数学月考题初三
浙教版九年级上册数学第一次月考试卷含答案
浙教版九年级上册数学第一次月考试题一、单选题1.如果函数()23231kk y k x kx -+=-++是关于x 的二次函数,那么k 的值是()A .1或2B .0或3C .3D .02.顶点为()6,0-,开口向下,形状与函数212y x =的图象相同的抛物线所对应的函数是()A .21(6)2y x =-B .21(6)2y x =+C .21(6)2y x =--D .21(6)2y x =-+3.一位保险推销员对人们说:“人有可能得病,也有可能不得病,因此,得病与不得病的概率各占50%”他的说法()A .正确B .不正确C .有时正确,有时不正确D .应由气候等条件确定4.如图,抛物线()20y ax bx c a =++≠的对称轴为1x =-,与x 轴的一个交点在()3,0-和()2,0-之间,其部分图象如图所示,则下列结论:()2140b ac ->;()22a b =;()3点17,2y ⎛⎫- ⎪⎝⎭、23,2y ⎛⎫- ⎪⎝⎭、35,4y ⎛⎫ ⎪⎝⎭是该抛物线上的点,则123y y y <<;()4320b c +<;()()5t at b a b +≤-(t 为任意实数).其中正确结论的个数是()A .2B .3C .4D .55.从1,2,3,4这四个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是()A .13B .14C .16D .1126.若二次函数22y x =的图象经过点P (1,a ),则a 的值为()A .12B .1C .2D .47.将抛物线23y x =先向左平移一个单位,再向上平移两个单位,两次平移后得到的抛物线解析式为()A .23(1)2y x =++B .23(1)2y x =+-C .23(1)2y x =-+D .23(1)2=--y x 8.下列哪些事件是必然事件的个数有()()1哈尔滨冬天会下雪()2中秋节(农历十月十五日)的晚上一定能看到月亮()3秋天的树叶一定是黄色的()4抛十次硬币五次正面,五次反面.A .1个B .2个C .3个D .4个9.明明的相册里放了大小相同的照片共32张,其中与同学合影8张、与父母合影10张、个人照片14张,她随机地从相册里摸出1张,摸出的恰好是与同学合影的照片的可能性是()A .12B .13C .14D .1810.二次函数22(3)5y x =--+图象的开口方向、对称轴和顶点坐标分别为()A .开口向下,对称轴为3x =-,顶点坐标为()3,5B .开口向下,对称轴为3x =,顶点坐标为()3,5C .开口向上,对称轴为3x =-,顶点坐标为()3,5-D .开口向上,对称轴为3x =,顶点坐标为()3,5--二、填空题11.抛物线2y x x m =-+,若其顶点在x 轴上,则m =________.12.已知()221m m y m x x -=-+-是关于x 的二次函数,则m =________.13.同时抛两枚1元硬币,出现两个正面的概率为14,其中“14”含义为___.14.二次函数21212y x x =+-的最小值为________.15.二次函数在x =32时,有最小值14-,且函数的图象经过点(0,2),则此函数的解析式为_______.16.已知抛物线的顶点在()1,2-,且过点()2,3,则抛物线的解析式为__.17.如图是抛物线()210y ax bx c a =++≠图象的一部分,抛物线的顶点坐标()1,3A ,与x 轴的一个交点()4,0B ,直线()20y mx n m =+≠与抛物线交于A ,B 两点,下列结论:①20a b -=;②0abc >;③方程23ax bx c ++=有两个相等的实数根;④抛物线与x 轴的另一个交点是()1,0-;⑤当14x <<时,有21y y <,其中正确的序号是________.18.若二次函数223y x x =--配方后为2()y x h k =-+,则h k +=__.19.若二次函数()20y ax bx c a =++≠的图象与x 轴有两个交点,坐标分别为()1,0x 、()2,0x ,且12x x <,图象上有一点()00,M x y 在x 轴下方,在下列四个算式中判定正确的是________.①()()01020a x x x x --<;②0a >;③240b ac -≥;④102x x x <<.20.已知二次函数2()1y x m =---,当1x >时,y 随x 的增大而减小,则m 的取值范围是________.三、解答题21.已知开口向下的抛物线225y ax x a =++-经过点()0,3-.()1确定此抛物线的解析式;() 2当x 取何值时,y 有最大值,并求出这个最大值.22.请你设计一个摸球游戏,要求:()1袋子中要有黄球、绿球和红球三种球.()2摸到球的概率;P (摸到红球)14=;P (摸到黄球)23=;并求出摸到绿球的概率有多大?23.二次函数2y ax bx c =++的图象过()3,0A -,()1,0B ,()0,3C ,点D 在函数图象上,点C ,D 是二次函数图象上的一对对称点,一次函数图象过点B ,D ,求:()1一次函数和二次函数的解析式;() 2写出使一次函数值大于二次函数值的x 的取值范围.24.某活动小组为了估计装有5个白球和若干个红球(每个球除颜色外都相同)的袋中红球接近多少个,在不将袋中球倒出来的情况下,分小组进行摸球试验,两人一组,共20组进行摸球实验.其中一位学生摸球,另一位学生记录所摸球的颜色,并将球放回袋中摇匀,每一组做400次试验,汇总起来后,摸到红球次数为6000次.()1估计从袋中任意摸出一个球,恰好是红球的概率是多少?() 2请你估计袋中红球接近多少个?25.某商场有A 、B 两种商品,A 商品每件售价25元,B 商品每件售价30元,B 商品每件的成本是20元.根据市场调查“若按上述售价销售,该商场每天可以销售B 商品100件,若销售单价每上涨1元,B 商品每天的销售量就减少5件.()1请写出B 商品每天的销售利润y (元)与销售单价()x 元之间的函数关系?() 2当销售单价为多少元时,B 商品每天的销售利润最大,最大利润是多少?26.某市人民广场上要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子OP,柱子顶端P处装上喷头,由P处向外喷出的水流(在各个方向上)沿形状相同的抛物线路径落OP=米,喷出的水流的最高点A距水平面的高度是4米,离柱子下(如图所示).若已知3OP的距离为1米.()1求这条抛物线的解析式;()2若不计其它因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?参考答案1.D2.D3.B4.C5.A6.C7.A8.A9.C10.B11.1412.-113.当实验很多次时,平均每抛4次出现1次“两个正面”14.-315.y =x 2﹣3x +216.25103y x x =-+17.③⑤18.-319.①20.1m ≤21.(1)223y x x =-+-(2)52-22.11223.()12123y x x =--+,21y x =-+;()22x <-或1x >24.()10.75;()215个25.(1)y =−5x2+350x−5000;(2)当销售单价为35元时,B 商品每天的销售利润最大,最大利润是1125元.26.(1)2(1)4y x =--+;(2)不计其它因素,水池的半径至少3米,才能使喷出的水流不至于落在池外.。
初中数学月考试题及答案
初中数学月考试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. -1C. 1D. 22. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 103. 计算下列算式的结果:\( \frac{3}{4} + \frac{2}{5} \)A. \( \frac{17}{20} \)B. \( \frac{11}{20} \)C. \( \frac{23}{20} \)D. \( \frac{13}{20} \)4. 下列哪个选项是等腰三角形?A. 两边长分别为3和4的三角形B. 两边长分别为3和3的三角形C. 两边长分别为4和5的三角形D. 两边长分别为5和6的三角形5. 一个圆的直径是10厘米,那么它的周长是:B. 15.7厘米C. 25.12厘米D. 50.24厘米6. 一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 07. 一个长方形的长是8厘米,宽是5厘米,那么它的面积是:A. 40平方厘米B. 45平方厘米C. 50平方厘米D. 60平方厘米8. 下列哪个选项是质数?A. 1B. 2C. 4D. 99. 一个数的平方是36,那么这个数是:A. 6B. -6C. 6或-6D. 310. 一个等腰直角三角形的两条直角边长都是3厘米,那么它的斜边长是:B. 4.5厘米C. 6厘米D. 9厘米二、填空题(每题4分,共20分)1. 一个数的立方是-27,那么这个数是______。
2. 一个数的平方根是4,那么这个数是______。
3. 一个数的倒数是\( \frac{1}{2} \),那么这个数是______。
4. 一个数的绝对值是7,那么这个数可以是______。
5. 如果一个三角形的两个内角分别是45度和45度,那么第三个内角是______。
三、解答题(每题10分,共50分)1. 计算下列算式的值:\( (-2)^3 + 3 \times 4 - 5 \)2. 一个长方体的长、宽、高分别是6厘米、4厘米、3厘米,求它的体积。
初三数学月考试卷压轴题
一、解答题(本大题共3小题,共40分)1.(20分)已知函数f(x) = ax^2 + bx + c(a≠0),且f(1) = 2,f(2) = 8,f(3) = 18。
求函数f(x)的解析式。
解题步骤:(1)根据题意,列出方程组:$$\begin{cases}a +b +c = 2 \\4a + 2b + c = 8 \\9a + 3b + c = 18\end{cases}$$(2)解方程组,得到a、b、c的值。
(3)将a、b、c的值代入函数f(x)中,得到f(x)的解析式。
2.(20分)在平面直角坐标系中,点A(-2,3)和点B(4,-1)在直线l上。
直线l与x轴交于点C,与y轴交于点D。
若CD=8,求直线l的方程。
解题步骤:(1)根据题意,利用两点式求出直线AB的方程。
(2)由CD=8,确定点C的坐标。
(3)利用点C的坐标和CD的长度,求出点D的坐标。
(4)结合点C和点D的坐标,写出直线l的方程。
3.(20分)已知等腰三角形ABC中,AB=AC,∠BAC=60°,BC=6cm。
点D、E分别在AB、AC上,且AD=2AE。
求三角形ADE的面积。
解题步骤:(1)根据题意,利用等腰三角形的性质求出AB和AC的长度。
(2)利用AD=2AE,求出AE和AD的长度。
(3)利用三角形面积公式,求出三角形ADE的面积。
二、综合题(本大题共2小题,共40分)4.(20分)已知函数f(x) = |x-1| + |x+2|。
(1)求函数f(x)的最小值。
(2)若函数g(x) = f(x) + k在区间[-2,1]上单调递增,求实数k的取值范围。
解题步骤:(1)利用绝对值函数的性质,分情况讨论求出函数f(x)的最小值。
(2)结合函数g(x)在区间[-2,1]上单调递增的条件,分析k的取值范围。
5.(20分)如图,在平面直角坐标系中,点P在抛物线y=x^2上,点Q在抛物线y=-x^2+4x+3上。
过点P作直线PQ,交x轴于点R。
人教版九年级上册数学第一次月考试卷及答案
人教版九年级上册数学第一次月考试题一、单选题1.方程x 2-4x-3=0的一次项系数和常数项分别为()A .4和3B .4和﹣3C .﹣4和﹣3D .﹣4和32.抛物线24y x =-与y 轴的交点坐标为()A .()0,4B .()4,0C .()0,4-D .()4,0-3.把方程x 2﹣4x ﹣1=0转化成(x+m )2=n 的形式,则m ,n 的值是()A .2,3B .2,5C .﹣2,3D .﹣2,54.若关于x 的一元二次方程230x x a -+=的一个根为1,则a 的值为()A .2B .3C .-2D .-15.一元二次方程2x 2-3x +1=0根的情况是()A .只有一个实数根B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根6.某年级举办篮球友谊赛,参赛的每两个队之间都要比赛一场,共要比赛36场,则参加此次比赛的球队数是()A .6B .7C .8D .97.已知抛物线y =x 2+x-1经过点P(m ,5),则代数式m 2+m+100的值为()A .104B .105C .106D .1078.把二次函数y =-x 2的图象先向右平移2个单位,再向上平移5个单位后得到一个新图象,则新图象,则新图象所表示的二次函数的解析式是()A .y =-(x -2)2+5B .y =-(x +2)2+5C .y =-(x -2)2-5D .y =-(x +2)2-59.设1(2,)A y -,2(1,)B y -,3(1,)C y ,是抛物线2(1)y x m =+-上的三点,则y 1,y 2,y 3的大小关系为()A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 3>y 1>y 210.已知二次函数y =ax 2+bx+c (a≠0)的图象如图所示,有下列4个结论:①abc >0;②b 2<4ac ;③9a+3b+c <0;④2c <3b .其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题11.方程x2﹣4x=0的解为______.12.方程(m-1)21m x++3x+5=0为一元二次方程,则m的值为___.x x+=______.13.已知方程2+-=的两根分别为1x和2x,则12x x243014.抛物线y=2(x-3)2+1的顶点坐标为_______.15.有一人感染了传染性很强的病毒,经过两轮传染后共有625人患病,每轮传染中平均一人传染______人.16.二次函数y=ax2+bx+c(a≠0)的图象如图所示,请直接写出不等式ax2+bx+c>0的解集_____.x2平移得到抛物线m,抛物线m经过点A(﹣6,0)和原点O(0,17.如图,把抛物线y=12x2交于点Q,则图中阴影部分的面积为.0),它的顶点为P,它的对称轴与抛物线y=12三、解答题18.解方程:2670-+=x x19.已知二次函数y=﹣2x2+5x﹣2.(1)写出该函数的对称轴,顶点坐标;(2)求该函数与坐标轴的交点坐标.20.一条抛物线经过点A(-2,0)且抛物线的顶点是(1,-3),求满足此条件的函数解析式.21.已知关于x的方程x2﹣2(m+1)x+m2﹣3=0的两实根为x1,x2.(1)求m的取值范围;(2)如果x12+x22=x1x2+33,求m的值.22.如图,依靠一面长18米的墙,用34米长的篱笆围成一个矩形场地花圃ABCD,AB边上留有2米宽的小门EF(用其他材料做,不用篱笆围).(1)设花圃的一边AD长为x米,请你用含x的代数式表示另一边CD的长为米;(2)当矩形场地面积为160平方米时,求AD的长.23.某商品的进价为每件20元,售价为每件30元,每个月可卖出180件;如果每件商品的售价每上涨1元,则每个月就会少卖出10件,但每件售价不能高于35元,设每件商品的售价上涨x元(x为整数),每个月的销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;求x为何值时y的值为1920;(2)每件商品的售价为多少元时,每个月可获得最大利润?最大利润是多少.24.阅读下列材料,并用相关的思想方法解决问题.材料:为解方程x4﹣x2﹣6=0可将方程变形为(x2)2﹣x2﹣6=0然后设x2=y,则(x2)2=y2,原方程化为y2﹣y﹣6=0…①解得y1=﹣2,y2=3,当y1=﹣2时,x2=﹣2无意义,舍去;当y2=3时,x2=﹣3,解得x=所以原方程的解为x1x2问题:(1)在原方程得到方程①的过程中,利用法达到了降次的目的,体现了的数学思想;(2)利用以上学习到的方法解下列方程(x2+5x+1)(x2+5x+7)=7.-,与y 25.如图,抛物线2y x bx c=++与x轴交于A,B两点,其中点A的坐标为(3,0)D--在抛物线上.轴交于点C,点(2,3)(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点P,求出PA PD的最小值;△的面积为6,求点Q的坐标.