第六章 方差分析
教育与心理统计学 第六章 方差分析考研笔记-精品
第六章方差分析第一节方差分析概述一.方差分析的定义[用途]定义:用途方差分析也称为变异数分析,是在教育与心理研究中最常用的变量分析方法,其主要功能在于分析测量或实验数据中不同来源的变异对总变异的贡献大小,从而确定测量或实验中因素对反应变量是否存在显著影响。
即用于置信度不变情况下的多组平均数之间的差异检验。
它既可以比较两个以上的样本平均数的差异检验,也可以应用于一个因素多种水平以及多个因素有多种水平的数据分析。
二.方差分析的作用方差分析主要应用于两种以上实验处理的数据分析,同时匕徽两个以上的样本平均数,推断多组资料的总体均数是否相同,也即检验多组数据之间的均数差异是否有统计意义。
在这个意义,也可以将其理解为平均数差异显著性检验的扩展。
当我们用多个t检验来完成这一过程时,相当于从t分布中随机抽取多个t值,这样落在临界范围之外的可能大大增加,从而增加了I型错误的概率,我们可以把方差分析看作t检验的增强版。
方差分析一次检验多组平均数的差异,降低了多次进行两组平均数检验所带来的误差。
在进行方差分析时,设定的假设是综合虚无假设,即假设样本所归属的所有总体的平均数都相等。
如果检验的结果是存在显著性差异,只能说明多组平均数之间存在显著性差异,但是无法确定究竟哪些组之间存在显著性差异,此时需要运用事后检验的方法来确定。
三.方差分析的相关概念一(一)数据的变异(1)变异:统计中的变异是普遍存在的7一般意义上的变异是指标志(包括品质标志和数量标志)在总体单位之间的不同表现。
可变标志的属性或数值表现在总体各单位之间存在的差异,统计上称之为变异,这是广义上的变异,即包括了品质标志和数量标志,有时仅指品质标志和在总体单位之间的不同表现。
注:随机性,即变异性。
(2)组间变异[组间差异]:组间变异表示处理间变异,主要指由于接受不同的实验处理(实验处理效应)而造成的各组之间的变异,可以用两个平均数之间的离差来表示,可将组间离差平方和记为SS AO组间差异可用组间方差来表征,用符号MS B表示。
生物统计学 第六章 方差分析
������������������
������
F分布右尾从F 到+∞的概率为:
P( F F ) 1 F ( F )
F
f ( F )dF
方差分析
图6-1 F分布密度曲线
F分布的取值范围是(0,+∞),其平均值为������������ =1。 附表4列出了不同自由度条件下的右尾概率。 应用举例 当������������1 =3, ������������2 =18时,������0.05(3,18) =?? 方差分析
方差分析
第四步
列出方差分析表 方差分析表
平方和 (SS) 24.3215 0.0060 24.3275 自由度 (df) 3 16 19
变异来源 处理间 处理内 总变异
均方(MS) 8.1072 0.0004
F值 20268**
方差分析
5.多重比较 F检验的结果显著,仅说明k个平均数间有显著差异, 但不能说明哪些平均数间有显著差异。 定义:判断不同处理平均数两两间差异的显著性, 每个处理的平均数都要与其他的处理进行比较, 这个种差异显著性检验方法就叫做多重比较。 方法:主要有(1)最小显著差数法LSD,(2) 最小显著极差法LSR(q检验法和邓肯检验法)
方差分析
线性数学模型 ������������������ = ������ + ������������ + ������������������ ������������������ = ������.. + (������������. − ������.. ) + (������������������ − ������������. ) kn观测值的总变异=处理间的变异+处理内的变异 其中第i处理j个观测值分解为:全试验观测值总体的 平均数(������)、第i个处理的效应(������������ )和试验误差(������������������ )。 ������������������ 相互独立且服从正态分布,所以各处理A������ 所属总 体也服从正态分布N(������������ ,������ 2 )。 基本假定 效应的可加性、分布的正态性、方差 的同质性(各处理的方差相等)。
5第六章方差分析
练习
• 以小鼠研究正常肝核糖核酸(RNA)对癌细 胞的生物学作用,试验分为对照组(生理 盐水)、水层 RNA组和酚层RNA组,分别用 此三种不同处理诱导肝细胞的FDP酶活力, 得数据如下。该三组资料均服从正态分布, 试比较三组均数有无差别?
