Ab Initio Calculations of the Spin-Half XY Model
金属掺杂锐钛矿相TiO2的第一性原理计算
金属掺杂锐钛矿相TiO2的第一性原理计算金属掺杂锐钛矿相TiO2的第一性原理计算/王海东等?129?金属掺杂锐钛矿相TiO2的第一性原理计算王海东,万巍(中南大学无机材料研究所,长沙410083)摘要采用基于密度泛函理论的从头算平面波超软赝势方法,计算了纯锐钛矿相TiU2及5种不同金属掺杂Ti()2的晶格常数,能带结构,态密度与光吸收系数.结果表明,掺杂后能级的变化主要是过渡金属Co3d,Fe3d,Zr4d,Zr4p,V3p,V3d,W5d及W5p轨道的贡献.随着co,Fe,V掺杂浓度的增加,禁带宽度呈减小趋势;Zr掺杂对能带结构几乎不产生影响;W掺杂能级远离禁带,只对价带构成产生了影响.金属掺杂使禁带宽度变化或出现新杂质能级,导致了Ti()2吸收边沿红移或在可见光区域出现新的吸收峰;其中Co,Fe掺杂的吸收边沿明显红移,而w掺杂时在可见光区域出现较强的吸收峰.'关键词第一性原理锐钛矿相TiOz金属掺杂中图分类号:TN302;O411文献标识码:A StudyontheMetalDopedAnataseTiO2byFirstPrinciplesW ANGHaidong,WANWei(InstituteofInorganicMaterials,CentralSouthUniversity,Changsha410083) AbstractThelatticeconstant,bandstructure,densityofstatesandopticalpropertiesofpurean dCo,Fe,Zr,V,WdopingTi02werecalculatedusingthefirst-principleplane-waveultrasoftpseudopotent ialmethodsbasedonthe densityfunctionaltheorNTheresultsindicatethattheformationofimpuritylevelismainlyco ntributedbymixingwithCO3d,Fe3d,Zr4p,Zr4d,V3p,V3d,W5p,W5dorbita1ofthetransitionmeta1.Thebandg apdecreaseswithincreasingCo,ice,Vconcentration.ThereisnoimpuritylevelpresentinthebandstructureofZ rdopingTi02.Impu—ritylevelofWdopingTi02leavesawayfromthebandgap,onlycausestheconstitutionofvalen ceban&Thedoping withmetalliciconsisresponsibleforthechangesofbandgapornewappearanceofimpurityle vel,whichbringstheredshiftofTi02absorptionwavelengthortheappearanceofnewabsorptionpeakinthevisible 1ightregion.Thedo—pingofCo,FebringstheredshiftofTi02absorptionwavelengthobviouslyandW-dopingcaus esastrongabsorptionpeakinthevisiblelightregion.KeywordsFirst-principlecalculation,anatasetitaniumdioxide,metaldoped0引言作为光催化环境净化材料,Ti0因具有无毒,成本低,稳定性好等诸多优点而成为最具研发潜力的光催化剂.但由于TiO是宽禁带半导体氧化物,使其对太阳能的利用受到了限制.因此,如何通过改性手段提高其光谱响应范围是TiO光催化性能推广应用的关键.对TiOz的改性研究表明,金属离子掺杂改性是有效的方法之一理想的掺杂离子应在材料内形成合适的施主或受主能级,且这些能级位于距离导带或价带较理想的位置,既可以俘获载流子促进光生载流子的分离,又能快速释放载流子以避免成为载流子失活中心[1].在已开展的金属离子掺杂TiO光催化活性的实验研究中,Choi等采用Sol—gel法将与Ti半径接近的21种金属离子掺入到TiO中,结果表明,掺杂Fe",Mo",Ru什,Os抖,Re汁,V",Rh3均可明显提高TiO的氧化还原能力,而Li,M,Al",Ga什等S区及P区离子掺杂则降低了Ti0.的光催化活性.相对于实验研究,模拟计算技术具有可以克服实验中人为因素的影响,更易于深入分析离子掺杂改性机理的特点.从2O世纪9O年代开始应用第一性原理对Ti02纳米材料进行计算模拟的研究工作已逐渐展开r3].曹红红等_4]使用全电势线性缀加平面波法,对锐钛矿相TiO做了较系统的计算,优化后所得结果与实验值符合得很好.Umebayashi等]利用基于密度泛函理论的全电势线性缀加平面波法计算了3d过渡金属掺杂锐钛矿相TiO.的电子结构,结果表明掺杂物的t.态在禁带或价带中产生了一个杂质能级,并且随着掺杂原子序数的增大,杂质能级向低能级方向移动.为进一步系统地研究金属掺杂对锐钛矿相TiO光催化性能的影响机理,采用基于密度泛函理论的从头算平面波超软赝势方法,计算了纯锐钛矿相Ti()2及5种不同金属(Co,*教育部博士点基金(20100162110062)王海东:1963年生,博士,教授Tel:0731—8836963E-mail:***************】30?材料导报B:研究篇2O11年7月(下)第25卷第7期Fe,Zr,V,w)在多浓度掺杂下TiO.的晶格常数,能带结构,电子态密度及光吸收性质,研究了相应掺杂情况下各种掺杂对锐钛矿相()电子结构及光学性能的影响.1计算方法与结构优化通过在锐钛矿型Ti().超晶胞中掺杂一个原子替代,¨原子对掺杂效应进行模拟.建立的3个模型是:2×1xl,2x2×1,3×2×1的超晶胞,这些超晶胞分别包含24,48,72个原子,对的理论掺杂浓度(原子分数,下同)为4.17,2.08,1.3【{,标记为模型(b),((t),(d);作为参照也刈'未掺杂的Ti():单胞进行了讣算,标记为模型(a),如图1所示.相应的(a),(b),(c),(d)模型k—point取样Monkhorst—pack的格点分别选取为5×5×2,5×3×2,3×3x2,3×2×2.埘品体结构优化后,找到晶体结构的最稳定点,再完成能带结构, 态密度和光学性质的计算.图1替位掺杂锐钛矿型Ti02计算模型Fig.1ThecalculationmodelsforsubstitutionalanataseTi()2通过Accelrys公司开发的Materialsstudio中的CASTEP模块,采用基于密度泛函理论(Densityfunction theory,DFT)的平面波超软赝势方法进行计算.在掺杂前后的结构优化环节中交换关联函数均采用广义梯度近似(GGA,Generalizedgradientapproximation),赝势函数采用PBE(Perdew,BurkeandErnzerhof)梯度修正函数,并在此近似下进行了结构及性质计算.其它计算参数设置为:平面波截断~(Cutoff)340eV,自洽场收敛性标准(SCFtolerance)5×10eV/atom,两次迭代体系能量收敛精度5×10eV/ atom,原子最大受力收敛精度1×lOeV/A,最大应变收敛精度2×10GPa,原子最大位移收敛精度5×10A,计算的价态电子有Ti3s.3p3d4s.,O2s2p,Co3d4s,Fe3d.4s,Zr4s4p.4d5s,V3s.3p3d.4s,WSs.5p5d6s,所有计算均在倒易空间中进行.作为后续计算基础的未掺杂rri模型,表1为经优化后锐钛矿相Ti()晶胞结构参数的计算结果n,c,"(dap/c, dap是轴向Ti一()键长)与实验值及文献值的比较.从表1中可以看出,理论计算结果l7与实验数值_8接近, 表明计算精确度高,模型可靠.表l锐钛矿相TiO2结构参数比较Table1StructureparameterofanataseTiO22结果与讨论2.1能带结构分析根据掺杂模型计算所得能带结构,各模型的禁带宽度值9Ti●O●M(掺杂原子)如表2所示.从表2中可以看出,随着Co,Fe,V掺杂浓度的增加,禁带宽度呈现出明显减小的趋势;而掺杂时不同掺杂浓度下禁带宽度几乎一致;但w掺杂下禁带宽度反而增大,甚至比未掺杂TiO的禁带宽度更大.表2计算模型的带隙宽度值Table2Bandgapofcalculationmodels考查掺杂前后禁带宽度变化最大的模型,选取费米能级为零点,纯锐钛矿相TiO:及各金属元素4.17掺杂浓度下在沿布里渊区对称点上的能带结构如图2所示.据图2(a)可以看出锐钛矿型TiO.的导带最低点及价带最高点均在G点,据此判定其为直接能隙半导体,禁带宽度为2.23eV,小于实验值3.23eV,与Asahi等的计算结果相近.由于在广义梯度近似(GGA)计算下,交换关联函数不能完全反映真实的多电子相互作用,导致得到的禁带宽度要比真实的禁带宽度小.这种由于计算方法本身造成低估带隙的情况,文献[9,10]已进行过讨论.但作为一种有效的近似方法,其结果的相对值还是准确的,不影响对能带结构的分析.由图2(b)一(f)可知,Co,Fe,Zr,V和w掺杂TiO.的导带最低点分别在G,Z,G,G,G点,而价带最高点分别位于G, F,F,F,F点.这表明Co掺杂的电子为直接跃迁,禁带宽度为0.47eV;而Fe,Zr,V和w掺杂的电子为间接跃迁,禁带宽度分别为1.70eV,2.18eV,1.78eV,2.74eV.与TiO2的金属掺杂锐钛矿相TiOz的第一性原理计算/王海东等?131? 禁带宽度2.23eV相比,w掺杂后禁带宽度变宽,而co,Fe,Zr,V均有不同程度的减小,其中C()掺杂后TiO禁带宽度最小.根据半导体掺杂理论,杂质浓度较高时杂质原子相互间较接近,因此杂质原子之间的电子波函数发生重叠,使孤立的杂质扩展成为能带,即杂质能带[1.图2(b),(c)中,Co,Fe掺杂分别在禁带中上部产生了2条和3条新杂质能级,可在电子跃迁时起中问过渡作用,能有效减小所需的激发能量,从而拓宽了Co和Fe掺杂TiO.的光响应波长范围. 42净O器一2一4-6在图2(e)中,V掺杂能级位于接近导带底的位置,与Ti3d轨道形成复合导带底.由图2(d)可知,Zr掺杂在低浓度下产生的能级不明显,新能级与O2p轨道复合形成价带顶,但Zr 掺杂与V掺杂一样也没有引人中间能级,不会形成新的空穴俘获中心,因而亦可较有效地提高T[O的光催化活性.如图2(f)所示,w掺杂后只在靠近价带下方出现了新的能级, 使价带宽度增加,对禁带影响不明显,不会使光吸收边沿发生红移.42;≈一2一4—6GFqzGGFQZGGFQzG图2能带结构Fig.2Energybandstructure2.2电子态密度分析与能带结构分析相对应,选取4.17掺杂浓度,对不同金属元素Co,Fe,Zr,V和W掺杂Ti()2在沿布里渊区对称点上的总态密度(DOS)与纯Ti02总态密度进行了比较,如图3 所示.图3总态密度图Fig.3Totaldensityofstates从图3可知,与纯TiO.相比掺杂后体系的导带和价带的位置出现了负移,且掺杂后导带的宽度均有不同程度的减小,理论上将使掺杂后的TiO.具有更强的氧化还原能力.Zr掺杂TiOz后的态密度与未掺杂TiOz的态密度基本相似, 2O一2三醣≈一4口[一6-8GFQ没有明显的变化;Co,Fe掺杂后分别在禁带中间靠近导带和靠近价带方向出现了新的态密度.在V掺杂TiO靠近导带下方出现了一个"小肩峰",使导带向低能量方向偏移,有利于禁带宽度的减小;在W掺杂靠近TiOz价带下方也出现了新的态密度"肩峰",使得价带加宽;V和W掺杂TiO.的总态密度整体向能量最低的方向偏移.掺杂前后电子结构的变化可根据费米能级附近价带和导带的偏态密度(PDOS)作进一步分析,如图4所示.由图4(a)可以看出,锐钛矿型TiO在费米能级附近的价带和导带分别主要由.原子的2p轨道和rri原子的3d轨道组成,价带范围一5.26~0.77eV,宽度为6.03eV;导带范围1.61~5.49eV,宽度为3.88eV.如图4(b)所示,Co掺杂Ti02价带(一6.40~O.36eV)主要由02p轨道组成,昆合了Ti3d和Co3d轨道,宽度为6.76 eV,比未掺杂Ti02的价带宽度明显增加;导带(2.O9~3.94 eV)主要由Ti3d轨道组成,同时也混合了Co3d和02p轨道,宽度为1.85eV,比未掺杂TiO:的导带宽度明显减小.相对未掺杂的TiO.,Co掺杂后价带向下移动0.41eV,导带向上移动0.48eV.但在导带和价带之间形成了由Co3d和O2p轨道杂化的中间能带,从而有利于价电子从价带到导带的跃迁,表现出良好的光学性能.6420>∞\∞金属掺杂锐钛矿相Ti()2的第一性原理计算/王海东等?133? 荷和更小的半径,取代后可能导致Ti什与O.卜距离变小,有利于光生电子的跃迁,而且具有更大的电荷半径比,以至于w对()一有较强的极化效应.另外一个原因是w的掺杂是高价掺杂.Kiriakidou等口认为掺杂离子的化合价高时会使费米能级和能带向上漂移,表面势垒变高,空间电荷区变窄,使光生电子和空穴在强场的作用能够得到有效的分离.图5掺杂TiO2的紫外一可见吸收光谱Fig.5UV-visabsorptionspectraofaopedTi023结论采用基于密度泛函理论的从头算平面波超软赝势方法研究了纯锐钛矿相TiO及5种不同金属掺杂TiO.的晶格常数,能带结构,电子态密度与光吸收系数.模拟计算表明:掺杂计算基础的未掺杂TiO模型,经优化后晶胞结构参数的计算结果与实验值偏差较小,参数设置合理,模型可靠. (1)掺杂后能级的变化主要是过渡金属Co3d,Fe3d,Zr4d,Zr4p,V3p,V3d,W5p,W5d轨道的贡献.随着3d过渡金属Co,Fe,V掺杂浓度的增加,禁带宽度呈减小趋势,且均在禁带中产生了明显的杂质能级;Zr掺杂前后所得结构几乎一致,与掺杂浓度无关;但w掺杂由于导带价带相对位置的变化使禁带宽度增大,并在原有价带以下产生了新的杂质能级.(2)掺杂导致禁带宽度变窄或出现新的杂质能级,在紫外一可见吸收光谱中表现为TiO吸收边沿的红移或出现新的吸收峰.其中Co,Fe掺杂的吸收边沿明显红移,而w掺杂在可见光区域出现了很强的新的吸收峰.致谢感谢q-南大学高性能计算q-心在模拟计算方面提供的技术支持与帮助.参考文献I张金龙,陈锋,何斌.光催化EM].上海:华东理工大学出版社,2004:712ChoiW,TerrainA.HoffmanMRTheroleofmetaliondopantsinquantum-sizedTiO2:Correlationbetweenphoto—reactivityandchargecarrierrecombinationdynamics[J].j PhysChem,1994,98(51):136693SegallMD,LindanJDP,ProbertMJ,eta1.First-princi—plessimulation:Ideas,illustrationsandtheCASTEPcodeLJ一].JPhys:CondensedMatter,2002,14(11):27174CaoHonghong(曹红红),HuangHaibo(黄海波),ChenQiang(陈强).AbinitiocalculationsofanataseTi()2(对锐钛矿相TiO2的第一原理计算KJ].JBeijingUniversityAero—nauticsAstronautics(北京航空航天大学),2005,31(2):2515AsalhiR,TagaY,MannstadtW,eta1.Electronicandop—ticalpropertiesofanataseTiO2口].PhysRevB,2000,61 (11):74596UmebayashiT,Y amakiT,ItohH,eta1.Analysisofelec—tronicstructuresof3dtransitionmetal—dopedTiO2basedon bandcalculations[J].JPhysChemSolids,2002,63(10):'19097TianFenghui(田风惠).Theorystudy0nnon-metallicele—mentdopedTiO2一basedphotocata1yst(非金属元素掺杂改性的Ti02基光催化剂的理论研究)[D].Shangdong(山东): ShangdongUniversity(山东大学),20068BurdettJK,HughbandksT,MillerGJ,eta1.Structural electronicrelationshipsininorganicsolids:Powderneutron diffractionstudiesoftherutileandanatasepolymorphsofti—taniumdioxideat15and295K[J].JAmChemSoc,1987,109(12):36399PerdewJP.PhysicalcontentoftheexactKohn-shamorbital energies:Bandgapsandderivativediscontinuities[J].Phys RevLett,1983,5l(20):188410V alentinCD,FinazziE,PaeehioniG,eta1.Densityfunc—tionaltheoryandelectronparamagneticresonancestudyon theeffectofN-FCo-dopingofTi()2[J].ChemMater,2008,20(11):3706l1谢希德,陆栋.固体能带理论EM].上海:复旦大学出版社, 1998:1012WengHongming,Y angXiaoping,DongJinming,eta1.E—lectronicstructureandopticalpropertiesoftheCo-doped anataseTi02studiedfromfirstprinciples[J].PhysRevB, 2004,69(12):12521913LiaoBin,ZhaoQinli,YingWuxian,eta1.Calculationofe—lectronicstructureofanataseTi02dopedwithtransition metalV,Cr,FeandCuatomsbythelinearizedaugmented planewavemethod[J].ChineseJStructuralChem,2009,28 (7):86914DuXiaosong,LiQunxiang,SuHaibin,eta1.Electronicand magneticpropertiesofV-dopedanataseTi02fromfirstprin—ciples[J].PhysRevB,2006,74(23):233201l5KiriakidouF,KondaridesDI,V erykiosXE.Theeffectof operationalparametersandTi02一dopingonthephotocataly- ticdegradationofazo-dyes[-J~.CatalToday,1999,54(1):119(责任编辑汪雁南)。
一些硫化氢相关的英文文献概述
7. Reduction and Sulfidation Kinetics of Cerium Oxide and Cu-Modified Cerium Oxide The reducibility and H2S absorption capacity of cerium oxide and Cu-containing cerium oxide were examined in this work in the temperature range 623-923 K.
