第五章 电化学

合集下载

物理化学第五章 电化学基础

物理化学第五章  电化学基础

KNO3
NaAs
0.508
0.554
0.Байду номын сангаас09
0.555
0.509
0.557
0.510
0.559
0.512
0.561
第二节 电解质溶液的电导及应用应用
• 一、电导、电导率和摩尔电导率 (一)电导
对于电子导体,常用电阻来衡量材料的导电能力。导
体的电阻R与其长度l成正比、与材料的横截面积A成反比。

l R A
2Cl 2e Cl 2


• 氧化还原作用使两电极分别得到和放出电子,其 效果就好像在负极有电子进入了溶液,而正极得
到了人溶液跑出来的电子一样,如此使电流在电
极与溶液界面处得以连续。两电极间的外电路靠
第一类导体的电子迁移导电。这样就构成了整个
回路中连续的电流。
• 综上所述,可以归纳两点结论 1、借助电化学装置可以实现电能与化学能的相互转 化。在电解池中,电能转变为化学能;在原电池 中,化学能转变为电能。 2、电解质溶液的导电机理是: (i)电流通过溶液是由正负离子的定向迁移来实现 的; (ii)电流在电极与溶液界面处得以连续,是由于 两电极上分别发生氧化还原作用时导致电子得失 而形成的。
• 应强调指出,借助电化学装置实现电能与化学能 的相互转换时,必须既有电解质溶液中的离子定 向迁移,又有电极上发生的电化学反应。若二者 缺一,则转换是不可能持续进行的。 (i)电化学装置的两电极中,电势高者称为正极, 电势低者称为负极;
(ii)电化学装置的两电极中,发生氧化反应者称 为阳极,发生还原反应者称为阴极;
• 由于不同离子的价数不同,发生1mol物质的电极反应所需
的电子数会不同,通过电极的电量自然也不同。例如, 1mol Cu 在电极上还原为Cu需要2 mol电子,而1 molAg

第五章 电化学基础

第五章 电化学基础

可分为:Cu2Βιβλιοθήκη +2e- Cu 还原半反应
Zn
Zn2++2e- 氧化半反应
其中:高氧化值者 Cu2+、Zn2+ 称氧化态; 低氧化值者 Cu、 Zn 称还原态。
可归结为:
氧化态Ⅰ+还原态Ⅱ 还原态Ⅰ+氧化态Ⅱ
此外,还有氧化态的概念。
氧 化 数(值)
概念:化合物中某元素的形式荷电数。 规定:某元素的一个原子的荷电数,
正极反应:Cu2++2e- Cu
还原半反应
电池反应: Cu2++Zn
Zn2++Cu
铜 锌 原 电 池:
电极
电极反应
电对
•负极:Zn ⇌ Zn 2+ + 2e 氧化反应 Zn2+/ Zn
•正极:Cu2+ + 2e ⇌ Cu 还原反应 Cu2+ / Cu
电池反应:Zn + Cu2+ = Cu + Zn2+
在中性溶液中:
0.0592 lg c14 (H ) 6
Cr2O72 / Cr 3
1.232
0.0592 lg(107 )14 6
< =0.265V
θ (1.232)
Cr2O72-的氧化性减弱
•大多数含氧酸盐的氧化能力随酸度增大而增强.
5.2.4 电极电势的应用
• 1.计算原电池的电动势 • 2.判断氧化还原反应的方向 • 3.判断氧化剂、还原剂的相对强弱 • 4.判断氧化还原反应进行的程度
Zn∣Zn2+ Cl-∣Cl2∣Pt
Fe3+,Fe2+∣Pt Ag∣AgCl∣Cl-

电化学-第五章电荷转移步骤动力学与电化学极化(极力推荐)

电化学-第五章电荷转移步骤动力学与电化学极化(极力推荐)

W1 W2’-W1’ W2-W1
nF W
2
W2’
还原态
氧化态
nF
nF

nF
x
改变电极电位对电极反应活化能的影响的示意图
W2’ – W1’ = W2- W1 + nF
这样, W2’ – W2 = W1’- W1 + nF
阴极反应活化 能增值
阳极反应活化 能增值
再变化为:(W2’ – W2)- (W1’- W1)= nF
当电极反应处于标准平衡状态时,即 = 平
ia nFk c exp(
0 a R 0 c o
nF
RT RT
0 平 ) nFK a cR
ic nFk c exp(
nF
0 平 ) nFK c co
上两式中:
K a k exp(
0 a
nF
RT
0 平 ) 0 平 )
K c kc0 exp(
a b lg I
从上式可以看出,不仅与电流密度I有关,还 与a、b有关。而a、b则与电极材料性质、表面结 构、电极的真实表面积、溶液的组成及温度有关。
5.1.2 影响电化学极化的主要因素
(1)电流密度。
(2)电极材料,不同的电极材料a值不同,反应能力完全 不同。需要寻找具有高催化活性的材料。 (3)电极的真实表面积,表面积越大电极的反应能力越大, 可减小电极的极化。如采用多孔电极。
若改写成指数形式,则有:
阳极反应
ia i exp(
0
nF
RT
a )
阴极反应
ic i exp(
0
nF
RT
c )
知道了、和i0,根据上面的电化学步骤的基本动 力学方程,就可以计算任一电位下的绝对电流密 度 ia 、 ic 。

