MicrostructuralevaluationandnanohardnessofanAlCoCu
CALPHAD软件介绍
Abstract
The phase-field method has become an important and extremely versatile technique for simulating microstructure evolution at the mesoscale. Thanks to the diffuse-interface approach, it allows us to study the evolution of arbitrary complex grain morphologies without any presumption on their shape or mutual distribution. It is also straightforward to account for different thermodynamic driving forces for microstructure evolution, such as bulk and interfacial energy, elastic energy and electric or magnetic energy, and the effect of different transport processes, such as mass diffusion, heat conduction and convection. The purpose of the paper is to give an introduction to the phase-field modeling technique. The concept of diffuse interfaces, the phase-field variables, the thermodynamic driving force for microstructure evolution and the kinetic phase-field equations are introduced. Furthermore, common techniques for parameter determination and numerical solution of the equations are discussed. To show the variety in phase-field models, different model formulations are exploited, depending on which is most common or most illustrative. c 2007 Elsevier Ltd. All rights reserved.
美实验室开发出三维纳米圆锥太阳能电池
特的电子和光学性能,如能成功合成 ,将成为材料 学领域的一大突破。相关论文6 日发表在 ( 月7 ( 物理 评论快报B 杂志网络版上。 》 为了探讨是否存在 比钻石密度更大的碳结构 ,
研 究 人 员 朱 强 ( ) 和 地 质 与 物 理 学 教 授 阿特 穆 音
线数据的传输都 由设备 自行供 电,用一个电容器来 实现电力存储 。 这种传感器不仅仅用于医疗 ,还可以用于空中 摄 像机 、可穿戴 电子产 品等 ,套 用威廉吉布森 的 话 ,未来 已经来临。
容器充电就越快 ,就会带来高速度性能。此外 ,电 极吸附离子密度越大 ,电容器可 以存储的电荷量就 越大 ,就会带来高容量 电容 。 “ 在这项工作 中我们成功地表明有可能满足两 个看似矛盾 的要求 ,就是满足高功率密度和高容量 电容 ,采用沸石矿模板炭就可以 , ”西原对物理学
家 组织 网站说 。
行。
来源: 技 日报》
日本仙 台 ( n a S di e )东北大学 ( hk n e i T ouU i r— o v s t y )研究 人员博 之福 华 ( i yk I i Hr u i t) o o 、西 原博友
( rt i iaa、太极 小暮 fa h K gr) Hi o Ns hr) o mo h Ti i oue、京 c 谷 隆 (aah ytn1 在 最 近 的 一 项 研 究 中考 察 T ksi oai K
果 表 明 ,即使 在 10 米 的 尺度 上 ,人 造皮 肤 和 老 0纳
结构的一项重要特征。其 中t1具有 目前碳 同素异 P2 形体中最大的带 隙,电流在上面运行时将几乎毫无 阻力 ,这使其有望成为超导体和新型电子工程材料
的有 力 候选 人 。
鼠皮肤的反应都几乎相同。科学家称 ,这意味着在
国家纳米科学中心石墨烯纳米生物传感器研究取得新进展
中 围糟 铸 工 韭 21年 期 0 第2 0
领 域融 合 而 成 的新 学 科一一 生 物光 子 学 和 纳米 光 子学 已经
成 为本 世 纪 的 关 键科 研 方 向。 美 国纽 约州 立 大学 布 法 罗 分校 在 纳 米学 、生 物 光子 学
细胞的检 测 ,为发展高 集成纳 米生物 传感 阵列 提供 了理 论指
导 和实验 基础 。
行业 资讯
Ne ws
不过 ,当前这种材料离商用还有一段距离。因为着硫化聚合 石墨烯 在高 灵敏度 检测领 域具 有独特 的优势 。然 而 目前 人们 物会快速崩解,因此此类电池目前只能重复充 电4 至 5 次 ,—般 对石 墨烯 与生物 的界面 却知之 甚少 ,这一 问题 的研究对 于石 J 0 D
球 唯一的 纳米级替 代纺前着 色 的先 进生产 技术 ,可 完全满足
1 米 以下超细 纤维 的需要 ,填 补 了国 际国 内空 白。 目前该 微
技术 正在 申请 国际专利 , 已在 国 内获得 专有技 术知识产 权保 质引起了极大的关注 。 和其它结构相 比, 石墨烯具有极高的电导 护 。
u s a s o g d i p f 0. 0 1 n l 0 6 8 ,上述研 究 究 等 方 面 积 淀 了 雄 厚 的 基 础 。 两 所 高 校 成 立 联 合 研 究 中 p b . c . r / o / d /l 1 2 / l 0 2 0 ) 心 ,是 双 方 在合 作 模 式 、人 才培 养 、信息 互 动 等 方 面 的 有 工作 得到 中国科学 院 院长特别基 金和 国家 自然基 金委面上项
该项 工作建 立了一 维 、二维纳 米材料 与细胞相 结合 的独
作者姓名:卢滇楠
附件6作者姓名:卢滇楠论文题目:温敏型高分子辅助蛋白质体外折叠的实验和分子模拟研究作者简介:卢滇楠,男,1978年4月出生, 2000年9月师从清华大学化工系生物化工研究所刘铮教授,从事蛋白质体外折叠的分子模拟和实验研究,于2006年1月获博士学位。
博士论文成果以系列论文形式集中发表在相关研究领域的权威刊物上。
截至2007年发表与博士论文相关学术论文21篇,其中第一作者SCI论文9篇(有4篇IF>3),累计他引20次(SCI检索),EI收录论文14篇(含双收),国内专利1项。
中文摘要引言蛋白质体外折叠是重组蛋白质药物生产的关键技术,也是现代生物化工学科的前沿领域之一,大肠杆菌是重要的重组蛋白质宿主体系,截止2005年FDA批准的64种重组蛋白药物中有26种采用大肠杆菌作为宿主体系,目前正在研发中的4000多种蛋白质药物中有90%采用大肠杆菌为宿主表达体系。
但由于大肠杆菌表达系统缺乏后修饰体系使得其生产的目标蛋白质多以无生物学活性的聚集体——包涵体的形式存在,在后续生产过程中需要对其进行溶解,此时蛋白质呈无规伸展链状结构,然后通过调整溶液组成诱导蛋白质发生折叠形成具有预期生物学活性的高级结构,这个过程就称之为蛋白质折叠或者复性,由于该过程是在细胞外进行的,又称之为蛋白质体外折叠技术。
蛋白质体外折叠技术要解决的关键问题是避免蛋白质的错误折叠以及形成蛋白质聚集体。
目前本领域的研究以具体技术和产品折叠工艺居多,折叠过程研究方面则多依赖宏观的结构和性质分析如各类光谱学和生物活性测定等,在研究方法上存在折叠理论、分子模拟与实验研究结合不够的问题,这些都不利于折叠技术的发展和应用。
本研究以发展蛋白质新型体外折叠技术为目标,借鉴蛋白质体内折叠的分子伴侣机制,提出以智能高分子作为人工分子伴侣促进蛋白质折叠的新思路,即通过调控高分子与蛋白质分子的相互作用,1)诱导伸展态的变性蛋白质塌缩形成疏水核心以抑制蛋白质分子间疏水作用所导致的聚集,2)与折叠中间态形成多种可逆解离复合物,丰富蛋白质折叠的途径以提高折叠收率。
新兴材料研究的热点纳米材料期刊评介
新兴材料研究的热点纳米材料期刊评介在当今科技发展的时代,材料科学领域的研究日新月异,新兴材料的研究越来越受到关注。
其中,纳米材料作为一种具有特殊结构和性质的材料,在多个领域展现出巨大的应用潜力。
为了更好地了解纳米材料的最新研究进展,科研人员需要获取可靠的信息来源。
本文将对几个热点的纳米材料期刊进行评介,为研究者提供参考。
1. 《Nano Letters》《Nano Letters》是美国化学学会旗下的一本高影响力期刊,专注于发表纳米尺度下的材料科学研究成果。
该期刊以其独特的纳米材料制备和性能调控方面的研究而闻名。
研究者可以在《Nano Letters》中获得纳米材料合成、表征、应用等方面的前沿知识,从而引领纳米材料领域的研究。
2. 《Advanced Materials》《Advanced Materials》是一本跨学科的期刊,旨在发布各种高水平的材料科学研究,包括纳米材料方面的研究成果。
这个期刊涵盖了纳米材料的制备、性能、应用等多个方面,是了解纳米材料研究进展的综合性期刊之一。
同时,该期刊注重材料界面和多学科交叉研究,为纳米材料研究者提供了一个了解不同学科交叉应用的平台。
3. 《Nature Nanotechnology》《Nature Nanotechnology》是自然出版集团旗下的一本顶级期刊,用于报道纳米科学和纳米技术领域的最新研究成果。
作为纳米材料领域最负盛名的期刊之一,《Nature Nanotechnology》向读者展示了涵盖纳米材料制备、性能调控、应用探索等各个方面的前沿研究。
该期刊以其高质量的论文和独特的视角享有崇高的声誉,对于研究者来说是全面了解纳米材料领域的重要渠道。
4. 《ACS Nano》《ACS Nano》是美国化学学会旗下的一本专注于纳米材料研究的期刊。
该期刊接收并发表了大量关于纳米尺度材料合成、表征、应用以及理论计算方面的研究成果。
研究人员可以在《ACS Nano》中找到有关纳米材料最新研究进展的详尽信息,并了解到该领域的前沿发展动态。
定量电子显微学方法与氧化钛纳米结构研究获国家自然科学二等奖
个 国家 和地 区都有 各 自明确 的纳 米 科技 发展 战略 ,投入 巨 成果 成功 应用 到纳米 结构 的研究 领域 。 在 科 学 家 眼 中 ,食 盐 不 是 食 盐 , 而 是 一 种 典 型 的 离 子 资 、抢 占战略制 高点 。美 国国家 纳米讨‘ ( 划 NN I)2 1 01 晶体 。 么一种 最最普 通的东 西 , 电子显微 镜去观 察它 的 这 用 年 财 政 预 算 l 美 元 ,历 年 投 入 稳 定 增 长 。 日本 尤 其 重 视 8亿 结构 时 ,也 没有 好的理 论去 描述 电子在 这种 离子 晶体 表面 纳 米技术在信 息 、金 属 、环境 、能源 、生命 科学 以及基础 技 的衍 射现 象 。彭 练矛 团 队给 出了描 述诸 如离 子 晶体表 面衍
仿 生智 能纳 米界 面材料 、碳纳 米管 宏观 薄膜 及纤 维结 构 的 贝 尔 物 理 学 奖 就 颁 发 给 了 成 功 地 分 离 出 单 层 石 墨 烯 材 料 的
制备与 性 能研究 、纳 米结 构金 属材 料达 到高 性 能极 限等诸 两 名 英 国 物 理 学 家 。
多 方面取得 突破 。
像 科 技 研 发 和 产 业 化 的 整 体 协 调 。同 时 , 入 并 持 续 开 展 纳 米 重 ,多 数 情 况 下 我 们 在 电 子 显 微 镜 中所 看 到 的 ‘ ’不 能 直 深 接反 映物体 的真正结 构 。 练矛 说 , 用量 子力学 的原理 , ”彭 利 科技领 域战 略研 究 ,提高 决策 能力 ;整合资 源 ,形成在纳 米
nmfe算法 rna折叠最小自由能 -回复
nmfe算法rna折叠最小自由能-回复【NMFE算法RNA折叠最小自由能】RNA(核糖核酸)是一类生物分子,其序列中的碱基决定了其结构和功能。
折叠是指RNA分子通过碱基之间的互补配对形成特定的结构,进而发挥特定的功能。
RNA分子的折叠状态对于生物体的正常生理过程起着关键作用。
RNA折叠的问题可以形式化为在给定RNA序列的条件下,如何找到能量最小的折叠构象。
这是一个计算复杂度很高的问题,需要应用数学和计算机科学的技术。
近年来,科学家们提出了多种算法用于求解RNA折叠最小自由能的问题。
其中一种重要的算法是NMFE(Nucleotide Mutational Folding Evaluation)算法。
以下是NMFE算法的一步一步介绍:第一步:选择RNA序列作为输入,我们需要选择一个特定的RNA序列作为算法的初始输入。
RNA 序列是由四种不同的核苷酸(腺嘌呤A、尿嘧啶U、鸟嘌呤G和胞嘧啶C)组成的。
第二步:建立目标函数在NMFE算法中,我们需要定义一个目标函数来刻画给定的折叠结构的自由能。
自由能是描述了系统处于某个状态的稳定程度的物理量,其数值越小,表示该状态越稳定。
第三步:构建动态规划模型NMFE算法通过动态规划的方式来求解RNA折叠最小自由能问题。
动态规划是一种将复杂问题分解为相对简单的子问题并重复利用子问题解的方法。
在NMFE算法中,我们采用了自底向上的策略来构建动态规划模型。
具体地,我们从RNA序列的末端开始,逐渐向前计算,直到获得整个序列的最优折叠结构。
第四步:计算最小自由能在动态规划模型中,我们需要定义一系列的状态和转移方程来计算每一步的最小自由能。
具体来说,我们可以定义一个二维数组,每个元素代表了从第i个碱基到第j个碱基之间的最小自由能。
通过填充这个数组,我们可以递推地计算每一个子问题的最小自由能。
第五步:回溯获得最优解在计算得到最小自由能的同时,我们还需要记录每一步的选择,以便于最后回溯获得最优解的折叠结构。
可见光响应催化剂BiVO4六角形微米棒的水热合成
( oeeo hmir n hm cl nie r g C nr o t U i ri, hnsa4 0 8 , hn ) lg C e sya dC e ia E gn ei , et l uh nv sy C agh 1 0 3 C ia Cl f t n aS e t
A s a t s g B ( 0)・ H 0 a d N 4 O s rw ma r l i O coo sw t hx gn sa e w r b t c:U i iN 3 5 , n H V 3a a t i s V 4mi rd i eao h p ee r n 3 e a ,B r h
snh s e v h doh r lme o i oyiy pro d n (V )a e pae T epo et so e a‘ v tei d b y rtema z t d w t p l n l yrl o e P P stm lt. h rp re ft s h h v i i h
p e a e a l s we e c a a trz d b r p r d s mp e r h r c e ie y XRD, EM , R, ma n S I Ra n a d UV— s s c r s o y Vi pe to c p .Th e u t e e Jt t e r s ls r v a ha u il m a d we1 r salz d nfr 0 n 1 c y tlie Bi VO4he a o . c o o s n x g n mir r d i mo o ln c r sa sr c u e c ul b o t i e t n ci i cy t l tu t r o d e b a n d wih d mee f 1 5~ 00 m n e gh f . i tr0 2 3 n a d l n t o 10~16 L v a a h d oh r l o t s ie b . Lm i y r t e ma r u e a std y PVP.Co a e wih mp r d t Bi VO4 atce ,t b v b a n d mir r d y 2. VP h w ma lr d s i n t e a s r to a d a t ril s he a o e o t i e c o o sb 0 g P p s o a s l e h f i h b o p in b n nd l t s
《2024年多功能微纳米过渡金属羰基CO释放分子(CORMs)复合体系的构建与性能研究》范文
《多功能微纳米过渡金属羰基CO释放分子(CORMs)复合体系的构建与性能研究》篇一一、引言随着科技的发展和纳米科技的兴起,对于材料的多功能性及高效性需求愈发显著。
微纳米材料中的多功能过渡金属羰基CO 释放分子(CORMs)因其独特的光学、电子和催化性质在许多领域如医药、环保和能源领域都有重要的应用。
因此,本篇论文着重探讨了多功能微纳米过渡金属羰基CO释放分子(CORMs)复合体系的构建以及其性能研究。
二、CORMs及其复合体系的构建2.1 CORMs的介绍CORMs是一种以过渡金属为基础的有机化合物,它们可以控制地释放CO气体,这使得它们在多个领域具有独特的应用。
其核心结构包括过渡金属原子与CO的键合。
2.2 微纳米过渡金属CORMs的构建微纳米尺寸的CORMs,因其更小的尺寸和更大的比表面积,使得它们在反应中具有更高的活性和效率。
我们通过特定的合成方法,成功构建了微纳米过渡金属CORMs。
2.3 复合体系的构建为了进一步增强CORMs的性能,我们通过与其他材料进行复合,构建了多功能微纳米过渡金属CORMs复合体系。
这些复合体系不仅可以增强CORMs的稳定性,同时也能提升其反应活性和选择性。
三、性能研究3.1 光学性能研究通过紫外-可见光谱分析,我们发现微纳米CORMs在特定波长下具有明显的吸收峰,这表明它们具有独特的光学性质。
同时,复合体系的光学性能也得到了显著提升。
3.2 电子性能研究利用电子显微镜和电子能谱分析,我们发现微纳米CORMs 具有较高的电子传输效率。
同时,复合体系中的电子传输速度也得到了显著提升。
3.3 催化性能研究我们通过一系列的催化实验发现,微纳米CORMs复合体系在多种反应中表现出良好的催化活性。
特别是在某些有机合成反应中,其催化效率远高于传统的催化剂。
四、结论本论文研究了多功能微纳米过渡金属羰基CO释放分子(CORMs)复合体系的构建与性能。
通过实验和理论分析,我们发现这种复合体系在光学、电子和催化性能上均表现出良好的表现。
水环境敏感地区大型微电子园区废水处理工程实例
DOI :10.19965/ki.iwt.2022-0774第 43 卷第 7 期2023年 7 月Vol.43 No.7Jul.,2023工业水处理Industrial Water Treatment 水环境敏感地区大型微电子园区废水处理工程实例王磊(同济大学建筑设计研究院(集团)有限公司,上海 200092)[ 摘要 ] 位于太湖流域的江苏某大型微电子产业园区排放的废水主要含有胺类、有机溶剂、氟化物、重金属等特征污染物。
针对这些污染物,采用了高密度沉淀、生物滤池辅以碳源投加强化脱氮、臭氧-生物活性炭联用及膜处理的组合工艺流程。
污水处理厂投产运营后,通过对聚合氯化铝(PAC )和碳源投加的良好控制,高密度沉淀池除磷(去除率84.4%)、除氟(去除率57.6%)以及硝化反硝化滤池脱氮(氨氮去除率96.4%、总氮去除率88.8%)均取得了理想的效果。
根据当地水环境容量要求,出水主要污染物COD Cr 、BOD 5、NH 3-N 、F -执行《地表水环境质量标准》(GB 3838—2002)中Ⅲ类水限值要求并稳定达标,TN 及TP 排放标准按TN≤5mg/L ,TP≤0.15mg/L 执行并稳定达标。
工程总投资45 600万元,每日运维成本约1.22元/t ,其中电费约0.30元/t ,药剂费约0.87元/t ,污泥外运处置费约0.05元/t 。
[关键词] 微电子废水;园区废水;含氟含氮废水;地表Ⅲ类水[中图分类号] X703.1 [文献标识码]B [文章编号] 1005-829X (2023)07-0202-05Wastewater treatment project in large -scale microelectronicsindustrial zone in water environment sensitive areasWANG Lei(Tongji Architectural Design (Group ) Co., Ltd., Shanghai 200092,China )Abstract :The wastewater discharged from a large -scale microelectronics industrial zone in Jiangsu province ,lo⁃cated in Taihu Lake Basin ,mainly contains amines ,organic solvents ,fluorides ,heavy metals and other characteris⁃tic pollutants. For these pollutants ,a combined process of high -density precipitation ,denitrification -enhanced biofil⁃ter with carbon source injection ,ozone -biological activated carbon and membrane technology was adopted. After the sewage plant was put into operation ,under the good control of PAC and carbon source addition ,phosphorus removal (removal rate of 84.4%) and fluorine removal (removal rate of 57.6%) in high -density sedimentation tank and nitro⁃gen removal (ammonia nitrogen removal rate of 96.4% and total nitrogen removal rate of 88.8%) in nitrification and denitrification filter all achieved ideal results. According to the requirement of local water environment capacity ,the concentration of the main pollutants of the effluents including COD Cr 、 BOD 5、NH 3-N and F - should comply with the Class Ⅲ water limit requirements in Environmental Quality Standards for Surface Water (GB 3838—2002)and al⁃ready met the standards. TN and TP shall be implemented the emission standards of TN≤5 mg/L and TP≤0.15 mg/L ,and steadily met the standards.The total investment of the project was 456 million yuan. The daily operation and maintenance cost was about 1.22 yuan/t ,including the electricity cost about 0.30 yuan/t ,the pharmaceutical cost about 0.87 yuan/t ,and the sludge outward transportation disposal cost about 0.05 yuan/t.Key words :microelectronic wastewater ;zone wastewater ;fluorine and nitrogen containing wastewater ;surfaceclass Ⅲ water微电子行业作为我国目前重点科研突破方向,获得了国家大力扶持及政策支持,特别在芯片制造、集成电路研发、半导体加工等方面,大量研发制造企业近几年在国内落地建厂。
Microstructure characterization of Cu-rich nanoprecipitates in a Fe–2.5