1. Characteristics of the interaction of azulene with water and hydrogen sulfide: A computational study
A computational study was carried out to characterize the interaction between azulene and water or hydrogen sulfide.
JoséA. Rodriguez, et al., J. Phys. Chem. B 1998, 102, 5511-5519
5. Theoretical Study of the Reaction Mechanism of Fe Atoms with H2O, H2S, O2 and H+
Makoto Kobayashi et al., Ind. Eng. Chem. Res. 2002, 41, 3115-3123
The adsorption and dissociation of H2S and S2 on a series of oxide (Al2O3,Cr2O3, Cr3O4, Cu2O, ZnO) and metal/oxide (Cu/Al2O3, Cu/ZnO) surfaces have been studied using synchrotron-based high-resolution photoemission. H2S and S2 mainly interact with the metal centers of the oxides. At 300 K, H2S undergoes complete decomposition. The rate of decomposition on Al2O3 is much lower than those found on Cr3O4, Cr2O3, ZnO, and Cu2O.
第五章 晶体中电子能带理论
ˆ 具有晶格周期性。 因此晶体中单电子哈密顿量 H
ˆ ˆ ˆ ˆ ˆ T ( Rn ) H (r ) (r ) H (r Rn ) (r Rn ) H (r )T ( Rn ) (r )
ˆ, H ˆ ] HT ˆ ˆ TH ˆˆ 0 [T
Байду номын сангаас
n1 n2 n3 ˆ ˆ ˆ ˆ 可得到 T ( Rn ) (r ) T (a1 ) T (a2 ) T (a3 ) (r ) n1 n2 n3 (a1 ) (a2 ) (a3 ) (r ) ( Rn ) (r ) n1 n2 n3 即 ( Rn ) (a1 ) (a 2 ) (a 3 ) (a1 )、 (a2 )、 (a3 ) ? 设晶体在 a1、a 2、a3方向各有 N 1、N 2、N 3个原胞 ,
第五章 晶体中电子 能带理论
能带理论
能带论是目前研究固体中的电子状态,说明固体性质最重
要的理论基础。
能带理论是用量子力学的方法研究固体内部电子运动的理 论。它曾经定性地阐明了晶体运动的普遍特点,并进而说 明了导体与绝缘体、半导体的区别所在,解释了晶体中电 子的平均自由程问题。
能带论的基本出发点是认为固体中的电子不再是完全被束
, 2 e
ik a2
, 3 e
ik a3
( Rn ) e ---布洛赫定理 ik Rn (r Rn ) e (r )
ik Rn
( Rn ) e ik Rn (r Rn ) e (r ) ---布洛赫定理
胡柏山论文
胡柏山论文四中子态是一种非常奇特的全新物质形态,相当于Z=0的物质,受到物理学界非常大的关注。
20xx年xx月xx日,北京大学物理学院、核物理与核技术国家重点实验室许xx教授团队与合作者在《物理评论C》(Physical Review C)上在线发表了题为“多中子体系的第一性原理无芯伽莫夫壳模型计算”(Ab initio no-core Gamow shell-model calculations of multineutron systems)的文章,理论预言了四中子态的共振能量和共振宽度。
20xx年x月xx日,由德国科学家团队主导,北京大学物理学院、核物理与核技术国家重点实验室杨再宏研究员和叶沿林教授课题组参与的联合研究团队,在《自然》(Nature)上发表了题为“观测到关联自由四中子体系”(Observation of a correlated free four-neutron system)的文章,宣布实验发现四中子态。
在实验误差范围内,该实验结果证实了许甫荣合作团队的理论预言。
众所周知,自由中子不能长期成活,平均寿命只有15分钟左右。
纯中子物质在自然界中也只能存在于中子星等极端天体环境中,比如在超新星爆发的外围,被认为有温度约为5至10 MeV的中子气体(这个能区刚好与我们现在关心的中子物态有关联)。
四中子态是一种非常奇特的全新物质形态,它的发现也许会改变人们对物态基本概念的理解,为进一步研究核子间基本作用力和复杂量子关联提供一个极其宝贵的新平台。
有人把四中子态戏称为“短寿命微型中子星”,为今后有关中子物态的实验研究打开了又一扇希望之门。
大约在60年前,物理学家提出了一个奇特的猜测:在地球上是否能够存在由几个中子组成的纯中子物态?科学家们首先想到的是四中子态。
对纯中子态的实验探测和理论计算都是极其困难的。
实验探测要求奇思妙想的实验思路和技术方法、先进灵敏的实验设备。
理论计算要求真实可靠的高精度核力和严格的量子多体关联处理,需要超大规模的数值计算。
二苯乙烯光致顺反异构化反应
研究论文Article* E-mail: cyzhu@.twReceived April 21, 2012; published August 6, 2012.Project supported by the National Natural Science Foundation of China (Nos. 21003100, 21033001, 21103136, 21173166. 项目受国家自然科学基金(Nos. 21003100, 21033001, 21103136, 21173166资助.化学学报ACTA CHIMICA SINICA改进的半经典动力学模拟二苯乙烯光致顺反异构化反应雷依波a ,b 朱超原*,b 文振翼a,b 林聖聖b(a 合成与天然功能分子化学教育部重点实验室西北大学化学与材料科学学院西安 710069(b 西北大学现代物理研究所西安 710069摘要发展了一种改进的半经典动力学模拟方法, 并将其程序化用于气相二苯乙烯光致顺反异构化反应的机理研究. 新的方法不仅采用e 指数模型改进了原有Zhu-Nakamura 理论中计算电子非绝热跃迁几率的计算方法, 而且将约束哈密顿方法用于限制性分子动力学模拟过程中. 计算结果表明, 采用此方法得到的统计平均的量子产率及反应机理与以前的实验与理论结果吻合较好, 从而可以应用于全量子动力学方法无法进行的大分子体系的动力学研究. 关键词改进的半经典动力学模拟; 约束哈密顿系统; Zhu-Nakamura 理论; 二苯乙烯顺反异构化; 二维解析势能面New Implementation of Semi-classical Dynamic Simulation on the Photoisomerization of cis- and trans-Isomers of Free StilbeneLei, Yibo a ,b Zhu, Chaoyuan *,b Wen, Zhenyi a ,b Lin, Sheng-Hsien b(a Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education , The College of Chemis-try & Materials Science , Shaanxi Key Laboratory of Physico-Inorganic Chemistry , Northwest University , Xi'an 710069(b Institute of Modern Physics , Northwest University , Xi'an 710069 Abstract New implementation of semi-classical trajectory surface hopping dynamic simulation has been developed and applied to the photoisomerization of cis- and trans- isomers on the gas phase. This method not only uses the exponential model to the modification of the originally analytical non-adiabatic transition probability formula, but also involves the con-strained Hamiltonian system into the constrained molecular dynamic simulation. Two-dimensional potential energy surfaces of ground S 0 and excited S 1 states are constructed analytically fitting to ab initio calculations in terms of torsion angle and one dihedral angle around the central ethylenic C =C bond as variables, and the other internal coordinates are all fixed at configuration of one-bond flip conical intersection. The analytical PESs are quite accurate and the mean abs olute error is less than 2.4 kcal •mol -1, and much less than 1.0 kcal •mol -1 around conical intersection region. A straight seam line is found on potential energy surfaces that simply separates the cis-area with the trans-area. The constrained Hamiltonian system is em-ployed to run trajectories in the Cartesian coordinate system and surface hopping in terms of the two internal dihedral angles. Typical trajectories are found in which the torsion angle changes monotonically for both cis- to trans- and trans- to cis- isomerizations. This is an exact picture of one-bond flip mechanism of photoisomerization around the conical intersection. Quantum yield for trans- to cis- isomerization is simulated as 60.45% in very good agreement with experimental value 55.0%, while quantum yield for cis- to trans- isomerization is simulated as 42.3% in comparison with experimental value 35.0%. As the S 1 energy inlocal minimum of cis-area is higher than that in trans-area, and thus cis- to trans- isomerization is quite possible to access to another Hula-Twist conical intersection. These simulation results demonstrate that the computed cumulative quantum yield and reaction mechanism are consistent with the previously experimental and theoretical results. This means that the present trajectory surface hopping method would be good at the dynamic simulation on the large system with or without constraint Hamiltonian in comparison with the quantum molecular dynamics.Keywords new implementation of semi-classical dynamic simulation; constrained Hamiltonian system; Zhu-Nakamura theory; isomerization of cis- and trans-stilbene; two dimensional analytical potential energy surfaces1 引言众所周知, 二苯乙烯在光照下可以从其顺式构型转变为反式构型, 也可以从反式结构异构化到顺式结构, 其中反式二苯乙烯分子构型示于图 1. 反应过程中电子首先受光照从基态激发到激发态, 再经过无辐射跃迁回到分子基态. 一般情况下, 电子跃迁主要集中在第一激发态S 1和基态S 0之间[1], 其中S 1对应电子从S 0的最高占据分子轨道(HOMO到最低未占据轨道(LUMO的跃迁.大量的实验数据表明光照下二苯乙烯从顺式转换到反式和从反式到顺式的量子产率分别约为35%和55%(或52%[2~5], 其中顺式到反式产率较低的原因是有DOI: 10.6023/A1204013910%的顺式二苯乙烯经过环化反应生成一个副产物4a, 4b-二氢菲(DHP[6~8]. 理论分析认为反应过程很有可能经过一个能量相对较低的圆锥相交点(标记为OBF-CI[1], 当受激反应物靠近此相交点时, 电子就从激发态跃迁到达产物或者返回到基态. 此前的理论和实验报道倾向于反应坐标主要由苯环及氢原子绕着中心乙烯双键的旋转所决定[9], 具体对应图1中的两个二面角D1和D2. 而Fu β等认为此顺反异构化过程中还应该考虑苯环自身转动的影响, 此结论得到了一些实验的证实[10~12]. 以上这些反应机理大多数只是依靠对圆锥相交点的分析. 为了更好地研究反应的动力学过程, 豆育升及其合作者通过实时激光诱导的动力学模拟对反应机理进行了研究, 模拟结果证实反应过程中描述苯环或氢原子绕中心烯键扭转的二面角的变化较大, 而苯环自身转动的二面角的变化较小[13]. 此动力学模拟过程中只考察了一个典型反应轨迹的运动, 没有考虑动力学中的相效应, 因此无法得到反应的统计平均的量子产率. 另外一维和两维的势能面也被构建用于研究反应的机理, 但其中有些势能面只考虑苯环绕中心烯键扭转[14]; 有些通过实验数据拟合得到[15]; 有些势能面虽然通过从头算方法计算得到, 但所选反应坐标非独立坐标, 无法用于动力学研究[1].图1 反式二苯乙烯的几何构型图Figure 1 Structure and standard numbering of trans-stilbene鉴于此, 本文首先采用态平均多组态的自洽场方法(SA-CASSCF在6-31G 的基组水平上构建新的二维势能面[16,17], 所选独立变量为图1所述二面角D1和D2的线性组合二面角DD1和DD2. 其中DD1为D1和D2的平均值(D2+D1/2; DD2表示D2相对D1的扭转大小, 即(D2-D1/2. 为了简化计算量, 我们拟合了势能面的解析表达式, 并用于提供经典轨迹中原子核运动所需的力. 由于此分子体系较大, 无法构建3N -6维的全维势能面(其中N 为原子数, 因此本文采用约束Hamilton 系统限制部分核坐标的运动, 例如在动力学模拟过程中每个苯环将始终作为一个刚体运动. 在此基础上将最新改进的Trajectory Surface Hopping (TSH方法用于半经典动力学模拟二苯乙烯的光致顺反异构化过程中. TSH 方法由Tully 和Preston [18]首先提出, 其基本思想是反应轨迹总是在单一势能面上演化, 电子的非绝热跃迁几率可以由Laudau-Zener 公式或数值求解含时耦合方程得到. 20世纪90年代, 朱超原与Nakamura 共同提出的Zhu-Nakamura 理论简化了非绝热跃迁几率的计算[19~25]. 此理论分别采用Landau-Zener 和nonadiabatic tunneling 两种模型推出两种类型的几率计算公式[19,20]. 采用哪一种模型取决于非绝热区两个电子态的势能的梯度的符号是否相同, 前者对应同向, 后者对应反向, 因此在计算跃迁几率时需要首先确定势能面的类型. 最近, 我们基于此理论进一步采用e 指数模型推出了非绝热跃迁几率的新公式, 避免了预先确定势能面类型的工作. 下面将简要介绍新的计算方法和程序化过程, 并详细报道基于此方法所做的动力学模拟的结果与讨论.2 理论背景如前所述, TSH 方法中核运动采用约束Hamilton 系统进行经典计算, 而电子是否发生无辐射跃迁取决于非绝热跃迁几率的大小. 下面我们简要介绍一下这两部分内容的理论背景. 2.1 约束系统Hamilton约束系统Hamilton 量:23(,,((2CN Ni k k i ki p H q p V q g q m λλ∑∑=++(1应该满足约束条件(0k g q =(2从而保持体系能量守恒. 此Hamilton 系统所对应的正则方程可以描述为[26~29]: (,,i i ii p H q p q p m λ∂∂ == (3((,,(C N uc cki i i k ki i i g q H q p V q p f f q q q λλ∂∂∂∂∂∂∑ =-=+=--(4 其中m i , q i 和p i 分别对应原子i 的质量、坐标和动量. g k (q 和λk (t 分别对应第k 个约束条件(包括键长、键角和二面角约束及所对应的拉格朗日乘子. 式(4中uc i f 所对应的是体系势场所提供的力, 而c i f 是用来约束核运动的力, 其贡献来自于约束方程关于核坐标的微分(/k i g q q ∂∂. 我们采用拉格朗日乘子法求解满足约束方程式(2的λk (t . 首先确定t 时刻的核坐标及动量, 然后数值积分式(3得到t +Δt 时刻的坐标[27]1212(((((((Cuc c i i i i N uc k i i kkiq t t q t t m t f t g q q t t m t q λ−−ΔΔΔ∂ΔΔ∂∑+=++=+- (5其中(uc i q t t Δ+是t +Δt 时刻未受约束的核坐标. 将q i (t +Δt 带入式(2从而构造包括键长、键角和二面角约束的非线性方程组. 求解这些关于λk (t 的非线性方程组需要采用Powell’s Dog Leg 方法[30]. 此方法通过如下公式00(||k k g J g λλλ===-(6逐步更新λk , 直至2-范数k g 小于预先设定的阈值τ. 其中J g 为约束方程g k (q 所对应的雅克比矩阵. 此方法已经收录在免费程序包MINPACK [31,32]中, 只需将预先得到的g k (q 和J g 输入此程序中即可得到所需求解的λk (t . 将其代入式(3和(4应用数值积分方法四阶龙格-库塔方法(RK4[33,34], 即可求解t +Δt 时刻体系的约束坐标及动量. 