第五章 电化学步骤动力学

第五章  电化学步骤动力学

它只在一定的电 流范围内适用
a blgi
a,b的物理意义不明确,不 能说明电位的变化是怎样影 响电极反应速度的。
❖ 即电极电位直接影响到电子在两相间的传递,直接与电化学步骤的 快慢有关。
❖ 为了从理论上证明这个公式的合理性,必须从理论上来进行推导和 说明,因此必须建立起描叙电化学步骤动力学状态的方程。
❖ 此时,电化学步骤动力学方程不能进行简化,必须用整个公式来描叙, 即:
ik
i阴
i阳
i0
[exp(
nF
RT
)
exp(
nF
RT
)]
iA
i阴
i阳
i0[exp(
nF
RT
)
exp( nF
RT
)]
5.4、电化学的基本动力学参数
1.传递系数:--α、β ❖描述电极电位对活化能影响程度的动力学参数,叫对称系数,或传递系数。
❖ 用电流密度来表示反应速度,即:
i阴
V阴 s
nF
nFZ阴Co'
exp( W阴 RT
)
i阳
nF
V阳 s
nFZ阳CR'
exp( W阳 ) RT
❖ 因扩散步骤很快,则
Co' Co
CR' CR
i阴
nFZ阴Co
exp(
W阴 RT
)
nFK阴Co
i阳
nFZ阳CR
exp(
W阳 RT
)
nFK阳CR
5.1巴特勒-伏尔摩方程
a
2.303RT
nF
lg i0
2.303RT
nF
lg
ia
(5-10)

第五章 电化学基础

第五章 电化学基础

0.05917 lg 0.10 0.05917 lg 0.010
0.10 E 0.05917 lg 0.05917 (V) 0.010
二. 比较氧化剂和还原剂的相对强弱
越大 电极的 氧化型物质氧化能力↑
共轭还原型物质还原能力↓
还原型物质还原能力↑ 共轭氧化型物质氧化能力↓
(1)Mn2+ + 2e
2
Mn
2
(Mn / Mn) (Mn
0.05917 / Mn) lg c(Mn 2 ) 2
(2)2H2O + 2e
H2 + 2OH0.05917 1 (H 2O / H 2 ) (H 2O / H 2 ) lg 2 p(H 2 ) {c(OH )}2 Ag + Br-
∵ ∴
(H / H 2 ) 0.00 V
E 待测
例如:测定Zn2+/Zn电极的标准电极电势
将Zn2+/Zn与SHE组成电池
(-)Pt,H2(100kPa)|H+(1mol· -1)||Zn2+(1mol· -1)|Zn(+) L L
298.15K时, E =-0.763V,
电池反应:
二、原电池符号
(-)Zn | Zn2+(c1) || Cu2+(c2) | Cu(+) 相界面 盐桥
电极导体
溶液
同相不同物种用“,”分开,
负极“ - ”在左边,正极“ + ”在右边; 溶液、气体要注明cB,pB ,固体浓度忽略
纯液体、固体和气体写在惰性电极(Pt)一边用“ , ”分开。
例1:将下列反应设计成原电池并以原电池符号表示。 2Fe2 1.0mol L1 Cl2 100kPa

电化学原理第五章

电化学原理第五章
17:59:38
当电极上有电流通过时,三种传质方式可能同时存在, 但在一定区域,一定条件下,只有一至二种传质方式起主要 作用。 电极反应消耗大量粒子,要靠传质过程补充,若电解液 含较多电解质,则可忽略电迁移传质作用,向电极表面传输 反应粒子主要由扩散和对流串联而成。通常对流传质的速度 原大于扩散传质的速度,故液相传质过程速度主要由扩散传 质过程控制,它可代表整个液相传质过程动力学的特征,本 章讨论扩散传质动散。 反应初期,反应粒子浓度变化不太大,浓度梯度较小,扩散较 慢,扩散发生范围主要在离电极较近区域,随反应进行,扩 散过来的反应粒子的数量远小于电极反应的消耗量,梯度较 大,扩散范围也增大,反应粒子的浓度随时间和电极表面距 离变化而不断变化。
17:59:38
扩散层中各点的反应粒子浓度是时间和距离的函数,即 Ci=f(x,t) 反应浓度随x和t不断变化的扩散过程,是一种不稳定的扩散 传质过程。这个阶段内的扩散称非稳态扩散或暂态扩散,反 应粒子是x与t的函数。
17:59:38
二、液相传质三种方式的相对比较 (1)传质推动力不同 电迁移:电场力,存在电位梯度 对流传质: 自然对流:或温度差存在,实质是不同部分溶液存在重 力差。 强制对流:是搅拌外力,机械、空气搅拌等。 扩散传质: 推动力是存在浓度差。 (2)从传输的物质粒子的情况看 电迁移只能传输带电粒子,扩散和对流既可传输离子,也可传输 分子,甚至粒子。 电迁移和扩散过程粒子间溶质与溶剂存在相对运动,对流传质过 程中,溶液一部分相对于另一部分作相对运动,在运动的溶液内 部,溶质与溶剂分子一起运动,二者间无明显相对运动。 (3)从传质作用区域考虑 把电极表面和附近的液层大划分为双电层区,扩散层区和对流区 。
J Ag DAg dCAg dx DAg