Microstructure characterization of Cu-rich nanoprecipitates in a Fe–2.5Cu–1.5Mn–4.0Ni–1.0Al multicomponent ferritic alloyY.R.Wen a ,A.Hirata a ,Z.W.Zhang b ,c ,T.Fujita a ,C.T.Liu b ,d ,J.H.Jiang e ,M.W.Chen a ,e ,⇑aWPI Advanced Institute for Materials Research,Tohoku University,Sendai 980-8577,JapanbMaterials Research &Education Center,Auburn University,275Wilmore Labs,Auburn,AL 36849,USAcEngineering Research Center of Materials Behavior and Design,Ministry of Education,Nanjing University of Science and Technology,Nanjing 210094,People’s Republic of ChinadCenter for Advanced Structural Materials,MBE Department,City University of Hong Kong,Kowloon,Hong KongeState Key Laboratory of Metal Matrix Composites,School of Materials Science and Engineering,Shanghai Jiao Tong University,Shanghai 200030,People’s Republic of ChinaReceived 20October 2012;accepted 23December 2012Available online 23January 2013AbstractThe evolution of precipitates in a Fe–2.5Cu–1.5Mn–4.0Ni–1.0Al multicomponent ferritic alloy during annealing at 500°C was systematically investigated by aberration-corrected scanning transmission electron microscopy.The atomic-scale structure and chemistry characterization reveal that primary precipitates with enriched Cu,Ni,Mn and Al originate from continuous growth of B2ordered domains in the as-quenched alloy.The formation of a Cu-rich body-centered cubic (bcc)phase takes place by the decomposition of the B2ordered primary phase,which forms a Cu-rich bcc core and ordered B2-Ni(Al,Mn)shell.The B2shells serve as a buffer layer to moderate the coherent strain and to prohibit the inter-diffusion between the Cu-rich precipitates and bcc-Fe matrix,giving rise to a low coarsening rate of the precipitates.The Cu-rich precipitates experience a structural transformation from bcc to 9R at a critical size of $6nm during long time annealing,corresponding to obvious coarsening of the precipitates and dramatic loss in hardness of the alloy.Ó2012Acta Materialia Inc.Published by Elsevier Ltd.All rights reserved.Keywords:Fe–Cu alloy;Precipitation hardening;STEM;Core/shell precipitates1.IntroductionPrecipitation strengthening is generally produced by a sequence of phase transformations that lead to a uniform dispersion of nano-sized,coherent precipitates in a soft matrix.The theory of precipitation strengthening has been well established since the 1950s,following the discovery of Guinier–Preston (GP)zones in age-hardened aluminumalloys [1].Recently,the strategy of precipitation strength-ening has been employed to develop low-carbon ultra-high-strength steels with high toughness,excellent weldability and high corrosion resistance for structural and infrastructural applications [2].Amongst various precipitation-strengthened ferritic alloys,the Fe–Cu system is probably the most studied one.The hardening effect arising from Cu-rich precipitates has been known for a long time.Since Cu has limited solubility in Fe,nano-sized Cu-rich precipitates with a high number density can be dispersed homogeneously throughout supersaturated Fe–(0.5–5wt.%)Cu alloys.Cu-rich precipitates can also be produced by neutron1359-6454/$36.00Ó2012Acta Materialia Inc.Published by Elsevier Ltd.All rights reserved./10.1016/j.actamat.2012.12.034⇑Corresponding author at:WPI Advanced Institute for MaterialsResearch,Tohoku University,Sendai 980-8577,Japan.Tel.:+81222175992.E-mail address:mwchen@wpi-aimr.tohoku.ac.jp (M.W.Chen)./locate/actamatAvailable online atActa Materialia 61(2013)2133–2147irradiation,which is the structural origin of irradiation-induced embrittlement of reactor pressure vessel steels con-taining a dilute amount of Cu.The structure and composi-tion of the irradiation-induced Cu-rich precipitates are basically the same as those in thermally annealed alloys and the only difference is the time scale factor of the precip-itation reaction[3,4].There are many reports on the precip-itation sequence of Cu-rich phases.Extended X-ray absorptionfine structure study suggests that Cu solutes undergo a coherent precipitation in the body-centered cubic(bcc)-Fe matrix at an early stage of thermal ageing and keep a bcc structure up to ageing peak(the ageing time at peak hardness)[5].High-resolution transmission elec-tron microscopy(HRTEM)observation shows that the bcc Cu precipitates transform into a twinned9R structure (the stacking sequence of the closely packed planes is ABC/ BCA/CAB/A)when the precipitates are larger than4nm in diameter[6].The orientation relationship between the martensitic9R and bcc phase has been proposed by Kajiw-ara[7,8]asð011Þbcc ==ð11 4Þ9R,½1 11bcc==½ 1109R.With proper addition of other alloying elements,such as Mn,Ni and Al,ultrahigh ultimate tensile strength of $1.6GPa can be achieved in Cu precipitation-strengthened steels.It has been suggested that Cu-rich precipitates serve as nucleation sites for intermetallic compounds[9,10]and as a surgical modification for enhanced and homogenized precipitation in steels[11].On the other hand,the segrega-tion of Ni and Mn at precipitate/Fe interfaces may wet Cu-rich precipitates in steel matrix for reduced interfacial energy.Therefore,the combination of Cu,Ni and Mn is mutually beneficial for enhanced precipitation strengthen-ing of Fe–Cu-based ferritic alloys.To understand the excel-lent properties and complex precipitation pathway in multicomponent ferritic alloys,many microstructure stud-ies have been reported in the last two decades.Small-angle neutron scattering(SANS)analysis shows that the nuclear Guinier radius becomes larger than the magnetic one beyond$2nm,which is attributed to the formation of a segregation layer enriched by Ni and Mn surrounding the bcc Cu-rich precipitate[12].Atom-probe tomography (APT)shows that Ni,Mn and Al are segregated at the Cu-rich precipitate/bcc-Fe heterophase interfaces and the segregation level increases with ageing time[13,14].How-ever,in spite of these efforts,the structure of the preferen-tial domains for nucleation,the early stage precipitate structure and their effects on the structure evolution and growth kinetics of precipitates are still largely unknown.Transmission electron microscopy(TEM)is one of the prevailing tools for characterization of nano-sized precipi-tates in alloys.However,it is difficult for conventional HRTEM to reveal the detailed structure and chemistry of ultrafine nano-precipitates embedded in steel matrix due to the limitation of phase contrast.Z-contrast(Z is the atomic number)scanning transmission electron microscopy (STEM),in which the scattered electrons are collected by means of a high-angle annular dark-field(HAADF)detec-tor,has been recently used for atomic-scale characterization of ultrafine precipitates in steels[15,16].Since the intensity of imaged atom columns is basically proportional to the square of atomic number,HAADF STEM images include both structure and chemical information at atomic scale. Thus,it is an indispensable technique capable of acquiring the real-space structure and chemistry of nanoprecipitates. In this work,we employed an aberration-corrected STEM to systematically characterize the structural,chemical evo-lution and coarsening kinetics of nanoprecipitates in an age-hardened Fe–Cu based multicomponent ferritic alloy.2.Experimental proceduresThe alloy used in this study has a nominal composition of Fe–2.5Cu–1.5Mn–4.0Ni–1.0Al(wt.%,same as below). For comparison,a binary Fe–2.5Cu alloy was also studied. Detailed information on the materials fabrication and mechanical properties can be found elsewhere[17,18]. The as-quenched specimens were annealed at500°C for 1,5,10,25,50,100,200and500h,respectively,and then quenched by water.Thin TEM foils were prepared with care for a large electron transparent area and minimum magnetic influence.3mm diameter discs with a thickness of$60l m were thinned to electron transparent by a Stru-ers TenuPol-5twin-jet electrochemical polisher at20V in a 5vol.%HClO4methanol electrolyte at low temperature. The thin foils were then gently ion milled to remove surface contamination.Low-magnification TEM observation and selected-area electron diffraction(SAED)were carried out under a con-ventional Philips CM12TEM operated at120keV.High-resolution STEM characterization was performed using a JEOL JEM-2100F TEM equipped with double spherical aberration correctors for both the probe-forming and image-forming lenses(CEOS,CESCOR and CETCOR). EELS and EDS elemental mappings and spectra were acquired using a Gatan GIF Tridiem and JEOL JED-2300T,respectively.EELS spectrum data were processed to remove background by the plug-in of multivariate statis-tical analysis(MSA)in the DigitalMicrograph(Gatan Inc.).HAADF STEM images were acquired using an annular-type STEM detector while brightfield(BF)STEM images were simultaneously recorded using a BF detector.In this study we chose the shortest camera length of8cm,with cor-responding collecting angles ranging from100to267mrad, to minimize the diffraction contrast in all the HAADF STEM images.HAADF STEM image simulations were performed for the constructed model(CaRIne3.1)using software of WinHREM code(HREM Research Inc.).3.Results3.1.Annealing time vs.hardnessFig.1a shows the microhardness of the Fe–2.5Cu–1.5 Mn–4.0Ni–1.0Al alloy as a function of annealing time2134Y.R.Wen et al./Acta Materialia61(2013)2133–2147at 500°C.The hardness increases with annealing time and reaches a peak value of 450HV at 5h,which is about twice as high as that of the as-quenched sample.The high hard-ness can be kept for 50h at 500°C,forming a much wider hardness plateau,compared to the binary Fe–2.5Cu and ternary Fe–Cu–Ni (Mn)alloy (for example,at 550°C the ageing peak is 1h and after 10h is considered as overage-ing [6]).Therefore,the multicomponent alloy shows much better structure and hardness stability during annealing.3.2.Microstructure characterization3.2.1.Bright-field TEM observationFig.1b–f shows the BF-TEM micrographs of the alloy with different annealing time,together with high magnifica-tion images shown as the insets.The as-quenched alloy has a martensitic structure with a lath size of 0.5–10l m (also based on electron backscatter diffraction (EBSD)analysis)and a high density of dislocations can be observed inthemicrohardness variation as a function of annealing time at 500°C;the ageing peak is at 5h.The arrows indicate BF-TEM images of the typical microstructure in (b)as-quenched,(c)1h,(d)10h,(e)500h and (f)Fe–Cu the high magnification images of fine structure (scale bar is 100nm).martensite laths (Fig.1b).The annealing at 500°C up to 500h only gives rise to slight change in martensite laths along with structure recovery as shown in Fig.1c–e whereas nano-sized precipitates become visible with annealing as shown in the inserted high-magnification TEM images.This observation indicates that the hardness change caused by annealing is mainly associated with precipitation strengthening.For comparison,theHAADF images of the nanoprecipitates distribution in (a)1h,(b)5h,(c)10h,(d)200h,(e)500h annealed alloy and (f)10h annealed Statistical particle size distribution of Cu precipitates ($200particles).