,﹣2,0),C(﹣1,0,0),D(1,﹣2,0),F(0,0,),=(﹣2,﹣2,0),=(1,0,),=(﹣1,﹣2,),设平面BCF 的法向量为=(x,y,z),则,取z=1,得=(﹣,,1),又四边形BDEF为平行四边形,∴==(﹣1,﹣2,),∴=+=+=(﹣2,﹣2,0)+(﹣1,﹣2,)=(﹣3,﹣3,),∴•=3﹣4+=0,Array∴AE,又AE⊄平面BCF,∴AE∥平面BCF.(Ⅱ)证明:=(﹣3,0,),∴•=﹣3+3=0,•=﹣3+3=0,∴⊥,⊥,又AE∩AF=A,∴CF⊥平面AEF.19.解:(1)由(t﹣1)S n=t(a n﹣2),及(t﹣1)S n+1=t(a n+1﹣2),作差得a n+1=ta n,即数列{a n}成等比数列,,当n=1时,(t﹣1)S1=t(a1﹣2),解得a1=2t ,故.,,作差得,所以.20.解:(1)∵直线l:x+my=恒过定点,∴椭圆的右焦点F2.∴.∴△F1PQ的周长为8,∴4a=8,解得a=2,∴b2=a2﹣c2=1,∴椭圆C的方程为=1;(2)联立,化为(1+4k2)x2+8ktx+4t2﹣4=0,由△=64k2t2﹣4(1+4k2)(4t2﹣4)>0,可得4k2+1>t2.设M(x1,y1),N(x2,y2),G(x0,y0),则,∵四边形OMGN是平行四边形,∴,y0=y1+y2=k(x1+x2)+2t=kx0+2t=,可得G,∵G在椭圆C上,∴+=1,化为4t2(4k2+1)=(4k2+1)2,∴4t2=4k2+1,∴|OG|2=====4﹣,∵≤|t|≤1,∴,∴,∴|OG|的取值范围是.21.解:(Ⅰ)当a=2时,f(x)=x﹣2lnx,f(1)=1,切点(1,1),(Ⅱ),定义域为(0,+∞),,①当a+1>0,即a>﹣1时,令h′(x)>0,∵x>0,∴x>1+a令h′(x)<0,∵x>0,∴0<x<1+a.②当a+1≤0,即a≤﹣1时,h′(x)>0恒成立,综上:当a>﹣1时,h(x)在(0,a+1)上单调递减,在(a+1,+∞)上单调递增.当a≤﹣1时,h(x)在(0,+∞)上单调递增.(Ⅲ)由题意可知,在[1,e]上存在一点x0,使得f(x0)≤g(x0)成立,即在[1,e]上存在一点x0,使得h(x0)≤0,即函数在[1,e]上的最小值[h(x)]min≤0.由第(Ⅱ)问,①当a+1≥e,即a≥e﹣1时,h(x)在[1,e]上单调递减,∴,∴,∵,∴;②当a+1≤1,即a≤0时,h(x)在[1,e]上单调递增,∴[h(x)]min=h(1)=1+1+a≤0,∴a≤﹣2,③当1<a+1<e,即0<a<e﹣1时,∴[h(x)]min=h(1+a)=2+a﹣aln(1+a)≤0,∵0<ln(1+a)<1,∴0<aln(1+a)<a,∴h(1+a)>2此时不存在x0使h(x0)≤0成立.综上可得所求a的范围是:或a≤﹣2.。
2015年普通高等学校招生全国统一考试数学文试题(北京卷,含解析)
2015年普通高等学校招生全国统一考试数学文试题(北京卷,含解析)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.)1、若集合{}52x x A =-<<,{}33x x B =-<<,则A B =( )A .{}32x x -<< B .{}52x x -<< C .{}33x x -<< D .{}53x x -<< 【答案】A考点:集合的交集运算.2、圆心为()1,1且过原点的圆的方程是( )A .()()22111x y -+-=B .()()22111x y +++= C .()()22112x y +++= D .()()22112x y -+-= 【答案】D 【解析】试题分析:由题意可得圆的半径为r =()()22112x y -+-=.考点:圆的标准方程.3、下列函数中为偶函数的是( )A .2sin y x x = B .2cos y x x = C .ln y x = D .2xy -=【答案】B 【解析】试题分析:根据偶函数的定义()()f x f x -=,A 选项为奇函数,B 选项为偶函数,C 选项定义域为(0,)+∞不具有奇偶性,D 选项既不是奇函数,也不是偶函数,故选B. 考点:函数的奇偶性.4、某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为( )A .90B .100C .180D .300【答案】C 【解析】试题分析:由题意,总体中青年教师与老年教师比例为1600169009=;设样本中老年教师的人数为x ,由分层抽样的性质可得总体与样本中青年教师与老年教师的比例相等,即320169x =,解得180x =.