ex_36.sas
表 6.1 对照组
2.79 2.69 3.11 3.47 1.77 2.44 2.83 2.52
复相关系数(确定系数),变异系数,均方根,总均数
对自变量的检验
R-Square:等于模型的平方和除以总 平方和,用于度量在因变量的变差 里能够由模型决定的比例有多少, 越接近1,效果越好。
检验的显著水平、自由度、 误差均方
具有相同字母的组间 均值差异没有统计学意义。
第2组具有A和B两个字母,所以 第二组和第三组,第一组均没有差异。
单因素方差分析
假设某单因素试验有k个处理,每个处理有n次重 复,共有nk个观测值。这类试验资料的数据模式
如下表所示。
(一)总平方和的分解 在上表中,反映全部观测值总变异的总平方和
是各观测值xij与总平均数的离均差平方和,记 为SST。即
kn
SST
( xij x.. ) 2
i1 j 1
nj 组内样本容量j 1,2,,n ki 组数,即水平数i 1,2,,k x.. 总平均数 xij i水平下第 j个样样本
变 差
组间 变差
总 变 差 组内 变差
组数(水平数)
(二)总自由度的剖分
在计算总平方和时,资料中的各个观测值要
kn
受 (xij x这..) 一0 条件的约束,故总自由度等于 i1 j1
资料中观测值的总个数减1,即kn-1。
dfT kn 1 df t k 1 df e dfT df t
第六章方差分析
2se( 2 LSD检验)
x
n0
x1 x2
n0
第三节双因素方差分析
1、试验指标:衡量试验结果的标准 2、因素(factor):也叫因子,是指对试验指标有影响,在研究中加以(控制)考虑的试验
4
条件。 3、可控因子:在试验中可以人为地加以调控的因子浓度、温度等 4、非控因子:不能人为调控的因素(气象、环境等) 5、固定因素:指因素的水平是经过特意选择的 6、随机因素:指因素的水平是从该因素水平总体中随机抽出的样本 7、水平(level):每个因素的不同状态(从质或量方面分成不同的等级) (因素是一个抽象的概念,水平则是一个较为具体的概念) 8、处理:指对试验对象施以不同的措施(对单因素试验而言,水平和处理是一致的,一个 水平就是一个处理;对多因素试验而言,处理就是指水平与水平的组合) 9、固定效应(fixed effect):由固定因素所引起的效应。 10、随机效应(random effect):由随机因素引起的效应。 11、二因素方差分析:是指对试验指标同时受到两个试验因素作用的试验资料的方差分析。 12、固定模型:二因素都是固定因素 13、随机模型:二因素均为随机因素 14、混合模型:一个因素是固定因素,一个因素是随机因素 15、主效应(main effect):各试验因素的相对独立作用 16、互作(interaction):某一因素在另一因素的不同水平上所产生的效应不同。 17、因素间的交互作用显著与否关系到主效应的利用价值 如果交互作用不显著,则各因素的效应可以累加,各因素的最优水平组合起来,即为最优的 处理组合。 如果交互作用显著,则各因素的效应就不能累加,最优处理组合的选定应根据各处理组合的 直接表现选定。有时交互作用相当大,甚至可以忽略主效应。 二因素间是否存在交互作用有专门的统计判断方法,有时也可根据专业知识判断。 (一)无重复观测值的二因素方差分析 依据经验或专业知识,判断二因素无交互作用时,每个处理可只设一个观测值,即假定 A 因素有 a 各水平,B 因素有 b 个水平,每个处理组合只有一个观测值。
生物统计学 第六章 方差分析
该法是最小显著差数(Least significant difference) 法的简称,是Fisher 1935年提出的,多用于检验某一对 或某几对在专业上有特殊探索价值的均数间的两两比 较,并且在多组均数的方差分析没有推翻无效假设H0 时也可以应用。该方法实质上就是t检验,检验水准无 需作任何修正,只是在标准误的计算上充分利用了样 本信息,为所有的均数统一估计出一个更为稳健的标 准误,因此它一般用于事先就已经明确所要实施对比 的具体组别的多重比较。
xij i ij
它是方差分析的基础。