(h)Evolution of the average precipitate size r and r 3as a function annealing time;the coarsening rates calculated based on the LSW theory are indexed at different stages of coarsening kinetics.microstructure of the binary Fe–Cu alloy annealed for10h is shown in Fig.1f.The annealed binary alloy has a similar elongated structure as the multicomponent alloy but the precipitates have a larger size with much wider distribution.Thefine precipitates in the samples annealed for less than50h,on the other hand,cannot be readily distin-guished by BF-TEM due to the high coherence with the bcc-Fe matrix.Only in the200and500h annealed samples can the coarsened precipitates be seen(the inset of Fig.1e). It is worth noting that the size of the precipitates in the 500h annealed sample is comparable to that in the10h annealed binary Fe–Cu alloy(the inset of Fig.1f),indicat-ing that the coarsening rate of the precipitates in the mul-ticomponent Fe–Cu–Mn–Ni–Al alloy is much slower than that in the binary alloy.3.2.2.Size and distribution evolution of nanoprecipitatesIn comparison with conventional TEM,HAADF STEM can clearly show the nano-sized precipitates in the annealed alloys by utilizing the Z contrast difference between the precipitates and steel matrix.Fig.2a–e shows a sequence of HAADF STEM images of the multicompo-nent alloy annealed from1h to500h at500°C.At the early stage of precipitation,bright dots with a size of1–2nm,corresponding to the nanoprecipitates,can be identi-fied in the1h annealed sample(Fig.2a).Coherent with the ageing peak of the hardness(Fig.1),the5h annealed sam-ple shows a high number density of the precipitates with a uniform size of3–4nm.Slight coarsening of the nanopre-cipitates along with the decrease in number density can be observed in the10h annealed sample;moreover,a dark periphery around the precipitates becomes visible in this sample.Further annealing for200and500h renders signif-icant precipitate coarsening as shown in Fig.2d and e. HAADF STEM reveals that the precipitates in the10h annealed binary Fe–2.5Cu alloy have an average size sim-ilar as that of the500h annealed Fe–2.5Cu–1.5Mn–4.0 Ni–1.0Al but the size distribution is much scattered (Fig.2f).Additionally,the dark periphery cannot be found around the precipitates in the binary alloy.On the basis of the HAADF images,the size distribution of Cu precipitates in each sample is plotted in Fig.2g.The statistically averaged size vs.annealing time(Fig.2h) depicts that the kinetics of the precipitation in the multi-component alloy has two distinct stages:early precipitation and precipitate coarsening;the crossover point is at the annealing time of$10h.The diffusion-controlled coarsen-ing kinetics of a polydispersed assembly of particles in a dilute alloy can be predicted by the Lifshitz–Slyozov–Wag-ner(LSW)theory[19]:h rðtÞi3Àh rðt0Þi3¼ktð1Þwhere t is annealing time,h r(t0)i is the mean diameter at the onset of quasi-stationary coarsening and k is the coarsen-ing rate constant that depends on thermo-physical param-eters of the alloy.It was found that in the multicomponent alloy,the growth of the early precipitates follows the linear relationship of the t1/3time law.However,the precipitates in the post-precipitation stage shows a much reduced coarsening rate(0.32Â10À3nm3sÀ1),which is about three times smaller than that of the early precipitation stage (0.95Â10À3nm3sÀ1,Table1).3.2.3.Selected area electron diffraction analysisTo understand the structural change during annealing, Fig.3shows the SAED patterns of the multicomponent alloy along the[001],½1 10 and½1 11bcczone axis(ZA). The most prominent change is that the relative intensity of(010)B2ordered diffraction increases with annealing time in the[001]and½1 10 ZA patterns,indicating a con-tinuous structural ordering from a bcc-based structure.It should be noted that very faint B2ordered spots can be seen even in the as-quenched specimen,indicating that short-range ordering occurs during quenching.Although the½1 10 diffraction patterns contain detectable B2ordered diffraction spots,separate X-ray diffraction(XRD)spectra only show single bcc-Fe phase.One possible explanation is that the B2ordered diffraction is too weak to be visible in the XRD patterns taken from bulk samples because of the small volume fraction of the precipitates.In[001]and ½1 11 ZA directions,the diffraction spots from precipitates cannot be readily observed,which is probably due to the fact that the small amount of precipitates keeps a high coherency with the bcc-Fe matrix and the diffraction spots from the precipitates overlap with the fundamental diffrac-tion from matrix.The additional diffraction spots in the ½1 10 ZA patterns appear to be associated with the sample surface oxidation since they change with the TEM speci-mens prepared by different methods[20].3.3.High-resolution STEM characterizationTo show the structure details of the annealed multicom-ponent alloy,high-resolution STEM was employed to characterize the real-space atomic structure of the precipi-tates and surrounding matrix.In HAADF STEM images, the atomic number difference of the constituent elements in the multicomponent alloy(Mn(Z=25),Fe(26),Ni (28),Cu(29)and Al(13))allows us to distinguish the Al-rich phase(dark contrast)and Cu-rich precipitates(bright contrast)from the Fe matrix.If the Al-rich phase is an ordered intermetallic compound,individual Al atomTable1The average size of Cu precipitates(r and r3)vs.annealing time and the estimated coarsening rate(k)in the multicomponent alloy.For reference, the coarsening rate in the binary Fe–Cu and ternary Fe–Cu–Ni alloys at 650°C is7.52and5.28Â10À3nm3sÀ1[31],respectively.Cu precipitate(h)r(nm)r3(nm3)k(10À3nm3sÀ1) 1 1.62 4.25–5 2.5215.81–10 3.2734.970.95200 6.56282.3–5008.4592.70.32Y.R.Wen et al./Acta Materialia61(2013)2133–21472137columns in the ordered phases can be identified by HAADF STEM.Consequently,Z-contrast has the con-spicuous advantage in structural/chemical identification and image interpretation of the various precipitates con-current in the multicomponent alloy.3.3.1.Atomic structure of the as-quenched alloy and early precipitatesThe as-quenched multicomponent alloy shows a homo-geneous microstructure in both TEM and STEM images. Only dislocations in martensite laths can be observed and any detectable segregation of Cu or Ni cannot be found by EELS,BF or HAADF STEM.However,as revealed by the SAED(Fig.3a)and the fast Fourier transform (FFT)pattern(Fig.4a)of the BF and HAADF STEM images,weak reflections,corresponding to010B2ordered, can be seen in the as-quenched alloy.The inverse FFT (IFFT)image by masking a010B2diffraction spot shows that the ordered diffraction originates from the1–2nm domains that have a local order structure and a high num-ber density.Fig.4b shows a HAADF STEM image taken from the sample annealed at500°C for1h.The bright precipitates observed at low magnification(Fig.2a)have a crystal structure fully coherent with the bcc Fe matrix.However, the intense010B2ordered spots can be observed in the FFT patterns acquired from the precipitates(the inset of Fig.4b).The IFFT image by masking a010B2diffraction Fig.3.SAED patterns in the(a)as-quenched,(b)1h,(c)5h and(d)500h annealed alloys.spot shows a high density of local ordered domains with a size of $2nm,corresponding to the bright precipitates in the HAADF image.Moreover,the STEM EELS (Fig.5a)and EDS (Fig.5b)elemental mappings show that the precipitates are depleted in Fe and enriched with Cu,Ni,Mn and Al,and the average inter-precipitates distance is $4nm.Since the complete overlapping of the Cu-,Ni-,Mn-and Al-rich regions,the early precipitates can be determined as a Cu–Ni–Mn–Al co-precipitated phase,which is consistent with previous APT observation [14].Moreover,the precipitates have an ordered B2structure,indicating the intrinsic context with the local B2-ordered domains in the as-quenched alloy that may serve as the dis-crete nucleation sites of the co-precipitated B2phase.3.3.2.Atomic structure of precipitates at ageing peakFig.4c shows the HAADF STEM image of the multi-component alloy annealed at 500°C for 5h.Again,theimage of the nanoprecipitates in the (a)as-quenched,(b)1h and (c)5h annealed alloy,the ordered corresponding IFFT image by masking (010)B2reflection.precipitates show full coherency with the bcc matrix.Weak contrast variation along with the lattice coherence makes the precipitates very difficult to be identified except for slight lattice distortion in the center region of the precipi-tates.Similar to the1h annealed sample,intense010B2 ordered spots appear in the FFT patterns taken from the precipitates(the inset of Fig.4c).However,the inverse FFT image from a010B2diffraction spot shows the B2 order domains to have a donut-like shape as a B2-ordered shell of a core/shell structure(Fig.4c).The corresponding regions in the HAADF image have a slightly dark Z-con-trast,indicating the B2ordered shells enrich with Al,the only light element in the multicomponent alloy.Fig.6represents the STEM EELS and EDS elemental mappings of5h annealed sample.It can be seen that Ni and Al elements coexist in the same regions.The composi-tion of the precipitates is similar to that in the1h annealed sample,enriched with Cu,Ni,Mn and Al.Although the inverse FFT(IFFT)image unambiguously demonstrates that the precipitates have an ordered B2shell and a simple bcc core,the chemical mappings do not show an evident core/shell structure of the co-precipitated B2phase except that the Ni-rich regions appear to be more diffuse and Cu-rich regions are more concentrated in the centers of the precipitates in comparison with those in the1h annealed sample.Moreover,the Cu–Ni–Mn–Al-rich pre-cipitates in the5h annealed sample have a size of 2–3nm,which is about twice as large as those in the1h sample.Importantly,the number density of the2–3nm precipitates remains to be comparable with that of the 1h annealed alloy.Therefore,the peak value of hardness achieved from the5h annealed sample is apparently asso-ciated with the high number density of the precipitates, appropriate size and the unique core/shell structure.For the10h annealed sample,coarsening of precipitates along with the decrease of the number density is observable (Fig.2c).From this HAADF image,a well-developed core/ shell structure of the precipitates can be recognized from the dark periphery of the bright precipitates.Evident chem-ical separation of Ni–Mn-rich shells and Cu-rich cores can be observed from the EELS elemental mappings(Fig.7b). The high-resolution HAADF image(Fig.7a)shows that the core/shell precipitates are still fully coherent with the steel matrix.The Ni–Mn–Al-rich shell remains the B2 structure while the Cu-rich core has a simple bcc structure.3.3.3.Overaged structureFig.8a shows the STEM image and corresponding EDS mapping of500h annealed samples in which most precip-itates grow up to a size of5–10nm.The coarsened precip-itates with a Ni–Mn–Al-rich shell and Cu-rich core can be clearly seen from the STEM EDS elemental mappings.In addition to the core/shell precipitates,independent Ni–Mn–Al-rich precipitates without bright Cu-rich cores can occasionally be found in this positional line profiles further prove the chemical core/shell structure (Fig.8b).The independent Ni–Mn–Al-rich precipitates contain$3wt.%Cu(Fig.8c),slightly higher than thatin Fig.5.