将此作为起始可以得到经过下一个时间步长Δt 后体系的坐标及动量. 这样沿着固定时间步长数值运算核坐标及其动量时间的过程对应体系的动力学模拟过程. 2.2 非绝热跃迁几率在一维透热模型的势能曲线上, 体系的无辐射跃迁与两个参数有关, 分别是有效耦合常数a 2和有效碰撞能b 2 [24]. 它们分别表示为:22213(28xF F F a m V =-= (7a221((2x xF F b E E FV -=-(7b其中m 是体系的约化质量, F i (i =1, 2是透热势能的斜率, F . V x 代表透热势能耦合项, E x 是透热势能. 一般情况下, 电子跃迁是在绝热表象下进行. 基于e 指数模型, 参数a 2和b 2在此表象可以表示为:0222301[((]16(x x a W x W x m x E +−=∂⎡⎤⎢⎥∂Δ⎣⎦==+ (8a 22xE E b E Δ-=(8b其中W +(x 和W ―(x 分别是能量较高和较低的电子态的能量, 此时的(( 2x W x W x E +-+=, 而0E Δ=((2W x W x+--. 其中式(8b中E 为体系能量. 基于此模型, 非绝热跃迁几率可以表示为:0ZN 1exp 4exp ((]x x P ab W x W x π−+−=⎛⎞⎜⎟⎝⎠⎡⎤⎢⎥⎢⎥⎣⎦=-=+(9众所周知, 电子的无辐射跃迁沿着非绝热耦合向量最强的方向进行. 为了计算电子非绝热跃迁几率P ZN 需要首先确定此向量的方向. 对于大分子体系来说, 计算此向量非常耗时, 而实践证明势能面上的接缝线与非绝热耦合向量基本垂直[35], 所以找到此接缝线就意味着确定了电子跃迁的方向. 朱超原等报道称此接缝线可以在运行经典轨迹之前预先确定, 并将体系在此线所处的区域分为三部分, 分别为透热区、绝热区和非绝热区. 划分的标准由参数a 2决定, 当a 2>103时, 体系处于透热区, 此时确定跃迁发生; 当a 2<10-2, 体系处于绝热区, 此时无跃迁发生; 当103≥a 2≥10-2, 体系处于非绝热区, 此时电子跃迁发生与否取决于此时P ZN 是否大于一个0和1之间随机数[35].由式(8a可知, 计算a 2需要势能面的信息. 如图2所示, 我们在SA-CASSCF/6-31G 水平上[16,17]构建了二维势能面, 其中所选活性空间包括2个活性电子及2个活性轨道HOMO 和LUMO, 势能变化沿着二面角DD1和DD2进行. 采用线性最小二乘法[36]拟合得到了此势能面的解析表达式(10.图2 二苯乙烯围绕圆锥相交点OBF-CI 的基态与第一激发态的二维解析势能面,其中变量为组合的二面角DD1和DD2Figure 2 Analytical two-dimensional PESs around OBF-CI for the ground state and the first excited state with respect to the combined inter-nal coordinates DD1 and DD222010101234567891011121314(,exp[(x(]cos(/2cos(/2cos(cos(cos(2cos(2cos(3cos(3sin[(/2]sin[(2/2]sin[(2/2]sin(sin(2sin(2W x y c a x b y y c x c y c x c y c x c y c x c y c x y c x y c x y c x y c x y c x y =----++++++++++++++++++++1516171819202122232425262728sin(22sin(3sin(3sin(32sin(23sin(3 3cos[(/2]cos[(2/2]cos[(2/2]cos(cos(2cos(2cos(22cos(3c x y c x y c x y c x y c x y c x y c x y c x y c x y c x y c x y c x y c x y c x y c+++++++++++++++++++++++++++++29303132cos(3cos(32cos(23cos(33x y c x y c x y c x y +++++++(10其中, x 0=-103.3°和y 0=43.3°为相交点OBF-CI 的DD1和DD2值, 而其他的系数a 1, b 1和c 0~c 32在表1中. 解析势能面与计算势能面的对比表明, 无论S 0还是S 1的平均偏差都小于2.4 kcal •mol -1, 而且最小偏差出现在相交点OBF-CI 附近, 此处平均偏差小于1.0 kcal •mol -1, 即最重要的相交区域的计算结果也最为精确, 这为此后的动力学计算打下良好基础.表1 二苯乙烯围绕圆锥相交点OBF-CI 关于DD1和DD2的基态与第一激发态的二维解析势能面的拟合参数(其中c 0~c 32单位为eVTable 1 The fitted coefficients of two-dimensional S 0 and S 1 PESs around OBF-CI with respect to the combined internal angles DD1 and DD2 (c 0~c 32 in units of eV Index a 1 b 1c 0c 1c 2c 3 c 4c 5c 6S 0 35 3.5 0.495231 364.2436 166.2537 -63.2233-228.305 -12.7773 25.79321 S 1 39 3.9 -0.52219 256.2847 -18.8715-74.255 -85.6398 -4.51131 16.61385 Index c 7 c 8c 9c 10 c 11 c 12 c 13 c 14c 15 S 0 -3.78713 -3.97288 9.467412 106.3829 -36.167 -72.9472 5.205437 -0.08421 -4.58729S 1 -1.65933 -2.44485 -219.158 171.3529 98.32809 -110.7899.156298 -4.96308 -1.1299 Index c 16 c 17 c 18c 19 c 20 c 21 c 22c 23 c 24 S 0 5.134825 3.857498 -6.20916 0.171133 2.090849 -538.156-56.4412 254.7531 157.3086 S 1 0.059523 4.654567 -1.20414 -1.738630.658395 -277.52987.56788 112.7934 47.53832 Index c 25 c 26 c 27 c 28 c 29 c 30 c 31 c 32 S 017.19558 -58.19 -8.161 7.267131 4.132838 -3.08607 1.734321 0.088946 S 1 -7.42468-41.53027.9652671.253993.375719-0.42815-0.71119-0.09718结合解析势能面表达式(10与式(8a, 得到了如图3所示的a 2值. 由此图可知, 沿着DD1约等于-103.35°的直线(即接缝线方向上, a 2都相对较大, 最大值在圆锥相交点OBF-CI 处.当反应轨迹接近此线时, 通过此时的a 2判断体系所处的区域, 可以判断电子是否发生跃迁, 即电子跃迁只可能发生在此接缝线上, 而势能面上的其他区域无需考虑电子是否跃迁. 此方法大大简化了非绝热跃迁几率的计算量, 特别是高维势能面上跃迁几率的计算.图3 关于组合的二面角DD1和DD2的有效耦合参数a 2的三维图 Figure 3 The effective coupling parameter a 2 with respect to the com-bined internal coordinates DD1 and DD23 动力学模拟程序化基于以上所述改进的TSH 方法, 我们实现了半经典动力学模拟的程序化. 此程序适用于任意约束与未约束的分子体系, 特别是那些无法构建全维势能面的大分子体系, 如本文中的二苯乙烯. 因体系不同所需要重新设定的只有动力学过程的初始条件、时间步长、最长模拟时间、模拟完成判据及非绝热跃迁几率等. 这些需要修改的量相对整个模拟程序来说, 工作量很小, 所以相对全量子的动力学程序, 此动力学模拟程序普适性较好. 此程序的流程图如图式1.为了达到可以与全量子动力学模拟相近的计算结果, 半经典动力学模拟过程中需考虑反应的相效应, 即波包演化过程的平均效应. 此效应需要考虑大量的反应轨迹的加权平均. 因此模拟反应动力学过程时, 每一条图式1 新的TSH 程序流程图Scheme 1 Flow chart of new implementation of TSH method反应轨迹的初始坐标q i (0及动量p i (0需要首先在一定范围内随机确定. 初始时间设定为t =0, 体系下一个时刻t +Δt 满足约束条件的坐标q i (t +Δt 及动量p i (t +Δt 可按如下步骤计算:(1计算t 时刻势能所提供的力(/i V q q ∂∂和约束力(/k i g q q ∂∂.(2将上述两种力代入式(5, 计算t +Δt 时刻未满足约束条件的核坐标q i (t +Δt .(3将q i (t +Δt 代入约束方程式(2, 得到非线性方程组式(2, 其中未知量为λk (t , 并计算其所对应的雅克比矩阵J g .(4将g k (q 和J g 作为输入文件, 应用软件MINPACK [31,32]中求解非线性方程组的解λk (t . 此方法中需要不断更新λk (t , 直至约束方程式(2成立.(5将λk (t 代入式(3和(4, 并采用RK4方法求解得到t +Δt 时刻满足约束方程式(2的q i (t +Δt 和p i (t +Δt .(6如果此时反应轨迹满足模拟完成的条件, 或动力学演化时间已经超过设定的模拟时间, 程序终止.(7如果步骤(6的条件不满足时, 基于式(9计算此时体系的非绝热跃迁几率P ZN , 并与一个0到1之间的随机数进行对比. 如果P ZN 大于此随机数时, 电子发生跃迁, 并重新分配体系的动能, 从而调整动量p i (t +Δt .(8将此时的坐标q i (t +Δt 及改变的p i (t +Δt 作为下一个时间步的初始坐标及动量, 重复以上计算, 直至模拟完成.如上所述, 不同的体系需要重新选定体系的初始坐标和动量以及模拟完成的条件. 由图2与其所对应的解析表达式(10可知, 二苯乙烯基态顺式构型的稳定点在DD1和DD2分别为-39.2473º和50.9041°的位置. 本文设定初始的DD1为DD1=-39.2473°±ΔD 之间任意值, 而DD2的取值范围是DD2=50.9041°±ΔD , 其中ΔD =20°.反式构型的稳定点在DD1和DD2分别为-164.3473°和36.7041°的位置. 类似地, 初始设定的DD1的取值范围为DD1=-164.3473°±ΔD, 而DD2为DD2=36.7041°±ΔD 之间的值. 所选坐标基本都在Frank-Condon(FC区域内. 初始动量方面, 设定坐标所选范围内S 1能量的最大值为体系总能量, 即此处体系的总能只有势能的贡献, 而其他初始坐标所对应激发态的势能小于总能, 则其具有初始动能, 并可以按照比例分配到图1所示D1和D2所对应原子C(1, C(2, C(8, C(9, C(10和C(11的动能部分.二苯乙烯从初始的顺式或反式构型激发到第一激发态后, 反应轨迹既可通过电子跃迁回到基态的反应物, 又可生成基态产物. 本文设定模拟完成的条件是: 从顺式的激发态到反式的基态时, 顺式到反式的异构化反应完成; 从反式的激发态到顺式的基态时, 反式到顺式的转变完成; 从顺式的激发态回到顺式的基态或从反式的激发态回到反式基态时, 异构化反应未发生. 模拟完成时, 反应轨迹进入到的顺式或反式构型的收集区域与初始坐标选取范围一致, 也为FC 区域.4 结果与讨论如前所述, 化学反应的量子产率需要从大量反应轨迹的统计平均得到. 所需反应轨迹数目的大小取决于模拟得到的量子产率是否收敛, 即直至增加反应路径不会改变反应的平均量子产率. 如前所述, 我们选定初始的总能为所选初始坐标所对应的最大垂直激发能. 基于此, 表2中提供了100, 500, 1000及2000条反应轨迹模拟的量子产率. 模拟2000条反应轨迹时, 所得量子产率与500条所得结果基本一致, 因此可以确定2000条轨迹足以模拟二苯乙烯的顺反异构化反应. 我们定义反应物(cis-或trans-、未反应轨迹(unreact及产物(trans-或cis-三部分轨迹. 由于此二维势能面关于DD1和DD2坐标的变化满足周期性特点, 未反应轨迹在未能进入反应物或产物收集区域时, 就已经跑出我们所选势能面边界, 因此这部分轨迹与反应物轨迹都归于未生成产物的反应轨迹.表2 二苯乙烯光致顺反异构化统计平均的量子产率Table 2 Cumulative quantum yields with respect to cis- and trans-stilbene photoinduced isomerizationsOBF-CI a cis- to trans- trans- to cis-Trajectories cis-/%Unreact/%trans-/% trans-/% Unreact/%cis-/%100 22.00 18.00 60.00 24.00 10.00 66.00 500 19.40 20.00 60.60 25.80 12.60 61.60 1000 17.40 21.40 61.20 25.20 13.80 61.00 2000 17.25 22.30 60.45(42.3c 25.65 13.90 60.45Exp.b55.0 35.0 45.0 55.0aTotal energy of either cis- or trans- classical trajectory is equal to the maxi-mal vertical excitation energy among all the initial positions. DD1=-39.2473°±ΔD , DD2=50.9041°±ΔD for cis- to trans- isomerization, while DD1=-164.3473°±ΔD , DD2=36.7041°±ΔD for trans- to cis- deforma-tion, where ΔD =20°. b ref. 2~5. c Corrected by taking into account the branch ratio to side reaction DHP [14].由表2可知, 模拟得到反式至顺式的量子产率为60.45%, 与实验值55%基本吻合[2~5]. 另一方面, 顺式至反式的量子产率为60.45%, 明显不同于实验值35%[2]. 以前的报道[14]称, 与反式的二苯乙烯只经过一条反应路径无需修正不同, 当顺式的二苯乙烯从初始稳定点激发到S 1态后, 会经过两条反应路径. 其中一条反应路径经过本文报道的圆锥相交点OBF-CI, 顺式二苯乙烯经过此反应路径的几率为70%. 另一条反应路径对应有30%的几率经过其它圆锥相交点, 其中包括可以生成副产物DHP 的圆锥相交点[2~8]. 因此, 模拟的顺式到反式的量子产率需要经过修正, 即60.45%×0.7=42.3%. 经过修正的结果42.3%与实验值35%基本一致[2~5].为了测试初始条件的敏感性, 我们分别在原有体系总能量的基础上加上0.25 eV 和0.50 eV 的动能, 并在选定的坐标范围内随机选取初始坐标, 模拟2000条反应轨迹. 表3给出了未加初始动能及加入0.25 eV 和0.50 eV 的动能, 三种不同初始条件下顺反异构化反应的量子产率. 对比结果表明, 加入初始动能并没有明显改变所得量子产率, 我们发展的改进的TSH 方法对初始条件的选择并不敏感, 即此模拟方法可靠性较高, 可以很化学学报好地应用于如二苯乙烯这样的中等大小分子体系的动力学模拟. 表3 二苯乙烯光致顺反异构化 2000 经典轨迹模拟的统计平均量子产率 Table 3 Cumulative quantum yields with respect to cis- and trans-stilbene photoinduced isomerizations from the simulations of 2000 classical trajectories OBF-CIa Eplus/eV 0.00 0.25 0.50 Exp.b a 研究论文 cis- to transtrans- to ciscis-/% Unreact/% trans-/% trans-/% Unreact/% 17.25 22.30 60.45(42.3c 25.65 13.90 17.35 23.55 59.10(41.4c 25.65 16.25 16.70 24.35 58.95(41.3c 25.70 16.95 55.0 35.0 45.0 cis-/% 60.45 58.10 57.35 55.0 Total energy of either cis- or trans- classical trajectory is equal to the sum of Eplus and the maximal vertical excitation energy among all the initial positions. DD1=-39.2473°±ΔD, DD2=50.9041°±ΔD for cis- to trans- isomerization, while DD1=-164.3473°±ΔD, DD2=36.7041°±ΔD for t rans- to cisdeformation, where ΔD=20°. b ref. 2~5. c Corrected by taking into account the branch ratio to side reaction DHP[14]. 为了研究反应的机理, 我们选取 100 条典型经典轨迹考察反应过程中二苯乙烯的动力学信息. 图 4 给出了顺反异构化过程中二面角 DD1 随时间的变化. 由图 4a 可知, 顺式二苯乙烯的电子受激激发后, 大多数反应轨迹的 DD1 都逐渐振荡接近最小值-180°, 此时的 DD1 已经满足反应完成的条件, 生成反式二苯乙烯. 另一方面 , 此异构化过程中也存在少量轨迹逐渐振荡增大到-40°左右. 此时的 DD1 在反应初始坐标设定的范围, 生成基态的顺式二苯乙烯, 对应未发生顺式到反式的异构化反应. 反式到顺式的转化过程中, DD1 的变化基本与顺式到反式反应时的变化相反 . 可以在图4b 看出 , DD1 的主要变化是振荡增大 , 而其它少数反应轨迹振荡减小到接近-150°. 类似地, 反式二苯乙烯激发后既可以生成产物顺式构型也可以转变到基态反式构型. 反式激发态到基态对应未发生反式到顺式的异构化反应. 本文也研究了二面角 DD2 随时间的变化. 由图 5 可以看出 , 无论顺式还是反式 , 大多数的反应轨迹中 DD2 的变化呈现近似周期性振荡. 其中顺式反应平衡位置约为 40°, 反式异构化过程中 DD2 的平均值约为 45°. 相比 DD1 的变化, DD2 的变化相对较小, 因此对于反应坐标贡献也较小. 另一方面, 有少量的反应轨迹中顺式的 DD2 振荡平衡位置上移到 60°左右, 而部分反式到顺式的异构化过程中, DD2 的平均值则既有增大又有减小. 相对 DD1 的变化, 此部分反应轨迹中 DD2 的变化也相对较小, 同样说明 DD2 对反应路径的贡献较小. 图 4 100 条二苯乙烯异构化的典型轨迹中组合二面角 DD1 随时间的变化。
凝聚态物理论文
对氢钝化的硅纳米线的各向异性的研究一、研究背景:最新实验表明,不同尺寸和结晶取向的小硅纳米线已能被成功合成。
比如,已能够制造直径小至1nm,长度仅为几十微米的单晶硅纳米线。
利用氧化物辅助生长机制,纳米线的合成通常包括一个被外氧化层包围的结晶中心。
然后,酸化处理以去除外氧化层,使得被氢钝化的硅纳米线只有1nm那么细。
硅纳米线的成功合成,使人们对这些准一维材料产生了极大的兴趣,并期望展示出这种有趣材料的结构、表面、电学以及力学方面的性质,并用它作为模型来解释量子尺寸效应。