【电化学】第五章 电化学能量转换和储存

【电化学】第五章  电化学能量转换和储存

2Na+5S=Na2S5
(初期)
2Na+4Na2S5=5Na2S4 (中、后期)
2Na+Na2S4=2Na2S2 (后期,Na2S5耗尽后)
二、固体电解质电池
与溶液型电解质电池相比,其特点是贮存寿命长,使用 温度范围广,耐振动及冲击,没有泄漏电解液或产生气体 等问题,能制成薄膜,做成各种形状和微型化。但是固体 电解质的电导率低于液态电解质溶液,常温时电他的比功 率和比能量较低,容易出现极化,不易适应工作时体积变 化
第三节 蓄 电 池
一、铅酸蓄电池
1、 铅酸蓄电池分类、结构和工作原理
铅酸蓄电池分类
启动用蓄电池
固定型蓄电池
牵引用蓄电池
摩托车用蓄电池
按用途分
船舶用蓄电池
航空用蓄电池
坦克用蓄电池
铁路客车用蓄电池
航标用蓄电他
矿灯用蓄电池等
三.锌汞电池和锌银电池
1.锌汞电池
Zn(含少量Hg)|30-40%KOH(ZnO饱和)|HgO,Hg 负极反应 Zn+4OH- = Zn(OH)42-+ 2e
(6)自放电
第三节 蓄 电 池
3、密封式铅酸电池 使电池达到气密有三个途径:
(1)气相催化法 (2)辅助电极式 (3)阴极吸收式
二、镉镍蓄电池 碱性蓄电池是使用KOH或NaOH电解液的二次电池的
总称。包括镉镍、镉银、锌银、锌镍、氢镍等蓄电池 镉镍电池的优点:①对进行高率放电;②低温特性好;
③循环寿命长;④即使完全放电,性能也不怎么下降; ⑤易于维护;⑥易于密闭化。缺点主要是电压较低
三、电池的命名和型号 自学!!
第二节 用锌作负极的电池
一、锌锰干电池 锌-二氧化锰电池常称锌锰十电池,正极为二氧

第五章-氧化还原电化学

第五章-氧化还原电化学

氧化还原反应凡有电子得失或共用电子对偏移发生的反应。
氧化失去电子或共用电子对偏离的变化,相应的物质称为“还 原剂”;
氧化数升高
还原得到电子或共用电子对接近的变化,相应的物质称为“氧 化剂”。
氧化数降低
(二)自氧化还原反应
例:

2 KClO3 (s) 2 KCl(s) + 3 O2(g)
(2)将反应分解为两个半反应方程式
MnO-4 + H+ → Mn2+ SO23- → SO42-
步骤
(2)将反应分解为两个半反应方程式
1.使半反应式两边相同元素的原子数相等
MnO-4 + 8H+ → Mn2+ + 4H2O
左边多 4个O原子,右边加 4个H2O, 左边加 8个H+
SO23- + H2O → SO42- + 2H+ 右边多 1个O原子,左边加 1个H2O, 右边加2个H+
第五章 氧化还原电化学
Oxidation-Reduction Reactions、 Electrochemistry
2e-
Cu2+ (aq) + Fe(s) Cu(s) + Fe2+ (aq)
第五章 氧化还原与电化学
氧化数与氧化还原方程式的配平 原电池的电动势与电极电位(势) 标准电极电位(势) 影响电极电位的因素
配平氧化数变化的原子 和不变的非H O原子
BiOCl——Bi+Cl-+H2O BiOCl+2H+——Bi+Cl-+H2O
BiOCl+2H++3e- = Bi+Cl-+H2O
缺O加H2O补
缺H加H+补

