先进制造工艺技术
先进制造工艺技术概述
先进制造工艺技术概述先进制造工艺技术是指通过先进的生产技术和装备,实现高效、灵活、精确的生产制造过程,以提高产品质量和生产效率。
先进制造工艺技术主要包括以下几个方面:1. 数字化制造:数字化制造是一种通过计算机、网络和先进的软件技术来实现产品制造和生产过程中的数字化、网络化和智能化的方法。
它可以将产品的设计、工程数据和生产过程进行数字化管理,实现生产过程的可视化和智能化。
数字化制造可以大大提高产品制造过程的精度、速度和效率,降低生产成本,增加产品的竞争力。
2. 自动化制造:自动化制造是利用先进的机械装备和控制系统,实现对生产过程中的机械化操作和人工智能的代替。
通过自动化制造,可以减少人工操作和劳动强度,提高产品制造的精度和一致性,增加生产能力和效率。
自动化制造技术包括机器人技术、自动化装备和生产线的集成等。
3. 智能制造:智能制造是指利用先进的传感器、控制系统和网络技术来实现产品制造和生产过程的智能化。
通过智能制造,可以实现生产过程的人机协同、优化调度和物流配送,提高生产过程的灵活性和适应性。
智能制造技术包括物联网技术、大数据分析和人工智能技术等。
4. 绿色制造:绿色制造是指在产品制造过程中,采用环保材料和技术,减少环境污染和资源消耗的制造方式。
绿色制造可以通过优化生产过程,降低能源消耗和产品制造过程中的废弃物排放,实现可持续发展。
绿色制造技术包括节能降耗技术、环境监测和控制技术等。
以上是先进制造工艺技术的概述。
随着科技的不断进步和创新,先进制造工艺技术将在制造业中起到越来越重要的作用,进一步提升产品质量和生产效率,推动制造业的发展和转型升级。
先进制造工艺技术是当代制造业中的重要领域,它的发展对于提升产品质量、提高生产效率、降低成本以及实现可持续发展具有重要的意义。
随着科技的不断进步和创新,先进制造工艺技术呈现出了一系列新的发展趋势和特点,包括数字化制造、自动化制造、智能制造和绿色制造等。
数字化制造是先进制造工艺技术的重要组成部分。
先进制造工艺技术
先进制造工艺技术先进制造工艺技术是指运用先进的材料、装备和技术手段进行制造的过程中所采用的工艺技术。
这些技术不仅能够提高产能和产品质量,还能够降低生产成本和环境污染。
下面将介绍其中几种先进制造工艺技术。
首先是数控加工技术。
数控加工技术是利用数控机床进行零件加工的一种方法。
通过事先编写好的程序控制数控机床,可以实现复杂形状零件的高精度加工。
相较于传统的手工操作或普通机床加工,数控加工技术能够提高加工效率,减少人为操作的误差,增强产品的一致性和稳定性。
其次是激光焊接技术。
激光焊接技术是利用激光束对金属材料进行焊接的一种方法。
与传统焊接技术相比,激光焊接技术具有焊接速度快、能量集中、变形小等优点。
激光焊接技术不仅适用于金属材料,还可用于焊接非金属材料,如塑料、陶瓷等。
激光焊接技术在汽车制造、航空航天、电子产业等领域有着广泛的应用。
第三是增材制造技术。
增材制造技术是一种通过逐层堆积材料来制造三维实体的方法。
通过使用增材制造技术,可以将设计好的三维模型直接制造出来,无需传统的减材制造工艺。
增材制造技术具有制造灵活性高,减少材料浪费和加工时间等优势。
当前最常见的增材制造技术包括激光熔化沉积、电子束熔化沉积和粉末床熔化沉积等。
最后是智能制造技术。
智能制造技术是通过信息技术与制造工艺相结合,实现制造过程的自动化和智能化。
智能制造技术包括工业机器人、自动化生产线等方面的应用。
工业机器人可以进行高精度、高速度的生产操作,能够完成传统人工无法完成的任务。
自动化生产线通过使用传感器、控制系统和物流系统等设备,实现生产过程的自动化和智能化,提高生产效率和产品质量。
总之,先进制造工艺技术在工业制造中发挥着重要的作用。
通过应用这些技术,可以提高生产效率和产品质量,降低生产成本和环境污染,推动制造业向高效、智能和可持续发展方向迈进。
随着技术的不断发展和创新,先进制造工艺技术将继续引领制造业的发展。
先进制造工艺技术.pptx
23
25
熔模铸造的应用:
• 熔模铸造是一种实现少无切削加工的、先进的精密成形 工艺,它最适用于25kg以下的高熔点、难以切削加工的 合金铸件的成批、大量生产。
• 目前主要用于航天飞行器、飞机、汽轮机、泵、汽车、 拖拉机和机床上的小型精密铸件和复杂刀具的生产。
压力铸造
26
2、压力铸造
2.1概念
适用。
20
熔模铸造的缺点:
⑴ 工序复杂,生产周期长。 ⑵ 原材料价格高,铸件成本高。 ⑶ 铸件不能太大、太长,否则蜡模易变形,丧失原有精
度。
21
4-6 离心铸造
离心铸造是将金属液浇入高速旋转 (250~1500r/min)的铸型中,并在 离心力作用下充型和凝固的铸造方法。 其铸型可以是金属型,也可以是砂型。 既适合制造中空铸件,也能用来生产 成形铸件。
Process
3.1 先进成形技术
Advanced Forminging
Technology
9
特种铸造
特种铸造
10
4-3 压力铸造
压力铸造是在专用设备—压铸 机上进行的一种铸造。即在高速、 高压下将熔融的金属液压入金属 铸型,使它在压力下凝固获得铸 件的方法。
12
压铸工艺过程
13
压力铸造的特点及应用
——成形工艺 去除成形 受迫成形 堆积成形 生成成形
6
3.1.1 概述
◆先进制造工艺技术的内容
➢精密、超精密加工技术。它是指对工件表面材料进行去 除,使工件的尺寸、表面性能达到产品要求所采取的技 术措施。当前,纳米(nm)加工技术代表了制造技术的最 高精度水平。超精加工材料由金属扩大到非金属。根据 加工的尺寸精度和表面粗糙度,可大致分为三个不同的 档次,如表3-1所示。
先进制造技术教学课件PPT先进制造工艺技术.ppt
19子线分析
手段:优化加工方法;开发和研制新型刀具材料;研
制超精密机床;对加工精度进行监控。
2020/7/2
7
21世纪的超精密加工将向分子级、原子级精度推进
2020/7/2
8
(2)切削加工速度迅速提高
刀具材料发展。
2020/7/2
9
20世纪前,碳素钢,耐热温度低于200ºC,切削速度不超 过10m/min;
、电火花、激光切割;
• 堆积成形 将材料有序地合并 堆积成形,如快速原形制造、焊 接等。
2020/7/2
6
二、先进制造工艺的产生和发展
先进制造工艺是在传统的机械制造工艺基础上发展来的, 优化后的工艺和新型加工方法。是核心和基础。
(1)制造加工精度不断提高
18世纪,其加工精度为1mm; 19世纪末,0.05mm; 20世纪初,μm级过渡; 20世纪50年代末,实现了μm级的加工精度; 目前达到10nm的精度水平。
1900
2020/7/2
普通加工
加工设备 车床,铣床
精密车床 磨床
测量仪器 卡尺
百分尺 比较仪
精密加工
坐标镗床 坐标磨床
气动测微仪 光学比较仪
金刚石车床 光学磁尺
精密磨床
电子比较仪
超精密加工
超精密磨床 激光测长仪 精密研磨机 圆度仪轮廓仪
超高精密磨床 激光高精度 超精密研磨机 测长仪
1920 1940
代 码
名称
0
1
2
3
4
5
6
7 89
中类名称
0 铸造
砂型铸造 特种铸造
1 压力加工
锻造
轧制
冲压 挤压 旋压 拉拔
先进制造工艺技术举例
先进制造工艺技术举例先进制造工艺技术是指在制造领域应用最新的科技手段和方法,以提高生产效率、产品质量,降低成本,增强企业竞争力的一系列技术体系。
这些技术通常包括自动化、数字化、智能化等方面的创新。
以下是一些先进制造工艺技术的例子:一、数字化制造(Digital Manufacturing):利用数字化技术对产品设计、工艺规划、生产过程等进行全面数字建模和模拟。
这有助于提前发现问题,减少试错成本,提高生产效率。
例如,使用计算机辅助设计(CAD)、计算机辅助工程(CAE)等软件来进行产品设计和工艺规划。
二、智能制造(Smart Manufacturing):引入先进的传感器、数据分析、人工智能等技术,实现生产过程的实时监测、自适应调整,提高生产线的柔性和智能化水平。
智能制造可以通过实时数据分析提高生产效率,减少资源浪费。
例如,智能传感器在生产线上监测设备状态,实现预测性维护,避免设备故障。
三、增材制造(Additive Manufacturing):也被称为3D打印技术,通过逐层堆积材料来制造物体。