(3)若抛物线上有一动点Q,使ABQ参考答案1.C【分析】根据ax2+bx+c=0(a,b,c是常数且a≠0)a,b,c分别叫二次项系数,一次项系数,常数项,可得答案.【详解】解:x2-4x-3=0的一次项系数和常数项分别为-4,-3.故选:C.【点睛】本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c 是常数且a≠0)特别要注意a≠0的条件.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.2.C【解析】【分析】求图象与y轴的交点坐标,令x=0,求y即可.【详解】当x=0时,y=-4,所以y轴的交点坐标是(0,-4).故选:C.【点睛】主要考查了二次函数图象与y轴的交点坐标特点,解题的关键是熟知函数图像的特点.3.D【解析】【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可得出答案.【详解】解:∵x2﹣4x﹣1=0,∴x2﹣4x=1,则x2﹣4x+4=1+4,即(x﹣2)2=5,∴m=﹣2,n=5,故选:D.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的集中常用方法:直接开方法、因式分解法、公式法、配方法,结合方程特点选择合适、简便的方法是解题关键.4.A【解析】【分析】根据方程的解的定义,把x=1代入方程,即可得到关于a的方程,再求解即可.【详解】解:根据题意得:1-3+a=0解得:a=2.故选A.【点睛】本题主要考查了一元二次方程的解的定义,特别需要注意的条件是二次项系数不等于0.5.B 【解析】【分析】根据一元二次方程根的判别式24b ac -与0的大小关系,即可得出方程根的情况.【详解】解:2x 2-3x +1=0,2,3,1a b c ==-=,∴224(3)42110b ac -=--⨯⨯=>,∴方程有两个不相等的实数根,故选:B .【点睛】本题主要考查了一元二次方程根的判别式,解题的关键在于掌握根的判别式的应用,即240b ac ->,方程有两个不相等的实数根;240b ac -=,方程有两个相等的实数根;240b ac -<,方程无实数根.6.D 【解析】【分析】根据球赛问题模型列出方程即可求解.【详解】解:设参加此次比赛的球队数为x 队,根据题意得:12x (x ﹣1)=36,化简,得x 2﹣x ﹣72=0,解得x 1=9,x 2=﹣8(舍去),答:参加此次比赛的球队数是9队.故选:D .【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握一元二次方程应用问题中的球赛问题.7.C【解析】【分析】把P(m,5)代入y=x2+x﹣1得m2+m=6,然后利用整体代入的方法计算代数式的值.【详解】解:把P(m,5)代入y=x2+x﹣1得m2+m﹣1=5,所以m2+m=6,所以m2+m+100=6+100=106.故选:C.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式,也考查了整体思想的应用.8.A【解析】【分析】根据函数图象“左加右减,上加下减”可得答案.【详解】解:把二次函数y=-x2的图象先向右平移2个单位,再向上平移5个单位后得到一个新图象是y=-(x-2)2+5,故选:A.【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.9.D【解析】【分析】根据二次函数的对称性,可利用对称性,找出点C的对称点C ,再利用二次函数的增减性可判断y值的大小.【详解】解: 函数的解析式是2(1)y x m =+-,∴对称轴是直线1x =-,∴点C 关于对称轴的点C '是1(3,)y -,那么点A 、B 、C '都在对称轴的左边,而对称轴左边y 随x 的增大而减小,于是312y y y >>.故选:D .【点睛】本题考查了二次函数图象上点的坐标的特征,解题的关键是利用二次函数的对称性得出C 关于对称轴的点C '.10.B 【解析】【分析】①函数对称轴在y 轴右侧,则ab <0,c >0,即可求解;②根据抛物线与x 轴有两个交点,由判别式即可得解;③当x=3时,y <0,即可求解;④函数的对称轴为:x=1,故b=-2a ,结合③的结论,代入9a+3b+c <0,即可得解;【详解】解:①函数对称轴在y 轴右侧,则ab <0,c >0,故①错误,不符合题意;②抛物线与x 轴有两个交点,则b 2﹣4ac >0,所以b 2>4ac ,故②错误,不符合题意;③x =3时,y =9a+3b+c <0,故正确,符合题意;④函数的对称轴为:x =1,故b =﹣2a ,∴2b a =-,由③知9a+3b+c <0,代入得302bc -+<,故2c <3b 正确,符合题意;故选:B .【点睛】本题考查的是二次函数图象与系数的关系,要求学生熟悉函数的基本性质,能熟练求解函数与坐标轴的交点及顶点的坐标等.11.x 1=0,x 2=4【解析】【分析】24x x -提取公因式x ,再根据“两式的乘积为0,则至少有一个式子的值为0”求解.【详解】解:240x x -=,(4)0x x -=,0x =或40x -=,10x =,24x =,故答案是:10x =,24x =.【点睛】本题考查一元二次方程的解法,解题的关键是掌握在解一元二次方程时应当注意要根据实际情况选择最合适快捷的解法,该题运用了因式分解法.12.-1【解析】【分析】把含有一个未知数且未知数的最高次数为二次的整式方程是一元二次方程,根据一元二次方程的概念即可完成.【详解】由题意得:212m +=且m-1≠0解得:m=-1即当m=-1时,方程(m-1)21m x ++3x+5=0是一元二次方程.【点睛】本题考查了一元二次方程的概念,其一般形式为20ax bx c ++=,其中a≠0,且a ,b ,c 是常数,理解概念是关键.13.2-【解析】【分析】方程()200++=≠ax bx c a 的两根分别为1x 和2x ,则1212,,b c x x x x a a+=-=根据根与系数的关系直接计算即可.【详解】解: 方程22430x x +-=的两根分别为1x 和2x ,1242.2b x x a ∴+=-=-=-故答案为: 2.-【点睛】本题考查的是一元二次方程的根与系数的关系,掌握“一元二次方程的根与系数的关系”是解题的关键.14.(3,1)【解析】【分析】由抛物线解析式可求得答案.【详解】根据二次函数的性质,由顶点式直接得出顶点坐标为(3,1).故答案是(3,1).【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在()2y a x h k =-+中,对称轴为直线x=h ,顶点坐标为(h ,k ).15.24【解析】【分析】根据题意列一元二次方程,解方程即可【详解】设每轮传染中平均一人传染x 人,则第一轮有(1)x +人感染,第二轮有2(1)x +人感染,根据题意可得:2(1)=625x +解得:1224,26x x ==-(不符题意,舍去)故答案为24【点睛】本题考查了一元二次方程的应用,解一元二次方程,根据题意列出方程是解题的关键.16.1<x <3【解析】【分析】直接写出抛物线在x 轴上方所对应的自变量的范围即可.【详解】解:不等式ax 2+bx+c >0的解集为1<x <3.故答案为1<x <3.【点睛】本题考查了二次函数与不等式(组):对于二次函数y=ax 2+bx+c (a 、b 、c 是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.17.272【解析】【分析】根据点O 与点A 的坐标求出平移后的抛物线的对称轴,然后求出点P 的坐标,过点P 作PM ⊥y 轴于点M ,根据抛物线的对称性可知阴影部分的面积等于四边形NPMO 的面积,然后求解即可.【详解】过点P 作PM ⊥y 轴于点M ,设PQ 交x 轴于点N ,∵抛物线平移后经过原点O 和点A (﹣6,0),∴平移后的抛物线对称轴为x=﹣3.∴平移后的二次函数解析式为:y=12(x+3)2+h ,将(﹣6,0)代入得出:0=12(﹣6+3)2+h ,解得:h=﹣92.∴点P 的坐标是(3,﹣92).根据抛物线的对称性可知,阴影部分的面积等于矩形NPMO 的面积,∴S=9273=22⨯-18.13x =+23x =【解析】【分析】根据方程特点,先将方程变形为267-=-x x ,则利用配方法求解即可.【详解】解:∵2670x x -+=,∴267-=-x x ,则26979x x -+=-+,即2(3)2x -=,∴3x -=∴13x =+23x =【点睛】本题考查了解一元二次方程,熟练掌握解一元二次方程的方法及步骤是解题的关键.19.(1)抛物线的对称轴x=52,顶点坐标为(52,212);(2)抛物线交y 轴于(0,﹣2),交x 轴于(2,0)或(12,0).【解析】【分析】(1)把二次函数y=-2x 2+5x-2化为顶点式的形式,根据二次函数的性质写出答案即可;(2)令x=0可求图象与y 轴的交点坐标,令y=0可求图象与x 轴的交点坐标;【详解】(1)∵y=﹣2(x 2﹣52x+2516﹣2516)﹣2=﹣2(x ﹣54)2+98,∴抛物线的对称轴x=54,顶点坐标为(54,98).(2)对于抛物线y=﹣2x 2+5x ﹣2,令x=0,得到y=﹣2,令y=0,得到﹣2x 2+5x ﹣2=0,解得:x=2或12,∴抛物线交y 轴于(0,﹣2),交x 轴于(2,0)或(12,0).20.()211 3.3y x =--【解析】【分析】设抛物线为:()2,y a x h k =-+根据抛物线的顶点坐标求解,h k ,再把()2,0A -代入解析式可得答案.【详解】解:设抛物线为:()2,y a x h k =-+ 抛物线的顶点是(1,-3),1,3,h k ∴==-∴抛物线为:()213,y a x =--把()2,0A -代入抛物线得:()22130,a ---= 93a ∴=,1,3a ∴=∴抛物线为:()211 3.3y x =--【点睛】本题考查的是利用待定系数法求解抛物线的解析式,根据题意设出合适的抛物线的解析式是解题的关键.21.(1)m≥-2;(2)m=2.【解析】【分析】(1)根据判别式在大于等于0时,方程有两个实数根,确定m 的值;(2)根据根与系数的关系可以求出m 的值.【详解】解:(1)∵△≥0时,一元二次方程有两个实数根,Δ=[2(m+1)]2-4×1×(m 2-3)=8m+16≥0,m≥-2,∴m≥-2时,方程有两个实数根.(2)∵x 12+x 22=x 1x 2+33,∴21212()3x x x x +-=33,∵1222b x x m a+=-=+,2123c x x m a ⋅==-,∴22(22)3(3)m m +--=33,解得m=2或-10(舍去),故m 的值是m=2.【点睛】本题考查了根的判别式和根与系数的关系,要记住12b x x a +=-,12c x x a⋅=-.22.(1)(36﹣2x );(2)AD =10米【解析】【分析】(1)设AD =x 米,则BC =AD =x 米,利用CD 的长=篱笆的长+门的宽﹣2AD ,即可用含x 的代数式表示出CD 的长;(2)利用矩形的面积计算公式,即可得出关于x 的一元二次方程,解之即可得出x 的值,再结合墙的长度为18米,即可确定AD 的长.【详解】(1)设AD =x 米,则BC =AD =x 米,∴CD =34+2﹣2AD =34+2﹣2x =(36﹣2x )米.故答案为:(36﹣2x ).(2)依题意得:x (36﹣2x )=160,化简得:x2﹣18x+80=0,解得:x1=8,x2=10.当x=8时,36﹣2x=36﹣2×8﹣20>18,不合题意,舍去;当x=10时,36﹣2x=36﹣2×10=16<18,符合题意.故AD的长为10米.【点睛】本题考查了列代数式,一元二次方程的应用,注意:求得的两个解要检验是否符合题意.23.(1)x=2;(2)每件商品的售价为34元时,商品的利润最大,为1960元.【解析】【分析】(1)销售利润=每件商品的利润×(180-10×上涨的钱数),根据每件售价不能高于35元,可得自变量的取值;(2)利用公式法结合(1)得到的函数解析式可得二次函数的最值,结合实际意义,求得整数解即可.【详解】解:(1)y=(30﹣20+x)(180﹣10x)=﹣10x2+80x+1800(0≤x≤5,且x为整数);令y=1920得:1920=﹣10x2+80x+1800x2﹣8x+12=0,(x﹣2)(x﹣6)=0,解得x=2或x=6,∵0≤x≤5,∴x=2,(2)由(1)知,y=﹣10x2+80x+1800(0≤x≤5,且x为整数).∵﹣10<0,∴当x=802(10)-⨯-=4时,y最大=1960元;∴每件商品的售价为34元答:每件商品的售价为34元时,商品的利润最大,为1960元.【点睛】本题考查考查二次函数的应用;得到月销售量是解决本题的突破点;注意结合自变量的取值求得相应的售价.24.(1)换元,化归;(2)x 1=0,x 2=﹣5【解析】【分析】(1)利用换元法达到了降次的目的,体现了化归的数学思想,据此可得答案;(2)令y =x 2+5x ,得到关于y 的一元二次方程,解之求出y 的值,从而得到两个关于x 的一元二次方程,分别求解可得.【详解】解:(1)在原方程得到方程①的过程中,利用换元法达到了降次的目的,体现了化归的数学思想;故答案为换元,化归.(2)令y =x 2+5x ,则原方程化为(y+1)(y+7)=7,整理,得:y 2+8y =0,解得y 1=0,y 2=﹣8,当y =0时,x 2+5x =0,解得:x 1=0,x 2=﹣5;当y =﹣8时,x 2+5x =﹣8,即x 2+5x+8=0,∵△=52﹣4×1×8=﹣7<0,∴此方程无解.综上,方程(x 2+5x+1)(x 2+5x+7)=7的解为x 1=0,x 2=﹣5.【点睛】本题考查利用换元法解方程,熟练掌握该方法是解题关键.25.(1)223y x x =+-;(2)(3)点Q 的坐标为(0,3)-或(2,3)--或(1-+或(1-【解析】【分析】(1)将A 、D 点代入抛物线方程2y x bx c =++,即可解出b 、c 的值,抛物线的解析式可得;(2)点C 、D 关于抛物线的对称轴对称,连接AC ,点P 即为AC 与对称轴的交点,PA+PD的最小值即为AC 的长度,用勾股定理即可求得AC 的长度;(3)求得B 点坐标,设点()2,23Q m m m +-,利用三角形面积公式,即可求出m 的值,点Q 的坐标即可求得.【详解】解:(1)∵抛物线2y x bx c =++经过点(3,0),(2,3)A D ---,∴930,423,b c b c -+=⎧⎨-+=-⎩解得2,3,b c =⎧⎨=-⎩∴抛物线的解析式为223y x x =+-.(2)由(1)得抛物线223y x x =+-的对称轴为直线1,(0,3)x C =--.∵(2,3)D --,∴C ,D 关于抛物线的对称轴对称,连接AC ,可知,当点P 为直线AC 与对称轴的交点时,PA PD +取得最小值,∴最小值为AC ==(3)设点()2,23Q m m m +-,令2230y x x =+-=,得3x =-或1,∴点B 的坐标为(1,0),∴4AB =.∵6QAB S = ,∴2142362m m ⨯⨯+-=,∴2260m m +-=或220m m +=,解得:1m =-1-0或2-,∴点Q 的坐标为(0,3)-或(2,3)--或(1-或(1-.【点睛】本题考察了待定系数法求解析式、两点之间线段最短、勾股定理、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答。
九年级数学月考试题(含答案)
第五次月考一 选择题(共10小题,每小题3分,计30分)1. 如图,在⊿ABC 中,AC=3,BC=4,AB=5,则tanB 的值是( )A.43 B.34 C.53 D.542. △ABC 中,∠A 、∠B 都是锐角,且sin A =21,cos B =23,则△ABC 的形状是( )A.直角三角形B.钝角三角形C.锐角三角形D.不能确定3. .在△ABC 中,AB =AC =4,BC =2,则4cos B 等于( )A.1B.2C.15D.4154. 如果∠A 为锐角,且cos A =41,那么∠A 的范围是 A . 0°<∠A ≤30° B.30°<∠A <45° C. 45°<∠A <60°D.60°<∠A <90°5 如图,沿AC 方向开山修路,为了加快施工进度,要在小山的另一边同时施工。