6.2 方差分析的原理
方差分析的基本原理是认为不同处理组的均数间 的差别基本来源有两个: (1) 随机误差,如测量误差造成的差异或个体间的差 异,称为组内差异,用变量在各组的均值与该组内变 量值之偏差平方和的总和表示,记作 SS e ,组内自由度 df e 。 (2) 实验条件,即不同的处理造成的差异,称为组间 差异。用变量在各组的均值与总均值之偏差平方和表 示,记作 SSt ,组间自由度 df t 。 总偏差平方和 SST SSt SSe 。
6.1 方差分析的相关术语
研究马氏珠母贝三亚、印度品系在不同地区的生 长差异,选择同一批繁殖的两品系马氏珠母贝的稚贝, 分别在海南黎安港、广东流沙港、广西防城港三个海 区进行养殖,每个地区每个品系养殖1000个,1年后 测定马氏珠母贝壳高与总重,比较生长差异。 这里壳高与总重称为试验指标,在试验中常会测定 日增重、产仔数、产奶量、产蛋率、瘦肉率、某些生 理生化和体型指标(如血糖含量、体高、体重)等,这些 都是试验指标,就是我们需要测量的数据。
6.4 均值间的两两比较
对完全随机设计多组平均水平进行比较时,当资料满 足正态性和方差齐性,就可以尝试方差分析,若得到 P>α的结果,不拒绝零假设,认为各组样本来自均数相 等的总体,即不同的处理产生的效应居于同一水平, 分析到此结束; 若方差分析结果P≤α,则拒绝零假设, 接受备择假设,认为各处理组的总体均数不等或不全 相等,即各个处理组中至少有两组的总体均数居于不 同水平。这是一个概括性的结论,研究者往往希望进 一步了解具体是哪两组的总体均数居于不同水平,哪 两组的总体均数相等,这就需要进一步作两两比较来 考察各个组别之间的差别。
第06章 方差分析
A 因素
A1 A2 均数 A2 A1
例 6.4 资料 IL-4 值均数整理表
B 因素
B1
B2
均数
35.32
37.94
36.63
33.80
49.47
41.64
34.56 -1.52
43.70 11.53
39.13 5.01
B2 B1 2.62 15.67 9.14
单独效应(simple effect): 指其它因素水平固定在一个水平时,某一因素不同水平之间均数的差别。
q1-2
XA XB
MSE ( 1 1 )
2 nA nB
83.1575.63 2.28 130.5068( 1 1 )
2 12 12
余类推。
其中,a RA RB 1,如"13"对比,则 a 3
做出推断结论
• 第1组与第2组比较:P>0.05,不拒绝H0,差别无统计学意
可认为三种处理方式大鼠的GSH值不全相同。
第二节 随机区组设计资料的方差分析
随机区组设计(randomized block design)又 称为配伍组设计。 将受试对象按性质相同或相近者组成 m个组, 称为区组或配伍组,每个区组中有k个受试对象, 将k个受试对象随机地分到处理因素的k个水平 组的一种设计方法。
例 6.1 三组大鼠 GSH 值(mg/gprot)
甲
乙
丙
79.81
87.58
60.29
80.60
70.73
62.63
…
…
…
104.28
80.36
46.56
72.29
56.40
55.23
统计学第六章方差分析
总离差平方和=组间离差平方和+组内离差平方和
方差的分解
组间方差反映出不同的因子对样本波动的影响;组内方差则是不考虑组间方差的纯随机影响。
如果组间方差明显高于组内方差,说明样本数据波动的主要来源是组间方差,因子是引起波动的主要原因,可认为因子对实验的结果存在显著的影响 ;
第28页,共55页。
X4
第24页,共55页。
如果备择假设成立,即H1: (i=1,2,3,4)不全相等
– 至少有一个总体的均值是不同的
– 有系统误差
Xi
这意味着四个样本分别来自均值不同的四个正态总体 。
第25页,共55页。
f(X)
X
X1 X2 X3
X4
第26页,共55页。
方差的分解 样本数据的波动又两个来源:一个是随机波动;一个是因子影响。样本数据的波动,可通过离差平方和来反映。这个离差平 方和可分解为组间方差与组内方差两部份。即
算术均值
x1 x...2....
