自动控制1(里面包含全部考点)

合集下载

自动控制原理知识点

自动控制原理知识点

第一节自动控制的基本方式一、两个定义:(1)自动控制:在没有人直接参与的情况下,利用控制装置使某种设备、装置或生产过程中的某些物理量或工作状态能自动地按照预定规律变化或数值运行的方法,称为自动控制。

(2)自动控制系统:由控制器(含测量元件)和被控对象组成的有机整体。

或由相互关联、相互制约、相互影响的一些元部件组成的具有自动控制功能的有机整体。

称为自动控制系统。

在控制系统中,把影响系统输出量的外界输入量称为系统的输入量。

系统的输入量,通常指两种:给定输入量和扰动输入量。

给定输入量,又常称为参考较输入量,它决定系统输出量的要求值或某种变化规律。

扰动输入量,又常称为干扰输入量,它是系统不希望但又客观存在的外部输入量,例如,电源电压的波动、环境温度的变化、电动机拖动负载的变化等,都是实际系统中存在的扰动输入量。

扰动输入量影响给定输入量对系统输出量的控制。

自动控制的基本方式二、基本控制方式(3种)1、开环控制方式(1)定义:控制系统的输出量对系统不产生作用的控制方式,称为开环控制方式。

具有这种控制方式的有机整体,称为开环控制系统。

如果从系统的结构角度看,开环控制方式也可表达为,没有系统输出量反馈的控制方式。

(2)职能方框图任何开环控制系统,从组成系统元部件的职能角度看,均可用下面的方框图表示。

2、闭环控制方式(1) 定义:系统输出量直接或间接地反馈到系统的输入端,参予了系统控制的方式,称为闭环控制方式。

如果从系统的结构看,闭环控制方式也可表达为,有系统输出量反馈的控制方式。

自动控制的基本方式工作原理开环调速结构基础上引入一台测速发电机,作为检测系统输出量即电动机转速并转换为电压。

反馈电压与给定电压比较(相减)后,产生一偏差电压,经电压和功率放大器放大后去控制电动机的转速。

当系统处于稳定运行状态时,电动机就以电位器滑动端给出的电压值所对应的希望转速运行。

当系统受到某种干扰时(例如负载变大),电动机的转速会发生变化(下降),测速反馈电压跟着变化(变小),由于给定电压值未变,偏差电压值发生变化(变大),经放大后使电动机电枢电压变化(提高),从而电动机转速也变化(上升),去减小或消除由于干扰引起的转速偏差。

自动控制原理知识点复习资料整理

自动控制原理知识点复习资料整理

自动控制原理知识点总结第一章1、自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。

2、被控制量:在控制系统中.按规定的任务需要加以控制的物理量。

3、控制量:作为被控制量的控制指令而加给系统的输入星.也称控制输入。

4、扰动量:干扰或破坏系统按预定规律运行的输入量,也称扰动输入或干扰掐入。

5、反馈:通过测量变换装置将系统或元件的输出量反送到输入端,与输入信号相比较。

反送到输入端的信号称为反馈信号。

6、负反馈:反馈信号与输人信号相减,其差为偏差信号。

7、负反馈控制原理:检测偏差用以消除偏差。

将系统的输出信号引回插入端,与输入信号相减,形成偏差信号。

然后根据偏差信号产生相应的控制作用,力图消除或减少偏差的过程。

8、自动控制系统的两种常用控制方式是开环控制和闭环控制。

9、开环控制:控制装置与受控对象之间只有顺向作用而无反向联系特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。

10、闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。

主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。

11、控制系统的性能指标主要表现在:(1)、稳定性:系统的工作基础。

(2)、快速性:动态过程时间要短,振荡要轻。

(3)、准确性:稳态精度要高,误差要小。

12、实现自动控制的主要原则有:主反馈原则、补偿原则、复合控制原则。

第二章1、控制系统的数学模型有:微分方程、传递函数、动态结构图、频率特性。

2、传递函数:在零初始条件下,线性定常系统输出量的拉普拉斯变换域系统输入量的拉普拉斯变换之比3、求传递函数通常有两种方法:对系统的微分方程取拉氏变换,或化简系统的动态方框图。

对于由电阻、电感、电容元件组成的电气网络,一般采用运算阻抗的方法求传递函数。

4、结构图的变换与化简化简方框图是求传递函数的常用方法。

《自动控制原理》课程考试复习要点

《自动控制原理》课程考试复习要点

《自动控制原理》课程考试复习要点第1章控制原理绪论一、主要内容1、自动控制的概念,控制系统中各部分名称及概念2、开环控制于闭环控制的区别,负反馈原理3、系统的分类4、方框图绘制(原理图)5、对自动控制系统的一般要求(稳、准、快)二、自动控制概念中的基本知识点1、闭环系统(或反馈系统)的特征:采用负反馈,系统的被控变量对控制作用有直接影响,即被控变量对自己有控制作用。

2、典型闭环系统的功能框图。

自动控制在没有人直接参与的情况下,通过控制器使被控对象或过程按照预定的规律运行。

自动控制系统由控制器和被控对象组成,能够实现自动控制任务的系统。

被控制量在控制系统中.按规定的任务需要加以控制的物理量。

控制量作为被控制量的控制指令而加给系统的输入星.也称控制输入。

扰动量干扰或破坏系统按预定规律运行的输入量,也称扰动输入或干扰掐入。

反馈通过测量变换装置将系统或元件的输出量反送到输入端,与输入信号相比较。

反送到输入端的信号称为反馈信号。

负反馈反馈信号与输人信号相减,其差为偏差信号。

负反馈控制原理检测偏差用以消除偏差。

将系统的输出信号引回插入端,与输入信号相减,形成偏差信号。

然后根据偏差信号产生相应的控制作用,力图消除或减少偏差的过程。

开环控制系统系统的输入和输出之间不存在反馈回路,输出量对系统的控制作用没有影响,这样的系统称为开环控制系统。

开环控制又分为无扰动补偿和有扰动补偿两种。

闭环控制系统凡是系统输出端与输入端存在反馈回路,即输出量对控制作用有直接影响的系统,叫作闭环控制系统。

自动控制原理课程中所讨论的主要是闭环负反馈控制系统。

复合控制系统复合控制系统是一种将开环控制和闭环控制结合在一起的控制系统。

它在闭环控制的基础上,用开环方式提供一个控制输入信号或扰动输入信号的顺馈通道,用以提高系统的精度。

自动控制系统组成组成一个自动控制系统通常包括以下基本元件1.给定元件给出与被控制量希望位相对应的控制输入信号(给定信号),这个控制输入信号的量纲要与主反馈信号的量纲相同。