第5章超微电极电化学

第5章超微电极电化学

超微电极存在强的边缘效应。从本质上分析,是因为具有较大的径
向扩散作用
非线性扩散电流与线性扩散Байду номын сангаас流
以有限圆盘电极为例 线性扩散:垂直于电极表面方向的扩散称为线性扩散,产
生的电流为线性扩散电流; 非线性扩散:沿半径方向的扩散称为非线性扩散,产生的
电流为非线性扩散电流 电极尺寸的影响: ❖ 半径大:线性扩散为主 ❖ 半径小:非线性扩散为主
制作工艺困难!
例:超微圆盘电极制备
5.2 超微电极的基本特征
超微电极:尺寸小<10-2cm,电极表面扩散层厚度为
~ 10-2 10-3cm,超微电极的尺寸小于扩散层厚度。
超微电极的特点:
1. 易于达到稳定电流 2. 超微电极时间常数很小 3. 可应用于电阻高的溶液 4. 超微电极表面的扩散
一、易于达到稳定电流
相对来说,绝对值不大。
➢ 电极表面附近溶液的电阻(Rs)—扩散层电阻
计算公式:Rs=s/4r0
溶剂电阻s较金属的比电阻大得多!
主要来源!
超微电极的i·R降并不大!
原因:
超微电极的电流密度很大,但面积小,绝对电流值并不大。 一般在10-9~10-12A
对伏安曲线的影响可忽略
实验技术:
可采用两电极系统 支持电解质的浓度不要求很大,甚至不需要
超微电极的扩散过程类似于球形电极,可用球形电 极模型近似处理。
On e R
非稳态扩散过程的电流:
C0 (tr,t)D 02C 0 r(2 r,t)2 rC0 (rr,t) C R (tr,t)D 02C R r(2r,t)2 rC R (rr,t)
解扩散性方程得到O、R的还原、氧化电流:
ik 4nF 0 C 0 * r D 0r 0 D 20 t 4nr0F 很0 C 小0 ,r D 0 忽,t略 r 不0计r 0 D 20 t

电化学原理-第五章-液相传质步骤动力学-2015修订

电化学原理-第五章-液相传质步骤动力学-2015修订

y u 1/ 6 1/ 2 1/ 2 0
n0 知
y1/2


u 1/ 0
2
而旋转圆盘电极上各点的切向速度:
u0 2n0 y
所以:
u01/ 2 y1/ 2 (2n0)1/ 2 常数
y 有:
Di1/3 1/6 常数
即:旋转圆盘电极上各点的扩散层
厚度与y值无关。
1、电极表面附近的液流现象及传质作用 2、扩散层的有效厚度 3、对流扩散的动力学规律
摩擦力
y0
边界层:存在流速梯 度的区域。
电极表面上各点,边 界层厚度不同。
动力粘滞
层流
y0
边界层
根据流体力学理论 可知:
边界层厚度:
B y / u0 (5.10)
动力粘滞系数:


粘度系数 密度
当 j 很小时,由于 j jd
则 (5.40) 简化为:
RT(1 j )
nF
jd (5.41)
对数 直线 关系 关系


0

RT nF
ln OcO0

RT nF
ln(1
j jd

作极化曲线。

0 2.由3RT
nF
log

O cO0

2.3RT nF
log(1
液相传质步骤动力学
液相传质常是电极反应的限制步骤。 1mol / L 时电极反应最大速度可达 105 A / cm2
实际电化学反应装置的最高电流密度极少 超过几 A / cm2 表明电化学反应的潜力未发挥出来。
通过减缓或增加液相传质来控制电极反应速度。 采用多孔膜和选择透过性薄膜减少干扰组分对 电极反应的影响。

第五章 氧化还原反应和电化学

第五章  氧化还原反应和电化学

左边
右边
酸性 多O缺H时,多一个O加2个 加相应的H2O 介质 H+, 缺1个H加1个H+
碱性 多H缺O时,多一个H加1个 加相应的H2O 介质 OH– ,缺1个O加2个OH –
中性 多 n 个 O 加 n个 H2O 介质 加 n 个 H2O
加 2n 个 OH– 多 n个 O 加 2n 个H+
酸性介质中配平的半反应方程式不应出现OH–,在 碱性介质中配平的半反应不应出现H+
氧化值和化合价
• 氧化值是元素在化合状态时的形式电荷,按一定 规则得到,不仅可有正、负值,而且可为分数。 • 化合价是指元素在化合时原子的个数比,它只能 是整数。
1. 多数情况下二者数值相同,也可混用,但它们在 数值上也有不一致的情况 2. 在离子化合物中元素的氧化值等于其离子单原子 的电荷数 3. 在共价化合物中元素的氧化值和共价数常不一致
倍数。找出氧化剂、还原剂的系数。 4. 核对,可用H+, OH–, H2O配平。
例题 (1)
HClO3 + P4 HCl + H3PO4 氧化值升高的元素:
Cl5+ Cl–
氧化值降低 6
P4 4PO43– 氧化值升高20 10 HClO3 + 3P4 10HCl + 12H3PO4 方程式左边比右边少36个H原子,少18个O原子,应 在左边加18个H2O
配平 Cl2 (g) + NaOH → NaCl + NaClO3 解: 半反应
Cl2 (g) + 2e- =2Cl-
(1)
Cl2 (g) + 12OH- = 2ClO3- + 6H2O + 10 e- (2)

物理化学-第五章电化学 (2)

物理化学-第五章电化学 (2)