很好地证明了,在氢终止的硅纳米线上的量子限制效应将导致,随着纳米线尺寸的减少,带隙会戏剧性地加宽。
二、研究内容:利用第一性原理研究各种直径和生长方向的氢钝化硅纳米线的能量相对稳定性和机械性能。
为了比较硅纳米线的物理性质和理解在某些方向优先生长的原因,研究了沿着[100],[110],[111],[112]结晶取向生长的纳米线。
三、研究方法:(1)理论基础:第一性原理(First Principle):广义的第一性原理计算指的是一切基于量子力学原理的计算;物质由分子组成,分子由原子组成,原子由原子核和电子组成。
量子力学计算就是根据原子核和电子的相互作用原理去计算分子结构和分子能量(或离子),然后就能计算物质的各种性质。
从头算(ab initio)是狭义的第一性原理计算,它是指不使用经验参数,只用电子质量,光速,质子中子质量等少数实验数据去做量子计算。
但是这个计算很慢,所以就加入一些经验参数,可以大大加快计算速度,当然也会不可避免的牺牲计算结果精度。
广义的第一原理包括两大类,以Hartree-Fork自洽场计算为基础的ab initio从头算,和密度泛函理论(DFT)计算。
(2)研究过程:a)研究对象图1图1是不同生长方向的硅纳米线代表性的截面。
其中,第一张图中的几何体的所有侧面被4个[110]面所束缚而朝向[100]方向。
第二张图中的几何体就像和那些以经验推断的较大直径的硅纳米线一样,朝向[110]方向,在[111]和[100]侧表面有六边形的截面,第三张图中的几何体朝向[111]方向,且所有侧表面都被[100]面所束缚。
碳化硼的研究进展
碳化硼的研究进展刘珅楠;孙帆;谭章娜;袁青;周凯静;马剑华【摘要】碳化硼是高性能陶瓷材料中的一种重要原料,包含诸多的优良性能,除了高硬度、低密度等性能外,它还具备高化学稳定性和中子吸收截面及热电性能等特性,在国防军事设备、功能陶瓷、热电元件等诸多领域具有十分广泛的应用。
本文重点介绍了碳化硼的相关性质、研究进展和应用现状。
详细地介绍了碳化硼的制备方法,如电弧炉碳热还原法、自蔓延高温法、化学气相沉积法、溶胶-凝胶法等方法,并分析了它们的优缺点。
%Boron carbide is a kind of important raw materials of high performanceceramic material, including many excellent performance. In addition to highhardness and low density properties, it also has high chemical stability andneutron absorption cross section and thermoelectric properties, which are widely used in national defense and military equipment, functional ceramics and thermoelectric element fields. The current research progress and application of relevant properties, boron carbide were introduced. The preparation methods of boron carbide, such as carbon arc furnace reduction method, self-propagating high temperature method, chemical vapor deposition, sol-gel method, were mainly introduced, and their advantages and disadvantages were analyzed.【期刊名称】《广州化工》【年(卷),期】2015(000)005【总页数】3页(P21-23)【关键词】碳化硼;特种陶瓷;自蔓延高温法;化学气相沉积法;溶胶-凝胶法;前驱体【作者】刘珅楠;孙帆;谭章娜;袁青;周凯静;马剑华【作者单位】温州大学化学与材料工程学院,浙江温州 325000;温州大学化学与材料工程学院,浙江温州 325000;温州大学化学与材料工程学院,浙江温州325000;温州大学化学与材料工程学院,浙江温州 325000;温州大学化学与材料工程学院,浙江温州 325000;温州大学化学与材料工程学院,浙江温州 325000【正文语种】中文【中图分类】TQ263.1材料是人类社会赖以生存和发展的物质基础。
Technology in Society
Thermoplastic elastomer/polyaniline blends: Evaluation of mechanical and electromechanical properties Original Research ArticlePolymer TestingPreparation of novel nano-adsorbent based on organic–inorganic hybrid and their adsorption for heavy metals and organic pollutants presented in water environment Original Research ArticleJournal of Hazardous MaterialsSelf-trapped holes in pure-silica glass: A history of their discovery and characterization and an example of their critical significance to industry Original Research ArticleJournal of Non-Crystalline SolidsIt has long been assumed that hole self-trapping should take place in amorphous silicon dioxide (a-SiO2). However, no spectroscopic evidence for this was claimed before 1989, when the author used electron spin resonance (ESR) to identify self-trapped holes (STHs) in bulk samples of low-OH pure fused silica Xirradiated 100 K, and Chernov et al. reported a low-temperature infrared absorption near 1600 nm in irradiated pure-silica-core fibers, which they ascribed to STHs. Based on g values and 29Si and 17O hyperfine coupling constants measured by ESR, Griscom [D.L. Griscom, Phys. Rev. B 40 (1989) 4224;D.L. Griscom, J. Non-Cryst. Solids 149 (1992) 137] deduced the existence of two types of STHs: STH1 (a hole trapped on a single bridging oxygen) and STH2 (a hole delocalized over two equivalent bridging oxygens of the same SiO4tetrahedron). The validity of Griscom’s models for STH1 and STH2 are supported by the ab initio calculations of Pacchioni and Basile [G. Pacchioni, A. Basile, Phys. Rev. B 60 (1999) 9990] and Gabriel [M.A. Gabriel, PhD dissertation, Department of Chemistry, University of Washington, Seattle, WA, in preparation]. In 1984, Nagasawa et al. reported that low-OH-pure-silica-core optical fibers γ irradiated at 300 K exhibit metastable optical absorption bands at 660 and 760 nm. Griscom [D.L. Griscom, J. Non-Cryst. Solids 349 (2004) 139] recorded these same bands inlow-OH-pure-silica-core fibers γ irradiated at 77 K, showing their isochronal annealing behaviors to correlate with his earlier ESR data for STHs in bulk silica and also with Harari et al.’s data [E. Harari, S. Wang, B.S.H. Royce, J. Appl. Phys. 46 (1975) 1310] for trapped positive charges in silica thin films following X irradiation at 77 K. Sasajima and Tanimura [Y. Sasajima, K. Tanimura, Phys. Rev. B 68 (2003) 014204] established direct correlations of an induced band at 574 nm with STH2 by performing both ESR and a variety of optical measurements on three types of high-purity bulk silicas following pulsed electronirradiations at 77 K; however, these authors did not detect the 660 or 760 nm bands. Yamaguchi et al. [M. Yamaguchi, K. Saito, A.J. Ikushima, Phys. Rev. B 68 (2003) 153204] demonstrated that the yield ofESR-detected STHs photoinduced in bulk pure-silica samples at 77 K depends exponentially on fictive temperature (T f). The present paper recounts the forgoing history in greater detail, while attempting to reconcile some seemingly disparate findings into a unified picture of STHs in silica. In the fall of 1998, a number of satellites in orbit were tumbling out of control due to failure of their HeNe ring-laser-gyro (RLG) attitude control systems. The author, acting in the capacity of pro-bono US government consultant, proposed the correct solution to this problem (replace Al-contaminated silica mirror coatings withhigh-purity ones). However, accelerated tests (short operation times at much-higher-than-normal laser powers) of the corrected devices failed to corroborate this fix. Thus, all further launches of satellites employing these RLGs remained grounded until the author was able to convince industry troubleshooters that (1) the accelerated test failures were due to the 660-nm STH band (which is induced even in the highest-purity silica coatings by 20-eV photons emitted by the laser plasma), (2) the strength of this band is initially proportional to ionizing dose rate (inevitably giving false positives in accelerated tests), and (3) this band eventually disappears after several months of irradiation, even at dose rates as low as0.15 Gy/s. All of these insights derived from curiosity-driven components of the author’s researc h. Article Outline1. Introduction1.1. Self-trapped carriers in crystalline and glassy insulators1.2. If there are self-trapped holes in SiO2, where have they been hiding?1.3. Story of the discovery of self-trapped holes in a-SiO21.4. Self-trapped holes in a-SiO2 have visible-range optical bands1.5. Self-trapped holes in a-SiO2 have practical relevance – unforeseen by US science management2. ESR spectra of STHs in a-SiO22.1. g-Value theory of STH1 in a-SiO22.2. g-Value theory of STH2 in a-SiO22.3. STH g-value distributions as probes of the valence-band density of states of a-SiO23. Recent evidence that strained bonds favor STH formation4. Optical bands attributable to STHs4.1. Optical bands recorded in γ-irradiated optical fibers4.2. Optical bands recorded for pulse-electron-irradiated bulk silica samples5. Relevance to industry5.1. The mystery of the tumbling satellites5.2. What went wrong?6. STHs in a-SiO2: Where do we go from here?6.1. Uncertainties about the optical bands6.2. How pervasive are reactions of STHs with interstitial atoms?6.3. Does F2 laser irradiation create STH/self-trapped-electron pairs?6.4. What is the mechanism of the radiation-stimulated reconfiguration?6.5. Pulsed radiolysis of pure-silica core fibers6.6. Theoretical calculations are dearly needed – and they are coming soon!6.7. How and why to calculate STHs in a-SiO26.8. Why should industry care?ReferencesExperience of design and optimization of multi-effects desalination systems in Iran Original Research ArticleDesalinationHybrid porous resist with sensing functionality Original Research Article Microelectronic EngineeringPerioperative Workflow: Barriers to Efficiency, Risks, and Satisfaction Original Research ArticleAORNSynthesis and optical characterization of Ag0nanoparticles Original Research ArticleMicroelectronics JournalStructure and optical properties of - and -cerium sesquisulfide OriginalResearch ArticleJournal of Alloys and CompoundsLong period grating-based humidity sensor for potential structural health monitoring Original Research ArticleSensors and Actuators A: PhysicalScience and the humanities: the case for state humanities councilsTechnology in SocietyUsing the “revealed competitive advantage indices” for exports and imports, the pa per is devoted to the analyses of the vulnerability of selected developing countries if China's competitive position is improved due to its entry to World Trade Organization (WTO). In contrast to the existing literature, which concentrates on labour-intensive