2020高考(理)一轮复习:课时作业37 合情推理与演绎推理

合集下载

2020版高考数学(福建专用)一轮复习课件:7.3 合情推理与演绎推理

2020版高考数学(福建专用)一轮复习课件:7.3 合情推理与演绎推理
记Sn=a1+a2+…+an,则S2 018= -2 49 .
-12-
考点1
考点2
考点3
(2)有一个奇数组成的数阵排列如下:
1 3 7 13 21 … 5 9 15 23 … … 11 17 25 … … … 19 27 … … … … 29 … … … … … … … … … … … 则第30行从左到右第3个数是 1 0 51 .
A.乙可以知道四人的成绩 B.丁可以知道四人的成绩
关闭
C.乙、丁可以知道对方的成绩 因为D.甲乙不、知丁道可自以己知的道成自绩己,所的以成乙绩、丙的成绩是一名优秀一名良好.又因
为乙知道丙的成绩,所以乙知道自己的成绩.又因为乙、丙的成绩是一名
优秀一名良好,所以甲、丁的成绩也是一名优秀一名良好.又因为丁知道
全部对象
个别事实
一般结论
部分 整体
个别
一般
某些类似特征 某些已知特征
特殊
特殊
知识梳理
-4-
知识梳理 双基自测
12
知识梳理
-5-
知识梳理 双基自测
12
2.演绎推理 (1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们
把这种推理称为演绎推理.简言之,演绎推理是由一般到 特 殊
的推理. (2)“三段论”是演绎推理的一般模式,包括 ①大前提——已知的一般原理; ②小前提——所研究的特殊情况; ③结论——根据一般原理,对特殊情况作出的判断.
答案: (1)1 000 (2)4+12+20+…+(8n-4)=(2n)2(n∈N*)
-20-
考点1
考点2
考点3
(2)由题图中的正方形将点阵分割,从内向外扩展,其模式如下: 4=22 4+12=16=42 4+12+20=36=62 4+12+20+28=64=82 ……

高考数学(理科)一轮复习合情推理与演绎推理学案附答案

高考数学(理科)一轮复习合情推理与演绎推理学案附答案

高考数学(理科)一轮复习合情推理与演绎推理学案附答案学案37合情推理与演绎推理导学目标:1了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用2了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理3了解合情推理和演绎推理之间的联系和差异.自主梳理自我检测1.(2010•东)观察(x2)′=2x,(x4)′=4x3,(s x)′=-sin x,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)等于()A.f(x) B.-f(x) .g(x) D.-g(x)2.(2010•珠海质检)给出下面类比推理命题(其中Q为有理数集,R为实数集,为复数集):①“若a,b∈R,则a-b=0ͤa=b”类比推出“若a,b∈,则a-b=0ͤa=b”;②“若a,b,,d∈R,则复数a+bi=+diͤa=,b=d”类比推出“若a,b,,d∈Q,则a+b2=+d2ͤa=,b=d”;③“若a,b∈R,则a-b>0ͤa>b”类比推出“若a,b∈,则a-b>0ͤa>b”.其中类比结论正确的个数是()A.0 B.1 .2 D.33.(2009•江苏)在平面上,若两个正三角形的边长比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为________.4.(2010•陕西)观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为________________________________..(2011•苏州月考)一切奇数都不能被2整除,2100+1是奇数,所以2100+1不能被2整除,其演绎推理的“三段论”的形式为___________________________________________.探究点一归纳推理例1 在数列{an}中,a1=1,an+1=2an2+an,n∈N*,猜想这个数列的通项公式,这个猜想正确吗?请说明理由.变式迁移1观察:①sin210°+s240°+sin 10°s 40°=34;②sin26°+s236°+sin 6°s 36°=34由上面两题的结构规律,你能否提出一个猜想?并证明你的猜想.探究点二类比推理例2 (2011•银川月考)在平面内,可以用面积法证明下面的结论:从三角形内部任意一点,向各边引垂线,其长度分别为pa,pb,p,且相应各边上的高分别为ha,hb,h,则有paha+pbhb+ph=1请你运用类比的方法将此结论推广到四面体中并证明你的结论.变式迁移2在Rt△AB中,若∠=90°,A=b,B=a,则△AB的外接圆半径r=a2+b22,将此结论类比到空间有_______________________________________________.探究点三演绎推理例3 在锐角三角形AB中,AD⊥B,BE⊥A,D、E是垂足.求证:AB的中点到D、E的距离相等.变式迁移3指出对结论“已知2和3是无理数,证明2+3是无理数”的下述证明是否为“三段论”,证明有错误吗?证明:∵无理数与无理数的和是无理数,而2与3都是无理数,∴2+3也是无理数.1.合情推理是指“合乎情理”的推理,数学研究中,得到一个新结论之前,合情推理常常能帮助我们猜测和发现结论;证明一个数学结论之前,合情推理常常能为我们提供证明的思路和方向.合情推理的过程概括为:从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想一般说,由合情推理所获得的结论,仅仅是一种猜想,其可靠性还需进一步证明.2.归纳推理与类比推理都属合情推理:(1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或由个别事实概括出一般结论的推理,称为归纳推理.它是一种由部分到整体,由个别到一般的推理.(2)类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,它是一种由特殊到特殊的推理.3.从一般性的原理出发,推出某个特殊情况下的结论,把这种推理称为演绎推理,也就是由一般到特殊的推理,三段论是演绎推理的一般模式,包括大前提,小前提,结论.(满分:7分)一、选择题(每小题分,共2分)1.(2011•福建厦门华侨中学模拟)定义A*B,B*,*D,D*A 的运算分别对应下图中的(1)、(2)、(3)、(4),那么下图中的(A)、(B)所对应的运算结果可能是()A.B*D,A*D B.B*D,A*.B*,A*D D.*D,A*D2.(2011•厦门模拟)设f(x)=1+x1-x,又记f1(x)=f(x),f+1(x)=f(f(x)),=1,2,…,则f2 010(x)等于()A.-1x B.x x-1x+1 D1+x1-x3.由代数式的乘法法则类比推导向量的数量积的运算法则:①“n=n”类比得到“a•b=b•a”;②“(+n)t=t+nt”类比得到“(a+b)•=a•+b•”;③“(•n)t=(n•t)”类比得到“(a•b)•=a•(b•)”;④“t≠0,t=xtͤ=x”类比得到“p≠0,a•p=x•pͤa=x”;⑤“|•n|=||•|n|”类比得到“|a•b|=|a|•|b|”;⑥“ab=ab”类比得到“a•b•=ab”.以上的式子中,类比得到的结论正确的个数是()A.1 B.2 .3 D.44.(2009•湖北)古希腊人常用小石子在沙滩上摆成各种形状研究数,比如:他们研究过图(1)中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图(2)中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数又是正方形数的是()A.289 B.1 024 .1 22 D.1 378.已知整数的数对如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,),(2,4),…则第60个数对是() A.(3,8) B.(4,7).(4,8) D.(,7)二、填空题(每小题4分,共12分)6.已知正三角形内切圆的半径是高的13,把这个结论推广到空间正四面体,类似的结论是___________________________________________________________ _____________.7.(2011•广东深圳高级中学模拟)定义一种运算“*”:对于自然数n满足以下运算性质:8.(2011•陕西)观察下列等式1=12+3+4=93+4++6+7=24++6+7+8+9+10=49…照此规律,第n个等式为_____________________________________________________.三、解答题(共38分)9.(12分)已知数列{an}的前n项和为Sn,a1=-23,且Sn+1Sn +1+2=0(n≥2).计算S1,S2,S3,S4,并猜想Sn的表达式.10.(12分)(2011•杭州调研)已知函数f(x)=-aax+a (a>0且a≠1),(1)证明:函数=f(x)的图象关于点12,-12对称;(2)求f(-2)+f(-1)+f(0)+f(1)+f(2)+f(3)的值.11.(14分)如图1,若射线,N上分别存在点1,2与点N1,N2,则=12•N1N2;如图2,若不在同一平面内的射线P,Q和R上分别存在点P1,P2,点Q1,Q2和点R1,R2,则类似的结论是什么?这个结论正确吗?说明理由.学案37合情推理与演绎推理自主梳理归纳推理全部对象部分个别类比推理这些特征特殊到特殊①一般原理②特殊情况③特殊情况一般特殊自我检测1.D[由所给函数及其导数知,偶函数的导函数为奇函数.因此当f(x)是偶函数时,其导函数应为奇函数,故g(-x)=-g(x).] 2.[①②正确,③错误.因为两个复数如果不全是实数,不能比较大小.]3.1∶8解析∵两个正三角形是相似的三角形,∴它们的面积之比是相似比的平方.同理,两个正四面体是两个相似几何体,体积之比为相似比的立方,所以它们的体积比为1∶84.13+23+33+43+3+63=212解析由前三个式子可以得出如下规律:每个式子等号的左边是从1开始的连续正整数的立方和,且个数依次多1,等号的右边是一个正整数的平方,后一个正整数依次比前一个大3,4,…,因此,第五个等式为13+23+33+43+3+63=212.一切奇数都不能被2整除大前提2100+1是奇数小前提所以2100+1不能被2整除结论堂活动区例 1 解题导引归纳分为完全归纳和不完全归纳,由归纳推理所得的结论虽然未必是可靠的,但它由特殊到一般、由具体到抽象的认识功能,对科学的发现是十分有用的,观察、实验,对有限的资料作归纳整理,提出带规律性的说法是科学研究的最基本的方法之一.解在{an}中,a1=1,a2=2a12+a1=23,a3=2a22+a2=12=24,a4=2a32+a3=2,…,所以猜想{an}的通项公式为an=2n+1这个猜想是正确的,证明如下:因为a1=1,an+1=2an2+an,所以1an+1=2+an2an=1an+12,即1an+1-1an=12,所以数列1an是以1a1=1为首项,12为公差的等差数列,所以1an=1+(n-1)×12=12n+12,所以通项公式an=2n+1变式迁移1解猜想sin2α+s2(α+30°)+sin αs(α+30°)=34证明如下:左边=sin2α+s(α+30°)[s(α+30°)+sin α]=sin2α+32s α-12sin α32s α+12sin α=sin2α+34s2α-14sin2α=34=右边.例 2 解题导引类比推理是根据两个对象有一部分属性类似,推出这两个对象的其他属性亦类似的一种推理方法,例如我们拿分式同分数类比,平面几何与立体几何中的某些对象类比等等.我们必须清楚类比并不是论证,它可以帮助我们发现真理.类比推理应从具体问题出发,通过观察、分析、联想进行对比、归纳、提出猜想.解类比:从四面体内部任意一点向各面引垂线,其长度分别为pa,pb,p,pd,且相应各面上的高分别为ha,hb,h,hd则有paha+pbhb+ph+pdhd=1证明如下:paha=13S△BD•pa13S△BD•ha=VP—BDV A—BD,同理有pbhb=VP—DA VB—DA,ph=VP—BDA V—BDA,pdhd=VP—ABVD—AB,VP—BD+VP—DA+VP—BDA+VP—AB=V A—BD,∴paha+pbhb+ph+pdhd=VP—BD+VP—DA+VP—BDA+VP—ABV A—BD=1变式迁移2在三棱锥A—BD中,若AB、A、AD两两互相垂直,且AB=a,A=b,AD=,则此三棱锥的外接球半径R=a2+b2+22 例3 解题导引在演绎推理中,只有前提(大前提、小前提)和推理形式都是正确的,结论才是正确的,否则所得的结论可能就是错误的.推理时,要清楚大前提、小前提及二者之间的逻辑关系.证明(1)因为有一个内角是直角的三角形是直角三角形,——大前提在△ABD中,AD⊥B,即∠ADB=90°,——小前提所以△ADB是直角三角形.——结论(2)因为直角三角形斜边上的中线等于斜边的一半,——大前提而是Rt△ADB斜边AB的中点,D是斜边上的中线,——小前提所以D=12AB——结论同理E=12AB,所以D=E变式迁移3解证明是“三段论”模式,证明有错误.证明中大前提使用的论据是“无理数与无理数的和是无理数”,这个论据是假的,因为两个无理数的和不一定是无理数,因此原理的真实性仍无法断定.后练习区1.B[由(1)(2)(3)(4)图得A表示|,B表示□,表示—,D表示○,故图(A)(B)表示B*D和A*]2.A[计算f2(x)=f1+x1-x=1+1+x1-x1-1+x1-x=-1x,f3(x)=f-1x=1-1x1+1x=x-1x+1,f4(x)=1+x-1x+11-x-1x+1=x,f(x)=f1(x)=1+x1-x,归纳得f4+i(x)=fi(x),∈N*,i=1,2,3,4∴f2 010(x)=f2(x)=-1x]3.B[只有①、②对,其余错误,故选B]4.[设图(1)中数列1,3,6,10,…的通项公式为an,则a2-a1=2,a3-a2=3,a4-a3=4,…,an-an-1=n故an-a1=2+3+4+…+n,∴an=nn+12而图(2)中数列的通项公式为bn=n2,因此所给的选项中只有1 22满足a49=49×02=b3=32=1 22].D[观察可知横坐标和纵坐标之和为2的数对有1个,和为3的数对有2个,和为4的数对有3个,和为的数对有4个,依次类推和为n+1的数对有n个,多个数对的排序是按照横坐标依次增大的顺序排的,由nn+12=60ͤn(n+1)=120,n∈Z,n=10时,nn+12=个数对,还差个数对,且这个数对的横、纵坐标之和为12,它们依次是(1,11),(2,10),(3,9),(4,8),(,7),∴第60个数对是(,7).]6.空间正四面体的内切球的半径是高的14解析利用体积分割可证明.7.n8.n+(n+1)+…+(3n-2)=(2n-1)2解析∵1=12,2+3+4=9=32,3+4++6+7=2=2,∴第n个等式为n+(n+1)+…+(3n-2)=(2n-1)29.解当n=1时,S1=a1=-23(2分)当n=2时,1S2=-2-S1=-43,∴S2=-34(4分)当n=3时,1S3=-2-S2=-4,∴S3=-4(6分)当n=4时,1S4=-2-S3=-6,∴S4=-6(8分)猜想:Sn=-n+1n+2 (n∈N*).(12分)10.(1)证明函数f(x)的定义域为R,任取一点(x,),它关于点12,-12对称的点的坐标为(1-x,-1-).(2分)由已知得=-aax+a,则-1-=-1+aax+a=-axax+a,(4分)f(1-x)=-aa1-x+a=-aaax+a=-a•axa+a•ax=-axax+a,∴-1-=f(1-x).即函数=f(x)的图象关于点12,-12对称.(6分)(2)解由(1)有-1-f(x)=f(1-x),即f(x)+f(1-x)=-1(9分)∴f(-2)+f(3)=-1,f(-1)+f(2)=-1,f(0)+f(1)=-1,则f(-2)+f(-1)+f(0)+f(1)+f(2)+f(3)=-3(12分)11.解类似的结论为:V—P1Q1R1V—P2Q2R2=P1P2•Q1Q2•R1R2(4分)这个结论是正确的,证明如下:如图,过R2作R22⊥平面P2Q2于2,连接2过R1在平面R22作R11∥R22交2于1,则R11⊥平面P2Q2由V—P1Q1R1=13S△P1Q1•R11=13•12P1•Q1•sin∠P1Q1•R11=16P1•Q1•R11•sin∠P1Q1,(8分)同理,V—P2Q2R2=16P2•Q2•R22•sin∠P2Q2 所以=P1•Q1•R11P2•Q2•R22(10分)由平面几何知识可得R11R22=R1R2(12分)所以=P1•Q1•R1P2•Q2•R2所以结论正确.(14分)。

2019-2020年高三数学一轮复习课件:第37讲 合情推理与演绎推理

2019-2020年高三数学一轮复习课件:第37讲 合情推理与演绎推理

的内切圆面积为
S1,外接圆面积为
S2,则������������12
=1
4
.推
广到空间几何体中可以得到类似结论:若正四
面体 A-BCD 的内切球体积为 V1,外接球体积为
V2,则������������12 =
.
[答案]
1 27
[解析] 从平面图形类比空间图形,从二维类比
三维,可得如下结论:正四面体的外接球和内切
设等比数列 ������������ 的前 n 项积为 Tn,则 T4,
,������12成等比数列.
������8
(2)[2017·太原三模] 我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失
弥少,割之又割,以至于不可割,则与圆周盒体而无所失矣.”它体现了一种无限与有限的 转化过程.比如在表达式 1+1+11+1…中“…”即代表无限次重复,但原式却是个定值,它可以
y=log1x 是对数函数(小前提),所以 y=log1x 是增函数(结论).
2
2
则上述推理过程的错误原因是
.
[答案] 大前提错误 [解析] 对数函数不一定是增函数, 故大前提错误.
课前双基巩固
题组二 常错题 ◆索引:演绎推理中的大前提、小前提和结论判断出现错误或违背演绎推理规则; 没有理解类比推理中的规律,归纳推理中的猜想.
①大前提:已知的一般原理; ②小前提:所研究的特殊情况; ③结论:根据一般原理,对特殊情况做出的判断.
(2)特点:演绎推理是由 一般到 特殊的推理.
课前双基巩固
对点演练
题组一 常识题
1.[教材改编] 仔细观察如图 6-37-1 所示的图形:图(1)是