考点:分层抽样.5、执行如图所示的程序框图,输出的k 的值为( )A .3B .4C .5D .6【答案】B考点:程序框图.6、设a ,b 是非零向量,“a b a b ⋅=”是“//a b ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】A 【解析】试题分析:||||cos ,a b a b a b ∙=∙<>,由已知得cos ,1a b <>=,即,0a b <>=,//a b .而当//a b 时,,a b <>还可能是π,此时||||a b a b ∙=-,故“a b a b ⋅=”是“//a b ”的充分而不必要条件.考点:充分必要条件、向量共线.7、某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )A .1BC .2【答案】C【解析】试题分析:四棱锥的直观图如图所示:由三视图可知,SC⊥平面ABCD,SA是四棱锥最长的棱,SA===考点:三视图.8、某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.注:“累计里程“指汽车从出厂开始累计行驶的路程,在这段时间内,该车每100千米平均耗油量为()A.6升 B.8升 C.10升 D.12升【答案】B【解析】V=升. 而试题分析:因为第一次邮箱加满,所以第二次的加油量即为该段时间内的耗油量,故耗油量48这段时间内行驶的里程数3560035000600S =-=千米. 所以这段时间内,该车每100千米平均耗油量为481008600⨯=升,故选B. 考点:平均耗油量.二、填空题(本大题共6小题,每小题5分,共30分.) 9、复数()1i i +的实部为 . 【答案】-1 【解析】试题分析:复数(1)11i i i i +=-=-+,其实部为-1. 考点:复数的乘法运算、实部.10、32-,123,2log 5三个数中最大数的是 . 【答案】2log 5 【解析】试题分析:31218-=<,1231=>,22log 5log 42>>>2log 5最大.考点:比较大小.11、在C ∆AB 中,3a =,b =23π∠A =,则∠B = . 【答案】4π 【解析】试题分析:由正弦定理,得sin sin a b A B ==sin 2B =,所以4B π∠=. 考点:正弦定理.12、已知()2,0是双曲线2221y x b-=(0b >)的一个焦点,则b = .【解析】试题分析:由题意知2,1c a ==,2223b c a =-=,所以b =考点:双曲线的焦点.13、如图,C ∆AB 及其内部的点组成的集合记为D ,(),x y P 为D 中任意一点,则23z x y =+的最大值为 .【答案】7考点:线性规划.14、高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级中的排名情况如下图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是 ; ②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是 . 【答案】乙、数学 【解析】试题分析:①由图可知,甲的语文成绩排名比总成绩排名靠后;而乙的语文成绩排名比总成绩排名靠前,故填乙.②由图可知,比丙的数学成绩排名还靠后的人比较多;而总成绩的排名中比丙排名靠后的人数比较少,所以丙的数学成绩的排名更靠前,故填数学. 考点:散点图.三、解答题(本大题共6小题,共80分.解答须写出文字说明、证明过程和演算步骤.)15、(本小题满分13分)已知函数()2sin 2xf x x =-. (Ⅰ)求()f x 的最小正周期; (Ⅱ)求()f x 在区间20,3π⎡⎤⎢⎥⎣⎦上的最小值.【答案】(1)2π;(2).考点:倍角公式、两角和的正弦公式、三角函数的周期、三角函数的最值. 16、(本小题满分13分)已知等差数列{}n a 满足1210a a +=,432a a -=. (Ⅰ)求{}n a 的通项公式;(Ⅱ)设等比数列{}n b 满足23b a =,37b a =,问:6b 与数列{}n a 的第几项相等? 【答案】(1)42(1)22n a n n =+-=+;(2)6b 与数列{}n a 的第63项相等. 【解析】试题分析:本题主要考查等差数列、等比数列的通项公式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用等差数列的通项公式,将1234,,,a a a a 转化成1a 和d ,解方程得到1a 和d 的值,直接写出等差数列的通项公式即可;第二问,先利用第一问的结论得到2b 和3b 的值,再利用等比数列的通项公式,将2b 和3b 转化为1b 和q ,解出1b 和q 的值,得到6b 的值,再代入到上一问等差数列的通项公式中,解出n 的值,即项数.