(a)EELS and(b)EDS elemental mappings of the clusters in the1h annealed alloy.the as-quenched alloy and matrix,indicating that the B2 phase contains a small amount of Cu.Besides coarsening, the noticeable change of the precipitates in the overaged sample is the structure transformation of the Cu-rich cores. Fig.9a is a HAADF STEM image,taken along the[001]bcc direction,of a core/shell precipitate in Fig.9b.The core/ shell nanoparticle shows two distinct areas:a bright modu-lated face-centered cubic(fcc)core and a B2-ordered shell, well consistent with the FFT pattern from the entire image (Fig.9c).Local FFT patterns from the selected regions (Fig.10d)demonstrate that the shell is an ordered Ni(Al,Mn)[21]intermetallic phase with010B2ordered reflections,the steel matrix is a simple bcc and the Cu-rich core has a modulated fcc structure.Fig.9e shows the ordered phase shares the lattice coherence with both bcc-Fe matrix and Cu-rich fcc core.The indexed lattice spacing of2.09A˚agrees with the(111)closely packed plane of fcc-Cu.The fcc Cu cores have a modulated structure such that every six(110)fcc-Cu planes have an inter-plane angle of141°,which is the same as the twinning angle in simple fcc crystals.This modulated fcc structure may mediate the lattice strain between bcc and fcc structure. The orientation relations between fcc-Cu,B2-Ni(Al,Mn) and bcc-Fe matrix is identified to be[110]fcc-Cu//[001]B2 //[001]bcc-Fe,(111)fcc-Cu//(110)B2//(110)bcc-Fe with the d-spacing relationship of d(111)e-Cu 2.09>d(011)B2-NiAl 2.041>d(011)bcc-Fe 2.028A˚.Apparently,the ordered B2-Ni(Al,Mn)phase acts as a buffer layer to abate the lattice mismatch between fcc-Cu and bcc-Fe.The simulatedHAADF image of Fig.9f based on the superimposed atomic model shown in Fig.9e confirms that the twinning angle and d-spacing are well consistent with the experimen-tal image.We also characterized the core/shell precipitates along the½1 11bccorientation to confirm Cu precipitates’crystal structure.Fig.10a shows the HAADF image of a precipi-tate along the½1 11bccdirection,from which the modulated fcc structure of the Cu-rich phase can be clearly seen. Along this orientation(Fig.10b),the modulated structure of the Cu-rich phase is well consistent with the so-called 9R-Cu in which every three closely packed plane(d-spacing is2.09A˚)has a stacking fault(Fig.10c).From the FFT pattern shown in Fig.10b,it can be determined that the 9R-Cu follows the crystallographic relationship ofð11 4Þ9R-Cu==ð011Þbcc-Fe,½ 1109R-Cu==½1 11bcc-Fe,which is in agreement with the previous observation[22].4.DiscussionFe–Cu binary alloy is known as a phase separation sys-tem because of a positive enthalpy of mixing between Fe and Cu as shown in Table2.A small amount of Cu in steels can result in a high number density of homogeneously dis-persed nanoprecipitates in Fe matrix,which endow Fe–Cu based alloys with many unique properties for various appli-cations[23].There are numerous studies on thechemical EELS and(b)EDS elemental mappings of the clusters in the5h annealed alloy;the electron beam direction is nearcomposition,crystallography and evolution kinetics of Cu precipitation in the steels [3].However,several fundamental problems related to nucleation and structure transformation of Cu precipitates,particularly in multi-component Fe–Cu-based alloys,remain poorly known since the characterization of the nano-scale precipitates requires atomic-scale spatial resolution for both crystallog-raphy and chemistry.4.1.Precipitation sequences in the Fe–Cu based multicomponent alloyIn previous APT work,Stiller et al.[24]pointed out that the precipitation in the 1RK91maraging steels begins with the formation of Cu-rich particles which serve as nucle-ation sites for a Ni-rich phase of Ni 3(Ti,Al)and after 2h ageing Cu-and Ni-rich phases are well ler et al.[25]found that in the neutron-irradiated Fe–Cu–Mn alloy,Mn can be detected in the Cu-enriched precipi-tates by APT.In a multicomponent Fe–2.09Cu–2.83Ni–0.68Al–0.5Mn (wt.%)alloy,similar to the one used in the present study,Kolli and Seidman [14]reported that Cu partitions to the precipitates and Ni,Al and Mn partition to the interfacial region with increasing ageing time.However,at the early precipitation stage,theinterface between Ni(Al,Mn)-shell and Cu-core cannot be recognizable for precipitates with a size of about several nanometers.In this study,the aberration-corrected STEM shows a great advantage in characterizing the nucleation sequence of the precipitation by direct observation of the real-space atomic structure together with chemical mappings.We found that the precipitation starts from $1nm B2-ordered domains that already exist in the as-quenched alloy.In the early stage of 1h annealing,the ordered domains continu-ously grow up to a size of $2nm.EELS and EDS mappings indicate that the B2ordered domains are enriched with Cu,Ni,Mn and Al,which is consistent with the previous APT report [13].In the 5h annealed sample,the Cu-rich precip-itates with a simple bcc structure appear in the center of the ordered B2phase,forming an observable core/shell struc-ture.However,obvious chemical difference between the B2shells and bcc core cannot be distinguished by EELS and EDS mappings,suggesting the ordered B2phase still contains a large amount of Cu while the simple bcc cores are probably more Cu-rich but still have certain amounts of Ni,Mn and Al.The chemical mixture may be beneficial to lowering the energy barrier and enhancing the lattice match between the precipitates and the steel matrix for easy nucleation.Moreover,since the Cu-rich precipitates are from the ordered B2phase by a continuous decomposition reaction,it can fairly explain the high number density of precipitates in the Fe–Cu–Mn alloy,which is approximately an order of magnitude higher than that in the Fe–Cu alloy [25].It is worth noting that at this stage the alloy possesses highest strength.In addition to promoting the high number density of the precipitates,the ordered core/shell structure may also play a role in the improved strength.The precipitation pathway in multicomponent alloys is governed by complex thermodynamic driving forces.At 10h annealing,obvious phase separation was observed in the early precipitated Cu–Ni–Mn–Al co-precipitates (Fig.7).It was found that Ni and Mn elements are segre-gated at the Cu/Fe heterophase interface,where Al is always with Ni to form an ordered B2compound.The tendencies of the element segregation and partitioning can be briefly explained by the mixing enthalpy of two elements as shown in Table 2.Elements Ni and Mn have a positive mixing enthalpy with Cu,respectively;and Al has a large negative mixing enthalpy with Ni and Mn.They will form a fully coherent B2-Ni(Al,Mn)structure at the interface to relax the strain between fcc-Cu precipitates and bcc-Fe matrix.The experimental results are well consistent with the known mixing enthalpy among the constituent elements,which may have an implication for future designing of the core/shell nano-scale precipitates in precipitation-strengthened alloys.4.2.Structural transformation of Cu-rich precipitates and effect of B2buffer layersPrecipitate size,number density,crystal structure,morphology and thermal stability are the mostimportantFig.7.(a)[001]bcc HAADF image of a nanoprecipitate in the 10annealed alloy;inset shows the FFT pattern from B2ordered region.(b)STEM EELS elemental mapping of the nanoprecipitates in the 10annealed alloy;the electron beam direction is near [001]bcc ZA.61(2013)2133–2147。
一步原位锻烧法制备AgCeO_(2)g-C_(3)N_(4)复合光催化剂及其性能
第58卷第6期 2021年6月撳鈉电子技术Micronanoelectronic TechnologyVol. 58 No.6June 2021D〇I;i〇. 13250/ki.wndz.2021. 06. 004$材料与结构%一步原位锻烧法制备Ag/Ce02/g-C3N4复合光催化剂及其性能程余磊,孙明轩,孙善富,孟祥龙,彭海洋(上海工程技术大学材料工程学院,上海 201620)摘要:以三聚氰胺、硝酸铈和硝酸银为原料,通过一步原位固相烺烧法制备了 Ag/Ce02/g-C3N4复合光催化剂材料。
采用X射线衍射仪(X R D)、X射线光电子能谱仪(X P S)、扫描电子显微 镜(S E M)、透射电子显微镜(T E M)和紫外可见漫反射吸收谱(U V-V is D R S)等对制备出的 样品进行了表征测试。
以亚甲基蓝(M B)为模拟污染物,对样品的可见光催化性能进行了测试。
结果表明,Ag/Ce〇2/g-C3N4的光催化反应速率常数是纯g-C3N4的3.82倍,证明了 A g和Ce02共掺杂的协同效应有效提高了 g-C3N4的光催化性能。
关键词:Ag/Ce02/g-C3N4;复合材料;光催化剂;固相煅烧法;协同效应中图分类号:TB33 文献标识码:A文章编号:1671-4776 (2021) 06-0484-05One-Step In-Situ Calcination Preparation and Properties ofA g/C e02/g-C3 N4Composite PhotocatalystsCheng Yulei,Sun Mingxuan,Sun Shanfu,Meng Xianglong,Peng Haiyang (School o f M aterials E n g in e e r in g,S h anghai University o f E ngineering Scie n ce,S h a n g h a i201620, China )Abstract:With melamine,cerium nitrate and silver nitrate as raw m aterials,Ag/Ce02/g-C3N4 hybrid photocatalysts were prepared through the one-step in-situ solid-phase calcination method.The obtained samples were characterized and tested by X-ray diffractometer (XRD), X-ray photoelectron spectroscope (XPS), scanning electron microscope (SEM), transmission electron microscope (TEM), UV-vis diffuse reflection absorption spectrum (UV-vis DRS),etc.The visible photocatalytic performance of the sample was tested with methylene blue (MB)as the simulated pollutant.The results indicate that the photocatalytic reaction rate constant of Ag/Ce02/g-C3N4 is 3. 82 times higher than that of pure g_C3N4,proving that the synergetic interaction of Ag and Ce02co-doping can effectively improve the photocatalytic performance of g-C3N4.Key words:Ag/Ce02/g-C3N4;composite;photocatalyst;solid-phase calcination m ethod;synergetic interactionEEACC:0550_______收稿日期:2020-12-25基金项目:上海市教育委员会科研创新资助项目(15ZZ092); 2020年上海市市级大学生创新训练资助项目(C S20()50()4); 2020年松江区科委科协资助科普项目(SJKPH2006)通信作者:孙明轩,E-ma丨丨:********************.cn;***************484程余磊等:一步原位锻烧法制备Ag/Ce02/g-C3N4复合光催化剂及其性能〇引言目前,太阳能光催化技术在解决能源危机和环 境污染方面备受研究者的关注。
医用镁合金微弧氧化
第52卷第12期表面技术2023年12月SURFACE TECHNOLOGY·315·医用镁合金微弧氧化/有机复合涂层的研究现状及演进方向冀盛亚a,常成b,常帅兵c,倪艳荣a,李承斌a(河南工学院 a.电缆工程学院 b.车辆与交通工程学院c.电气工程与自动化学院,河南 新乡 453003)摘要:医用镁及镁合金过快的降解速率严重缩短了其有效服役时间,过高的析氢速率引发局部炎症,束缚了其临床应用前景。
微弧氧化(MAO)/有机复合涂层良好的抑蚀降析性能,在医用镁及镁合金表面改性领域展现出巨大的应用潜力。
首先,从有机材料(植酸(PA)、壳聚糖(CS)、硬脂酸(SA)、多巴胺(DA)、聚乳酸-乙醇酸共聚物(PLGA)、聚乳酸(PLA)、聚已内酯(PCL))自身的组织及性能特征入手,分析了单一有机涂层提高镁及镁合金耐蚀性的作用机理,并指出单一涂层自身的性能弱点(单一MAO涂层微孔和裂纹的不可避免,单一有机涂层与镁合金结合强度低,易于剥落)限制了对镁合金降解保护效能。
其次,从结合强度、耐蚀性、多功能性(生物安全性、生物相容性、诱导再生性、抑菌抗菌性、载药缓释性等)的角度,详细阐述了各MAO/有机复合涂层的结构特点、优势特征。
在此基础上,明确指出以MAO/PCL (MAO/CS)复合涂层为基底涂层,通过PCL(CS)涂层与其他涂层的交叉组合,是实现医用镁合金植入材料的生物活性及多功能性的最佳路径。
最后,对镁合金MAO/有机复合涂层的演进方向进行了科学展望。
关键词:镁合金;微弧氧化;有机材料;复合涂层;演进方向中图分类号:TG174.4 文献标识码:A 文章编号:1001-3660(2023)12-0315-20DOI:10.16490/ki.issn.1001-3660.2023.12.026Research Status and Evolution Direction of Micro-arc Oxidation/Organic Composite Coating on Medical Magnesium Alloy SurfaceJI Sheng-ya a, CHANG Cheng b, CHANG Shuai-bing c, NI Yan-rong a, LI Cheng-bin a(a. School of Cable Engineering, b. School of Vehicle and Traffic Engineering, c. School of Electrical Engineering andAutomation, Henan Institute of Technology, Henan Xinxiang 453003, China)ABSTRACT: Good biosafety, biocompatibility and valuable self-degradation properties endow medical magnesium and magnesium alloys with great potential to replace inert implant materials in the field of traditional clinical applications.The excessive degradation rate of magnesium alloy, however, leads to its premature loss of structural integrity and mechanical support, being unable to complete the effective service time necessary for tissue healing of the implant site. At the same time, it is also its excessive degradation rate that leads to the intensification of hydrogen evolution reaction of收稿日期:2023-02-01;修订日期:2023-05-14Received:2023-02-01;Revised:2023-05-14基金项目:河南省科技攻关项目(222102310337,222102240104,232102241029);博士科研资金(9001/KQ1846)Fund:Henan Province Science and Technology Research Project (222102310337, 222102240104, 232102241029); Doctoral Research Funding (9001/KQ1846)引文格式:冀盛亚, 常成, 常帅兵, 等. 医用镁合金微弧氧化/有机复合涂层的研究现状及演进方向[J]. 