高2020届理科数学一轮复习课件金太阳新考案第十七单元 §17.1 合情推理与演绎推理

高2020届理科数学一轮复习课件金太阳新考案第十七单元 §17.1 合情推理与演绎推理

§17.1合情推理与演绎推理一合情推理二演绎推理1.定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到的推理.2.“三段论”是演绎推理的一般模式,包括:(1)大前提——已知的;(2)小前提——所研究的;二、1.特殊2.(1)一般原理(2)特殊情况(3)一般原理已知数列{a n}中,a1=1,当n≥2时,a n=a n-1+2n-1,依次计算a2,a3,a4后,猜想a n的表达式是(). A.a n=3n-1 B.a n=4n-3C.a n=n2D.a n=3n-1【试题解析】由a1=1,a2=4,a3=9,a4=16,猜想a n=n2.【参考答案】C根据图中的数构成的规律,可得a表示的数是().C.60D.144【试题解析】由图中的数据可知,每行除首末两个数外,其他数等于其肩上上一行两个数的乘积,所以a=12×12=144.【参考答案】D有下列几种说法:归纳推理和类比推理是“合乎情理”的推理,统称为合情推理;②合情推理得出的结论,因为合情,所以一定正确;③演绎推理是一般到特殊的推理;④演绎推理的结论的正误与大前提、小前提和推理的形式有关.以上说法正确的个数是().A.0B.1C.2D.3【试题解析】根据题意,依次分析所给的4个说法:对于①,符合合情推理的定义,①正确;对于②,合情推理得出的结论不一定是正确的,②错误;对于③,演绎推理是一般到特殊的推理,符合演绎推理的定义,③正确;对于④,演绎推理的形式为三段论,即大前提、小前提和结论,演绎推理的结论的正误与大前提、小前提和推理的形式有关,④正确.综上所述,有3个是正确的.故选D.【参考答案】D我们熟悉定理:平行于同一条直线的两条直线平行.其数学符号语言:∵a∥b,b∥c,∴a∥c.这个推理称为.(填“归纳推理”“类比推理”“演绎推理”之一).【试题解析】∵平行于同一条直线的两条直线平行,(大前提)而a∥b,b∥c,(小前提)∴a∥c.(结论)∴这是一个三段论,属于演绎推理.【参考答案】演绎推理题型一归纳推理【例1】如图所示的是按一定规律排列的三角形等式表,现将等式从左至右,从上至下依次编上序号,即第一个等式为20+21=3,第二个等式为20+22=5,第三个等式为21+22=6,第四个等式为20+23=9,第五个等式为21+23=10……依此类推,则第99个等式为().20+21=320+22=521+22=620+23=921+23=1022+23=1220+24=1721+24=1822+24=2023+24=24……A.27+213=8320B.27+214=16512C.28+214=16640D.28+213=8448【试题解析】依题意,用(t,s)表示2t+2s,题中等式的规律:第一行为3(0,1);第二行为5(0,2),6(1,2);第三行为9(0,3),10(1,3),12(2,3);第四行为17(0,4),18(1,4),20(2,4),24(3,4);….又因为99=(1+2+3+…+13)+8,所以第99个等式应位于第14行的从左至右的第8个位置,即27+214=16512,故选B.【参考答案】B1-=,1-+-=+,1-+-+-=++,……据此规律,第n个等式应为.【试题解析】等式左边的特征:第1个等式有2项,第2个等式有4项,第3个等式有6项,且正负交错.故第n个等式左边有2n项且正负交错,应为1-+-+…+--.等式右边的特征:第1个等式有1项,第2个等式有2项,第3个等式有3项.故第n个等式有n项,且由前几个等式的规律不难发现第n个等式右边应为++++…+.【参考答案】1-+-+…+--=++++…+题型二类比推理【例2】三角形的面积为S=(a+b+c)r,a,b,c为三角形的边长,r为三角形内切圆的半径,利用类比推理,可以得出四面体的体积为().A.V=abcB.V=ShC.V=(ab+bc+ac)·h(h为四面体的高)D.V=(S1+S2+S3+S4)·r(其中S1,S2,S3,S4分别为四面体四个面的面积,r为四面体内切球的半径)【试题解析】设四面体的内切球的球心为O,则球心O到四个面的距离都是r,根据三角形的面积的求解方法——分割法,将O与四个顶点连起来,可得四面体的体积等于以O为顶点,分别以四个面为底面的四个三棱锥体积的和,所以四面体的体积V=(S1+S2+S3+S4)r,故选D.【参考答案】D【追踪训练2】若数列{a n}是等差数列,则数列{b n}+++也是等差数列.类比这一性质可知,若正项数列{c n}是等比数列,且{d n}也是等比数列,则d n的表达式应为().A.d n=+++B.d n=C.d n=+++D.d n=【试题解析】(法一)由题意可知,商类比开方,和类比积,算术平均数类比几何平均数,故d n的表达式为d n=.(法二)若{a n}是等差数列,则a1+a2+…+a n=na1+-d,∴b n=a1+-d=n+a1-,即{b n}是等差数列.若{c n}是等比数列,则c1·c2·…·c n=·q1+2+…+(n-1)=·-,∴d n==c1·-,即{d n}是等比数列.【参考答案】D题型演绎推理三【例3】下面几个推理过程是演绎推理的是().(n≥2,n∈N*),计算出a2,a3,a4的值,然后猜想{a n}的通项公式A.在数列{a n}中,根据a1=1,a n=-+-B.某校高二共8个班,一班51人,二班52人,三班52人,由此推测各班人数都超过50人C.因为无限不循环小数是无理数,而π是无限不循环小数,所以π是无理数D.由平面三角形的性质,推测空间四面体的性质【试题解析】A与B都是从特殊到一般的推理,是归纳推理,均属于合情推理;C为三段论,是从一般到特殊的推理,是演绎推理;D是由特殊到特殊的推理,是类比推理,属于合情推理;故选C.【参考答案】C简单的演绎推理,易错点在于混淆合情推理与演绎推理的概念,弄清概念是关键.【追踪训练3】如图,D,E,F分别是BC,CA,AB上的点,∠BFD=∠A,且DE∥BA.求证:ED=AF.(要求注明每一步推理的大前提、小前提和结论,并把最终的推理过程用简略的形式表示出来)【试题解析】因为同位角相等,两条直线平行,(大前提)而∠BFD与∠A是同位角,且∠BFD=∠A,(小前提)所以DF∥EA.(结论)因为两组对边分别平行的四边形是平行四边形,(大前提)而DE∥BA,且DF∥EA,(小前提)所以四边形AFDE是平行四边形.(结论)因为平行四边形的对边相等,(大前提)而ED和AF为平行四边形的对边,(小前提)所以ED=AF.(结论)上面的推理过程可简略地写成:⇒四边形AFDE是平行四边形⇒ED=AF.方法归纳推理的一般步骤一1.观察:通过观察具体事物发现某些相同特征.2.概括、归纳:从已知的相同特征中概括、归纳出一个明确表述的一般性命题.3.猜测一般性结论.【突破训练1】已知x∈(0,+∞),观察下列各式:x+≥2,x+=++≥3,x+=+++≥4,….类比得x+≥n+1(n∈N*),则a= .【试题解析】第一个式子是n=1的情况,此时a=11=1;第二个式子是n=2的情况,此时a=22=4;第三个式子是n=3的情况,此时a=33=27.归纳可知a=n n.【参考答案】n n方法类比推理的一般步骤二1.找出两类事物之间的相似性或一致性.2.用一类事物的某些已知特征、性质去推测另一类事物具有的类似特征、性质,得出一个明确的命题(或猜想).3.检验这个猜想.一般情况下,如果类比的两类事物的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的结论就越可靠.类比得出的结论既可能为真,也可能为假.类比推理是一种由特殊到特殊的认识过程,具有十分重要的实用价值.【突破训练2】在平面内,设h a,h b,h c是三角形ABC三条边上的高,点P为三角形ABC内任一点,点P 到相应三边的距离分别为P a,P b,P c,我们可以得出结论:++=1.把它类比到空间,则三棱锥中类似的结论为.【试题解析】设h a,h b,h c,h d分别是三棱锥A-BCD四个面上的高,P为三棱锥A-BCD内任一点,点P 到相应四个面的距离分别为P a,P b,P c,P d,于是可以得出结论:+++=1.【参考答案】+++=1方法演绎推理的规律方法三1.分析演绎推理的构成时,要正确区分大前提、小前提和结论,省略大前提的要补出来.2.判断演绎推理是否正确的方法:(1)看推理形式是否为由一般到特殊的推理,只有由一般到特殊的推理才是演绎推理,这是最易出错的地方.(2)看大前提是否正确,大前提往往是定义、定理、性质等,注意其中有无前提条件.(3)看小前提是否正确,注意小前提必须在大前提的范围之内.(4)看推理过程是否正确,即看由大前提、小前提得到的结论是否正确.【突破训练3】某国家流传这样的一个政治笑话:“鹅吃白菜,参议员先生也吃白菜,所以参议员先生是鹅.”结论显然是错误的,是因为().A.大前提错误B.小前提错误C.推理形式错误D.非以上错误【试题解析】大前提“鹅吃白菜”本身正确,小前提“参议员先生也吃白菜”本身也正确,但不是大前提下的特殊情况,鹅与人不能类比,所以不符合三段论的推理形式,所以推理形式错误.【参考答案】C1.(2018西安五校联考)下列推理是归纳推理的是().A.A,B为定点,动点P满足|PA|+|PB|=2a>|AB|,则P点的轨迹为椭圆B.由a1=1,a n=3n-1,求出S1,S2,S3,猜想出数列的前n项和S n的表达式C.由圆x2+y2=r2的面积πr2,猜想出椭圆+=1的面积S=πabD.科学家利用鱼的沉浮原理制造潜艇【试题解析】从S1,S2,S3猜想出数列的前n项和S n,是从特殊到一般的推理,所以选项B是归纳推理,故选B.【参考答案】B2.(2018海南八校一模)正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理().A.结论正确B.大前提不正确C.小前提不正确D.全不正确【试题解析】f(x)=sin(x2+1)不是正弦函数,所以小前提错误.【参考答案】C3.(2018吉林白山二模)平面内有n条直线,最多可将平面分成f(n)个区域,则f(n)的表达式为().A.n+1B.2nC.++D.n2+n+1【试题解析】1条直线将平面分成1+1=2个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;……n条直线最多可将平面分成1+(1+2+3+…+n)=1++=++个区域,故选C.【参考答案】C4.(2018江西七校一模)给出下列三个类比结论:①(ab)n=a n b n与(a+b)n类比,则有(a+b)n=a n+b n;②log a(xy)=log a x+log a y与sin(α+β)类比,则有sin(α+β)=sin αsin β;③(a+b)2=a2+2ab+b2与(a+b)2类比,则有(a+b)2=a2+2a·b+b2.其中正确结论的个数是().A.0B.1C.2D.3【试题解析】(a+b)n≠a n+b n(n≠1,a·b≠0),故①错误.sin(α+β)=sin αsin β不恒成立.如α=30°,β=60°,sin 90°=1,sin 30°·sin 60°=,故②错误.由向量的运算公式知③正确.【参考答案】B5.(2018保定一模)观察下列不等式:1+<,1++<,1+++<,……照此规律,第五个不等式为.【试题解析】观察每行不等式的特点,每行不等式左端最后一个分数的分母的开方与右端分数的分母相等,且每行不等式右端分数的分子构成等差数列.故第五个不等式为1+++++<.【参考答案】1+++++<6.(2018安徽安庆二模)若P0(x0,y0)在椭圆+=1(a>b>0)外,过点P0作椭圆的两条切线,切点为P1,P2,则切点弦P1P2所在直线的方程是+=1,那么对于双曲线,则有如下命题:若P0(x0,y0)在双曲线-=1(a>0,b>0)外,过点P0作双曲线的两条切线,切点为P1,P2,则切点弦P1P2所在直线的方程是.【试题解析】设P1(x1,y1),P2(x2,y2),则以P1,P2为切点的切线方程分别是-=1,-=1.因为P0(x0,y0)在这两条切线上,所以-=1,-=1,这说明P1(x1,y1),P2(x2,y2)在直线-=1上,故切点弦P1P2所在直线的方程是-=1.【参考答案】-=17.(2018北京东城区模考)设f(x)=+,先分别求f(0)+f(1),f(-1)+f(2),f(-2)+f(3),然后归纳猜想一般性结论,并给出证明.【试题解析】f(0)+f(1)=+++=+++=-+-=,同理可得,f(-1)+f(2)=,f(-2)+f(3)=.又在这三个特殊式子中,自变量之和均等于1, 归纳猜想:当x1+x2=1时,均有f(x1)+f(x2)=.证明如下:设x1+x2=1,则f(x1)+f(x2)=+++=+++++=++++++=++++=++++=.8.(2018河北衡水一模)如图,我们知道,圆环也可以看作线段AB绕圆心O旋转一周所形成的平面图形,又圆环的面积S=π(R2-r2)=(R-r)×2π×+,所以,圆环的面积等于以线段AB=R-r为宽,以AB中点绕圆心O 旋转一周所形成的圆的周长2π×+为长的矩形面积.请你将上述想法拓展到空间,并解决下列问题:若将平面区域M={(x,y)|(x-d)2+y2≤r2}(其中0<r<d)绕y轴旋转一周,则所形成的旋转体的体积是().A.2πr2dB.2π2r2dC.2πrd2D.2π2rd2【试题解析】平面区域M的面积为πr2,由类比知识可知,平面区域M绕y轴旋转一周得到的旋转体为实心的车轮内胎,旋转体的体积等于以圆(面积为πr2)为底,以O为圆心、d为半径的圆的周长2πd为高的圆柱的体积,所以旋转体的体积V=πr2×2πd=2π2r2d,故选B.【参考答案】B9.(2018辽宁葫芦岛模考)如图(1),若从点O所作的两条射线OM、ON上分别有点M1、M2与点N1、N2,则=·.如图(2),若从点O所作的不在同一平面内的三条射线OP、OQ和OR上分别有点P1、P2、点Q1、Q2和点R1、R2,则类似的结论为.【试题解析】考查类比推理问题,由题意得三棱锥P1-OR1Q1及三棱锥P2-OR2Q2的底面面积之比为·,又过顶点分别向底面作垂线,得到高的比为,故--=··,即--=··.【参考答案】--=··10.(2018河北唐山一中月考)在Rt△ABC中,若AB⊥AC,AD⊥BC于点D,则=+.那么在四面体A -BCD中,类比上述结论,你能得到怎样的猜想,并说明理由.【试题解析】如图(1)所示,由射影定理得AD2=BD·CD,AB2=BD·BC,AC2=CD·BC,∴===.又BC2=AB2+AC2,∴=+=+.猜想:在四面体A-BCD中,若AB、AC、AD两两垂直,AE⊥平面BCD,则=++.证明如下:如图(2),连接BE并延长交CD于点F,连接AF.∵AB⊥AC,AB⊥AD,AC∩AD=A,AC⊂平面ACD,AD⊂平面ACD,∴AB⊥平面ACD.∵AF⊂平面ACD,∴AB⊥AF.在Rt△ABF中,∵AE⊥BF,∴=+.在Rt△ACD中,∵AF⊥CD,∴=+.∴=++.11.(2018广东湛江二模)对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f'(x)是函数y=f(x)的导数,f″(x)是f'(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若f(x)=x3-x2+3x-,请你根据这一发现,(1)求函数f(x)的对称中心;(2)计算f+f+f+f+…+f的值.【试题解析】(1)f'(x)=x2-x+3,f″(x)=2x-1.由f″(x)=0,得2x-1=0,解得x=.f=×-×+3×-=1.由题中给出的结论,可知函数f(x)=x3-x2+3x-的对称中心为.(2)由(1)知函数f(x)=x3-x2+3x-的对称中心为,所以f++f-=2,即f(x)+f(1-x)=2.故f+f=2,f+f=2,f+f=2,……f+f=2.所以f+f+f+f+…+f=×2×2012=2012.。