从AC 上的一点B ,取∠ABD=145°,BD=500米,∠D=55°,要使A 、C 、E 成一直线,那么开挖点E 离点D 的距离是( )A. 500sin55°米B. 500cos55°米C. 500tan55°米D. 500tan35°米6. 下列各关系式中,属于二次函数的是(x 为自变量) ( )A.y =81x 2B.y =12-xC.y =21x D.y =a 2x7. 已知二次函数c bx ax y ++=2的图象如右图所示, 则a、b、c满足( )A. a <0,b <0,c >0 B. a <0,b <0, c <0 C. a <0,b >0,c >0 D. a >0,b <0, c >0 8. 下列说法错误的是 ( )BACA.二次函数y =3x 2中,当x >0时,y 随x 的增大而增大B.二次函数y =-6x 2中,当x =0时,y 有最大值0C.a 越大图象开口越小,a 越小图象开口越大D.不论a 是正数还是负数,抛物线y =ax 2(a ≠0)的顶点一定是坐标原点 9. 在同一坐标系中,作y =x 2,y =-21x 2,y =31x 2的图象,它们的共同特点是( ) A.抛物线的开口方向向上B.都是关于x 轴对称的抛物线,且y 随x 的增大而增大C.都是关于y 轴对称的抛物线,且y 随x 的增大而减小D.都是关于y 轴对称的抛物线,有公共的顶点10. 已知a <-1,点(a -1,y 1),(a ,y 2)(a +1,y 3)都在函数y =x 2的图象上,则( )A.y 1<y 2<y 3B.y 1<y 3<y 2C.y 3<y 2<y 1D.y 2<y 1<y 3二 填空题(共6小题,每小题3分,计18分)11. 如图,等腰三角形ABC 的顶角为1200,腰长为10,则底边上的高AD=12. 某段公路每前进100 m ,就升高4 m ,则路面的坡度约为_____13. 如果由点A 测得点B 在北偏西20°的方向,那么由点B 测得点A 的方向是______ 14. 若函数y =(k 2-4)x 2+(k +2)x +3是二次函数,则k ______15. 写出一个开口向上,顶点是y 轴上的二次函数的表达式:16. 在边长为6 cm 的正方形中间剪去一个边长为x cm(x <6)的小正方形,剩下的四方框形的面积为y ,y 与x 之间的函数关系是______ 三 解答题(共8小题,计52分,解答应写出过程)17(本题满分6分)求值:sin 245°- cos60°+ tan60°·cos 230°18.(本题满分10分)如图,一位篮球运动员跳起投篮,球沿抛物线21 3.55y x =-+运行,然后准确落入篮框内.已知篮框的中心离地面的距离为3.05米. (1)球在空中运行的最大高度为多少米?(2)如果该运动员跳投时,球出手离地面的高度为2.25米,请问他距离篮框中心的水平距离是多少?19. (本小题满分12 分)在一次实践活动中,某课题学习小组用测倾器、皮尺测量旗杆的高度,他们设计了如下方案(如图①所示):(1)在测点A 处安置测倾器,测得旗杆顶部 M 的仰角∠MCE =α;(2)量出测点A 到旗杆底部N 的水平距离AN = m ; (3)量出测倾器的高度AC = h .根据上述测量数据,即可求出旗杆的高度MN .如果测量工具不变,请仿照上述过程,设计一个测量某小山高度(如图②)的方案: (1)在图②中,画出你测量小山高度 MN 的示意图(标上适当字母); (2)写出你设计的方案.x20. (本小题满分12 分)有一座抛物线形拱桥,桥下面在正常水位时AB宽20米,水位上升3米就达到警戒线CD,这时水面宽度为10米;(1)在如图的坐标系中,求抛物线的表达式.(2)若洪水到来时,再持续多少小时才能到拱桥顶?(水位以每小时0.2米的速度上升)21(本小题满分12 分)如图,一单杠高2.2米,两立柱之间的距离为1.6米,将一根绳子的两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状.1)一身高0.7米的小孩站在离立柱0.4米处,其头部刚好触上绳子,求绳子最低点到地面的距离;2)为供孩子们打秋千,把绳子剪断后,中间系一块长为0.4米的木板,除掉系木板用去的绳子后,两边的绳长正好各为2米,木板与地面平行.求这时木板到地面的距离(供选用数据:36.3≈1.8,64.3≈1.9,36.4≈2.1.)(1)(2)参考答案:一、1. A 2.B 3. A 4. D 5. B 6. A 7. A 8. C 9. D 10. C二、11.5 12. 1∶24.98 13. 南偏东20° 14. ≠±2 15. 21y x =+ 16. y =36-x 2三、17. 解:原式= 2212- (2分)=112244-+= (6分) 18.解:⑴ ∵抛物线 21 3.55y x =-+的顶点为(0,3.5) ∴最大高度为3.5米 (4分) ⑵ 在21 3.55y x =-+中 当 3.05y =时 213.05 3.55x =-+ ∴2 2.25x = ∴ 1.5x =±又∵x >0 ∴ 1.5x = …………………… (8分) 当 2.25y =时 212.25 3.55x =-+ ∴2 6.25x = ∴ 2.5x =± 又∵x <0 ∴ 2.5x =- …………………… (11分) 故运动员距离篮框中心水平距离为 1.5+2.5 = 4 …………………… (12分) 19.解:(1)正确画出示意图. (4分) (2)① 在测点A 处安置测倾器,测得此时山顶M 的仰角 ∠MCE = α;② 在测点A 与小山之间的B 处安置测倾器(A 、B 与N 在同一条直线上),测得此时山顶M 的仰角 ∠MDE = β;③ 量出测倾器的高度AC = BD = h ,以及测点A 、B 之间的距离AB = m . 根据上述测量数据,即可求出小山的高度MN . (12分)20.解:(1)设拱桥顶到警戒线的距离为m .∵抛物线顶点在(0,0)上,对称轴为y 轴, ∴设此抛物线的表达式为y =ax 2(a ≠0). 依题意:C (-5,-m ),A (-10,-m -3).∴⎩⎨⎧-=---=-.)10(3,)5(22a m a m ⎪⎩⎪⎨⎧-=-=∴.1,251m a ∴抛物线表达式为y =2125x -8分 (2)∵洪水到来时,水位以每小时0.2米的速度上升,|m |=1, ∴从警戒线开始再持续2.01=5(小时)到拱桥顶. 12分(1) (2)21解:(1)如图,建立直角坐标系, …………2分 设二次函数解析式为 y =ax 2+c …………3分 ∵ D (-0.4,0.7),B (0.8,2.2), …………4分∴ ⎩⎨⎧.=+,=+2.264.07.016.0c a c a …………5分∴ ⎪⎩⎪⎨⎧.=,=2.0528c a∴绳子最低点到地面的距离为0.2米. …………7分 (2)分别作EG ⊥AB 于G ,FH ⊥AB 于H …………8分 AG =21(AB -EF )=21(1.6-0.4)=0.6. 在Rt △AGE 中,AE =2, EG =22AG AE -=226.02 =64.3≈1.9. …………11分∴ 2.2-1.9=0.3(米).∴ 木板到地面的距离约为0.3米. …………12分。
数学初三月考必考题试卷
一、选择题(每题4分,共40分)1. 下列各数中,无理数是()A. √4B. √9C. √25D. √-12. 已知等差数列的前三项分别为2,5,8,则该数列的第四项是()A. 11B. 12C. 13D. 143. 如果一个三角形的内角分别为30°,60°,90°,那么这个三角形是()A. 等腰三角形B. 直角三角形C. 等边三角形D. 不规则三角形4. 已知函数f(x) = x^2 - 4x + 4,则函数的图像是()A. 开口向上的抛物线B. 开口向下的抛物线C. 直线D. 梯形5. 在直角坐标系中,点A(-2,3),点B(4,-1),则线段AB的长度是()A. 5B. 6C. 7D. 86. 下列等式中,正确的是()A. 3^2 = 9B. 5^2 = 20C. 6^2 = 36D. 7^2 = 497. 如果等比数列的第一项为a,公比为r,那么第n项an等于()A. a r^(n-1)B. a / r^(n-1)C. a r^nD. a / r^n8. 下列各式中,能表示圆的方程是()A. x^2 + y^2 = 1B. x^2 - y^2 = 1C. x^2 + y^2 = 4D. x^2 - y^2 = 49. 在直角坐标系中,直线y = 2x + 1与x轴的交点坐标是()A. (1, 0)B. (0, 1)C. (0, -1)D. (-1, 0)10. 已知函数f(x) = |x - 2|,则函数的零点是()A. 2B. -2C. 0D. 1二、填空题(每题4分,共20分)11. 一个正方形的边长为5cm,则它的周长是______cm。
12. 若等差数列的第一项为3,公差为2,则第10项是______。
13. 在直角三角形ABC中,∠C=90°,AC=3cm,BC=4cm,则AB=______cm。
14. 已知函数f(x) = 2x - 3,当x=2时,f(x)=______。
江西省金溪县第二中学2024届九年级上学期第一次月考数学试卷(含答案)
金溪二中2024届九年级第一次月考试题数学试题本试卷满分120分,考试时间120分钟,一、选择题(本大题共6个小题,每小题3分,共18分)每小题只有一个正确的选项.1.下列方程是一元二次方程的是()A .x 2−2x =0 B .x +1=2 C .x 2+y =0 D .x 3+2x 2=12.菱形不具备的性质是()A .是轴对称图形B .是中心对称图形C .对角线互相垂直D .对角线一定相等3.关于x 的方程x 2﹣mx ﹣1=0根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .不能确定4.用配方法解方程x 2+2x =1,变形后的结果正确的是()A .(x +1)2=1B .(x +1)2=0C .(x +1)2=2D .(x +1)2=15.如图,已知点P 是菱形ABCD 的对角线AC 延长线上一点,过点P 分别作AD 、DC 延长线的垂线,垂足分别为点E 、F .若∠ABC =120°,AB =6,则PE−PF 的值为()A . B .2 C .3 D .36.为庆祝神舟十三号航天员顺利返回、神舟十四号载人飞船成功发射,小明同学在数学兴趣活动课上用图1的“七巧板”,设计拼成了图2的飞船,则飞船模型面积与矩形框的面积之比为()A .1:3B .1:2C .3:5D .8:25二、填空题(本大题共6个小题,每小题3分,共18分)7.方程2x 2+x =1的常数项是_______.8.在菱形ABCD 中,对角线AC 与BD 相交于点O ,且AC =5,BD =12,则AB =________.9.已知矩形相邻两边长是一元二次方程x 2−5x +2=0的两个根,那么这个矩形的周长是_______.10.用一条长40cm 的绳子围成一个面积为64cm 2的矩形.则该矩形的宽为____cm .11.如图是一张矩形纸片ABCD ,点M 是对角线AC 的中点,点E 在BC 边上,把△DCE 沿直线DE 折叠,使点C 落在对角线AC 上的点F 处,连接DF ,EF .若MF =AB ,则∠DAF =_______.12.若a 是方程x 2-4x +3=0的根,b 是4的平方根,则a 2-ab +b +2的值为图2⑦①①②②③③④④⑤⑤⑥⑥⑦第6题图图1第11题图F第5题图ABC D P E_________________.三、(本大题共5小题,每小题6分,共30分)13.(1)用适当的方法解一元二次方程:(x -1)(2x -3)=x -1.(2)如图,在正方形 ABCD 中,点E 、F 分别在CD 、AD 上,且△BEF 是等边三角形.求证:CE =AF 14.当x 取何值时,多项式x 2﹣6x ﹣16的值与4+2x 的值互为相反数?15.已知关于x 的一元二次方程x 2+(2k +1)x +k 2+1=0有两个不等实数根x 1,x 2.(1)求k 的取值范围;(2)若x 1x 2=5,求k 的值.16.金溪日新超市销售某种商品,平均每天可售出20件,每件盈利40元,为了扩大销量,增加盈利,该店采取了降价措施.经过一段时间后,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价6元,则平均每天销售数量为________件;(2)为尽快减少库存,要使该商店每天销售利润为1200元,每件商品应降价多少元?17.如图,□ABCD ≌□AEFG ,C 、B 、E 、F 点在同一条线上,请仅用无刻度的直尺按下列要求画图.(1)在图1中,画出线段AB 的中点;(2)在图2中,画出菱形AMNQ ,使点M 、N 、Q 分别在AB 、BE 、AE 上.四、(本大题共3小题,每小题8分,共24分)18.如图1,在正方形ABCD 中,E 点是AD 延长线上的一点,F 点是BC 上一点,EG ⊥AF ,AE =AF ,则EG 与AB 的数量关系是___________;变式:若F 点在CB 的延长线上,E 点在DA 的延长线上,EG ⊥AF ,AE =AF ,EG 与AB 的数量关系还成立吗?在图2中完成画图,并说明理由.F DA CBEGABC DEF图2GDABCEADB C19.如图,在△ABC 中,EF ∥AC ,DE ∥BC ,CE ⊥AB ,F 点是BC 的中点.(1)求证:四边形CDEF 是菱形.(2)若EB =6,CE =8,求菱形CDEF 的面积.20.设一元二次方程ax 2+bx +c =0(a≠0)的两个根为x 1、x 2,若该方程的一个根与另一个根的2倍的和为0,我们就称这个一元二次方程为“两根相反倍数”方程.(1)如果方程2x 2+3x +2m -3=0是“两根相反倍数”方程,则m =______;(2)如果方程x 2+2x +c =0是“两根相反倍数”方程,求2x 1-x 1 x 2的值.五、(每小题9分,共18分)21.如图,C 是直线l 上的两点,AC ⊥l ,点B 是直线l 上的一个动点,且在C 点右侧,以AB 为边在直线l 的上方作□ABDE ,若AC =3,AE =12,BE +CB =17.(1)若四边形ABDE 为矩形时,求CB 的长;(2)若四边形ABDE 为菱形时,求CB 的长.22.如图,图1是一个用总长65dm 的木板制作的矩形置物架,图2是它的简化图.已知:矩形置物架ABCD 是由一个正方形EHKL ,四个全等的矩形BENM 、矩形LKSR 、矩形RSGF 、矩形HCQP ,两个全等的矩形AMNF 、矩形PQDG 组成的,设正方形的边长LE =x(dm).(1)则AB = ___________dm ,FR =___________dm(用含x 的代数式表示);(2)当x =4dm 时,则矩形ABCD 的面积为 _____________dm 2;(3)为了便于置放物品,EH 的高度不得超过4dm ,若矩形ABCD 的面积为99(dm 2),求x 的值.CA BFDEA B CDE F G H M N P Q R SL KAlCBDE第19题图第18题图图1六、(本大题共1小题,共12分)23.探究1:(1)如图1,在菱形ABCD 中,AB =8,∠ABC =60°,P 点为射线BC 上一动点,DE ⊥AP于E ,连接BE ,PD .当PD =AD 时,BE =_______________;探究2:(2)如图2,在矩形ABCD 中,AB =8,BC =10,P 为为射线BC 上一点,DE ⊥AP 于E ,连接BE ,PD .当PD =AD 时,BE =_______________;拓展探究:(3)如图3,在□ABCD 中,AB =6,BC =8,∠ABC =60°,P 点为射线BC 上一点,DE ⊥AP于E ,连接BE ,PD .(数据:≈6)①若BE ∥PD ,则S △ADE ____S △PCD ;(填“>”或“=”或“<”)②若PD =AD ,求BE 的长.图1图2A BCDEP 图1图3A P BCDEABCDEP图2数学参考答案一、选择题1.A;2.D;3.B;4.C;5.C;6.D;二、填空题7.-1;8.6.5;9.10;10.4;11.18°;12.3或7或15三、解答题13.(1)解:(x-1)(2x-3)-(x-1)=0(x-1)(2x-3-1)=0x1=1,x2=2…………………………………3分(2)证明:∵正方形ABCD∴∠A=∠C=90°AD=AC∵△DEF为等边三角形∴DF=DE∴Rt△ADF≌Rt△CDE(HL)∴AF=CE…………………………………6分14.解:依题意得x2-6x-16+4+2x=0…………………………2分x2-4x-12=0(x-6)(x+2)=0x1=6,x2=-2…………………………………5分当x为6或-2时,多项式x2﹣6x﹣16的值与4+2x的值互为相反数…………………………………6分15.(1)解:△=(2k+1) 2-4(k2+1)=4k-3,∵方程有两个不等实数根,∴4k-3>0,∴k>(2)根据根与系数的关系得:x1x2=k2+1=5.k=±2∵k>∴k=2…………………………………6分16.