products as a group, this paper considers products at a disaggregate level because products in the same group are not often homogeneous. It is argued that the competitive effects of China's accession on developing countries are exaggerated in the literature.In labour-intensive manufactured goods, China competes mainly with South Asian countries (e.g., India, Pakistan, Bangladesh, Sri Lanka, and Nepal) and a few Latin American and African countries. However, it also provides them with little demand complementary effects. Nevertheless, some Latin American and African countries may benefit from the expansion of China's imports of foods and agricultural raw materials. In the final market for capital goods, China competes with Asian newly industrializing economies (NIEs) and Association of Southeast Asian Nations (ASEAN) countries and in a limited number of goods with Mexico and Costa Rica. For NIEs, unlike others, such competition involves complementary effects through the import of parts and components, which will overoffset the competition effects in the short and medium run. As China develops its capacity to produce components, however, the “competition” effect may dominate.China's export structure is similar to that of the Republic of Korea and Malaysia in the final market for a number of “finished” capital goods. By contrast, Thailand is vulnerable in clothing, miscellaneous household equipment, and electric machinery. Indonesia has little to worry except for furniture. Indiaconcentrates mainly on undergarments and China in outer garments. Bangladesh, Sri Lanka, Pakistan, Viet Nam, and Nepal have similar export structure with China in some clothing items; however, overall, they (particularly Viet Nam) have been aggressive in exportation of these products. Sri Lanka and Pakistan also compete with China in toys and sporting goods, but both have shown some strength in their exports.Except Mexico, Costa Rica, Haiti, and to some extent Uruguay, the export structure of the Latin American countries is mostly different from that of China. Mexico has a strong competitive position vis-à-vis China in a number of clothing items but weaker in a few assembly operations. Costa Rica's competitive advantage has noticeably improved for a number of clothing items and a few assembly operations. Haiti competes with China in eight products, mostly clothing. It has a strong competitive position in footwear, one clothing item, and some base metal. Uruguay's relative competitive position is weak in a number of labour-intensive products. The export structure of African countries is different from that of China, except for Egypt, Morocco, Tunisia, and Malawi. These countries have improved their competitive position in their clothing.China's entry into the WTO will not change, for some time, its market access for textiles and clothing for it to be a threat to other developing countries. Nevertheless, if China attempts devaluation, the situation could change radically. China's devaluation is, however, unlikely. Over a longer term, much depends on what policy China will pursue in its trade and industrialization. China's attempt in increasing domestic value added in exports could lead to improvement in its competitiveness in technology/skill-intensive products of interest to NIEs and the ASEAN.Article Outline1. Introduction1.1. The theme and the analytical framework2. China's labour cost advantages3. China's changing competitive advantage at product level3.1. Market share in export items3.2. Assembly operation and potential for production and exports of parts and components4. Competition and complementary effects of the accession4.1. Competition effect4.2. China's imports from developing countries: “complementary effect”4.3. NIEs and ASEAN: the main beneficiaries of processing trade4.3.1. Office machine and automatic data processing4.3.2. Textiles and clothing5. Competition on main export products5.1. Similarities in export product structure: rank correlation5.2. Product analysis5.2.1. Asia5.2.2. Latin America5.2.3. Africa6. ConclusionsAcknowledgementsReferencesIs China's accession to WTO threatening exports of developing countries?Original Research ArticleChina Economic ReviewBackground contextAlthough total disc replacements have been performed in Europe since the 1980s, this type of surgery is still new in the United States. The clinical performance of polyethylene in total disc replacements is still not well understood.PurposeTo describe the wear, surface damage, oxidation and mechanical properties in an explanted polyethylene total disc replacement component.Study design/settingCase report, analysis of retrieved implant.Patient sampleCase report.Outcome measuresAnalysis of wear, oxidation and mechanical properties in the retrieved total disc replacement.MethodsA 49-year-old female patient was implanted at L5–S1 with an SB Charité total disc prosthesis (DePuy Spine, Raynham, MA). After 1.6 years, the patient underwent a posterior, instrumented fusion because of intractable low back, left buttock and radicular left leg pain. Preoperative diagnostics revealed loosening at the bone implant interface at L5 and S1, anterior migration of the L5 base plate and severe degeneration of the L5–S1 facet joints. The retrieved polyethylene core showed evidence of damage around the periphery or rim. Transverse, subsurface cracks in the polyethylene, which initiated near the rim and penetrated into the interior of the component, were imaged using thin-film optical microscopy and micro-computed-tomography imaging. Analysis using Fourier transform infrared spectroscopy (American Society for Testing and Materials [ASTM] F2102) documented low levels of oxidation within 1 mm of the articulating surface. Miniature specimen mechanical testing (ASTM F2183), conducted near the surface where the oxidation was greatest, demonstrated that the mechanical properties were not substantially degraded.ConclusionIn this case, the anterior revision surgery was difficult and potentially life-threatening. The revision strategy of an instrumented posterior fusion to salvage a failed SB Charité disc replacement may be unpredictable and, in this case, ultimately unsuccessful. Despite the small size of the retrievedpolyethylene core, ASTM standard test techniques developed for analysis of retrieved hip and knee replacements were readily adapted for the total disc prosthesis.Évaluation des enseignements et des enseignants par les externes lors d'un stage clinique dans un service de gynécologie–obstétrique Original Research ArticleJournal de Gynecologie Obstetrique et Biologie de la ReproductionArticle OutlineIntroductionCase reportRetrieval analysisWear surface analysis methodsMicro-CT analysisOptical micrographyOxidation profileMechanical propertiesDiscussionReferencesCoastline extraction from SAR images and a method for the evaluation of the coastline precisionPattern Recognition Letters。
Introduction to Computational Chemistry (2)
• What can we predict with modern Ab Initio methods?
– Geometry of a molecule – Dipole moment – Energy of reaction – Reaction barrier height – Vibrational frequencies – IR spectra – NMR spectra – Reaction rate – Partition function – Free energy – Any physical observable of a small molecule
Born-Oppenheimer Approximation
• The potential surface is a Born-Oppenheimer potentials surface, where the potential energy is a function of geometry. Motion of the nuclei is assumed to be independent of the motion of the electrons
– There is an enormous toolbox of theoretical methods available, and it will take skill and creativity to solve real-world problems.
Electronic Structure Theory
! $ =
c e"#ir2 i
i
Electronic Structure Theory
• A plane-wave basis set is a common choice for predicting properties of a crystal
NCJ
7716 | New J. Chem., 2015, 39, 7716--7729
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015
Published on 02 September 2015. Downloaded by Sichuan University on 12/10/2015 01:34:23.
Published 02 September 2015. Downloaded by Sichuan University on 12/10/2015 01:34:23.
NJC
PAPER
View Article Online
View Journal | View Issue
Cite this: New J. Chem., 2015, 39, 7716
Paper
View Article Online
NJC
extraction performance, and emphasize the importance of the two 1,2,4-triazine rings in order to obtain optimum performance. In addition, by comparing the selectivity of tridentate ligands and bidentate ligands, Hudson et al. have concluded that the central pyridine has great contribution to the favorable extraction properties of the BTPs,13 even if the binding mode of the complexes of actinide with N-donor ligands remains unclear.
从头算法
Intermolecular interactions giving potentials which may be used to study macromolecules, solvent effects, crystal packing, etc.