2020届高考数学理一轮(新课标通用)考点测试:37 合情推理与演绎推理

2020届高考数学理一轮(新课标通用)考点测试:37 合情推理与演绎推理

考点测试37 合情推理与演绎推理高考概览高考在本考点的常考题型为选择题、填空题,分值5分,中等难度考纲研读1.了解合情推理的含义,能进行简单的归纳推理和类比推理,体会合情推理在数学发现中的作用2.了解演绎推理的含义,掌握演绎推理的“三段论”,并能运用“三段论”进行一些简单推理3.了解合情推理和演绎推理的联系和差异一、基础小题1.用三段论推理:“任何实数的绝对值大于0,因为a 是实数,所以a 的绝对值大于0”,你认为这个推理( )A .大前提错误B .小前提错误C .推理形式错误D .是正确的答案 A解析 大前提是任何实数的绝对值大于0,显然是不正确的.故选A .2.一个蜂巢里有1只蜜蜂,第一天,它飞出去带回了5个伙伴;第二天,6只蜜蜂飞出去各自带回了5个伙伴;……,如果这个过程继续下去,那么第6天所有蜜蜂归巢后,蜂巢中共有蜜蜂( )A .只B .66只6(66-1)6-1C .63只 D .62只答案 B解析 根据题意可知,第一天共有蜜蜂1+5=6只;第二天共有蜜蜂6+6×5=62只;第三天共有蜜蜂62+62×5=63只;……;故第6天所有蜜蜂归巢后,蜂巢中共有蜜蜂65+65×5=66只.故选B .3.已知数列{a n }的前n 项和S n =n 2a n (n ≥2),而a 1=1,通过计算a 2,a 3,a 4,猜想a n =( )A .B .C .D .2(n +1)22n (n +1)22n -122n -1答案 B解析 由a 1=1,可得a 1+a 2=4a 2,即a 2=,同理可得a 3=,a 4=,故1316110选B .4.(1)已知a 是三角形一边的长,h 是该边上的高,则三角形的面积是ah ,12如果把扇形的弧长l ,半径r 分别看成三角形的底边长和高,可得到扇形的面积为lr ;(2)由1=12,1+3=22,1+3+5=32,可得到1+3+5+…+2n -1=n 2,则(1)12(2)两个推理过程分别属于( )A .类比推理、归纳推理B .类比推理、演绎推理C .归纳推理、类比推理D .归纳推理、演绎推理答案 A解析 (1)由三角形的性质得到扇形的性质有相似之处,此种推理为类比推理;(2)由特殊到一般,此种推理为归纳推理,故选A .5.观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .28B .76C .123D .199答案 C解析 记a n +b n =f (n ),则f (3)=f (1)+f (2)=1+3=4;f (4)=f (2)+f (3)=3+4=7;f (5)=f (3)+f (4)=11.通过观察不难发现f (n )=f (n -1)+f (n -2)(n ∈N *,n ≥3),则f (6)=f (4)+f (5)=18;f (7)=f (5)+f (6)=29;f (8)=f (6)+f (7)=47;f (9)=f (7)+f (8)=76;f (10)=f (8)+f (9)=123.所以a 10+b 10=123.6.下面几种推理过程是演绎推理的是( )A .某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推各班人数都超过50人B .由三角形的性质,推测空间四面体的性质C .平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分D .在数列{a n }中,a 1=1,a n =,由此归纳出{a n }的通项公12(an -1+1an -1)式答案 C解析 A ,D 是归纳推理;B 是类比推理;C 运用了“三段论”是演绎推理.7.下面图形由小正方形组成,请观察图①至图④的规律,并依此规律,写出第n 个图形中小正方形的个数是( )A .n (n +1) B .n (n -1)2C .D .n (n -1)n (n +1)2答案 C解析 由题图知第1个图形的小正方形个数为1,第2个图形的小正方形个数为1+2,第3个图形的小正方形个数为1+2+3,第4个图形的小正方形个数为1+2+3+4,…,则第n 个图形的小正方形个数为1+2+3+…+n =.n (n +1)28.法国数学家费马观察到221+1=5,222+1=17,223+1=257,224+1=65537都是质数,于是他提出猜想:任何形如22n +1(n ∈N *)的数都是质数,这就是著名的费马猜想.半个世纪之后,善于发现的欧拉发现第5个费马数225+1=4294967297=641×6700417不是质数,从而推翻了费马猜想,这一案例说明( )A .归纳推理的结果一定不正确B .归纳推理的结果不一定正确C .类比推理的结果一定不正确D .类比推理的结果不一定正确答案 B解析 法国数学家费马观察到221+1=5,222+1=17,223+1=257,224+1=65537都是质数,于是他提出猜想:任何形如22n +1(n ∈N *)的数都是质数,这是由特殊到一般的推理过程,所以属于归纳推理,由于得出结论的过程没有给出推理证明,所以结果不一定正确.9.甲、乙、丙三人中,一人是教师、一人是记者、一人是医生,已知:丙的年龄比医生大;甲的年龄和记者不同;记者的年龄比乙小.根据以上情况,下列判断正确的是( )A .甲是教师,乙是医生,丙是记者B .甲是医生,乙是记者,丙是教师C .甲是医生,乙是教师,丙是记者D .甲是记者,乙是医生,丙是教师答案 C解析 由于“甲的年龄和记者不同”,则甲不是记者,又“记者的年龄比乙小”,则乙也不是记者,从而丙是记者,而“丙(记者)的年龄比医生大”,且“记者的年龄比乙小”,所以乙不是医生,而是教师,从而甲是医生,故选C .10.已知结论:“在正△ABC 中,若D 是边BC 的中点,G 是△ABC 的重心,则=2”.若把该结论推广到空间,则有结论:“在棱长都相等的四面体AG GD A -BCD 中,若△BCD 的中心为M ,四面体内部一点O 到四面体各面的距离都相等”,则=( )AO OM A .1 B .2 C .3 D .4答案 C解析 如图设正四面体的棱长为1,则易知其高AM =,此时易知点O 即为正四63面体内切球的球心,设其半径为r ,利用等积法有4××r =××,r =,故AO =AM -MO =-=,13341334636126361264故AO ∶OM =∶=3.6461211.如图,将平面直角坐标系中的格点(横、纵坐标均为整数的点)按如下规则标上数字标签:原点处标0,点(1,0)处标1,点(1,-1)处标2,点(0,-1)处标3,点(-1,-1)处标4,点(-1,0)处标5,点(-1,1)处标6,点(0,1)处标7,依此类推,则标签为312的格点的坐标为________.答案 (16,15)解析 因为点(1,0)处标1=12,点(2,1)处标9=32,点(3,2)处标25=52,点(4,3)处标49=72,依此类推得点(16,15)处标312.12.对于命题:如果O 是线段AB 上一点,则||·+||·=0;将它类OB → OA → OA → OB → 比到平面的情形是:若O 是△ABC 内一点,有S △OBC ·+S △OCA ·+S △OA → OB → OBA ·=0;将它类比到空间的情形应该是:若O 是四面体A -BCD 内一点,则OC→ 有________.答案 V O -BCD ·+V O -ACD ·+V O -ABD ·+V O -ABC ·=0OA → OB → OC → OD → 解析 由线段到平面,线段的长类比为面积,由平面到空间,面积可以类比为体积,由此可以类比得一命题为:O 是四面体A -BCD 内一点,则有V O -BCD ·+V O -ACD ·+V O -ABD ·+V O -ABC ·=0.OA → OB → OC → OD → 二、高考小题13.(2017·全国卷Ⅱ)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩答案 D解析 由题意可知,“甲看乙、丙的成绩后,不知道自己的成绩”,说明乙、丙两人中一个优秀一个良好,则乙看了丙的成绩,可以知道自己的成绩;丁看了甲的成绩,也可以知道自己的成绩.故选D .14.(2016·北京高考)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( )A .乙盒中黑球不多于丙盒中黑球B .乙盒中红球与丙盒中黑球一样多C .乙盒中红球不多于丙盒中红球D .乙盒中黑球与丙盒中红球一样多答案 B解析 解法一:假设袋中只有一红一黑两个球,第一次取出后,若将红球放入了甲盒,则乙盒中有一个黑球,丙盒中无球,A 错误;若将黑球放入了甲盒,则乙盒中无球,丙盒中有一个红球,D 错误;同样,假设袋中有两个红球和两个黑球,第一次取出两个红球,则乙盒中有一个红球,第二次必然拿出两个黑球,则丙盒中有一个黑球,此时乙盒中红球多于丙盒中的红球,C 错误.故选B .解法二:设袋中共有2n个球,最终放入甲盒中k个红球,放入乙盒中s个红球.依题意知,甲盒中有(n-k)个黑球,乙盒中共有k个球,其中红球有s个,黑球有(k-s)个,丙盒中共有(n-k)个球,其中红球有(n-k-s)个,黑球有(n-k)-(n-k-s)=s个.所以乙盒中红球与丙盒中黑球一样多.故选B.15.(2016·全国卷Ⅱ)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2.”乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1.”丙说:“我的卡片上的数字之和不是5.”则甲的卡片上的数字是________.答案 1和3解析 由丙说的话可知丙的卡片上的数字一定不是2和3.若丙的卡片上的数字是1和2,则乙的卡片上的数字是2和3,甲的卡片上的数字是1和3,满足题意;若丙的卡片上的数字是1和3,则乙的卡片上的数字是2和3,此时,甲的卡片上的数字只能是1和2,不满足题意.故甲的卡片上的数字是1和3.16.(2017·北京高考)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点A i的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点B i的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.(1)记Q i为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是________;(2)记p i为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是________.答案 (1)Q1 (2)p2解析 设线段A i B i的中点为C i(x i,y i).(1)由题意知Q i=2y i,i=1,2,3,由题图知y1最大,所以Q1,Q2,Q3中最大的是Q 1.(2)由题意知p i ==,i =1,2,3.2yi2xi yi xi 的几何意义为点C i (x i ,y i )与原点O 连线的斜率.yi xi 比较OC 1,OC 2,OC 3的斜率,由题图可知OC 2的斜率最大,即p 2最大.17.(经典陕西高考)观察分析下表中的数据:多面体面数(F )顶点数(V )棱数(E )三棱柱569五棱锥6610立方体6812猜想一般凸多面体中F ,V ,E 所满足的等式是________.答案 F +V -E =2解析 因为5+6-9=2,6+6-10=2,6+8-12=2,故可猜想F +V -E =2.18.(2015·福建高考)一个二元码是由0和1组成的数字串x 1x 2…x n (n ∈N *),其中x k (k =1,2,…,n )称为第k 位码元.二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0).已知某种二元码x 1x 2…x 7的码元满足如下校验方程组:Error!其中运算⊕定义为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.现已知一个这种二元码在通信过程中仅在第k 位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k 等于________.答案 5解析 因为x 4⊕x 5⊕x 6⊕x 7=1⊕1⊕0⊕1=0⊕0⊕1=0⊕1=1≠0,所以二元码1101101的前3位码元都是对的;因为x 2⊕x 3⊕x 6⊕x 7=1⊕0⊕0⊕1=1⊕0⊕1=1⊕1=0,所以二元码1101101的第6、7位码元也是对的;因为x 1⊕x 3⊕x 5⊕x 7=1⊕0⊕1⊕1=1⊕1⊕1=0⊕1=1≠0,所以二元码1101101的第5位码元是错的,所以k =5.三、模拟小题19.(2018·河南郑州二模)平面内凸四边形有2条对角线,凸五边形有5条对角线,以此类推,凸13边形对角线的条数为( )A .42B .65C .143D .169答案 B解析 可以通过列表归纳分析得到.凸多边形45678…多角线条数22+32+3+42+3+4+52+3+4+5+6…∴凸13边形有2+3+4+…+11==65条对角线.故选B .13×10220.(2018·山西孝义模拟)我们知道:在平面内,点(x 0,y 0)到直线Ax +By +C =0的距离公式d =,通过类比的方法,可求得:在空|Ax 0+By 0+C |A 2+B 2间中,点(2,4,1)到平面x +2y +2z +3=0的距离为( )A .3B .5C .D .352175答案 B解析 类比平面内点到直线的距离公式,可得空间中点(x 0,y 0,z 0)到平面Ax +By +Cz +D =0的距离公式为d =,则所求距离|Ax 0+By 0+Cz 0+D |A 2+B 2+C 2d ==5,故选B .|2+2×4+2×1+3|12+22+2221.(2018·福建质检)某校有A ,B ,C ,D 四件作品参加航模类作品比赛.已知这四件作品中恰有两件获奖.在结果揭晓前,甲、乙、丙、丁四位同学对这四件参赛作品的获奖情况预测如下:甲说:“A ,B 同时获奖.”乙说:“B ,D 不可能同时获奖.”丙说:“C获奖.”丁说:“A,C至少一件获奖.”若以上四位同学中有且只有二位同学的预测是正确的,则获奖的作品是( ) A.作品A与作品B B.作品B与作品CC.作品C与作品D D.作品A与作品D答案 D解析 A选项,若作品A与作品B获奖,则甲、乙、丁的预测正确,丙的预测错误,不符合题意;B选项,若作品B与作品C获奖,则乙、丙、丁的预测正确,甲的预测错误,不符合题意;C选项,若作品C与作品D获奖,则乙、丙、丁的预测正确,甲的预测错误,不符合题意;D选项,若作品A与作品D获奖,则乙、丁的预测正确,甲、丙的预测错误,符合题意,所以选D.22.(2018·河北石家庄二中联考)老王和小王父子俩玩一种类似于古代印度的“梵塔游戏”;有3个柱子甲、乙、丙,在甲柱上现有4个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图),把这4个盘子从甲柱全部移到乙柱游戏即结束,在移动过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下,设游戏结束需要移动的最少次数为n,则n=( )A.7 B.8 C.11 D.15答案 C解析 由题意得,根据甲、乙、丙三图可知最上面的两个是一样大小的,所以比三个操作的次数(23-1)要多,比四个操作的次数(24-1)要少,相当于操作三个的时候,最上面的那个挪动了几次,就会增加几次,故选C.23.(2018·郑州质检三)将标号为1,2,…,20的20张卡片放入下列表格中,一个格放入一张卡片.选出每列标号最小的卡片,将这些卡片中标号最大的数设为a;选出每行标号最大的卡片,将这些卡片中标号最小的数设为b.甲同学认为a 有可能比b 大,乙同学认为a 和b 有可能相等,那么甲、乙两位同学的说法中( )A .甲对、乙不对B .乙对、甲不对C .甲、乙都对D .甲、乙都不对答案 B解析 1一定是所有数中最小的,不妨设每一列的最小值从小到大排列分别为1,m 1,m 2,m 3,a ,故1<m 1<m 2<m 3<a ;20一定是所有数中最大的,不妨设每一行的最大值从小到大排列分别为b ,n 1,n 2,20,故b <n 1<n 2<20.若a >b ,则a 一定不在b 所在的行,则a 只能在n 1或n 2或20所在的行,又因为a 是它这一列的最小值,所以b 所在的这行对应a 所在这列的数字一定比a 大,不妨设其为k ,即k >a ,而b 是这行的最大值,故b >k ,所以b >a ,与a >b 矛盾,故a ≤b .故甲不对、乙对,故选B .24.(2018·江西赣州十四县联考)我国古代数学著作《九章算术》有如下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一.并五关所税,适重一斤.问本持金几何?”其意思为“今有人持金出五关,第1关收税金,第2关收税金为剩余的,第3关收税金为剩1213余的,第4关收税金为剩余的,第5关收税金为剩余的,5关所收税金之和,141516恰好重1斤,问原本持金多少?”若将“5关所收税金之和,恰好重1斤,问原本持金多少?”改成“假设这个人原本持金为x ,按此规律通过第8关”,则第8关所收税金为________x .答案 172解析 第1关收税金:x ;12第2关收税金:1-x ==;1312x 6x2×3第3关收税金:1--x ==;141216x 12x3×4…第8关收税金:=.x 8×9x 7225.(2018·山东青岛模拟)如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作……根据以上操作,若要得到100个小三角形,则需要操作的次数是________.答案 33解析 由题意可知,第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7个;第三次操作后,三角形共有4+3+3=10个……由此可得第n 次操作后,三角形共有4+3(n -1)=3n +1个.当3n +1=100时,解得n =33.26.(2018·安徽淮北二模)分形几何学是美籍法国数学家伯努瓦B·曼德尔布罗特(Benoit B·Mandelbrot)在20世纪70年代创立的一门新学科,它的创立为解决传统众多领域的难题提供了全新的思路.如图是按照分形的规律生长成的一个树形图,则第10行的空心圆的个数是________.答案 21解析 由题意知,一个实心圆连接下一行的一个实心圆和一个空心圆,一个空心圆连接下一行的一个实心圆,故第7行为:8实心圆,5空心圆;第8行为:13实心圆,8空心圆;第9行为:21实心圆,13空心圆;第10行为:34实心圆,21空心圆.一、高考大题本考点在近三年高考中未涉及此题型.二、模拟大题1.(2018·福建质检)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin 213°+cos 217°-sin13°cos17°;②sin 215°+cos 215°-sin15°cos15°;③sin 218°+cos 212°-sin18°cos12°;④sin 2(-18°)+cos 248°-sin(-18°)cos48°;⑤sin 2(-25°)+cos 255°-sin(-25°)cos55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.解 (1)选择②式,计算如下:sin 215°+cos 215°-sin15°cos15°=1-sin30°=1-=.121434(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=.34证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos30°·cos α+sin30°sin α)2-sin α(cos30°cos α+sin30°sin α)=sin 2α+cos 2α+sin αcos α+sin 2α-sin αcos α-sin 2α=sin 2α+cos 2α=.34321432123434342.(2018·北京海淀模拟)设A 是由m ×n 个实数组成的m 行n 列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(1)数表A如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可);表1123-7-2101(2)数表A如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数a的所有可能值.表2a a2-1-a-a22-a1-a2a-2a2解 (1)解法一:123-7-2101改变第4列――→1237-210-1改变第2行――→12372-101解法二:123-7-2101改变第2行――→123-72-10-1改变第4列――→12372-101解法三:123-7-2101改变第1列――→-123-72101改变第4列――→-1237210-1(2)每一列所有数之和分别为2,0,-2,0,每一行所有数之和分别为-1,1.①如果首先操作第三列,则a a2-1a-a22-a1-a22-a a2则第一行之和为2a -1,第二行之和为5-2a ,这两个数中,必须有一个为负数,另外一个为非负数,所以a ≤或a ≥.1252当a ≤时,则接下来只能操作第一行,则12-a1-a 2-a a 22-a 1-a 22-a a 2此时每列之和分别为2-2a ,2-2a 2,2-2a ,2a 2,必有2-2a 2≥0,解得a =0,-1.当a ≥时,则接下来操作第二行,则52aa 2-1a -a 2a -2a 2-1a -2-a 2此时第4列和为负,不符合题意.②如果首先操作第一行,则-a1-a 2a a 22-a 1-a 2a -2a 2则每一列之和分别为2-2a ,2-2a 2,2a -2,2a 2,当a =1时,每列各数之和已经非负,不需要进行第二次操作,舍掉;当a ≠1时,2-2a ,2a -2至少有一个为负数,所以此时必须有2-2a 2≥0,即-1≤a ≤1,所以a =0或a =-1,经检验,a =0或a =-1符合要求.综上a =0,-1.。