解:(1)由题意得,若降价6元,则平均每天销售数量为20+6×2=32件…………………………………2分(2)设每件商品应降价x元,由题意得,(40-x)(20+2x)=1200,整理得:x2-30x+200=0,解得x=10或x=20,∵要尽快减少库存,∴x=20,∴每件商品应降价20元.………………………6分17.解:(1)如图1,点M为所求的AB的中点;……………3分(2)如图2,四边形AMNQ为所求的菱形.……………6分四、(本大题共3小题,每小题8分,共24分)18.解(1)EG =AB…………………………………3分(2)如图(画出图形)…………………………………4分EG =AB 仍成立:…………………………………5分∵正方形ABCD∴∠ABF =∠ABC =90°, DE ∥CF∴∠EAG =∠AFB…………………………………6分∵EG ⊥AF ∴∠AGE =90°∴∠AGE =∠ABF在△AEG 和△FAB 中∠AGE =∠ABF ∠EAG =∠AFB AE =AF∴△AEG ≌△FAB∴EG =AB…………………………………8分19.(1)证明:∵EF ∥AC ,DE ∥BC ,∴四边形CDEF 为平行四边形∵CE ⊥AB ,F 点是BC 的中点∴EF =CF∴四边形CDEF 为菱形…………………………………4分(2)S △BCE =×6×8=24∵CE ⊥AB ,F 点是BC 的中点,∴S △CEF =S △BCE =12,∴S 菱形CDEF =2S △CEF =24…………………………………8分20.(1)m =-3…………………………………3分(2)分两种情况设x 1+2x 2=0,则x 1=-2x 2根据根与系数的关系得:x 1+x 2=-2,x 1+2x 2=0A DB C图2G E F G ABC D EF图2QN MMGABC DEF图1MG ABC D EF图2N Q解得:x 2=2,x 1=-42x 1-x 1x 2=-8-(-4×2)=-8+16…………………………………4分设x 2+2x 1=0,则x 2=-2x 1根据根与系数的关系得:x 1+x 2=-2,x 1+2x 2=0解得:x 1=2,x 2=-42x 1-x 1x 2=4-(-4×2)=4+16…………………………………8分五、(每小题9分,共18分)21.解:(1)∵矩形ABDE ∴∠BAE =90°设CB =x ,则BE =17-x 由勾股定理得:x 2+32=(17-x)2-122x =4………………5分(2)∵菱形ABDE∴AB =AE ∴x 2+32=122解得:x =3…………………………………9分22.解:(1)AB =…………………………………2分FR =…………………………………3分(2)111cm 2…………………………………6分(3)根据题意得:3x·=99………………………7分化简得:7x 2-65x +4×33=0 (x -3)(7x -44)=0解得:x 1=3,x 2=………………………8分∵EH 的高度不得超过4dm∴x =3………………………9分六、(本大题共1小题,共12分)23.(1)4或4…………………………………………3分(2)2或4…………………………………………5分(3)①延长BE 交AD 于F 点∵□ABCD∴AD ∥BC ,AD =BC图3A P BCDEF∵BE ∥DP∴四边形BPDF 为平行四边形∴DF =BP ∴AF =CP ∴S △ABF =S △PCDS △FDE +S △PBE =S □ABCD∵S △ABE +S △PBE =S □ABCD∴S △ABE =S △FDE∴S △ADE =S △AFE +S △FDE =S △AFE +S △ABE =S △ABF =S △PCD ……………………7分②分两种情况分析当P 点在线段BC 上时,延长BE 交AD 于G 点,过G 点作GH ⊥BA 交BA 的延长于H 点,过D 点作DF ⊥BC 于F 点.∵AD =PD ,DE ⊥AP ∴AE =EG易得:AG =BP ∵□ABCD ∴AB ∥CD∴∠DCF =∠ABC =60°在Rt △CDF 中CF =CD =3,DF =3在Rt △PDF 中PF ==≈6∴PC =PF -CF =3∴PB =BC -CP =5∴AG =5在Rt △AGH 中AH=AG=GH=在Rt △BGH 中BG ==BE =…………………………………………9分当P 点射线CP 上时延长BE 交AD 至G 点,使EG =BE ,过G 点作GH ⊥BC 交BC 于H 点,过D 点作DF ⊥BC 于F 点,连PG .∵AD =PD ,DE ⊥AP ∴AE =EG 易得:PG =AB ,PG ∥AB 在Rt △PGH 中图4A P BDEFHG图5PH=3,GH=3在Rt△CDF中CF=3,DF=3在Rt△PDF中PF==≈6BH=BC+CF+PF+PH=20在Rt△BGHF中BG==BE=…………………………………………11分综上可知:BE的长为或.…………………………………………12分。
沪科版九年级上册数学第一次月考试卷含答案
沪科版九年级上册数学第一次月考试题一、单选题1.已知反比例函数k y x =的图象经过点()1,2A -,那么,(k =)A .2B .2-C .12D .12-2.函数()211m y m x+=+是二次函数,则m 的值是()A .±1B .1C .-1D .以上都不对3.把一根长为50cm 的铁丝弯成一个长方形,设这个长方形的一边长为x (cm ),它的面积为y (cm 2),则y 与x 之间的函数关系式为()A .y=-x 2+50xB .y=x 2-50xC .y=-x 2+25xD .y=-2x 2+254.如果点()1,2同时在函数y ax b =+与x b y a -=的图象上,那么a ,b 的值分别为()A .a=-3,b=-1B .a=-3,b=1C .a=1,b=-3D .a=-1,b=35.二次函数2y ax b =+与反比例函数ab y x=在同一平面直角坐标系中的图象可能是()A .B .C .D .6.抛物线2(1)2y x =-+的顶点坐标是()A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2)7.如果矩形的面积为6cm 2,那么它的长ycm 与宽xcm 之间的函数关系用图象表示大致是()A .B .C .D .8.如图,在Rt ABC 中,90ACB ∠= ,CD AB ⊥于点D .3AC =,6AB =,则(AD =)A .32B .3C .92D .339.二次函数2y ax bx c =++的图象如图所示,则下列结论:①0abc <;②240b ac ->;③20a b +>;④0a b c ++<;⑤220ax bx c +++=的解为0x =,其中正确的有()A .5个B .4个C .3个D .2个10.如图,在直角坐标系中,有菱形OABC ,A 点的坐标是()10,0,双曲线(0)k y x x=>经过点C ,且160OB AC ⋅=,则k 的值为()A .40B .48C .64D .80二、填空题11.以原点O 为位似中心,将ABC 缩小,使变换后得到的111A B C 与ABC 对应边的比为1:2.请在网格内画出111A B C ,并写出点1A 的坐标________.12.方程2123x x x-+=的实根的个数为________个.13.结合二次函数224233y x x =-++的图象图回答:() 1当x =________时,()02y =当________时,()03y >当________时,0y <.14.若37a b =,则a b a b+=-________.15.函数2241y x x =++,当x ________时,y 随x 的增大而减小.16.如图,ABC 是一块锐角三角形材料,边6BC cm =,高4AD cm =,要把它加工成一个矩形零件,使矩形的一边在BC 上,其余两个顶点分别在AB 、AC 上,要使矩形EGFH 的面积最大,EG 的长应为________cm .17.已知数3,6,请写出一个数,使这三个数中的一个数是另外两个数的比例中项,这个数是____________.(填写一个即可)18.已知抛物线212y x bx =+经过点()4,0A .设点()1,3C -,请在抛物线的对称轴上确定一点D ,使得AD CD -的值最大,则D 点的坐标为________.19.下列函数中________是反比例函数.①1y x x =+,②231x y x +=,③12x y -=,④32y x=.20.如图,线段AB 、CD 相交于E ,//AD BC ,若:1:2AE EB =,1ADE S = ,则AEC S 等于________.三、解答题21.如图,抛物线223y x x =--+于x 轴交于()1,0A ,()3,0B -两点,交y 轴于点()0,3C ;在抛物线上是否存在点H ,使得BCH 为直角三角形.22.已知两个相似三角形的一对对应边长分别是35cm 和14cm()1已知他们的周长相差60cm ,求这两个三角形的周长.() 2已知它们的面积相差2588cm ,求这两个三角形的面积.23.如图,在矩形ABCD 中,6AB cm =,12BC cm =,点P 沿边AB 从点A 向点B 以1/cm s 的速度移动;同时,点Q 从点B 沿边BC 向点C 以2/cm s 的速度移动,设点P 、Q 移动的时间为t s .问:() 1当t 为何值时PBQ 的面积等于28cm() 2当t 为何值时DPQ 是直角三角形?() 3是否存在t 的值,使DPQ 的面积最小,若存在,求此时t 的值及此时的面积;若不存在,请说明理由.24.随着某市近几年城市建设的快速发展,对花木的需求量逐年提高,某园林专业户计划投资种植花卉及树木.根据市场调查与预测,种植树木的利润y 1与投资量x 成正比例关系,如图①所示;种植花卉的利润y 2与投资量x 成二次函数关系,如图②所示(注:利润与投资量的单位:万元).(1)分别求出利润y 1与y 2关于投资量x 的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?25.如图,是小亮晚上在广场散步的示意图,图中线段AB 表示站立在广场上的小亮,线段PO 表示直立在广场上的灯杆,点P 表示照明灯的位置.()1在小亮由B 处沿BO 所在的方向行走到达O 处的过程中,他在地面上的影子长度越来越________(用“长”或“短”填空);请你在图中画出小亮站在AB 处的影子BE ;()2当小亮离开灯杆的距离 3.6OB m =时,身高为1.6m 的小亮的影长为1.2m ,①灯杆的高度为多少m ?②当小亮离开灯杆的距离6OD m =时,小亮的影长变为多少m ?26.如图1,抛物线23y x x =--与直线22y x =--交于A 、B 两点,过A 作//AC x 轴交抛物线于点C ,直线AB 交x 轴于点D .()1求A 、B 、C 三点的坐标;()2若点H 是线段BD 上的一个动点,过H 作//HE y 轴交抛物线于E 点,连接OE 、OH ,当310HE AC =时,求OEH S 的值;()3如图2,连接BO ,CO 及BC ,设点F 是BC 的中点,点P 是线段CO 上任意一点,将BFP 沿边PF 翻折得到GPF ,求当PC 为何值时,GPF 与CFP 重叠部分的面积是BCP 面积的14.参考答案1.B2.B3.C4.D5.B6.D7.C8.A9.C10.B11.()1,412.113.1-或313x -<<1x <-或3x >.14.52-15.1<-16.217.或1.5或1218.()2,6-19.④20.221.在抛物线上存在使BCH 为直角三角形的点H .22.(1)较大的三角形的周长为100cm ,较小的三角形的周长为40cm ;(2)较大的三角形的面积为2700cm ,较小的三角形的面积为2112cm .23.(1)当2t s =或4t s =时,PBQ 的面积等于28cm ;(2)当t 的值为0秒或32秒或6秒时,DPQ 是直角三角形;(3)存在,当3t =时,DPQ S 有最小值27.24.(1)利润y 1关于投资量x 的函数关系式是y 1=2x (x≥0),利润y 2关于投资量x 的函数关系式是y=12x 2(x≥0);(2)当x=8时,z 的最大值是32.25.(1)短,画图见解析;(2)①x=6.4;②小亮的影长是2米.26.(1)点A 坐标()1,4-,点B 坐标()2,2-,点C 坐标()4,4--;(2)3338OEH S +=;(3)当PC =时,GPF 与CFO 重叠部分的面积是BCP 面积的14.。
2024-2025学年江苏省连云港海宁中学九年级上学期第一次月考数学试题及答案
江苏省连云港海宁中学2024-2025学年初中九上数学第一次月考试题一.选择题(共8小题)1.已知任意实数满足等式x=a2﹣4ab+4b2,y=4a﹣8b﹣5,则x,y的大小关系是()A.x=y B.x>y C.x<y D.x≥y2.一元二次方程x2﹣8x﹣a=0的两实数根都是整数,则下列选项中a可以取的值是()A.12B.16C.20D.243.在平面直角坐标系中,已知点P(m﹣1,n2)、Q(m,n2﹣1),其中m≥0,则下列函数的图象可能同时经过P、Q两点的是()A.y=2x+b B.y=ax2+2ax+c(a>0)C.y=ax+2(a>0)D.y=﹣x2﹣2x+c(c>0)4.已知二次函数y=ax2+bx+c(a≠0)的图象的一部分如图所示,其中对称轴为:x=1,下列结论:①abc>0;②a+c>b;③2a+3b>0;④a+b>am2+bm(m≠1);⑤c<﹣2a,上述结论中正确结论的个数为()A.1个B.2个C.3个D.4个5.如图1,在平行四边形ABCD中,BC⊥BD,点F从点B出发,以1cm/s的速度沿B→C→D匀速运动,点E从点A出发,以1cm/s的速度沿A→B匀速运动,其中一点停止时,另一点随之停止运动,图2是△BEF的面积S(cm2)随时间t(s)变化的函数图象,当△BEF的面积为10cm2时,运动时间t为()A.s B.4s或s C.5s D.3s或7s6.已知:x1,x2是一元二次方程x2+2ax+b=0的两根,且x1+x2=3,x1x2=1,则a、b的值分别是()A.a=﹣3,b=1B.a=3,b=1C.,b=﹣1D.,b=17.关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k取值范围是()A.k≥﹣2B.k>2C.k<2且k≠1D.k>2且k≠18.如图,已知抛物线y=ax2+bx+c(a≠0)经过点(﹣2,0),对称轴为直线x=1,下列结论中正确的是()A.abc>0B.b=2a C.9a+3b+c<0D.8a+c=0二.填空题(共7小题)9.已知(a2+b2)(a2+b2﹣6)=16,则a2+b2的值为.10.若关于x的方程(m﹣2)x2﹣2x+1=0有两个不等的实根,则m的取值范围是.11.已知关于x的方程ax2﹣bx﹣c=0(a≠0)的系数满足a﹣b﹣c=0,且4a+2b﹣c=0,则该方程的根是.12.当m=时,关于x的方程x2﹣6x﹣m=0有两个相等的实数根.13.若关于x的一元二次方程ax2+bx﹣1=0(a≠0)有一根为x=1,则一元二次方程a(x﹣1)2+b(x﹣1)﹣1=0必有一根为.14.如图,二次函数y=a(x﹣1)2的图象经过点A(﹣1,4),与y轴交于点B,C、D分别为x轴、直线x=1上的动点,当四边形ABCD的周长最小时,则点D的坐标为.15.抛物线y=ax2﹣4ax﹣3(其中a>0,a为常数),若当4≤x<5时,对应的函数值y恰好有3个整数值,则a的取值范围是.三.解答题(共9小题)16.已知关于x的方程x2﹣2(m+1)x+m2﹣3=0.(1)当m取何值时,方程有两个不相等的实数根?(2)设x1、x2是方程的两根,且(x1+x2)2﹣(x1+x2)﹣12=0,求m的值.17.我们在求代数式y2+4y+8的最小值时,可以考虑用如下法求得:解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0,∴(y+2)2+4≥4∴y2+4y+8的最小值是4.请用上面的方法解决下面的问题:(1)代数式m2+10m﹣6的最小值为;(2)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为24m的栅栏围成.如图,设AB=x(m),①AB的取值范围是;②当x取何值时,花园的面积最大?最大面积是多少?18.商场某种商品平均每天可销售40件,每件盈利60元,为了尽快减少库存,商场决定采取适当的降价措施.经调查,每件商品每降价1元,商场平均每天可多销售2件.(1)当每件盈利50元时,每天可销售件.