表面技术, 2023, 52(12): 315-334.JI Sheng-ya, CHANG Cheng, CHANG Shuai-bing, et al. Research Status and Evolution Direction of Micro-arc Oxidation/Organic Composite·316·表面技术 2023年12月magnesium alloy. Because it cannot be absorbed by the human body in a short time, the excessive H2 will easily gather around the implant or form a subcutaneous airbag, which will not only cause the inflammation of the implant site, but also hinder the adhesion and growth of cells in the implant, limiting its clinical application prospects. Surface modification technology can effectively delay the degradation rate of medical magnesium and magnesium alloys, and reduce the rate of hydrogen evolution.Firstly, starting from the structure and performance characteristics of organic materials (phytic acid (PA), chitosan (CS), stearic acid (SA), dopamine (DA), polylactic acid glycolic acid copolymer (PLGA), polylactic acid (PLA), and polycaprolactone (PCL)), the mechanism of improving the corrosion resistance of magnesium and magnesium alloys by a single organic coating was analyzed, and the performance weaknesses of a single coating were also pointed out: ①Micro arc oxidation (MAO) is an anodic oxidation process that generates a highly adhesive ceramic oxide coating on the surface of an alloy immersed in an electrolyte through high voltage (up to 300 V) spark discharge. The continuous high voltage discharge and the bubbles generated by the reaction bring about the inevitable occurrence of a large number of volcanic micropores and cracks in the coating. The diversity of discharge modes also gives rise to the unpredictable morphology of micropores and cracks. Therefore, the preparation of a single MAO coating on different alloy surfaces does not only require proper adjustment of MAO electrical parameters (current density, voltage, duty cycle, frequency, oxidation time) and the coupling effect of its electrolyte system to decrease (small) the pores and cracks on the MAO coating surface, but also increases the sealing process at the later stage. ② A single organic coating has a low bonding strength with magnesium alloy, being easy to flake off. These performance weaknesses limit the protection effect of a single coating on magnesium alloy degradation.Secondly, from the perspectives of bonding strength, corrosion resistance, and versatility (biosafety, biocompatibility, induced regeneration, antibacterial and antibacterial properties, drug loading and sustained-release properties, and so on), the structural characteristics and advantages of each MAO/organic composite coating were elaborated in detail. It has revealed that MAO/organic composite coating has an enormous application potentiality in the field of surface modification of medical magnesium and magnesium alloys, thanks to its good corrosion inhibition and degradation performance. On this basis, it is clearly pointed out that, in order to achieve the biological activity and versatility of medical magnesium alloy implant materials, the best way is to adopt the MAO/PCL (MAO/CS) composite coating as the base coating and make the cross combination of PCL (CS) coating and other coatings. Finally, the evolution direction of magnesium alloy MAO/organic composite coating is scientifically predicted.KEY WORDS: magnesium alloy; micro-arc oxidation; organic materials; composite coating; evolution direction作为人体所必须的营养元素,镁不但辅助600多种酶的合成(包括参与、维护DNA和RNA聚合酶的正确结构和活性),而且改善胰岛素稳定和糖类正常代谢、舒张血管、降低冠心病、高血压及糖尿病的患病风险[1]。
nature和science近年关于碳纳米管的文章
nature和science近年关于碳纳米管的文章碳纳米管是一种由碳原子构成的纳米结构,其直径约为纳米级别,长度可达微米级别。
由于其独特的结构和优异的物理化学性质,碳纳米管在材料科学、纳米技术、能源存储等领域具有广阔的应用前景。
近年来,顶级期刊Nature和Science相继发表了多篇关于碳纳米管的研究文章,本文将逐步介绍这些文章并总结其主要发现。
一、Nature上的关于碳纳米管的文章:1. “Enhanced Electrochemical Performance of Carbon Nanotube-Based Micro-Supercap acitors” (2017年)这篇文章报道了一种基于碳纳米管的微型超级电容器,通过控制碳纳米管的结构和形貌,实现了超高的电容性能。
研究者在文中详细描述了制备方法、电化学性能,以及与传统超级电容器的比较结果。
2. “Bioinspired Carbon Nanotube Transistors with Cytoskeleton-like Scaffolds”(2018年)本研究根据生物启发,通过制备具有细胞骨架类似结构的碳纳米管晶体,并将其应用于场效应晶体管中。
实验结果表明,这种生物仿生晶体管具有优异的电学性能和稳定性。
文中详细描述了合成方法、材料特性以及晶体管性能测试结果。
3. “Carbon Nanotubes as High-Performance Anode Materials for Sodium-Ion Batteries”(2019年)这篇文章探讨了碳纳米管作为钠离子电池高性能负极材料的潜力。
研究人员通过一系列实验和材料表征手段,证明了碳纳米管在钠离子电池中具有高容量、长循环寿命等优异特性。
文章中提供了详细的实验方法、电池测试结果以及相应机制的解释。
Nature上的这些文章详细描述了碳纳米管在微型超级电容器、场效应晶体管和钠离子电池等领域的应用前景和性能优势。
我科学家发现一类新型长非编码RNA
将为进一步 了解 P WS综合征 ( 小 胖威利综合征 ) 的病理机 制 提供新 的思路 。
研究 阐明 了一类双末端 都含有小核仁 R N A ( s n o R N A ) 的
内含子序列在 剪接发 生过 程 中可 以形成 ¥ I 1 0一I n c R N A s 。在 与人类 P WS综合 征( 主 要表 现为神 经 系统发 育 和生 长发 育
研究人员解 释 , 这首 先是因为随着动物进化 占据 了特殊 的生物位 , 如燕雀 、 鹦鹉 和蜂鸟等 适应 性 种群 的 出现导致 了 多样性 ; 其 次是 以前未 知的如鸭 、 鹅 和一些 海鸥 之间 的辐 射 , 这 种辐射意味 着一种适应性辐射 , 即新表型 的进 化。
因发生 甲基化取决 于蚂 蚁的社会等级 。在脊 椎动物 中 , 单 等
实了D N A甲基化 调控对蚂蚁等级 分化的重要作用 。 [ 基 因新发现 ] 新研 究揭示一种病 菌产生耐药性原 因
据2 0 1 2 年1 0月 1日 《 科技 日报》 报道 , 国际著名 学术期 刊《 分子 细胞》 近 日以封面故事 发表 了 中科 院上 海生命 科 学
研究院生物化 学与细胞 生物 学研究 所陈 玲玲 研究 组 的最 新 研 究论文 , 揭示 了一类 全新内含子来源 的长非 编码 R N A( l f n o
“ 引进 ” 特殊基 因 , 并将其 转变 为 自己的耐 药基 因。此外 , 研
究人 员还探明了 s i g h基 因 的两 种表 达机 制 。在 实验 中 , 研
障碍 ) 紧密关 联 区域 存在 5个 s n o — l n e t L N A s , 它们 在人源 胚
胎干细胞 中表达量极 高 , 且异 常稳 定 。功能研 究表 明 : 这 些
纳米生物炭的制备方法比较及其特性研究
中国环境科学 2020,40(7):3124~3134 China Environmental Science 纳米生物炭的制备方法比较及其特性研究李琪瑞,许晨阳*,耿增超**,王春丽,王强,李倩倩(西北农林科技大学资源环境学院,陕西杨凌 712100;中国农业科学院农业环境与可持续发展研究所农业部农业环境重点实验室,北京 100081)摘要:本研究以常见农林废弃物—果木枝条、玉米秸秆和花生秸秆为原料,在350~550 °C条件下热解制得五种本体生物炭;采用离心法、球磨法、球磨+离心法3种方法提取纳米生物炭,进而对本体生物炭和纳米生物炭的比表面积、元素含量、矿物组成和表面化学性质等进行比较,以探究物料来源、热解温度和制备方法对纳米生物炭性质及稳定性的影响.与本体生物炭相比,球磨法制得的纳米生物炭比表面积增大1.36~6.94倍,但产物未达到纳米颗粒级别,且在水体中稳定性较弱;球磨+离心法制得的纳米生物炭直径为70.06~103.43nm,在水体中稳定性强;离心法制备的纳米生物炭各项指标均不如其他两种方法.纳米生物炭的产率为2.27%~34.80%,且产率随温度的升高而降低.与本体生物炭相比,纳米生物炭含有更多的羟基等含氧官能团和更少的脂肪碳链.与果木枝条制备的纳米生物炭相比,玉米秸秆和花生秸秆来源的纳米生物炭产率高,但水稳性较差,易发生凝聚.果木枝条来源的纳米生物炭碳酸盐等碱性矿物含量丰富,且由于颗粒表面含氧官能团数量多而zeta电位绝对值高,悬液可以稳定分散.不同方法制备得到的纳米生物炭优缺点各异:球磨法制得的纳米生物炭比表面积更大;球磨+离心法制备的玉米和花生秸秆纳米生物炭的产率更高;低温热解果木炭提取的纳米生物炭水稳性更强. 关键词:纳米生物炭;球磨法;高速离心法;水稳性中图分类号:X131 文献标识码:A 文章编号:1000-6923(2020)07-3124-11Preparation methods and properties of nanobiochars. L I Qi-rui, XU Chen-yang*, GENG Zeng-chao**, WANG Chun-li, WANG Qiang, L I Qian-qian (College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China;2.Key Laboratory for Agricultural Environment, Ministry of Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China). China Environmental Science, 2020,40(7):3124~3134 Abstract:In the present study, three common agricultural wastes, namely corn straw, peanut straw and fruit tree branches were chosen as raw material, and five bulk biochars were produced by pyrolysis at temperature of 350~550°C; Furthermore, the corresponding nanobiochars were extracted by three methods: centrifugation method, ball-milling method and ball milling+ centrifugation method. To investigate the effects of material source, pyrolysis temperature and preparation method on the properties and stability of nanobiochar, the specific surface area, element content, mineral composition and surface chemical properties of bulk biochars and nanobiochars were characterized and compared. The results showed compared with bulk biochars, the specific surface areas of biochars prepared by ball-milling method were increased by 1.36~6.94 times, but their diameters were higher than 100nm, and their suspensions were unstable. The diameters of nanobiochars prepared by ball-milling+centrifugation method were 70.06~103.43nm, which were well dispersed in water. Nanobiochars prepared by centrifugation method did not fall into the regime of nanoscale, and their suspensions were unstable. The yields of nanobiochars prepared by ball-milling+centrifugation method were 2.27%~34.80%, and the yields decreased with the increase of temperature. Compared with bulk biochars, nanobiochars contained more oxygen-containing functional groups such as hydroxyl groups and fewer fatty carbon chains. The nanobiochar yields of corn and peanut straws were higher than that of fruit tree branches, but the nanobiochar suspensions of corn and peanut straws were less stable and prone to coagulation. The nanobiochars derived from fruit trees branches were rich in carbonates and other alkaline minerals; their higher surface oxygen-containing functional groups resulted in larger absolute zeta potentials and more stable suspensions. In conclusion, the specific surface area of nanobiochars prepared by ball-milling method were larger, the yields of corn and peanut straw nanobiochars prepared by ball milling+centrifugation method were higher. The suspensions of nanobiochars extracted from fruit tree branches at low temperature were rather stable.Key words:nanobiochar;ball-milling;high-speed centrifugation method;suspension stability生物炭是生物质在缺氧或绝氧环境中,经高温热裂解生成的富碳固态产物[1].生物炭由于具有较大的表面积和多孔结构,可作为有机污染物的吸附剂应用于环境修复[2-4];其次生物炭含有丰富的营养元素和表面官能团,可作为肥料应用于农业生产,可收稿日期:2019-11-30基金项目:陕西省自然科学基金资助项目(2018JQ4005);陕西省重点研发计划(2018NY-094);农业部农业环境重点实验室开放基金(K4030217149)* 责任作者, 讲师,*******************; **教授, gengzengchao @7期李琪瑞等:纳米生物炭的制备方法比较及其特性研究 3125以影响土壤微生物群落组成[5-6]和土壤性质[7-8];另外生物炭的负碳潜能可增加土壤碳含量和减缓温室效应[9-10].受物料来源和热解条件的影响,生物炭的颗粒直径最小可至纳米级.与本体生物炭相比,纳米生物炭具有更小的孔径,更大的比表面积[11],更高的营养元素含量[12],以及更强的迁移性[13-14].研究发现纳米生物炭可有效减轻Cd2+的植物毒性[15],增强对Ni(II)的吸附性能[16];还可用作污染土壤的修复材料[17].因此纳米生物炭作为一种新型材料在环境保护和农业生产方面的应用越来越多,研究纳米生物炭的特性和稳定性有重要的环境意义和实践价值.目前纳米生物炭的制取方法主要有球磨法和超声-高速离心法.球磨法主要利用机械力减小颗粒直径,是一种低能耗、操作性强和绿色环保的方法,适用于大规模生产纳米材料[18].近些年球磨法制备纳米级碳材料有广泛应用[19-20],如Naghdi等[21]通过球磨获得了平均颗粒直径小于60nm的生物炭颗粒.超声分散技术是目前最有效的物理分散技术之一,被广泛应用于土壤等天然纳米颗粒的非破坏性提取[22].基于沉降原理的高速离心法则可以实现对生物炭纳米颗粒的快速分离提取[12,15,23].研究表明,球磨法提取的纳米生物炭的比表面积增大,表面官能团增加,在水体中的稳定性增强[17];离心法提取的纳米生物炭中的C和H含量减少,表面含氧官能团数量增加,内部结晶体数量增加,具有更负zeta电位[11-12].可见,不同方法制备的纳米生物炭性质和稳定性可能存在显著差异.同时生物炭的物料来源和热解条件多变,因此有必要对纳米生物炭的制备方法以及产物特性进行深入研究和对比分析.由于纳米生物炭颗粒突出的物理化学性能,使其成为一种潜在的高效环境修复材料.然而,关于纳米生物炭制备条件、理化特性和稳定性的研究有限,这在一定程度上限制了其广泛应用.因此,本文以玉米秸秆、花生秸秆和果木枝条等常见农林废弃物为原料在不同温度条件下热解制得5种本体生物炭,采用3种方法提取得到纳米生物炭,研究纳米生物炭的粒径分布和稳定性,在此基础上进一步对本体生物炭和纳米生物炭的物化性质等进行表征.本文检验了现有纳米生物炭制备方法的可行性,系统对比了不同方法所得纳米生物炭的水稳性、结构特征和表面特性.研究结果可为纳米生物炭研究提供基础数据,为其在环境修复和农业生产领域的广泛应用提供重要参考和依据.1 材料与方法1.1 本体生物炭的烧制本文选用陕西最丰富的废弃物—果木枝条,其中果木枝条主要为苹果枝(据报道,2014年陕西省苹果产量居全国首位[14])以及典型的农作物废弃物—玉米秸秆和花生秸秆作为物料来源.将3种原料在绝氧条件下缓慢热解生成5种生物炭.具体过程如下:物料干燥,过1mm筛后,在N2气氛下将果木枝条分别在350、450和550°C下热解2h,玉米秸秆和花生秸秆在350°C下热解2h,冷却,粉碎过100目筛后获得本体生物炭.350°C、450°C和550°C条件下获得的果木枝条生物炭分别记为FB350、FB450和FB550,350°C条件下获得的玉米秸秆生物炭和花生秸秆生物炭分别记为CB350和PB350.生物炭的物料来源众多、热解温度多变.本文仅选择果木枝条来研究不同温度条件对纳米生物炭性质的影响,而玉米秸秆和花生秸秆仅制备了低温生物炭(350°C),这是因为研究发现低温生物炭颗粒的表面电化学特性更为突出[12],其环境行为更值得关注.又温度变化对不同物料来源生物炭的影响具有相似性,因此本文中玉米秸秆和花生秸秆生物炭仅选择了350°C这一制备温度.1.2 纳米生物炭的制备采用球磨法、离心法和球磨+离心法3种方法制备纳米生物炭.具体的制备方法如下:(1)球磨法[21]:将本体生物炭在−80°C条件下冷冻24h后使用行星球磨仪(MITR-YXQM-4L,长沙)在350r/min条件下研磨2h(研磨球直径为3、5及8mm,球粉比为20:1),获得球磨生物炭.研磨过程中仪器每研磨5min休息5min以防止由于温度升高引起的生物炭聚积.(2)离心法[12]:将15g本体生物炭与去离子水在500mL的烧杯中混合后,使用探针式细胞破碎仪(XO-900D,先欧仪器制造有限公司,南京)超声60min,稀释使其质量分数<1%,进而充分搅拌10min.根据Stokes定律[25],在25°C条件下以9500r/min的速度离心20min 可得到包含直径小于100nm组分的上部悬液.(3)球磨+离心法:将15g球磨生物炭按离心法的操作进行3126 中 国 环 境 科 学 40卷提取,获得纳米生物炭悬液.其中离心法和球磨+离心法获得的纳米颗粒悬液使用烘干法测定其浓度. 1.3 生物炭的性质表征1.3.1 生物炭的颗粒直径分布及稳定性观察 本体生物炭的颗粒直径分布使用激光粒度仪(Malvern Mastersizer 2000,英国)测定.三种方法制备的纳米生物炭颗粒直径分布和颗粒直径大小使用动态光散射仪测定(Omni,Brookhaven,美国).动态光散射仪测定得到的水力学直径(也叫做光强加权平均直径)可直接转化为数目加权平均直径,一般认为数目加权直径接近颗粒的真实直径[26],本文的颗粒直径皆为数目加权直径.配制三种颗粒浓度为100mg/L 纳米生物炭悬液,超声1min 后吸取10mL 于玻璃瓶中,静置观察其稳定性.1.3.2 生物炭的物理性质测定 生物炭的形貌利用场发射扫描电子显微镜(SU8010日立,日本)进行测定.测定之前,对样品进行镀金处理.生物炭的pH 值用pH 计(FiveEasy Plus,Mettler toledo,北京)在固液比1:20的条件下进行测定.本体生物炭的产率为烧制得到的生物炭质量占物料质量的百分数,纳米生物炭的产率为提取得到的纳米生物炭质量占提取时所使用本体或球磨生物炭总质量的百分数.生物炭的灰分测定参照木炭和木炭试验方法(GB/ T17664-1999).灰分计算式如下:灰分含量(%)=(M 灰分/M 生物质炭)×100 (1)生物炭的比表面积及孔隙分布利用全自动比表面积及孔隙度分析仪(ASAP 2460,上海)进行测定. 1.3.3 生物炭的化学性质测定 使用元素分析仪(Vario EL cube,英国)对生物炭进行C 、H 、N 和O 的元素含量测定,在CHNS 模式下,样品在纯O 2为测量燃烧气体以确定初始元素C 、H 和N 浓度的平均值样品报告.对于本体生物炭和球磨法制备的纳米生物炭,其O 含量通过差减法获得.而球磨+离心法制备的纳米生物炭产量低,不足以用来直接测定灰分含量,因此对于此种纳米生物炭,在O 模式下将样品在高温还原气氛中裂解以确定其O 含量.生物炭的矿物组分采用X 射线衍射仪(Bruke D8Advance,德国)进行检测.衍射图谱使用MDI jade6软件进行分析.生物炭的表面官能团采用傅里叶变换红外光谱仪(Nicolet Nexus 470型,美国)测定.生物炭的电动电势采用高灵敏度zeta 电位分析仪(Zeta PALS Brookhaven,美国)自带的滴定仪测定.以0.1mmol/L 的NaCl 溶液作为支持电解质.在pH 3.5~11.0的范围进行zeta 电位的测定. 2 结果与讨论2.1 生物炭的颗粒直径分布与水稳性2.1.1 生物炭的颗粒直径分布特征 如图1a 所示,本体生物炭的颗粒直径分布主要在微米级.与本体生物炭相比,3种制备方法提取得到的纳米生物炭直径显著降低.当颗粒平均直径小于100nm 时,可认为其为纳米颗粒(即三维尺寸均小于100nm);若平均直径大于100nm,则可认为得到的纳米生物炭为纳米材料级(仅有一个或者两个维度的尺寸小于100nm)[27].离心法制得的纳米生物炭的直径大小介于103.08~313.53nm 之间(图1b),相应的球磨法制得的纳米生物炭直径为120.49~176.97nm (图1c),直径均显著降低但仍高于100nm.如图1d 所示,球磨+离心法提取得到的纳米生物炭直径为70.06~103.41nm,达到纳米颗粒级别.随着热解温度的升高,果木枝条纳米生物炭的直径略有减小,3个温度条件下纳米生物炭的直径分布曲线基本重合,且曲线分布范围较窄,表明体系中纳米颗粒的大小均一.1 10 100 10001 2 3 4 5 体积百分比(%)颗粒直径(µm)20406080100120相对百分含量(%)颗粒直径(nm)7期李琪瑞等:纳米生物炭的制备方法比较及其特性研究 312710 100 100020 40 60 80 100 120 相对百分含量(%)颗粒直径(nm)20406080100120颗粒直径(nm)相对百分含量(%)图1 本体生物炭和纳米生物炭的颗粒直径分布Fig.1 Particle size distribution curves of bulk biochars and nanobiochars(a)本体生物炭;(b)离心法制得的纳米生物炭;(c)球磨法制得的纳米生物炭;(d)球磨+离心法制得的纳米生物炭2.1.2 纳米生物炭的水稳性测试 监测颗粒直径随时间变化的动态曲线是衡量纳米颗粒稳定性最为直接的方式.