x3
方差
S12 S22
.......
Sr2
si2ni1 1jn i1
2
xijxi
(i1,2, ,r)
第37页,共55页。
SST是全部观察值 与总平均值的离差平方和,反映全部观察值的离散状况。 其计算公式为:
r n
2
SST
xij X
i1 j1
SST反映了全部数据总的误差程度。
样本均值越不同,我们推断总体均值不同的证据就越充分。
第22页,共55页。
• 如果原假设成立,即H0: = = • 四种颜色饮料销售的均值都相等
– 没有系统误差
•
这意味着每个样本都来自均值为 、方差为2的同一正态总体
第六章 方差分析
班组
水平
观测值
因素
分析均值间是否有明显差异。
3、方差分析的基本假定
方差分析基本假定的一般性的表述为,设因
素 A 有个 k 水平,在每个具体水平下,总体分布
为 N j, 2 ,j 1, 2, ,k 。注意这里个总体
方差均相等,并且在每个水平下抽取一个样本,
所取得的个样本相互独立。
注:
最后,构造统计量: 不加证明的引入如下的结论: 1)SSA与SSE相互独立
2) SSE ~ 2 n k 2 3)原假设成立情况下 SSA ~ 2 k 1 2 因此构造统计量:
SSA 2 k 1 F = SSE 2 n k SSA H 0为真 k 1 ,则F ~ F k 1,n k SSE nk
实际计算中主要有如下计算流程 a)水平均值 水平均值是指根据具体水平下的观察值的均 值。有计算公式为 nj 1 xi xij ni j 1 b)总均值 总均值是指全部观察值的均值
x 1
ni
i 1
k
x
i 1 j 1
k
ni
ij
1
ni
i 1
k
x
i 1
k
i
ni
c)总离差平方和 反映了全部观察值离散程度的总规模。有
H1:1, 2, , k 不全相等
2) 构造统计量及拒绝域 首先,分析三类离差平方和: a)总离差(总变差)平方和: 各样本观察值之间的差异称之为总差异,用总 离差平方和来表示。总离差平方和是每一观察值与 其总均值的离差的平方的总和。 b)组内离差(组内变差)平方和: 同一水平下观察值之间的差异,用组内离差平 方和来度量。 c)组间离差(组间变差)平方和: 不同水平观察值之间的差异,称之为组间离差, 用组间离差平方和来度量。
六章节方差分析
~ F(b-1, ( a-1)(b-1) )
当 FA > F ( a-1,(a-1)(b-1) ) 时,拒绝 H01; 当 FB > F ( b-1,(a-1)(b-1) ) 时,拒绝 H02。
24
5. 方差分析表
无交互作用的双因素方差分析表
来源 平方和 自由度 均方和
F比
A
SA
a-1
SA /(a-1)
5
一. 方差分析的基本概念
记 A, B, C ···为试验中状态发生变化的因素, 称因素在试验中所取的不同状态为水平。 设因素 A 有 a 个水平,记为 A1, A2, ···, Aa;因素 B 有 b个水平,记为 B1, B2, ···, Bb 等。 若试验中只有一个变动的因素,就称为单因素试验; 若有两个变动的因素,就称为双因素试验; 若有两个以上的变动因素,则称为多因素试验。 二.方差分析的基本假设 设因素 A 在水平 Ai 下的某项指标为总体 Xi,则假定
化工产品得率试验(得率:%)
催化剂
温度
B1
B2
B3
A1(60 OC)
66
73
70
A2(70 OC)
81
96
53
A3(80 OC)
97
79
66
A4(90 OC)
79
76
88
4
案例 2 要研究的问题
⑴温度是否对该产品的得率有显著影响? 若有显著影响,应将温度控制在什么范围内可使 得率最高? ⑵催化剂是否对该产品的得率有显著影响? 若有显著影响,哪种催化剂的效果最好? ⑶温度和催化剂的不同组合是否对产品得率有显 著影响? 如有显著影响,哪种温度和催化剂的组合可使得 率最高?