(完整版)自动控制原理知识点总结

(完整版)自动控制原理知识点总结

@~@自动控制原理知识点总结第一章1.什么是自动控制?(填空)自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。

2.自动控制系统的两种常用控制方式是什么?(填空)开环控制和闭环控制3.开环控制和闭环控制的概念?开环控制:控制装置与受控对象之间只有顺向作用而无反向联系特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。

闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。

主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。

掌握典型闭环控制系统的结构。

开环控制和闭环控制各自的优缺点?(分析题:对一个实际的控制系统,能够参照下图画出其闭环控制方框图。

)4.控制系统的性能指标主要表现在哪三个方面?各自的定义?(填空或判断)(1)、稳定性:系统受到外作用后,其动态过程的振荡倾向和系统恢复平衡的能力(2)、快速性:通过动态过程时间长短来表征的e来表征的(3)、准确性:有输入给定值与输入响应的终值之间的差值ss第二章1.控制系统的数学模型有什么?(填空)微分方程、传递函数、动态结构图、频率特性2.了解微分方程的建立?(1)、确定系统的输入变量和输入变量(2)、建立初始微分方程组。

即根据各环节所遵循的基本物理规律,分别列写出相应的微分方程,并建立微分方程组(3)、消除中间变量,将式子标准化。

将与输入量有关的项写在方程式等号的右边,与输出量有关的项写在等号的左边3.传递函数定义和性质?认真理解。

(填空或选择)传递函数:在零初始条件下,线性定常系统输出量的拉普拉斯变换域系统输入量的拉普拉斯变换之比5.动态结构图的等效变换与化简。

三种基本形式,尤其是式2-61。

主要掌握结构图的化简用法,参考P38习题2-9(a)、(e)、(f)。

(化简)等效变换,是指被变换部分的输入量和输出量之间的数学关系,在变换前后保持不变。

自动控制原理知识点

自动控制原理知识点

自动控制原理知识点自动控制原理是研究如何有效地对系统进行控制的一门学科。

以下是一些与自动控制原理相关的知识点:1. 控制系统:自动控制原理研究的对象是各类控制系统。

控制系统通常由输入、输出、执行器和传感器组成。

输入是系统的控制命令,输出是系统的控制结果。

执行器根据输入控制命令来执行相应的动作,传感器用于检测系统的状态并将信息反馈给控制器。

2. 控制器:控制器是控制系统中的关键部分,用于决定执行器的控制命令。

常见的控制器包括比例控制器(P控制器)、积分控制器(I控制器)和微分控制器(D控制器)。

这些控制器可以根据系统的需求进行组合以实现更好的控制效果。

3. 反馈:自动控制原理中的一个重要概念是反馈。

反馈是通过传感器将系统的实际输出信息反馈给控制器,以便控制器可以根据实际输出对控制命令进行调整。

反馈可以帮助控制系统实现更准确、稳定的控制。

4. 控制策略:控制系统可以采用不同的控制策略来实现不同的控制目标。

常见的控制策略包括比例控制、积分控制、微分控制、比例-积分控制、比例-微分控制和模糊控制等。

每种控制策略都有其特定的适用场景和优缺点。

5. 系统建模:在进行自动控制设计之前,需要对要控制的系统进行建模。

系统建模可以分为传递函数模型和状态空间模型两种。

传递函数模型通常用于线性系统,而状态空间模型适用于线性和非线性系统。

6. 频域分析:频域分析是自动控制原理中常用的分析方法之一,用于理解系统的频率响应特性。

常见的频域分析方法包括频率响应曲线、Bode图和Nyquist图等。

7. 闭环控制与开环控制:自动控制系统可以分为闭环控制和开环控制两种。

闭环控制中,系统的输出信息被反馈给控制器,以便对控制命令进行调整,以达到系统要求的性能。

而开环控制中没有反馈,系统的控制命令只基于输入信号来决定。

8. 鲁棒控制:鲁棒控制是自动控制原理中一种可以应对系统参数变化、外界扰动等不确定性因素的控制方法。

鲁棒控制可以提高系统的稳定性和抗干扰能力。

自动控制原理知识点

自动控制原理知识点

自动控制原理知识点自动控制原理是探讨如何利用各种力量和手段来控制和调节物体或者系统的运行状态的学科。

它是现代科学技术以及工程实践的重要基础,广泛应用于机械、电气、化工、航空航天等领域。

下面将详细介绍自动控制原理的几个重要知识点。

1.控制系统的组成和基本原理控制系统由输入、处理器、输出和反馈四个基本部分组成。

输入是所要控制的物理量或信号,处理器是处理输入信号的部分,输出是系统输出的目标物理量或信号,反馈将输出信号与输入信号进行比较并反馈给处理器进行调节。

控制系统的基本原理是通过调节输入信号,通过反馈来使系统的输出达到期望值。

2.传递函数和状态空间法传递函数是描述线性系统输入输出关系的函数,它是一个复变量的函数。

通过传递函数可以对系统的动态特性进行分析和设计。

状态空间法是一种描述系统行为的方法,用状态向量和状态方程来描述系统的动态特性和稳定性。

3.PID控制器PID控制器是最常见的一种控制器,它由比例(P)、积分(I)和微分(D)三个部分组成。

