时间序列分析试题

合集下载

第章时间序列分析习题

第章时间序列分析习题

第8章时间序列分析一、填空题:1.平稳性检验的方法有__________、__________和__________。

2.单位根检验的方法有:__________和__________。

3.当随机误差项不存在自相关时,用__________进行单位根检验;当随机误差项存在自相关时,用__________进行单位根检验。

4.EG检验拒绝零假设说明______________________________。

5.DF检验的零假设是说被检验时间序列__________。

6.协整性检验的方法有__________和__________。

7.在用一个时间序列对另一个时间序列做回归时,虽然两者之间并无任何有意义的关系,但经常会得到一个很高的2R的值,这种情况说明存在__________问题。

8.结构法建模主要是以______________________________来确定计量经济模型的理论关系形式。

9.数据驱动建模以____________________作为建模的主要准则。

10.建立误差校正模型的步骤为一般采用两步:第一步,____________________;第二步,____________________。

二、单项选择题:1. 某一时间序列经一次差分变换成平稳时间序列,此时间序列称为()。

A.1阶单整 ??? B.2阶单整???C.K阶单整 ?? ?D.以上答案均不正确2.? 如果两个变量都是一阶单整的,则()。

A.这两个变量一定存在协整关系B.这两个变量一定不存在协整关系C.相应的误差修正模型一定成立D.还需对误差项进行检验3.当随机误差项存在自相关时,进行单位根检验是由()来实现。

A DF检验 B.ADF检验C.EG检验 D.DW检验4.有关EG检验的说法正确的是()。

A.拒绝零假设说明被检验变量之间存在协整关系B.接受零假设说明被检验变量之间存在协整关系C.拒绝零假设说明被检验变量之间不存在协整关系D.接受零假设说明被检验变量之间不存在协整关系三、多项选择题:1. 平稳性检验的方法有()。

时间序列分析练习题

时间序列分析练习题
通过一阶差分,得到 Yt=a+bt-[a+b(t-1)]=b 消除了线性趋势。
17. 在趋势性检验中,进行单位根检验的意义是什么?
单位根检验就是根据已观测到的时间序列,检验产生这个时间序列的随机过程中的一阶 自回归系数是否为一,这个检验实际上就是对时间序列是否为一个趋势平稳过程的检验,如 果检验表明没有单位根,则它是一个趋势平稳过程,否则,它是一个带趋势的单位根过程。
①( 均值为常数 ) ②( 协方差为时间间隔 的函数 )
则称该序列为宽平稳时间序列,也叫广义平稳时间序列。 8. 对于一个纯随机过程来说,若其期望和方差(均为常数),则称之为白噪声过程。白 噪声过程是一个(宽平稳)过程。 9. 时间序列分析方法按其采用的手段不同可概括为数据图法,指标法和(模型法)
19. 线性趋势平稳的特点:当我们将时间序列中的完全确定的线性趋势去掉以后,所形 成的时间序列就是一个平稳的时间序列。
20. 如何以系统的观点看待时间序列的动态性? 系统的动态性就是在某一时刻进入系统的输入对系统后继行为的影响,也就是系统的记 忆性,描述记忆性的函数称为记忆函数。
三、证明题
1. AR(1)模型: X t 1 X t1 at ,其中 at 是白噪声,且 E at2
37. ARMA(n,m) 的逆转形式 X t I j X t j at 。 j 1
38.
模型适应性检验的相关函数法,在显著性水平

0.05 下,若

k
1.96 /
N,
则接受 k 0 的假设,认为 at 是独立的。
39. 模型适应性检验的 2 检验法,在显著性水平 下,若统计量
G12
G22

第八章时间序列分析

第八章时间序列分析

第八章时间序列分析一、填空题:1. 由于决定时间数列变化的因数是多方面的,因此通常把时间数列上各期发展水平按其影响因素的不同分解成几个不同的组成部分,即长期趋势、、循环波动和不规则变动。

2.时间序列按照数列中排列指标的性质不同,可分为、和。

3. “增长1%绝对值”指标其实质是水平的1%。

4. 是把原动态数列的时距扩大,再采用逐项移动的方法计算扩大了时距的序时平均数。

5.就是研究某种现象在一个相当长的时期内持续向上或向下发展变动的趋势。

6. 就是指某些社会现象由于受生产条件或自然条件因素的影响,在一年内随着季节的更换而呈现出比较有规律的变动。

二、单项选择题:1. 时间序列在一年内重复出现的周期性波动称为()A、趋势B、季节性C、周期性D、随机性2. 增长一个百分点而增加的绝对数量称为()A、环比增长率B、平均增长率C、年度化增长率D、增长1%绝对值3. 某银行投资额2004年比2003年增长了10%,2005年比2003年增长了15%,2005年比2004年增长了()A、15%÷10%B、115%÷110%C、(110%×115%)+1D、(115%÷110%)-14.某种股票的价格周二上涨了10%,周三上涨了5%,两天累计张幅达()A、15%B、15.5%C、4.8%D、5%5.如果某月份的商品销售额为84万元,该月的季节指数为1.2,在消除季节因素后该月的销售额为()A、60万元B、70万元C、90.8万元D、100.8万元6. 时间数列的构成要素是()。