←Cl–
Cu
Cu2+→
在Cu电极与溶液的界面处,Cu2+得到电 子e–变成金属Cu: Cu2+ + 2e– →Cu
CuCl2溶液
电解池
还原反应
Cu电极为阴极
电极反应------化学反应
16
+ – e–
电解质溶液的导电总过程: (1) 电池负极上的电子由Cu电极进入 电解质, 电子在Cu电极被Cu2+消耗。
因此 k = Kcell· G = Kcell· R
首先确定电导池常数
1
28
(1) 电导池常数(Kcell)的测定
l Kcell = A
电导池常数Kcell的测定方法:不能采用几何方法测量,而是用 间接的方法测量。将一个已知电导率的溶液(通常是KCl溶液)注 入到电导池中,测量出溶液的电阻或电导,代入下式,即可求 得电导池常数。
298.15K 11.173 1.2886 0.14114
由此可见对于浓度不同的同种电解质,其电导率是不同的,因 此不能用电导率来描述电解质的导电能力,不能用来比较几种 电解质的导电能力。
22
二. 摩尔电导 (摩尔电导率) 1. 摩尔电导(摩尔电导率):在相距1m的两个平行电极之间, 放置含有1mol电解质的溶液,此溶液的电导称为摩尔电导 率。 2. 符号:m 3.摩尔电导率与电导率的关系
在电极与溶液的界面上有电子得失的反应发生;
溶液内部有离子作定向迁移运动。
3. 极板与溶液界面上进行的化学反应电极反应
两个电极反应之和为总的化学反应: 原电池电池反应; 电解池电解反应
18
§5-3 电解质溶液的电导 一. 电导与电导率 在电学中,第一类导体的导电能力是用电阻R表示。 在电化学中,电解质溶液的导电能力用电导G (L)来表示。 1. 电导的概念 电导G(L)——是导体导电能力大小的量度,为电阻的倒数。 G= 1 电导的单位:S(西门子 )或1(姆欧) 1 因此:G = ρ A l

第五章 电化学步骤动力学

第五章  电化学步骤动力学
第五章
电化学步骤动力学
如果电化学反应步骤的速度很慢,成为整个过程的控制步骤, 如果电化学反应步骤的速度很慢,成为整个过程的控制步骤, 电极过程的速度就将由电化学反应步骤的速度控制。 电极过程的速度就将由电化学反应步骤的速度控制。 由电化学步骤缓慢所引起的极化叫电化学极化。 由电化学步骤缓慢所引起的极化叫电化学极化。 电化学极化 电化学步骤控制的电极过程的动力学规律就是电化学步骤的动 力学规律。 力学规律。 因此找到了影响电化学步骤的反应速度的主要因素, 因此找到了影响电化学步骤的反应速度的主要因素,也就找到 了影响电极过程速度的主要因素, 了影响电极过程速度的主要因素, 电化学步骤动力学就是研究电极过程处于电化学反应步骤所控 制时的动力学规律或动力学特征。 制时的动力学规律或动力学特征。
5.1巴特勒-伏尔摩方程 5.1
一.电化学极化经验公式
过电位服从一个半经验公式: 过电位服从一个半经验公式:
与电极材料、电极表 面状态、溶液组成和 温度有关 它只在一定的电流 范围内适用
1905年塔费尔根据大量实验事实, 1905年塔费尔根据大量实验事实,发现氢离子的放电过程中其放电 年塔费尔根据大量实验事实
a,b的物理意义不明确,不 , 的物理意义不明确 的物理意义不明确, 能说明电位的变化是怎样影 响电极反应速度的。 响电极反应速度的。
即电极电位直接影响到电子在两相间的传递, 即电极电位直接影响到电子在两相间的传递,直接与电化学步骤的 快慢有关。 快慢有关。 为了从理论上证明这个公式的合理性, 为了从理论上证明这个公式的合理性,必须从理论上来进行推导和 说明,因此必须建立起描叙电化学步骤动力学状态的方程。 说明,因此必须建立起描叙电化学步骤动力学状态的方程。
电极过程最重要的特征就是电极电位对电极反应速度的影响, 电极过程最重要的特征就是电极电位对电极反应速度的影响,这种影 响有直接的,也有间接的。 响有直接的,也有间接的。 直接影响主要指对电化学步骤的活化能的影响, 直接影响主要指对电化学步骤的活化能的影响,主要影响电极表面上 参加反应粒子的浓度。 参加反应粒子的浓度。 当扩散步骤成为控制步骤,电位的变化是由于参加反应的粒子的浓度 当扩散步骤成为控制步骤, 变化而引起的,可用能斯特方程计算电位变化,这种影响称为“ 变化而引起的,可用能斯特方程计算电位变化,这种影响称为“热力 学方式” 学方式”。 如果电子转移步骤是电极过程的控制步骤时, 如果电子转移步骤是电极过程的控制步骤时,电极电位直接影响电子 转移步骤和整个电极反应过程的速度,这种影响称为“ 转移步骤和整个电极反应过程的速度,这种影响称为“动力学方 式” 。