Thermochemistry, kinetics, transport, materials properties, VLE, solutions
一、MD法原理
• 将微观粒子视为经典粒子,服从
定律 或
Newton 第二
Fi=-▽iU
• 若各粒子的瞬时受力已知,可用数值积分求出
运动的经典轨迹
二、MD法基本假定
用MD中的“模板强制法” ( Template-forcing ) 确定一对柔性分 子相应功能团可能的空间取向
模 板 加模板
起始取向为线型的分子逐步转化为能量较低的环型构象
例3
MD预测的顺磁性和反磁性冰晶体结构
O.A Karim & A.D.J. Haymet, J.Chem. Phys., 89, 6889(1988))
• 经典模型的局限 — 未涉及化学行为的物理本质
化合物的性质 电子结构
化学反应 核与电子运动状态的变化
• 伴随有电子跃迁、转移、变价的过程,经典的
分子模拟不能处理
一、量子力学第一原理 — 多体Shrö dinger方程
物理模型:
1
C
i 2
rij
• 分子中电子和原子
核均在运动中
金红石型TiO_(2)中四种点缺陷态研究
原子与分子物理学报JOURNAL OF ATOMIC AND MOLECULAR PHYSICS第38卷第1期2021年2月Vol. 38 No. 1Feb. 2021金红石型Ti。
中四种点缺陷态研究朱海霞(盐城师范学院物理与电子工程学院,盐城224051)摘 要:利用第一性原理计算方法研究了金红石型TiO 2中四种缺陷的电子态.这四种缺陷包括氧空位 (O ’)、钛空位(Ti v )、钛间隙(Ti s )以及氧空位O ’与钛间隙态Ti s 共存态.氧空位的存在导致禁带内施主缺陷能级较浅,而深施主能级与Ti 间隙态有关.预测了氧空位更倾向于与钛间隙结合,主要通过钛间隙态的3d 电子部分转移到近邻近氧空位的部分形成O v -Ti s 对缺陷.具有O ’、Ti S 或O v -Ti s 缺陷的体系都出现 间隙态,促进体系出现红外吸收.关键词:金红石型TiO 2;点缺陷;电子性质;第一性计算中图分类号:O483文献标识码:ADOI :10.19855/j.l000-0364.2021.016008Researches on four different point defects of rutile TiO 2ZHU Hai ・Xid(School of Physics and Electronic Engineering , Yancheng Teachers University , Yancheng 224051 , China)Abstract :The electronic states of four types of defects in rutile TiO are studied using the first principles calcula tions. The four types defects include oxygen vacancy ( O v) , titanium vacancy ( Ti v) , titanium interstitial(Ti s) , and the coexistence of O vand Tis ( O v- Ti s) - The existence of oxygen vacancy (v °) leads to a shallow donor defect level in the forbidden band , while a deep donor level is associated with the Ti interstitial (Ti $) - Itis predicted that an oxygen vacancy prefers to combine with a Ti $ to form a O v - Ti $ dimer by a partial 3d electronbeing transferred from the Ti $ to the neighboring O v - The system with defects of O v ,Ti $ orO ” 一 Ti $ appears gap 一 states ,which promotes the infrared absorption of the system.Key words : Rutile TiO ; Point defects ; Electronic structure ;First-principles calculations1引言TiO 2是一种重要工业材料,也是重要的半导体光催化材料-TiO 2有三种基本晶相:锐钛矿型、 板钛矿型和金红石型,而最受关注的是锐钛矿和金红石相-然而,对于光催化剂的应用,TiO 2最优化的带隙应为~2.0 ev ,才能实现大量可见光 吸收-但是实际上纯TiO 2带隙值约3- 0 ev 左右,这意味着纯TiO 2只能吸收紫外线辐射,即只吸收约4.0%的太阳能量,而在优化带隙值这一问题 上已有了大量的研究工作[1>2]-而众所周知,无论是TiO 2粉末形式还是薄膜形式,实际合成的TiO 2都具有高密度的结构缺陷,特别是在常规合成条件下产生的固有点缺陷•这些点缺陷可能会在电子带结构中引入额外的成分,对传输和光学行为产生实质性的影响[3],其中一些在实际应用 中可能是有利的-这是全面研究TiO 2缺陷状态的 动机⑷-氧化钛最容易被发现的缺陷是氧空位(Ov ),这可能导致各种物理后果-例如,锐钛矿型TiO 2 表面上的可以增强分子吸附,有利于表面化学处理⑸,有利于电荷转移到吸收的CO 2-晶格内的 O v 诱导载流子自陷态⑷-对于金红石型TiO 2,有报道称其单重态为反铁磁态,三重态为铁磁态,收稿日期:2020-06-06基金项目:国家自然科学基金(11704326)作者简介:朱海霞,女,博士,副教授,主要从事新能源材料电子结构和物性的研究.E-mail : shyzhhx13@ 163. com第38卷原子与分子物理学报第1期外吸收光谱中的一些关键特征与也二者有关⑺.有研究表明,氧空位O v可以在能隙内产生浅缺陷态,从而抑制相邻Ti离子的局部磁态⑻.此外,还揭示了的钛是红外吸收数异常的•这些乎,一方面,TiO2纳了位以外的点,方面,这些不类型的点可能存在相互作用,了TiO2材料的电子结构的复杂性⑼.鉴于存在各种点缺,这种 可能是二氧化钛在电子结构和输运行为方面难以理解的原因之一⑹.然目在一些关于TiO2的研究68"12】,但主要是探讨氧空位缺陷对TiO2材料电子构的.此,面研究各种不TiO2的电子结构的是一件非常有的工作•为了化考虑,本文具有介电常数高、‘化能的金红石相TiO2为研究对象•主要详细研究了位(O v),Ti位i (%)、Ti子(企)和。
The Research of Spin-Orbital Interaction in Interm
Journal of Materials Science and Engineering B 10 (5-6) (2020) 106-108doi: 10.17265/2161-6221/2020.5-6.002The Research of Spin-Orbital Interaction in Intermetallic Compounds of System Gd-In on Paramagnetic AreaОblokul Кuvadikovich Кuvadikov1, Nurliboy Sadiyevich Hamraev1, Abdugani Abayevich Eshkulov2 and Rustam Mustaffaevich Rajabov11. Samarkand State University, Samarkand 140104, Uzbekistan2. Tashkent State Technical University named Islam Karimov, Tashkent 100095, UzbekistanAbstract: Normal, R0, and anomalous, R S, components of the Hall coefficient are determined from the results of experimental investigations of temperature dependences of the Hall coefficient, magnetic susceptibility, and specific electrical resistance for intermetallic Gd3In, Gd3In5 and GdIn3 compounds. Effective parameters of spin-orbital interaction λSO of intermetallic compounds are calculated from anomalous components R S of the Hall coefficient and specific electrical resistance. The results calculated for the band parameters and effective parameters of spin-orbital interaction λSO for Gd-In system intermetallides coincide by orders of magnitude with the results obtained from the optical spectra of pure REMs (rare-earth metals).Key words: Hall coefficient, specific electrical resistance, magnetic susceptibility, effective spin-orbital interaction parameter.1. IntroductionAn integrated study of electric, magnetic, and galvanomagnetic properties of intermetallic compounds can be used to estimate the effective spin-orbital interaction parameter for the Gd-In system. According to our knowledge, there are no other worksin this direction in Russia and abroad except Trudea et al. [1] and Vedyaev et al. [2] who devoted to theoretical determination of the spin-orbital interaction parameter and results of investigations of the optical spectra.Theoretical calculations of the spin-orbital interaction are rather complicated. It is well known (for example, see Ref. [3]) that the magnetic Hamiltonian of rare-earth ions is written as follows:H = H coul. free + H SO + H cryst. field + H earthmet(1) From here the spin-orbital Hamiltonian has the form:H SO =λL·S(2) Corresponding author: Abdugani Abayevich Eshkulov, doctor of philosophy in physics and mathematics, dotsent, research fields: physics of magnetic phenomena. where λ is the effective spin-orbital interaction parameter. L—orbital angular momentum, S—spin angular momentum.In this work, an attempt is undertaken for the first time to estimate the effective spin-orbital interaction parameter from experimental values of the specific electrical resistance, paramagnetic susceptibility, and the Hall coefficient. Exactly this fact provides originality of our approach in comparison with other authors, for example, Krupicka [4].In the present work, electrical resistances ρ of the intermetallic Gd-In system were experimentally investigated in a wide temperature interval. At 77-1,000 K, they were measured using the conventional four-probe method, and at 800-2,000 K, they were measured by the contactless method of rotating magnetic field. This demonstrates that 4f-electrons, localized in sites of the Gd sublattice, play the dominant role in the formation of magnetic properties of the examined compounds.Because of a number of circumstances indicated by Trudea et al. [1], calculations of the effectivespin-orbital interaction parameter are rather difficult.The Research of Spin-Orbital Interaction in Intermetallic Compounds of SystemGd-In on Paramagnetic Area107It is well known (for example, see Ref. [2]) that the anomalous Hall effect in REMs (rare-earth metals) is a consequence of the spin-orbital interaction. In the paramagnetic region, the Hall coefficient R H can be written in the form:22H H 0SO 00B 2S e R R R R B gρ==+ρλχ=+χμμ (3)where B μ= 0.927 × 10–23 J/T is the Bohr magneton,0μ= 4π× 10–7G/m is the magnetic constant, h =1.054 × 10–34 J ⋅s is the Planck constant, e = 1.6 × 10–19 C is the electron charge, g is the Landé factor, ρ is the specific resistance, and SO λ is the effective spin-orbital interaction parameter. ρH —Hall resistivity, B —magnetic induction, R 0—normal Hall coefficient, R S —anomalous Hall coefficient, χ—magnetic susceptibility.Then the effective spin-orbital interaction parameter SO λis:0ВSO 222S R g e μμλ=ρ(4)An analysis of the experimental data demonstrates acorrelation between the Hall coefficient R H and the magnetic susceptibility χ for the intermetallic Gd 3In, Gd 3In 5 and GdIn 3 compounds shown in Fig. 1. As can be seen from the figure, the dependence of R H on χ is linear for the samples. Extrapolating R H to zero (OY axis), the normal, R 0, and anomalous, R S , components of the Hall coefficients can be determined.The effective spin-orbital interaction parameter SO λ of electrons was calculated for the examined samples from the obtained anomalous component of the Hall coefficient R S and the specific electrical resistance ρ.The calculated results are given in Table 1.As demonstrated by our calculations, the results on the band parameters and effective spin-orbital interaction parameters SO λ for the intermetallic Gd-In systems coincide by the order of magnitude with the results obtained in Refs. [4-6] from the optical spectra of pure REM. The coincidence of χ and R H signs demonstrates that the physical reason for the anomalous Hall effect is the spin-orbital interaction.Fig. 1 Dependence of R H on χfor the intermetallic Gd-In compounds.The Research of Spin-Orbital Interaction in Intermetallic Compounds of SystemGd-In on Paramagnetic Area108Table 1 Normal and anomalous components of the Hall coefficient and effective spin-orbital interaction parameter. Compounds R0 × 1010 (m3⋅C-1)R S× 107 (m3⋅C-1) λSO⋅10-13, ergGd3In 2.4 1.75 0.83 Gd3In5 1.8 2.96 1.82 GdIn3 1.0 6.35 3.682. ConclusionsThe normal, R0, and anomalous, R S, components of the Hall coefficient were determined from experimental investigations of temperature dependences of the Hall coefficient, magnetic susceptibility, and specific electrical resistance of the intermetallic Gd3In, Gd3In5 and GdIn3 compounds. However, the coefficient of the anomalous Hall effect decreases with increasing indium concentration, whereas the effective spin-orbital interaction parameter SOλ increases. This can be explained for the Kondo model [7]. It is assumed that magnetic electrons are localized, their magnetizing action on the conduction electrons can be neglected, and that exactly non-magnetized conduction electrons are carriers of the anomalous Hall effect. Therefore, the Kondo model is applicable to REM, since 4f-electronsdo not participate in the formation of current.The effective spin-orbital interaction parametersSOλof the examined intermetallic compounds were calculated from the anomalous components R S of the Hall coefficient and the specific electrical resistance. References[1]Trudea, M., Cochrane, R. W., Baxter, D. W.,Strom-Olsen, J. O., and Muir, W. B. 1988. “Positive HallEffect in Paramagnetic Amorphous Zr-Fe.” Phys. Rev. 37(9): 4499-502.[2]Vedyaev, A. V., Granovskii, A. B., and Kotel’nikova, O.A. 1992. Kinetic Phenomena in Disordered Alloys.Moscow: Publishing House of Moscow State University.(in Russian)[3]White, R. 1985. Quantum Theory of Magnetism. Moscow:Mir. (in Russian)[4]Krupicka, S. 1976. Physics of Ferrites and RelatedMagnetic Oxides. Vol. 1. Moscow: Nauka. (in Russian) [5]Bethe, H. 1965. Quantum Mechanics. Moscow: Mir. (inRussian)[6]Atkins, P. 1977. Quanta. Moscow: Mir. (in Russian)[7]Kondo, Y. 1962. “Anomalous Hall Effect andMagnetoresistance of Ferromagnetic Metals.” Prog.Theor. Phys. 27 (4): 772-92.。
2018-2019-表示接近的英文单词有哪些-范文word版 (4页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==表示接近的英文单词有哪些接近的中文很多人都会,但是不少人是不记得表示接近的英文单词。