苏教版 高三数学 一轮复习---13.2 合情推理与演绎推理

苏教版 高三数学 一轮复习---13.2  合情推理与演绎推理

§13.2合情推理与演绎推理2020高考会这样考 1.从近几年的高考来看,本部分主要考查利用归纳推理、类比推理去寻求更为一般的、新的结论,试题的难度以低、中档为主;2.演绎推理主要与立体几何、解析几何、函数与导数等知识结合在一起命制综合题.复习备考要这样做 1.联系具体实例,体会几种推理的概念和特点,并结合这些方法解决一些应用问题;2.培养归纳、类比、演绎的推理思维模式,培养分析、解决问题的能力.1.合情推理主要包括归纳推理和类比推理.合情推理的过程(1)归纳推理:从个别事实中推演出一般性的结论的推理.归纳推理是由部分到整体、由个别到一般的推理.归纳推理的基本模式:a、b、c∈M且a、b、c具有某属性,结论:∀d∈M,d也具有某属性.(2)类比推理:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同的推理.类比推理是由特殊到特殊的推理.2.演绎推理:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(1)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.(2)“三段论”可以表示为①大前提:M是P;②小前提:S是M;③结论:S是P.用集合说明:即若集合M的所有元素都具有性质P,S是M的一个子集,那么S中所有元素也都具有性质P.[难点正本疑点清源]1.在解决问题过程中,合情推理具有猜测和发现结论,探索和提供思路的作用.合情推理的结论可能为真,也可能为假,结论的正确性有待于进一步的证明.2.应用三段论解决问题时,应首先明确什么是大前提,什么是小前提,如果大前提与推理形式是正确的,结论必定是正确的.如果大前提错误,尽管推理形式是正确的,所得结论也是错误的.3.演绎推理是由一般到特殊的推理,它常用来证明和推理数学问题,注意推理过程的严密性,书写格式的规范性.1.(2012·陕西)观察下列不等式:1+122<32, 1+122+132<53, 1+122+132+142<74, ……照此规律,第五个...不等式为________. 答案 1+122+132+142+152+162<116解析 观察每行不等式的特点,每行不等式左端最后一个分数的分母的开方与右端值的分母相等,且每行右端分数的分子构成等差数列.∴第五个不等式为1+122+132+142+152+162<116.2.(2011·山东)设函数f (x )=xx +2(x >0),观察:f 1(x )=f (x )=xx +2,f 2(x )=f (f 1(x ))=x3x +4,f 3(x )=f (f 2(x ))=x7x +8,f 4(x )=f (f 3(x ))=x15x +16,……根据以上事实,由归纳推理可得:当n ∈N *且n ≥2时,f n (x )=f (f n -1(x ))=________.答案 x(2n -1)x +2n解析 依题意,先求函数结果的分母中x 项系数所组成数列的通项公式,由1,3,7,15,…,可推知该数列的通项公式为a n =2n -1.又函数结果的分母中常数项依次为2,4,8,16,…,故其通项公式为b n =2n .所以当n ≥2时,f n (x )=f (f n -1(x ))=x(2n -1)x +2n . 3.给出下列三个类比结论:①(ab )n =a n b n 与(a +b )n 类比,则有(a +b )n =a n +b n ;②log a (xy )=log a x +log a y 与sin(α+β)类比,则有sin(α+β)=sin αsin β; ③(a +b )2=a 2+2ab +b 2与(a +b )2类比,则有(a +b )2=a 2+2a ·b +b 2. 其中结论正确的个数是________. 答案 14.“因为指数函数y =a x 是增函数(大前提),而y =⎝⎛⎭⎫13x是指数函数(小前提),所以函数y =⎝⎛⎭⎫13x 是增函数(结论)”,上面推理的错误在于________________. 答案 大前提错误5.(2012·江西改编)观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5= 11,…,则a 10+b 10=________. 答案 123解析 观察规律,归纳推理.从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,照此规律,则a 10+b 10=123.题型一 归纳推理例1 已知函数f (x )=x 21+x 2,(1)分别求f (2)+f ⎝⎛⎭⎫12,f (3)+f ⎝⎛⎭⎫13,f (4)+f ⎝⎛⎭⎫14的值; (2)归纳猜想一般性结论,并给出证明; (3)求值:f (1)+f (2)+f (3)+…+f (2 012)+f ⎝⎛⎭⎫12+f ⎝⎛⎭⎫13+…+f ⎝⎛⎭⎫12 012. 思维启迪:所求函数值的和应该具有规律性、经观察可发现f (x )+f ⎝⎛⎭⎫1x =1. 解 (1)∵f (x )=x 21+x2, ∴f (2)+f ⎝⎛⎭⎫12=221+22+⎝⎛⎭⎫1221+⎝⎛⎭⎫122=221+22+122+1=1,同理可得f (3)+f ⎝⎛⎭⎫13=1,f (4)+f ⎝⎛⎭⎫14=1. (2)由(1)猜想f (x )+f ⎝⎛⎭⎫1x =1,证明:f (x )+f ⎝⎛⎭⎫1x =x21+x 2+⎝⎛⎭⎫1x 21+⎝⎛⎭⎫1x 2=x 21+x 2+1x 2+1=1. (3)由(2)可得,原式=f (1)+⎣⎡⎦⎤f (2)+f ⎝⎛⎭⎫12+⎣⎡⎦⎤f (3)+f ⎝⎛⎭⎫13+…+⎣⎡⎦⎤f (2 012)+f ⎝⎛⎭⎫12 012 =f (1)+2 011=12+2 011=4 0232.探究提高 本题实质是根据前几项,归纳猜想一般规律,归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越 具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.已知经过计算和验证有下列正确的不等式:3+17<210,7.5+12.5<210,8+2+12-2<210,根据以上不等式的规律,请写出一个对正实数m , n 都成立的条件不等式________.答案 若m >0,n >0,则当m +n =20时,有m +n <210解析 观察所给不等式可以发现:不等式左边两个根式的被开方数的和等于20,不等式的右边都是210,因此对正实数m ,n 都成立的条件不等式是若m >0,n >0,则当m +n =20时,有m +n <210.题型二 类比推理例2 在Rt △ABC 中,AB ⊥AC ,AD ⊥BC 于D ,求证:1AD 2=1AB 2+1AC2,那么在四面体A-BCD 中,类比上述结论,你能得到怎样的猜想?并说明理由.思维启迪:①平面中的三角形与空间中的三棱锥是类比对象;②三角形各边的边长与三棱锥的各面的面积是类比对象;③三角形边上的高与三棱锥面上的高是类比对象;④三角形的面积与三棱锥的体积是类比对象;⑤三角形的面积公式中的“二分之一”与三棱锥的体积公式中的“三分之一”是类比对象. 解 如图①所示,由射影定理知图①AD 2=BD ·DC ,AB 2=BD ·BC , AC 2=BC ·DC ,∴1AD 2=1BD ·DC=BC 2BD ·BC ·DC ·BC =BC 2AB 2·AC 2. 又BC 2=AB 2+AC 2,∴1AD 2=AB 2+AC 2AB 2·AC 2=1AB 2+1AC 2. ∴1AD 2=1AB 2+1AC 2. 类比AB ⊥AC ,AD ⊥BC 猜想:四面体A —BCD 中,AB 、AC 、AD 两两垂直,AE ⊥平面BCD ,则1AE 2=1AB 2+1AC 2+1AD 2.如图②,连结BE 并延长交CD 于F ,图②连结AF .∵AB ⊥AC ,AB ⊥AD ,AC ∩AD =A , ∴AB ⊥平面ACD .而AF ⊂平面ACD ,∴AB ⊥AF , 在Rt △ABF 中,AE ⊥BF ,∴1AE 2=1AB 2+1AF2. 在Rt △ACD 中,AF ⊥CD ,∴1AF 2=1AC 2+1AD2.∴1AE 2=1AB 2+1AC 2+1AD2,故猜想正确. 探究提高 (1)类比推理是由特殊到特殊的推理,其一般步骤为 ①找出两类事物之间的相似性或一致性;②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).(2)类比推理的关键是找到合适的类比对象.平面几何中的一些定理、公式、结论等,可以类比到立体几何中,得到类似的结论.已知命题:若数列{a n }为等差数列,且a m =a ,a n =b (m ≠n ,m 、n ∈N *),则a m +n =bn -amn -m ;现已知等比数列{b n } (b ≠0,n ∈N *),b m =a ,b n =b (m ≠n ,m 、n ∈N *),若类比上述结论,则可得到b m +n =__________. 答案 n -m b na m解析 等差数列中的bn 和am 可以类比等比数列中的b n 和a m ,等差数列中的bn -am 可以类比等比数列中的b na m ,等差数列中的bn -am n -m 可以类比等比数列中的n -mb n a m ,故b m +n =n -m b na m.题型三 演绎推理例3 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n·S n (n ∈N *),证明: (1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .思维启迪:在推理论证过程中,一些稍复杂的证明题常常要由几个三段论才能完成.大前提通常省略不写,或者写在结论后面的括号内,小前提有时也可以省略,而采取某种简明的推理模式.证明 (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n ,∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n .∴S n +1n +1=2·S n n ,又S 11=1≠0,(小前提)故⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列.(结论) (大前提是等比数列的定义,这里省略了) (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2),∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2)(小前提)又a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意的正整数n ,都有S n +1=4a n .(结论) (第(2)问的大前提是第(1)问的结论以及题中的已知条件)探究提高 演绎推理的一般模式为三段论,应用三段论解决问题时,首先应该明确什么是大前提,小前提,然后再找结论.已知函数f (x )=-aa x +a(a >0且a ≠1).(1)证明:函数y =f (x )的图象关于点⎝⎛⎭⎫12,-12对称; (2)求f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)的值.(1)证明 函数f (x )的定义域为全体实数,任取一点(x ,y ),它关于点⎝⎛⎭⎫12,-12对称的点的坐标为(1-x ,-1-y ). 由已知得y =-aa x +a,则-1-y =-1+a a x +a =-a xa x +a ,f (1-x )=-aa 1-x +a=-aa a x+a=-a ·a xa +a ·a x =-a xa x +a,∴-1-y =f (1-x ),即函数y =f (x )的图象关于点⎝⎛⎭⎫12,-12对称. (2)解 由(1)有-1-f (x )=f (1-x ), 即f (x )+f (1-x )=-1.∴f (-2)+f (3)=-1,f (-1)+f (2)=-1, f (0)+f (1)=-1.则f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)=-3.归纳不准确致误典例:(5分)如图所示,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横、纵坐标分别对应数列{a n}(n∈N*)的前12项,如下表所示.按如此规律下去,则a2 009+a2 010+a2 011=__________.易错分析本题中的“按如此规律下去”就是要求由题目给出的6个点的坐标和数列的对应法则,归纳出该数列的一般关系.可能出现的错误有两种:一是归纳时找不准“前几项”的规律,胡乱猜测;二是弄错奇偶项的关系.本题中各个点的纵坐标对应数列的偶数项,并且逐一递增,即a2n=n(n∈N*),各个点的横坐标对应数列的奇数项,正负交替后逐一递增,并且满足a4n-3+a4n-1=0(n∈N*),如果弄错这些关系就会得到错误的结果,如认为当n为偶数时a n=n,就会得到a2 009+a2 010+a2 011=2 010的错误结论.解析a1=1,a2=1,a3=-1,a4=2,a5=2,a6=3,a7=-2,a8=4,…,这个数列的规律是奇数项为1,-1,2,-2,3,…,偶数项为1,2,3,…,故a2 009+a2 011=0,a2 010=1 005,故a2 009+a2 010+a2 011=1 005.答案 1 005温馨提醒由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过逻辑证明和实践检验.因此,它不能作为数学证明的工具.方法与技巧1.合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向.2.演绎推理是从一般的原理出发,推出某个特殊情况下的结论的推理方法,是由一般到特殊的推理,常用的一般模式是三段论.数学问题的证明主要通过演绎推理来进行.3.合情推理仅是“合乎情理”的推理,它得到的结论不一定正确.而演绎推理得到的结论一定正确(前提和推理形式都正确的前提下).失误与防范1.合情推理是从已知的结论推测未知的结论,发现与猜想的结论都要经过进一步严格证明.2.演绎推理是由一般到特殊的证明,它常用来证明和推理数学问题,注意推理过程的严密性,书写格式的规范性.3.合情推理中运用猜想时不能凭空想象,要有猜想或拓展依据.A 组 专项基础训练 (时间:35分钟,满分:62分)一、填空题(每小题5分,共35分)1.下面是关于演绎推理的几种叙述:①演绎推理是由一般到特殊的推理;②演绎推理得出的结论一定是正确的;③演绎推理的一般模式是“三段论”;④“三段论”中的大前提有 时可以省略.其中正确的说法是________.(填序号) 答案 ①③④解析 根据课本知识容易得知①③④都是正确的,只有在大前提和小前提都正确的时候才能保证演绎推理的结论正确.2.由710>58,911>810,1325>921,…,若a >b >0,m >0,则b +m a +m 与b a之间的大小关系为________.答案 b +m a +m >b a3.由代数式的乘法法则类比推导向量的数量积的运算法则: ①“mn =nm ”类比得到“a ·b =b ·a ”;②“(m +n )t =mt +nt ”类比得到“(a +b )·c =a ·c +b ·c ”; ③“(m ·n )t =m (n ·t )”类比得到“(a ·b )·c =a ·(b ·c )”;④“t ≠0,mt =xt ⇒m =x ”类比得到“p ≠0,a ·p =x ·p ⇒a =x ”; ⑤“|m ·n |=|m |·|n |”类比得到“|a ·b |=|a |·|b |”;⑥“ac bc =a b ”类比得到“a ·c b ·c =ab ”.以上式子中,类比得到的结论正确的个数是________. 答案 2解析 ①②正确;③④⑤⑥错误.4那么位于表中的第n 行第n +1列的数是________.答案 n 2+n解析 由题中数表知:第n 行中的项分别为n,2n,3n ,…,组成一等差数列,所以第n 行第n +1列的数是n 2+n .5.在Rt △ABC 中,若∠C =90°,AC =b ,BC =a ,则△ABC 外接圆半径r =a 2+b 22.运用类比方法,若三棱锥的三条侧棱两两互相垂直且长度分别为a ,b ,c ,则其外接球的半径R =________.答案 a 2+b 2+c 22解析 (构造法)通过类比可得R =a 2+b 2+c 22.证明: 作一个在同一个顶点处棱长分别为a ,b ,c 的长方体,则这个长方体的体对角线的长度是a 2+b 2+c 2,故这个长方体的外接球的半径是a 2+b 2+c 22,这也是所求的三棱锥的外接球的半径.6.在平面内有n (n ∈N *,n ≥3)条直线,其中任何两条不平行,任何三条不过同一点,若这n 条直线把平面分成f (n )个平面区域,则f (5)的值是______,f (n )的表达式是________.答案 16 f (n )=n 2+n +22解析 由题意得,n 条直线将平面分成n (n +1)2+1个平面区域,故f (5)=16,f (n )=n 2+n +22. 7.仔细观察下面○和●的排列规律:○●○○●○○○●○○○○●○○○○○●○○○○○○ ●……若依此规律继续下去,得到一系列的○和●,那么在前120个○和●中,●的个数是________. 答案 14解析 进行分组○●|○○●|○○○●|○○○○●|○○○○○●|○○○○○○●|……,则前n 组两种圈的总数是f (n )=2+3+4+…+(n +1)=n (n +3)2,易知f (14)=119,f (15)=135,故n =14. 二、解答题(共27分)8.(13分)已知函数y =f (x ),满足:对任意a ,b ∈R ,a ≠b ,都有af (a )+bf (b )>af (b )+bf (a ),试证明:f (x )为R 上的单调增函数. 证明 设x 1,x 2∈R ,取x 1<x 2,则由题意得x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1), ∴x 1[f (x 1)-f (x 2)]+x 2[f (x 2)-f (x 1)]>0, [f (x 2)-f (x 1)](x 2-x 1)>0,∵x 1<x 2,∴f (x 2)-f (x 1)>0,f (x 2)>f (x 1).所以y =f (x )为R 上的单调增函数.9.(14分)f (x )=13x +3,先分别求f (0)+f (1),f (-1)+f (2),f (-2)+f (3),然后归纳猜想一般性结论,并给出证明.解 f (0)+f (1)=130+3+131+3=11+3+13(1+3) =33(1+3)+13(1+3)=33,同理可得:f (-1)+f (2)=33,f (-2)+f (3)=33. 由此猜想f (x )+f (1-x )=33.证明:f (x )+f (1-x )=13x +3+131-x +3=13x +3+3x3+3·3x=13x +3+3x3(3+3x ) =3+3x3(3+3x )=33.B 组 专项能力提升 (时间:35分钟,满分:58分)一、填空题(每小题5分,共30分)1.定义一种运算“*”:对于自然数n 满足以下运算性质: (1)1*1=1,(2)(n +1)*1=n *1+1,则n *1= . 答案 n解析 由(n +1)*1=n *1+1, 得n *1=(n -1)*1+1=(n -2)*1+2=…=1*1+(n -1). 又∵1*1=1,∴n *1=n .2.设正数数列{a n }前n 项和为S n ,且存在正数t ,使得对所有自然数n ,有tS n =t +a n 2,则通过归纳猜想可得到S n =________. 答案 n 2t解析 令n =1,则ta 1=t +a 12,∴S 1=a 1=t .令n =2,则t (a 1+a 2)=t +a 22,则a 2=3t .∴S 2=4t .同理S 3=9t .归纳S n =n 2t .3.(2012·课标全国改编)设点P 在曲线y =12e x 上,点Q 在曲线y =ln(2x )上,则|PQ |的最小值为____________. 答案2(1-ln 2)解析 由题意知函数y =12e x 与y =ln(2x )互为反函数,其图象关于直线y =x 对称,两曲线上点之间的最小距离就是y =x 与y =12e x 上点的最小距离的2倍,设y =12e x 上点(x 0,y 0)处的切线与y =x 平行,有12e x 0=1,x 0=ln 2,y 0=1,∴y =x 与y =12e x 上点的最小距离是22(1-ln 2), ∴所求距离为22(1-ln 2)×2=2(1-ln 2). 4.给出下列命题:命题1:点(1,1)是直线y =x 与双曲线y =1x的一个交点; 命题2:点(2,4)是直线y =2x 与双曲线y =8x的一个交点; 命题3:点(3,9)是直线y =3x 与双曲线y =27x的一个交点; …请观察上面命题,猜想出命题n (n 是正整数)为__________________.答案 点(n ,n 2)是直线y =nx 与双曲线y =n 3x的一个交点 解析 观察题中给出的命题易知,命题n 中交点坐标为(n ,n 2),直线方程为y =nx ,双曲线方程为y =n 3x .故猜想命题n :点(n ,n 2)是直线y =nx 与双曲线y =n 3x的一个交点. 5.(2012·湖北)回文数是指从左到右读与从右到左读都一样的正整数.如22,121,3 443,94 249等.显然2位回文数有9个,11,22,33,…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则(1)4位回文数有________个;(2)2n +1(n ∈N +)位回文数有________个.答案 90 9×10n解析 (1)4位回文数有1001,1111,1221,…,1991,10个2001,2112,2222,…,2992,10个……9009,9119,9229,…,9999,10个共90个.(2)5位回文数有⎭⎪⎬⎪⎫10001,10101,10201,…,10901,10个11011,11111,11211,…,11911,10个12021,12121,12321,…,12921,10个……19091,19191,19291,…,19991,10个100个. ……⎭⎪⎬⎪⎫90009,90109,90209,…,9090991019,91119,91219,…,9191992029,92129,92229,…,92929……99099,99199,99299,…,99999.100个5位回文数共9×102个,又3位回文数有9×101个 2n +1位回文数共9×10n 个. 6.(2012·福建)数列{a n }的通项公式a n =n cosn π2+1,前n 项和为S n ,则S 2 012=________. 答案 3 018解析 当n =4k +1(k ∈N )时,a n =(4k +1)·cos 4k +12π+1=1, 当n =4k +2(k ∈N )时,a n =(4k +2)·cos4k +22π+1 =-(4k +2)+1=-4k -1,当n =4k +3(k ∈N )时,a n =(4k +3)·cos 4k +32π+1=1, 当n =4k +4(k ∈N )时,a n =(4k +4)·cos4k +42π+1 =(4k +4)+1=4k +5,∴a 4k +1+a 4k +2+a 4k +3+a 4k +4=1-4k -1+1+4k +5=6.∴S 2 012=a 1+a 2+a 3+a 4+a 5+…+a 2 012=(a 1+a 2+a 3+a 4)+(a 5+a 6+a 7+a 8)+…+(a 2 009+a 2 010+a 2 011+a 2 012)=6×503=3 018.二、解答题(共28分)7.(14分)在锐角三角形ABC 中,求证:sin A +sin B +sin C >cos A +cos B +cos C .证明 ∵△ABC 为锐角三角形,∴A +B >π2, ∴A >π2-B ,∵y =sin x 在⎝⎛⎭⎫0,π2上是增函数, ∴sin A >sin ⎝⎛⎭⎫π2-B =cos B ,同理可得sin B >cos C ,sin C >cos A ,∴sin A +sin B +sin C >cos A +cos B +cos C .8.(14分)已知数列{a n }是各项均不为0的等差数列,公差为d ,S n 为其前n 项和,且满足a 2n =S 2n -1,n ∈N *.数列{b n }满足b n =1a n a n +1,T n 为数列{b n }的前n 项和. (1)求a 1、d 和T n ;(2)若对任意的n ∈N *,不等式λT n <n +8·(-1)n 恒成立,求实数λ的取值范围. 解 (1)在a 2n =S 2n -1中,分别令n =1,n =2,得⎩⎪⎨⎪⎧ a 21=S 1,a 22=S 3,即⎩⎪⎨⎪⎧a 21=a 1,(a 1+d )2=3a 1+3d , 解得a 1=1,d =2,∴a n =2n -1.∵b n =1a n a n +1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1, ∴T n =12⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1 =n 2n +1. (2)①当n 为偶数时,要使不等式λT n <n +8·(-1)n恒成立,即需不等式λ<(n +8)(2n +1)n=2n +8n+17恒成立. ∵2n +8n ≥8,等号在n =2时取得, ∴此时λ需满足λ<25.②当n 为奇数时,要使不等式λT n <n +8·(-1)n 恒成立,即需不等式λ<(n -8)(2n +1)n =2n -8n-15恒成立. ∵2n -8n是随n 的增大而增大, ∴n =1时2n -8n取得最小值-6, ∴此时λ需满足λ<-21.综合①②可得λ<-21,∴λ的取值范围是{λ|λ<-21}.。