试题解析:(Ⅰ)设等差数列{}n a 的公差为d. 因为432a a -=,所以2d =.又因为1210a a +=,所以1210a d +=,故14a =. 所以42(1)22n a n n =+-=+ (1,2,)n =.(Ⅱ)设等比数列{}n b 的公比为q . 因为238b a ==,3716b a ==, 所以2q =,14b =.所以61642128b -=⨯=.由12822n =+,得63n =. 所以6b 与数列{}n a 的第63项相等. 考点:等差数列、等比数列的通项公式.17、(本小题满分13分)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(Ⅱ)估计顾客在甲、乙、丙、丁中同时购买3中商品的概率;(Ⅲ)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中那种商品的可能性最大? 【答案】(1)0.2;(2)0.3;(3)同时购买丙的可能性最大. 【解析】试题分析:本题主要考查统计表、概率等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,由统计表读出顾客同时购买乙和丙的人数200,计算出概率;第二问,先由统计表读出顾客在甲、乙、丙、丁中同时购买3中商品的人数100+200,再计算概率;第三问,由统计表读出顾客同时购买甲和乙的人数为200,顾客同时购买甲和丙的人数为100+200+300,顾客同时购买甲和丁的人数为100,分别计算出概率,再通过比较大小得出结论.试题解析:(Ⅰ)从统计表可以看出,在这1000位顾客中,有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2000.21000=. (Ⅱ)从统计表可以看出,在在这1000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为1002000.31000+=.(Ⅲ)与(Ⅰ)同理,可得:顾客同时购买甲和乙的概率可以估计为2000.21000=, 顾客同时购买甲和丙的概率可以估计为1002003000.61000++=,顾客同时购买甲和丁的概率可以估计为1000.11000=, 所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大. 考点:统计表、概率.18、(本小题满分14分)如图,在三棱锥V C -AB 中,平面V AB ⊥平面C AB ,V ∆AB 为等边三角形,C C A ⊥B 且C C A =B =O ,M 分别为AB ,V A 的中点.(Ⅰ)求证:V //B 平面C MO ;(Ⅱ)求证:平面C MO ⊥平面V AB ; (Ⅲ)求三棱锥V C -AB 的体积.【答案】(1)证明详见解析;(2)证明详见解析;(3【解析】试题分析:本题主要考查线线平行、线面平行、面面平行、线线垂直、线面垂直、面面垂直、三棱锥的体积公式等基础知识,考查学生的分析问题解决问题的能力、空间想象能力、逻辑推理能力、转化能力、计算能力.第一问,在三角形ABV 中,利用中位线的性质得//OM VB ,最后直接利用线面平行的判定得到结论;第二问,先在三角形ABC 中得到OC AB ⊥,再利用面面垂直的性质得OC ⊥平面VAB ,最后利用面面垂直的判定得出结论;第三问,将三棱锥进行等体积转化,利用C VAB V ABC V V --=,先求出三角形VAB 的面积,由于OC ⊥平面VAB ,所以OC 为锥体的高,利用锥体的体积公式计算出体积即可. 试题解析:(Ⅰ)因为,O M 分别为AB ,VA 的中点, 所以//OM VB . 又因为VB ⊄平面MOC , 所以//VB 平面MOC.(Ⅱ)因为AC BC =,O 为AB 的中点, 所以OC AB ⊥.又因为平面VAB ⊥平面ABC ,且OC ⊂平面ABC , 所以OC ⊥平面VAB. 所以平面MOC ⊥平面VAB.(Ⅲ)在等腰直角三角形ACB 中,AC BC ==所以2,1AB OC ==.所以等边三角形VAB 的面积VAB S ∆=又因为OC ⊥平面VAB ,所以三棱锥C-VAB 的体积等于133VAB OC S ∆⨯⨯=. 又因为三棱锥V-ABC 的体积与三棱锥C-VAB 的体积相等,所以三棱锥V-ABC . 考点:线线平行、线面平行、面面平行、线线垂直、线面垂直、面面垂直、三棱锥的体积公式.19、(本小题满分13分)设函数()2ln 2x f x k x =-,0k >. (Ⅰ)求()f x 的单调区间和极值;(Ⅱ)证明:若()f x 存在零点,则()f x 在区间(上仅有一个零点.