比例部分使控制器的输出与误差成正比,积分部分用于处理系统的静差,微分部分用于预测系统未来的状态。

通过调节PID控制器的参数,可以实现系统的稳定性和响应速度的优化。

4.反馈控制反馈控制是将系统的输出信号反馈给系统的输入端进行调节的一种控制方式。

反馈控制可以使系统对扰动具有一定的鲁棒性,能够提高系统的稳定性和减小误差。

5.系统稳定性和瞬态响应系统稳定性是指当系统输入和参数在一定范围内变化时,系统输出是否会有无穷大的增长。

常用的判断系统稳定性的方法有稳定判据和根轨迹法。

瞬态响应是系统在调节过程中输出的变化过程,包括超调量、调节时间、稳态误差等指标。

6.系统优化和自适应控制系统优化是指通过调节系统参数使系统达到最佳性能的过程。

自适应控制是指系统能够根据外部环境和内部参数的变化自主调整控制策略的过程。

优化和自适应控制可以使系统具有更好的鲁棒性和适应能力。

7.数字控制系统数字控制系统是利用数字计算和逻辑运算进行控制的一种控制方式。

自动控制原理部分重点

自动控制原理部分重点

自动控制原理重点第一章自动控制系统的基本概念第二节闭环控制系统的基本组成1、基本组成结构方块图如图所示2、基本元部件:(1)控制对象:进行控制的设备或过程。

(工作机械)(2)执行机构:执行机构直接作用于控制对象。

(电动机)(3)检测装置:用来检测被控量,并将其转换成与给定量相同的物理量(测速发电机)(4)中间环节:一般指放大元件。

(放大器,可控硅整流功放)(5)给定环节:设定被控量的给定值。

(电位器)(6)比较环节:将所测的被控量与给定量比较,确定两者偏差量。

(7)校正环节:用于改善系统性能。

校正环节可加于偏差信号与输出信号之间的通道内,也可加于某一局部反馈通道内。

前者称为串联校正,后者称为并联校正或反馈校正。

第三节自控控制系统的分类一、按数学描述形式分类:1.线性系统和非线性系统(1)线性系统:用线性微分方程或线性差分方程描述的系统。

(2)非线性系统:用非线性微分方程或差分方程描述的系统。

2.连续系统和离散系统(1)连续系统:系统中各元件的输入量和输出量均为时间t的连续函数。

连续系统的运动规律可用微分方程描述,系统中各部分信号都是模拟量。

(2)离散系统:系统中某一处或几处的信号是以脉冲系列或数码的形式传递的系统。

离散系统的运动规律可以用差分方程来描述。

计算机控制系统就是典型的离散系统。

二、按给定信号分类(1)恒值控制系统:给定值不变,要求系统输出量以一定的精度接近给定希望值的系统。

如生产过程中的温度、压力、流量、液位高度、电动机转速等自动控制系统属于恒值系统。

(2)随动控制系统:给定值按未知时间函数变化,要求输出跟随给定值的变化。

如跟随卫星的雷达天线系统。

(3)程序控制系统:给定值按一定时间函数变化。

如程控机床。

第四节对控制系统的基本要求对控制系统的基本要求归纳为稳定性、动态特性和稳态特性三个方面1、系统的暂态过程2、稳定性3、动态特性4、稳态特性值得注意的是,对于同一个系统体现稳定性、动态特性和稳态特性的稳、快、准这三个要求是相互制约的。

自动控制原理知识点总结(通用4篇)

自动控制原理知识点总结(通用4篇)

自动控制原理知识点总结第1篇频率特性分为两种,分别是A(ω) 幅频特性和 φ(ω) 相频特性。

对于一个一阶线性定常系统对正弦输入信号 Asinωt 的稳态输出 Ysin(ωt +ψ) ,仍是一个正弦信号,其特点:①频率与输入信号相同;②振幅 Y为输入振幅A的 |G(jω)| 倍;③相移为 ψ = ∠G(jω)。

振幅 Y 和相移 ψ都是输入信号频率 ω 的函数,对于确定的 ω 值来说,振幅Y和相移 ψ 都将是常量。

|G(jω)| = Y / A 正弦输出对正弦输入的幅值比—幅频特性∠G(jω) = ψ正弦输出对正弦输入的相移—相频特性理论上可将频率特性的概念推广的不稳定系统,但是,系统不稳定时,瞬态分量不可能消失,它和稳态分量始终同时存在,所以,不稳定系统的频率特性是观察不到的。

(1)幅相曲线:对于一个确定的频率,必有一个幅频特性的幅值和一个幅频特性的相角与之对应,幅值与相角在复平面上代表一个向量。

当频率ω从零变化到无穷时,相应向量的矢端就描绘出一条曲线。

这条曲线就是幅相频率特性曲线,简称幅相曲线。

(2)幅频特性曲线:对数幅频特性曲线又称为伯德图(曲线)。

对数频率特性曲线的横坐标是频率 ω ,并按对数分度,单位是[rad/s] .对数幅频曲线的纵坐标表示对数幅频特性的函数值,线性分度,单位是[dB],此坐标系称为半对数坐标系。

对数相频特性曲线的纵坐标表示相频特性的函数值,线性分度 , 单位是 (0) 或(弧度),频率特性G(jω) 的对数幅频特性定义如下 L(ω) = 20lg |G(jω)| 对数分度优点:扩大频带、化幅值乘除为加减、易作近似幅频特性曲线图。

(3)对数幅相曲线(又称尼柯尔斯曲线):其特点是纵、横坐标都线性分度,对数幅相图的横坐标表示对数相频特性的相角,纵坐标表示对数幅频特性的幅值的分贝数。

自动控制原理知识点总结第2篇一阶系统的数学模型(1)单位阶跃响应——输入 r(t) = 1(t),输出 h(t) = 1 - e-t/T, t >0 特点:●可以用时间常数去度量系统的输出量的数值。