电化学分析法

电化学分析法

2、电解条件的特殊性 离子到达电极表面除扩散外,还有迁移和对流,后 两者应该除去。
(1)消除迁移电流——加支持电解质, 使池内阻变小,电压降低。
(2)消除对流电流——不搅拌消除。
(3)消除氧波和极谱极大——
极谱分析还需加入除氧剂和表面活性剂,以 除氧和消除极谱极大。 O2 + 2 H+ + 2e H2O2 + 2e +2H+ i 极谱极大 H2O2 2H2O E = - 0.05V E = - 0.9V
电化学分析的关键是电极:
Pt电极系统——电解分析和库仑分析 离子选择性电极——电位分析和电位型传感器 滴汞、铂碳或微铂电极——极谱与伏安分析、电流 型传感器
3、电化学分析的特点:
1、仪器简单,价格较光学分析仪器便宜;
2、灵敏度高,如极谱分析可达10-12 M;
由于电导分析比较简单,教材没有讲。
电导分析的一个重要用途是测量水的纯度。如果水的纯 度达到18M,则认为是高纯水。
Cd2+ + 2e +Hg
分三个阶段
Cd(Hg)
(1)电位尚未负到Cd 的还原电位;
(2)Cd开始还原,扩 散电流产生; (3)极限扩散电流产 生。
i
极限扩散电流 id 电流上升阶段 i
残余电流 ir
-0.2
-0.5
-1
E(V)
C
C C0 X C0—电极表面浓度 C—本体溶液浓度
X
C [Cd ] [Cd ] i X
— +
纳米传感
Semi-conducting Nanotube Molecular Wires as Chemical Sensors for NH3 and NOx. Hydrogen Sensors / Palladium Mesowire Arrays

第五章电化学

第五章电化学

电解池
电极①: 与外电源负极相接,是负极。 发生还原反应,是阴极。 Cu2++2e-→Cu(S)


电极②: 与外电源正极相接,是正极。 发生氧化反应,是阳极。 Cu(S)→ Cu2++2e-
物 理 化 学 简 明 教 程
(3). 几组基本概念 正极: 电势高的极称为正极,电流从正极流向 负极。在原电池中正极是阴极;在电解 池中正极是阳极。 负极: 电势低的极称为负极,电子从负极流向 正极。在原电池中负极是阳极;在电解 池中负极是阴极。
3.电解后含某离子的物质的量n(终了)。
4.写出电极上发生的反应,判断某离子浓度是增加了、减少了 还是没有发生变化。 5.判断离子迁移的方向。
物 理 化 学 简 明 教 程
【5-1】在Hittorf 迁移管中,用Ag电极电解AgNO3水溶液,电解前,溶 液中每 1kg 水中含 43.50 mmol AgNO3。实验后,串联在电路中的银库 仑计上有0.723mmol Ag析出。据分析知,通电后阳极区含 23.14g 水和 1.390 mmol AgNO3。试求Ag+和NO3-的离子迁移数。
上有4 mol 阴离子氧化,阴极上有4 mol阳离子还原。
两电极间正、负离子要共同承担4 mol电子电量的运输
任务。
现在离子都是一价的,则离子运输电荷的数量只取决于 离子迁移的速度。
物 理 化 学 简 明 教 程
设正、负离子迁移的速率相等, u+ = u- ,则导电任务各分 担2mol,在假想的AA、BB平面上各有2mol正、负离子逆向通 过。
物 理 化 学 简 明 教 程
Hittorf 法中必须采集的数据:
1. 通入的电量,由库仑计中称重阴极质量的增加而得,例如, 银库仑计中阴极上有0.0405 g Ag析出,

《物理化学》第五章(电化学)知识点汇总

《物理化学》第五章(电化学)知识点汇总

弱电解质: 电导率随浓度的变化不显著。
c/mol· dm-3
2. 摩尔电导率与浓度的关系 强电解质: 遵从科尔劳许经验关系:
m m (1 c )
m2· mol-1 Λ m/S·
HCl
NaOH AgNO3
Λ m -为极限摩尔电导率 弱电解质:
HAc
c /( mol dm )
3
$ RT aH 2 H / H ln 2 2 2 F aH

Cu
H
2
/ Cu

$ Cu 2 / Cu
aCu RT ln 2F aCu2

/ H2

$ H / H2
RT aH 2 ln 2 2 F aH
氧化态 ze 还原态
m Vm
m
1 Vm c
1mol 电解质


c
电导率

三、电导率、摩尔电导率与浓度的关系
1. 电导率与浓度的关系 强电解质: 浓度增加,电导率增加; 浓度增加到一定值后,低。 m-1 κ/S·
H2SO4
KOH NaOH NaCl HAc
2. 离子迁移数
定义:当电流通过电解质溶液时,某种离子迁移 的电量与通过溶液的总电量的比称为该离子的迁 移数。
Q r Q t = Q r r- Q Q-
Q t Q
Q- Q Q- -
r r r-
2. 摩尔电导率
是把含有1mol电解质的溶液置于相距1m的两个平行 电极之间,溶液所具有的电导。
( HCl ) ( NaAc ) m m m ( NaCl )
§5.4 溶液中电解质的活度和活度系数