【答案】(1)单调递减区间是,单调递增区间是)+∞;极小值(1ln )2k k f -=;(2)证明详见解析.所以,()f x 的单调递减区间是,单调递增区间是)+∞;()f x 在x =(1ln )2k k f -=.(Ⅱ)由(Ⅰ)知,()f x 在区间(0,)+∞上的最小值为(1ln )2k k f -=. 因为()f x 存在零点,所以(1ln )02k k -≤,从而k e ≥.当k e =时,()f x 在区间上单调递减,且0f =,所以x =()f x 在区间上的唯一零点.当k e >时,()f x 在区间上单调递减,且1(1)02f =>,02e kf -=<,所以()f x 在区间上仅有一个零点.综上可知,若()f x 存在零点,则()f x 在区间上仅有一个零点.考点:导数的运算、利用导数判断函数的单调性、利用导数求函数的极值和最值、函数零点问题.20、(本小题满分14分)已知椭圆C:2233x y +=,过点()D 1,0且不过点()2,1E 的直线与椭圆C 交于A ,B 两点,直线AE 与直线3x =交于点M .(Ⅰ)求椭圆C 的离心率;(Ⅱ)若AB 垂直于x 轴,求直线BM 的斜率;(Ⅲ)试判断直线BM 与直线D E 的位置关系,并说明理由.【答案】(1(2)1;(3)直线BM 与直线DE 平行. 【解析】 试题分析:本题主要考查椭圆的标准方程及其几何性质、直线的斜率、两直线的位置关系等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,先将椭圆方程化为标准方程,得到a ,b ,c 的值,再利用c e a=计算离心率;第二问,由直线AB 的特殊位置,设出A ,B 点坐标,设出直线AE 的方程,由于直线AE 与x=3相交于M 点,所以得到M 点坐标,利用点B 、点M 的坐标,求直线BM 的斜率;第三问,分直线AB 的斜率存在和不存在两种情况进行讨论,第一种情况,直接分析即可得出结论,第二种情况,先设出直线AB 和直线AE 的方程,将椭圆方程与直线AB 的方程联立,消参,得到12x x +和12x x ,代入到1BM k -中,只需计算出等于0即可证明BM DE k k =,即两直线平行.试题解析:(Ⅰ)椭圆C 的标准方程为2213x y +=.所以a =1b =,c =所以椭圆C的离心率c e a ==. (Ⅱ)因为AB 过点(1,0)D 且垂直于x 轴,所以可设1(1,)A y ,1(1,)B y -.直线AE 的方程为11(1)(2)y y x -=--.令3x =,得1(3,2)M y -.所以直线BM 的斜率112131BM y y k -+==-. (Ⅲ)直线BM 与直线DE 平行.证明如下:当直线AB 的斜率不存在时,由(Ⅱ)可知1BM k =.又因为直线DE 的斜率10121DE k -==-,所以//BM DE . 当直线AB 的斜率存在时,设其方程为(1)(1)y k x k =-≠.设11(,)A x y ,22(,)B x y ,则直线AE 的方程为1111(2)2y y x x --=--. 令3x =,得点1113(3,)2y x M x +--. 由2233(1)x y y k x ⎧+=⎨=-⎩,得2222(13)6330k x k x k +-+-=. 所以2122613k x x k +=+,21223313k x x k-=+.考点:椭圆的标准方程及其几何性质、直线的斜率、两直线的位置关系.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年普通高等学校招生全国统一考试.模拟信息卷数学(文科)教师用卷考试时间120分钟 满分150分 第Ⅰ卷(选择题 共60分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,选出符合题目要求的一项.)1. 已知i 是虚数单位,若复数(i)(2i)a +-是纯虚数,则实数a 等于A .2B .12C .12- D .2-【答案】C【解析】(i)(2i)2i 2i 1(2)i (12a)a a a a +-=-++=-++,他为纯虚数,所以实部为零,即1+2a=0,所以a=12-2. 已知133a -=,21211log ,log 33b c ==,则 ( )(A )a b c >> (B )a c b >> (C )c b a >> (D )c a b >> 【答案】D 【解析】1321122101,111log 0,log log 1,332..a b a c D -<∴<<<>=<<Q Q 0<3所以选3.己知命题“2,2(2)10x R x a x ∃∈+--<使”是假命题,则实数a 的取值范围是A. (,2)-∞-B.C.