自动控制原理知识点总结

自动控制原理知识点总结

自动控制原理知识点总结一、自动控制系统的基本概念自动控制,简单来说,就是在没有人直接参与的情况下,通过控制器使被控对象按照预定的规律运行。

一个典型的自动控制系统通常由控制对象、控制器、测量元件和执行机构等部分组成。

控制对象就是我们要控制的那个东西,比如一个电机、一个温度场或者一个生产过程。

控制器则是根据输入的偏差信号,按照一定的控制规律产生控制作用,去驱动执行机构。

测量元件负责测量被控量,并将其转化为电信号反馈给控制器。

执行机构接受控制器的控制信号,对控制对象施加作用。

自动控制系统按照有无反馈可以分为开环控制系统和闭环控制系统。

开环控制系统的输出量对系统的控制作用没有影响,结构相对简单,但控制精度较低。

闭环控制系统则将输出量反馈回来与给定值进行比较,形成偏差,然后根据偏差来调整控制作用,因此控制精度高,但系统相对复杂,可能会出现稳定性问题。

二、控制系统的数学模型要对一个控制系统进行分析和设计,首先要建立它的数学模型。

数学模型就是用数学语言来描述系统的输入、输出和内部状态之间的关系。

常见的数学模型有微分方程、传递函数和状态空间表达式。

微分方程是最基本的描述形式,但求解比较复杂。

传递函数则是在零初始条件下,输出量的拉普拉斯变换与输入量的拉普拉斯变换之比。

它可以方便地分析系统的频率特性和稳定性。

状态空间表达式则能更全面地描述系统的内部状态和动态特性。

建立数学模型的方法有分析法和实验法。

分析法是根据系统的物理规律和结构,推导出数学方程。

实验法则是通过对系统施加输入信号,测量输出响应,然后用系统辨识的方法得到数学模型。

三、控制系统的时域分析时域分析是直接在时间域上研究系统的性能。

主要的性能指标有稳态误差、上升时间、峰值时间、调节时间和超调量。

稳态误差反映了系统的准确性,它与系统的类型和输入信号的形式有关。

对于单位阶跃输入, 0 型系统有稳态误差,1 型及以上系统稳态误差为零。

上升时间、峰值时间和调节时间反映了系统的快速性。

自动控制原理知识点归纳

自动控制原理知识点归纳

自动控制原理知识点归纳1.控制系统的基本概念:-控制对象:需要被控制的对象,可以是一个物理系统、电子设备或生产工艺等。

-控制器:用于监测和调节控制对象的设备或程序,根据输入信号产生输出信号以实现控制。

-反馈:通过采集控制对象的输出信息,并与给定的参考信号进行比较,形成误差信号,作为控制器的输入信号。

-开环控制和闭环控制:开环控制仅根据输入信号直接控制对象,闭环控制则根据反馈信号和误差信号来调节控制器的输出信号。

2.控制系统的数学模型:-状态空间模型:使用微分方程或差分方程描述控制对象的状态变化及其对输入和输出的影响。

-传递函数模型:通过拉普拉斯变换将控制系统描述为输入和输出之间的传递函数。

传递函数描述了系统对输入信号的响应过程。

3.控制系统的稳定性分析:-稳定性定义:稳定性是指控制系统的输出在无穷远处有一个有限的稳定值或震荡在一些范围内。

-稳定性判据:利用特征方程的根的位置或特征值来判断控制系统的稳定性。

- 稳定性分析方法:Bode图法、Nyquist图法、根轨迹法等。

4.控制系统的性能指标:-响应速度:指控制系统从输入信号发生变化到输出信号稳定在其稳定值所需要的时间。

-精度:指控制系统输出信号与给定信号的误差大小。

-稳定度:指控制系统输出信号在稳定状态下的波动程度。

-鲁棒性:指控制系统对参数变化、外部扰动和测量误差的抗干扰能力。

5.控制器的设计方法:-比例控制器:根据误差信号的大小,直接乘以比例系数后作为控制器的输出信号。

-积分控制器:根据误差信号的积分值,乘以积分系数后作为控制器的输出信号,用于消除系统的稳态误差。

-微分控制器:根据误差信号的变化率,乘以微分系数后作为控制器的输出信号,用于提高系统的快速响应能力。

6.控制系统的频域分析:-频率响应:描述控制系统在不同频率下对输入信号的变化如何进行响应的性能。

-奈奎斯特稳定判据:通过绘制控制系统的奈奎斯特曲线,判断系统的稳定性和相位裕度。

-传递函数:利用拉普拉斯变换将控制系统描述为输入和输出之间的传递函数,从而分析系统的频率特性。

自动控制复习提纲(考点大全)

自动控制复习提纲(考点大全)

第一章自动控制的一般概念知识点:控制系统的一般概念:名词术语、控制系统的分类、组成典型外作用、对控制系统的基本要求基本要求:掌握反馈控制的基本原理。

根据系统工作原理图绘制方块图主要考点本章所涉及的自动控制方面的基本概念,是以后课程学习的基础,有关内容在诸如问答、填空和选择类型的考题中常会涉及。

在掌握基本概念的基础上,还应熟悉线性定常系统微分方程的特点,并通过练习,掌握由系统工作原理图画出方框图的方法。

第二章控制系统的数学模型知识点:控制系统动态微分方程的建立、拉普拉斯变换法求解线性微分方程的零初态响应与零输入响应运动模态的概念、传递函数的定义和性质、典型元部件传递函数的求法系统结构图的绘制、等效变换、梅森公式在结构图和信号流图中的应用基本要求:利用复阻抗的概念建立无源网络的结构图;利用复阻抗的概念建立有源网络的传递函数熟悉控制系统常用元部件的传递函数掌握控制系统结构图的绘制方法及串联、并联、反馈三种基本等效变换用等效变换方法或梅森公式求系统结构图或信号流图的各种传递函数主要考点建立控制系统的微分方程;传递函数的概念;结构图等效变换及求复杂系统的传递函数。

例1:试用结构图等效化简下图系统的传递函数例2: 两级RC滤波网络的结构图如图所示,试采用结构图等效变换法化简结构图。

步骤一: 向左移出相加点,向右移出分支点步骤二:化简两个内部回路,合并反馈支路步骤三: 反馈回路化简例3:系统结构图如下,求传递函数[解]:结构图等效变换如下:例4: 已知系统方程组如下,试绘制系统结构图,并求闭环传递函数 。

⎪⎪⎩⎪⎪⎨⎧=-=-=--=)()()()()]()()([)()]()()()[()()()]()()[()()()(3435233612287111s X s G s C s G s G s C s X s X s X s G s X s G s X s C s G s G s G s R s G s X 解 : 系统结构图如下图所示。

自动控制原理知识点

自动控制原理知识点

第一章自动控制的一般概念1.1 自动控制的基本原理与方式1、自动控制、系统、自动控制系统◎自动控制:是指在没有人直接参与的情况下,利用外加的设备或装置(称控制装置或控制器),使机器、设备或生产过程(统称被控对象)的某个工作状态或参数(即被控量)自动地按照预定的规律(给定值)运行。

◎系统:是指按照某些规律结合在一起的物体(元部件)的组合,它们相互作用、相互依存,并能完成一定的任务。

◎自动控制系统:能够实现自动控制的系统就可称为自动控制系统,一般由控制装置和被控对象组成。

除被控对象外的其余部分统称为控制装置,它必须具备以下三种职能部件。

•测量元件:用以测量被控量或干扰量。

•比较元件:将被控量与给定值进行比较。

•执行元件:根据比较后的偏差,产生执行作用,去操纵被控对象。

参与控制的信号来自三条通道,即给定值、干扰量、被控量。

2、自动控制原理及其要解决的基本问题◎自动控制原理:是研究自动控制共同规律的技术科学。

而不是对某一过程或对象的具体控制实现(正如微积分是一种数学工具一样)。

◎解决的基本问题:•建模:建立系统数学模型(实际问题抽象,数学描述)•分析:分析控制系统的性能(稳定性、动/稳态性能)•综合:控制系统的综合与校正——控制器设计(方案选择、设计)3、自动控制原理研究的主要内容4、室温控制系统5、控制系统的基本组成◎被控对象:在自动化领域,被控制的装置、物理系统或过程称为被控对象(室内空气)。

◎控制装置:对控制对象产生控制作用的装置,也称为控制器、控制元件、调节器等(放大器)。

◎执行元件:直接改变被控变量的元件称为执行元件(空调器)。

◎测量元件:能够将一种物理量检测出来并转化成另一种容易处理和使用的物理量的装置称为传感器或测量元件(热敏电阻)。

◎比较元件:将测量元件和给定元件给出的被控量实际值与参据量进行比较并得到偏差的元件。

◎放大元件:放大偏差信号的元件。

◎校正元件(补偿元件):结构参数便于调整的元件,用于改善系统性能。

自动控制原理总经典总结

自动控制原理总经典总结

自动控制原理总经典总结《自动控制原理》总复习控制线性非线连续离散描述函相平面建模-时域法串联(频率法)建模-求稳定性负倒描述函数曲线自振点振幅、频绘制相求奇点和极限环求运动校正第一章 自动控制的基本概念一、学习要点1. 自动控制基本术语:自动控制、系统、自动控制系统、被控量、输入量、干扰量、受控对象、控制器、反馈、负反馈控制原理等。