高三数学一轮复习课时作业3:合情推理与演绎推理

高三数学一轮复习课时作业3:合情推理与演绎推理

11.3.1合情推理与演绎推理A 级 基础达标1.三段论推理“①矩形是平行四边形;②三角形不是平行四边形;③三角形不是矩形”中的小前提是( )A .①B .②C .③D .①和②『解析』①的逆否命题是:“不是平行四边形的四边形一定不是矩形”,由演绎推理三段论可知,①是大前提;②是小前提;③是结论.『答案』B2.四个小动物换座位,开始是猴、兔、猫、鼠分别坐在1、2、3、4号位置上(如图),第1次前后排动物互换位置,第2次左右列互换座位,……这样交替进行下去,那么第2014次互换座位后,小兔的位置对应的是( )A .编号1B .编号2C .编号3D .编号4『解析』由已知和图形得,小兔自第1次交换位置后依次坐在④→③→①→②→④…,得到每4次一个循环.因为2014÷4的余数为2,所以第2014次交换位置后,小兔的位置和第2次交换的位置相同,即编号为3.『答案』C3.『2014·金版原创』无限循环小数为有理数,如:0.1·,0.2·,0.3·,…,观察0.1·=19,0.2·=29,0.3·=13,…,则可归纳出0.45 ··=( )A.12B.511C.120D.5110『解析』观察0.1·=19,0.2·=29,0.3·=39,…,则可归纳出0.45 ··=4599=511.『答案』B4. 『2012·江西高考』观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A. 28B. 76C. 123D. 199『解析』观察各等式的右边,它们分别为1,3,4,7,11,…,发现从第3项开始,每一项就是它的前两项之和,故等式的右边依次为1,3,4,7,11,18,29,47,76,123,…故a 10+b 10=123.『答案』C5.『2014·太原模拟』给出下面类比推理命题(其中Q 为有理数集,R 为实数集,C 为复数集):①“若a ,b ∈R ,则a -b =0⇒a =b ”,类比推出“若a ,b ∈C ,则a -b =0⇒a =b ”; ②“若a ,b ,c ,d ∈R ,则复数a +b i =c +d i ⇒a =c ,b =d ”,类比推出,“若a ,b ,c ,d ∈Q ,则a +b 2=c +d 2⇒a =c ,b =d ”;③“若a ,b ∈R ,则a -b >0⇒a >b ”,类比推出“若a ,b ∈C ,则a -b >0⇒a >b ”; ④“若x ∈R ,则|x |<1⇒-1<x <1”,类比推出“若z ∈C ,则|z |<1⇒-1<z <1”. 其中类比正确的为( ) A .①② B .①④ C .①②③D .②③④『解析』对于③,“若a ,b ∈C ,则a -b >0⇒a >b ”是错误的,如a =2+i ,b =1+i ,则a -b =1>0,但2+i>1+i 不正确;对于④,“若z ∈C ,则|z |<1⇒-1<z <1”是错误的,如y =12+12i ,|y |=22<1,但-1<12+12i<1是不成立的.故选A. 『答案』A6.『2014·广东六校联考』如图所示,将若干个点摆成三角形图案,每条边(包括两个端点)有n (n >1,n ∈N *)个点,相应的图案中总的点数记为a n ,则9a 2a 3+9a 3a 4+9a 4a 5+…+9a 2012a 2013=( )A.20102011B.20112012C.20122013D.20132012『解析』由图案可得第n 个图案中的点数为3n ,则a n =3n -3,∴当n ≥2时,9a n a n +1=93n -1×3n =1n (n -1)=1n -1-1n ,∴9a 2a 3+9a 3a 4+9a 4a 5+…+9a 2012a 2013=(11-12)+(12-13)+…+(12011-12012)=1-12012=20112012,故选B.『答案』B7.观察下列不等式:①12<1;②12+16<2;③12+16+112<3;….则第n 个不等式为________.『解析』观察题中不等式知,分母中根号下被开方数依次是1×2;2×3;3×4;…,所以所求的不等式为12+16+112+…+1n (n +1)<n . 『答案』12+16+112+…+1n (n +1)<n 8.『2014·浙江模拟』设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论有:设等比数列{b n }的前n 项积为T n ,则T 4,________,________,T 16T 12成等比数列.『解析』对于等比数列,通过类比,有等比数列{b n }的前n 项积为T n ,则T 4=b 1b 2b 3b 4,T 8=b 1b 2…b 8,T 12=b 1b 2…b 12,T 16=b 1b 2…b 16,因此T 8T 4=b 5b 6b 7b 8,T 12T 8=b 9b 10b 11b 12,T 16T 12=b 13b 14b 15b 16,而T 4,T 8T 4,T 12T 8,T 16T 12的公比为q 16,因此T 4,T 8T 4,T 12T 8,T 16T 12成等比数列.『答案』T 8T 4 T 12T 89.观察下列等式:可以推测:13+23+33+…+n 3=________(n ∈N *,用含n 的代数式表示).『解析』第二列等式右边分别是1×1,3×3,6×6,10×10,15×15,与第一列等式右边比较即可得,13+23+33+…+n 3=(1+2+3+…+n )2=14n 2(n +1)2.『答案』14n 2(n +1)210.『2014·淮北模拟』在计算“11×2+12×3+…+1n (n -1)(n ∈N *)”时,某同学学到了如下一种方法:先改写第k 项:1k (k +1)=1k -1k +1,由此得11×2=11-12,12×3=12-13,…,1n (n -1)=1n -1n +1,相加,得11×2+12×3+…+1n (n -1)=1-1n +1=nn +1.类比上述方法,请你计算“11×2×3+12×3×4+…+1n (n +1)(n +2)(n ∈N *)”,其结果为________.『解析』先改写第n 项,1n (n +1)(n +2)=1n +1×1n n +2=12×1n +1(1n -1n +2)=12×『1n (n +1)-1(n +1)(n +2)』,所以11×2×3+12×3×4+…+1n (n +1)(n +2)=12『11×2-12×3+12×3-13×4+…+1n (n +1)-1(n +1)(n +2)』=12『11×2-1(n +1)(n +2)』=n (n +3)4(n +1)(n +2). 『答案』n (n +3)4(n +1)(n +2)11.在锐角三角形ABC 中,求证:sin A +sin B +sin C >cos A +cos B +cos C . 证明:∵△ABC 为锐角三角形, ∴A +B >π2,∴A >π2-B ,∵y =sin x 在(0,π2)上是增函数,∴sin A >sin(π2-B )=cos B ,同理可得sin B >cos C ,sin C >cos A , ∴sin A +sin B +sin C >cos A +cos B +cos C .12.某少数民族的刺绣有着悠久的历史,如图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.(1)求出f (5)的值;(2)利用合情推理的“归纳推理思想”,归纳出f (n +1)与f (n )之间的关系式,并根据你得到的关系式求出f (n )的表达式;(3)求1f (1)+1f (2)-1+1f (3)-1+…+1f (n )-1的值. 『解』(1)f (5)=41.(2)因为f (2)-f (1)=4=4×1, f (3)-f (2)=8=4×2, f (4)-f (3)=12=4×3, f (5)-f (4)=16=4×4, ……由上式规律得出f (n +1)-f (n )=4n ,∴f (n )=f (1)+4(n -1)+4(n -2)+4(n -3)+…+4=2n 2-2n +1(n ≥2). 又n =1满足上式, 所以f (n )=2n 2-2n +1. (3)当n ≥2时,1f (n )-1=12n (n -1)=12(1n -1-1n ), ∴1f (1)+1f (2)-1+1f (3)-1+…+1f (n )-1=1+12(1-12+12-13+13-14+…+1n -1-1n )=1+12(1-1n )=32-12n.B 级 知能提升1.『2014·西安五校模拟』已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是( )A .(7,5)B .(5,7)C .(2,10)D .(10,1)『解析』依题意,把“整数对”的和相同的分为一组,不难得知每组中每个“整数对”的和为n +1,且每组共有n 个“整数对”,这样前n 组一共有n (n +1)2个“整数对”,注意到10(10+1)2<60<11(11+1)2,因此第60个“整数对”处于第11组(每个“整数对”的和为12的组)的第5个位置,结合题意可知每个“整数对”的和为12的组中的各对数依次为:(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60个“整数对”是(5,7),选B.『答案』B2.『2014·荆州高中毕业班质检』如图是网络工作者经常用来解释网络运作的蛇形模型:数字1出现在第1行;数字2,3出现在第2行;数字6,5,4(从左至右)出现在第3行;数字7,8,9,10出现在第4行,依此类推,则(1)按网络运作顺序第n 行第1个数字(如第2行第1个数字为2,第3行第1个数字为4,…)是________;(2)第63行从左至右的第4个数字应是________.『解析』设第n 行的第1个数字构成数列{a n },则a n +1-a n =n ,且a 1=1,∴a n =n 2-n +22,而偶数行的顺序从左到右,奇数行的顺序从右到左,第63行的第1个数字为1954,从左至右的第4个数字是从右至左的第60个数字,从而所求数字为1954+59=2013.『答案』n 2-n +2220133.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f (n )表示第n 个图的蜂巢总数.(1)试给出f (4),f (5)的值,并求f (n )的表达式(不要求证明); (2)证明:1f (1)+1f (2)+1f (3)+…+1f (n )<43. 『解』(1)f (4)=37,f (5)=61. 由于f (2)-f (1)=7-1=6, f (3)-f (2)=19-7=2×6, f (4)-f (3)=37-19=3×6, f (5)-f (4)=61-37=4×6, …因此,当n ≥2时,有f (n )-f (n -1)=6(n -1),所以f (n )=『f (n )-f (n -1)』+『f (n -1)-f (n -2)』+…+『f (2)-f (1)』+f (1) =6『(n -1)+(n -2)+…+2+1』+1 =3n 2-3n +1.又f (1)=1=3×12-3×1+1, 所以f (n )=3n 2-3n +1. (2)证明:当k ≥2时,1f (k )=13k 2-3k +1<13k 2-3k =13(1k -1-1k ). 所以1f 1+1f 2+1f 3+…+1f n<1+13『(1-12)+(12-13)+…+(1n -1-1n )』=1+13(1-1n )<1+13=43.。

高考数学理科一轮复习合情推理与演绎推理学案附答案

高考数学理科一轮复习合情推理与演绎推理学案附答案

合用精选文件资料分享高考数学(理科)一复合情推理与演推理教课方案附答案教课方案 37 合情推理与演推理学目: 1. 认识合情推理的含,能利用和比等行的推理,认识合情推理在数学中的作用.2. 认识演推理的重要性,掌握演推理的基本模式,并能运用它行一些推理.3.认识合情推理和演推理之的系和差异.自主梳理自我1.(2010?山 ) 察 (x2) ′= 2x,(x4) ′= 4x3,(cos x) ′=- sin x,由推理可得:若定在 R上的函数 f(x)足 f( -x) =f(x) ,g(x) f(x)的函数, g( -x) 等于() A.f(x) B.-f(x) C.g(x) D.- g(x) 2.(2010?珠海 ) 出下边比推理命 ( 此中 Q有理数集, R数集, C复数集 ) :①“若 a,b∈R, a-b=0? a =b” 比推出“若 a,b∈C, a-b=0? a=b”;②“若 a,b,c,d∈R,复数 a+bi =c+di ? a= c,b=d” 比推出“若 a,b,c,d∈Q, a+b2=c+d2? a=c,b=d”;③“若 a,b∈R, a- b>0? a>b” 比推出“若 a,b∈C, a-b>0? a>b”.此中比正确的个数是 () A .0 B.1 C.2 D.3 3 .(2009?江 ) 在平面上,若两个正三角形的比 1∶2,它的面比 1∶4,似地,在空中,若两个正四周体的棱比 1∶2,它的体比 ________. 4 .(2010?西) 察以低等式: 13+23=32,13 +23+33=62,13 +23+33+43=102,⋯,依据上述律,第五个等式. 5 .(2011?州月考 ) 全部奇数都不可以被 2 整除, 2100+1 是奇数,所以 2100+1 不可以被 2 整除,其演推理的“三段”的形式.研究点一推理例 1 在数列 {an} 中,a1= 1,an+1=2an2+an,n∈N*,猜想个数列的通公式,个猜想正确?明理由.式迁徙 1察:① sin210°+cos240°+sin 10°cos 40°=34;②sin26 °+ cos236°+ sin 6 °cos 36 °= 34. 由上边两的构律,你能否提出一个猜想?并明你的猜想.研究点二比推理例 2 (2011?川月考 ) 在平面内,可以用面法明下边的:从三角形内部任意一点,向各引垂,其长度分别为 pa,pb,pc,且相应各边上的高分别为ha,hb,hc,则有 paha+pbhb+pchc=1. 请你运用类比的方法将此结论推行到四周体中并证明你的结论.变式迁徙 2 在 Rt△ABC中,若∠ C=90°, AC=b,BC=a,则△ ABC的外接圆半径 r =a2+b22,将此结论类比到空间有.研究点三演绎推理例3在锐角三角形ABC中, AD⊥BC,BE⊥AC,D、E 是垂足.求证: AB的中点 M到 D、E的距离相等.变式迁徙 3指出对结论“已知 2 和 3 是无理数,证明2+3 是无理数”的下述证明能否为“三段论”,证明有错误吗?证明:∵无理数与无理数的和是无理数,而 2 与 3 都是无理数,∴ 2+ 3 也是无理数. 1 .合情推理是指“符合情理”的推理,数学研究中,获取一个新结论以前,合情推理常常能帮助我们猜想和发现结论;证明一个数学结论以前,合情推理常常能为我们供给证明的思路和方向.合情推理的过程概括为:从详尽问题出发? D→观察、解析、比较、联想? D→概括、类比 ? D→提出猜想 . 一般来说,由合情推理所获取的结论,但是是一种猜想,其靠谱性还需进一步证明. 2 .概括推理与类比推理都属合情推理:(1) 概括推理:由某类事物的部分对象拥有某些特色,推出该类事物的全部对象都拥有这些特色的推理,或由个别事实概括出一般结论的推理,称为概括推理.它是一种由部分到整体,由个别到一般的推理. (2)类比推理:由两类对象拥有某些近似特色和此中一类对象的某些已知特色,推出另一类对象也拥有这些特色的推理称为类比推理,它是一种由特别到特其余推理. 3 .从一般性的原理出发,推出某个特别状况下的结论,把这类推理称为演绎推理,也就是由一般到特其余推理,三段论是演绎推理的一般模式,包含大前提,小前提,结论. ( 满分: 75 分)一、选择题 ( 每题 5 分,共 25 分) 1 .(2011?福建厦门华侨中学模拟) 定义 A*B,B*C,C*D,D*A 的运算分别对应以以下图中的 (1) 、(2) 、(3) 、(4) ,那么以以下图中的 (A) 、(B) 所对应的运算结果可能是() A.B*D,A*D B.B*D,A*C C.B*C,A*D D.C*D,A*D 2.(2011?厦门模拟 )设 f(x) =1+x1-x,又记 f1(x) =f(x) ,fk +1(x) =f(fk(x)) ,k=1,2 ,⋯, f2 010(x)等于() A .- 1x B .x C.x -1x++x1-x 3.由代数式的乘法法比推向量的数目的运算法:①“ mn=nm” 比获取“ a?b=b?a”;②“ (m+n)t =mt+nt ” 比获取“ (a +b)?c =a?c+b?c”;③“ (m?n)t=m(n?t)” 比获取“(a?b)?c =a?(b?c) ”;④“ t ≠0,mt=xt ? m=x” 比获取“ p≠0,a?p=x?p? a=x”;⑤“ |m?n|=|m|?|n|” 比获取“ |a?b|=|a|?|b|”;⑥“ acbc=ab” 比获取“ a?cb?c=ab”.以上的式子中,比获取的正确的个数是() A .1 B.2 C.3 D.4 4.(2009?湖北 ) 古希腊人常用小石子在沙上成各种形状来研究数,比方:他研究 (1) 中的 1,3,6,10 ,⋯,因为些数能表示成三角形,将其称三角形数;似的,称 (2) 中的 1,4,9,16 ,⋯的数正方形数.以下数中既是三角形数又是正方形数的是() A.289 B.1 024 C .1 225 D .1 378 5 .已知整数的数如下: (1,1),(1,2) ,(2,1) ,(1,3) ,(2,2) ,(3,1) ,(1,4), (2,3),(3,2),(4,1) ,(1,5) ,(2,4) ,⋯第 60 个数是 ()A.(3,8) B.(4,7)C.(4,8) D.(5,7) 二、填空 ( 每小 4 分,共 12分) 6.已知正三角形内切的半径是高的 13,把个推行到空正四周体,似的是___________________________________________________________ _____________. 7 .(2011?广深圳高中学模) 定一种运算“* ”:于自然数 n 足以下运算性: 8 .(2011?西) 察以低等式 1 =1 2 +3+4=9 3 +4+5+6+7=25 4 +5+6+7+8+9+10=49 ⋯照此律,第n 个等式.三、解答 ( 共 38 分) 9 .(12 分)已知数列 {an} 的前 n 和 Sn,a1=-23,且 Sn+1Sn+1+2=0(n ≥2) .算 S1,S2,S3,S4,并猜想Sn 的表达式.10.(12 分)(2011? 杭州研 ) 已知函数 f(x) =- aax+a (a>0 且 a≠1) ,(1)明:函数 y=f(x) 的象关于点 12,-12 称; (2) 求 f( -2)+f( -1) +f(0) +f(1) +f(2) +f(3) 的. 11 .(14 分) 如 1,若射 OM,ON上分存在点 M1,M2与点 N1,N2,=OM1OM2?ON1ON2;如2,若不在同一平面内的射 OP,OQ和 OR上分存在点 P1,P2,点 Q1,Q2和点 R1,R2,似的是什么?个正确?明原由.教课方案37合情推理与演推理自主梳理推理全部象部分个比推理些特色特别到特别①一般原理②特别状况③特别状况一般特别自我 1 .D[ 由所函数及其数知,偶函数的函数奇函数.所以当f(x)是偶函数,其函数奇函数,故 g( -x) =- g(x) .] 2.C[ ①②正确,③ .因两个复数假如不全部是数,不可以比大小.] 3.1∶8 解析∵两个正三角形是相似的三角形,∴它的面之比是相似比的平方.同理,两个正四周体是两个相似几何体,体之比相似比的立方,所以它的体比 1∶8. 4 .13+23+ 33+43+53+63=212 解析由前三个式子可以得出以下律:每个式子等号的左是从 1 开始的正整数的立方和,且个数挨次多 1,等号的右是一个正整数的平方,后一个正整数挨次比前一个大 3,4 ,⋯,所以,第五个等式13+23+33+43+53+63=212. 5.全部奇数都不可以被 2 整除大前提2100 +1 是奇数小前提所以 2100+1 不可以被 2 整除堂活区例 1 解引分完满和不完满,由推理所得的然未必是靠谱的,但它由特别到一般、由详尽到抽象的功能,科学的是十分合用的,察、,有限的料作整理,提出律性的法是科学研究的最基本的方法之一.解在{an} 中, a1=1,a2=2a12+a1=23, a3 =2a22+a2=12=24,a4=2a32+a3=25,⋯,所以猜想 {an} 的通公式 an=2n+1. 个猜想是正确的,明以下:因 a1=1,an+1=2an2+a n,所以 1an+1=2+an2an=1an+12,即 1an+1-1an=12,所以数列 1an 是以 1a1=1 首, 12 公差的等差数列,所以 1an=1+(n -1) ×12= 12n+12,所以通公式 an=2n+1. 式迁徙 1解猜想 sin2 α+cos2( α+30°) + sin αcos( α+30°) = 34. 明以下:左= sin2 α+cos( α+30°)[cos( α+30°) + sin α] =sin2 α+32cos α -12sin α32cos α+12sin α=sin2 α+34cos2α-14sin2 α=34=右侧.例 2 解题导引类比推理是依据两个对象有一部分属性近似,推出这两个对象的其余属性亦近似的一种推理方法,比方我们拿分式同分数来类比,平面几何与立体几何中的某些对象类比等等.我们必然清楚类比其实不是论证,它可以帮助我们发现真谛.类比推理应从详尽问题出发,经过观察、解析、联想进行比较、概括、提出猜想.解类比:从四周体内部任意一点向各面引垂线,其长度分别为 pa,pb,pc,pd,且相应各面上的高分别为 ha,hb,hc,hd. 则有 paha+pbhb+pchc+pdhd=1. 证明以下:paha=13S△BCD?pa13S△BCD?ha=VP―BCDVA―BCD,同理有 pbhb=VP―CDAVB―CDA, pchc=VP―BDAVC―BDA, pdhd=VP―ABCVD―ABC,VP―BCD+VP―CDA+VP―BDA+VP―ABC=VA―BCD,∴paha+ pbhb+pchc+pdhd =VP―BCD+VP―CDA+VP―BDA+VP―ABCVA―BCD= 1.变式迁徙 2 在三棱锥 A―BCD中,若 AB、AC、AD两两相互垂直,且AB=a,AC=b,AD=c,则此三棱锥的外接球半径 R=a2+b2+c22 例3解题导引在演绎推理中,只有前提( 大前提、小前提) 和推理形式都是正确的,结论才是正确的,不然所得的结论可能就是错误的.推理时,要清楚大前提、小前说起两者之间的逻辑关系.证明(1)因为有一个内角是直角的三角形是直角三角形,――大前提在△ ABD 中,AD⊥BC,即∠ ADB=90°,――小前提所以△ ADB是直角三角形.――结论 (2) 因为直角三角形斜边上的中线等于斜边的一半,――大前提而 M是 Rt△ADB斜边 AB的中点, DM是斜边上的中线,――小前提所以 DM=12AB.――结论同理 EM=12AB,所以 DM=E M. 变式迁徙 3 解证明是“三段论”模式,证明有错误.证明中大前提使用的论据是“无理数与无理数的和是无理数”,这个论据是假的,因为两个无理数的和不用然是无理数,所以原理的真实性仍没法判断.课后练习区1.B[ 由(1)(2)(3)(4)图得A表示|,B表示□, C表示―, D表示○,故图 (A)(B) 表示 B*D 和 A*C.] 2.A [ 计算 f2(x) =f1 +x1-x=1+1+x1-x1-1+x1-x=- 1x, f3(x) =f-1x=1-1x1+1x=x-1x+1, f4(x) =1+x-1x+11-x-1x+1=x,f5(x) =f1(x) =1+x1-x,概括得 f4k +i(x) =fi(x) ,k∈N*, i =1,2,3,4. ∴f2 010(x) = f2(x) =- 1x.] 3 .B [ 只有①、②对,其余,故 B.] 4 .C [ (1) 中数列 1,3,6,10 ,⋯的通公式 an, a2 -a1=2,a3-a2=3,a4-a3=4,⋯, an-an-1=n. 故 an-a1=2+3+4+⋯+ n,∴an=+而 (2) 中数列的通公式 bn =n2,所以所的中只有 1 225 足 a49=49×502= b35=352=1 225.] 5.D [ 察可知横坐和坐之和2 的数有 1 个,和3 的数有 2 个,和4 的数有 3 个,和5 的数有 4个,挨次推和 n+1 的数有 n 个,多个数的排序是依据横坐挨次增大的序来排的,由+=60? n(n +1) =120,n∈Z, n=10 ,+=55 个数,差 5 个数,且 5 个数的横、坐之和 12,它挨次是 (1,11) ,(2,10),(3,9),(4,8) ,(5,7) ,∴第 60 个数是 (5,7) .] 6 .空正四周体的内切球的半径是高的 14 解析利用体切割可明. 7 .n 8.n +(n +1) +⋯+ (3n -2) =(2n -1)2解析∵1=12,2 +3+4=9=32,3+4+5+6+7=25=52,∴第 n 个等式 n+(n +1) +⋯+ (3n-2)=(2n -1)2. 9.解当 n=1 ,S1=a1=- 23.(2 分) 当 n=2, 1S2=- 2-S1=- 43,∴S2=- 34.(4 分)当n=3,1S3=-2-S2=- 54,∴S3=- 45.(6 分) 当 n=4 , 1S4=- 2-S3=-65,∴S4=- 56.(8 分) 猜想:Sn=- n+1n+2 (n ∈N*) .(12 分) 10.(1) 明函数f(x)的定域R,任取一点(x,y),它关于点12,- 12 称的点的坐 (1 -x,- 1-y) .(2 分) 由已知得 y=-a ax+a,- 1-y=- 1+aax+a=- axax+a,(4 分) f(1 -x)=- aa1-x+a=- aaax+a =- a?axa+a?ax=- axax+a,∴- 1-y=f(1 -x) .即函数 y=f(x) 的象关于点 12,-12 称.(6 分)(2) 解由(1) 有- 1-f(x) =f(1 -x) ,即 f(x) +f(1 -x) =- 1.(9分) ∴f( - 2) +f(3) =- 1,f( -1) +f(2) =- 1, f(0)+f(1)=-1,f( -2) +f( -1) +f(0) +f(1) +f(2) +f(3) =- 3. (12 分) 11.解似的: VO―P1Q1R1VO―P2Q2R2=OP1OP2?OQ1OQ2?OR1OR2(4.分) 个是正确的,明以下:如, R2 作 R2M2⊥平面 P2OQ2于 M2,接 OM2. R1在平面 OR2M2作 R1M1∥R2M2交 OM2于 M1,R1M1⊥平面 P2OQ2. 由 VO―P1Q1R1=13S△P1OQ1?R1M1=13?12OP1?OQ1?sin∠P1OQ1?R1M1=16OP1?OQ1?R1M1?sin∠P1OQ1,(8分) 同理, VO―P2Q2R2=16OP2?OQ2?R2M2?sin∠P2OQ2. 所以=OP1?OQ1?R1M1OP2?OQ2?R2M2分.(10)由平面几何知识可得R1M1R2M2=O R1OR2.(12分) 所以=OP1?OQ1?OR1OP2?OQ2?OR2所以.结论正确. (14 分)。