下面就让小编给大家分享一下关于表示接近的英文单词吧,希望能对你有帮助!表示接近的英文单词:near英 [nɪə(r)] 美 [nɪr]副词 (空间)在近处; 在附近; (时间)临近; (程度)几乎介词 (表示程度)接近; (表示位置)靠近; (表示时间)将近; 接近于(某种状态)形容词近的; 亲密的; 近似; (亲属关系)近亲形容词1. Only near relatives were invited to the wedding.只有近亲被邀请参加婚礼。
2. The post office is quite near.邮局很近。
副词1. The new houses are built too near to us.这些新房子建造得离我们太近了。
2. It is near impossible.那是几乎不可能的。
及物动词1. The ship neared the land.这条船驶近陆地。
表示接近的英文单词:approach英 [əˈprəʊtʃ] 美 [əˈproʊtʃ]及物/不及物动词接近,走近,靠近及物动词接近; 着手处理; 使移近; 试图贿赂(或影响,疏通)名词方法; 途径; 接近不及物动词靠近及物动词1. Have you approached the manager about taking a day off next week?你是否同经理谈过下周请一天假的事?2. He approached the idea with caution.他开始认真地考虑那个主意。
3. He approached the question as a scientist.他从科学家的角度来处理这一问题。
典型聚合物中多种碳的化学位移量化计算
典型聚合物中多种碳的化学位移量化计算付维贵;潘靖;刘珊珊;费睦融;陈莉【摘要】13C NMR chemical shifts of various carbons in polyphenylene oxide (PPO) and poly (N-isopropyl acylamine) (PNIPA) were calculated by Gaussian09 software based on density functional theory (DFT) withB3LYP//GIAO method at 6-311G (2d,p) level. Compared with the experimental results, the theoretical results accurately assigned the 13C NMR chemical shifts of the carbons under different chemical environments. The results indicated that the chemical environments around the chemical groups changed with varying of molecular structures and its conformations.%使用Gaussian09量化计算软件,基于密度泛函理论(DFT),采用B3LYP//GIAO方法基于6-311G(2d,p)基组,计算聚合物聚苯醚(PPO)、聚N-异丙基丙烯酰(PNIPA)中多种碳的13C NMR化学位移。
通过与实验值进行比较,准确归属不同环境下的碳的化学位移,并得到分子结构、构象等因素对化学环境的影响。
【期刊名称】《天津工业大学学报》【年(卷),期】2016(035)002【总页数】4页(P56-59)【关键词】量子化学计算;核磁共振;化学位移;密度泛函理论【作者】付维贵;潘靖;刘珊珊;费睦融;陈莉【作者单位】天津工业大学膜分离与膜过程省部共建国家重点实验室,天津300387;天津工业大学膜分离与膜过程省部共建国家重点实验室,天津300387;天津工业大学膜分离与膜过程省部共建国家重点实验室,天津300387;天津工业大学膜分离与膜过程省部共建国家重点实验室,天津300387;天津工业大学膜分离与膜过程省部共建国家重点实验室,天津300387【正文语种】中文【中图分类】O641.3;O655量子化学(quantum chemistry)是应用量子力学的基本原理和方法研究化学问题的分支学科[1-2],它是化学、物理、材料科学研究的重要工具,不仅可以预测化合物的核磁性质、热力学性质、过渡态能量和结构、红外和拉曼光谱等,还可以了解生物大分子某活性位点的电荷转移.其中,核磁共振谱图的化学位移包含分子体系中的重要信息:一是分子结构的信息;二是分子间相互作用信息[3-4].原子核的化学位移由其所处的分子环境确定,各种影响电子云密度的因素都将影响化学位移,其中各向异性、电负性效应及氢键相互作用等对化学位移影响最大.化学位移谱峰的归属仅是通过实验的手段进行测量分析,对于一些复杂化学结构的确认,会有一些困难.引入理论计算方法进行预测,可以提高化学位移归属的准确性[5-6],即用高斯软件(如Gaussian09),运用数值方法预测分子的性质[7-9].徐璐[10]将固体核磁共振实验结果与量子化学计算相结合,在不同的初始构型、构象及不同优化方式条件下,得出计算结晶性高分子核磁共振化学位移的可行性方法. Fu等[11]对PMMA和PVPh共混体系进行研究,计算得到与羰基形成氢键相互作用的羟基的化学位移值,理论计算结果与多脉冲固体1H NMR实验谱拟合结果一致.本文利用Gaussian 09量化计算软件,获取PPO和PNIPA两种典型的聚合物的化学位移理论值,通过与实验值比对,进一步对谱峰进行准确归属,解释同种碳在不同化学环境下的化学位移变化及谱峰劈裂的原因.聚苯醚(PPO)分子中含有大量的芳香环结构,每个苯环上有2个对称的次甲基(CH),但固体13C NMR谱中,谱峰存在劈裂且分辨率降低,不易区分.聚N-异丙基丙烯酰胺(PNIPA)的结构式中含有较大的侧基,主链和侧基上都存在不同环境下的烷基碳(CH,CH2),对应的实验谱图存在谱峰叠加,分辨率低,不易区分.以上2种聚合物体系中,不同环境下的多种碳的化学位移明显不同,存在或谱峰叠加不易分辨等现象,本文采用量化计算的方法得到理论化学位移值,与实验谱图相结合,对谱峰进行有效的归属.高斯量化计算均在Linux操作系统下,采用四核并行计算.运用Gaussian 09量化计算软件,基于密度泛函(DFT)理论,采用B3LYP // 6-311G +(2d,p)基组进行结构优化;并在此基础上,选用较为经典的Gauge-Including Atomic Orbital(GIAO)方法化进行NMR化学位移计算[12-13],化学位移(δ)单位为10-6,以四甲基硅烷(TMS)的13C NMR理论计算值为参考.实验数据和理论计算的谱图,均在Origin软件中进行分析处理.3.1 PPO中多种碳的化学位移搭建PPO二聚体,优化后的模型图如图1所示.计算得到的PPO化学位移的理论谱图与实验谱图[14]进行比对分析,如图2所示.图2中曲线是实验谱图,下面的竖线表示量化计算所得化学位移理论值.实验谱峰拟合值和13C NMR谱的理论化学位移值,列于表1中.通过表1中实验值和理论值对比可以看出,各种碳的化学位移理论值和实验值几乎相近,说明结构搭建及计算结果合理有效.对比苯环上不同位置上的次甲基(CH)的化学位移,其中CH(C2)谱峰劈裂;而季碳C1和C5的谱峰明显分开. C2在分子结构式中虽然处在对称的位置上,但在实际分子构象中(图1),一个远离甲基(如21号碳原子距离11号质子0.426 nm),一个靠近甲基(如22号碳原子距离11号质子0.316 nm),化学环境发生变化,从而出现谱峰劈裂,化学位移理论值分别为119.25×10-6和115.01×10-6,各自与相应的实验曲线谱峰拟合结果相接近.远离CH3(靠近端羟基)的C(C1)周围电子云密度小,化学位移处在高频处(160.00× 10-6);而远离端羟基与醚氧键—(C—O—C)—键连的C(C5)靠近2个CH3,周围电子云密度大,因此在低频处(150.55×10-6).从而说明,该分子中多种碳局域化学环境的不同与分子构象相关.3.2 PNIPA中多种碳的化学位移搭建PNIPA三聚体与NIPA单体相互靠近的模型,模拟聚合物分子间氢键的形成,结构优化模型如图3所示.图3中虚线链接的代表三聚体中C=O氧原子(原子标号38)与单体侧基上的NH质子(原子标号88)间形成一对氢键.将计算得到的理论值与文献[14]中的实验谱图进行比对分析,如图4所示.图4中曲线为实验谱图,下面的竖线是理论计算值.实验谱图拟合得到的峰值和13C NMR理论化学位移值列于表2中.从图4中实验谱图分峰拟合结果可以看到,主链上的CH(C2)13C NMR化学位移在37.22×10-6附近,而侧基上CH(C4)的化学位移为42.03×10-6;从表2中对应的理论值可以看到,CH(C2)的化学位移为38.27× 10-6,侧基上CH(C4)的化学位移在44.88×10-6附近.当侧基上的羰基(C=O)上的氧原子(原子标号为38号)与另一个单体分子侧基上的氨基(NH)质子(原子标号88)形成分子间氢键后(如图3所示),与羰基碳键连的主链上的CH上的碳原子(原子标号13)的化学位移较形成氢键前向低频方向移动了约1×10-6.这里实验值与理论计算值略有偏差,一方面是由于实验值是各种构象加权的结果,同时分峰拟合值也会有人为误差;另一方面,PNIPA分子侧基较大,空间位阻相应较大,多条分子链间形成多氢键体系时,在不同位置上的同种碳的化学位移也会由于空间构象的变化而不同,这里我们用简单的模型优化计算结果区别不同的烷基碳,定性的帮助对实验谱图的谱峰归属.实验谱峰拟合和量化计算结果绝对值的比较,还有待于更多单元和多条分子链分子间氢键的模拟结果.从PNIPA结构式上看,主链上的CH2(C1)和CH (C2),及侧基上CH(C4)的谱峰叠加,由于主链上的CH (C2)与侧基上的羰基(C=O)相连,去屏蔽效应增加,因此C2相对于C1(实验拟合值δ= 32.80×10-6)略向低场处偏移.而侧基上的CH(C4)与氨基(NH)键连,使得电负性增加,周围电子云密度降低,相应化学位移向高频处移动(>42×10-6),因此高频处(42.03×10-6)的尖峰归属为PNIPA侧基上的CH的信号峰.该理论计算结果与固体核磁共振实验中采用魔角旋转下极化反转自旋交换(PISEMA)方法对CHn信号的鉴别结果是一致的,从42×10-6左右的峰的偶极劈裂谱线型可以判断该处只有CH信号,没有主链上CH2的偶极劈裂线型出现[14].固体状态下,由于偶极耦合作用的影响会使谱峰展宽互相叠加,用量化计算方法计算中心位移值,对帮助固体或液体核磁共振谱图解析是有效的,本文对主链上CH和侧基CH的计算结果与文献[14]中的实验归属一致,与文献[15]中的液体核磁共振谱图的归属还存在分歧.此外,还搭建了由多个单体组成具有不同立构的分子模型,结构优化及计算结果表明,立构规整度对主链上CH和CH2的化学位移影响较大,化学位移偏移范围可达5×10-6~10×10-6,因此实验谱图拟合结果显示这2种基团谱峰较宽,而对侧基上CH的影响不大(偏移在2×10-6范围内).本文使用Gaussian 09量化计算软件,基于密度泛函(DFT)理论,采用B3LYP // 6-311G +(2d,p)方法,分别对PPO和PNIPA聚合物中多种碳进行13C NMR化学位移理论计算,并与实验谱图相比较.研究表明:(1)对于典型聚合物中多种碳的核磁共振谱图的化学位移,由于诱导效应、分子间氢键等的影响,分子构象的不同,使原子周围化学环境发生变化,导致化学位移发生变化或谱峰劈裂.(2)通过量化计算方法,可以帮助复杂体系的核磁共振等实验谱图的解析和谱峰归属.【相关文献】[1] RITA C G,LEIF A E. Theoretical study of hypericin[J]. J Photoch Photobio A,2005,172(3):293-299.[2] MARCIN H,JACEK R. Effects of substituting a OH group by a F atomin D glucose:Ab initio and DFT Analysis [J]. J Am Chem Soc,2001,123(10):2308-2316.[3] ERNST R R,BODENHAUSEN G,WOKAUN A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions[M]. Oxford:Oxford University Press,1991. [4] SCHMIDT-ROHR K,SPIESS H W. Multidimensional solidstateNMRandpolymers[M].Pittsburgh:Academic Press,1994:402-439.[5] ANETA J,JAROSLAW P,STANISLAW R. DFT study of a novel lead structure in the isoxazole heterocyclic system [J]. J Mol Struct,2003,636(1/2/3):203-214.[6] MACIEJ P,JERZY K,MIROSLAW P,et al.1H,13C NMR studies and GIAO/DFT calculations of substituted N-(4-aryl-1-piperazinyl- butyl)derivatives,new analoguesof buspirone [J]. J Mol Struct,2004,698(1/2/3):93-102.[7] HELGAKER T,JASUNSKI M,RUUD K. Ab initio methods for the calculation of NMR shielding and indirect spin-spin coupling constants[J]. Chem Rev,1999,99(1):293-352.[8] BELELLI P G,DAMIANI D E,CASTELLANI N J. DFT theoretical studies of UV-Vis spectra and solvent effects in olefin polymeriza- tion catalysts [J]. Chem Phys Lett,2005(401):515-521.[9] CIURLA H,MICHALSKI J,HANUZA J,et al. Molecular structure,IR and Raman spectra as well as DFT chemical calculations for alkylaminoacetylureas:Vibrational characteristics of dicarbonylimide bridge[J]. Spectrochimica Acta Part A,2006,64(1):34- 46.[10]徐璐.量化计算结合固体NMR研究高分子微观结构、氢键与链运动[D].天津:南开大学,2010. XU L. Combined solid-state NMR and quantum chemical calculation studies of microstructure,hydrogen bond and segmental motion in polymers[D]. Tianjin:Nankai University,2010(in Chinese).[11] FU W G,LI C,BAO H L,et al. Quantum chemical calculation on1H NMR chemical shifts of PMMA/PVPh blends[J]. Advanced Materials Research,2011(301/302/303):263-268.[12]苏永超,郑安民,李申慧,等.药物小分子化学位移的量子化学计算研究[J] .波谱学杂志,2006,23:294-301. SU Y C,ZHENG A M,LI S H,et al. Evaluation of quantum chemical methods for the calculation of13C NMR shifts of small drug molecules [J]. Chinese Journal of Magnetic Resonance,2006,23:294-301(in Chinese)[13] DANG Q Q,LU S D,YU S,et al. Silk fibroin/montmorillonite nanocomposites:Effect of pH on the conformational transition and Clay dispersion[J]. Biomacromolecules,2010,11 (7):1796-1801.[14]张荣纯.发展固体核磁共振新方法及研究高分子复杂凝聚态结构与动力学[D].天津:南开大学,2014. ZHANG R C. Development of novel solid-state NMR methodsto study on complex condensed structures and dynamics of polymers[D]. Tianjin:Nankai University,2014(in Chinese).[15] ZENG F,TONG Z,FENG H Q. NMR investigation of phase separation in poly(N-isopropyl acrylamide)/water solutions[J]. Polymer,1997,38(24):5539-5544.。
锂对石墨电位
锂对石墨电位介绍锂金属和石墨是目前最常用的锂离子电池的两个关键组成部分。
锂金属作为正极,石墨作为负极。
本文将探讨锂对石墨电位的影响。
锂与石墨的相互作用锂在锂离子电池中通过在电池正极和负极之间移动来完成电荷的传递。
当锂离子从正极向负极迁移时,锂离子与石墨之间会发生相互作用。
这种相互作用会影响石墨电位的变化。
锂插层机制石墨作为锂离子电池的负极材料,其插层机制对电池性能具有重要影响。
插层机制是指锂离子在石墨中插入和脱出的过程。
插入和脱出过程中的电位变化,决定了电池的可逆性和能量密度。
锂在石墨中的位置锂离子在石墨中的插层位置对电池的性能也有影响。
研究表明,锂离子插入石墨的层间空隙会导致石墨层的脱聚,进而影响电池的循环寿命和容量衰减。
锂对石墨电位的影响锂离子与石墨之间的相互作用会导致石墨电位的变化。
锂离子的插入和脱出会引起石墨电位的变动。
插入过程在锂离子插入石墨的过程中,石墨会发生化学吸收反应,引起电位的升高。
这是由于锂离子与石墨中的碳原子结合形成化学键,释放出能量。
脱出过程在锂离子从石墨中脱出的过程中,石墨会发生化学解吸反应,引起电位的降低。
脱出过程中,石墨中的碳原子与锂离子解离,导致能量的消耗。
影响因素锂对石墨电位的影响受到多种因素的影响。
温度温度是一个重要的影响因素。
随着温度的升高,石墨电位会下降。
这是因为温度的升高会促进化学反应的进行,加速锂离子在石墨中的插入和脱出过程。
锂离子浓度锂离子浓度的增加会导致石墨电位的下降。
这是由于更多的锂离子会插入到石墨中,引起更多的化学吸收反应,从而降低石墨电位。
电流密度较大的电流密度会导致石墨电位的下降。
这是由于大电流密度会加速锂离子在石墨中的插入和脱出过程,增加化学反应进行的速率。
石墨材料性质石墨材料的性质也会影响锂对石墨电位的影响。
不同的石墨材料具有不同的插层机制和电位特性,从而会导致不同程度的变化。
结论锂对石墨电位有显著影响。
锂离子的插入和脱出过程会引起石墨电位的变化,同时温度、锂离子浓度、电流密度和石墨材料性质也会影响该过程。
傅里叶变换和小波变换简介
小波应用
通常来讲, 离散小波变换 (DWT)用于信号编码,而连续小 波变换 (CWT)用于信号分析。所以,DWT通常用于工程和计算机 科学而CWT经常用于科学研究。 小波变换现在被大量不同的应用领域采纳,经常取代了傅里 叶变换的位置。很多物理学的领域经历了这个范式的转变,包括 分子动力学,从头计算(ab initio calculations),天文物理学,密度 矩阵局部化,地震地质物理学,光学,湍流,和量子力学。其他 经历了这种变化的学科有图像处理,血压,心率和心电图分析, DNA分析,蛋白质分析,气象学,通用信号处理,语言识别,计 算变换一样,小波变换可以用 于原始数据(例如图像),然后将变换后的数据编码,得到有效的压 缩。JPEG 2000 是采用小波的图像标准。
它与Fourier变换、窗口Fourier变换(Gabor变换)相比,这是一个时间和频率的局域变 换,因而能有效的从信号中提取信息,通过伸缩和平移等运算功能对函数或信
号进行多尺度细化分析(Multiscale Analysis),解决了Fourier变换不能解决的 许多困难问题,从而小波变化被誉为“数学显微镜”,它是调和分析发展史上里 程碑式的进展。
傅立叶,1768年生于法国
2
傅氏变换简介
傅立叶变换历史: 1822年,法国数学家傅里叶(J.Fourier,1768-1830) 在研究热传导理论时发表了“热的分析理论”,提出并证 明了将周期函数展开为正弦级数的原理,奠定了傅里叶级数的理论基础 。 泊松(Poisson)、高斯(Guass)等人把这一成果应用到电学中去,得到广 泛应用。 19世纪末,人们制造出用于工程实际的电容器。 进入20世纪以后,谐振电路、滤波器、正弦振荡器等一系列具体问题的 解决为正弦函数与傅里叶分析的进一步应用开辟了广阔的前景。 在通信与控制系统的理论研究和工程实际应用中,傅里叶变换法具有很 多的优点。 “FFT”快速傅里叶变换为傅里叶分析法赋予了新的生命力。
分子长度和碳原子数奇偶对烷烃硫醇分子非弹性电子隧穿谱的影响
分子长度和碳原子数奇偶对烷烃硫醇分子非弹性电子隧穿谱的影响赵丽云;马红;冷建材【摘要】利用第一性原理计算研究了系列烷烃硫醇分子结的非弹性电子隧穿谱。
结果表明非弹性电子隧穿谱对分子结中碳原子数目的奇偶变化十分灵敏。
理论分析表明CH2对称伸缩振动模式来源于硫端的亚甲基,在偶数个碳原子的情况下该振动模式更强,这主要是因为此时该基团的C-H键垂直于电极表面,同时其与金电极的耦合比奇数时要强很多。
此结果解释了烷烃分子CH2的对称伸缩振动来源,并验证了非弹性电子隧穿谱的取向择优性。
【期刊名称】《齐鲁工业大学学报:自然科学版》【年(卷),期】2016(030)003【总页数】4页(P32-35)【关键词】分子电子学;非弹性电子隧穿谱;杂化密度泛函理论;分子器件【作者】赵丽云;马红;冷建材【作者单位】[1]齐鲁工业大学理学院,山东济南250353;[2]山东师范大学物理与电子科学学院,山东济南250014【正文语种】中文【中图分类】O641随着半导体器件制造工艺的提高,硅基电子器件的体积越来越小,然而由于光刻技术以及半导体内部物理效应的限制,器件的尺寸不可能无极限的减小,摩尔定律即将失效。
因此,寻找和研发新一代电子器件势在必行。
在这种背景下,有机分子器件以其体积小、能耗低和速度快的优势成为替代硅基半导体器件的一个可能性方案。
自从理查德·费曼提出分子器件的概念以来,人们在利用自组织生长分子膜(Self-AssembledMonolayers,SAMs)、LB (Langmuir-Blodgett)技术结合扫描隧道显微镜(Scanning Tunneling Microscope,STM)等来制备和测量分子器件的同时,运用和发展不同的理论方法来分析分子器件的工作原理,并取得了很大的进展[1-2]。
但由于分子器件的尺寸极小,有人怀疑稳定的分子结是否真正存在,他们认为无法证实电流是通过有机分子传输的,有可能是直接通过分子结的两个电极传输的,即我们宏观上讲的“短路”。
几种时频分析方法及其工程应用
工程测试技术文献综述教师:曾祥光班级:10级城轨1班姓名:罗昌华学号:20107243西南交通大学峨眉校区2013年4月16日几种时频分析方法及其工程应用罗昌华(西南交通大学峨眉校区,城轨车辆一班)摘要:时频分析时频分析(JTFA)即时频联合域分析(Joint Time-Frequency Analysis)的简称,作为分析时变非平稳信号的有力工具,成为现代信号处理研究的一个热点,它作为一种新兴的信号处理方法,近年来受到越来越多的重视。
时频分析方法提供了时间域与频率域的联合分布信息,清楚地描述了信号频率随时间变化的关系。
时频分析的基本思想是:设计时间和频率的联合函数,用它同时描述信号在不同时间和频率的能量密度或强度。
时间和频率的这种联合函数简称为时频分布。
利用时频分布来分析信号,能在每一时间指示出信号在瞬时频率串附近的能量聚集情况,并且能够进行时频滤波和时变信号综合。
关键词:时频;短时傅里叶变换;小波变换;希尔伯特——黄变换;信号盲源一.短时傅里叶变换短时距傅里叶变换是傅里叶变换的一种变形,为时频分析中其中一个重要的工具。
其与傅里叶变换的区别是:傅里叶转换只提供了有哪些频率成份的信息,却没有提供时间信息;而短时傅里叶转换则清楚的提供这两种信息。
这种时频分析的方法有利于频率会随着时间改变的信号分析。