电化学第五章电极过程概述

电化学第五章电极过程概述
例如.阳极反应产物在溶液中溶解后,能够迁 移到阴极区,影响阴极过程;溶液本体中传质 方式及其强度的变化会影响到电极附近液层中 的传质作用等等。
定义
1. 电极过程: 在电化学中、人们习惯把发生在电
极/溶液界面上的电极反应、化学转化和电极 附近液层中的传质作用等一系列变化的总和统 称为电极过程。
2. 电极过程动力学: 有关电极过程的历程、速度
介绍两种特殊的极端情况
理想极化电极
理想不极化电极
理想极化电极:在一定条件下电极上不发生电极反应的电 极。这种情况下,通电时不存在去极化作用,流入电极的 电荷全都在电极表面不断地积累,只起到改变电极电位, 即改变双电层结构的作用。像研究双电层结构时常用到的 滴汞电极在一定电位范围内就属于这种情况。
理想不极化电极:电极反应速度很大,以致于去极化与极 化作用接近于平衡,有电流通过时电极电位几乎不变化, 即电极不出现极化现象。例如常用的饱和甘汞电极等参比 电极,在电流密度较小时,就可以近似看作不极化电极。
3、极化曲线
• 实验表明,过电位值是随通过电极的电流密度不
同而不同的。一般情况下,电流密度越大,过电 位绝对值也越大。
• 所以,过电位虽然是表示电极极化程度的重要参
数,但一个过电位值只能表示出某一特定电流密 度下电极极化的程度,而无法反映出整个电流密 度范围内电极极化的规律。
• 为了完整而直观地表达出一个电极过程的极化性
• 另一方是电极反应,它起着吸收电子运动
所传递过来的电荷,使电极电位恢复平衡 状态的作用,可称为去极化作用。
• 电极性质的变化就取决于极化作用和去极
化作用的对立统一。
• 实验表明,电子运动速度往往是大于电极反应速
度的,因而通常是极化作用占主导地位。也就是 说,有电流通过时
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
e
第五章 电化学
主要内容 第一节 电解质溶液的导电性
第二节 电解质溶液的电导
第三节 电解质溶液电导的测定和应用
第四节 溶液中电解质的活度和活度系数
第五节 原电池
第六节 可逆电池热力学
第七节 电极电势和电池的电动势 第八节 浓差电池 第九节 电动势测定的应用
第一节 电解质溶液的导电性
一、电解质溶液的导电机制
第三节 电解质溶液的电导测定应用 一、水纯度的测定 水中离子越少,电导率越小
自来水
普通蒸馏水
去离子水
极限
= 10–1 Sm–1 = 10–3 Sm–1 < 10–4 Sm–1 (符合药用要求) = 5.510–6 Sm–1
二、弱电解质的电离度和电离常数的测定 某浓度时,部分解离 离子间相互作用可忽略 无限稀释,全部解离
m Vm

c
一、电解质溶液的电导
物理意义: 衡量电解质溶液的导电能力 比较两种电解质的导电能力? Λm √
注意:考虑离子所带的电荷 比较 Λm(KCl), Λm(CuCl2) ?
κ ×
Λm(1/2CuCl2) =1/2 Λm(CuCl2)
二、电解质溶液电导的测定
惠斯通电桥法(测量电阻R) → κ → Λm
m
Λm Λ (1 c ) (适用强电解质)
Λm∞:无限稀释摩尔电导率(极限摩尔电导率)
三、电解质溶液的电导与浓度的关系 Λm∞:无限稀释摩尔电导率(极限摩尔电导率)
Λm Λ (1 c )
m
c→0
m/Sm2mol-1
Λm → Λm∞
HCl
Λm
∞:外推法
经验常数β:与电解质、 浓度、温度有关
m
m m
( HAc ) [ ( H ) (Cl )] [ ( Na ) ( Ac )] m m m m m [ ( Na ) (Cl )]
( HAc) ( HCl) ( NaAc) ( NaCl)
m a m
a: 活度 γ :活度系数
c (a ) c
m:质量摩尔浓度 mθ :标准浓度 (反映离子间相互作用)
一、溶液中强电解质的平均活度和平均活度系数
m
m+ = ν + m
m- = ν - m
m a m
m a m