高三数学一轮复习课时作业7:合情推理与演绎推理

高三数学一轮复习课时作业7:合情推理与演绎推理

7.4 合情推理与演绎推理一、选择题1.下列推理是归纳推理的是( )A .A ,B 为定点,动点P 满足|P A |+|PB |=2a >|AB |,则P 点的轨迹为椭圆B .由a 1=1,a n =3n -1,求出S 1,S 2,S 3猜想出数列的前n 项和S n 的表达式C .由圆x 2+y 2=r 2的面积πr 2,猜想出椭圆x 2a 2+y 2b 2=1的面积S =πab D .科学家利用鱼的沉浮原理制造潜艇2.(2015·丽水月考)观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )=( )A .f (x )B .-f (x )C .g (x )D .-g (x )3.(2015·淄博二中月考)观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10等于( )A .28B .76C .123D .1994.类比“两角和与差的正弦公式”的形式,对于给定的两个函数:S (x )=a x -a -x ,C (x )=a x +a -x ,其中a >0,且a ≠1,下面正确的运算公式是( )①S (x +y )=S (x )C (y )+C (x )S (y )②S (x -y )=S (x )C (y )-C (x )S (y )③2S (x +y )=S (x )C (y )+C (x )S (y )④2S (x -y )=S (x )C (y )-C (x )S (y )A .①②B .③④C .①④D .②③5.(2015·临沂三中月考)由代数式的乘法法则类比推导向量的数量积的运算法则: ①“mn =nm ”类比得到“a·b =b·a ”②“(m +n )t =mt +nt ”类比得到“(a +b )·c =a ·c +b·c ”③“(m ·n )t =m (n ·t )”类比得到“(a·b )·c =a ·(b·c )”④“t ≠0,mt =xt ⇒m =x ”类比得到“p ≠0,a·p =x·p ⇒a =x ”⑤“|m ·n |=|m |·|n |”类比得到“|a·b |=|a |·|b |”⑥“ac bc =a b ”类比得到“a·c b·c =a b”. 以上式子中,类比得到的结论正确的个数是( )A .1B .2C .3D .46.(2015·株州一中月考)观察下列事实:|x |+|y |=1的不同整数解(x ,y )的个数为4,|x |+|y |=2的不同整数解(x ,y )的个数为8,|x |+|y |=3的不同整数解(x ,y )的个数为12,…,则|x |+|y |=20的不同整数解(x ,y )的个数为( )A .76B .80C .86D .92二、填空题7.观察下列等式, 24=7+934=25+27+2944=61+63+65+67……照此规律,第4个等式可为__________.8.已知f (n )=1+12+13+…+1n (n ∈N *,n ≥4),经计算得f (4)>2,f (8)>52,f (16)>3,f (32)>72,…,观察上述结果,可归纳出的一般结论为__________. 9.观察等式:sin30°+sin90°cos30°+cos90°=3,sin15°+sin75°cos15°+cos75°=1,sin20°+sin40°cos20°+cos40°=33. 照此规律,对于一般的角α,β,有等式__________.三、解答题10.f (x )=13x +3,先分别求f (0)+f (1),f (-1)+f (2),f (-2)+f (3),然后归纳猜想一般性结论,并给出证明.11.(2015·安阳一中月考)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin 213°+cos 217°-sin13°cos17°;②sin 215°+cos 215°-sin15°cos15°;③sin 218°+cos 212°-sin18°cos12°;④sin 2(-18°)+cos 248°-sin(-18°)cos48°;⑤sin 2(-25°)+cos 255°-sin(-25°)cos55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.12.给出下面的数表序列:其中表n(n=1,2,3,…)有n行,第1行的n个数是1,3,5,…,2n-1,从第2行起,每行中的每个数都等于它肩上的两数之和.写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n≥3)(不要求证明).答案一、选择题1.『解析』由A 可知其为椭圆的定义;B 由a 1=1,a n =3n -1求出S 1,S 2,S 3猜想出数列的前n 项和S n 的表达式,属于归纳推理;C 由圆x 2+y 2=r 2的面积πr 2,猜想出椭圆x 2a 2+y 2b 2=1的面积S =πab ,是类比推理; D 科学家利用鱼的沉浮原理制造潜艇,也属于类比推理,故选B.『答案』B2.『解析』由已知得函数的导函数为奇函数,故g (-x )=-g (x ).『答案』D3.『解析』从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,照此规律,则a 10+b 10=123.『答案』C4.『解析』经验证易知①②错误.依题意,注意到2S (x +y )=2(a x +y -a-x -y ),S (x )C (y )+C (x )S (y )=2(a x +y -a -x -y ),因此有2S (x +y )=S (x )C (y )+C (x )S (y );同理有2S (x -y )=S (x )C (y )-C (x )S (y ).综上所述,选B.『答案』B5.『解析』①②正确;③④⑤⑥错误.『答案』B6.『解析』由|x |+|y |=1的不同整数解的个数为4,|x |+|y |=2的不同整数解的个数为8,|x |+|y |=3的不同整数解的个数为12,归纳推理得|x |+|y |=n 的不同整数解的个数为4n ,故|x |+|y |=20的不同整数解的个数为80.故选B.『答案』B二、填空题7.『解析』由方框中的规律可以看出,24=7+9,共两项和,且7=23-1,34=25+27+29,共三项和,且25=33-2,44=61+63+65+67,共四项和,且61=43-3,故54应为五项和,且开始数为53-4=121,故第四个等式为54=121+123+125+127+129.『答案』54=121+123+125+127+1298.『解析』f (22)>42,f (23)>52,f (24)>62,f (25)>72,由归纳推理得,一般结论为f (2n +1)>n +32(n ∈N *)『答案』f (2n +1)>n +32(n ∈N *) 9.『解析』根据等式的特点,分别用α,β代替两个角,并且发现tan 30°+90°2=3, tan 15°+75°2=1,tan 20°+40°2=33, 故对于一般的角α,β的等式为sin α+sin βcos α+cos β=tan α+β2. 『答案』sin α+sin βcos α+cos β=tan α+β2 三、解答题10.『解析』f (0)+f (1)=130+3+131+3=11+3+131+3=331+3+131+3=33, 同理可得:f (-1)+f (2)=33,f (-2)+f (3)=33. 由此猜想f (x )+f (1-x )=33. 证明:f (x )+f (1-x )=13x +3+131-x +3=13x +3+3x 3+3·3x =13x +3+3x 33+3x=3+3x 33+3x =33. 11.『解析』(1)选择②式,计算如下:sin 215°+cos 215°-sin15°cos15°=1-12sin30°=1-14=34. (2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34. 证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos30°cos α+sin30°sin α)2-sin α·(cos30°cos α+sin30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34. 12.『解析』它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列.将这一结论推广到表n(n≥3),即表n(n≥3)各行中的数的平均数按从上到下的顺序构成首项为n,公比为2的等比数列.。

2020版高考理科数学(人教版)一轮复习课件:第七章 第四节 合情推理与演绎推理

2020版高考理科数学(人教版)一轮复习课件:第七章 第四节 合情推理与演绎推理

破解归纳推理的思维步骤 (1)发现共性:通过观察特例发现某些相似性(特例的共 性或一般规律); 找 (2)归纳推理:把这种相似性推广为一个明确表述的一 共 般命题(猜想); 性 (3)检验得结论:对所得的一般性命题进行检验.一般 地,“求同存异”“逐步细化”“先粗后精”是求解 由特殊结论推广到一般结论型创新题的基本技巧
目录
基础——在批注中理解透
单纯识记无意义,深刻理解提能力
课时跟踪检测
考点——在细解中明规律
题目千变总有根,梳干理枝究其本
基础——在批注中理解透
单纯识记无意义事物的部分对象具有某些特征,由部分到整
归纳
推出该类事物的全部对象都具有这些 体、由个别
推理
特征的推理
到一般
(单击进入电子文档)
考法(一)与数字有关的推理.要注意行与行,列与列之 间的数字变化规律,每个数据与正整数n之间的关系. 考法(二)与等式有关的推理.观察数字特点,找出等式 左右两侧的规律及符号可解. 看 考法(三)与不等式有关的推理.观察每个不等式的特 个 点,注意是纵向看,找到规律后可解. 性 考法(四)与数列有关的推理.通常是先求出几个特殊现 象,采用不完全归纳法,找出数列的项与项数的关系, 列出即可. 考法(五)与图形变化有关的推理.合理利用特殊图形归 纳推理得出结论,并用赋值检验法验证其真伪
类比 在求解由某种熟悉的定义产生的类比推理型试题 定义 时,可以借助原定义来求解
从一个特殊式子的性质、一个特殊图形的性质入 类比 手,提出类比推理型问题,求解时要认真分析两 性质 者之间的联系与区别,深入思考两者的转化过程
是求解的关键 有一些处理问题的方法具有类比性,我们可以把 类比 这种方法类比应用到其他问题的求解中,注意知 方法 识的迁移

2020届高考理科数学一轮复习第7章 第4节 合情推理与演绎推理含答案

2020届高考理科数学一轮复习第7章 第4节 合情推理与演绎推理含答案

第四节合情推理与演绎推理1.合情推理2.演绎推理(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括: ①大前提——已知的一般原理; ②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.合情推理与演绎推理的区别(1)合情推理的结论是猜想,不一定正确;演绎推理在大前提、小前提和推理形式都正确时,得到的结论一定正确.(2)合情推理是发现结论的推理;演绎推理是证明结论的推理.[小题查验基础]一、判断题(对的打“√”,错的打“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.( ) (2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.( ) (3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( ) (4)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.( ) 答案:(1)× (2)√ (3)× (4)× 二、选填题1.①已知a 是三角形一边的长,h 是该边上的高,则三角形的面积是12ah ,如果把扇形的弧长l ,半径r 分别看成三角形的底边长和高,可得到扇形的面积为12lr ;②由1=12,1+3=22,1+3+5=32,可得到1+3+5+…+2n -1=n 2,则①②两个推理过程分别属于( )A .类比推理、归纳推理B .类比推理、演绎推理C .归纳推理、类比推理D .归纳推理、演绎推理解析:选A ①由三角形的性质得到扇形的性质有相似之处,此种推理为类比推理;②由特殊到一般,此种推理为归纳推理,故选A.2.已知数列{a n }中,a 1=1,n ≥2时,a n =a n -1+2n -1,依次计算a 2,a 3,a 4后,猜想a n 的表达式是( )A .a n =3n -1B .a n =4n -3C .a n =n 2D .a n =3n -1解析:选C a 1=1,a 2=4,a 3=9,a 4=16,猜想a n =n 2. 3.数列2,5,11,20,x,47,…中的x 等于( ) A .28 B .32 C .33D .27解析:选B 5=2+3×1,11=5+3×2,20=11+3×3,x =20+3×4=32.4.推理“①矩形是平行四边形,②三角形不是平行四边形,③三角形不是矩形”中的小前提是________(填序号).解析:由演绎推理三段论可知,①是大前提,②是小前提,③是结论. 答案:②5.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.解析:由平面图形的面积类比立体图形的体积得出:在空间内,若两个正四面体的棱长的比为1∶2,则它们的底面积之比为1∶4,对应高之比为1∶2,所以体积比为1∶8.答案:1∶8考点一 归纳推理[全析考法过关][考法全析]考法(一) 与数字有关的推理[例1] 从1开始的自然数按如图所示的规则排列,现有一个三角形框架在图中上下或左右移动,使每次恰有九个数在此三角形内,则这九个数的和可以为( )A .2 018B .2 019C .2 020D .2 021[解析] 根据题干图所示的规则排列,设最上层的一个数为a ,则第二层的三个数为a +7,a +8,a +9,第三层的五个数为a +14,a +15,a +16,a +17,a +18,这九个数之和为a +3a +24+5a +80=9a +104. 由9a +104=2 021,得a =213,是自然数,故选D. [答案] D考法(二) 与等式有关的推理 [例2] 观察下列等式 1-12=12,1-12+13-14=13+14,1-12+13-14+15-16=14+15+16,……据此规律,第n 个等式为________________________.[解析] 规律为等式左边共有2n 项且等式左边分母分别为1,2,…,2n ,分子为1,奇数项为正、偶数项为负,即为1-12+13-14+…+12n -1-12n ;等式右边共有n 项且分母分别为n+1,n +2,…,2n ,分子为1,即为1n +1+1n +2+…+12n .所以第n 个等式为1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n .[答案] 1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n考法(三) 与不等式有关的推理[例3] (1)设n 为正整数,f (n )=1+12+13+…+1n ,计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,观察上述结果,可推测一般的结论为____________________________________.(2)已知x ∈(0,+∞),观察下列各式:x +1x ≥2,x +4x 2=x 2+x 2+4x 2≥3,x +27x 3=x 3+x 3+x3+27x3≥4,…,归纳得x +a x n ≥n +1(n ∈N *),则a =________.[解析](1)∵f(21)=32,f(22)>2=42,f(23)>52,f(24)>62,∴归纳得f(2n)≥n+22(n∈N*).(2)第一个式子是n=1的情况,此时a=11=1;第二个式子是n=2的情况,此时a=22=4;第三个式子是n=3的情况,此时a=33=27,归纳可知a=n n.[答案](1)f(2n)≥n+22(n∈N*)(2)n n考法(四)与数列有关的推理[例4]有一个奇数组成的数阵排列如下:1371321…591523……111725………1927…………29……………………………则第30行从左到右第3个数是________.[解析]观察每一行的第一个数,由归纳推理可得第30行的第1个数是1+4+6+8+10+…+60=30×(2+60)2-1=929.又第n行从左到右的第2个数比第1个数大2n,第3个数比第2个数大2n+2,所以第30行从左到右的第2个数比第1个数大60,第3个数比第2个数大62,故第30行从左到右第3个数是929+60+62=1 051.[答案] 1 051考法(五)与图形变化有关的推理[例5]分形几何学是数学家伯努瓦·曼德尔布罗在20世纪70年代创立的一门新的数学学科,它的创立为解决传统科学众多领域的难题提供了全新的思路.按照如图(1)所示的分形规律可得如图(2)所示的一个树形图.若记图(2)中第n行黑圈的个数为a n,则a2 019=________.[解析]根据题图(1)所示的分形规律,可知1个白圈分形为2个白圈1个黑圈,1个黑圈分形为1个白圈2个黑圈,把题图(2)中的树形图的第1行记为(1,0),第2行记为(2,1),第3行记为(5,4),第4行的白圈数为2×5+4=14,黑圈数为5+2×4=13,所以第4行的“坐标”为(14,13),同理可得第5行的“坐标”为(41,40),第6行的“坐标”为(122,121),….各行黑圈数乘2,分别是0,2,8,26,80,…,即1-1,3-1,9-1,27-1,81-1,…,所以可以归纳出第n 行的黑圈数a n =3n -1-12(n ∈N *),所以a 2 019=32 018-12.[答案] 32 018-12[规律探求]1.将自然数0,1,2,…按照如下形式进行摆列:根据以上规律判定,从2 016到2 018的箭头方向是( )解析:选A 从所给的图形中观察得到规律:每隔四个单位,箭头的走向是一样的,比如说,0→1,箭头垂直指下,4→5箭头也是垂直指下,8→9也是如此,而2 016=4×504,所以2 016→2 017也是箭头垂直指下,之后2 017→2 018的箭头是水平向右,故选A.2.如图,有一个六边形的点阵,它的中心是1个点(算第1层),第2层每边有2个点,第3层每边有3个点,…,依此类推,如果一个六边形点阵共有169个点,那么它的层数为( )A .6B .7C .8D .9解析:选C 由题意知,第1层的点数为1,第2层的点数为6,第3层的点数为2×6,第4层的点数为3×6,第5层的点数为4×6,…,第n (n ≥2,n ∈N *)层的点数为6(n -1).设一个点阵有n (n ≥2,n ∈N *)层,则共有的点数为1+6+6×2+…+6(n -1)=1+6×n (n -1)2=3n 2-3n +1,由题意,得3n 2-3n +1=169,即(n +7)(n -8)=0,所以n =8,故共有8层.考点二 类比推理[师生共研过关][典例精析](1)(2019·大同模拟)已知P 是圆x 2+y 2=R 2上的一个动点,过点P 作曲线C 的两条互相垂直的切线,切点分别为M ,N ,MN 的中点为E .若曲线C :x 2a 2+y 2b 2=1(a >b >0),且R 2=a 2+b 2,则点E 的轨迹方程为x 2a 2+y 2b 2=x 2+y 2a 2+b2.若曲线C :x 2a 2-y 2b 2=1(a >b >0),且R 2=a 2-b 2,则点E 的轨迹方程是( )A.x 2a 2-y 2b 2=x 2+y 2a 2+b 2 B.x 2a 2-y 2b 2=x 2+y 2a 2-b 2 C.x 2a 2+y 2b 2=x 2+y 2a 2+b 2D.x 2a 2+y 2b 2=x 2+y 2a 2-b 2(2)我国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一直角边为股,斜边为弦.若a ,b ,c 为直角三角形的三边,其中c 为斜边,则a 2+b 2=c 2,称这个定理为勾股定理.现将这一定理推广到立体几何中:在四面体O - ABC 中,∠AOB =∠BOC =∠COA =90°,S 为顶点O 所对面的面积,S 1,S 2,S 3分别为侧面△OAB ,△OAC ,△OBC 的面积,则下列选项中对于S ,S 1,S 2,S 3满足的关系描述正确的为( )A .S 2=S 21+S 22+S 23B .S 2=1S 21+1S 22+1S 23C .S =S 1+S 2+S 3D .S =1S 1+1S 2+1S 3[解析] (1)由于椭圆与双曲线定义中的运算互为逆运算,所以猜想与双曲线对应的点E 的轨迹方程为x 2a 2-y 2b 2=x 2+y 2a 2-b 2.(2)如图,作OD ⊥ BC 于点D ,连接AD ,由立体几何知识知,AD ⊥BC ,从而S 2=⎝⎛⎭⎫12BC ·AD 2=14BC 2·AD 2=14BC 2·(OA 2+OD 2)=14(OB 2+OC 2)·OA 2+14BC 2·OD 2=⎝⎛⎭⎫12OB ·OA 2+⎝⎛⎭⎫12OC ·OA 2+⎝⎛⎭⎫12BC ·OD 2 =S 21+S 22+S 23.[答案] (1)B (2)A[解题技法]类比推理的应用类型及解题方法[提醒] 进行类比推理,应从具体问题出发,通过观察、分析、联想进行类比,提出猜想.其中找到合适的类比对象是解题的关键.[过关训练]1.等差数列{a n }的公差为d ,前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 为等差数列,公差为d2.类似地,若各项均为正数的等比数列{b n }的公比为q ,前n 项的积为T n ,则等比数列{nT n }的公比为( )A.q 2 B .q 2 C.qD.n q解析:选C 由题设,得T n =b 1·b 2·b 3·…·b n =b 1·b 1q ·b 1q 2·…·b 1q n -1=b n 1q 1+2+…+(n -1)=b n1q(n -1)n2. ∴nT n =b 1q n -12,∴等比数列{nT n }的公比为q ,故选C.2.(2019·黄冈模拟)已知正三角形内切圆的半径r 与它的高h 的关系是r =13h ,把这个结论推广到空间正四面体,则正四面体内切球的半径r 与正四面体的高h 的关系是________.解析:球心到正四面体一个面的距离即内切球的半径r ,连接球心与正四面体的四个顶点,把正四面体分成四个高为r 的三棱锥,所以4×13S ×r =13×S ×h ,所以r =14h (其中S 为正四面体一个面的面积).答案:r =14h考点三 演绎推理[师生共研过关][典例精析](1)(2019·长春质监)有甲、乙二人去看望高中数学老师张老师,期间他们做了一个游戏,张老师的生日是m 月n 日,张老师把m 告诉了甲,把n 告诉了乙,然后张老师列出来如下10个日期供选择:2月5日,2月7日,2月9日,5月5日,5月8日,8月4日,8月7日,9月4日,9月6日,9月9日.看完日期后,甲说:“我不知道,但你一定也不知道.”乙听了甲的话后,说:“本来我不知道,但现在我知道了.”甲接着说:“哦,现在我也知道了.”请问,张老师的生日是________.[解析] 根据甲说的“我不知道,但你一定也不知道”,可排除5月5日,5月8日,9月4日,9月6日,9月9日;根据乙听了甲的话后说的“本来我不知道,但现在我知道了”,可排除2月7日、8月7日;根据甲接着说的“哦,现在我也知道了”,可以得知张老师的生日为8月4日.[答案] 8月4日(2)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n ∈N *).证明:①数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;②S n +1=4a n .[证明] ①∵a n +1=S n +1-S n ,a n +1=n +2n S n , ∴(n +2)S n =n (S n +1-S n ), 即nS n +1=2(n +1)S n . 故S n +1n +1=2·S nn ,(小前提)故⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列.(结论)(大前提是等比数列的定义) ②由①可知S n +1n +1=4·S n -1n -1(n ≥2),∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2).(小前提)又∵a2=3S1=3,S2=a1+a2=1+3=4=4a1,(小前提)∴对于任意正整数n,都有S n+1=4a n.(结论)[解题技法]演绎推理问题的求解策略(1)演绎推理是由一般到特殊的推理,常用的一般模式为三段论.(2)演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提,一般地,当大前提不明确时,可找一个使结论成立的充分条件作为大前提.[过关训练]1.(2017·全国卷Ⅱ)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则() A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩解析:选D依题意,四人中有2位优秀,2位良好,由于甲知道乙、丙的成绩,但还是不知道自己的成绩,则乙、丙必有1位优秀,1位良好,甲、丁必有1位优秀,1位良好,因此,乙知道丙的成绩后,必然知道自己的成绩;丁知道甲的成绩后,必然知道自己的成绩,因此选D.2.已知函数y=f(x)满足:对任意a,b∈R,a≠b,都有af(a)+bf(b)>af(b)+bf(a),试证明:f(x)为R上的单调递增函数.证明:设x1,x2∈R,取x1<x2,由题意得x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),∴x1[f(x1)-f(x2)]+x2[f(x2)-f(x1)]>0,[f(x2)-f(x1)](x2-x1)>0,∵x1<x2,∴f(x2)-f(x1)>0,f(x2)>f(x1).∴y=f(x)为R上的单调递增函数.。