相对于传统的减材制造,增材制造可以更灵活、高效地生产复杂形状的产品。
这项技术在航空航天、医疗、汽车等行业得到广泛应用。
四、人工智能与机器学习:在制造中引入人工智能和机器学习,可以优化生产计划、提高设备利用率,甚至实现自动化的质量控制。
例如,使用机器学习算法对生产过程中的大量数据进行分析,优化工艺参数,提高产品质量。
五、自动化与机器人技术:引入先进的自动化设备和机器人,用于生产线上的重复性工作、危险操作等。
这有助于提高生产效率、减少人力成本,并提高产品的一致性和质量。
例如,在汽车制造中,机器人用于焊接、喷漆、组装等工序。
这些先进制造工艺技术的应用使得制造业更加智能、灵活,提高了生产效率和产品质量,有助于企业更好地适应市场变化,提升竞争力。
先进制造技术基础_第3章_先进制造工艺技术
出
版
一:改革床身结构
社 大
Gidding和Lewis公司在其RAM高速加工中心上将
机 械
立柱与底座合为一个整体,使机床整体刚性得以提高;
系 列 规
划
教
二:使用高阻尼特性材料,如聚合物混凝土。
材 之
日本牧野高速机床的主轴油温与机床床身的温度 通过传感控制保持一致,协调了主轴与床身的热变形。
先
进
3.超高速切削机理
大
1.刀具技术
机 械
系
超高速切削对刀具的要求:高硬度、高强度和耐磨性;
列 规
韧性高,抗冲击能力强;高的热硬性和化学稳定性;抗
划 教
热冲击能力强等。
材 之
常用的刀具材料有: 涂层刀具:在刀具基体上涂覆金属化合物薄膜,以获得 远高于基体的表面硬度和优良的切削性能。
先 进
金属陶瓷刀具:与硬质合金刀具相比可承受更高的切削 制
划 教
寸、性能或相对位置,使之成为成品或半成品的方法和
材 之
过程。
先
按其功能的不同,机械制造工艺分为三个阶段:零 进
件毛坯的成形准备阶段,包括原材料切割、焊接、铸造、 锻压加工成形等;机械切削加工阶段,包括车削、钻削、 铣削、刨削、镗削、磨削加工等;表面改性处理阶段,
制 造
包括热处理、电镀、化学镀、热喷涂、涂装等。 图3.1
出 版 社
大
机
教学目标:
械 系
列
规
通过本章的学习,了解先进制造工艺技术的基本特征及
划 教
材
发展趋势;
之
先
掌握先进制造工艺技术中超高速加工技术、超精密加工 技术、特种加工技术、快速原型制造技术以及微细加工 技术的基本概念、关键支撑技术及发展应用 ;
第五章先进制造技术
• 柔性制造系统
加工系统 物流系统 调度与控制 故障诊断
• 自动检测与信号识别技术
信号识别 数据获取 数据处理 特征提取与识别
• 过程设备工况监测与控制
过程监视系统 在线反馈质量控制
4.先进制造生产模式和管理
先进制造生产模式
• 计算机集成制造系统 CIMS
• 敏捷制造系统AMS • 智能制造系统IMS • 精良生产LP • 并行工程CE
• 3)恩格斯指出:“直立和劳动创造了人类,而劳动是 从制造工具开始的。动物所做到的最多是收集,而人则 从事生产。”
制
造
业•
发•
展
的•
历 程
• •
1)用机器代替手工,从作坊形成工厂 19世纪机器在英国诞生,先后传人法国、德国和美国。
2)从单件生产方式发展成大量生产方式 泰勒:以劳动分工和计件工资制为基础的科学管理。 福特:零件互换技术,1913年建立了具有划时代意
一. 概 述
1.先进制造技术的定义
先进制造技术是集机械、电子、信息、材料和 管理技术为一体的新型学科。先进制造技术的概念自20世 纪80年代被提出来后至今没有一个很明确的定义,近来普 遍公认的含义是:先进制造技术是在传统制造技术基础上, 以人为主体,以计算机为重要工具,不断吸收机械、光学、 电子、信息(计算机和通信、控制理论、人工智能等)、材 料、环保、生物以及现代系统管理等最新科技成果,涵盖 产品生产的整个生命周期的各个环节的先进工程技术的总 称,它面向包括机械制造、电子产品制造、材料制造、石 油、化工、冶金以及民用消费品制造等在内的“大制造 业”。
2.快速原型制造技术