第6章方差分析
RUN; 其中,因素效应可以是每个因素的主效应,也可以是多个因素的交 互效应。上述语句与实现单因素方差分析的语句是类似的,只是因素的 个数增加了。
在SAS系统中,方差分析一般通过ANOVA过程来实现。ANOVA过 程用于实现单因素方差分析的语句格式如下:
PROC ANOVA DATA=数据集名 <选项>; CLASS 因素变量名; MODEL 指标变量名=因素变量名</选项>; MEANS 因素变量名 </选项>;
RUN; 其中,PROC语句、CLASS语句和MODEL语句是必须的,而且 CLASS语句必须在MODEL语句之前。
SAS 统计分析与应用 从入门到精通
第6章方差分析
SAS 统计分与应用 从入门到精通
一、方差分析简介 1、基本概念
方差分析(analysis of variance,简记为ANOVA),又称变异数分 析或F检验,主要用来分析某一个或几个因素对指标是否有显著影响。
方差分析中要研究的因素通常是分类型的自变量,指标则是数值型的 因变量。对于每一个分类型自变量,按照分类都拥有不同的水平(代表 不同的总体),通过检验各总体的均值是否相等来判断分类型自变量对 数值型因变量有无显著的影响。在方差分析中,我们通常把试验数据的 总离差(或总方差)分解为各因素的离差和误差的离差,然后利用这些 离差来构造检验统计量从而实现上述的检验。
SAS 统计分析与应用 从入门到精通
三、多因素方差分析 3、GLM过程
GLM过程用来分析符合一般线性模型的数据,它可以用在许多不 同的分析中,如线性回归、多项式回归、方差分析、协方差分析、偏相 关分析等。GLM过程用来实现方差分析的语句如下:
第六章方差分析
叫多重比较。
最小显著差数法(LSD法)
最小显著差数法的实质是两个平均数相比较的t检验法。 检验的方法是首先计算出达到差异显著的最小差数, 记为LSD,然后用两个处理平均数的差与LSD比较, 若 x1 x2 LSD,即为在给定的。水平上差异显著,反
之,差异不显著。
在t检验中,
第六章方差分析
例6.1
DependentVa riable: 猪增重(kg) L SD
2 e
,同时给出HA:
2
t
2 e
F
s
2 1
s
2 2
结第论六章方差分析
平方和的分解
设试验A具有k个处理样本,每个样本有n个观测值,则试 验A共有nk个观测值。
处理间变异
试验变异
(总变异)
处理间平方和 处理内平方和
k
n (xi x)2
j
kn
(x xi )2
ji
处理内变异
kn
总平方和 (x x)2
1、均方的分解。 2、试验处理和水平的确定。
第六章方差分析
第一节 方差分析的基本原理
问题的提出
某猪场对4个不同品种幼猪进行4个月增重量的测定,每个品种选择体重接近的幼 猪4头,测定结果列于表中,请问那个品系的增重效果最好?(p85,例6.1)
如果采用T检验进行一对一比较的方法检验4个样本平均数之间的差异显著性,
*. Th e mean d ifferen ce is sign ifican t at the .0 5 level.