2020届高三理科数学一轮复习 第十二章 第1节 合情推理与演绎推理

2020届高三理科数学一轮复习 第十二章 第1节 合情推理与演绎推理

A.2 014×2 017 C.3 024×2 018
B.2 015×2 016 D.3 027×2 019
(2)对大于或等于2的自然数m的n次方幂有如下分解方式: 22=1+3;32=1+3+5;42=1+3+5+7;23=3+5;33=7+9 +17+19. 根据上述分解规律,则52=1+3+5+7+9,若m3(m∈N*)的分解 则m的值为________.
角度2 与证明有关的问题 【例 3-2】 数列{an}的前 n 项和记为 Sn,已知 a1=1,an+1=n+n 2S
(1)数列Snn是等比数列; (2)Sn+1=4an.
证明 (1)∵an+1=Sn+1-Sn,an+1=n+n 2Sn, ∴(n+2)Sn=n(Sn+1-Sn),即 nSn+1=2(n+1)Sn. ∴nS+n+11=2·Snn,又S11=1≠0,(小前提) 故Snn是以 1 为首项,2 为公比的等比数列.(结论) (大前提是等比数列的定义,这里省略了)
甲说:我去过的地方比乙多,但没去过海北百里油菜花海;
乙说:我没去过茶卡天空之境;
体委的年龄不同,体委比乙的年龄小”可得 根据“丙的年龄比学委大,体委比乙的年龄小”可得乙的年龄> 员的年龄,由此可得,乙不是学习委员,那么乙是班长. (2)由乙说:我没去过茶卡天空之境,可知乙可能去过陆心之海 油菜花海两个地方, 但甲说:我去过的地方比乙多,但没去过海北百里油菜花海,则 海湖和茶卡天空之境两个地方,乙只去过陆心之海青海湖和海北 一个地方, 再由丙说:我们三人去过同一地方, 可推知乙去过的地方为陆心之海青海湖.
第1节 合情推理与演绎推理
最新考纲 1.了解合情推理的含义,能利用归纳和类比等进行简 合情推理在数学发现中的作用;2.了解演绎推理的重要性,掌握 模式,并能运用它们进行一些简单推理;3.了解合情推理和演绎 和差异.

高考总复习数学(文)课时作业37 合情推理与演绎推理.pdf

高考总复习数学(文)课时作业37 合情推理与演绎推理.pdf

课时作业(三十七) 合情推理与演绎推理 A 级 1.已知ABC中,A=30°,B=60°,求证:a<b. 证明:A=30°,B=60°,A<B. ∴a<b,其中,画线部分是演绎推理的( ) A.大前提 B.小前提 C.结论 D.三段论 2.下列推理是归纳推理的是( ) A.A,B为定点,动点P满足|PA|+|PB|=2a>|AB|,则P点的轨迹为椭圆 B.由a1=1,an=3n-1,求出S1,S2,S3,猜想出数列的前n项和Sn的表达式 C.由圆x2+y2=r2的面积πr2,猜想出椭圆+=1的面积S=πab D.科学家利用鱼的沉浮原理制造潜艇 3.设是R的一个运算,A是R的非空子集.若对于任意a,bA,有ab∈A,则称A对运算封闭.下列数集对加法、减法、乘法和除法(除数不等于零)四则运算都封闭的是( ) A.自然数集 B.整数集 C.有理数集 D.无理数集 4.给出下面类比推理命题(其中Q为有理数集,R为实数集,C为复数集): “若a,bR,则a-b=0a=b”类比推出“若a,bC,则a-b=0a=b”; “若a,b,c,dR,则复数a+bi=c+dia=c,b=d”类比推出“若a,b,c,dQ,则a+b=c+da=c,b=d”; “若a,bR,则a-b>0a>b”类比推出“若a,bC,则a-b>0a>b”.其中类比结论正确的个数是( ) A.0 B.1 C.2 D.3 5.(2012·陕西师大附中模拟)若数列{an}是等差数列,则数列{bn}也为等差数列.类比这一性质可知,若正项数列{cn}是等比数列,且{dn}也是等比数列,则dn的表达式应为( ) A.dn= B.dn= C.dn= D.dn= 6.小王利用计算机设计了一个计算程序,输入和输出的数据如下: 输入12345…输出…那么,当输入数据是8时,输出的数据是________. 7.下列推理过程是演绎推理的有________(填上所有正确的序号). (1)两条直线平行,同旁内角互补,如果A和B是两条平行直线的同旁内角,则A+B=180° (2)某校高三(1)班有55人,(2)班有54人,(3)班有52人,由此得高三所有班级人数超过50人 (3)由平面三角形的性质,推测空间四边形的性质 (4)在数列{an}中,a1=1,an=(n≥2,nN*),由此归纳出{an}的通项公式 8.给出下列不等式:1++>1,1+++…+>,1+++…+>2,…,则按此规律可猜想第n个不等式为________. 9.(201·杭州模拟)在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按图所标边长,由勾股定理有:c2=a2+b2.设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O-LMN,如果用S1,S2,S3表示三个侧面面积,S4表示截面面积,那么类比得到的结论是________. 10.平面中的三角形和空间中的四面体有很多相类似的性质,例如在三角形中:(1)三角形两边之和大于第三边;(2)三角形的面积S=×底×高;(3)三角形的中位线平行于第三边且等于第三边的;…… 请类比上述性质,写出空间中四面体的相关结论. 11.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{an}是等和数列,且a1=2,公和为5. (1)求a18的值;(2)求该数列的前n项和Sn. B 级 1.类比“两角和与差的正弦公式”的形式,对于给定的两个函数:S(x)=ax-a-x,C(x)=ax+a-x,其中a>0,且a≠1,下面正确的运算公式是( )S(x+y)=S(x)C(y)+C(x)S(y);S(x-y)=S(x)C(y)-C(x)S(y);2S(x+y)=S(x)C(y)+C(x)S(y);2S(x-y)=S(x)C( y)-C(x)S(y). C. D. 2.如图甲,在ABC中,ABAC,ADBC,D是垂足,则AB2=BD·BC,该结论称为射影定理.如图乙,在三棱锥A-BCD中,AD平面ABC,AO平面BCD,O为垂足,且O在BCD内,类比射影定理,探究SABC、SBCO、SBCD这三者之间满足的关系式是________. 3.(2012·福建卷)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: sin213°+cos217°-sin 13°cos 17°; sin215°+cos215°-sin 15°cos 15°; sin218°+cos212°-sin 18°cos 12°; sin2(-18°)+cos248°-sin(-18°)cos 48°; sin2(-25°)+cos255°-sin(-25°)cos 55°. (1)试从上述五个式子中选择一个,求出这个常数; (2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 课时作业(三十七) A 级 1.B 由三段论的组成可得划线部分为三段论的小前提. 2.B 从S1,S2,S3猜想出数列的前n项和Sn,是从特殊到一般的推理,所以B是归纳推理,故应选B. 3.C A错:因为自然数集对减法、除法不封闭;B错:因为整数集对除法不封闭;C对:因为任意两个有理数的和、差、积、商都是有理数,故有理数集对加、减、乘、除法(除数不等于零)四则运算都封闭;D错:因为无理数集对加、减、乘、除法都不封闭. 4.C 正确,错误,因为复数不能比较大小,如a=5+6i,b=4+6i,虽然满足a-b=1>0,但复数a与b不能比较大小. 5.D 若{an}是等差数列,则a1+a2+…+an=na1+d, bn=a1+d=n+a1-,即{bn}为等差数列;若{cn}是等比数列,则c1·c2·…·cn=c·q1+2+…+(n-1)=c·q, dn==c1·q,即{dn}为等比数列,故选D. 6.解析: 观察猜想可得:an=,所以当输入数据8时,输出数据为=. 答案: 7.解析: (1)是,使用了“三段论”. (2)不是,使用了归纳推理不是演绎推理.(3)不是,使用了类比推理. (4)不是,使用了归纳推理. 答案: (1) 8.解析: 观察不等式左边最后一项的分母3,7,15,…,通项为2n+1-1,不等式右边为首项为1,公差为的等差数列,故猜想第n个不等式为1++++…+>. 答案: 1++++…+> 9.解析: 将侧面面积类比为直角三角形的直角边,截面面积类比为直角三角形的斜边,可得S+S+S=S. 答案: S+S+S=S 10.解析: 由三角形的性质,可类比得空间四面体的相关性质为: (1)四面体的任意三个面的面积之和大于第四个面的面积; (2)四面体的体积V=×底面积×高; (3)四面体的中位面平行于第四个面且面积等于第四个面的面积的. 11.解析: (1)由等和数列的定义,数列{an}是等和数列,且a1=2,公和为5,易知a2n-1=2,a2n=3(n=1,2,…),故a18=3. (2)当n为偶数时, Sn=a1+a2+…+an=(a1+a3+…+an-1)+(a2+a4+…+an) =2+2+…+2+3+3+…+3=n. __________ _________ 当n为奇数时, Sn=Sn-1+an=(n-1)+2=n-. 综上所述:Sn= 1.B 经验证易知错误.依题意,注意到2S(x+y)=2(ax+y-a-x-y),又S(x)C(y)+C(x)S(y)=2(ax+y-a-x-y),因此有2S(x+y)=S(x)C(y)+C(x)S(y);同理有2S(x-y)=S (x)C(y)-C(x)S(y).综上所述,选B. 2.解析: 连接DO并延长交BC于点E. 连接AE,则BCDE,BCAE. ∴S△ABC=BC·AE,SBCO=BC·EO, SBCD=BC·DE, 又AE2=EO·ED,S=SBCO·S△BCD. 答案: S=SBCO·S△BCD 3.解析: 方法一:(1)选择式,计算如下: sin215°+cos215°-sin 15°cos 15° =1-sin 30°=1-=. (2)三角恒等式为sin2α+cos2(30°-α)-sin αcos(30°-α)=. 证明如下: sin2α+cos2(30°-α)-sin αcos(30°-α) =sin2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sin α) =sin2α+cos2α+sin αcos α+sin2α-sin αcos α-sin2α=sin2α+cos2α=. 方法二:(1)同方法一. (2)三角恒等式为sin2α+cos2(30°-α)-sin αcos(30°-α)=. 证明如下: sin2α+cos2(30°-α)-sin αcos(30°-α) =+-sin α(cos 30°cos α+sin 30°sin α) =-cos 2α++(cos 60°cos 2α+sin 60°sin 2α)-sin αcos α-sin2α =-cos 2α++cos 2α+sin 2α-sin 2α-(1-cos 2α) =1-cos 2α-+cos 2α=.。

2020年高考数学一轮复习考点37合情推理与演绎推理必刷题(理)(含解析)

2020年高考数学一轮复习考点37合情推理与演绎推理必刷题(理)(含解析)

2 m 2017 3m 6057
2 m 2018

3m 6057
21
22
L
3m 6057 3m 6057
又 f 1 f 2 f 3 L f m 2018
2 m 2018 2 m 2017 L
3m 6057 3m 6057
22
21 ,
3m 6057 3m 6057
两式相加可得 f 1 f 2 f 3 L
则第 16 行的第 16 项为 17, 则杨辉三角形的前 18 项的和为 S18= 218﹣ 1, 则此数列前 135 项的和为 S18﹣ 35﹣ 17= 218﹣53,
故选: A.
11.(云南省昆明市 2019 届高三 1 月复习诊断测试理)下面是 展开式的二项式系数表示形式

3、 2,草花 K 、 Q 、 6、5、 4,方块 A 、 5,老师从这 16 张牌中挑出一张牌来,并把这张牌的点数告诉了
学生甲,把这张牌的花色告诉了学生乙,这时,老师问学生甲和学生乙:你们能从已知的点数或花色中推
知这张牌是什么牌吗?于是,老师听到了如下的对话:学生甲:我不知道这张牌;学生乙:我知道你不知
对于选项 D, 猜想数列 2, 4, 8,…的通项公式为 an 2n . n N , 是归纳推理,所以是合情推理 .
故选: B.
6.(贵州省遵义航天高级中学 2019 届高三第四次模拟考试数学理)一次数学考试后,甲说:我是第一名,
乙说:我是第一名,丙说 : 乙是第一名。丁说:我不是第一名,若这四人中只有一个人说的是真话且获得第
【答案】 B 【解析】 对于选项 A, 由铜、铁、铝、金、银等金属能导电,得出一切金属都能导电 理,所以该选项是合情推理;
. 是归纳推理,所以属于合情推