(2)每件商品降价多少元时,商场日盈利可达到3072元?19.已知关于x的方程x2+ax+a﹣1=0.(1)若该方程的一个根为2,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有实数根.20.已知二次函数y=ax2+c的图象经过点(8,10),.(1)求二次函数的表达式;(2)点P为二次函数图象上一点,点F在y轴正半轴上,将线段PF绕点P逆时针旋转90°得到PE,点E恰好落在x轴正半轴上,求点P的坐标.21.某数学兴趣小组研究函数y=|x﹣1|的图象:首先根据式子结构采用分类的数学方法:当x≥1时,y=x﹣1;当x<1时,y=1﹣x.然后根据一次函数图象的画法分别画出图象,如图(1)所示.类似的,研究函数y=x|x﹣2|的图象时,他们已经画出了x≤2时的图象.(1)请你用描点法补全此函数的图象;(2)根据图象,直接写出当x为何值时,y随着x的增大而减小?(3)当0≤x≤a时,y的最大值是1,最小值是0,请你直接写出a的取值范围.22.如图,二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点,与y轴交于点C;(1)用配方法将二次函数y=2﹣2x﹣3化为y=a(x+h)2+k的形式;(2)观察图象,当0≤x<4时,y的取值范围为;(3)设二次函数y=x2﹣2x﹣3的图象的顶点为M,求△ACM的面积.23.如图,抛物线y=﹣x2+bx+c的图象与y轴交于点C,与x轴交于A、B两点,已知A(﹣2,0),B (4,0),点Q为射线OB上一点,过点Q作y轴的平行线,分别交抛物线、直线BC于点D、E.(1)求抛物线的表达式;(2)连接CD、AC,是否存在△CDE与△ABC相似,若存在,请求出点Q的坐标,若不存在,请说明理由;(3)是否存在以点C、D、G、E为顶点的四边形是平行四边形,若存在,请直接写出点D的坐标,若不存在,请说明理由.24.如图,抛物线y=ax2+bx+3与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P是抛物线上的动点,且满足S△P AO=2S△PCO,求出P点的坐标;(3)连接BC,点E是x轴一动点,点F是抛物线上一动点,若以B、C、E、F为顶点的四边形是平行四边形时,请直接写出点F的坐标.参考答案与试题解析一.选择题(共8小题)1.【解答】解:∵x﹣y=a2﹣4ab+4b2﹣(4a﹣8b﹣5)=(a﹣2b)2﹣4(a﹣2b)+4+1=[(a﹣2b)﹣2]2+1,∴[(a﹣2b)﹣2]2+1>0,∴x>y.故选:B.2.【解答】解:当a=12时,方程为x2﹣8x﹣12=0,解得不是整数,故A选项不符合题意;当a=16时,方程为x2﹣8x﹣16=0,解得不是整数,故B选项不符合题意;当a=20时,方程为x2﹣8x﹣20=0,解得x=10或x=﹣2是整数,故C选项符合题意;当a=24时,方程为x2﹣8x﹣24=0,解得不是整数,故D选项不符合题意;解法二:x=4±,由选项可知,a=20,符合题意.故选:C.3.【解答】解:∵m>0,∴m﹣1<m,∵n2>n2﹣1,∴当m>0时,y随x的增大而减小,A、y=2x+b中,y随x的增大而增大,故A不可能;B、y=ax2+2ax+c(a>0)中,开口向上,对称轴为直线x=﹣=﹣1,∴当x>﹣1时,y随x的增大而增大故B不可能;C、y=ax+2 中,a>0,y随x的增大而增大,故C不可能;D、y=﹣x2﹣2x+c中,开口向下,对称轴为直线x==﹣1,∴当x>﹣1时,y随x的增大而减小,故D有可能,故选:D.4.【解答】解:∵抛物线的开口向下,∴a<0,∵对称轴为:x=﹣=1,∴b=﹣2a>0,∵抛物线与y轴交于y轴的正半轴,∴c>0,∴abc<0,故①不正确,∵2×1﹣3=﹣1,当x=3时,y=0,∴当x=﹣1时,a﹣b+c=0,∴a+c=b,故②不正确,∵b=﹣2a,∴2a+3b=2a﹣6a=﹣4a>0,故③正确,∵当x=1时,y=a+b+c,a<0,∴函数的最大值为:a+b+c,∴a+b+c>am2+bm+c(m≠0),∴a+b>am2+bm,故④正确,由上知,a﹣b+c=0,b=﹣2a,∴c=﹣3a>﹣2a,故⑤不正确,∴③④正确,故选:B.5.【解答】解:由图1、图2可知,当t=6时,点F与点C重合;当6<t≤10时,点F在CD上运动,而点E继续在AB上运动4s,∵四边形ABCD是平行四边形,点F、点E的速度都是1cm/s,∴CD=AB=1×10=10(cm),BC=1×6=6(cm),∵BC⊥BD,∴∠CBD=90°,∴BD===8(cm),当0<t≤6时,如图3,作FG⊥AB,交AB的延长线于点G,则∠G=∠CBD=90°,∵AB∥CD,∴∠GBF=∠C,∴△BGF∽△CBD,∴=,∴GF=•BF=×t=t(cm),∴S=×t(10﹣t)=﹣t2+4t,当S=10时,则﹣t2+4t=10,解得t1=t2=5;当6<t≤10时,如图4,作CH⊥AB,交AB的延长线于点H,∵CD•CH=BC•BD=S△CBD,∴×10CH=×6×8,解得CH=,∴S=×(10﹣t)=﹣t+24,当S=10时,则﹣t+24=10,解得t=,不符合题意,舍去,综上所述,运动时间t为5s,故选:C.6.【解答】解:∵x1,x2是一元二次方程x2+2ax+b=0的两根,∴x1+x2=﹣2a,x1x2=b,∵x1+x2=3,x1x2=1,∴﹣2a=3,b=1,即a=﹣,b=1,故选:D.7.【解答】解:∵关于x的一元二次方程(k﹣1)x2+2x﹣4=0有两个不相等的实数根,∴,解得:k<2且k≠1.故选:C.8.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线对称轴为直线x=1,∴﹣=1,∴b=﹣2a>0,∵抛物线交y轴的正半轴,∴c>0,∴abc<0,故A、B错误;∵抛物线的对称轴为直线x=1,而点(﹣2,0)关于直线x=1的对称点的坐标为(4,0),∴当x=3时,y=9a+3b+c>0,故C错误;∵抛物线y=ax2+bx+c经过点(﹣2,0),∴4a﹣2b+c=0,∵b=﹣2a,∴4a+4a+c=0,即8a+c=0,故D正确,故选:D.二.填空题(共7小题)9.【解答】解:设a2+b2=y,则原方程换元为y(y﹣6)=16,即y2﹣6y﹣16=0∴(y﹣8)(y+2)=0,解得:y1=8,y2=﹣2,即a2+b2=8或a2+b2=﹣2(不合题意,舍去),∴a2+b2=8.故答案为:8.10.【解答】解:根据题意得m﹣2≠0且Δ=(﹣2)2﹣4(m﹣2)>0,解得m<3且m≠2.故答案为m<3且m≠2.11.【解答】解:∵关于x的方程ax2﹣bx﹣c=0(a≠0)的系数满足a﹣b﹣c=0,且4a+2b﹣c=0,∴该方程的根是x1=1,x2=﹣2.故答案为:x1=1,x2=﹣2.12.【解答】解:∵关于x的方程x2﹣6x﹣m=0有两个相等的实数根,∴Δ=(﹣6)2﹣4×1×(﹣m)=36+4m=0,解得:m=﹣9.故答案为:﹣9.13.【解答】解:对于一元二次方程a(x﹣1)2+b(x﹣1)﹣1=0,设t=x﹣1,所以at2+bt﹣1=0,而关于x的一元二次方程ax2+bx﹣1=0(a≠0)有一根为x=1,所以at2+bt﹣1=0有一个根为t=1,则x﹣1=1,解得x=2,所以a(x﹣1)2+b(x﹣1)﹣1=0必有一根为x=2.故答案为:x=2.14.【解答】解:作点A关于对称轴x=1的对称点E,则E(3,4),作点B关于x轴的对称点F,连接EF交x轴于点C,交对称轴于点D,此时四边形ABCD的周长取得最小值,将点A(﹣1,4)代入y=a(x﹣1)2得4a=4,解得a=1,∴抛物线解析式为y=(x﹣1)2=x2﹣2x+1,∴点B坐标为(0,1),则点F(0,﹣1),设CD所在直线解析式为y=mx+n,将E(3,4),F(0,﹣1)代入得,解得,所以CD所在直线解析式为y=x﹣1.当x=1时,y=,∴D(1,).故答案为:(1,).15.【解答】解:∵抛物线y=ax2﹣4ax﹣3(其中a>0,a为常数),∴对称轴为直线x=﹣=2,∴当4≤x<5时,y随x的增大而增大,∴当x=4时,y=﹣3,x=5时,y=5a﹣3,∵当4≤x<5时,对应的函数值y恰好有3个整数值,∴它的三个整数分别是﹣3,﹣2,﹣1,∴﹣1≤5a﹣3≤0,∴;故答案为:.三.解答题(共9小题)16.【解答】解:(1)∵方程有两个不相等的实数根,∴Δ=b2﹣4ac=[﹣2(m+1)]2﹣4×1×(m2﹣3)=16+8m>0,解得:m>﹣2;(2)根据根与系数的关系可得:x1+x2=2(m+1),∵(x1+x2)2﹣(x1+x2)﹣12=0,∴[2(m+1)]2﹣2(m+1)﹣12=0,解得:m1=1或m2=﹣(舍去)∵m>﹣2;∴m=1.17.【解答】解:(1)m2+10m﹣6=m2+5m+25﹣25﹣6=(m+5)2﹣31,∵(m+5)2≥0,∴(m+5)2﹣31≥﹣31,∴m2+10m﹣6的最小值是﹣31,故答案为:﹣31;(2)①设AB=x m,则BC=(24﹣2x)m,∵墙长15m,∴0<24﹣2x≤15,解得≤x<12,∴AB的取值范围是≤x<12.故答案为:≤x<12;②设花园的面积为S,由题意得:S=x(24﹣2x)=﹣2x2+24x=﹣2(x2﹣12x)=﹣2(x2﹣12x+36﹣36)=﹣2(x﹣6)2+72,∵﹣2(x﹣6)2≤0,∴﹣2(x﹣6)2+72≤72,∴当x=6时,S最大=72,答:当x=6时,花园的面积最大,最大面积是72平方米.18.【解答】解:(1)40+2×(60﹣50)=60(件).故答案为:60.(2)设每件商品降价x元,则每件盈利(60﹣x)元,平均每天可售出(40+2x)件,依题意得:(60﹣x)(40+2x)=3072,整理得:x2﹣40x+336=0,解得:x1=12,x2=28,又∵要尽快减少库存,∴x=28.答:每件商品应降价28元.19.【解答】解:(1)将x=2代入方程x2+ax+a﹣1=0得,4+2a+a﹣1=0,解得,a=﹣1;方程为x2﹣x﹣2=0,解得x1=﹣1,x2=2,即方程的另一根为1;(2)∵Δ=a2﹣4(a﹣1)=a2﹣4a+4=a2﹣4a+4=(a﹣2)2≥0,∴不论a取何实数,该方程都有实数根.20.【解答】解:(1)∵二次函数y=ax2+c的图象经过点(8,10),,∴,解得:,∴二次函数的表达式为y=+2;(2)过点P作P A⊥x轴于点A,PB⊥y轴于点B,如图,∵线段PF绕点P逆时针旋转90°得到PE,点E恰好落在x轴正半轴上,∴∠FPE=90°,PF=PE∴∠FP A+∠EP A=90°.∵作P A⊥x轴,PB⊥y轴,OF⊥OE,∴四边形APBO为矩形,∴∠APB=90°,∴∠BPF+∠FP A=90°,∴∠FPB=∠EP A.在△BPF和△APE中,,∴△BPF≌△APE(AAS),∴PB=P A.∴点P的横纵坐标相等,设P(m,m),∵点P为二次函数图象上一点,∴2=m,解得:m1=m2=4,∴点P的坐标为(4,4).21.【解答】解:(1)当x≥2时,y=x|x﹣2|=y=x(x﹣2)=x2﹣2x,∴当x=2时,y=0,当x=3时,y=3,当x=4时,y=8,补全此函数的图象如下:(2)根据图象,当1<x<2时,y随着x的增大而减小;(3)当y=1时,x2﹣2x=1,解得x=+1或﹣+1∴a的取值范围为1≤a≤.22.【解答】解:(1)y=x2﹣2x﹣3=(x﹣1)2﹣4;(2)由(1)知,二次函数的顶点坐标为(1,﹣4),在将x=4代入二次函数解析式中的y=5.当0≤x≤4时,y的取值范围为:﹣4≤y<5.故答案为:﹣4≤y<5;(3)由(1)知,二次函数的顶点坐标为M(1,﹣4),由二次函数图象与x轴交于点B,所以x2﹣2x﹣3=0,得到点A(﹣1,0),由二次函数图象与y轴交于点C,所以点C(0,﹣3),所以三角形ACM的面积=×2×4﹣×(1+4)×1﹣×1×1=1.23.【解答】解:(1)设抛物线的表达式为:y=a(x﹣x1)(x﹣x2),则y=﹣(x+2)(x﹣4)=y=﹣x2+x+4,故抛物线的表达式为:y=﹣x2+x+4①;(2)存在,理由:过点C作直线l∥y轴交抛物线于点R,设∠ECR=α,则∠RCE=CBO=45°,即∠DCE=45°+α,由OB=OC=4知,∠OCB=∠OCB=45°,∵QD∥y轴,则∠DEC=∠OCB=∠ABC=45°,∵△CDE与△ABC相似,则∠DCE=∠ACB或∠CAB;①∠DCE=∠ACB时,∵∠ACB=∠ACO+∠BCO=∠ACO+45°,∠DCE=45°+α,∴∠ACO=α,∴tan∠ACO==tanα,故直线CD的表达式为:y=x+4②,联立①②得:﹣x2+x+4=x+4,解得:x=0(舍去)或1,即点D(1,4.5),则点Q(1,0);②∠DCE=∠CAB时,延长DC交x轴于点H,则∠CHO=∠DCE=α,∵∠OAC=∠ACH+∠AHC=α+∠ACH,∠DCE=45°+α,∴∠ACH=45°,在△ACH中,过点H作AC的垂线交CA的延长线于点M,∵tan∠HAM=tan∠CAO==2,设AM=m,则HM=2m,在等腰Rt△CMH中,HM=CM,即2m=m+,解得:m=2,在Rt△AMH中,AH==m=10,即点H(﹣12,0),由点C、H的坐标得,直线CH的表达式为:y=x+4③,联立①③得:﹣x2+x+4=x+4,解得:x=0(舍去)或,则点Q(,0)综上,点Q的坐标为:(,0)或(1,0);(3)存在,理由:设点D的坐标为(m,﹣m2+m),由点A、D的坐标得,直线AD的表达式为:y=﹣(m+4)(x+2),则点G(0,﹣m﹣4),同理可得,直线BC的表达式为:y=﹣x+4,则点E(m,﹣m+4),当以点C、D、G、E为顶点的四边形是平行四边形,则CG=DE,即4+m+4=|﹣m2+m+4+m﹣4|,解得:m=2或6,即点D(2,4)或D(6,﹣8).24.【解答】解:(1)∵抛物线y=ax2+bx+3与x轴交于A(﹣3,0),B(1,0)两点,∴解得:,∴抛物线的解析式为:y=﹣x2﹣2x+3;(2)∵抛物线y=﹣x2﹣2x+3与y轴交于点C,∴点C(0,3)∴OA=OC=3,设点P(x,﹣x2﹣2x+3)∵S△P AO=2S△PCO,∴×3×|﹣x2﹣2x+3|=2××3×|x|,∴x=±或x=﹣2±,∴点P(,﹣2)或(﹣,2)或(﹣2+,﹣4+2)或(﹣2﹣,﹣4﹣2);(3)若BC为边,且四边形BCFE是平行四边形,∴CF∥BE,∴点F与点C纵坐标相等,∴3=﹣x2﹣2x+3,∴x1=﹣2,x2=0,∴点F(﹣2,3)若BC为边,且四边形BCEF是平行四边形,∴BE与CF互相平分,∵BE中点纵坐标为0,且点C纵坐标为3,∴点F的纵坐标为﹣3,∴﹣3=﹣x2﹣2x+3∴x=﹣1±,∴点F(﹣1+,﹣3)或(﹣1﹣,﹣3);若BC为对角线,则四边形BECF是平行四边形,∴BC与EF互相平分,∵BC中点纵坐标为,且点E的纵坐标为0,∴点F的纵坐标为3,∴点F(﹣2,3),综上所述,点F坐标(﹣2,3)或(﹣1+,﹣3)或(﹣1﹣,﹣3).。
江苏省南京市金陵中学河西分校2024-2025学年九年级上学期数学9月月考试题