快速成形制造技术(Rapid Prototyping Manufacturing,RPM )是20世纪80年代后期 起源于美国,并很快发展起来的一种先进制造 技术,是近20年来制造技术领域的一项重大突 破。是利用光、热、电等物理手段(其中激光是 经常应用的)实现材料的转移与堆积。
先进制造工艺技术概述
分子束外延
利用分子束外延技术生长单晶 体材料,制作高质量的半导体
材料和光电子器件。
高效加工技术
高速切削
利用高转速的切削刀具和优化的切削液系统,实 现工件的快速切削,提高加工效率。
激光加工
利用高功率激光束对材料进行切割、熔化、烧蚀 等处理,实现高效、高质量的加工。
水射流切割
利用高压水流对材料进行切割,具有切割面质量 好、效率高等优点,适用于各种材料的切割。
定制化生产将提高企业的市场 竞争力,满足消费者日益增长 的个性化需求。
数字孪生技术的应用
数字孪生技术是先进制造工艺技 术的重要发展方向之一。
数字孪生技术通过建立物理世界 与虚拟世界的映射关系,实现产 品全生命周期的数字化管理。
数字孪生技术将提高产品设计、 生产和维护的效率和质量,降低
成本和风险。
THANKS
航空航天领域
总结词
高精度、高质量、高可靠性
详细描述
航空航天领域对产品的高精度、高质量和高 可靠性要求非常高。先进制造工艺技术在该
领域的应用包括数控加工、3D打印、复合 材料制造等技术,以及自动化检测和质量控 制技术的应用。这些技术的应用有助于提高 生产效率、降低成本、缩短研发周期,并提
高了航空航天产品的性能和安全性。
造过程对环境的影响。
绿色制造技术将推广清洁能源 、减少废弃物排放和资源回收 利用等方面,实现可持续发展
。
绿色制造将提升企业的竞争力 ,符合社会可持续发展的要求
。
定制化生产的实现
定制化生产是未来先进制造工 艺技术的重要发展方向之一。
定制化生产将借助先进的生产 技术和柔性制造系统,根据客 户需求进行个性化定制。
智能制造技术
先进制造技术-先进制造工艺
现有的制粉方法大体可分为两类:机械法和物理化学法。机械法可分为机 械粉碎法及雾化法;物理化学法可分为电化腐蚀法、还原法、化合法、还原化合法、气相沉积法、液相沉积法以及电解法。其中,应用最为广泛的是还原 法、雾化法和电解法。 成型的目的是制得一定形状和尺寸的压坯,并使其具有一定的密度和强度。 制取的粉末经过筛分与混合,并加入适当的增塑剂后,进行压制成型,在压力 作用下,粉粒间的原子通过固相扩散和机械咬合作用,结合为具有一定强度的 整体。压力越大,制件密度越大,强度也越大。有时为减小压力和增加制件密 度,也可采用热等静压成型的方法。
件只留打磨、抛光余量,不必机械加工即可使
用。由此可见,采用熔模铸造方法可大量节省 机床设备和加工工时,大幅度节约金属原材料。
机械加工工艺几乎无法成型,用熔模铸造工艺
生产不仅可以做到批量生产,保证铸件的一致 性,而且避免了机械加工后残留的应力集中。
现代设计技术
— 19 —
3.2 精密成型技术
3.2.2 精密铸造
3.2.1 粉末冶金
2.粉末冶金的优点 • 材料利用率高
1 2
• 设计自由度高
优点
3
•
制备某些特殊性能的结构材料和功能材料
4
•节能、节材、高效省时
现代设计技术
— 10 —
3.2 精密成型技术
3.2.1 粉末冶金
3.粉末冶金的工艺过程
机械粉碎 雾化法 还原法 金属 电解法 粉末 粉末混合 粉浆浇注 压制 预烧结和压制 烧结 成品零件 等静压 重力烧结 气相沉积法 液相沉积法
现代设计技术
— 16 —
3.2 精密成型技术
3.2.1 粉末冶金
4.粉末成型方法
先进制造工艺技术
先进制造工艺技术介绍先进制造工艺技术是指在制造业中应用最新的科学技术、先进的设备和先进的管理手段,以提高产品生产效率、质量和竞争力的一种技术。
随着科技的不断发展和进步,先进制造工艺技术在制造业的应用越来越普遍,已经成为现代制造业的重要组成部分。
先进制造工艺技术的特点1.高效率:先进制造工艺技术采用了自动化、智能化等先进的生产工艺和设备,可以大大提高生产效率,减少人力成本。
2.高质量:先进制造工艺技术能够减少人为因素对产品质量的影响,提高产品的精度和稳定性,保证产品质量的一致性。
3.环保节能:先进制造工艺技术可以降低能源的消耗,减少废弃物的产生,对环境友好。