2020版高考数学人教版理科一轮复习课时作业:39 合情推理与演绎推理

2020版高考数学人教版理科一轮复习课时作业:39 合情推理与演绎推理

课时作业39 合情推理与演绎推理一、选择题1.(1)已知a 是三角形一边的长,h 是该边上的高,则三角形的面积是12ah ,如果把扇形的弧长l ,半径r 分别看成三角形的底边长和高,可得到扇形的面积为12lr ;(2)由1=12,1+3=22,1+3+5=32,可得到1+3+5+…+2n -1=n 2,则(1)(2)两个推理过程分别属于( A )A .类比推理、归纳推理B .类比推理、演绎推理C .归纳推理、类比推理D .归纳推理、演绎推理解析:(1)由三角形的性质得到扇形的性质有相似之处,此种推理为类比推理;(2)由特殊到一般,此种推理为归纳推理,故选A.2.已知数列{a n }的前n 项和为S n ,则a 1=1,S n =n 2a n ,试归纳猜想出S n 的表达式为( A )A .S n =2n n +1B .S n =2n -1n +1C .S n =2n +1n +1D .S n =2n n +2解析:S n =n 2a n =n 2(S n -S n -1),∴S n =n 2n 2-1S n -1,S 1=a 1=1,则S 2=43,S 3=32=64,S 4=85.∴猜想得S n =2n n +1.故选A. 3.下面图形由小正方形组成,请观察图①至图④的规律,并依此规律,写出第n 个图形中小正方形的个数是( C )A .n (n +1)B .n (n -1)2C .n (n +1)2D .n (n -1)解析:由题图知第1个图形的小正方形个数为1,第2个图形的小正方形个数为1+2,第3个图形的小正方形个数为1+2+3,第4个图形的小正方形个数为1+2+3+4,…,则第n 个图形的小正方形个数为1+2+3+…+n =n (n +1)2.4.观察下列各式:55=3 125,56=15 625,57=78 125,58=390 625,59=1 953 125,…,则52 018的末四位数字为( B )A .3 125B .5 625C .0 625D .8 125解析:55=3 125,56=15 625,57=78 125,58=390 625,59=1 953 125,…,可得59与55的后四位数字相同,由此可归纳出5m +4k 与5m (k ∈N *,m =5,6,7,8)的后四位数字相同,又2 018=4×503+6,所以52 018与56的后四位数字相同,为5 625,故选B.5.(2019·山西孝义调研)我们知道:在平面内,点(x 0,y 0)到直线Ax +By +C =0的距离公式d =|Ax 0+By 0+C |A 2+B2,通过类比的方法,可求得:在空间中,点(2,4,1)到直线x +2y +2z +3=0的距离为( B )A .3B .5 C.5217 D .3 5解析:类比平面内点到直线的距离公式,可得空间中点(x 0,y 0,z 0)到直线Ax +By +Cz +D =0的距离公式为d =|Ax 0+By 0+Cz 0+D |A 2+B 2+C 2, 则所求距离d =|2+2×4+2×1+3|12+22+22=5, 故选B.6.给出以下数对序列:(1,1)(1,2)(2,1)(1,3)(2,2)(3,1)(1,4)(2,3)(3,2)(4,1)……记第i 行的第j 个数对为a ij ,如a 43=(3,2),则a nm =( A )A .(m ,n -m +1)B .(m -1,n -m )C .(m -1,n -m +1)D .(m ,n -m )解析:由前4行的特点,归纳可得:若a nm =(a ,b ),则a =m ,b =n -m +1,∴a nm=(m ,n -m +1).7.(2019·惠州市调研考试)《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦所代表的数表示如下:依次类推,则六十四卦中的“屯”卦,符号为“”,其表示的十进制数是( B )A .33B .34C .36D .35解析:由题意类推,可知六十四卦中的“屯”卦的符号“”表示的二进制数为100010,转化为十进制数为0×20+1×21+0×22+0×23+0×24+1×25=34.故选B.二、填空题8.已知f (n )=1+12+13+…+1n (n ∈N *),经计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,f (32)>72,…,观察上述结果,可归纳出的一般结论为f (2n)≥n +22(n ∈N *). 解析:本题考查归纳推理.由归纳推理可得f (2n)≥n +22(n ∈N *). 9.如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作……根据以上操作,若要得到100个小三角形,则需要操作的次数是33.解析:由题意可知,第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7个;第三次操作后,三角形共有4+3+3=10个……由此可得第n 次操作后,三角形共有4+3(n -1)=3n +1个.当3n +1=100时,解得n =33.10.在正项等差数列{a n }中有a 41+a 42+…+a 6020=a 1+a 2+…+a 100100成立,则在正项等比数列{b n }中,类似的结论为20b 41b 42b 43…b 60=100b 1b 2b 3…b 100.解析:结合等差数列和等比数列的性质,类比题中的结论可得,在正项等比数列{b n }中,类似的结论为20b 41b 42b 43…b 60=100b 1b 2b 3…b 100.11.(2019·安徽界首模拟)埃及数学中有一个独特现象:除23用一个单独的符号表示以外,其他分数都要写成若干个单分数和的形式.例如25=13+115可以这样理解:假定有两个面包,要平均分给5个人,如果每人12,不够,每人13,余13,再将这13分成5份,每人得115,这样每人分得13+115.形如2n (n =5,7,9,11,…)的分数的分解:25=13+115,27=14+128,29=15+145……按此规律,211=16+166;2n =1n +12+1n (n +1)2(n=5,7,9,11,…).解析:27=14+128表示两个面包分给7个人,每人13,不够,每人14,余14,再将这14分成7份,每人得128,其中4=7+12,28=7×7+12;29=15+145表示两个面包分给9个人,每人14,不够,每人15,余15,再将这15分成9份,每人得145,其中5=9+12,45=9×9+12,按此规律,211表示两个面包分给11个人,每人15,不够,每人16,余16,再将这16分成11份,每人得166,所以211=16+166,其中6=11+12,66=11×11+12.由以上规律可知,2n =1n +12+1n (n +1)2.12.(2019·潍坊市统一考试)“干支纪年法”是中国历法上自古以来就一直使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为甲子、乙丑、丙寅、……、癸酉,甲戌、乙亥、丙子、……、癸未,甲申、乙酉、丙戌、…、癸巳,……、癸亥,60个为一周,周而复始,循环记录.2014年是“干支纪年法”中的甲午年,那么2020年是“干支纪年法”中的( C )A .己亥年B .戊戌年C .庚子年D .辛丑年解析:由题意知2014年是甲午年,则2015到2020年分别为乙未年、丙申年、丁酉年、戊戌年、己亥年、庚子年.13.(2019·福建宁德一模)我国古代数学名著《孙子算经》中有如下问题:“今有三女,长女五日一归,中女四日一归,少女三日一归.问:三女何日相会?”意思是:“一家出嫁的三个女儿中,大女儿每五天回一次娘家,二女儿每四天回一次娘家,小女儿每三天回一次娘家.三个女儿从娘家同一天走后,至少再隔多少天三人再次相会?”假如回娘家当天均回夫家,若当地风俗正月初二都要回娘家,则从正月初三算起的一百天内,有女儿回娘家的天数有( C )A .58B .59C .60D .61解析:小女儿、二女儿和大女儿回娘家的天数分别是33,25,20,小女儿和二女儿、小女儿和大女儿、二女儿和大女儿回娘家的天数分别是8,6,5,三个女儿同时回娘家的天数是1,所以有女儿在娘家的天数是:33+25+20-(8+6+5)+1=60.故选C.14.(2019·安徽质量检测)某参观团根据下列约束条件从A,B,C,D,E五个镇选择参观地点:①若去A镇,也必须去B镇;②D,E 两镇至少去一镇;③B,C两镇只去一镇;④C,D两镇都去或者都不去;⑤若去E镇,则A,D两镇也必须去.则该参观团至多去了(C)A.B,D两镇B.A,B两镇C.C,D两镇D.A,C两镇解析:若去A镇,根据①可知一定去B镇,根据③可知不去C 镇,根据④可知不去D镇,根据②可知去E镇,与⑤矛盾,故不能去A镇;若不去A镇,根据⑤可知也不去E镇,再根据②知去D镇,再根据④知去C镇,再根据③可知不去B镇,再检验每个条件都成立,所以该参观团至多去了C,D两镇.故选C.尖子生小题库——供重点班学生使用,普通班学生慎用15.(2019·益阳、湘潭调研考试)《数书九章》中给出了“已知三角形三边长求三角形面积的求法”,填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代人具有很高的数学水平,其求法是“以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之,为实;一为从隅,开平方得积”.若把这段文字写成公式,即S=14[c2a2-(c2+a2-b22)2],现有周长为22+5的△ABC满足sin A sin B sin C=(2-1)5 (2+1),用上面给出的公式求得△ABC的面积为(B)A.32 B.34C.52 D.54解析:由正弦定理得sin A sin B sin C=a b c=(2-1)5(2+1),可设三角形的三边分别为a =(2-1)x ,b =5x ,c =(2+1)x ,由题意得(2-1)x +5x +(2+1)x =(22+5)x =22+5,则x =1,故由三角形的面积公式可得△ABC 的面积S = 14[(2+1)2(2-1)2-(3+22+3-22-52)2]=34,故选B. 16.(2019·重庆市质量调研)某学生的素质拓展课课表由数学、物理和体育三门学科组成,且各科课时数满足以下三个条件:①数学课时数多于物理课时数;②物理课时数多于体育课时数;③体育课时数的两倍多于数学课时数.则该学生的素质拓展课课表中课时数的最小值为12.解析:解法1:设该学生的素质拓展课课表中的数学、物理、体育的课时数分别为x ,y ,z ,则由题意,得⎩⎪⎨⎪⎧ x -y ≥1,y -z ≥1,2z -x ≥1,x ,y ,z ∈N *,则该学生的素质拓展课课表中的课时数为x +y +z .设x +y +z =p (x -y )+q (y -z )+r (2z -x )=(p -r )x +(-p +q )y +(-q +2r )z ,比较等式两边的系数,得⎩⎪⎨⎪⎧ p -r =1,-p +q =1,-q +2r =1,解得p =4,q =5,r =3,则x +y +z =4(x-y )+5(y -z )+3(2z -x )≥4+5+3=12,所以该学生的素质拓展课课表中的课时数的最小值为12.解法2:设该学生的素质拓展课课表中的数学、物理、体育的课时数分别为x,y,z,则2z>x>y>z.由题意,知z的最小值为3,由此易知y的最小值为4,x的最小值为5,故该学生的素质拓展课课表中的课时数x+y+z的最小值为12.。

.【学科精品】2020届高考数学一轮复习人教B版 14.1 合情推理与演绎推理 .doc

.【学科精品】2020届高考数学一轮复习人教B版  14.1 合情推理与演绎推理   .doc

第十四章推理与证明高考导航知识网络14.1 合情推理与演绎推理典例精析题型一 运用归纳推理发现一般性结论【例1】 通过观察下列等式,猜想出一个一般性的结论,并证明结论的真假. sin215°+sin275°+sin2135°=32;sin230°+sin290°+sin2150°=32;sin245°+sin2105°+sin2165°=32;sin260°+sin2120°+sin2180°=32.【解析】猜想:sin2(α-60°)+sin2α+sin2(α+60°)=32.左边=(sin αcos 60°-cos αsin 60°)2+sin2α+(sin αcos 60°+cos αsin 60°)2=32(sin2α+cos2α)=32=右边. 【点拨】先猜后证是一种常见题型;归纳推理的一些常见形式:一是“具有共同特征型”,二是“递推型”,三是“循环型”(周期性).【变式训练1】设直角三角形的两直角边的长分别为a ,b ,斜边长为c ,斜边上的高为h ,则有a +b <c +h 成立,某同学通过类比得到如下四个结论:①a2+b2>c2+h2;②a3+b3<c3+h3;③a4+b4<c4+h4;④a5+b5>c5+h5. 其中正确结论的序号是 ;进一步类比得到的一般结论是 . 【解析】②③;an +bn <cn +hn(n ∈N*). 题型二 运用类比推理拓展新知识 【例2】 请用类比推理完成下表:【解析】 本题由已知的前两组类比可得到如下信息: ①平面中的三角形与空间中的三棱锥是类比对象;②三角形各边的边长与三棱锥各面的面积是类比对象;③三角形边上的高与三棱锥面上的高是类比对象;④三角形的面积与三棱锥的体积是类比对象;⑤三角形的面积公式中的“二分之一”与三棱锥的体积公式中的“三分之一”是类比对象.由以上分析可知:故第三行空格应填:三棱锥的体积等于其内切球半径与三棱锥表面积的乘积的三分之一. 本题结论可以用等体积法,将三棱锥分割成四个小的三棱锥去证明,此处从略.【点拨】类比推理的关键是找到合适的类比对象.平面几何中的一些定理、公式、结论等,可以类比到立体几何中,得到类似的结论.一般平面中的一些元素与空间中的一些元素的类比列表如下:【变式训练2】面积为S 的平面凸四边形的第i 条边的边长记为ai(i =1,2,3,4),此四边形内任一点P 到第i 条边的距离为hi(i =1,2,3,4),(1)若a11=a22=a33=a44=k ,则∑=41i iih= ;(2)类比以上性质,体积为V 的三棱锥的第i 个面的面积记为Si(i =1,2,3,4),此三棱锥内任一点Q 到第i 个面的距离记为Hi(i =1,2,3,4),若S11=S22=S33=S44=K ,则∑=41i iiH= .【解析】2S k ;3VK.题型三 运用“三段论”进行演绎推理 【例3】已知函数f(x)=ln ax -x -ax (a ≠0).(1)求此函数的单调区间及最值;(2)求证:对于任意正整数n ,均有1+12+13+…+1n ≥ln enn !.【解析】(1)由题意f ′(x)=x -ax2. 当a >0时,函数f(x)的定义域为(0,+∞),此时函数在(0,a)上是减函数,在(a ,+∞)上是增函数, fmin(x)=f(a)=ln a2,无最大值.当a <0时,函数f(x)的定义域为(-∞,0),此时函数在(-∞,a)上是减函数,在(a,0)上是增函数, fmin(x)=f(a)=ln a2,无最大值.(2)取a =1,由(1)知,f(x)=ln x -x -1x≥f(1)=0,故1x ≥1-ln x =ln e x, 取x =1,2,3,…,n ,则1+12+13+…+1n ≥ln e +ln e 2+…+ln e n =ln en n !.【点拨】演绎推理是推理证明的主要途径,而“三段论”是演绎推理的一种重要的推理形式,在高考中以证明题出现的频率较大.【变式训练3】已知函数f(x)=eg(x),g(x)=kx -1x +1(e 是自然对数的底数),(1)若对任意的x >0,都有f(x)<x +1,求满足条件的最大整数k 的值; (2)求证:ln(1+1×2)+ln(1+2×3)+…+ln[1+n(n +1)]>2n -3(n ∈N*). 【解析】(1)由条件得到f(1)<2⇒11-2e +x x <2⇒k <2ln 2+1<3,猜测最大整数k =2,现在证明11-2e +x x <x +1对任意x >0恒成立:11-2e +x x <x +1等价于2-3x +1<ln(x +1)⇔ln(x +1)+3x +1>2, 设h(x)=ln(x +1)+3x +1,则h ′(x)=1x +1-3(x +1)2=x -2(x +1)2.故x ∈(0,2)时,h ′(x)<0,当x ∈(2,+∞)时,h ′(x)>0. 所以对任意的x >0都有h(x)≥h(2)=ln 3+1>2,即11-2e +x x <x +1对任意x >0恒成立,所以整数k 的最大值为2.(2)由(1)得到不等式2-3x +1<ln(x +1),所以ln[1+k(k +1)]>2-3k(k +1)+1>2-3k(k +1),ln(1+1×2)+ln(1+2×3)+…+ln[1+n(n +1)]>(2-31×2)+(2-32×3)+…+[2-3n(n +1)]=2n -3[11×2+12×3+…+1n(n +1)]=2n -3+3n +1>2n -3,所以原不等式成立. 总结提高合情推理与演绎推理是两种基本的思维推理方式.尽管合情推理(归纳、类比)得到的结论未必正确,但归纳推理与类比推理具有猜想和发现新结论、探索和提供证明的新思路的重要作用,特别在数学学习中,我们可以由熟悉的、已知的知识领域运用归纳、类比思维获取发现和创造的灵感去探索陌生的、未知的知识领域.演绎推理是数学逻辑思维的主要形式,担负着判断命题真假的重要使命.如果说合情推理是以感性思维为主,只需有感而发;那么演绎推理则是以理性思维为主,要求言必有据.在近几年高考中一道合情推理的试题往往会成为一套高考试题的特色与亮点,以彰显数学思维的魅力.其中数列的通项公式、求和公式的归纳、等差数列与等比数列、平面与空间、圆锥曲线与圆、杨辉三角等的类比的考查频率较大.而演绎推理的考查则可以渗透到每一道试题中.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.右图所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形,根据图中的数构成的规律,a所表示的数是( )
A.2 B.4
C.6 D.8
解析:由杨辉三角形可以发现,每一行除1外,每个数都是它肩膀上的两数之和.故a=3+3=6.
答案:C
4.根据给出的数塔猜测1 234 567×9+8=( )
1×9+2=11
12×9+3=111
123×9+4=1 111
1 234×9+5=11 111
12 345×9+6=111 111
A.11 111 110 B.11 111 111
C.11 111 112 D.11 111 113
解析:根据数塔的规律,后面加几结果就是几个1,
∴1 234 567×9+8=11 111 111.
答案:B
5.推理过程“大前提:________,小前提:四边形ABCD是矩形.结论:四边形ABCD的对角线相等.”应补充的大前提是( )
A.正方形的对角线相等
B.矩形的对角线相等
C.等腰梯形的对角线相等
9.[2019·山东省潍坊市第一次模拟]“干支纪年法”是中国历法上自古以来就一直使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为甲子、乙丑、丙寅、…、癸酉,甲戌、乙亥、丙子、…、癸未,甲申、乙酉、丙戌、…、癸巳,……、癸亥,60个为一周周而复始,循环记录.2014年是“干支纪年法”中的甲午年,那么2020年是“干支纪年法”中的( )
A.己亥年 B.戊戌年
C.庚子年 D.辛丑年
解析:由题意知2014年是甲午年,则2015到2020年分别为乙未年、丙申年、丁酉年、戊戌年、己亥年、庚子年.
答案:C
10.[2019·东北三省四市联考]中国有个名句“运筹帷幄之中,决胜千里之外”,其中的“筹”原意是指《孙子算经》中记载的算筹.古代用算筹(一根根同样长短和粗细的小棍子)来进行运算.算筹的摆放有纵、横两种形式(如图所示).表示一个多位数时,个位、百位、万位数用纵式表示,十位、千位、十万位数用横式表示,以此类推,遇零则置空.例如,3 266用算筹表示就是
,则8 771用算筹应表示为( )
解析:由题知,个位、百位数用纵式表示,十位、千位数用横式表示,易知正确选项为C.
答案:C
二、填空题
11.[2019·石家庄高中毕业班模拟]甲、乙、丙三位同学,其中一位是班长,一位是体育委员,一位是学习委员,已知丙比学习委员的年龄大,甲与体育委员的年龄不同,体育委员比乙的年龄小,据此推断班长是________.
解析:若甲是班长,由于体育委员比乙的年龄小,故丙是体育委员,乙是学习委员,但这与丙比学习委员的年龄大矛盾,故甲不是班长;若丙是班长,由于体育委员比乙的年龄小,故甲是体育委员,这和甲与体育委员的年龄不同矛盾,故丙不是班长;若乙是班长,由于甲与体育委员的年龄不同,故甲是学习委员,丙是体育委员,此时其他条件均成立,故乙是班长.
答案:乙
12.[2019·广州市高中综合测试]古希腊著名的毕达哥拉斯学派把1,3,6,10,…这样的数称为“三角
C .丙
D .丁
解析:若1号是第1名,则甲错,乙对,丙对,丁对,不符合题意; 若2号是第1名,则甲错,乙对,丙错,丁对,不符合题意; 若3号是第1名,则甲错,乙对,丙错,丁错,不符合题意; 若4号是第1名,则甲错,乙对,丙错,丁对,不符合题意; 若5号是第1名,则甲错,乙对,丙对,丁错,不符合题意; 若6号是第1名,则甲错,乙错,丙对,丁错,符合题意. 故猜对者是丙. 答案:C
16.[2019·南昌模拟]平面内直角三角形两直角边长分别为a ,b ,则斜边长为a 2
+b 2
,直角顶点到斜边的距离为
ab a 2
+b
2
.空间中三棱锥的三条侧棱两两垂直,三个侧面的面积分别为S 1,S 2,S 3,类比推理可
得底面积为S 2
1+S 22+S 2
3,则三棱锥顶点到底面的距离为( )
A.3S 1S 2S 3
S 21
+S 22+S 23
B.S 1S 2S 3
S 21
+S 22+S 23
C.
2S 1S 2S 3
S 21+S 22+S 23
D.3S 1S 2S 3
S 21
+S 22+S 23
解析:设空间中三棱锥O -ABC 的三条两两垂直的侧棱OA ,OB ,OC 的长分别为a ,b ,c ,不妨设三个侧面的面积分别为S △OAB =12ab =S 1,S △OAC =12ac =S 2,S △OBC =1
2
bc =S 3,则ab =2S 1,ac =2S 2,bc =2S 3.
过O 作OD⊥BC 于D ,连接AD ,由OA⊥OB,OA⊥OC,且OB∩OC=O ,得OA⊥平面OBC ,所以OA⊥BC,又OA∩OD=O ,所以BC⊥平面AOD ,
又BC ⊂平面OBC ,所以平面OBC⊥平面AOD ,
所以点O 在平面ABC 内的射影O′在线段AD 上,连接OO′. 在直角三角形OBC 中,OD =
bc b 2
+c
2
.
因为AO⊥OD ,所以在直角三角形OAD 中,OO′=
OA·OD OA 2
+OD
2

a ·
bc b 2
+c 2
a 2
+⎝
⎛⎭
⎪⎫bc
b 2+
c 22

abc
ab
2
+ac
2
+bc
2

ab bc ca ab 2
+ac
2
+bc
2

2S 1·2S 2·2S 3
2S 12+2S 32
+2S 2
2

2S 1S 2S 3
S 21
+S 22+S 23. 答案:C
17.[2019·山东省,湖北省重点中学质量检测]定义两种运算“”与“⊙”,对任意n∈N *
,满足
下列运算性质:(1)2 2 018=1,2 018⊙1=1;(2)(2n) 2 018=2[(2n +2) 2 018],2 018⊙(n+1)=
2(2 018⊙n).则(2 018⊙2 019)·(2 020 2 018)的值为( )
A .21 010
B .21 009
C .2
1 008 D .2
1 007
解析:由(2n) 2 018=2[(2n +2) 2 018]得(2n +2)
2 018=1
2
[(2n) 2 018],又2 2 018=1,
所以4 2 018=1
2(2
2 018)=1
2

6 2 018=12(4 2 018)=12×12=⎝ ⎛⎭⎪⎫122

8
2 018=12(6 2 018)=12×⎝ ⎛⎭⎪⎫122=⎝ ⎛⎭
⎪⎫123

依此类推,2 020 2 018=(2×1 009+2) 2 018=⎝ ⎛⎭
⎪⎫12 1 009
.
由2 018⊙(n+1)=2(2 018⊙n),2 018⊙1=1, 可得2 018⊙2=2(2 018⊙1)=2, 2 018⊙3=2(2 018⊙2)=2×2=22
, 2 018⊙4=2(2 018⊙3)=2×22
=23, 依次类推,2 018⊙2 019=22 018

故(2 018⊙2 019)·(2 020 2 018)=2
2 018
·⎝ ⎛⎭
⎪⎫12 1 009=21 009. 答案:B。

相关文档
最新文档