江苏省南京市金陵中学河西分校2024-2025学年九年级上学期数学9月月考试题一、单选题1.已知⊙O 的半径为5,点P 在⊙O 外,则OP 的长可能是( )A .3B .4C .5D .62.如图,将一根木棒的一端固定在O 点,另一端绑一重物.将此重物拉到A 点后放开,让此重物由A 点摆动到B 点.则此重物移动路径的形状为( )A .倾斜直线B .双曲线的一部分C .圆弧D .水平直线 3.如图,P 是O e 内一点.若圆的半径为5,3OP =,则经过点P 的弦的长度不可能为( )A .7B .8C .9D .104.如图,半径为5的A e 中,弦BC ,ED 所对的圆心角分别是BAC ∠,EAD ∠,若6DE =,180BAC EAD ∠+∠=︒,则弦BC 的长等于( )A .8B .10C .11D .125.在O e 中,若2AOB COD ∠=∠,则»AB 与»2CD的大小关系是( ) A .»»2AB CD > B .»»2AB CD < C .¼¼2AB CD = D .不能确定 6.如图,在矩形ABCD 中,AB =4,AD =5,AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,过点D 作⊙O 的切线交BC 于点M ,切点为N ,则DM 的长为( )A .133 B .92 C D .二、填空题7.已知O e 的半径为2,点O 到直线l 的距离为3,则l 与O e 的位置关系是.8.如图,»AB 为120︒,则弦AB 所对的圆心角度数为.9.如图,A 、B 、C 在O e 上,若46ACB ∠=︒,则O ∠=︒.10.如图,点A 在O e 上,射线CB 切O e 于点C ,若25ACB ∠=︒,则A ∠=︒.三、单选题11.边长为345、、的三角形的内切圆半径长为.四、填空题12.若过平面直角坐标系中的三个点(1,0)A 、(0,2)B 、(1,)C m -能确定一个圆,则m ≠. 13.如图,四边形ABCD 是O e 的内接四边形,BE 是O e 的直径,连接CE ,若105BAD ∠=︒,则DCE ∠=°.14.如图,圆的两条弦AC BD 、相交于点P ,AmB 、CnD 的度数分别为αβ、,APB ∠的度数为γ,则α,β和γ之间的数量关系为.15.如图,由4个边长为1的小正方形组成的图形,若O e 经过其顶点A 、B 、C ,则圆心O 到AB 的距离为.16.在O e 中,直径4AB =,C 是圆上除A B 、外的一点,D E 、分别是»»AC BC、的中点,M 是弦DE 的中点,则CM 的取值范围是.五、解答题17.如图,AB 、CD 是O e 的直径,弦CE AB ∥.求证:B 是弧DE 的中点.18.如图,已知ABCD Y 内接于圆.求证:四边形ABCD 是矩形.19.如图,PA 切O e 于点A ,点B 在O e 上,且PA PB =.求证:PB 是O e 的切线.20.如图,在ABC V 中,4,AB AC BC O ===e 是ABC V 的外接圆.求O e 的半径.21.如图,在Rt △ABC 中,∠C =90°,(1)求作⊙P ,使圆心P 在BC 上,且⊙P 与AC 、AB 都相切;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若AC =4,BC =3.求⊙P 的半径.22.如图,O e 中,AB 为弦,半径OC AB ⊥,弦CD 交AB 于E .(1)求证:CAE CDA V V ∽;(2)若2CE =,5ED =,则CA 的长为______.23.如图,某地有一座圆弧形拱桥,桥下水面宽度AB 为7.2m ,拱高CD 为2.4m .(1)求拱桥的半径;(2)现有一艘宽3m 、船舱顶部为长方形并高出水面2.2m 的货船要经过这里,问此货船能顺利通过拱桥吗?24.已知:BC 是O e 的直径,A 是O e 上一点,AD BC ⊥,垂足为D ,»»AB AE =,BE 交AD 的延长线于点F ,延长BE AC 、交于点G .求证:FA FG =.25.如图,在O e 中,将BC n沿弦BC 所在直线折叠,折叠后的弧与直径AB 相交于点D ,连接CD .(1)若点D 恰好与点O 重合,则ABC ∠=______︒;(2)判断ADC △的形状,并说明理由;(3)若2BC CD =,且4=AD ,则AB =______.26.在一次数学探究活动中,李老师设计了一份活动单:“追梦”学习小组通过操作、观察、讨论后汇报:点A 的位置不唯一,它在以BC 为弦的圆弧上(点B 、C 除外),…小华同学画出了符合要求的一条圆弧BAC (如图1).(1)该弧所在圆的半径长为______;(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图2所示的弓形外部,我们记为A ',请你证明30BA C '∠<︒;(3)如图3,已知线段AB 和直线l ,在直线l 上求作点P ,使得45APB ∠=°,尺规作图,保留作图痕迹;(4)如图4,在边长为6的等边ABC V 中,动点P 在ABC V 内部,且120BPC ∠=︒,连接AP ,则AP 的最小值为______.27.在综合实践活动中,“特殊到一般”是一种常用方法,我们可以先研究特殊情况,猜想结论,然后再研究一般情况,证明结论.如图,已知ABC V ,CA CB =,O e 是ABC V 的外接圆,点D 在O e 上(AD BD >),连接AD BD CD 、、.【特殊化感知】(1)如图1,若60ACB ∠=︒,点D 在AO 延长线上,则AD BD -与CD 的数量关系为______;【一般化探究】;(2)如图2,若60ACB ∠=︒,点C 、D 在AB 同侧,判断AD BD -与CD 的数量关系并说明理由;【拓展性延伸】;(3)若90ACB ∠=︒,直接写出AD BD CD 、、满足的数量关系。
人教版初三数学月考试卷
一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -2B. 1/2C. -1/2D. 22. 如果方程 x + 3 = 2x - 1 的解是 x = 2,那么方程 3x - 5 = 2x + 1 的解是()A. x = 4B. x = 3C. x = 2D. x = 13. 在等腰三角形ABC中,AB=AC,若∠BAC=60°,则∠ABC的度数是()A. 60°B. 90°C. 120°D. 180°4. 已知函数 y = 2x - 3,那么下列哪个点不在这个函数的图象上?()A. (1, -1)B. (2, 1)C. (3, 3)D. (4, 5)5. 在直角坐标系中,点A(2,3),点B(-3,4),则线段AB的中点坐标是()A. (0, 1)B. (1, 2)C. (1, 3)D. (2, 1)6. 下列各组数中,成等差数列的是()A. 1, 3, 5, 7B. 2, 4, 8, 16C. 1, 2, 4, 8D. 3, 6, 9, 127. 一个正方形的周长是16cm,那么它的面积是()A. 16cm²B. 32cm²C. 64cm²D. 128cm²8. 若a、b、c是等比数列,且a+b+c=0,则公比q的值为()A. -1B. 1C. 0D. 无法确定9. 已知一次函数 y = kx + b 的图象经过点(1, 3),则下列哪个点不在这个函数的图象上?()A. (2, 5)B. (3, 7)C. (4, 9)D. (5, 11)10. 在△ABC中,若∠A=45°,∠B=60°,则△ABC是()A. 等腰三角形B. 直角三角形C. 钝角三角形D. 锐角三角形二、填空题(每题3分,共30分)11. 若a=3,b=-5,则a² - 2ab + b² = ________.12. 分数 3/4 - 1/2 + 2/3 的值为 ________.13. 若x² - 5x + 6 = 0,则x的值为 ________.14. 已知等腰三角形底边长为8cm,腰长为10cm,则这个等腰三角形的面积为________cm².15. 在直角坐标系中,点P(3, -2),点Q(-1, 4),则线段PQ的长度为 ________.16. 若函数 y = 2x + 1 的图象向下平移2个单位,则新函数的解析式为________.17. 等差数列{an}的第一项a1=3,公差d=2,则第10项an= ________.18. 已知二次函数y = ax² + bx + c,若a>0,且y的对称轴为x=-1,则函数的顶点坐标为 ________.19. 在△ABC中,若∠A=75°,∠B=45°,则∠C的度数是 ________.20. 若a、b、c是等比数列,且a+b+c=0,则a²bc= ________.三、解答题(每题10分,共40分)21. 解方程组:\[\begin{cases}x + 2y = 7 \\3x - y = 1\end{cases}\]22. 已知一次函数 y = kx + b 的图象经过点(2, 5)和(4, 1),求这个一次函数的解析式。
华师版初三数学月考试卷
一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -3B. 2C. 0D. -52. 已知二次函数y=ax^2+bx+c的图象与x轴交于点A(-1,0)和B(3,0),则a、b、c的值分别为()A. a=1,b=2,c=1B. a=-1,b=-2,c=-1C. a=1,b=-2,c=-1D. a=-1,b=2,c=-13. 在直角坐标系中,点P的坐标为(2,-3),点Q关于y轴的对称点的坐标是()A.(-2,-3)B.(2,3)C.(-2,3)D.(2,-3)4. 下列各式中,能表示x与y成反比例关系的是()A. xy=5B. y=2x+3C. y=3x-2D. y=x^25. 已知正方形的对角线长为10cm,则该正方形的面积是()A. 25cm^2B. 50cm^2C. 100cm^2D. 200cm^26. 若等差数列{an}的首项a1=3,公差d=2,则第10项an=()A. 21B. 22C. 23D. 247. 在△ABC中,∠A=45°,∠B=60°,则∠C=()A. 45°B. 60°C. 75°D. 90°8. 若x^2-5x+6=0,则x^2+5x-6=()A. 0B. 1C. -1D. 29. 在等腰三角形ABC中,AB=AC,AD是BC的中线,且AD=3cm,则BC的长度是()A. 6cmB. 4cmC. 3cmD. 2cm10. 下列函数中,在定义域内单调递减的是()A. y=x^2B. y=2x+1C. y=3x-2D. y=-2x+3二、填空题(每题5分,共25分)11. 若a=-3,b=4,则a^2+b^2的值为______。
12. 在直角坐标系中,点P(-2,3)关于原点的对称点是______。
13. 若x=2是方程x^2-3x+2=0的解,则该方程的另一个解是______。
14. 在△ABC中,∠A=90°,AB=6cm,AC=8cm,则BC的长度是______。
数学月考试卷及答案初三
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √2B. πC. -3D. 0.1010010001…2. 已知 a > 0,b < 0,那么下列不等式中正确的是()A. a > bB. a < bC. -a < -bD. -a > -b3. 若 x^2 - 4x + 3 = 0,则 x 的值为()A. 1 或 3B. -1 或 3C. 1 或 -3D. -1 或 -34. 下列函数中,是二次函数的是()A. y = x^2 + 2x + 1B. y = 2x^3 + 3x^2 + 4x + 5C. y = x^2 + 3x + 2D. y = 2x^2 + 3x - 15. 在△ABC中,∠A = 45°,∠B = 60°,则∠C 的度数是()A. 75°B. 105°C. 120°D. 135°6. 若 |x - 2| = 3,则 x 的值为()A. -1 或 5B. 1 或 5C. -1 或 -5D. 1 或 -57. 下列各式中,是绝对值方程的是()A. |x| + 2 = 3B. |x - 1| = 2C. |x + 1| = -3D. |x - 2| = 58. 若 a、b、c 是等差数列,且 a + b + c = 12,a + c = 8,则 b 的值为()A. 2B. 4C. 6D. 89. 已知 m、n、p 是等比数列,且 m + n + p = 24,m n p = 64,则 p 的值为()A. 2B. 4C. 8D. 1610. 下列函数中,是反比例函数的是()A. y = x^2 + 2x + 1B. y = 2x^3 + 3x^2 + 4x + 5C. y = x^2 + 3x + 2D. y = 2/x + 3二、填空题(每题5分,共25分)11. 若 x + y = 5,xy = 6,则 x^2 + y^2 的值为 ________。
初三月考数学试卷带答案
一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √9B. √16C. √-4D. √0答案:A2. 下列等式中,正确的是()A. 2x + 3 = 5x - 1B. 3x - 2 = 2x + 4C. 4x - 5 = 3x - 2D. 2x + 1 = 5x + 3答案:C3. 下列函数中,y是x的一次函数的是()A. y = 2x + 3B. y = 3x^2 - 2C. y = √xD. y = 4/x答案:A4. 已知函数y = 2x - 3,若x = 2,则y的值为()A. -1B. 1C. 3D. 5答案:D5. 在直角坐标系中,点A(2,3)关于x轴的对称点是()A.(2,-3)B.(-2,3)C.(2,-3)D.(-2,-3)答案:A6. 下列各组数中,存在反比例关系的是()A. x = 2,y = 4B. x = 3,y = 6C. x = 5,y = 10D. x = 4,y = 8答案:D7. 一个长方形的长是10cm,宽是5cm,它的周长是()A. 20cmB. 25cmC. 30cmD. 35cm答案:C8. 一个等腰三角形的底边长是8cm,腰长是6cm,那么这个三角形的面积是()A. 24cm²B. 30cm²C. 36cm²D. 42cm²答案:C9. 若a > b > 0,则下列不等式中正确的是()A. a + b > a - bB. a - b > a + bC. a - b > a - cD. a + b < a - c答案:A10. 已知一元二次方程x² - 5x + 6 = 0,则x的值为()A. 2或3B. 1或4C. 2或1D. 3或4答案:A二、填空题(每题5分,共25分)11. 若x = 3,则2x - 1的值为______。
答案:512. 下列函数中,y = 3x - 2是一次函数,自变量x的取值范围是______。
初三上册数学第一次月考
苏科版初三数学上第一次月考(时间:90分钟满分:120分)一.选择题(每小题3分共30分)1.若关于x 的方程230x x a ++=有一个根为1-,则另一个根为()A.2-B.2C.4D.3-2.下列关于x 的方程有实数根的是()A.210x x -+=B.210x x ++=C.210x x --=D.2(1)10x -+=3.如图,ABC ∆内接于O ,AD 是O 的直径,25ABC ∠=︒,则CAD ∠的度数为()A.25︒B.50︒C.65︒D.75︒第3题图第5题图第6题图第9题图第10题图4.已知O 的半径是6cm ,点O 到同一平面内直线l 的距离为5cm ,则直线l 与O 的位置关系是()A.相交B.相切C.相离D.无法判断5.如图,点A 、B 、C 、D 都在O 上,O 点在D ∠的内部,四边形OABC 为平行四边形,则ADC ∠的度数为()A.30︒B.45︒C.60︒D.90︒6.如图AB、AC、BD 是⊙O 的切线,切点分别为P、C、D.若AB=5,BD=2,则AC 的长是()A.2.5B.3C.3.5D.27.设x 1为一元二次方程x 2﹣2x=较小的根,则()A.0<x 1<1B.﹣1<x 1<0C.﹣2<x 1<﹣1D.﹣5<x 1<﹣48.已知m 是方程x 2-2x-1=0的一个根,则代数式2m 2-4m+2022的值为()A.2024 B.2023C.2022D.20219.如图,在圆O 中,弦AB=4,点C 在AB 上移动,连接OC,过点C 做CD⊥OC 交圆O 于点D,则CD 的最大值为()A.2B.2C.D.10.如图,点A、B 分别在x 轴、y 轴上(OA>OB),以AB 为直径的圆经过原点O,C 是的中点,连结AC,BC.下列结论:①∠ACB=90°;②AC=BC;③若OA=4,OB=2,则△ABC 的面积等于5;④若OA﹣OB=4,则点C 的坐标是(2,﹣2).其中正确的结论有()A.4个B.3个C.2个D.1个11.x 2=-是方程2x 3x c 0-+=的一个根,则c 的值为.12.如图,在⊙O 中,弦AB⊥弦CD 于E,OF⊥AB 于F,OG⊥CD 于G,若AE=8cm,EB=4cm,则OG=cm.第12题图第13题图第14题图第17题图第19题图第30题图13.如图,在ABC 中,10AB =,8AC =,6BC =,以边AB 的中点O 为圆心,作半圆与AC 相切,点P ,Q 分别是边BC 和半圆上的动点,连接PQ ,则PQ 长的最小值是.的长为.15.某农场去年种植南瓜10亩,总产量为20000kg,年该农场扩大了种植面积,并引进新品,使产量增长到60000kg.已知今年种植面积的增长率是今年平均亩产量增长率的2倍,设今年平均亩产量的增长率为x,则可列方程.(无需化简)16.关于x 的一元二次方程ax 2+bx+c=0(a、b、c 是常数,a≠0)配方后为(x﹣2)2=d(d 是常数),则=.17.如图,Rt△ABC 中,∠C=90°,⊙O 是△ABC 的内切圆,切点为D,E,F,若AC=6,BC=8,则⊙O 的半径为.18.关于x 的方程x 2-(2k-1)x+k 2-2k+3=0有两个实数根x 1,x 2,且|x 1|-|x 2|=5,则k=____.19.如图,在△ABC 中,AB=6cm,BC=4cm,∠B=60°,动点P,Q 分别从点A,B 同时出发,分别沿AB,BC 方向匀速移动,点P,Q 的速度分别为2cm/s 和1cm/s.当点P 到达点B 时,P,Q 两点同时停止运动.设点P 的运动时间为t(s),当t=___________时,△PBQ 是直角三角形.20.