(6,)+∞D. (−2,6) 【答案】B【解析】命题“2,2(2)10x R x a x ∃∈+--<使”的否定为“2,2(2)10x R x a x ∀∈+--≥使”二次函数开口向上,要使它大于0恒成立,只需要0∆≤,即22(a 2)42412(a 6)(a 2)0a a -+⨯=-+=-+≤,26a ∴-≤≤4. 某几何体的正视图与侧视图都是边长为1的正方形,且体积为21,则该几何体的俯视图可以是( C)【答案】C【解析】 :当俯视图为A 时,几何体为正方体,体积为1,现体积为12,所以几何体为正方体的一半,选C5.下列命题中,,m n 表示两条不同的直线,,,αβγ表示三个不同的平面. ①若,,m n αα⊥P 则m n ⊥;②若,,αββγ⊥⊥则αβP ; ③若,,m m ααP P 则m n P ;④若,,m αββγα⊥P P 则m γ⊥则正确的命题是 A .①③ B .②③ C .①④ D .②④ 【答案】C【解析】①若若,,m n αα⊥P 则m n ⊥,正确②若,,αββγ⊥⊥则αβP ;不正确,,αβ可以相交,如长方体中 ③若,,m m ααP P 则m n P 不正确,m n 可以平行,异面,相交④若,,m αββγα⊥P P 则m γ⊥,,αββγP P ,则βαP ,又因为m α⊥所以m γ⊥,正确6. 函数()sin()f x A x ωϕ=+(其中A >0,2||πϕ<)的图象如图所示,为了得到()f x 的图象,则只需将()sin 2g x x =的图象A. 向右平移6π个长度单位B. 向左平移6π个长度单位C. 向右平移3π个长度单位 D. 向左平移3π个长度单位【答案】B【解析】有图可得, A=1,72,241234T T ππππππωω=-=∴=∴== yx7π12π3O -1将(,03π)代入(x)sin(2x )f ϕ=+中,可得233ππϕπϕ+=∴= (x)sin(2x )3f π∴=+7.||1,||,a b a b ==or r rr 且与的夹角为45当||a xb -r r 取得最小值时,实数x 的值为( )A.1B.2C.12 D.14【答案】C【解析】:由题意可知:222222||()21221cos 45112212()22a xb a xb xa b x x x x x -=+-=+-创=-+=-+or r r r r r g所以x=12时,原式最小。
8.程序框图如图所示,若输出结果S 是( )A.55B.91C.140D.204【答案】B【解析】由题意可知:2222212345691s =+++++=9.已知函数⎩⎨⎧≥-<+--=)0)(1()0(2)(2x x f x a x x x f ,且函数x x f y -=)(恰有3个不同的零点,则实数a 的取值范围是A. ),0(+∞B. )0,1[-C. ),1[+∞-D. ),2[+∞- 【答案】C【解析】因为当0x ≥的时候,()(1)f x f x =-,所以所有大于等于0的x 代入得到的()f x 相当于在10. 给出下列命题:(1)某班级一共有53名同学,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知8号,34号,47号同学在样本中,那么样本中另一位同学的编号为22号;(2)一组数据1,2,3,3,4,,5的平均数、众数、中位数都相同;(3)一组数据为a ,0,1,2,3,若改组数据的平均值为1,则样本标准差为2; (4)根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为ˆya bx =+中,b=2,x=1,y=3,则a=1; 其中真命题为:A(1)(2) B(2)(3) C(2)(4) D(3)(4)【答案】D【解析】系统抽样抽得的号码成等差数列,故(1)为假命题;由定义知(2)为真命题;由a ,0,1,2,3,的平均值为1可求得a=-1,故样本方差为2,标准差为2,(3)位假命题;根据定义回归直线过样本中心,带入可求得a=1,所以(4)为真命题。
11.若函数()32 231,0,0a x x x x f x e x ⎧++≤⎪=⎨>⎪⎩ 在区间[]2,2-上的最大值为2,则实数a 的取值范围是( )A . 1ln 22⎡⎫+∞⎪⎢⎣⎭,B . 10ln 22⎡⎤⎢⎥⎣⎦,C . (],0-∞D . 1ln 22⎛⎤∞ ⎥⎝⎦-,【答案】C【解析】 作出函数f(x)=2x 3+3x 2+1,(x ≤0)的图像,当a<0时,f(x)=e ax 在(0,+)为减函数,符合题意,当a=0时,f(x)=1,符合题意,当a>0时,f(x)=e ax 在(0,+)为境函数,∴f(2)=e 2a ≤2,∴a ≤12ln2,∴a ∈1ln 22⎛⎤∞ ⎥⎝⎦-, 12. 已知函数f(x)32()(6)1f x x ax a x =++++有极大值和极小值,则实数a 的取值范围为( )A (-1,2)B (,3)(6.)-???C (-3,6)D (,1)(2)-???【答案】B.【解析】 '22()326,=412(6)0,f x x ax a a a =+++D -+>由题意可得解得a 的取值范围为(,3)(6.)-???。