m a m

三、电解质溶液的电导与浓度的关系 电导率κ:电解质种类、浓度和温度等 (1) κ与浓度c的关系 强电解质: κ随c先增大,后减小 (离子间相互作用) 电 导 率 HCl H2SO4
KOH KCl NaOH NaCl HAc 浓度(mol/L)
弱电解质: κ随c变化不显著 (浓度增大,电离度减小)
κ (S· -1) m
三、电解质溶液的电导与浓度的关系
(2) Λm与浓度c的关系 (Λm随浓度c 降低而增加)
a)强电解质:
m/Sm2mol-1
HCl H2SO4 NaCl HAc (molL-1)1/2 c
Λm随浓度c稀释而增加 稀释中,离子的数目没 有减少,消弱了离子间 的相互作用,使得离子 的迁移速率增大
电极
阳极:发生氧化反应的电极 阴极:发生还原反应的电极 正极:电势高的电极 负极:电势低的电极 化学约定
物理约定
一. 电解质溶液导电机制 电解池
原电池
+ e e
e
e
+
H+ Cl阳极
-
+H+Fra bibliotek阴极-
Cl阳极
阴极
Cl2
2HCl H2 + Cl2
H2 H2 + Cl2 2HCl
一. 电解质溶液导电机制 电解质溶液导电机理 (1)电子从负极流出 (2)H+ (正离子)向阴极迁移 2H+ +2e- H2 (3)Cl– (负离子)向阳极迁移 2Cl–– 2e- Cl2 (4)电子流回正极
(1)正离子迁移速率是负离子的三倍
阴极 阴极区
中间区 ++++++
阳极区 阳极 ++++++
++++++
+++++
++++++
+++
(1)通入的电量等于正、负离子迁移的电量之和;
(2)正、负离子迁移的电量比为3:1。
三、离子的电迁移和迁移数 阴极区 中间区 阳极区
+++++
++++++
+++
结论: (1)通过溶液的总电量Q等于正离子迁移的电 量Q+和负离子迁移的电量Q-之和 Q = Q+ + Q (2) 阳极区减少的物质的量 正离子迁移的电量Q 阴极区减少的物质的量 负离子迁移的电量Q
正离子的迁移速率r 负离子的迁移速率r
三、离子的电迁移和迁移数 2.离子迁移数(衡量离子对电量迁移的贡献) 迁移数(tB):某种离子B迁移的电量与通过溶液 总电量的比。
Q Q r t Q Q Q r r Q Q r t Q Q Q r r

m
m,

m,
四、离子独立运动定律

m
m,

m,

m,
,
m , :正、负离子的无限稀释摩尔电导率
104 ( S m2 mol1 ) 298.15K,强电解质 m
( KCl ) ( LiCl) ( K ) ( Li ) m m m m
二、弱电解质的电离度和电离常数的测定 某浓度时,部分解离 已解离的离子参与导电 Λm 无限稀释,全部解离 全部离子参与导电
Λm∞
已解离的部分 m 全部 m AB A+ + B 起始时: c 0 0 平衡时: c(1-) c c
(c A / c )(cB / c ) (c / c )2 K (c AB / c ) c / c (1 )
l R A
l :电导池常数 ρ :电阻率 A
A=1m2
l=1m
一、电解质溶液的电导
电导率(比电导)
1 l l G A R A
单位:S/m
1
A 或 G l
物理意义:A=1 m2,l=1 m时电解质溶液的电导
影响因素:电解质种类、浓度、温度 3.摩尔电导率 (Λm )
H+ 1/2(Cu2+) 1/3(PO43-)
三、离子的电迁移和迁移数
1.离子的电迁移现象
离子的电迁移:在电场作用下,离子的定向运动
阴极区 ++++++ 阴极
中间区
++++++
阳极区 ++++++ 阳极
(1) 阳极:负离子发生氧化反应; 阴极:正离子发生还原反应;
(2)电量在溶液中传导是依靠正、负离子的迁移共同完成
阳极
+ e e
+
H+ Cl-
-
阴极
电池反应:2HCl H2 + Cl2
二、法拉第电解定律
理论要点: (1)电解时,在任一电极上发生化学反应的物
质的量与通入的电量成正比;
ze A Q n Q nzF 或 zF A
Q:电解时通过的电量;
n:电极上发生化学反应的物质的量; z:电极反应中的电子计量系数; F:法拉第常数 (1mol元电荷所带的电量)
( KNO3 ) ( LiNO3 ) ( K ) ( Li )
m m m m
四、离子独立运动定律 总结: 当温度和溶剂一定时,在极限稀释的溶液 中,每一种离子的摩尔电导率恒定,与另一种 离子无关。 (1)弱电解质Λm∞计算:
m m
( HAc) ( H ) ( Ac )
m
m
m
m
四、离子独立运动定律 (2)任意电解质Λm∞的计算 (3)离子迁移数的计算
Q Q t Q Q Q
Q Q t Q Q Q
m,

m


m,
1-1价的电解质:
t



m m
t


m m
Z
二、法拉第电解定律
F e L 1.6022 10 6.0221 10 9648609 96500 / mol . C
19
23
Q nzF
电极:2H+ +2e- H2 1mol反应
Q nzF 1 2 96500 1.9 10 C
5
二、法拉第电解定律
1 /
一、溶液中强电解质的平均活度和平均活度系数
m

m a a a a ( ) m m 1 / / 1 a a (am m m ) a( ) m 1 / [( m) ( m) ]
相距为1m的两平行电极间放置含有1mol 电解质的溶液所具有的电导
一、电解质溶液的电导 定义:相距为1m的两平行电极 间放置含有1mol电解质的溶液 所具有的电导
n c V
相关文档
最新文档