如图,在矩形ABCD 中,AB=4,AD=5,AD,AB,BC 分别与☉O 相切于E,F,G 三点,过点D 作☉O 的切线交BC 于点M,切点为N,则DM 的长为.三、解答题(60分)21.(8分)解下列方程:(1)2x 2﹣x﹣1=0(配方法)(2)3x(x﹣1)=2﹣2x22.(8分)已知关于x 的一元二次方程x 2﹣4x+m=0.(1)若方程有实数根,求实数m 的取值范围.(2)若方程两实数根为x 1、x 2,且满足5x 1+2x 2=2,求实数m 的值.23.(8分)如图,在Rt△ABO 中,∠O=90°,以点O 为圆心,OB 为半径的圆交AB 于点C,交OA 于点D.(1)若∠A=25°,则弧BC 的度数为.(2)若OB=3,OA=4,求BC 的长.24.(10分)某水果店进口一种高档水果,卖出每斤水果盈利(毛利润)5元,每天可卖出1000斤,经市场调查后发现,在进价不变的情况下,若每斤售价涨0.5元,每天销量将减少40斤.(1)若以每斤盈利9元的价钱出售,则每天能盈利元.(2)若水果店想保证每天销售这种水果的毛利润为600元,同时又要使顾客觉得价不太贵,则每斤水果涨价后的定价为多少元?①解:方法一:设每斤水果应涨价x 元,由题意,得方程;方法二:设每斤水果涨价后的定价为x 元,由题意,得方程:.②请你选择一种方法完成解答.25.(12分)【概念】在初中数学中,我们学习了“两点间的距离”、“点到直线的距离”“平行线之间的距离”.距离的本质是“最短”给出新定义:P为图形M上任意一点,Q为图形N上任意一点,如果P、Q两点间的距离有最小值,那么称这个最小值为图形M、N间的“距离”,记作d(M,N).特别地,若图形M、N有公共点,规定d(M,N)=0.【理解】(1)如图1,过A、B作垂线段AC、AD、BE、BF分别交直线l于点C、D、E、F,则d(AB,l)是的长度.A.垂线段AC B.垂线段AD C.垂线段BE D.垂线段BF(2)如图2,已知线段AB,请画出同时满足下列2个条件的所有线段CD.①线段CD长为1cm;②d(AB,CD)=15.注:标注必要的数据;若满足条件的线段是有限的,请画出;若满足条件的线段是无限的,请用阴影表示所在区域.(3)如图3,已知A(2,6),B(2,﹣2),C(﹣6,﹣2).⊙M的圆心为(m,0),半径为1.若d(⊙M,△ABC)=1,请直接写出m的取值范围.26.(14分)对于一平面图形而言,若点M、N是该图形上的任意两点,我们规定:线段MN 长度的最大值称为该平面图形S的“绝对距离”.例如,圆的“绝对距离”等于它的直径.如图2,在平面直角坐标系中,已知点A(0,﹣1)、B(0,1),C是坐标平面内的点,连接AB、BC、CA所形成的图形为S,记S的“绝对距离”为d.(1)写出下列图形的“绝对距离”:①边长为1的正方形的“绝对距离:;②如图1,上方是半径为1的半圆,下方是等边三角形的“绝对距离”:;(2)动点C从(﹣5,0)出发,沿x轴以每秒一个单位的速度向右运动,当d=3时,请求出t的值;(3)若点C在⊙M上运动,⊙M的半径为1,圆心M在x轴上运动.对于⊙M上任意点C,都有4≤d≤8,直接写出圆心M的横坐标x的取值范围.教师样卷一.选择题(每小题3分共30分)1.若关于x 的方程230x x a ++=有一个根为1-,则另一个根为(A )A.2-B.2C.4D.3-2.下列关于x 的方程有实数根的是(C )A.210x x -+=B.210x x ++=C.210x x --=D.2(1)10x -+=3.如图,ABC ∆内接于O ,AD 是O 的直径,25ABC ∠=︒,则CAD ∠的度数为(C)A.25︒B.50︒C.65︒D.75︒第3题图第5题图第6题图第9题图第10题图4.已知O 的半径是6cm ,点O 到同一平面内直线l 的距离为5cm ,则直线l 与O 的位置关系是(A )A.相交B.相切C.相离D.无法判断5.如图,点A 、B 、C 、D 都在O 上,O 点在D ∠的内部,四边形OABC 为平行四边形,则ADC ∠的度数为(C )A.30︒B.45︒C.60︒D.90︒6.如图AB、AC、BD 是⊙O 的切线,切点分别为P、C、D.若AB=5,BD=2,则AC 的长是(B )A.2.5B.3C.3.5D.2解:∵AC、AP 为⊙O 的切线,∴AC=AP,∵BP、BD 为⊙O 的切线,∴BP=BD,∴AC=AP=AB ﹣BP=5﹣2=3.故选:B.7.设x 1为一元二次方程x 2﹣2x=较小的根,则(B )A.0<x 1<1B.﹣1<x 1<0C.﹣2<x 1<﹣1D.﹣5<x 1<﹣4解:x 2﹣2x=,8x 2﹣16x﹣5=0,x==,∵x 1为一元二次方程x 2﹣2x=较小的根,∴x 1==1﹣,∵5<<6,∴﹣1<x 1<0.故选:B.8.已知m 是方程x 2-2x-1=0的一个根,则代数式2m 2-4m+2022的值为(A )A.2024 B.2023C.2022D.2021解:∵m 是方程x 2-2x-1=0的一个根,∴m 2-2m-1=0,∴m 2-2m=1,∴2m 2-4m+2022=2(m 2-2m)+2022=2×1+2022=2024.9.如图,在圆O 中,弦AB=4,点C 在AB 上移动,连接OC,过点C 做CD⊥OC 交圆O 于点D,则CD 的最大值为(B )A.2B.2C.D.解:如图,连接OD,∵CD⊥OC,∴∠DCO=90°,∴CD==,当OC 的值最小时,CD 的值最大,OC⊥AB 时,OC 最小,此时D、B 两点重合,∴CD=CB=AB =2,即CD 的最大值为2,故选:B.10.如图,点A、B 分别在x 轴、y 轴上(OA>OB),以AB 为直径的圆经过原点O,C 是的中点,连结AC,BC.下列结论:①∠ACB=90°;②AC=BC;③若OA=4,OB=2,则△ABC 的面积等于5;④若OA﹣OB=4,则点C 的坐标是(2,﹣2).其中正确的结论有(A )A.4个B.3个C.2个D.1个解:∵AB 是直径,∴∠ACB=90°,故①符合题意;∵C 是中点,∴AC=BC,故②符合题意;∵AB 2=OB 2+OA 2=22+42,∴AB=2,∵△ACB 是等腰直角三角形,∴AC=BC=AB =,∴△ACB 的面积为=5,故③符合题意;作CD⊥x 轴于D,CE⊥y 轴于E,∴∠ADC=∠BEC=90°,∵∠BCE+∠BCD=∠ACD+∠BCD=90°,∴∠BCE=∠ACD,∵AC=BC,∴△ACD≌△BCE,∴CD=CE,AD=BE,∴OECD 是正方形,设正方形的边长为a,∴OA﹣a=OB+a,∴2a=OA﹣OB=4,∴a=2,∴点C 坐标为:(2,﹣2),故④符合题意,故选:A.第12题图第13题图第14题图第17题图第19题图第30题图在ABC 中,10AB =6BC =,以边AB 的中点O 为圆心,作半圆与AC ,Q 分别是边BC 和半圆上的动点,连接,则PQ 长的最小值是1.2,则BC 的长为2.15.某农场去年种植南瓜10亩,总产量为20000kg,年该农场扩大了种植面积,并引进新品,使产量增长到60000kg.已知今年种植面积的增长率是今年平均亩产量增长率的2倍,设今年平均亩产量的增长率为x,则可列方程10(1+2x)•2000(1+x)=60000.(无需化简)16.关于x 的一元二次方程ax 2+bx+c=0(a、b、c 是常数,a≠0)配方后为(x﹣2)2=d (d 是常数),则=﹣4.解:∵ax 2+bx+c=0配方后可得a(x+)2+=0,∴﹣,∴=﹣4,故答案为:﹣417.如图,Rt△ABC 中,∠C=90°,⊙O 是△ABC 的内切圆,切点为D,E,F,若AC=6,BC=8,则⊙O 的半径为2.解:设⊙O 的半径为r,Rt△ABC 中,∠C=90°,∴AB==10,O 是△ABC 的内切圆,切点为D,E,F,∴OD⊥BC,OE⊥AC,BD=BF,AE=AF,易得四边形ODCE 为正方形,∴CD=CE=OE=r,∴BF+BD=8﹣r,AF=AE=6﹣r,∴8﹣r+6﹣r=10,解得r=2,即⊙O 的半径为2.故答案为2.18.关于x 的方程x 2-(2k-1)x+k 2-2k+3=0有两个实数根x 1,x 2,且|x 1|-|x 2|=5,则k=__4__.解:根据题意,得[-(2k-1)]2-4×1×(k 2-2k+3)>0,∴k>114,由根与系数的关系,得x 1+x 2=2k-1,x 1·x 2=k 2-2k+3,∵k 2-2k+3=(k-1)2+2>0,即x 1·x 2>0,∴x 1,x 2同号,∵x 1+x 2=2k-1,k>114,∴x 1+x 2>0,∴x 1>0,x 2>0,∴|x 1|-|x 2|=x 1-x 2=5,∴(x 1-x 2)2=5,即(x 1+x 2)2-4x 1·x 2=5,∴(2k-1)2-4(k 2-2k+3)=5,解得k=4.19.如图,在△ABC 中,AB=6cm,BC=4cm,∠B=60°,动点P,Q 分别从点A,B 同时出发,分别沿AB,BC 方向匀速移动,点P,Q 的速度分别为2cm/s 和1cm/s.当点P 到达点B 时,P,Q 两点同时停止运动.设点P 的运动时间为t(s),当t=32或125时,△PBQ 是直角三角形.∴0<t≤3.由题意,得AP=2t(cm),BQ=t(cm).∵AB=6cm,∴BP=(6-2t)cm.若△PBQ 是直角三角形,则∠BQP=90°或∠BPQ=90°.①当∠BQP=90°时,∵∠B=60°,∴∠BPQ=90°-60°=30°,∴BQ=12BP,即t=12(6-2t),解得t=32.②当∠BPQ=90°时,∵∠B=60°,∴∠BQP=90°-60°=30°,∴BP=12BQ,即6-2t=12t,解得t=125.综上所述,当t=32或125时,△PBQ 是直角三角形.20.如图,在矩形ABCD 中,AB=4,AD=5,AD,AB,BC 分别与☉O 相切于E,F,G 三点,过点D 作☉O的切线交BC 于点M,切点为N,则DM 的长为.133[解析]连接OE,OF,ON,OG,设MN=x,DN=y,根据切线长定理可得GM=MN=x,ED=DN=y,AE=AF=5-y,FB=BG=y-1,CM=6-(x+y).在Rt△DMC 中,DM 2=CM 2+CD 2,即(x+y)2=[6-(x+y)]2+42,解得x+y=133,即DM=133.三、解答题(60分)21.(8分)解下列方程:(1)2x 2﹣x﹣1=0(配方法)(2)3x(x﹣1)=2﹣2x解:(1)∵2x 2﹣x﹣1=0,∴x 2﹣x=,则x 2﹣x+=+,即(x﹣)2=,∴x﹣=±,x 1=﹣,x 2=1;(2)∵3x(x﹣1)=﹣2(x﹣1),∴3x(x﹣1)+2(x﹣1)=0,则(x﹣1)(3x+2)=0,∴x﹣1=0或3x+2=0,解得x 1=1,x 2=﹣.22.(8分)已知关于x 的一元二次方程x 2﹣4x+m=0.(1)若方程有实数根,求实数m 的取值范围.(2)若方程两实数根为x 1、x 2,且满足5x 1+2x 2=2,求实数m 的值.解:(1)∵方程有实数根,∴△=(﹣4)2﹣4m=16﹣4m≥0,∴m≤4;(2)∵x 1+x 2=4,5x 1+2x 2=2(x 1+x 2)+3x 1=2×4+3x 1=2,∴x 1=﹣2,把x 1=﹣2代入x 2﹣4x+m=0得:(﹣2)2﹣4×(﹣2)+m=0,解得:m=﹣12.23.(8分)如图,在Rt△ABO 中,∠O=90°,以点O 为圆心,OB 为半径的圆交AB 于点C,交OA 于点D.(1)若∠A=25°,则弧BC 的度数为50°.(2)若OB=3,OA=4,求BC 的长.解:(1)连接OC.∵∠AOB=90°,∠A=25°,∴∠B=90°﹣∠A=65°,∵OB=OC,∴∠B=∠OCB=65°,∴∠BCO=180°﹣65°﹣65°=50°,∴弧BC 的度数为50°,故答案为50°.(2)如图,作OH⊥BC 于H.在Rt△AOB 中,∵∠AOB=90°,OA=4,OB=3,∴AB===5,∵S △AOB =•OB•OA=•AB•OH,∴OH==,∴BH===,∵OH⊥BC,∴BH=CH,∴BC=2BH=.24.(10分)某水果店进口一种高档水果,卖出每斤水果盈利(毛利润)5元,每天可卖出1000斤,经市场调查后发现,在进价不变的情况下,若每斤售价涨0.5元,每天销量将减少40斤.(1)若以每斤盈利9元的价钱出售,则每天能盈利元.(2)若水果店想保证每天销售这种水果的毛利润为600元,同时又要使顾客觉得价不太贵,则每斤水果涨价后的定价为多少元?①解:方法一:设每斤水果应涨价x 元,由题意,得方程;方法二:设每斤水果涨价后的定价为x 元,由题意,得方程:.②请你选择一种方法完成解答.解:(1)1000﹣×40=680(斤),9×680=6120(元).故答案为:6120.(2)①方法一:(x+5)(1000﹣40×)=600;方法二:由题意,得方程:x[1000﹣(x﹣5)÷0.5×40]=600故答案为:(x+5)(1000﹣40×)=600;x[1000﹣(x﹣5)÷0.5×40]=600.②选择方法一解答:设每斤水果涨价x 元,则每天可卖出(1000﹣40×)斤水果,依题意,得:(x+5)(1000﹣40×)=600,解得:x 1=2.5,x 2=5.又∵要使顾客觉得价不太贵,∴x=2.5.答:每斤水果应涨价2.5元.25.(12分)【概念】在初中数学中,我们学习了“两点间的距离”、“点到直线的距离”“平行线之间的距离”.距离的本质是“最短”给出新定义:P 为图形M 上任意一点,Q 为图形N 上任意一点,如果P、Q 两点间的距离有最小值,那么称这个最小值为图形M、N 间的“距离”,记作d(M,N).特别地,若图形M、N 有公共点,规定d(M,N)=0.【理解】(1)如图1,过A、B作垂线段AC、AD、BE、BF分别交直线l于点C、D、E、F,则d(AB,l)是的长度.A.垂线段AC B.垂线段AD C.垂线段BE D.垂线段BF(2)如图2,已知线段AB,请画出同时满足下列2个条件的所有线段CD.①线段CD长为1cm;②d(AB,CD)=15.注:标注必要的数据;若满足条件的线段是有限的,请画出;若满足条件的线段是无限的,请用阴影表示所在区域.(3)如图3,已知A(2,6),B(2,﹣2),C(﹣6,﹣2).⊙M的圆心为(m,0),半径为1.若d(⊙M,△ABC)=1,请直接写出m的取值范围.解:(1)如图1中,根据垂线段最短可知:d(AB,l)=BE的长度,故选C.(2)满足条件的线段是无限的,如图2中阴影部分.(3)′如图3中,当⊙M到直线AC的距离为2时,M(﹣2﹣4,0),M′(2﹣4,0),当⊙M到AB的距离为2时,M(0,0)或(4,0).观察图形可知当m=﹣2﹣4或2﹣4≤m≤0或m=4时,d(⊙M,△ABC)=1.故答案为m=﹣2﹣4或2﹣4≤m≤0或m =4.26.(14分)对于一平面图形而言,若点M、N是该图形上的任意两点,我们规定:线段MN 长度的最大值称为该平面图形S的“绝对距离”.例如,圆的“绝对距离”等于它的直径.如图2,在平面直角坐标系中,已知点A(0,﹣1)、B(0,1),C是坐标平面内的点,连接AB、BC、CA所形成的图形为S,记S的“绝对距离”为d.(1)写出下列图形的“绝对距离”:①边长为1的正方形的“绝对距离:;②如图1,上方是半径为1的半圆,下方是等边三角形的“绝对距离”:;(2)动点C从(﹣5,0)出发,沿x轴以每秒一个单位的速度向右运动,当d=3时,请求出t的值;(3)若点C在⊙M上运动,⊙M的半径为1,圆心M在x轴上运动.对于⊙M上任意点C,都有4≤d≤8,直接写出圆心M的横坐标x的取值范围.解:(1)①∵边长为1的正方形的“绝对距离是对角线的长,∴边长为1的正方形的“绝对距离=,②如图1,∴上方是半径为1的半圆,下方是等边三角形的“绝对距离”是CH,∴CH=1+,故答案为:,1+;(2)如图2中,∵A(0,﹣10,B(0,1),∴OA=OB=1,AB=2,∵CO⊥AB,∴CA=CB,∵d=3,不妨设AC=BC=3,则OC===2,∴t=5﹣2或=5+2.(3)如图3中,如图2﹣2中,当点M在y轴的右侧时,连接AM.∵对于⊙M上任意点C,都有4≤d≤8,∴当d=4时,AM=5,∴OM===2,此时M(2,0),当d=8时,AM=7,∴OM===4,此时M(4,0),∴满足条件的点M的横坐标的范围为2≤x≤4.当点M在y轴的左侧时,满足条件的点M的横坐标的范围为﹣4≤x≤﹣2,综上所述,满足条件的圆心M的横坐标x的取值范围为2≤x≤4或﹣4≤x≤﹣2.。
初三北师大数学月考试卷