第II 卷(非选择题 共90分)二、填空题(本大题共5小题,每小题5分,共20分. )13. 已知数列121,,,8a a 是等差数列,数列1231,,,,16b b b 是等比数列,则212b a a +的值为 .【答案】310【解析】121,,,8a a Q 12189a a ∴+=+=,1231,,,,16b b b Q2211616b ∴=⨯=,在等比数列里,隔项的符号相同24b ∴=21249b a a ∴=+ xyO14.若关于x,y的不等式组0,,10xy xkx y≥⎧⎪≥⎨⎪-+≥⎩(k是常数)所表示的平面区域的边界是一个直角三角形,则k= .【答案】-1或0【解析】作出不等式组0,,10xy xkx y≥⎧⎪≥⎨⎪-+≥⎩表示的区域如下图所示,由图可知,要使平面区域的边界是一个直角三角形,则k=0或1.15.在直角三角形ABC中,90ACB∠=︒,2AC BC==,点P是斜边AB上的一个三等分点,则CP CB CP CA⋅+⋅=u u u r u u u r u u u r u u u r.【答案】4【解析】:由于点P是斜边AB上的一个三等分点,不妨设13AP AB=u u u r u u u r,将CPuu u r改写为1121()3333CP CA AP CA AB CA CB CA CA CB=+=+=+-=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,再利用90ACB∠=o,于是0CA CB⋅=u u u r u u u r,又根据2CA CB==,因此222121()()()43333CP CB CP CA CP CB CA CA CB CB CA CA CB ⋅+⋅=⋅+=++=+=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r16. 给出定义:若11< +22m x m-≤(其中m为整数),则m叫做离实数x最近的整数,记作{}x,即{}=x m. 在此基础上给出下列关于函数()={}f x x x-的四个命题:①点(,0)k是=()y f x的图像的对称中心,其中k Z∈;②=()y f x 的定义域是R ,值域是11(,]22-;③函数=()y f x 的最小正周期为1;④ 函数=()y f x 在13(,]22-上是增函数.则上述命题中真命题的序号是 . 【答案】②③【解析】:结合已知函数若11< +22m x m -≤(其中m 为整数),则m 叫做离实数x 最近的整数,记作{}x ,即{}=m x .①函数y=f(x)的定义域是R ,值域是11(-,]22;成立,②函数y=f(x)的图像关于点(2k,0)(k ∈Z)对称;不成立, ③函数y=f(x)是周期函数,最小正周期是1;成立,④ 函数y=f(x)在11[-,]22上是增函数;不成立,.三、解答题(本大题共6小题,共70分.) 17.(本小题满分12分)某中学共有1000名文科学生参加了该市高三第一次质量检查的考试,其中数学成绩数学成绩分组[50,70) [70,90)[90,110) [110,130) 人数60x400360100(Ⅰ)为了了解同学们前段复习的得失,以便制定下阶段的复习计划,年级将采用分层抽样的方法抽取100名同学进行问卷调查. 甲同学在本次测试中数学成绩为75分,求他被抽中的概率;(Ⅱ)年级将本次数学成绩75分以下的学生当作“数学学困生”进行辅导,请根据所提供数据估计“数学学困生”的人数;(III )请根据所提供数据估计该学校文科学生本次考试的数学平均分.【答案】(Ⅰ)P =110,(Ⅱ)80,(III )107.2【解析】(Ⅰ)分层抽样中,每个个体被抽到的概率均为:样本容量总体中个体总数,故甲同学被抽到的概率P =110.....................4分 (Ⅱ)由题意得x =1 000-(60+400+360+100)=80. (6)分设估计“数学学困生”人数为m16080804m =+⨯=. 故估计该中学“数学学困生”人数为80人 ……………………8分 (III )该学校本次考试的数学平均分.60608080100400120360140100107.21000x ⨯+⨯+⨯+⨯+⨯==估计该学校本次考试的数学平均分为107.2分. ……………12分18.(本小题满分12分)若盒中装有同一型号的灯泡共10只,其中有8只合格品,2只次品。