A、变量和次数B、时间和指标数值C、时间和次数D、主词和宾词7. 定基增长速度与环比增长速度的关系为()。

A、定基增长速度等于相应的环比增长速度各个的算术和B、定基增长速度等于相应的环比增长速度各个的连乘积C、定基增长速度等于相应的环比增长速度加1后的连乘积再减1D、定基增长速度等于相应的环比增长速度各个的连乘积加18. 以1950年a0为最初水平,1997年a n为最末水平,计算钢产量的年平均发展速度时,须开()。

(完整word版)时间序列分析试题

(完整word版)时间序列分析试题

第九章时间序列分析一、单项选择题1、乘法模型是分析时间序列最常用的理论模型。

这种模型将时间序列按构成分解为()等四种成分,各种成分之间(),要测定某种成分的变动,只须从原时间序列中()。

A.长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;减去其他影响成分的变动B.长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;减去其他影响成分的变动C.长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;除去其他影响成分的变动D.长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;除去其他影响成分的变动答案: C2、加法模型是分析时间序列的一种理论模型。

这种模型将时间序列按构成分解为()等四种成分,各种成分之间(),要测定某种成分的变动,只须从原时间序列中()。

A.长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;减去其他影响成分的变动B.长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;减去其他影响成分的变动C.长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;除去其他影响成分的变动D..长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;除去其他影响成分的变动答案: B3、利用最小二乘法求解趋势方程最基本的数学要求是()。

A. (Y? 2任意值 B. (Y? 2min Y t ) Y t )C. (Y? 2max D. (Y? 20 Y t ) Y t )答案: B4、从下列趋势方程?125 0.86t 可以得出()。

Y tA. 时间每增加一个单位,Y 增加 0.86 个单位B. 时间每增加一个单位,Y 减少 0.86 个单位C. 时间每增加一个单位,Y 平均增加0.86 个单位D. 时间每增加一个单位,Y 平均减少0.86 个单位答案: D.5、时间序列中的发展水平()。

A. 只能是绝对数B. 只能是相对数C.只能是平均数D. 上述三种指标均可以答案: D.6、下列时间序列中,属于时点序列的有()。

时间序列分析试卷及答案

时间序列分析试卷及答案

时间序列分析试卷及答案时间序列分析试卷1一、填空题(每小题2分,共计20分)1.ARMA(p,q)模型是一种常用的时间序列模型,其中模型参数为p和q。

2.设时间序列{Xt},则其一阶差分为Xt-Xt-1.3.设ARMA (2.1):Xt=0.5Xt-1+0.4Xt-2+εt-0.3εt-1,则所对应的特征方程为1-0.5B-0.4B^2+0.3B。

4.对于一阶自回归模型AR(1):Xt=10+φXt-1+εt,其特征根为φ,平稳域是|φ|<1.5.设ARMA(2.1):Xt=0.5Xt-1+aXt-2+εt-0.1εt-1,当a满足|a|<1时,模型平稳。

6.对于一阶自回归模型Xt=φXt-1+εt,其平稳条件是|φ|<1.7.对于二阶自回归模型AR(2):MA(1):Xt=εt-0.3εt-1,其自相关函数为Xt=0.5Xt-1+0.2Xt-2+εt,则模型所满足的XXX-Walker方程是ρ1-0.5ρ2=0.2,ρ2-0.5ρ1=1.8.设时间序列{Xt}为来自ARMA(p,q)模型:Xt=φ1Xt-1+。

+φpXt-p+εt+θ1εt-1+。

+θqεt-q,则预测方差为σ^2(1+θ1^2+。

+θq^2)。

9.对于时间序列{Xt},如果它的差分序列{ΔXt}是平稳的,则Xt~I(d)。

10.设时间序列{Xt}为来自GARCH(p,q)模型,则其模型结构可写为σt^2=α0+α1εt-1^2+。

+αpεt-p^2+β1σt-1^2+。

+βqσt-q^2.二、(10分)设时间序列{Xt}来自ARMA(2,1)过程,满足(1-B+0.5B^2)Xt=(1+0.4B)εt,其中{εt}是白噪声序列,并且E(εt)=0,Var(εt)=σ^2.1)判断ARMA(2,1)模型的平稳性。

根据特征方程1-φ1B-φ2B^2,求得其根为0.5±0.5i,因此模型的平稳条件是|φ1-0.5i|<1和|φ1+0.5i|<1,即-1<φ1<1.因为0.5i不在实轴上,所以模型不是严平稳的,但是是宽平稳的。

时间序列分析试卷及标准答案

时间序列分析试卷及标准答案

时间序列分析试卷1一、 填空题(每小题2分,共计20分)1. ARMA(p, q)模型_________________________________,其中模型参数为____________________。