考试时间:120分钟满分:100分一、选择题(每题3分,共30分)1. 下列数中,既是偶数又是质数的是()A. 2B. 3C. 4D. 92. 已知三角形的三边长分别为3cm、4cm、5cm,那么这个三角形是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 梯形3. 下列方程中,解为正数的是()A. 2x - 3 = 0B. 3x + 2 = 0C. 4x - 5 = 0D. 5x + 6 = 04. 一个长方形的长是6cm,宽是4cm,那么它的对角线长是()A. 2cmB. 4cmC. 6cmD. 8cm5. 在直角坐标系中,点P的坐标为(-2,3),那么点P关于x轴的对称点的坐标是()A. (-2,-3)B. (2,3)C. (-2,3)D. (2,-3)6. 下列图形中,轴对称图形的是()A. 矩形B. 正方形C. 圆D. 以上都是7. 已知函数y = 2x + 1,当x = 3时,y的值为()A. 5B. 6C. 7D. 88. 一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的周长是()A. 20cmB. 22cmC. 24cmD. 26cm9. 下列数中,能被3整除的是()A. 15B. 16C. 17D. 1810. 下列式子中,完全平方公式的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab + b^2二、填空题(每题3分,共30分)11. 若a + b = 7,ab = 12,则a^2 + b^2的值为______。
12. 一个圆的半径为5cm,那么它的周长是______cm。
13. 一个长方体的长、宽、高分别为2cm、3cm、4cm,那么它的体积是______cm^3。
14. 若x^2 - 5x + 6 = 0,则x的值为______。
初三数学月考试卷真题
一、选择题(每题3分,共30分)1. 下列各数中,是正有理数的是()A. -2B. 0C. 1/2D. -3/42. 下列图形中,不是轴对称图形的是()A. 等腰三角形B. 矩形C. 平行四边形D. 正方形3. 若方程2x - 3 = 5的解为x,则x + 1的值为()A. 2B. 3C. 4D. 54. 下列函数中,是反比例函数的是()A. y = x^2B. y = 2x + 3C. y = 3/xD. y = 2x - 55. 在直角坐标系中,点A(-2,3)关于x轴的对称点为()A. (-2,-3)B. (2,-3)C. (-2,3)D. (2,3)6. 若等腰三角形底边长为6cm,腰长为8cm,则其高为()A. 4cmB. 5cmC. 6cmD. 7cm7. 下列式子中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^28. 若a、b、c是等差数列,且a + b + c = 18,a + c = 12,则b的值为()A. 3B. 6C. 9D. 129. 下列命题中,正确的是()A. 平行四边形的对角线互相平分B. 矩形的对角线互相垂直C. 等腰三角形的底角相等D. 直角三角形的两个锐角互余10. 若二次函数y = ax^2 + bx + c的图象开口向上,且顶点坐标为(-1,2),则a的值为()A. 1B. -1C. 2D. -2二、填空题(每题3分,共30分)11. 3x - 5 = 11的解为x = ________。
12. 若等腰三角形的底边长为8cm,腰长为10cm,则其面积为________ cm²。
13. 若y = 2x - 3,当x = 4时,y的值为 ________。
14. 在直角坐标系中,点B(2,3)关于原点的对称点为 ________。
初三数学圆月考试卷
一、选择题(每题5分,共50分)1. 在下列各题中,属于圆的是()A. 圆柱的侧面展开图B. 正方形的对角线C. 球体的截面D. 正六边形的边2. 下列说法正确的是()A. 所有圆的半径都相等B. 所有圆的直径都相等C. 所有圆的周长都相等D. 所有圆的面积都相等3. 一个圆的半径是r,那么它的直径是()A. 2rB. r/2C. 3rD. r/34. 下列关于圆的周长的说法正确的是()A. 圆的周长与半径成正比B. 圆的周长与直径成反比C. 圆的周长与半径成反比D. 圆的周长与直径成正比5. 下列关于圆的面积的说法正确的是()A. 圆的面积与半径成正比B. 圆的面积与直径成反比C. 圆的面积与半径成反比D. 圆的面积与直径成正比6. 圆的周长公式是()A. C = πrB. C = 2πrC. C = πdD. C = 2πd7. 圆的面积公式是()A. S = πr^2B. S = 2πr^2C. S = πd^2D. S = 2πd^28. 下列关于圆的切线性质的说法正确的是()A. 切线垂直于半径B. 切线平行于半径C. 切线与半径相交D. 切线与半径相切9. 下列关于圆的弦的说法正确的是()A. 弦是圆上任意两点之间的线段B. 弦是圆上最长的线段C. 弦是圆上最短的线段D. 弦是圆上唯一的线段10. 下列关于圆的直径的说法正确的是()A. 直径是圆上最长的弦B. 直径是圆上最短的弦C. 直径是圆上唯一的弦D. 直径是圆上任意两点之间的线段二、填空题(每题5分,共50分)1. 圆的周长公式是______,其中C表示周长,r表示半径。
2. 圆的面积公式是______,其中S表示面积,r表示半径。
3. 圆的直径是半径的______倍。
4. 如果一个圆的半径是5cm,那么它的直径是______cm。
5. 一个圆的周长是31.4cm,那么它的半径是______cm。
6. 一个圆的面积是78.5cm^2,那么它的半径是______cm。
北京清华大学附属中学朝阳学校2024-2025学年九年级上学期数学9月月考试题
北京清华大学附属中学朝阳学校2024-2025学年九年级上学期数学9月月考试题一、单选题1.下列变量具有二次函数关系的是( ) A .圆的周长C 与半径rB .在弹性限度内,弹簧的长度y 与所挂物体的质量xC .正三角形的面积S 与边长aD .匀速行驶的汽车,路程s 与时间t2.抛物线y=﹣12x 2+3x ﹣52的对称轴是( )A .x=3B .x=﹣3C .x=6D .x=﹣523.下列所给方程中,没有实数根的是( ) A .20x x += B .24520x x -+= C .25410x x --=D .23410x x -+=4.用配方法解方程2240x x --=,配方正确的是() A .()213x -=B .()214x -=C .()215x -=D .()213x +=5.已知二次函数2y ax bx c =++的图象如图所示,则下列结论中,正确的是( )A .0a >,0b >,0c >B .0a <,0b >,0c >C .0a <,0b >,0c <D .0a <,0b <,0c >6.已知方程2x 2+4x ﹣3=0的两根分别为x 1和x 2,则x 1+x 2的值等于( ) A .2B .﹣2C .32D .﹣327.函数221y ax x =-+和y ax a =+(a 是常数,且0)a ≠在同一平面直角坐标系中的图象可能是( )A .B .C .D .8.已知一个二次函数图象经过()113,P y -,()221,P y -,()331,P y ,()443,P y 四点,若324y y y <<,则1234,,,y y y y 的最值情况是( ) A .3y 最小,1y 最大 B .3y 最小,4y 最大 C .1y 最小,4y 最大D .无法确定二、填空题9.关于x 的一元二次方程()22110m x x m -++-=有一根为0,则m =. 10.方程2x x =的解是.11.把函数23y x =-的图象向左平移2个单位,再向上平移5个单位,得到的图象的解析式是.12.已知抛物线22y x x =+经过点12(4,),(1,)y y -,则1y 2y .(填“>”,“=”,“<”) 13.二次函数2y x 2x 3=-+-,用配方法化为2y a(x h)k =-+的形式为.14.如图,要在空地上用40米长的竹篱笆围出一个矩形园地,矩形的一边靠教学楼25米的外墙,其余三边用竹篱笆.设矩形垂直于的一边为x 米,面积为y 平方米.写出y 与x 的函数关系式,自变量x 的取值范围是.15.如图,抛物线2y ax bx c =++的部分图象如图所示,若点P 的坐标为()4,0,则抛物线与x 轴的另一个交点坐标是.16.车间里有五台车床同时出现故障.已知第一台至第五台修复的时间如下表:若每台车床停产一分钟造成经济损失10元,修复后即可投入生产.(1)若只有一名修理工,且一名修理工每次只能修理一台机床,则下列三个修复车床的顺序:①D A C E B →→→→;②D B E A C →→→→;③C A E B D →→→→中,经济损失最少的是(填序号);(2)若由两名修理工同时修复车床,且每台机床只由一名修理工修理,则最少经济损失为元.三、解答题17.解方程:()232x x x +=+. 18.解方程()224415x x x -+=+19.已知﹣1是方程x 2+ax ﹣b=0的一个根,求a 2﹣b 2+2b 的值.20.已知关于x 的方程()2320x m x m -+++=.(1)求证:无论实数m 取何值时,方程总有实数根; (2)若方程有一个根的平方等于4,求m 的值.21.在平面直角坐标系xOy 中,函数()0y kx b k =+≠的图象经过点()2,1A 和()0,1B -.(1)求该函数解析式;(2)当2x >-时,对于x 的每一个值,函数12y x n =+的值小于函数()0y kx b k =+≠的值且大于4-,直接写出n 的取值范围.22.一个小球以6m /s 的速度开始向前滚动,并且均匀减速,4s 后小球停止滚动. (1)小球的滚动速度平均每秒减少______米,滚动______米后停止.(2)小球滚动11m 1.73)(提示:匀变速直线运动中,每个时间段内的平均速度v (初速度与末速度的算术平均数)与路程s ,时间t 的关系为s vt =)23.已知:二次函数()20y ax bx c a =++≠中的x 和y 满足下表:(1)直接写出m 的值为______; (2)求这个二次函数的解析式;(3)当14x -<<时,y 的取值范围为______. 24.综合与实践 【项目背景】无核柑橘是我省西南山区特产,该地区某村有甲、乙两块成龄无核柑橘园.在柑橘收获季节,班级同学前往该村开展综合实践活动,其中一个项目是:在日照、土质、空气湿度等外部环境基本一致的条件下,对两块柑橘园的优质柑橘情况进行调查统计,为柑橘园的发展规划提供一些参考. 【数据收集与整理】从两块柑橘园采摘的柑橘中各随机选取200个.在技术人员指导下,测量每个柑橘的直径,作为样本数据.柑橘直径用x (单位:cm )表示. 将所收集的样本数据进行如下分组:整理样本数据,并绘制甲、乙两园样本数据的频数直方图,部分信息如下:任务1 求图1中a 的值. 【数据分析与运用】任务2 A ,B ,C ,D ,E 五组数据的平均数分别取为4,5,6,7,8,计算乙园样本数据的平均数.任务3 下列结论一定正确的是______(填正确结论的序号). ①两园样本数据的中位数均在C 组; ②两园样本数据的众数均在C 组;③两园样本数据的最大数与最小数的差相等.任务4 结合市场情况,将C ,D 两组的柑橘认定为一级,B 组的柑橘认定为二级,其它组的柑橘认定为三级,其中一级柑橘的品质最优,二级次之,三级最次.试估计哪个园的柑橘品质更优,并说明理由.根据所给信息,请完成以上所有任务.25.在平面直角坐标系xOy 中,直线44y x =+与x 轴、y 轴分别交于点A ,B ,抛物线23y ax bx a =+-经过点A ,将点B 向右平移5个单位长度,得到点C .(1)求点C 的坐标; (2)求抛物线的对称轴;(3)若抛物线与线段BC 恰有一个公共点,结合函数图象,求a 的取值范围.26.四边形ABCD 是正方形,AC 是对角线,E 是平面内一点,且CE C B <,过点C 作FC CE ⊥,且CF CE =,连接AE 、AF 、M 是AF 的中点,作射线DM 交AE 于点N .(1)如图1,若点E 在BC 边上,F 在CD 边上. ①请补全图形;②请问DN 和AE 有怎样的位置关系,并证明;(2)如图2,若点E 在四边形ABCD 内,点F 在直线BC 上方,求EAC ∠与ADN ∠的和的度数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集宁七中2012---2013学年度第一学期十一月月考
九年级数学试卷
命题人:张福生
(考试时间:90分钟,试卷满分:120分)
一、选择题:(每题3分,共30分)
1.如图:A 、D 是⊙O 上的两点,BC 是直径,若∠D=35º,则
∠OAC= ( )º
A. 35
B. 55
C. 65
D. 70
2.如图:⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的动
点,则线段OM 的长的最小值为( )
A . 2 B. 3 C. 4 D. 5
3.下列说法正确的是( )
A. 三点确定一个圆, B. 三角形有且只有一个外接圆,
C. 四边形都有一个外接圆,D. 圆有且只有一个内接三角形,
4.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定( ) A 与x轴相离,与y轴相切,B 与x轴相离,与y轴相离, C 与x轴相切,与y轴相离,D 与x轴相切,与y轴相切
5. )
A.2R B . 12R C .2 D 6.扇形的弧长为16,半径为8,则扇形的面积是( )
A .16
B .32
C .64
D .16π
7.下列事件中,属于不确定事件的有( )
① 太阳从西边升起,②任意摸一张体育彩票会中奖,③掷一枚硬币,有国徽的
一面朝下,④小明长大后成为一名宇航员。
A ①②③
B ①③④
C ②③④
D ①②④
8.掷一个质地均匀的正方体骰子,骰子的六个面分别刻有1到6的点数,则向上的一面的点数大于4的概率为()
A. 1
6
B.
1
3
C.
1
2
D.
2
3
9.甲乙丙三人参加数学、物理、英语三项竞赛,每人限报一项,则甲报英语,乙报数学,丙报物理的概率是()
A.1
27
B .
1
9
C.
1
6
D.
1
3
10.如图:以正方形ABCD的BC边为直径作半圆O,过
点A作直线切半圆于点F,交CD边于点E,若正方形
ABCD的边长为6则AE的长为( )
A.7.5
B.8
C.66+
二、填空题:(若一个圆锥的每题3分,共30分)
11.若一个圆锥的底面周长为4πcm,母线长是6cm,则
该圆锥的侧面展开图的圆心角的度数是___________
12.从n个苹果和3个雪梨中任选1个,若选中苹果的概率为½,则n的值是___________
13.⊙A和⊙B的半径分别为7cm和13cm,若⊙A和⊙B相切,那么AB=___________
14.将二次函数y=-x²+3的图像沿y轴向下平移2个单
位所得函数解析式为__________________
15.如图:⊙A的圆心坐标为(0,4),若⊙A的半径为
_________
16.如图:点P为⊙O外一点,PA为⊙O的切线,连接P
O并延长,交⊙O于点B,C,连接AB,AC,若⊙O的
半径为3,PA=4,则弦AC=__________________
17.一边长为6的正n边形,它的一个内角为120º,则
其外接圆的半径为_______________
18.75º圆心角所对的弧长为2.5πcm,则此弧所
在圆的半径是____________cm.
19.如图:RtΔABC中,∠C=90º,AC=BC
=2,以A为圆心,AC为半径作弧交AB于点D,则图
中阴影部分的面积为____________
20.若直角三角形的两直角边长分别为6和8,则它的内切圆的半径为____________
三.解答题:
21.甲乙丙丁四位同学进行一次兵乓球单打比赛,要从中选出两位同学打第一场比赛,
(1)请列表求恰好选中甲,乙两位同学的概率
(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率。
22.一条排水管的截面如图所示:已知排水管的截面半径OB=10dm,圆心O
到水面的距离OC=8dm,
(1)求水面的宽AB
(2)若水面的高上升2dm,水面的宽又是多少?
23.如图:从一个直径是1m的圆形铁皮中剪出一个圆心角为90º的扇形,求被
剪掉部分的面积?
24.取三枚硬币,在第一枚的正反面分别贴上红蓝标签,在第二枚的正反面上分别贴上蓝黄标签,在第三枚的正反面上分别贴上黄红标签,同时抛三枚硬币,硬币落地后,用树形图求下列事件的概率。
(1)颜色各不相同。
(2)都是红色。
(3)两红一蓝 (4)两蓝一红
25.画函数y=21(1)12
x --的图像,并回答问题 (1)写出对称轴
(2)写出一个与它形状和大小相同的抛物线的解析式
26.如图:在平面直角坐标系中,⊙C与y轴相切,且C点的坐标为(1,0),直线L过点A(-1,0),与⊙C相切于点D,求直线L的解析式。