2. 控制系统的基本方式:①开环控制系统;②闭环控制系统;③复合控制系统。

3. 自动控制系统的组成:由受控对象和控制器组成。

4. 自动控制系统的类型:从不同的角度可以有不同的分法,常有:恒值系统与随动系统;线性系统与非线性系统;连续系统与离散系统;定常系统与时变系统等。

5. 对自动控制系统的基本要求:稳、快、准。

6. 典型输入信号:脉冲、阶跃、斜坡、抛物线、正弦。

二、基本要求1. 对反馈控制系统的基本控制和方法有一个全面的、整体的了解。

2. 掌握自动控制系统的基本概念、术语,了解自动控制系统的组成、分类,理解对自动控制系统稳、准、快三方面的基本要求。

3. 了解控制系统的典型输入信号。

4. 掌握由系统工作原理图画方框图的方法。

三、内容结构图自动控制的由系统工作原对控制系统常用术语、基本控反馈控制系控制系控制系四、知识结构图第二章 控制系统的数学模型一、学习要点1.数学模型的数学表达式形式(1)物理系统的微分方程描述;(2)数学工具—拉氏变换及反变换; (3)传递函数及典型环节的传递函数;(4)脉冲响应函数及应用。

2.数学模型的图形表示(1)结构图及其等效变换,梅逊公式的应用;(2)信号流图及梅逊公式的应用。

二、基本要求1、正确理解数学模型的特点,对系统的相似性、简化性、动态模型、静态模型、输入变 量、输出变量、中间变量等概念,要准确掌握。

2、了解动态微分方程建立的一般方法及小偏差线性化的方法。

3、掌握运用拉氏变换解微分方程的方法,并对解的结构、运动模态与特征根的关系、零输入 响应、零状态响应等概念有清楚的理解。

自动控制原理基本知识点

自动控制原理基本知识点

自动控制原理基本知识点1.控制系统的基本组成和结构:自动控制系统一般由被控对象、传感器、控制器和执行器组成。

被控对象是需要控制的物理系统,传感器用于采集被控对象的参数信息,控制器根据采集到的参数信息进行计算和控制命令的输出,执行器负责根据控制命令对被控对象进行操作。

2.控制器的种类和工作原理:常见的控制器有比例控制器、积分控制器、微分控制器和PID控制器等。

比例控制器的输出与被控对象的参数成比例,用于消除静差;积分控制器的输出与被控对象参数的积分值成正比,用于消除稳态误差;微分控制器的输出与被控对象参数的变化率成正比,用于提高系统的动态响应速度;PID控制器是由比例、积分和微分控制器组成的综合控制器,可以在一定程度上综合利用比例、积分和微分控制器的优点。

3.系统的稳定性和稳定裕度:在自动控制系统中,稳定性是一个重要的性能指标。

系统稳定性的判据是该系统在无限时间内的响应能否在有限范围内振荡或逐渐衰减趋于平衡态。

稳定裕度是指系统实际稳定边界与临界稳定边界之间的差值,用于评估系统稳定性的好坏。

较大的稳定裕度意味着系统对参数变化和负载干扰具有较强的抵抗能力。

4.控制系统的性能指标:自动控制系统的性能指标包括稳态误差、动态响应和抗干扰能力等。

稳态误差是指系统在稳定工作状态下与期望值之间的差别,可以通过选择合适的控制器和调节参数来降低;动态响应是指系统在受到扰动或控制命令改变时,恢复到新的稳定状态所需的时间和过程,可以通过调节控制器的参数来提高;抗干扰能力是指系统对于外部干扰的响应能力,可以通过增加控制器的增益和改进控制策略来改善。

5.开环控制和闭环控制:自动控制系统可以分为开环控制和闭环控制两种模式。

开环控制是指输出量不通过传感器进行反馈,仅根据期望输入和系统模型进行控制。

闭环控制是指输出量通过传感器进行反馈,并与期望输入进行比较后进行控制。

闭环控制可以实现对系统的实时监测和修正,具有较好的稳定性和鲁棒性。

自动控制原理重点知识整理

自动控制原理重点知识整理

自动控制原理重点知识点第一章 绪论P1 自动控制系统(由控制装置和被控对象组成)是指能够对被控制对象的工作状态进行自动控制的系统。

P5 自动控制系统分类:1、线性和非线性2、连续和离散3、自动调节和随动(跟踪) P7 控制系统的基本要求:稳定性高、响应速度快、精确度高。

第二章、 数学基础P13 拉普拉斯变换: δ(t )→1;1(t )→1s;21t s→.第三章、 控制系统的数学模型P25 控制系统的数学模型是描述系统内部各物理量之间的关系的数学表达式。

建立方法:分析法和实践法。

简化的数学模型通常是一个线性微分方程。

P26 建立步骤:1、 根据系统或元器件的工作原理,确定系统和各元器件的输入/输出变量。

2、 从输入端开始,按信号的传递顺序,依照各变量所遵循的物理或化学定律,按技术要求忽略一些次要因素,并考虑相邻器件的彼此影响,列出微分方程式或微分方程组。

3、 消去中间变量,求得描述输入量与输出量得微分方程式。

4、 标准化,即将与输入变量有关的各项放在等号右侧,将与输出变量有关的各项放在等号左侧,并按降幂顺序排列。

P29 线性定常系统的传递函数定义为:在零初始条件下,输出量与输入量的拉普拉斯变换之比。

P31 传递函数的几点说明:1、 传递函数只适用于线性定常系统。

2、传递函数是真分式函数。

3、与外作用形式无关。

4、对于MIMO 系统没有统一的传递函数。

5、传递函数不能反映非零初始条件下系统的全部运动规律。

6、一定的传递函数有一定的零极点分布图与之对应。

7、传递函数的几种表示形式。

(略) P32典型环节及其传递函数: 1、比例环节(放大环节):c (t )=Kr (t ); G (s )=K 2、惯性环节:Td c d t()()c t r t +=; G (s )=11T s +3、积分环节:c (t )=()r t dt ⎰; G (s )=1s4、振荡环节: ()()2222d c dc TTc t r t dtdtξ++=;()222221212nn nG s T s Ts s s ωξξωω==++++5、 微分环节:理想、一阶、二阶分别是()()()()()()()()222,,2dr t dr t dr t d r c t c t r t c t r t dtdtdtdtττξτ==+=++()()()22,1,21G s s G s s G s s s ττξτ==+=++P35结构图:1、 并联、串联。