2. 设时间序列{}t X ,则其一阶差分为_________________________。

3. 设ARMA (2, 1):1210.50.40.3t t t t t X X X εε---=++-则所对应的特征方程为_______________________。

4. 对于一阶自回归模型AR(1): 110t t t X X φε-=++,其特征根为_________,平稳域是_______________________。

5. 设ARMA(2, 1):1210.50.1t t t t t X X aX εε---=++-,当a 满足_________时,模型平稳。

6. 对于一阶自回归模型MA(1):10.3t t t X εε-=-,其自相关函数为______________________。

7. 对于二阶自回归模型AR(2):120.50.2t t t t X X X ε--=++则模型所满足的Yule-Walker 方程是______________________。

8. 设时间序列{}t X 为来自ARMA(p,q)模型:1111t t p t p t t q t q X X X φφεθεθε----=++++++L L则预测方差为___________________。

9. 对于时间序列{}t X ,如果___________________,则()~t X I d 。

10. 设时间序列{}t X 为来自GARCH(p ,q)模型,则其模型结构可写为_____________。

二、(10分)设时间序列{}t X 来自()2,1ARMA 过程,满足()()210.510.4ttB B X B ε-+=+,其中{}t ε是白噪声序列,并且()()2t t 0,E Var εεσ==。

(整理)时间序列分析试题

(整理)时间序列分析试题
A.大于100%表示各月(季)水平比全期水平高,现象处于旺季
B.大于100%表示各月(季)水平比全期平均水平高,现象处于旺季
C.小于100%表示各月(季)水平比全期水平低,现象处于淡季
D.小于100%表示各月(季)水平比全期平均水平低,现象处于淡季
E.等于100%表示无季节变化
答案:BD.E
12、循环变动指数C%()。
3月
4月
5月
6月
7月
月初应收账款余额
(万元)
690
850
930
915
890
968
1020
则该企业2005年上半年平均每个月的应收账款余额为()。
A.
B.
C.
D.
答案:A
10、采用几何平均法计算平均发展速度时,侧重于考察()。
A.现象的全期水平,它要求实际各期水平等于各期计算水平
B.现象全期水平的总和,它要求实际各期水平之和等于各期计算水平之和
答案:A
14、元宵的销售一般在“元宵节”前后达到旺季,1月份、2月份的季节指数将()。
A.小于100% B.大于100%
C.等于100% D.大于1200%
答案:B
15、空调的销售量一般在夏季前后最多,其主要原因是空调的供求(),可以通过计算()来测定夏季期间空调的销售量高出平时的幅度。
A.受气候变化的影响;循环指数
答案:D.
17、当时间序列的二级增长量大体相同时,适宜拟合()。
A.抛物线B.指数曲线
C.直线D.对数曲线
答案:A
18、国家统计局2005年2月28日公告,经初步核算,2004年我国的国内生产总值按可比价格计算比上年增长9.5%。这个指标是一个()。

统计学:时间序列分析习题与答案

统计学:时间序列分析习题与答案

一、单选题1、根据季度数据测定季节比率时,各季节比率之和为()。

A.100%B.0C.400%D.1200%正确答案:C2、增长1%水平值的表达式是()。

A.报告期增长量/增长速度B.报告期发展水平/100C.基期发展水平/100D.基期发展水平/1%正确答案:C3、若报告期水平是基期水平的8倍,则我们称之为()。

A.翻了 3番B.翻了 8番C.发展速度为700%D.增长速度为800%正确答案:A4、若时间数列呈现出长时间围绕水平线的周期变化,这种现象属于()。

A.无长期趋势、有循环变动B.有长期趋势、有循环变动C.无长期趋势、无循环变动D.有长期趋势、无循环变动正确答案:B5、银行年末存款余额时间数列属于()。

A.平均指标数列B.时点数列C.时期数列D.相对指标数列正确答案:B6、某一时间数列,当时间变量t=1,2,3,...,n时,得到趋势方程为y=38+72t,那么,取t=0,2,4,6,8,...时,方程中的b将为()。

A.36B.34C.110D.144正确答案:A7、某企业2018年的产值比2014年增长了 200%,则年平均增长速度为()。

A.50%B.13.89%C.29.73%D.31.61%正确答案:D8、2010年某市年末人口为120万人,2020年年末达到153万人,则年平均增长量为()万人。