4.灵活性:采用先进制造工艺技术可以实现快速调整生产线,适应市场需求的变化,提高企业的柔性生产能力。
先进制造工艺技术的应用自动化生产线自动化生产线是先进制造工艺技术的重要应用之一。
通过自动化设备和系统,可以实现生产过程的连续、高效、精确和可编程控制,减少人力操作,提高生产效率和质量。
3D打印技术3D打印技术是一种先进的快速成型技术,在制造业中得到广泛应用。
通过将数字模型转化为物理模型,可以实现快速制造原型、定制化产品和批量生产等需求。
智能化制造智能化制造是将人工智能、大数据、物联网等技术应用于制造业中,实现生产过程的智能化和自动化。
通过智能化制造,可以提高生产效率和质量,降低能源消耗,并实现智能设备的远程监控和智能化管理。
柔性制造系统柔性制造系统是一种能够根据生产需求快速调整生产线的制造系统。
通过柔性制造系统,可以快速实现产品线的转换和生产调整,减少生产线的闲置时间和人力成本。
先进制造工艺技术的发展趋势1.智能化发展:随着人工智能和物联网技术的发展,未来先进制造工艺技术将更加智能化,实现智能设备的智能决策和自主操作。
2.网络化协同:通过云计算和大数据技术,将制造过程中的各个环节和相关方连接起来,实现信息共享和协同,提高制造效率和质量。
3.精细化制造:通过先进的传感技术和控制技术,实现对制造过程的精确控制和管理,提高产品的精度和稳定性。
第二章 先进制造工艺技术
第二章先进制造工艺技术2-1 有哪几类的零件成形方法?列举这些成形方法各自工艺内容。
答:1)受迫成形,它是利用材料的可成形性,在特定的边界和外力约束条件下的成形方法,如铸造、锻压、粉末冶金和高分子材料注射成形等工艺方法。
2)去除成形,是将一部分材料有序地从基体中分离出去的成形方法,如传统的车、铣、刨、磨切削加工以及电火花、激光切割等特种加工工艺方法。
3)堆积成形,是运用合并与连接等手段,将材料有序地合并堆积起来的成形方法,如快速原型制造、焊接等,这种成形方法又称添加成形。
2-2 什么是超塑性?目前金属超塑性主要有哪两种工艺手段获得?答:超塑性是指材料在一定的内部组织条件(如晶粒形状及尺寸、相变等)和为外部环境件(如温度、应变速率等)下,呈现出异常低的流变抗力、异常高的伸长率现象。
超塑性成形工艺包括超塑性等温模锻、挤压、气压成形、真空成形、模压成形等,主要的两种工艺为等温模锻和气压成形。
2-3 目前在高分子材料注射成形工艺中有哪些先进技术?答:以组合惰性气体为特征的气辅成形、微发泡成形等;以组合压缩过程为特征的注射压缩成形、注射压制成形、表面贴合成形等;以组合模具等移动或加热过程为特征的自切浇口成形、模具滑合成形、热流道模具成形等;以组合取向或延伸过程为特征的剪切场控制取向成形、磁场成形等。
2-4 在怎样的速度范围下进行加工属于高速加工?分析高速切削加工所需解决的关键技术。
答:不同的材料高速切削速度的范围不同,常用的材料如铝合金为1000~7000m/min,铜为900~5000m/min,钢为500~2000m/min,灰铸铁为800~3000m/min,钛为100~1000m/min。
关键技术:1、高速主轴2、快速进给系统3、高性能的CNC控制系统4、先进的机床结构5、高速切削的刀具系统2-5 叙述微机械的基本特征,目前有哪些微细加工工艺方法?答:基本特征:1、体积小,精度高,重量轻2、性能稳定,可靠性高3、能耗低,灵敏度和工作效率高4、多功能和智能化5、适用于大批量生产,制造成本低工艺方法:1、超微机械加工2、光刻加工3、体刻蚀加工4、面刻蚀加工5、LIGA技术6、封接技术7、分子装配技术。
先进的制造工艺具体有哪些
先进的制造工艺具体有哪些先进的制造工艺是指通过引入先进的技术、设备和管理方法,在制造过程中实现高效、精确和可持续发展的一系列操作和流程。
这些先进的制造工艺能够提高产品的质量、生产效率和市场竞争力。
下面将介绍一些常见的先进的制造工艺。
1. 数字化制造:数字化制造是指通过数字技术将整个制造过程从设计、生产、运营到售后进行数据化管理和操作的制造方式。
它包括数字化设计、数字化工艺规划、数字化生产、数字化质量控制等环节。