自动控制原理知识点总结

自动控制原理知识点总结

自动控制原理知识点总结自动控制原理知识点总结:1. 控制系统的基本组成:控制系统由输入、控制器、执行器和反馈组成。

输入是指输入给控制系统的参考信号,控制器根据输入信号产生控制信号,执行器将控制信号转化为控制动作,反馈是指将执行器输出的控制动作与输入信号进行比较得到误差信号,并反馈给控制器进行调节。

2. 控制系统的分类:控制系统根据输入信号的类型分为开环控制系统和闭环控制系统。

开环控制系统只根据输入信号来产生控制信号,没有反馈调节的功能;闭环控制系统则根据输入信号与反馈信号之差来进行调节,具有更好的稳定性和鲁棒性。

3. 控制系统的建模方法:控制系统的建模是指通过数学模型描述控制系统的动态行为。

常用的控制系统建模方法有传递函数法、状态空间法和频域法。

传递函数法适用于线性时不变系统,可以通过拉普拉斯变换来获取传递函数;状态空间法适用于线性时变和非线性系统,可以利用系统的状态方程来描述系统的动态特性;频域法适用于周期信号和稳态响应分析,可以通过傅里叶变换来分析系统的频域特性。

4. 控制系统的稳定性分析:稳定性是控制系统最基本的性能指标之一。

稳定性分析可以通过判据和准则来进行,常见的稳定性判据有极点位置法、根轨迹法和Nyquist稳定判据;稳定性准则包括Nyquist稳定准则、Bode稳定准则和根轨迹稳定准则等。

5. 控制系统的性能指标:除了稳定性,控制系统还有很多其他的性能指标,如超调量、响应时间、稳态误差、鲁棒性等。

超调量反映了系统对输入信号的过冲程度;响应时间表示系统从初始状态到稳态的时间;稳态误差指系统在稳态下输出与输入之间的偏差;鲁棒性是指系统对参数变化和扰动的抵抗能力。

6. 控制系统的调节方法:控制系统的调节是指根据控制目标来调节控制器参数或调整控制策略以改善系统性能。

常见的调节方法有比例控制、比例积分控制、比例积分微分控制和模糊控制等。

比例控制只根据误差信号调节控制量,比例积分控制在比例控制的基础上引入积分作用,比例积分微分控制则引入微分作用以更好地调节系统;模糊控制利用模糊逻辑来处理不确定和模糊的输入输出关系,具有很好的鲁棒性和适应性。

(完整版)自动控制原理知识点汇总

(完整版)自动控制原理知识点汇总

自动控制原理总结第一章绪论技术术语1.被控对象 :是指要务实现自动控制的机器、设施或生产过程。

2.被控量:表征被控对象工作状态的物理参量 (或状态参量 ),如转速、压力、温度、电压、位移等。

3.控制器:又称调理器、控制装置,由控制元件构成,它接受指令信号,输出控制作用信号于被控对象。

4.给定值或指令信号 r(t) :要求控制系统按必定规律变化的信号,是系统的输入信号。

5.扰乱信号 n(t) :又称扰动值,是一种对系统的被控量起损坏作用的信号。

6.反应信号 b(t) :是指被控量经丈量元件检测后回馈送到系统输入端的信号。

7.偏差信号 e(t):是指给定值与被控量的差值,或指令信号与反应信号的差值。

闭环控制的主要长处:控制精度高,抗扰乱能力强。

弊端:使用的元件多,线路复杂,系统的剖析和设计都比较麻烦。

对控制系统的性能要求:稳固性迅速性正确性稳固性和迅速性反应了系统的过渡过程的性能。

正确性是权衡系统稳态精度的指标,反应了动向过程后期的性能。

第二章控制系统的数学模型拉氏变换的定义:F ( s) f ( t )e- st d t几种典型函数的拉氏变换1.单位阶跃函数1(t)2.单位斜坡函数3.等加快函数4.指数函数e-at5.正弦函数sin ωt6.余弦函数cos ωt7.单位脉冲函数 (δ函数 )拉氏变换的基本法例1.线性法例2.微分法例3.积分法例Lf ( t )d t1F ( s )s4.终值定理e( ) lim e( t ) lim sE ( s)ts 05.位移定理L f (t)e 0 s F(s)Le atf ( t )F ( s a )传达函数: 线性定常系统在零初始条件下, 输出信号的拉氏变换与输入信号的拉氏变换之比 称为系统 (或元零件 )的传达函数。

动向构造图及其等效变换1.串连变换法例2.并联变换法例3.反应变换法例4.比较点前移“加倒数”;比较点后移“加自己”。

5.引出点前移“加自己”;引出点后移“加倒数” 梅森( S. J. Mason )公式求传达函数典型环节的传达函数 1.比率 (放大 )环节 2.积分环节 3.惯性环节 4.一阶微分环节 5.振荡环节G ( s)12 s 22 Ts 1T C ( s ) = 1 n6.二阶微分环节( s )P k kR ( s )k 1第三章时域剖析法二阶系统剖析2nKJF2nJ2 n(完整版)自动控制原理知识点汇总二阶系统的单位阶跃响应1.过阻尼 ξ>1 的状况 :系统闭环特色方程有两个不相等的负实根。

自动控制基础知识复习

自动控制基础知识复习

自动控制基础知识复习目录一、自动控制基本概念 (3)1.1 自动控制的基本原理 (4)1.2 自动控制系统的组成 (4)1.3 自动控制系统的分类 (6)二、自动控制系统的数学模型 (7)2.1 线性系统的数学模型 (9)2.1.1 微分方程 (10)2.1.2 积分方程 (11)2.1.3 非线性系统的数学模型 (13)2.2 传递函数 (14)2.3 状态空间表达式 (15)三、自动控制系统的时域分析 (16)3.1 典型输入信号 (18)3.2 系统的稳定性分析 (19)3.3 系统的稳态误差分析 (20)四、自动控制系统的频域分析 (22)4.1 频率特性 (23)4.2 相频特性 (24)4.3 系统的频域性能分析 (26)五、自动控制系统的校正与设计 (27)5.1 校正装置的选择 (28)5.2 串联校正 (30)5.3 并联校正 (31)5.4 反馈控制系统的设计 (32)六、自动控制系统的工程应用 (34)6.1 工业自动化系统 (35)6.2 交通运输系统 (36)6.3 生物医学控制系统 (37)七、智能控制基础 (38)7.1 智能控制的基本概念 (40)7.2 智能控制系统的类型 (41)7.3 智能控制算法简介 (42)八、自动控制系统的仿真与实验 (43)8.1 计算机仿真的基本概念 (45)8.2 自动控制系统的仿真方法 (46)8.3 实验技能与实验指导 (48)九、自动控制技术的发展趋势 (49)9.1 控制理论的发展 (51)9.2 控制设备的智能化 (52)9.3 控制系统的绿色化 (53)一、自动控制基本概念自动控制定义:自动控制是指通过某种装置或系统,使得某一过程或设备能够自动地按照预定的规律或程序运行,而无需人为的干预和调整。