A. 3B.33C. 3.3D.30正确答案:C9、在测定长期趋势时,如果时间数列逐期增长量大体相等,则宜拟合()。

A.抛物线模型B.直线模型C.曲线模型D.指数曲线模型正确答案:B10、在测定长期趋势时,当时间数列的逐期增长速度基本不变时,宜拟合()。

A.逻辑曲线模型B.二次曲线模型C.直线模型D.指数曲线模型正确答案:D二、多选题1、编制时间数列的原则有()。

A.经济内容的一致性B.计算方法的一致性C.时间的一致性D.总体范围的一致性正确答案:A、B、C、D2、以下表述正确的有()。

统计基础5第五章时间序列分析测试卷8K

统计基础5第五章时间序列分析测试卷8K

统计基础知识测试题第五章时间序列分析一、判断题:本大题共20小题,每小题1分,共20分。

下列命题你认为正确的在题后括号内打“√”,错误的打“×”。

1.动态序列中的发展水平可以是绝对数,也可以是相对数或平均数。

√2.时期序列中的各项指标数值是可以相加的。

√3.时点序列的每一项指标值反映现象在某一段时期达到的水平。

×4.时点序列的每一项指标数值的大小和它在时间间隔上的长短没有直接关系。

√5.用各年人口出生率编制的时间数列是平均数时间序列。

×6.通过时间序列前后各时间上指标值的对比,可以反映现象的发展变化过程及其规律。

√7.时期序列中每个指标数值的大小和它所对应时期的长短有直接关系。

√8.编制时间序列时,各指标的经济内容可不一致。

×9.相邻两项的累积增长量之差等于相应的逐期增长量。

√10.间隔相等的间断时点序列序时平均数的计算采用“首尾折半简单算术平均法”。

√11.相对数时间序列求序时平均数时,根据所给数列简单平均即可。

×12.定基发展速度等于相应时期内各个环比发展速度的连乘积。

√13.两个相邻的定基发展速度相除可得最初水平。

√14.平均发展速度是将各期环比发展速度简单平均而得的。

×15.发展水平是计算其他动态分析标志的基础,它只能用总量指标来表示。

×16.保证时间序列中各个指标数列具有可比性是编制时间数列应遵守的基本原则。

√17.间隔相等间断时点序列序时平均数的计算方法采用简单序时平均法。

√18.平均增长速度等于平均发展速度减1。

√19.若将某市社会商品库存额按时间先后顺序排列,此种时间序列属于时期数列。

×20.平均增长速度不能根据各个环比增长速度直接求得。

√二、单项选择题:本大题共20小题,每小题1分,共20分。

从每小题的备选答案中,选择一个正确选项并填在对应的括号内。

21.在时点序列中(A )。

A各指标数值之间的距离称作“间隔”B各指标数值所属的时期长短称作“间隔”C最初水平与最末水平之差称作“间隔”D最初水平和最末水平之间的距离称作“间隔”22.下列数列中哪一个属于动态序列(C )。

时间序列分析

时间序列分析

第七章 时间序列分析一、单项选择题1.根据时期序列计算序时平均数应采用 ( ) A.几何平均法 B.加权算术平均法 C.简单算术平均法 D.首末折半法2.间隔相等的时点序列计算序时平均数应采用 ( ) A.几何平均法 B.加权算术平均法 C.简单算术平均法 D.首末折半法3.逐日登记资料的时点序列计算序时平均数应采用 ( ) A.几何平均法 B.加权算术平均法 C.简单算术平均法 D.首末折半法4.具有可加性的时间序列是 ( ) A.时点序列 B.时期序列 C.平均指标动态序列 D.相对指标动态序列5.间断性的间隔不相等时点序列计算序时平均数,应采用 ( ) A.以每次变动持续的时间长度对各时点水平加权平均 B.以数列的总速度按几何平均法计算 C.用各间隔长度对各间隔的平均水平加权平均 D.对各时点水平简单算术平均6.时间序列中的派生序列是 ( ) A. 时期序列和时点序列 B.绝对数时间序列和相对数时间序列C.绝对数时间序列和平均数时间序列D.相对数时间序列和平均数时间序列7.某企业生产某种产品,其产量年年增加5万吨,则该产品产量的环比增长速度 ( ) A.年年下降 B.年年增长 C.年年保持不变 D.无法做结论8.某企业工业生产固定资产原值变动资料(单位:千元〉:1998年1月1日8000当年新增2400, 当年减少400试确定工业生产固定资产原值平均价值 ( ) A.10000 B.9000 C.5000 D.15009.某车间月初工作人员数资料如下 ( ) 一月 二月 三月 四月 五月 六月 七月 280 284 280 300 302 304 320 计算该车间上半年月平均工人数计算式是:A.i iif f α∑∑B.i iif f α∑∑C.inα∑ D.12311122...1n a a a a n -++++-10.2003年上半年某商店各月初棉布商品库存〈千元〉为 一月 二月 三月 四月 五月 六月 七月 42 34 36 32 36 33 38试确定上半年棉布平均商品库存。

统计学考试题目 时间序列分析

统计学考试题目  时间序列分析

统计学考试题目时间序列分析(总3页)-本页仅作为预览文档封面,使用时请删除本页-B C C A A, A C B D D , B B D B D , B A第六章时间序列分析一、单项选择题1.某地区1990—1996年排列的每年年终人口数动态数列是( b)。