通过数字化制造,可以有效提高制造的精度、效率和灵活性,减少人为因素对生产过程的影响,提高产品质量。
2. 精密制造技术:精密制造技术是一种利用先进的加工设备和工艺方法来加工复杂形状和高精度零部件的制造技术。
例如,利用数控加工设备、激光切割、光纤激光焊接等精密加工技术,可以生产出高精度、高质量的零部件和产品。
3. 智能化制造:智能化制造是指通过引入智能设备和智能系统,在制造过程中实现自动化、智能化和网络化的生产方式。
智能化制造包括智能设备、智能仓储、智能运输、智能调度、智能管理等多个方面。
通过智能化制造,可以提高生产效率,降低生产成本,提高产品质量和服务水平。
4. 柔性制造系统:柔性制造系统是一种能够迅速适应不同产品和不同生产要求的制造系统。
它具有多种功能和工艺的适应能力,可以进行多品种、小批量和定制化生产。
柔性制造系统通常由多台数控机床、机器人、传感器、网络控制系统等组成,能够实现自动化生产和快速转换。
5. 现代化工艺装备:现代化工艺装备是指采用先进技术和装备,具备高效率、高精度、高质量、低能耗等特点的生产设备。
例如,激光切割机、激光焊接机、3D打印机等先进的加工设备具有高精度、高速度和高质量的特点,能够满足复杂产品的制造需求。
6. 绿色制造技术:绿色制造技术是指通过节能环保的制造方法和工艺,减少资源消耗和环境污染。
例如,采用环保材料、循环利用废料、减少能源消耗等绿色制造技术,能够实现可持续发展和资源有效利用。
先进制造工艺技术
4
第一节 概 述
一、机械制造工艺的定义和内涵
机械制造工艺: 将各种原材料通过改变其形状、尺寸、性能或相 对位置,使之成为产品或半成品的方法和过程。
2020/6/24
5
粉末冶金
铸造 金 属 锻压 材 料 焊接
毛 坯
热 处 理
切 削 零 装机 加 件 配器
工
➢ 毛坯和零件成形——铸造、锻压、冲压、焊接 、压制、烧结、注塑、压
2020/6/24
16
第二节 精密洁净铸造工艺
本节要点
1.定义 2.近代化学硬化砂铸造工艺 3.高效金属型铸造工艺及设备 •压力铸造 •挤压铸造 •消失模铸造
2020/6/24
17
2020/6/24
18
2020/6/24
19
2020/6/24
20
精密、洁净、高效
2020/6/24
21
2020/6/24
2020/6/24
78
常用精密加工和超精密加工方法
分类
刀具切 切 削加工 削
加工方法 精密、超精密车削 精密、超精密铣削
精密、超精密镗削
加工刀具
精度 /μm
天然单晶金刚石刀具、人 造聚晶金刚石刀具、立方 氮化硼刀具、陶瓷刀具、 硬质合金刀具
1~0.1
微孔钻削
硬质合金钻头,高速钢钻 头
20~10
磨 削
磨料加
工
研
磨
精密、超精密砂轮 磨削 精密、超精密砂带 磨
精密、超精密研磨
油石研磨 磁性研磨 滚动研磨
砂
氧化铝、碳化硅、 轮
立方氮化硼、金刚
石等磨料
砂
带
5~0.5
铸铁、硬木、塑料等研具,
先进制造工艺技术
-
1 引言
2 先进制造工艺技术的定义
3 先进制造工艺技术的特点
4 先进制造工艺技术的应用领域
5 先进制造工艺技术的发展趋势 6 总结
7 挑战与对策
8 展望
9 未来发展趋势
1
引言
引言
2
先进制造工艺技术的定
义
先进制造工艺技术的定义
A
先进制造工艺技术是指采用先进的
设备、材料、技术和方法,通过优
的机遇和挑战
未来发展趋势
总之,未来先进制造工艺技术将更加注重智能 化、绿色化、个性化等方面的发展,为制造业
带来更多的机遇和挑战
同时,随着技术的不断进步和应用领域的不断 拓展,先进制造工艺技术将在更高层次上发挥
重要作用,推动制造业的持续发展和创新
感/谢/聆/听
人才培养:加强人才培养和引进,提高技术人员的 素质和技能水平,为先进制造工艺技术的发展提供 人才保障
行业协作:加强行业间的协作和交流,促进技术成 果的共享和应用,降低企业采用先进制造工艺技术 的成本和风险
8
展望
展望
随着科技的不断发展, 先进制造工艺技术将在 更高层次上发挥重要作 用,推动制造业的持续 发展和创新
量的要求
通过引入人工智能、大数