本文利用动态光散射仪监测纳米生物炭在30min 内的颗粒直径变化(图2).由图2可知,球磨+离心法制得的纳米生物炭在水相中的稳定性较强,且直径基本都处于纳米颗粒级别(<100nm).离心法制得的纳米生物炭平均颗粒直径大小介于100~300nm,且纳米生物炭的直径大小波动较大.球磨法制得的纳米生物炭在水体中的稳定性增强,颗粒直径变化程度小,但其直径仍大于100nm,尚未达到纳米颗粒级,属于纳米材料.如FB450纳米生物炭的平均直径为121.82nm,30min 内直径在150nm 上下波动.图2c 表明球磨+离心法制得的纳米生物炭达到纳米颗粒级别且在水中能稳定存在;纳米生物炭颗粒直径大小和稳定性受物料来源和热解温度的影响,果木纳米生物炭颗粒直径小于秸秆纳米生物炭,且随着温度升高果木纳米生物炭的颗粒直径减小.不同提取方法得到的纳米生物炭的水稳定性均表现为玉米秸秆和花生秸秆纳米生物炭在水体中稳定性弱;果木生物炭不仅颗粒直径相对较小,且在水体中稳定性强,如球磨+离心法提取得到的FB550纳米生物炭在水体中的平均直径为55.00nm,且在30min 的监测时间内,纳米生物炭的直径基本不变,表明纳米生物炭颗粒无凝聚现象产生,在水中能稳定存在.本文进而对3种方法提取得到纳米生物炭的水稳性进行了长期定性观察,结果如图3所示.在相同质量浓度下,不同制备方法得到的纳米生物炭悬液颜色差异明显:离心法制得的纳米生物炭悬液为浅黄色;球磨法制得的纳米生物炭悬液颜色最深,为深棕色;球磨+离心法制得的纳米生物炭为浅棕色;这些差异可能与三种纳米生物炭的物质组成以及不同提取过程中可溶性炭含量有关[28-29].对于同一制备方法得到的特定种类纳米生物炭悬液,伴随静置时间延长,其颜色变幅越小则表明悬液中呈分散状态的纳米生物炭颗粒数量越多.静置5min 时,3种方法提取得到的纳米生物炭颗粒均能稳定的分散在水中.静置30min 后,离心法制得的纳米生物炭悬液底部出现生物炭颗粒,球磨+离心法制得的纳米生物炭悬液仍保持稳定分散状态.静置40d 后离心法制得的纳米生物炭明显聚沉,上部悬液基本澄清;球磨法制得的纳米生物炭悬液的底部出现明显的聚沉物,悬液颜色变为浅棕色,悬液分散态纳米生物炭数量明显减少;球磨+离心法制得的纳米生物炭仅悬液底部有少许沉淀.结果表明,球磨+离心法制得的纳米生物炭长期水稳性较强.总体而言,球磨+离心法制得的纳米生物炭在水相中能稳定存在,离心法制得的纳米生物炭最不稳定,短时间内颗粒发生快速聚沉.01020 30100200300400500直径(n m )时间t (min)3128中 国 环 境 科 学 40卷0 10 20 30100200 300 400 500 直径(n m )时间t (min)0 10 20 30100200 300 400500 直径(n m )时间t (min)图2 纳米生物炭水稳性的定量观测Fig.2 Quantitative characterization of nanobiochar suspensionstability(a)离心法制得的纳米生物炭;(b)球磨法制得的纳米生物炭;(c)球磨+离心法制得的纳米生物炭CB350 PB350 FB350 FB450 FB550 CB350 PB350 FB350 FB450 FB550 CB350 PB350 FB350 FB450 FB550 CB350 PB350 FB350 FB450 FB550图3 纳米生物炭水稳性的长期定性观察 Fig.3 Qualitative observation of nanobiochar suspensionstability(a)离心法制得的纳米生物炭;(b)球磨法制得的纳米生物炭;(c)球磨+离心法制得的纳米生物炭综上所述,球磨+离心法可提取得到纳米生物炭且所提取纳米生物炭在水体中能长时间稳定存在.由于离心法得到的纳米生物炭水稳性差,且制得的纳米生物炭颗粒直径未达到纳米颗粒级,因此下文仅对本体生物炭、球磨法及球磨+离心法得到的纳米生物炭进行了物化性质的表征,以对比纳米生物炭与本体生物炭的性质差异. 2.2 生物炭的结构特征2.2.1 生物炭的形貌结构 图4为本体生物炭与纳米生物炭的扫描电镜图,从图中可以观察到球磨法和球磨+离心法破坏了本体生物炭原有的片状结构,粒径显著减小;两种方法得到的纳米生物炭形貌结构存在差异(图4b 和4c),球磨法制得的纳米生物炭主要通过机械作用力破坏本体生物炭结构,形成细小的颗粒.球磨+离心法制得的纳米生物炭直径最小,表面能最大,且电镜制样过程中涉及到从悬液态到干燥态的转变,因此观测到了颗粒聚集体;其中CB350和FB450纳米生物炭主要是层状结构,FB350纳米生物炭则以片状结构为主,其中还可观察到球形纳米生物炭颗粒的存在(100~300nm),PB350和FB550纳米生物炭的表面粗糙,且有许多小颗粒炭存在.图4 本体生物炭与纳米生物炭的扫描电镜Fig.4 Scanning electron microscope images of bulk biocharsand nanobiochars(a)本体生物炭;(b)球磨法制得的纳米生物炭;(c)球磨+离心法制得的纳米生物炭2.2.2 生物炭的表面结构 傅里叶红外光谱(FTIR–PAS)是一种快速便捷测定生物炭表面官能团的方法[30].本体生物炭与纳米生物炭的FTIR 谱图如图5所示.从图中可知,纳米生物炭中含有丰富的官能团:780和1400cm −1处为–COO–的变角振动和对称伸缩[31-33];1600cm −1处为–COO–的反对称伸缩[34]; 860和1100cm −1处为碳酸根(23CO −)的面外弯7期李琪瑞等:纳米生物炭的制备方法比较及其特性研究 3129曲[35-36],2927处为脂肪族–CHX 拉伸,在指纹区(874cm −1、815cm −1和750cm −1)有弱芳香CH 平面外吸收峰[12];3400cm −1处为–OH 的伸缩振动[37-39].从图中可以看出,与本体生物炭相比,纳米生物炭表面官能团数量和种类发生变化 2927cm −1处的吸收峰强度减弱,甚至消失,表明纳米生物炭颗粒中的脂肪性烷基链数量减少.图5 本体生物炭与纳米生物炭的FTIR 谱图 Fig.5 FTIR spectra of bulk biochars and nanobiochars(a)本体生物炭;(b)球磨法制得的纳米生物炭;(c)球磨+离心法制得的纳米生物炭从图5c 可以看出球磨+离心法制得的纳米生物炭的表面含氧官能团数量随着热解温度的升高而减少.随着温度的升高,3400cm −1处吸收峰强度逐渐减弱,说明温度升高导致生物炭表面的–OH 消失. 热解温度升到450和550°C 时1400cm −1处吸收峰强度消失,纳米果木炭上的–COO–发生了烧失.当热解温度从350°C 升高到550°C 时,1600cm −1处的吸收峰的强度逐渐减弱,–COO–的含量降低.450°C 时860和1100cm −1处的吸收峰强度最大,碳酸盐含量较高.CB350和PB350纳米生物炭吸收峰的类型和变化情况和果木炭相似,在1100、1400、1600、1630和3400cm −1处均有吸收峰.PB350和果木纳米生物炭在1060和860cm −1处有吸收峰.纳米生物炭在1600cm −1处和3400cm −1处吸收峰强度较强,表明其表面含氧官能团数量较高. 2.3 生物炭的性质比较2.3.1 生物炭的物理性质 本体生物炭与纳米生物炭的基本物理性质参数如表1所示.由表中可知,与本体生物炭相比,纳米生物炭的碱性减弱,例如:FB350本体生物炭的pH 为9.30,球磨法制得的纳米生物炭和球磨+离心法制得的纳米生物炭的pH 分别为7.88和7.42,由强碱性变为弱碱性.这是因为球磨过程破坏了生物炭的表面结构,使得纳米生物炭表面更多的官能团暴露出来,酸性基团在水中解离程度增强,这与生物炭的表面官能团测试结果一致:与本体生物炭(图5a)相比,球磨法制得的纳米生物炭(图5b)和球磨+离心法制得的纳米生物炭(图5c)中1600cm −1处的吸收峰明显增强;球磨+离心法制得的纳米生物炭的pH 显著下降,呈现弱碱性,这可能是由于纳米生物炭中的无机碱性元素减少引起的[12].热解温度影响纳米生物炭的pH 值:随着热解温度升高,纳米生物炭的碱性增强;这是因为伴随热解温度升高,生物炭的碱性物质数量增加[40].受生物炭自身性质的影响,球磨+离心法制得的纳米生物炭产率为2.27%~34.80%.不同方法提取得到的纳米生物炭中直径小于100nm 的颗粒百分含量用d <100表示,球磨+离心法制得的纳米生物炭的d <100显著高于球磨法,以FB350为例, d <100为77.53%,是球磨法的2.4倍,表明球磨法提取的纳米生物炭中仍存在较多粒径大于100nm 的生物炭颗粒.物料来源不同,纳米生物炭的产率不同,350°C 条3130 中国环境科学 40卷件下球磨+离心法得到的CB350和PB350纳米生物炭产率分别是FB350纳米生物炭的3.06和11.68倍,表明秸秆热解过程中更易产生小颗粒炭,使得秸秆生物炭中的纳米颗粒含量高于果木生物炭.随着热解温度升高,纳米生物炭产率降低,表明低温炭中纳米颗粒级生物炭含量更高,结果与前人研究结果相同[41].不同物料、温度和提取方法制得的生物炭比表面积和孔径分布差异明显.从平均孔径来看,纳米生物炭孔径为中孔.与本体生物炭相比,纳米生物炭的各表面积参数都变化显著,除了PB350外,其他生物炭的比表面积都表现为球磨法制得的纳米生物炭最大,这与前人的研究结果相吻合[42].这是因为球磨过程破坏了生物炭的表面结构,从而增大了生物炭外表面积.对于PB350,由于球磨法只增加低温生物炭的外表面积[16],球磨后生物炭颗粒的微孔结构被破坏,微孔消失形成中孔甚至大孔,平均孔径增大,比表面积减小.而球磨+离心法制备的PB350由于微孔结构的发育程度高,比表面积增大.总体而言,球磨+离心法制得的纳米生物炭比表面积小于球磨法制得的纳米生物炭,这可能与前者在干燥过程中伴随水分蒸发产生颗粒聚集体有关.表1本体生物炭与纳米生物炭的基本物理性质参数Table 1 Basic physical properties of bulk biochar sand nanobiocharsBET比表面积t-plot外表面积 MP微孔面积样品制备方法 pH值产率(%) d<100孔径(nm)(m2/g)本体生物炭 10.28±0.0643.00 – 3.8919.93 33.80 1.39球磨法制得的纳米生物炭 9.05±0.02 100.00 19.71 7.11 27.14 36.82 0.00CB350球磨+离心法制得的纳米生物炭 7.78±0.05 9.13 62.60 9.03 5.58 9.34 0.00 本体生物炭 10.16±0.0848.60 – 5.0223.28 40.15 3.55球磨法制得的纳米生物炭 9.39±0.03 100.00 13.96 7.36 23.12 34.81 0.00PB350球磨+离心法制得的纳米生物炭7.69±0.0634.80 49.34 2.76 69.60 119.03 32.31本体生物炭 9.30±0.0639.50– 4.3410.3016.75 1.54球磨法制得的纳米生物炭 7.88±0.05 100.00 31.80 6.36 46.64 48.70 42.93FB350球磨+离心法制得的纳米生物炭 7.42±0.03 2.98 77.53 3.16 26.06 37.06 0.010 本体生物炭 9.97±0.0436.20– 5.5627.6520.4116.91球磨法制得的纳米生物炭9.38±0.04100.00 28.85 3.97 191.95 173.78 181.48 FB450球磨+离心法制得的纳米生物炭 7.56±0.05 2.47 78.06 11.52 10.72 15.13 0.00 本体生物炭 10.00±0.0329.30 – 3.18216.57112.81218.08 球磨法制得的纳米生物炭9.96±0.03100.00 33.81 4.06 381.06 355.85 318.94 FB550球磨+离心法制得的纳米生物炭 7.84±0.05 2.27 83.44 7.22 30.46 46.91 0.00注:本体生物炭产率是指物料的成炭率,纳米生物炭产率是指提取得到的纳米生物炭质量占提取时所使用本体或球磨生物炭总质量的百分数,d<100表示纳米生物炭中直径小于100nm的颗粒百分含量.2.3.2生物炭的元素含量与矿物组成生物炭的元素组成如表2所示.从表中可以看出,与本体生物炭相比,球磨法制得的纳米生物炭和球磨+离心法制得的纳米生物炭中C含量降低,以CB350为例,其C含量分别比本体生物炭减少4.29%和81.57%,灰分含量显著增大,这可能是由于提取过程中S、Cl和K等元素的富集引起的[12].相同温度下,各物料来源生物C含量不同,球磨法制得的FB350生物炭颗粒C含量最高为69.23%,分别比CB350和PB350含量高8.27%和13.82%,这是由于热解过程中纤维素和半纤维素首先烧失,木质素在较高温条件下才开始烧失[43],因此木质素含量较高的果木枝条含碳量较高.随着热解温度的升高,H的烧失加剧.纳米生物炭C含量缓慢增加,这是由于热解炭化过程中C—H、C—O键断裂,H和氧元O从生物质炭中分离出来以气体或蒸汽的形式丧失,纳米生物炭中C元素越来越富集.生物炭的原子比H/C、O/C和(O+N)/C分别表征生物炭的芳香性、亲水性和极性大小,H/C比值越小则芳香性越高,O/C和(O+N)/C比值越大,则亲水性和极性越大[44].350°C条件下不同方法提取得到的纳米生物炭的芳香性减弱,极性越强,疏水性减弱.350°C条件下球磨+离心法制得的纳米生物炭的H/C比>1.0,表明生物炭中可能含有大量的原始有机。
低温合成正交相氧化铪纳米晶及棒状单斜相氧化铪纳米粉体
谢宁等:不同烧结助剂制备的Si3N4陶瓷的氧化行为· 1547 ·第38卷第8期低温合成正交相氧化铪纳米晶及棒状单斜相氧化铪纳米粉体赵学国,罗民华(景德镇陶瓷学院,国家日用及建筑陶瓷工程技术中心,江西景德镇 333001)摘要:采用醇水混合溶剂热法于180℃合成了正交相氧化铪纳米粉体,用X射线衍射、透射电子显微镜和红外光谱对其进行了表征。
结果表明:采用合适的醇与水的体积比,可在较低温度(180)℃制备出正交相纳米氧化铪。
对合成的正交相氧化铪纳米粉经500℃硼砂熔盐处理可制备出短棒状单斜相氧化铪粉体。
关键词:正交相氧化铪;单斜相氧化铪;纳米晶;溶剂热中图分类号:O611.4 文献标志码:A 文章编号:0454–5648(2010)08–1547–06LOW TEMPERATURE SYNTHESIS OF ORTHORHOMBIC HfO2 NANOCRYSTALS AND HfO2 NANOPOWDERS WITH ROD-SHAPE DMONOCLINIC PARTICLESZHAO Xueguo,LO Minghua(Jingdezhen Ceramic Institute, National Construction and Daily-Use Ceramics Engineering Centre,Jingdezhen 333001, Jiangxi, China)Abstract: Orthorhombic HfO2 nanopowders were prepared in the mixed solution of alcohol and water at 180℃via solvothermal method. The as-synthesized HfO2 nanopowders were characterized by X-ray diffraction, transmission electron microscopy, and Fou-rier infrared spectra. The results show that orthorhombic HfO2 nanopowders can be obtained in the mixed solution of alcohol and water in an appropriate ratio at a low temperature of 180.℃Short rod-shaped monoclinic HfO2 particles can be synthesized by the proposed method of synthesizing orthorhombic HfO2 nanocrystals with borax as addition agent, and then followed by heat-treatment at 500.℃Key words: orthorhombic hafnium oxide; monoclinic hafnium oxide; nanocrystals; solvothermal method纳米材料由于其异于体相材料独特的物理和化学特性,在光学、电子、信息、化学以及生物学领域有着广泛的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
International Journal of Minerals, Metallurgy and Materials Volume 26, Number 5, May 2019, Page 634https:///10.1007/s12613-019-1771-3Corresponding author: C.D. Gómez-Esparza E-mail: cynthia.gomez@.mx© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2019Microstructural evaluation and nanohardness of an AlCoCuCrFeNiTihigh-entropy alloyC.D. Gómez-Esparza1), R. Peréz-Bustamante2), J.M. Alvarado-Orozco3), J. Muñoz-Saldaña4),R. Martínez-Sánchez1), J.M. Olivares-Ramírez5), and A. Duarte-Moller1,6)1) Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes No. 120, Chihuahua 31136, Chihuahua,México2) CONACYT-Corporación Mexicana de Investigación en Materiales S.A. de C.V. (COMIMSA), Ciencia Y Tecnología 790, Fracc. Saltillo 400, Saltillo 25290, Coahuila,México3) Centro de Ingeniería y Desarrollo Industrial, Querétaro Campus, Querétaro 76130, Qro., México4) Centro de Investigación y de Estudios Avanzados del IPN, Unidad Querétaro, Libramiento Norponiente No. 2000, Fracc. Real de Juriquilla, Querétaro, Qro., 76230,México5) Universidad Tecnológica de San Juan del Río, San Juan del Río 76800, Querétaro, México6) Escuela de Ingeniería Civil, Industrial y Mecánica, Universidad De La Salle Bajío, León 37150, Guanajuato., México(Received: 6 July 2018; revised: 1 December 2018; accepted: 2 December 2018)Abstract: An AlCoCuCrFeNiTi high-entropy alloy (HEA) was prepared by mechanical alloying and sintering to study the effect of Ti addi-tion to the widely studied AlCoCuCrFeNi system. The structural and microstructural characteristics were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The formation of four micrometric phases was detected: a Cu-rich phase with a face-centered cubic (fcc) structure, a body-centered cubic (bcc) solid solution with Cu-rich plate-like preci-pitates (fcc), an ordered bcc phase, and a tetragonal structure. The XRD patterns corroborate the presence of a mixture of bcc-, fcc-, and te-tragonal-structured phases. The Vickers hardness of the alloy under study was more than twice that of the AlCoCuCrFeNi alloy. Nanoinden-tation tests were performed to evaluate the mechanical response of the individual phases to elucidate the relationship between chemical composition, crystal structure, and mechanical performance of the multiphase microstructure of the AlCoCuCrFeNiTi HEA.Keywords: high-entropy alloys; mechanical alloying; microstructure; nanoindentation1. IntroductionConventional alloys consist of one or two elements as ma-jor constituents with small amounts of other elements, which promotes the improvement of properties. High-entropy alloys (HEAs), defined by Yeh et al. [1] as those formed by at least five main elements, may exhibit characteristics superior to those of conventional alloys, such as solid solution forma-tion, nanometer microstructures, good thermal stability, high hardness, and good mechanical properties [2]. The solid so-lutions containing more than five major elements tend to have structures such as face-centered cubic (fcc), body-centered cubic (bcc), and bcc + fcc. They are more stable than the many conventional intermetallic structures that can be formed according to the predictions of binary phase dia-grams reported in the specialized literature. The structure and phases formed in the HEAs depend on the number of alloying elements and their nature (atomic radii, crystalline structure, electronegativity, melting point), as well as their synthesis process. HEAs have been mainly processed by liquid routes; however, interest in the use of powder metal-lurgy to synthesize these advanced materials has increased. Mechanical alloying has been used to produce nanocrystal-line solid-solution phases under the concept of HEAs [3–4].The AlCoCrCuFeNi system has been the most studied HEA in terms of microstructure and mechanical properties.C.D. Gómez-Esparza et al., Microstructural evaluation and nanohardness of an AlCoCuCrFeNiTi high-entropy alloy 635In principle, most of the investigated systems contain Cu, which improves plasticity. Ni, Co, and Fe are of interest in engineering applications because of their excellent