A、绝对数动态数列B、绝对数时点数列C、相对数动态数列D、平均数动态数列2.某工业企业产品年生产量为20 万件,期末库存万件,它们( c)。

A、是时期指标 B、是时点指标C、前者是时期指标,后者是时点指标D、前者是时点指标,后者是时期指标3.间隔相等的不连续时点数列计算序时平均数的公式为(c )。

4.某地区连续4 年的经济增长率分别为%,9%,8%,%,则该地区经济的年平均增长率为( a)。

5.某工业企业生产的产品单位成本从2005年到2007年的平均发展速度为98%,说说明该产品单位成本( a)。

A、平均每年降低2%B、平均每年降低1%C、2007 年是2005 年的98%D、2007年比2005年降低98%6.根据近几年数据计算所的,某种商品第二季度销售量季节比率为,表明该商品第二季度销售( a)。

A、处于旺季B、处于淡季C、增长了70%D、增长了170%7.对于包含四个构成因素(T,S,C,I)的时间序列,以原数列各项数值除以移动平均值(其平均项数与季节周期长度相等)后所得比率(c )。

A、只包含趋势因素B、只包含不规则因素C、消除了趋势和循环因素D、消除了趋势和不规则因素8.当时间序列的长期趋势近似于水平趋势时,测定季节变动时(b )。

A、要考虑长期趋势的影响B、可不考虑长期趋势的影响C、不能直接用原始资料平均法D、剔除长期趋势的影响9.在对时间序列作季节变动分析时,所计算的季节比率是( d)。

A、某一年月或季平均数相对于本年度序列平均水平变动的程度B、某一年月或季平均数相对于整个序列平均水平变动的程度C、各年同期(月或季)平均数相对于某一年水平变动的程度D、各年同期(月或季)平均数相对于整个序列平均水平变动的程度10.企业5月份计划要求销售收入比上月增长8%。

第4章_时间序列分析

第4章_时间序列分析

校级精品课程《统计学》习题第四章时间序列一、单项选择题1.时间序列是()A.分配数列B.分布数列C.时间数列D.变量数列2.时期序列和时点序列的统计指标()。

A.都是绝对数B.都是相对数C.既可以是绝对数,也可以是相对数D.既可以是平均数,也可以是绝对数3.时间序列是( )。

A.连续序列的一种B.间断序列的一种C.变量序列的一种D.品质序列的一种4.最基本的时间序列是( )。

A.时点序列B.绝对数时间序列C.相对数时间序列D.平均数时间序列5.为便于比较分析,要求时点序列指标数值的时间间隔( )。

A.必须连续B.最好连续C.必须相等D.最好相等6.时间序列中的发展水平( )。

A.只能是总量指标B.只能是相对指标C.只能是平均指标D.上述三种指标均可7.在平均数时间序列中各指标之间具有( )。

A.总体性B.完整性C.可加性D.不可加性8.序时平均数与一般平均数相比较()。

A.均抽象了各总体单位的差异B.均根据同种序列计算C.序时平均数表明现象在某一段时间内的平均发展水平,一般平均数表明现象在规定时间内总体的一般水平D.严格说来,序时平均数不能算作平均数9.序时平均数与一般平均数的共同点是( )。

A.两者均是反映同一总体的一般水平B.都是反映现象的一般水平C.两者均可消除现象波动的影响D.都反映同质总体在不同时间的一般水平10.时期序列计算序时平均数应采用( )。

A.加数算术平均法B.简单算术平均法C.简单算术平均法D.加权算术平均数11.间隔相等连续时点序列计算序时平均数,应采用( )。

A.简单算术平均法B.加数算术平均法C.简单序时平均法D.加权序时平均法12.由间断时点序列计算序时平均数,其假定条件是研究现象在相邻两个时点之间的变动为( )。

A.连续的B.间断的C.稳定的D.均匀的13.时间序列最基本速度指标是( )。

A.发展速度B.平均发展速度C.增减速度D.平均增减速度14.用水平法计算平均发展速度应采用( )。

第八章时间序列分析

第八章时间序列分析

第八章 时间序列分析第一部分 习题一、单项选择题1.编制时间数列,要求在时间间隔方面( )。

A.必须相等B.必须不相等C.可相等也可不相等D.不需要考虑 2.动态数列中各项指标数值可以相加的是( )。

A.相对数动态数列B.绝对数动态数列C.时期数列D.时点数列3.以1980年0a 为最初水乎,2005年n a为最末水平,在计算钢产量的年平均发展速度时,需要开( )。

A.24次方B.25次方C.26次方D.27次方 4.对长度不同的各时期产值资料计算平均发展速度应采用( )。

A.简单算术平均 B.加权算术平均 C.简单几何平均 D.加权几何平均 5.由两个时期数列相应项对比所形成的相对数动态数列算序时平均数的基本公式是( )。

A.n aa ∑=B.n cc ∑=C.∑--++++++=ff a a f a a f a a a n n n 11232121222 D.∑∑=b a c 6.间隔不等的间断时点数列的序时平均数的计算公式是( )。

A.n a a ∑=B.12121121-++++=-n a a a a a n nC.∑--++++++=ff a a f a a f a a a n n n 11232121222 D.∑∑=f af a7.根据现象在不同时间上的指标数值而计算的平均数是( )。