在自动控制系统里,输入信号会激发反馈机制,系统会根据反馈调整其输出以达到预期目标。

系统组成:一个基本的自动控制系统通常由控制器、被控对象、执行器和传感器等部分组成。

自动控制知识点

自动控制知识点

自控原理复习总结1自动控制原理自控控制是指在没有人的直接干预下,利用控制装置操纵受控对象,使被控量等于给定值或按给定信号的变化规律去变化的过程。

反馈的输出量与输入量相减,称为负反馈;反之,则称为正反馈。

自动控制原理系统基本组成示意图☐测量元件:测量被控对象的需要控制的物理量☐给定元件:给出与期望的被控量相对应的系统输入量。

☐比较元件:把测量元件检测的被控量实际值与给定元件给出的输入量进行比较,求出它们之间的偏差。

☐校正元件:也称补偿元件,它是结构或参数便于调整的元件。

对自动控制系统性能的基本要求:稳定性、快速性、准确性系统的传递函数:线性系统,在零初始条件下,输出信号的拉普拉斯变换与输入信号的拉普拉斯变化之比。

(复频域)典型环节:比率环节:不失真、不延迟、成比例地复现输入信号惯性环节:输出量不能瞬时完成与输入量完全一致积分环节:改善系统的稳态性能微分环节:改善系统的动态性能一阶微分环节:振荡环节:输入为一阶跃信号延迟环节:输出波形与输入波形相同,但延迟了时间数学模型:微分方程、传递函数、结构图、信号流图、频率特性等用梅森公式求系统的闭环传递函数:第三章:典型输入信号:动态性能指标:■ 1 .延迟时间 td :响应曲线第一次达到稳态值的一半所需的时间,叫延迟时间。

■ 2 .上升时间 tr :响应曲线从稳态值的 10% 上升到 90% 所需的时间。

对于有振荡的系统,也可定义为响应从零第一次上升到稳态值所需的时间。

■ 3. 峰值时间 tp :响应曲线超过其稳态值达到第一个峰值所需要的时间。

■ 4. 调节时间 ts :指响应到达并保持在稳态值或内所需的时间。

■ 5. 超调量:指响应的最大偏离量 h(tp) 与稳态值的差与稳态值的比,用百分号来表示,即稳态性能指标:稳态误差二阶系统阶跃响应的性能指标:临界阻尼;过阻尼;欠阻尼劳斯判据:系统特征方程式的根全部都再 s 左半平面的充分必要条件是劳斯表的第一列系数全部为正数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

跨校专升本(电气)自动控制原理仿真试卷(A )1.如图示系统结构图1,试用结构图化简方法求传递函数)()(s R s C 。

(15分)图12. 控制系统如图2所示,系统单位阶跃响应的峰值时间为3s 、超调量 为20%,求K ,a 值。

(15分)图23.已知系统特征方程为04832241232345=+++++s s s s s ,试求系统在S 右 半平面的根的个数及虚根值。

(10分)4. 单位负反馈系统的开环传递函数)15.0)(12.0()(++=s s s Ks G ,绘制K 从 0到+∞ 变化时系统的闭环根轨迹图。

(15分)5. 已知单位负反馈系统开环传递函数)1()1()(122++=T s s T K s G ,试概略绘制系 统的开环幅相频率特性曲线,并用奈氏判据判断系统的稳定性。

(15分)6. 某最小相角系统的开环对数幅频特性如图3所示。

要求 (1)写出系统开环传递函数; (2)利用相角裕度判断系统的稳定性;(3)将对数幅频特性向右平移十倍频程,截止频率和相角裕度会发生什么变化? (15分)图37. 离散控制系统如图4所示,采样周期 T=1s 。

求系统稳定时K 的取值 范围。

(15分)图4跨校专升本自动控制原理模拟试题6一、简答(本题共6道小题,每题5分,共30分)1、画出二阶系统特征根的位置与响应曲线之间的关系。

2、通过二阶系统的根轨迹说明,增加开环零点和增加开环极点对系统根轨迹走向的影响。

3、已知某环节的频率特性曲线如下,求当x(t)=10sin5t 输入该环节的时候,系统的输出解析表达式是什么?4、通常希望系统的开环对数频率特性,在低频段和高频段有较大的斜率,为什么?5、如果一个控制系统的阻尼比比较小,请从时域指标和频域指标两方面说明该系统会有什么样的表现?并解释原因。

6、最小相位系统的Nyquist 图如下所示,画出图示系统对应的 Bode 图,并判断系统的稳定性。

二、改错(本题共5道小题,每题5分,共25分)1. 微分方程的拉氏变换可以得到系统的传递函数,系统传递函数的拉氏反变换是微分方程。

2. 传递函数描述系统的固有特性。

其系数和阶次都是实数,只与系统内部结构参数有关而与输入量初始条件等外部因素无关。

3. 频率法不仅研究一个系统对不同频率的正弦波输入时的响应特性,也研究系统对阶跃信号的响应特性。

4. 系统开环对数频率特性的中频段的长度对相位裕量有很大影响,中频段越长,相位裕量越小。

5. Nyquist 图中()1k W j ω>的部分对应Bode 图中0dB 线以下的区段,Nyquist 图中的实轴对应Bode 图中的π-线。

三、 设单位反馈系统的开环传递函数(本题20分)W k (j 40 20- π/2 - πϕ(ω)is T s K s T K K s G m m f f1)1(1)(0∙+∙+∙=输入信号为 )(1)()(t bt a t r ∙+=其中0K , m K , f K , i, f T , m T 均为正数 ,a 和b 为已知正常数。

如果要求闭环系统稳定,并且稳态误差ss e <0ε, 其中0ε>0, 试求系统各参数满足的条件。

四、试用梅逊增益公式求下图中各系统信号流图的传递函 数C(s)/R(s)。

(15分)五、(本题20分)设单位反馈控制系统的开环传递函数 )102.0)(101.0()(++=s s s Ks G要求:(1) 画出准确根轨迹(至少校验三点,包括与虚轴交点); (2) 确定系统的临界稳定开环增益K c;(3)当一个闭环极点是-5的时候,确定此时的其他极点。