据等先进技术,实现制造
C
过程的智能化和自动化,
提高生产效率和产品质量
采用环保材料和工艺,降
D
低生产过程中的能耗和排
放,实现绿色制造
4
先进制造工艺技术的应
用领域
先进制造工艺技术的应用领域
航空航天
飞机、火箭等高端装备 的制造需要高精度、高 效率的制造工艺技术
汽车制造
汽车零部件的制造需要 高效、低成本的制造工 艺技术,同时还需要考
先进制造工艺
机电工程学院 工业工程系
1
本章主要内容
1 先进制造工艺技术概述 2 精密、超精密加工技术 3 超高速加工技术 4 微型机械加工技术
5 快速原型制造技术
2
1 先进制造工艺技术概述
一、机械制造工艺的定义及内涵
机械制造工艺:指在生产过程中,改变生产 对象的形状、尺寸、性能及相互位置关系的方 法和过程,也称机械制造工艺过程。
10~191
2.5~ 0.16
1.25~ 0.06
导电金属
0.02~ 0.012
金属
2.5~ 0.2
2.5~ 0.2
2.5~ 0.04
6.3~ 0.12
6.3~ 0.12
6.3~ 0.12
0.02~ 0.01
0.02~ 0.01
金属、非金 属、半导体 黑色金属、 有色金属等 任何硬脆金 属和非金属 绝缘材料、 半导体 任何材料
– 传统方法:铸造、锻造、冲裁、焊接和轧制。 – 先进方法:熔模精密铸造、精密锻造、精密冲
裁、精密焊接和精密切割等。
9
三、先进制造工艺技术的发展方向
¾ 机械加工向超精密、超高速方向发展——以超精密、超 高速加工为代表
• 加工精度进入纳米加工时代 • 加工速度成为克服难加工材料加工困难的一条途径
¾ 特种加工方法和应用领域不断拓展——以激光加工技术 为代表
15
加工误差(μm)
精密加工与超精密加工的发展
102 101 100 10-1 10-2 10-3
1900
普通加工
加工设备 车床,铣床
精密车床 磨床
测量仪器 卡尺
百分尺 比较仪
精密加工
坐标镗床 坐标磨床
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2 材料受迫成形工艺技术
3.2.2 精确高效金属塑性成形工艺
通过材料的塑性变形来实现制品所要求的形状、 尺寸和性能的机械加工方法。包括锻造、冲压、轧 制、挤压等工艺。
1.精密模锻工艺 在模锻设备上锻造出锻件形状复杂、精度高的 模锻工艺。中间坯料、再处理、精锻,低温模锻。 2.超塑性成形 超塑性:指材料在一定的内部组织条件和外 部环境条件下,呈现出异常低的流变抗力,异常
3.3.2 超高速加工技术的发展与应用
1931年由德国Salomon博士提出,之后,高速 切削加工技术的发展经历了高速切削的理论探索、应 用探索、初步应用、较成熟的应用四个发展阶段。
3.2 材料受迫成形工艺技术
高的伸长率现象。超塑性成形:利用材料的超塑性 (分细晶和相变)在一定条件下实现对零件的精密 成形。
3.精密冲裁工艺
在普通冲裁工艺基础上通过模具改进来提高 制件精度。主要有光洁冲裁、负间隙冲裁、带齿 圈压板冲裁等。
4.辊轧工艺
用轧辊对坯料进行连续变形的压力加工方法。 包括辊锻轧制和辗环轧制。(图3-11,3-12)
萨洛蒙(Carl Salomon) 博士
于1929年进行了超高速模拟实验。
1931年发表了著名的超高速切削
理论,实验得到了切削速度变化和 切削温度的关系(如图3-30所
பைடு நூலகம்
图3-30 切削速度变化和切削温度的关 系(萨洛蒙曲线)
示)。
3.3 高速加工技术
A区:是常规的切削速度范围; B区:由于切削温度太高,任何刀具都无法承受,切削加工 不可能进行,称为“死谷”区; C区:是高速度区,切削温度反而降低;同时切削力也会大 幅度下降。
2.内涵 可分为如下三个阶段:①零件毛坯的成形准备 阶段,包括原材料切割、焊接、铸造、锻压加工成 形等;②机械切削加工阶段,包括车削、钻削、铣
图1 机械制造工艺流程
3.1 概 述
削、刨削、铣削、磨削加工等;③表面改性处理阶段,包 括热处理、电镀、化学镀、热喷涂、涂装等。
3.1.2 先进制造工艺的产生和发展
第3章 先进制造工艺技术