A.算术平均数B.序时平均数C.调和平均数D.静态平均数 8.累计增长量与逐期增长量的关系是( )。

A.逐期增长量之和等于累计增长量B.逐期增长量之积等于累计增长量C.累计增加量之和等于逐期增长量D.两者没有直接关系 9.环比发展速度与定基发展速度之间的关系是( )。

A.定基发展速度等于环比发展速度之和 B.环比发展速度等于定基发展速度的平方根 C.环比发展速度的连乘积等于定基发展速度 D.环比发展速度等于定基发展速度减110.某现象前期水平为1600万吨,本期水平为2000万吨,则增长1%的绝对值为( )。

时间序列分析 习题库

时间序列分析  习题库

说明:答案请答在规定的答题纸或答题卡上,答在本试卷册上的无效。

一、填空题(本题总计25分)1. 常用的时间序列数据,有年度数据、( )数据和()数据。

另外,还有以( )、小时为时间单位计算的数据。

2. 自相关系数的取值范围为( );与之间的关系是(j ρj ρj -ρ);=()。

0ρ3.判断下表中各随机过程自相关系数和偏自相关系数的截尾性,并用记号√(具有截尾性)和×(不具有截尾性)填入判断结果。

随机过程白噪音过程平稳AR(2)MA (1)ARMA(2,1)自相关系数偏自相关系数2.如果随机过程为白噪音,则{}t εtt Y εμ+=的数学期望为 ;j 不等于0时,j 阶自协方差等于 ,j 阶自相关系数等于。

因此,是一个 随机过程。

1.(2分)时间序列分析中,一般考虑时间( )的( )的情形。

3. (6分)随机过程具有平稳性的条件是:{}t y (1)( )和( )是常数,与( )无关。

(2)()只与()有关,与()无关。

7. 白噪音的自相关系数是:j012-1jρ1.白噪音的性质是:的数学期望为 ,方差为 {}t y t y ;与之间的协方差为 。

t y j -t y 1.(4分)移动平均法的特点是:认为历史数据中( )的数据对未来的数值有影响,其权数为( ),权数之和为();但是,()的数据对未来的数值没有影响。

2. 指数平滑法中常数值的选择一般有2种:α(1)根据经验判断,一般取 。

α(2)由 确定。

3. (5分)下述随机过程中,自相关系数具有拖尾性的有( ),偏自相关系数具有拖尾性的有( )。

①平稳AR(2) ②MA(1) ③平稳ARMA(1,2) ④白噪音过程4.(5分)下述随机过程中,具有平稳性的有( ),不具有平稳性的有()。

①白噪音 ② ③随机漂移过程 t t y 1.23t+ε=+④ ⑤t t t 1y 16 3.2εε-=++t ty 2.8ε=+2.(3分)白噪音的数学期望为( );方差为( );j 不{}t ε等于0时,j 阶自协方差等于( )。

时间序列习题(含答案)

时间序列习题(含答案)