在连续时间的例子中,一个函数可以先乘上仅在一段时间不为零的窗函数再进行一维的傅里叶变换。
再将这个窗函数沿着时间轴挪移,所得到一系列的傅里叶变换结果排开则成为二维表象。
所以短时傅里叶变换具有:比起傅里叶转换更能观察出信号瞬时频率的信息的优点。
但其计算复杂度高。
应用:应用单边指数窗的短时傅里叶变换建立了对数化的OTDR数据的事件分析算法。
通过对不同的光纤链路进行事件检测处理,准确的定位了光纤链路事件的位置。
相对于传统的具有较强噪声容纳能力,能够对受噪声污染较严重的信号进行事件分析,提高了ODTR算法的效率,具有较高的实用价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a rX iv:c ond-ma t/15386v1[c ond-m at.str-el]2May21AB INITIO CALCULATIONS OF THE SPIN-HALF XY MODEL D.J.J.FARNELL a and M.L.RISTIG b February 1,2008a Department of Physics,University of Manchester Institute of Science and Technology (UMIST),P O Box 88,Manchester M601QD,United Kingdom b Institut f¨u r Theoretische Physik,Universit¨a t zu K¨o ln,Z¨u lpicher Str.,50937K¨o ln,Germany.Abstract In this article,the correlated basis-function (CBF)method is applied for the first time to the quantum spin-half XY model on the linear chain,the square lattice,and the simple cubic lattice.In this treatment of the quantum spin-half XY model a Jastrow ansatz is utilised to approximate the ground-state wave function.Results for the ground-state energy and the sublattice magnetisation are presented,and evidence that the CBF de-tects the quantum phase transition point in this model is also presented.The CBF results are compared to previous coupled cluster method (CCM)results for the spin-half XY model,and the two formalisms are then com-pared and contrasted.In this paper we consider the T =0properties of the quantum spin system known as the spin-half XY model,described by the Hamiltonian H =1very near to)γ=0from approximate calculations.The ground state of the spin-half XY model on the square and cubic lattices atγ=0is also believed to be N´e el-ordered in the xy-plane.The spin-half XY model was solved exactly by Lieb,Schultz and Mattis[1] for the linear chain using the Jordan-Wigner transformation.Since then the ground-and excited-state properties have been extensively studied by many authors(see,for examples,Refs.[2,3]).However,no exact results exist for higher spatial dimensionality,although approximate results such as those from spin-wave theory,[4]Monte-Carlo(QMC)methods,[5,6]series expansions,[7] and the coupled cluster method(CCM)[8]has proven to be highly successful. Extrapolatedfinite size calculations[9]have also been performed forγ=0.The correlated basis function(CBF)method10−20is a widely applied and accurate method of modern-day quantum many-body theory.Recently,this method has been applied with great success to the Ising model in a transverse magneticfield at zero temperature.21−24In this article we wish to apply the CBF method to the spin-half XY model.We begin this process byfirstly performing a number of unitary transformations on the local spin axes on two sublattices {A,B}in order to simplify the problem.Thefirst such transformation on the A-sublattice is given by,σx→σz;σy→σx;σz→σy,(2) and the second transformation on the B-sublattice is given by,σx→−σz;σy→−σx;σz→σy.(3) Note that both of these transformations are simply rotations of the local spin-axes of the spins,and that the eigenvalue spectrum of the problem is left un-changed because these transformations are unitary.The Hamiltonian may now be rewritten in terms of these new spin-axes asH=−12Ni<j u(r ij)σx iσx j,(5)where u(r ij)is the pseudopotential.The reference state|0 is given by a tensor product of spin states which have eigenvalues of+1with respect toσz,and this state is an exact ground eigenstate of the Hamiltonian Eq.(4)whenγ=1. Translational invariance also implies that the pseudopotential,u(r ij),depends only on the relative distance,n=r i−r j≡r ij.2The treatment of the spin-half XY model by the CBF method is continued by defining the lattice magnetisation(i.e.,again the magnetisation in the z-direction in terms of the rotated local spin-axes),given byM=ψ|σz i|ψψ|ψ.(7)We may now define a spatial distribution function(which plays a crucial part in any CBF calculation)in the following manner,G(n)=ψ|σx iσx j|ψN =ψ|H|ψN =−1α−1.0−0.50.00.5E g /NFigure 1:Results for the ground-state energy of the spin-half XY model for the square lattice plotted as a function of the strength of the nearest-neighbour pseudopotential,α,for varying γ.At γ=−0.36we see that the minimal solution that we have tracked from γ=0is lost.∆(n )is unity if n is a nearest-neighbour vector and is zero otherwise.We now minimise the ground-state energy with respect to αat a given value of γ.Indeed,at γ=1we already know that all correlations have zero strength as our reference state |0 is an exact ground eigenstate of Eq.(4),and this implies that α=0.We thus track this solution at γ=1in the regime γ<1,and the ground-state energy as a function of αfor various values of γis plotted in Fig.1for the square lattice.We may see that at γ=−0.36the minima that we have tracked from γ=1become a point of inflection.The second such method of determining the pseudopotential is to determine the optimal value for the function u (n )with respect to the ground-state energy,E/N .This is stated as,δEγ−1−0.8−0.6−0.4E g /NFigure 2:CBF results for the ground-state energy of the spin-half XY model on the square lattice compared to results of high-order CCM results of Ref.[8].of approximations are made,namely,the SUB2approximation which retains all two-body correlations in the approximate CCM ground-state wave function,and the LSUB m which retains all correlations in a locale defined by m .Results for the CBF ground-state energy of the spin-half XY model on the square lattice compared to results of high-order CCM results are given in Fig.2and,for the isotropic point (γ=0)only,in Table 2.We may see from Fig.2that both sets of results are in excellent qualitative agreement over a wide range of γ.It is furthermore seen from Tables 1-3that CBF results are in excellent quantitative agreement with LSUB2CCM results at γ=0.This is a perfectly reasonable result because both the CBF and CCM LSUB2results only utilise two-body correlations.It is,however,expected that the inclusion of higher-order correlations in the CBF trial wave function would produce more accurate results for the energy,as is seen for the CCM.Thus,from Tables 1-3,we see that the CBF results at γ=0capture about 59%of the correlation energy for the linear chain,76%of the correlation energy for the square lattice and 85%of the correlation energy for the cubic lattice (in comparison with exact and extrapolated CCM results).Indeed,the extrapolated CCM results present some of the most accurate results yet seen for the isotropic XY model on the square and cubic lattices.(Results for the linear chain and cubic lattice are qualitatively similar to the results presented for the square lattice in Fig.2and so are not plotted here.)Results for the sublattice magnetisation of the spin-half XY model on the square lattice are presented in Fig.3and in Table 2for the isotropic point,5−0.500.51γ0.50.60.70.80.91MFigure 3:CBF results for the sublattice magnetisation of the spin-half XY model on the square lattice compared to results of high-order CCM results of Ref.[8].γ=0.Again,it is seen from Fig.3that the CBF results are in good qualitative agreement with the known results of this model.However,the CBF result for the sublattice magnetisation at the isotropic point (γ=0)is slightly too high,although it is again expected that higher accuracy would be achieved with the inclusion of higher-order correlations in the approximate CBF ground-state wave function.Again,results for the linear chain and cubic lattice are fully analogous to the square lattice case and so are presented only for the isotropic model in Tables 1and 3.Results for the phase transitions points predicted by the CCM method are also given in Tables 1-3,although no such results are explicitly given for the CBF method in these tables.It is however noted here that the loss of “minima”within the parametrized HNC CBF approach (at γ=−0.36for the square lattice)may be associated with a phase transition within this system.This constitutes a powerful result for such a simple variational-style calculation.Note that similar behaviour is also seen for both the linear chain and cubic lattices.An analogous change in the energy surface with respect to u (n )for the CBF PPA approach seems to occur for varying values of γ.However,in this case,the situation is much less clear-cut because,near to this point,convergence of the PPA equations becomes very difficult.In this article,the CBF method has been applied with much success to the quantum spin-half XY model on the linear chain,the square lattice,and the cu-bic lattice in order to obtain accurate results for the ground-state energy and the sublattice magnetisation.These results were found to be in excellent qualita-6Table1:Ground-state energy and sublattice magnetisation for the one-dimensional XY model atγ=0compared to exact results of Ref.[3]and CCM results of Ref.[8].The critical values ofγfor the anisotropic model are also given.E g/Nγc(n)Parametrised CBF0.8919PPA CBF0.8904LSUB20.8373SUB20.7795LSUB∞–Exact0.0Table2:Ground-state energy and sublattice magnetisation for the square lattice XY model atγ=0compared to CCM calculations of Ref.[8]and series expansion calculations of Ref.[7].The critical values ofγfor the anisotropic model are also given,where the value in parentheses is the estimated error in thefinal decimal place shown.E g/Nγc(n)Parametrised CBF0.9524PPA CBF0.9515LSUB20.9496SUB20.9190LSUB∞0.869Series Expansion0.872Table3:Ground-state energy and sublattice magnetisation for the cubic lattice XY model atγ=0compared to CCM results of Ref.[8].The critical values of γfor the anisotropic model are also given,where the value in parentheses is the estimated error in thefinal decimal place shown.E g/Nγc(n)Parametrised CBF0.9710PPA CBF0.9695LSUB20.9715SUB20.9583LSUB∞0.948[18]A.Fabrocini and S.Fantoni,in First International Course on CondensedMatter,ACIF Series,edited by D.Prosperi,S.Rosati and S.Violini,Vol.8(World Scientific,Singapore,1987),p.87.[19]S.Fantoni and V.R.Pandharipande,Phys.Rev.C37,1687(1988).[20]S.Fantoni and A.Fabrocini,in Microscopic Quantum Many-Body Theoriesand Their Applications,edited by J.Navarro and A.Polls,Lecture Notes in Physics,Vol.510(Springer-Verlag,Berlin,1998),p.119.[21]M.L.Ristig and J.W.Kim,Phys.Rev.B53,6665(1996).[22]M.L.Ristig,J.W.Kim,and J.W.Clark,in Theory of Spin Lattices andLattice Gauge Models,edited by J.W.Clark and M.L.Ristig,Lecture Notes in Physics,Vol.494(Springer-Verlag,Berlin1997),p.62.[23]M.L.Ristig,J.W.Kim,and J.W.Clark,Phys.Rev.B57,56(1998).[24]R.F.Bishop,D.J.J.Farnell,and M.L.Ristig,in Condensed Matter Theo-ries,Vol.14,(2000)–in press.[25]M.L.Ristig,S.Fantoni,and K.E.K¨u rten,Z.Phys.B51,1(1983).[26]R.P.Feynman,Phys.Rev.94,262(1954).[27]R.R.P.Singh and D.A.Huse,Phys.Rev.Lett.68,1766(1992).10。