3.1 概述 3.2 材料受迫成形工艺技术 3.3 高速加工技术 3.4 快速原型制造技术 3.5 表面工程技术
3.1 概 述
3.1.1 机械制造工艺的定义和内涵
1.机械制造工艺 机械制造工艺是将各种原材料通过改变其形状、 尺寸、性能或相对位置,便之成为成品或半成品的 方法和过程。【机械制造工艺过程,如图1所示。】
先进制造工艺是在不断变化和发展的传统机械制造工 艺基础上逐步形成的一种制造工艺技术,是高新技术产业化 和传统工艺高新技术化的结果。
其发展表现在: 1)制造加工精度不断提高(1→0.05 → 0.001 →0.25nm) 2)切削加工速度迅速提高(每分钟几十米) 3)新型工程材料的推动
3.1 概 述
横坐标是对数坐标,vh 的值是v1 的10倍。
几种常用材料的切削速度范围: 铝合金:1000~7000m/min; 铜: 900~5000m/min;
钢: 500~2000m/min; v
灰铸铁:800~3000m/min; 钛: 100~1000m/min。 进给速度:2~25m/min;
60~80m/min。 f
3.2 材料受迫成形工艺技术
3.2.3 粉末锻造成形工艺
粉末锻造成形是将传统的粉末冶金和精密锻造相 结合的一种新工艺。
1.特点
能源消耗低、材料利用率高;锻件精度高,力学 性能好,组织无偏析、无各向异性;疲劳寿命高。
2.工艺过程
粉末支取—模压成形—型坯烧结—锻前加热—锻 造—后续处理。
3.模具(图3-13)
今天课就到这里。
3.3 高速加工技术
3.3.1 高速加工技术的概念与特征 3.3.2 超高速加工技术的发展与应用 3.3.3 高速切削加工的关键技术 3.3.4 高速磨削加工
3.3 高速加工技术
3.3.1 高速加工技术的概念与特征
1.高速加工技术
采用超硬材料刀具和磨具、利
用能可靠地实现高速运行的自动化 制造设备,极大地提高材料的切除 率,并保证加工质量的现代制造加 工技术。不同材料的超高速速度范 围不同。
3.2 材料受迫成形工艺技术
2.清洁(绿色)铸造技术
1)采用洁净的能源 2)采用无砂或少砂的特种铸造工艺 3)使用洁净无毒的工艺材料 4)采用高溃散性型砂 5)废弃物的再生和综合利用 6)铸造机器人或机械手
3.铸造过程计算机模拟
铸件凝固过程进行模拟,铸造过程计算机模拟软件。 德国MACMA-soft,英国Procast,国内清华大学Flsoft软件。
3.2 材料受迫成形工艺技术
3.2.4 高分子材料注射成形
高分子材料是与钢材、水泥、木材并列的现代四大 基本工程材料。其成形加工技术主要有:
注塑成形(图3-14);挤出成形;吹塑成形;压延 成形;压制成形等。
1.气体辅助成形(图3-15) 2.注射压缩成形(图3-16) 3.模具滑合成形(图3-17) 4.剪切场控制取向成形(图3-18) 5.直接注射成形(图3-19)
3.3 超高速加工技术
2.超高速加工技术的特征 1)切削力低(比常规降低30%~70%),变形小; 2)热变形小,工件温升很小; 3)材料切除率高; 4)高精度,加工过程平稳、振动小,可实现高精度、 低粗糙度加工; 5)减少工序,高速切削可使工件加工集中在一道工 序中完成,不分粗、精加工。
3.3 超高速加工技术
4)自动化和数字化工艺装备的发展 5)零件毛坯成形在向少无余量发展 6)优质清洁表面工程技术的形成和发展
3.1.3 先进制造工艺技术特点
1)优质 2)高效 3)低耗 4)洁净 5)灵活
3.2 材料受迫成形工艺技术
3.2.1 精密洁净铸造成形
1.精确铸造成形技术
1)自硬砂精确砂型铸造 以自硬树脂 砂造型、造芯,高强度、高精度、高溃散 性和低的造型造芯劳动强度。
2)高紧实砂型铸造 提高砂型强度、 刚度、硬度和精度。【图2所示】
3)消失模铸造 利用泡沫塑料作为铸
造模型,直接在四周填充型砂,不分上
下模。【图3所示】
图2 高紧实砂型—气冲 造型
4)特种铸造技术 包括压力铸造、低
压铸造、熔模铸造等。(图3-5)
a)气冲前 b)气冲过程
图3 消失模铸造工艺过程示意图 a)泡沫塑料模样 b)造型 c)浇注 d)铸件(无飞边、毛刺)