mechan-ical performance, high-temperature mechanical resistance, and resistance to corrosion. They are constituents of most of the reported HEAs. Although Al is a low-melting and very ductile element, its effect has been extensively studied in HEAs. It tends to enhance the mechanical properties of HEAs because it is a bcc phase former. Cr is a high-melting-point element that improves mechanical strength and corrosion re-sistance. Ti is a high-melting element with an atomic radius similar to that of Al. Some authors have attributed the en-hancement of mechanical strength and ductility of HEAs to Ti content [5–6]. Although the effect of Ti in AlCoCrCuFeNi alloy has been investigated, the relationship between alloying elements and the crystalline structure of the formed phases in an equiatomic AlCoCrCuFeNiTi alloy is not yet clear.On the other hand, knowledge of local mechanical prop-erties in multiphase materials in micrometric scale, such as HEAs, can represent a great advance in understanding and predicting their bulk properties. Low-load indentation, or nanoindentation, using the Oliver–Pharr method is a very versatile technique that enables mechanical properties to be measured at small scale (micro and submicrometric) [7]. In past years, investigations related to nanoindentation tests of HEAs have been conducted to obtain more information about specific properties of individual phases [8–9]. Be-cause of the nature of alloying elements, equiatomic Al-CoCrCuFeNiTi alloy is expected to possess a multiphase microstructure. Hence, the aim of this work is to study an equiatomic AlCoCrCuFeNiTi HEA produced by mechanical alloying and conventional sintering to understand the effect of Ti on the chemical distribution and crystalline structure of the resulting phases. In addition, the evaluation of hardness and reduced elastic modulus of its individual phases through nanoindentation tests could establish a relationship between chemical composition, crystalline structure, and mechanical properties of AlCoCrCuFeNiTi-type HEAs.2. Experimental2.1. MaterialsElemental powders of Al, Co, Cr, Cu, Fe, Ni, and Ti with a purity level greater than 99% were used as raw materials. These powders were mixed in equiatomic composition to form a high-entropy AlCoCrCuFeNiTi alloy. The milling process was performed in a high-energy mill (SPEX-8000M) under an argon atmosphere to avoid excessive oxidation of the powders. A hardened steel vial and hardened steel balls were used to mill the samples and were pre-coated by mil-ling an equiatomic NiCoAl powder mixture for 10 h under an Ar atmosphere to avoid iron contamination from the vial and grinding media. Methanol was used as a process control agent to balance welding and fracturing processes during milling. The milling time was 10 h, and the ball-to-powder weight ratio was 5:1. After milling, the alloyed powders were cold compacted at a pressure of 1.5 GPa, sintered at 1200°C under vacuum for 3 h, and cooled in the furnace to room temperature.2.2. Microstructural characterizationThe sintered alloy was microstructurally characterized by field-emission scanning electron microscopy (FESEM; JEOL JSM-7401). The microscope was equipped with an X-ray scattering spectrometer. In order to characterize the phase composition, a sintered sample was prepared using a focused ion beam system (JEM-9320FIB) equipped with an Omniprobe 200 nanomanipulator system and then analyzed by transmission electron microscopy (TEM; JEOL JEM2200F). X-ray diffraction (XRD) analysis was performed on a Pana-lytical X'Pert PRO diffractometer equipped with a Cu Kαradiation source (λ = 0.15406 nm).2.3. Mechanical testingThe mechanical behavior of the alloy was evaluated by Vickers microhardness tests on a Future-Tech Corp. tester model FM-7 using a load of 300 g and a dwell time of 15 s. The nanoindentation tests were carried out on a Ubi1 nano-mechanical tester, Hysitron, USA, using a Berkovich trian-gular pyramid diamond tip.3. Results and discussion3.1. Microstructural characterization3.1.1. Transmission electron microscopyBecause of the complex chemical interaction among the different HEA elements during sintering, TEM analyses were carried out on sintered samples to study the micro-structural details and compositional analysis. The equili-brium microstructure of the AlCoCrCuFeNiTi alloy synthe-sized by mechanical alloying and sintering and the respec-tive chemical composition of their phases, as determined by energy-dispersive X-ray spectroscopy, are shown in Fig. 1. Four micrometric homogeneously distributed phases were observed (labeled as A, B, C, and D). The dark phase de-picted as A corresponds to the high-Fe matrix with low con-tents of Al and Ti and with rich-Cu plate-like nanoprecipi-tates well dispersed in it. The formation of nanoprecipitates636 Int. J. Miner. Metall. Mater ., Vol. 26, No. 5, May 2019in HEAs due to high mixing entropy has been reported [10]. In addition, the Cu segregation is related to the difference in electronegativities and enthalpies of formation with the rest of the elements present in the alloy under study. According to the binary phase diagrams, Cu has a very limited solid solubility with Fe, Co, and Cr, which explains the precipita-tion of Cu in a matrix with large Cr and Fe contents.In the zone denoted as B, a high content of Ni, Co, and Ti, an intermediate Al content, and low concentrations of Cu and Cr were detected. The phase C shows a high content of Cr, Fe, and Co and a very low concentration of Al and Ni. Also, the zone marked as D shows a Cu-rich crystallized phase. Cu tends to segregate at grain boundaries in HEAs synthesized via liquid routes [11]. Cu has a high positive mixing enthalpy with Co, Cr, and Fe, whereas it has a lowerpositive enthalpy with Ni and Al [12].Fig. 1. Z-contrast image by scanning transmission electron microscopy (STEM) of AlCoCrCuFeNiTi alloy, and chemical composi-tion of individual phases by EDS.To show the effect of Ti in the AlCoCrCuFeNiTi HEA, TEM micrographs of the microstructures of AlCoCuFeNi and AlCoCrCuFeNi alloys, previously reported and synthe-sized under the same conditions [13], are displayed together with a micrograph of the AlCoCrCuFeNiTi HEA alloy in Fig. 2 for comparative purposes. The AlCoCuFeNi alloy (Fig. 2(a)) has two main phases. The first phase is composed of a high-Fe-content matrix and Cu-rich nanometric preci-pitates in a plate-shape arrangement disposed in perpendi-cular and parallel angles, forming a basket-like microstruc-ture. The second phase has a high content of Fe, Co, and Ni, approximately 28at% each. The microstructure of the Al-CoCrCuFeNi alloy (Fig. 2(b)) is very similar to the AlCo-CuFeNi alloy. The effect of Cr addition is mainly evidenced by the formation of a third phase with high Cr content (˃80at%). In comparison with the previous alloys, the Al-CoCrCuFeNiTi alloy (Fig. 2(c)) has a similar phase with a high-Fe-content matrix with immersed Cu-rich plate-like precipitates (phase A). The spacing and size of the plate-like precipitates increase as more alloying elements are added (Cr and Ti). The phase identified as B has a high content of Ni, Co, Ti, and Al; in comparison with the previous alloys, the Fe content decreases, whereas substantial amounts of Al and Ti are detected. Phase C also has a high Cr content with a substantial increase in Fe and Co amounts. Phase D is a Cu-rich solid solution that was not observed in the previousFig. 2. TEM micrographs of the sintered alloys to compare the microstructural evolution as a function of chemical composition: (a) AlCoCuFeNi; (b) AlCoCrCuFeNi; (c) AlCoCrCuFeNiTi.C.D. Gómez-Esparza et al., Microstructural evaluation and nanohardness of an AlCoCuCrFeNiTi high-entropy alloy637alloys. The enthalpy of mixing values for the pairs Ti–Ni and Ti–Al are highly negative [14], which promotes the sol-id solubility of Ti in enriched Al and/or Ni phases. Hence, the results suggest that the complex microstructure observed is mainly due to the limited solid solubility of Cu with the other alloying elements.Figs. 3 and 4 show TEM images and selected-area elec-tron diffraction (SAED) patterns of the crystal-structure phases in the AlCoCrCuFeNiTi alloy. On the basis of the collected SAED pattern of phase A (Fig. 3), the matrix ([–111] zone axis) has a bcc structure, whereas the plate-like precipitates ([011] zone axis) have a fcc structure. A Z-contrast STEM micrograph (Fig. 4(a)) correlates the B, C, and D phas-es (Figs. 4(b)–4(d)) with their respective dot patterns.Fig. 3. TEM micrograph of phase A in the AlCoCrCuFeNiTi alloy (a), and SAED patterns of the matrix (b) and plate-like precipi-tates (c).Fig. 4. TEM micrograph (a) and SAED patterns of phase B (b), phase C (c) and phase D (d) in the AlCoCrCuFeNiTi alloy.Phases B and D were observed along the [200] and [321] zone axes, having a bcc and an fcc crystal structure, respec-tively. Phase C, which was observed along the [321] zone axis, is consistent with a tetragonal structure. Notably, both fcc phases, which correspond to plate-like precipitates of phase A and phase D, have a similar chemical composition; however, a Cu content greater than 70at% was detected. Phase B has a high Al content (an fcc-structured element) and crystallizes with a bcc structure, corroborating the as-sumption that Al is a bcc former [15].The precipitation of nanocrystalline phases in the HEA synthesized via a liquid route and subsequent thermal treat-ment is considered an important factor affecting the me-chanical properties of the alloys [16]. In this study, the alloy638 Int. J. Miner. Metall. Mater., Vol. 26, No. 5, May 2019AlCoCrCuFeNiTi processed by mechanical alloying gave rise to the formation of nanocrystalline phases without the need for a subsequent thermal treatment. These phases re-mained on the nanometer scale even after the conventional high-temperature sintering process.3.1.2. X-ray diffractionThe diffraction pattern of the sintered AlCoCrCuFeNiTi alloy is presented in Fig. 5. Two fcc-structured phases, two bcc-structured phases, one of which is ordered, and a fifth phase that does not correspond to a cubic structure are present. The lattice parameters of the phases were calculated from their peak positions. The lattice parameter of the two fcc phases (0.362 and 0.360 nm) is similar to that of pure Cu. These phases correspond to phase D and the plate-like precipitates of phase A. The ordered bcc phase (B2) [17] has a lattice parameter of 0.292 nm, similar to that reported for an Al11.1(TiVCrMnFeCoNiCu)88.9 alloy (a bcc = 0.293 nm) [10]. In a previous AlCoCrCuFeNi alloy, an ordered bcc solid solution was not detected [13]. Howev-er, Chen et al. [18] reported that ordering of a bcc phase in an Al0.5CoCrCuFeNiTi1.4 alloy occurs as a function of Ti content. Their finding corroborates that phase B, which has a bcc structure and contains a substantial amount of Ti (21at%), possesses a bcc-B2 phase. The solid solutions are formed by solute atoms of different elements. In HEAs, each atom is surrounded by different types of atoms with different atomic sizes depending on the chemical composi-tion of the alloy. Therefore, the crystalline structure suffers distortion, causing its lattice parameter to differ from that previously reported for a similar solid solution.Fig. 5. XRD pattern of AlCoCrCuFeNiTi alloy.The lattice parameter of the second bcc phase is 0.304 nm, which corresponds to the matrix of phase A. The fifth phase presents diffraction peaks at 46°, 46.98°, and 48.18° 2θ. Some