六、已知最小相位系统的对数幅频渐近特性曲线如图所示,1) 试确定系统的开环传递函数;2) 求解系统的相位裕量,并判断稳定性; 3)跨校专升本自动控制原理模拟试题6答案低频段斜率大可以提高系统的稳态指标,高频段斜率大可以更好地排除高频干扰; 三、解:首先系统必须是稳定的,系统的闭环特征方程为0)(23=++++K s s T T s T T m f m f式中,i K K K K m f /0=,为系统的开环增益,各参数满足: K>0, 0)(>-+f m m f T KT T T 即稳定条件为 mf mT T T Tf K +<<0由于本例是I 型系统,其p K =∞, v K =K,故在r(t)=(a+bt)•1(t)作用下,其稳态误差 0ε<=K b e ss 必有 K>0εb 于是,即能保证系统稳定,又满足对系统稳态误差要求的各参数之间的条件为mf m f m f T T T T i K K K b+<</00ε一、填空题(每空2分,共24分):1. 在闭环控制系统中,通过检测元件将输出量转变成与给定信号进行比较的信号,这个信号称为___________。

2. 若前向通道的传递函数为G (s ),反馈通道的传递函数为H (s ),则开环传递函数为___________。

3.齿轮副中,以主动轮角速度ω为输入,以被动轮转角θ为输出,则这个装置为________________环节。

4.若环节的传递函数为sK,则其对数幅频特性L (ω)在零分贝点处的频率数值为______________。

5. Bode 图中对数相频特性图上的-180o线对应于奈奎斯特图中的___________。

6. 自动控制系统对输入信号的响应,一般都包含两个分量,即一个是____________,另一个是__________分量。

7. 函数f(t)=te63-的拉氏变换式是________________________________。

8. 积分环节的传递函数表达式为G (s )=_________________________。

9. 在斜坡函数的输入作用下,___________型系统的稳态误差为零。

10.惯性环节的传递函数11+Ts ,它的幅频特性的数学式是__________,它的相频特性的数学式是____________________。

二、简答题:1、何谓自动控制?开环控制和闭环控制各具有什么样的特点?(8分)2、什么叫传递函数?它有什么性质?(8分)三、试分别用简化结构图、信号流图方法求如图1所示系统的传递函数()()C s R s 。

(20分)图1四、控制系统结构图如图2所示。

(1)希望系统所有特征根位于s 平面上s =-2的左侧区域,且ξ不小于0.5。

试画出特征根在s平面上的分布范围(用阴影线表示)。

(2)当特征根处在阴影线范围内时,试求,K T 的取值范围。

(20分)图2五、已知系统的结构图如图3所示。

若()21()r t t =⨯时,试求(1)当0f K =时,求系统的响应()c t ,超调量%σ及调节时间s t 。

(2)当0f K ≠时,若要使超调量%σ=20%,试求f K 应为多大?并求出此时的调节时间s t 的值。

(3)比较上述两种情况,说明内反馈f K s 的作用是什么? (20分)图3六、系统结构图如图4所示。

当输入信号()1()r t t =,干扰信号()1()n t t =时,求系统总的稳态误差e ss 。

(15分)图4七、某最小相角系统的开环对数幅频特性如图5所示。

要求: (1)写出系统开环传递函数;(2)利用相位裕量判断系统稳定性; (3)将其对数幅频特性向右平移十倍频程,试讨论对系统性能的影响。

(15分)图5八、某系统的开环对数幅频特性曲线如图6所示,其中虚线表示校正前,实线表示校正后。

求解:G s。

(1)确定所用的是何种串联校正性质校正,并写出校正装置的传递函数()c(2)确定校正后系统临界稳定时的开环增益值。

(3)当开环增益K=1时,求校正后系统的相位裕量γ,幅值裕量h。

(20分)密封线共8 页第 1 页试题标准答案院(系): 电气工程学院自动化系教研室: 自动化教研室考核课程:自动控制原理学年:考核类型:闭卷开卷涂卡考核专业年级:自动控制模拟试题(六)1、图6-1是仓库大门自动控制系统原理示意图。

试说明系统自动控制大门开闭的工作原理并画出系统方块图。

图6-1 仓库大门自动开闭控制系统2、试求题图6-2所示控制系统的传递函数,,,。

图6-2 系统结构图3、设单位反馈控制系统的开环传递函数为,已知系统在单位阶跃作用下的误差响应为。

试求系统的阻尼比,自然频率和在单位斜坡输入作用下的稳态误差。

4、已知负反馈系统的开环传递函数为绘制系统的根轨迹,并确定:(1)使闭环传递函数的复数极点具有阻尼比0.5时的值;(2)使闭环传递函数的复数极点,其无阻尼自然频率时的值;(3)使闭环传递函数复数极点的实部时的值。

5、系统的开环传递函数为均大于零,试用奈氏判据证明:若系统不稳定,必有两个极点在右半S平面。

6、由实验测得单位反馈二阶系统的单位阶跃响应如题图6-3所示:题图6-3 单位阶跃响应要求:(1)绘制系统的方框图,并标出参数值(2)使系统的单位阶跃的超调量,峰值时间设计适当的校正环节并画出校正反系统的方框图, 标出相应参数值。

7、调节器系统被控对象的传递函数为)3)(2)(1(10)()(+++=s s s s U s Y定义状态变量为23121,,x x xx y x === 利用状态反馈控制律Kx u -=,要求闭环极点为i s μ=(i=1,2,3),其中10,222,222321-=--=+-=μμμj j试确定必需的状态反馈增益矩阵K 。

自动控制模拟试题(五)一、题图5-1是一晶体管稳压电源。

试将其画成方块图并说明在该电源里哪些起着测量、放大、执行的作用以及系统里的干扰量和给定量是什么?图5-1 晶体管稳压电源二、已知系统的结构如题图5-2所示,且初始条件 ,,试求:(1)系统在作用下的输出响应c(t);(2)系统在作用下的稳态误差。

题图5-2 系统的结构题三、控制系统的开环传递函数为画出系统的根轨迹,并由根轨迹图求出系统稳定时的取值范围。

四、最小相角系统对数幅频渐进特性如题图5-3所示,请确定系统的传递函数。

题图 5-3 对数幅频渐进特性五、考虑一个调节器系统的设计。

给定线性定常系统为Cx y Bu Ax x=+=式中]01[,10,06.2010=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=C B A且闭环极点为s =μi (i=1,2),其中4.28.1,4.28.121j j --=+-=μμ期望用观测-状态反馈控制,而不用真实的状态反馈控制。

观测器增益矩阵的特征值为821-==μμ试求必需的状态反馈增益矩阵K 和观测器增益矩阵e K 。

六、证明下列系统是不能观测的。

Cx y Bu Ax x=+=式中[]154,100,611610010,321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=C B A x x x x七、考虑如下非线性系统显然原点(01=x ,02=x )是唯一的平衡状态。

相关文档
最新文档