一、单项选择题1.时间数列与变量数列( )A 都是根据时间顺序排列的B 都是根据变量值大小排列的C 前者是根据时间顺序排列的,后者是根据变量值大小排列的D 前者是根据变量值大小排列的,后者是根据时间顺序排列的 2.时间数列中,数值大小与时间长短有直接关系的是( )A 平均数时间数列B 时期数列C 时点数列D 相对数时间数列 3.发展速度属于( )A 比例相对数B 比较相对数C 动态相对数D 强度相对数 4.计算发展速度的分母是( )A 报告期水平B 基期水平C 实际水平D 计划水平5.某车间月初工人人数资料如下:则该车间上半年的平均人数约为( )A 296人B 292人C 295 人D 300人6.某地区某年9月末的人口数为150万人,10月末的人口数为150.2万人,该地区10月的人口平均数为( )A150万人 B150.2万人 C150.1万人 D 无法确定 7.由一个9项的时间数列可以计算的环比发展速度( ) A 有8个 B 有9个 C 有10个 D 有7个 8.采用几何平均法计算平均发展速度的依据是( )A 各年环比发展速度之积等于总速度B 各年环比发展速度之和等于总速度C 各年环比增长速度之积等于总速度D 各年环比增长速度之和等于总速度 9.某企业的产值2005年比2000年增长了58.6%,则该企业2001—2005年间产值的平均发展速度为( )A 5%6.58 B 5%6.158 C 6%6.58 D 6%6.158 10.根据牧区每个月初的牲畜存栏数计算全牧区半年的牲畜平均存栏数,采用的公式是( )A 简单平均法B 几何平均法C 加权序时平均法D 首末折半法 11、时间序列在一年内重复出现的周期性波动称为( )A 、长期趋势B 、季节变动C 、循环变动D 、随机变动1.C 2.B 3.C 4.B 5.C 6.C 7.A 8.A 9.B 10.D 11、B 二、多项选择题1.对于时间数列,下列说法正确的有( )A 数列是按数值大小顺序排列的B 数列是按时间顺序排列的C 数列中的数值都有可加性D 数列是进行动态分析的基础E 编制时应注意数值间的可比性 2.时点数列的特点有( )A 数值大小与间隔长短有关B 数值大小与间隔长短无关C 数值相加有实际意义D 数值相加没有实际意义E 数值是连续登记得到的3.下列说法正确的有( )A 平均增长速度大于平均发展速度B 平均增长速度小于平均发展速度C 平均增长速度=平均发展速度-1D 平均发展速度=平均增长速度-1E 平均发展速度×平均增长速度=14.下列计算增长速度的公式正确的有( )A %100⨯=基期水平增长量增长速度 B %100⨯=报告期水平增长量增长速度C 增长速度= 发展速度—100%D %100⨯-=基期水平基期水平报告期水平增长速度E %100⨯=基期水平报告期水平增长速度 5.采用几何平均法计算平均发展速度的公式有( )A1231201-⨯⨯⨯⨯=n n a a a a a a a a nx Ba a nx n =C 1a a nx n= D nR x = E n x x ∑=6.某公司连续五年的销售额资料如下:根据上述资料计算的下列数据正确的有( )A 第二年的环比增长速度=定基增长速度=10%B 第三年的累计增长量=逐期增长量=200万元C 第四年的定基发展速度为135%D 第五年增长1%绝对值为14万元E 第五年增长1%绝对值为13.5万元 7.下列关系正确的有( )A 环比发展速度的连乘积等于相应的定基发展速度B 定基发展速度的连乘积等于相应的环比发展速度C 环比增长速度的连乘积等于相应的定基增长速度D 环比发展速度的连乘积等于相应的定基增长速度E 平均增长速度=平均发展速度-1 8.测定长期趋势的方法主要有( )A 时距扩大法B 方程法C 最小平方法D 移动平均法E 几何平均法9.关于季节变动的测定,下列说法正确的是( ) A 目的在于掌握事物变动的季节周期性 B 常用的方法是按月(季)平均法 C 需要计算季节比率D 按月计算的季节比率之和应等于400%E 季节比率越大,说明事物的变动越处于淡季 10.时间数列的可比性原则主要指( )A时间长度要一致 B经济内容要一致 C计算方法要一致 D总体范围要一致E计算价格和单位要一致1.BDE 2.BD 3.BC 4.ACD 5.ABD 6.ACE 7.AE8.ACD 9.ABC 10.ABCDE三、判断题1.时间数列中的发展水平都是统计绝对数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.设时间序列{X t}满足 ARMA(2,1)
(1 − B + 0.5B2 ) Xt = (1 + 0.4B)εt ,
(1)试分析序列{X t}的平稳性,(2)计算前 3 个 Green 函数 G0 、 G1 、 G2 。
(1)此时特征方程为: λ2 − λ + 0.5 = 0 ,特征根满足| λ1,2 |= 2 2 < 1,序列{Xt}平稳。
Xˆ t (1) = EX t +1 = E(0.6 X t + εt − 0.5εt−1) = 0.6 X t + εt − 0.5εt−1 ,
Xˆ t (2) = EX t+2 = E(0.6 X t +1 + εt+1 − 0.5εt )
= 0.6EX t+1 − 0.5εt = 0.36X t + 0.1εt − 0.3εt−1 ;
界平稳。
(4) X t − 1.1X t −1 = εt ;
此时的特征方程为 λ2 − 1.1λ = 0 ,解得 λ1 = 1.1, λ2 = 0 ;模型序列不平稳。 (5) (1 − B)2 X t = εt ;
此时的特征方程为 (λ − 1)2 = 0 ,解得 λ1 = λ2 = 1 ;模型序列不平稳,但是临界平稳。
− θ1εt −2 )
=
−θ1σ
2 ε

ρ (1)
=
γ (1) γ (0)
=
− θ1 1 + θ12
,即
ρ (1)θ12
+ θ1
+
ρ (1)
=
0 ,根据可逆性要求,解得θ1
=
0.70

4.设时间序列{X t}满足 ARMA(1,1)
X t = 0.8X t −1 + εt − 0.6εt−1 ,
若 X100 = 0.3 、 ε100 = 0.01 ,试给出未来 3 期的预报值。


∑ ∑ (2)此时 X t = Gk Bkεt ,(1 − B + 0.5B2 ) Gk Bkεt = (1 + 0.4B)εt ,比较同次幂系数有:
k =0
k =0
G0 = 1, G1 − G0 = 0.4 , Gk − Gk −1 + 0.5Gk −2 = 0 ( k ≥ 2 )。
3.设某时间序列的前 10 个样本自相关系数 ρˆk 和样本偏自相关系数φˆkk 如下表:
8.求下述模型序列的前 5 个逆函数和逆转形式:
(1) X t − 0.5X t−1 = εt ;

∑ 因为 εt = Ik X t −k = X t − 0.5X t−1 ,所以 I0 = 1, I1 = −0.5 , I2 = I3 = I4 = 0 ; k =0
εt = (1 − 0.5B) Xt 。
5.设时间序列{X t}满足 ARMA(1,1)
X t = 0.5X t −1 + εt − 0.25εt −1 ,
其中 εt ~ WN (0,σ 2 ) ,(1)试求 ρ (1) ;(2)证明{Xt}的自相关系数满足 ρ2 = 0.5ρ1 。