第六章方差分析
Sig. .034 .008 .179 .034 .428 .356 .008 .428 .100 .179 .356 .100
第六章 方差分析
§6.1 §6.2 §6.3 方差分析概述 单因素方差分析 双因素方差分析
方差分析是对多个总体均值是否相等 这一假设进行检验
1
2
例 某公司想对新销售人员进行不同的销售培 训,为了比较它们的有效性,随机选择了三组 销售人员,每组五人。 一组接受 A课程销售训练 一组接受 B课程销售训练 另一组 C没有参与任何训练 当前两组的训练课程结束时,收集训练后两个 星期内的各组销售人员的销售记录如下:
9
10
1、计算水平均值
步骤 步骤
计算水平均值 F检验 单因素方差分析 计算离差平方和 计算平均平 方
因素 因素 水平 水平
一个独立的变量,是方差 分析研究的对象。 因素中的内容称为水平。
xj =
∑x
i =1
nj
ij
nj
其中,xij是第 j种水平下的第 i个观测值, n表 j 示第 j 种水平的观测值个数。
1 2 3 4 5 均值
A 课程 2058 2176 3449 2517 944
B 课程
3339
2777 3020 2437 3067
C 2228 2578 1227 2044 1681
2228.8
2928
1951.6
• 从上表可以看出,各组样本数据差异较大, 尤其是3组与1、2组的均值具有一定的差异。 这是否说明销售训练会提高销售业绩呢?当 然这种差异也许是由于随机因素所造成,所 以需要进行统计检验。
x =
r
( j = 1, 2, L, k )
SSC = ∑∑ (x. j − x )
i =1 j =1 k r
2
∑∑x
i =1 j =1
k
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章方差分析第一节Simple Factorial过程6.1.1 主要功能6.1.2 实例操作第二节General Factorial过程6.2.1 主要功能6.2.2 实例操作第三节Multivarite过程6.3.1 主要功能6.3.2 实例操作方差分析是R.A.Fister发明的,用于两个及两个以上样本均数差别的显著性检验。
由于各种因素的影响,研究所得的数据呈现波动状,造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。
方差分析的基本思想是:通过分析研究中不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。
方差分析主要用于:1、均数差别的显著性检验,2、分离各有关因素并估计其对总变异的作用,3、分析因素间的交互作用,4、方差齐性检验。
第一节 Simple Factorial过程6.1.1 主要功能调用此过程可对资料进行方差分析或协方差分析。
在方差分析中可按用户需要作单因素方差分析(其结果将与第五章第四节相同)或多因素方差分析(包括医学中常用的配伍组方差分析);当观察因素中存在有很难或无法人为控制的因素时,则可对之加以指定以便进行协方差分析。
返回目录返回全书目录6.1.2 实例操作[例6-1]下表为运动员与大学生的身高(cm)与肺活量(cm3)的数据,考虑到身高与肺活量有关,而一般运动员的身高高于大学生,为进一步分析肺活量的差异是否由于体育锻炼所致,试作控制身高变量的协方差分析。
6.1.2.1 数据准备激活数据管理窗口,定义变量名:组变量为group(运动员=1,大学生=2),身高为x,肺活量为y,按顺序输入相应数值,建立数据库,结果见图6.1。
图6.1 原始数据的输入6.1.2.2 统计分析激活Statistics 菜单选ANOV A Models中的Simple Factorial...项,弹出Simple Factorial ANOV A对话框(图6.2)。
在变量列表中选变量y,点击 钮使之进入Dependent框;选分组变量group,点击 钮使之进入Factor(s)框中, 并点击Define Range...钮在弹出的Simple Factorial ANOV A:Define Range框中确定分组变量group的起止值(1,2);选协变量x,点击 钮使之进入Covariate(s)框中。
图6.2 协方差分析对话框点击Options...框,弹出Simple Factorial ANOV A:Options对话框。
系统在协方差分析的方法(Method)上有三种选项:1、Unique:同时评价所有的效应;2、Hierarchical:除主效应外,逐一评价各因素的效应;3、Experimental:评价因素干预之前的主效应。