authors have reported this phase as γ-NiCoCr [15] or a CoCr tetragonal phase [15,19], and the peak at 36.2° 2θin Fig. 1 has been attributed to a Ti2Ni-type phase [19]. The XRD peak locations were verified with the Inorganic Crys-tal Structure Database (ICSD), and the diffraction peaks were found to correspond to a structure similar to σ-CoCr (ICSD card No. 102316), differing slightly from the peaks of the isolated CoCr system [20]. The diffraction peaks at 34.09°, 36.73°, 40.42°, 56.69°, 73.00°, and 78.16° 2θ (not identified in the spectrum) correspond to aluminum oxide. HEAs have a tendency to form random solid solutions in-stead of intermetallic or complex phases, but some com-pounds with a high enthalpy of formation, such as oxides, carbides, and nitrides, will be formed [21]. The formation of aluminum oxide in sintered HEAs was reported in our pre-vious work [22]. The XRD results related to the formation of solid-solution phases corroborate the results obtained from SAED–TEM patterns.3.2. Mechanical testing3.2.1. Vickers microhardnessThe microstructure of HEA processed by a liquid route exhibits the peculiarity of segregation, which is a characte-ristic of this processing technique [23]. Although the alloy under study has a multiphase microstructure, the use of me-chanical alloying produces a homogeneous distribution of phases in the bulk material, which may exceed the distribu-tion achieved by the liquid route. The sintered AlCoCrCu-FeNiTi alloy was subjected to Vickers microhardness tests, and a value of HV 602 ± 44 was obtained. The microhard-ness values reported for the previous alloys AlCoCuFeNi and AlCoCrCuFeNi synthesized under the same conditions were HV 261 ± 31 and HV 269 ± 39, respectively [13]. Notably, the addition of Ti promoted an increase of hardness to more than twice that of its predecessors. A similar beha-vior was reported by Chen et al. [18], where the Al0.5CoCrCuFeNiTi x system exhibited an increase in me-chanical response as a function of the Ti content. Specifical-ly, the Al0.5CoCrCuFeNiTi x alloy exhibited a hardness value of HV 650.The atomic radii of the constituent elements of the stu-died alloy differ from each other. Al and Ti have the largest atomic radii of 0.143 and 0.146 nm, respectively. The ob-tained microhardness values can be attributed to the effect of solid-solution hardening, which increases the lattice distor-tion and avoids interplanar displacement and dislocations. Al has been reported to promote the formation of a bcc phase that is responsible for the enhancement of the me-chanical properties of AlCoCuCrFeNi-type alloys [24]. In the studied AlCoCrCuFeNiTi alloy, the formation of a bcc phase with high Al content is evident (phase B). However, phase precipitation of Cu at the nanoscale (plate-like preci-pitates in phase A) favors hardening of the alloy. These har-C.D. Gómez-Esparza et al., Microstructural evaluation and nanohardness of an AlCoCuCrFeNiTi high-entropy alloy 639dening mechanisms also contribute to the observed increase in hardness.The multiphase microstructure in advanced metallic ma-terials is responsible for their superior mechanical properties. The evaluation of local mechanical properties in multiphase HEAs can support future experimental chemical designs, giving deeper evidence of the relationship between chemical composition, crystal structure, and mechanical properties. Hence, nanoindentation tests were used to determine the lo-cal mechanical behavior of the sintered AlCoCrCuFeNiTi alloy.3.2.2. NanoindentationThe mechanical properties of individual phases in the AlCoCrCuFeNiTi alloy were evaluated by the nanoindenta-tion technique. Notably, the evaluated mechanical properties of the individual phases of the alloy were supported by mi-croscopy techniques. Nanoindentation impression images taken by in situ scanning probe microscopy (SPM) were compared with SEM micrographs collected in secondary electron (SE) mode (where the phases had already been pre-viously identified). An example is displayed in Fig. 6. The SEM–SE image (Fig. 6(a)) shows the morphology of the phases, whereas the SPM image (Fig. 6(b)) shows the na-noindentation impressions. At least 10 nanoindentation mea-surements were conducted for each phase. For practical pur-poses, the graph in Fig. 6(c) shows a single load–displacement curve for each tested phase. The chosen curves are repre-sentative of the individual phase response. The average val-ues of nanohardness and reduced elastic modulus are sum-marized in Table 1. The tetragonal phase exhibited the high-est nanohardness value (~19 GP), followed by the bcc-B2 phase (~17 GP). However, the reduced elastic modulus (E r ) value for the tetragonal phase was only 9% higher than that of the bcc-B2 phase. The tetragonal phase influences the hardening of the bulk alloy without sacrificing the ductility of the material. Even phase A (bcc matrix with fcc plate-like precipitates) reached only half the hardness of the bcc-B2 phase; its E r value was only 5% lower. Phase D (high Cu content and fcc structure) exhibited the worst mechanical properties among the phases. We assumed that the basket-like arrangement of Cu precipitates has a hardening effect on phase A, as evidenced by the slight reduction of modulus in comparison with those of the bcc-B2 and tetra-gonal phases.Fig. 6. SEM-SE micrograph (a), SPM micrograph of nanoindentation impressions (b) and representative load-displacement curves (c) for the four identified phases in the AlCoCrCuFeNiTi alloy.Table 1. Average and standard deviation (SD) of nanohardness and reduced modulus obtained from nanoindentation tests (1000 mN of load).Phase Crystal structure Nanohardness / GPa E r / GPaAverage SD Average SDAbcc matrix + fcc2 plate-like precipitates8.720.7433718B bcc-B2 17.25 0.75 356 20C Tetragonal 19.24 0.71 389 16D fcc1 6.48 0.65 242 25The experimental evidence suggests that, in addition to the entropy effect, other factors also influence the formation of phases in the HEA. In terms of relevance, a well-known principle in metallurgy describes the formation of phases: the Hume–Rothery rules on the formation of binary solid solutions. These rules establish that the high solubility of one element in another depends directly on a small differ-ence in their electronegativity, atomic radius, crystal struc-640 Int. J. Miner. Metall. Mater., Vol. 26, No. 5, May 2019ture, valence [25], and their melting temperature [26]. Even though there are different solubility levels of some elements in others, the formation of solid solutions instead of inter-metallic compounds is evident. One of the hardening me-chanisms of HEAs is solid-solution hardening [27]; atoms with larger sizes, such as Ti and Al, induce lattice distortion. In addition, high-melting-point elements exhibit less diffu-sion; the high-melting points are related to the increase in the modulus of elasticity. Tong et al. [28] reported a nano-sized spinodal microstructure in an AlCoCrCuFeNi alloy produced by a liquid route. They attributed the increase in hardness to the hardening effect of nanocomposite forma-tion. The Cu-rich plate-like nanoprecipitates are expected to enhance the mechanical properties of HEAs; therefore, some authors have adjudged this phenomenon as the cause of the hardening. However, in the present study, the Cu-rich phases were demonstrated to be those with the poorest me-chanical properties, even when they exist as precipitates with nanoscale size and spacing. However, previously re-ported nanoindentation results for AlCoCuFeNi and Al-CoCrCuFeNi alloys [13] show that Ti addition increases the matrix hardness of phases with Cu-rich nanoprecipitates. The phases with Cu-rich plate-like precipitates in the Al-CoCuFeNi and AlCoCrCuFeNi alloys exhibit a lower hard-ness and lower E r value compared with those reported for the similar phase in the studied AlCoCrCuFeNiTi alloy, which has a matrix Ti content of ~2at%. The solid-solution hardening effect is greater than the precipitation hardening effect. In addition, the phase sizes in the AlCoCrCuFeNiTi alloy are smaller than those observed in the AlCoCuFeNi and AlCoCrCuFeNi alloys (Fig. 2). In materials with mi-crometric-scale phase sizes, the volumetric fraction of grain boundaries increases with decreasing phase size. Grain boundaries act as obstacles to the movement of dislocations.4. ConclusionsAn AlCoCrCuFeNiTi HEA was synthesized by mechan-ical alloying and conventional sintering. The sintered alloy exhibits a multiphase microstructure composed of four phases with fcc, bcc, and tetragonal structures. According to TEM analyses, Cu promotes the formation of fcc phases, whereas Al and Ti are bcc formers. The tetragonal phase possesses high Cr, Fe, and Co contents. The elastic modulus and hardness for individual phases were successfully eva-luated by nanoindentation tests. The tetragonal phase exhi-bited the best mechanical properties, with average hardness and modulus values of 19.24 and 389 GPa, respectively, followed by the bcc-B2 phase, with average hardness and modulus values of 17.25 and 356 GPa, respectively. Ac-cording to the modulus values, the tetragonal phase achieved the highest hardening without substantially in-fluencing the ductility of the material. The Cu-rich phase with an fcc structure exhibited the worst mechanical proper-ties among the investigated phases. AcknowledgementsThe authors would like to thank W. Antunez-Flores and C.E. Ornelas-Gutiérrez for their technical assistance. References[1] J.W. Yeh, S.K. Chen, J.Y. Gan, S.J. Lin, T.S. Chin, T.T.Shun, C.H. Tsau, and S.Y. Chang, Formation of simple crys-tal structures in Cu–Co–Ni–Cr–Al–Fe–Ti–V alloys with mul-tiprincipal metallic elements, Metall. Mater. Trans. A,35(2004), p. 2533.[2] S.T. Chen, W.Y. Tang, Y.F. Kuo, S.Y. Chen, C.H. Tsau, T.T.Shun, and J.W. Yeh, Microstructure and properties of age-hardenable Al x CrFe1.5MnNi0.5 alloys, Mater. Sci. Eng. A,527(2010), No. 21-22, p. 5818.[3] R. Sriharitha, B.S. Murty, and R.S. Kottada, Phase formationin mechanically alloyed Al x CoCrCuFeNi (x = 0.45, 1, 2.5, 5 mol) high entropy alloys, Intermetallics,32(2013), p. 119. [4] N.T.B.N. Koundinya, C.S. Babu, K. Sivaprasad, P. Susila,N.K. Babu, and J. Baburao, Phase evolution and thermal analysis of nanocrystalline AlCrCuFeNiZn high entropy alloyproduced by mechanical alloying, J. Mater. Eng. Perform.,22(2013), No. 10, p. 3077.[5] Y.F. Wang, S.G. Ma, X.H. Chen, J.Y. Shi, Y. Zhang, andJ.W. Qiao, Optimizing mechanical properties of AlCoCrFe-NiTi x high-entropy alloys by tailoring microstructures, ActaMetall. Sin.-Engl., 26(2013), No. 3, p. 277.[6] P. Cui, Y.M. Ma, L.J. Zhang, M.D. Zhang, J.T. Fan, W.Q.Dong, P.F. Yu, G. Li, and R.P. Liu, Effect of Ti on micro-structures and mechanical properties of high entropy alloys based on CoFeMnNi system, Mater. Sci. Eng. A,737(2018),No. 8, p. 198.[7] W.Y. Yan, C.L. Pun, and G.P. Simon, Conditions of applyingOliver–Pharr method to the nanoindentation of particles in composites, Compos. Sci. Technol., 72(2012), No. 10, p.1147.[8] C.S. Babu, N.T.B.N. Koundinya, K. Sivaprasad, and J.A.Szpunar, Thermal analysis and nanoindentaion studies on nanocrystalline AlCrNiFeZn high entropy alloy, ProcediaMater. Sci.,6(2014), p. 641.[9] V. Maier-Kiener, B. Schuh, E.P. George, H. Clemens, and A.Hohenwarter, Nanoindentation testing as a powerful screen-ing tool for assessing phase stability of nanocrystalline high-entropy alloys, Mater. Des.,115(2017), p. 479.[10] C.M. Lin and H.L. Tsai, Evolution of microstructure, hard-。