本例选Unique方法,之后点击Continue钮返回Simple Factorial ANOV A对话框,再点击OK钮即可。
6.1.2.3 结果解释在结果输出窗口中可见如下统计数据:先输出肺活量总均数和两组的肺活量均数,总均数为4033.25,运用员组均数为4399.00,大学生组为3667.50。
接着协方差分析表明,混杂因素X(身高)两组间是有差异的(F=10.679,P=0.002),控制其影响后,两组间肺活量的差别依然存在(F=9.220,P=0.004),故可以认为两组间肺活量的均数在消除了身高因素的影响之后仍有差别,运动员的肺活量大于大学生,即体育锻炼会提高肺活量。
最后系统输出公共回归系数,= 36.002,该值可用于求修正均数:= - ( - )本例为= 4399.00 - 36.002×(178.175 - 174.3325)= 4260.6623= 3667.50 - 36.002×(170.49 - 174.3325)= 3805.8377返回目录返回全书目录第二节 General Factorial过程6.2.1 主要功能调用此过程可对完全随机设计资料、配伍设计资料、析因设计资料、正交设计资料等等进行多因素方差分析或协方差分析。
返回目录返回全书目录6.2.2 实例操作[例6-2]下表为三因素析因实验的资料,请用方差分析说明不同基础液与不同血清种类对钩端螺旋体的培养计数的影响。
6.2.2.1 数据准备激活数据管理窗口,定义变量名:基础液为base,血清种类为sero,血清浓度为pct,钩端螺旋体的培养计数为X,按顺序输入相应数值,建立数据库。
6.2.2.2 统计分析激活Statistics菜单选ANOV A Models中的General Factorial...项,弹出General Factorial ANOV A对话框(图6.3)。
在对话框左侧的变量列表中选变量x,点击 钮使之进入Dependent V ariable框;选要控制的分组变量base、sero和pct,点 钮使之进入Factor(s)框中,并分别点击Define Range钮,在弹出的General Factorial ANOV A:Define Range对话框中确定各变量的起止值,本例变量base的起止值为1、3,变量sero的起止值为1、2,变量pct的起止值为1、2。
之后点击OK钮即可。
图6.3 析因方差分析对话框6.2.2.3 结果解释在结果输出窗口中,系统显示48个观察值进入统计,三个因素按其各自水平共产生12种组合。
分析表明,模型总效应的F值为10.55,P值< 0.001,说明三因素间存在有交互作用。
单因素效应和交互效应导致的组间差别比较结果是:单因素组间比较:A:基础液(BASE)F = 4.98,P = 0.012,说明三种培养基培养钩体的计数有差别;B:血清种类(SERO)F = 61.265,P < 0.001,说明两种血清培养钩体的计数有差别;C:血清浓度(PCT)F = 3.49,P = 0.070,说明两种血清浓度培养钩体的计数无差别。
两因素构成的一级交互作用:A×B:基础液(BASE)×血清种类(SERO)F = 5.16,P = 0.011,交互作用明显;B×C:血清种类(SERO)×血清浓度(PCT)F = 15.96,P < 0.001,交互作用明显;A×C:基础液(BASE)×血清浓度(PCT)F = 0.78,P = 0.465,交互作用不明显。
三因素构成的二级交互作用:A×B×C:基础液(BASE)×血清种类(SERO)×血清浓度(PCT)F = 6.75,P = 0.003,交互作用明显。
返回目录返回全书目录第三节 Multivarite过程6.3.1 主要功能调用此过程可进行多元方差分析。
此外,对于一元设计,如涉及混合模型的设计、分割设计(又称列区设计)、重复测量设计、嵌套设计、因子与协变量交互效应设计等,此过程均能适用。
返回目录返回全书目录6.3.2 实例操作[例6-3]甲地区为大城市,乙地区为县城,丙地区为农村。
某地分别调查了上述三类地区8岁男生三项身体生长发育指标:身高、体重和胸围,数据见下表,问:三类地区之间男生三项身体生长发育指标的差异有无显著性?6.3.2.1 数据准备激活数据管理窗口,定义变量名:地区为G,身高为X1,体重为X2,胸围为X3,按顺序输入相应数值,变量G的数值是:甲地区为1,乙地区为2,丙地区为3。
6.3.2.2 统计分析激活Statistics菜单选ANOV A Models中的Multivarite...项,弹出Multivarite ANOV A对话框(图6.8)。
首先指定供分析用的变量x1、x2、x3,故在对话框左侧的变量列表中选变量x1、x2、x3,点击 钮使之进入Dependent V ariable框;然后选变量g(分组变量)点击 钮使之进入Factor(s)框中,并点击Define Range钮,确定g的起始值和终止值。
图6.4 多元方差分析对话框点击Options...钮,弹出Multivarite ANOV A:Options对话框,选择需要计算的指标。
在Factor(s)栏内选变量g,点击 钮使之进入Display Means for框,要求计算平均值指标;在Matriced Within Cell栏内选Correlation、Covariance、SSCP项,要求计算单元内的相关矩阵、方差协方差矩阵和离均差平方和交叉乘积矩阵;在Error Matrices栏内也选上述三项,要求计算误差的相关矩阵、方差协方差矩阵和离均差平方和交叉乘积矩阵;在Diagnostics栏内选Homogeneity test项,要求作变量的方差齐性检验。
之后点击Continue钮返回Multivarite ANOV A对话框,最后点击OK钮即可。
6.3.2.3 结果解释在结果输出窗口中将看到如下分析结果:系统首先显示共90个观察值进入统计分析,因分组变量g为三个地区,故分析的单元数为3。
然后输出3个应变量(x1、x2、x3)的方差齐性检验结果,分别输出了Cochran C 检验值及其显著性水平P值、Bartlett-Box F检验值及其显著性水平P值。
其中身高:C = 0.39825,P = 0.540;F = 1.01272,P = 0.363;体重:C = 0.43787,P = 0.227;F = 4.48624, P = 0.011;胸围:C = 0.47239, P = 0.089;F = 2.06585, P = 0.127;可见3项指标的方差基本整齐(P值均大于0.05)。
Cochran C检验和Bartlett-Box F检验对考查协方差矩阵的相等性比较方便,但还不够。
于是系统接着分别输出了三类地区(即各个单元)各生长发育指标的离均差平方和交叉乘积矩阵和方差协方差矩阵。
之后作Box M检验,Box M检验提供矩阵一致性的多元测试,本例Boxs M = 36.93910,在基于方差分析的显著性检验中F = 2.92393;在基于χ2的显著性检验中χ2 = 35.09922, 两者P < 0.001,故认为矩阵一致性不佳。
X2 380.137 230.519X3 215.937 156.559 314.859V ariance-Covariance matrixX1 X2 X3X1 29.696X2 13.108 7.949X3 7.446 5.399 10.857Cell Number .. 1 (Cont.)Correlation matrix with Standard Deviations on DiagonalX1 X2 X3X1 5.449X2 .853 2.819X3 .415 .581 3.295Determinant of Covariance matrix of dependent variables = 444.98354LOG(Determinant) = 6.09804Cell Number .. 2Sum of Squares and Cross-Products matrixX1 X2 X3X1 565.368X2 147.222 78.910X3 139.430 79.337 147.967V ariance-Covariance matrixX1 X2 X3X1 19.495X2 5.077 2.721X3 4.808 2.736 5.102Correlation matrix with Standard Deviations on DiagonalX1 X2 X3X1 4.415X2 .697 1.650X3 .482 .734 2.259Determinant of Covariance matrix of dependent variables = 63.90640LOG(Determinant) = 4.15742Cell Number .. 3Sum of Squares and Cross-Products matrix下面系统输出将三类地区看成一个大样本时的离均差平方和交叉乘积矩阵。