∑ ∑ ∑ 此时 X t = Gkεt −k ,所以 Gkεt−k = 0.5 ε Gk t−1−k + εt − 0.25εt−1 ,比较两端系数有:
显然自相关系数 1 阶截尾,偏自相关系数拖尾;因此适用模型应为 MA(1) :X t = εt − θ1εt −1 ;
此时 γ (0)
=
E(Xt Xt)
=
E (ε t
− θ1εt −1)(εt
− θ1εt −1)
=
(1
+
θ12

2 ε

γ
(1)
=
E( X t X t −1)
=
E (ε t
− θ1εt −1)(εt −1
(2) X t = εt − 1.3εt−1 + 0.4εt−2 ;



∑ ∑ ∑ 因为 X t = Ik X t−k − 1.3 Ik X t −1−k + 0.4 Ik X t−2−k ,比较两端系数就有:
k =0
k =0
k =0
0 = I4 −1.3I3 + 0.4I2 , 0 = I3 −1.3I2 + 0.4I1 , 0 = I2 −1.3I1 + 0.4I0 , 0 = I1 −1.3I0 ,
ρ (1)
=
γ γ
(1) (0)
=
−0.33 ,
ρ (k )
=
γ γ
(k) (0)
=
0

k

2
)。
(7)给出二阶自回归模型 AR(2)
X t = 0.5X t −1 + 0.2 X t−2 + εt
满足的 Yule-Walker 方程。
ρ(1) = 0.5 + 0.2ρ(1) , ρ(2) = 0.5ρ(1) + 0.2 ;
(0.5)2k −1
k =1 ∞
(0.5)2k

0.27 ;
k =0

∑∑ (2)
ρ (2)
=
γ γ
(2) (0)
=
0.5G1 + G12

1 + G12
(0.5)2k
k =1
(0.5)2k
k =0


∑ ∑ G1 + G12 (0.5)2k −1 0.5G1 + G12 (0.5)2k
=
k =1 ∞
k =1 ∞
= 0.5ρ(1) 。
∑ ∑ 1 + G12 (0.5)2k G1 + G12 (0.5)2k −1
k =0
k =1
6.证明:满足 AR(1) 的时间序列{Xt}方差为:
Var( X t )
=
σ
2 ε
1−φ2

特别当{X t}满足随机游走模型时,求{X t}的方差。
解:此时 X t = φX t −1 + εt ,
X t = 0.5X t −1 + aX t −2 + εt − 0.1εt −1 , 确定 a 的取值范围,使模型平稳。 a − 0.5 < 1 , a + 0.5 < 1, −1 < a < 1 ,所以平稳域为: −1 < a < 0.5 。
(6)给出一阶移动平均模型 MA(1)
的自相关函数。
此时 EX t = E(εt − 0.3εt−1) = 0
Xˆ100 (1) = EX101 = E(0.8X100 + ε101 − 0.6ε100 ) = 0.8X100 − 0.6ε100 = 0.234 , Xˆ100 (2) = EX102 = E(0.8X101 + ε102 − 0.6ε101) = 0.8EX101 = 0.1872 ,
Xˆ100 (3) = EX103 = E(0.8X102 + ε103 − 0.6ε102 ) = 0.8EX102 = 0.149 εt
+

Gkεt −k
k =1
=

(1 + 0.4B (0.9)k −1 Bk −1)εt
k =1
=
(1
+
1
0.4B − 0.9B

t

X t − 0.9 X t−1 = εt − 0.5εt −1 。
11.对于模型 X t − 0.6 X t−1 = εt − 0.5εt −1 ,给出 l = 1和 l = 2 的预测。
k =0
k =0
k =0
G0 = 1, G1 = 0.5G0 − 0.25 = 0.25 , G2 = 0.5G1 , Gk = 0.5G2 = (0.5)k −1G1 ;


∑ ∑ γ
(0)
=
EX
2 t
=
Gk2 = 1 + G12
(0.5)2k ,
k =0
k =0




∑ ∑ ∑ ∑ γ (1) = EX t X t −1 = E( Gkεt−k )( Gkεt −1−k ) = GkGk −1 = G1 + G12 (0.5)2k −1 ,
X t = εt − 0.3εt−1
γ
(0)
=
EX
2 t
=
E (ε t

0.3ε t −1 )(ε t

0.3ε t −1 )
=
0.91σ
2 ε

γ
(1)
=
E(Xt
X t −1)
=
E (ε t

0.3εt −1)(εt −1

0.3εt −2 )
=
−0.3σ
2 ε

γ (k) = E( X t X t −k ) = E(εt − 0.3εt −1)(εt −k − 0.3εt −k −1) = 0 ( k ≥ 2 ),
1 = I0 ;解得: I1 = −0.8 , I2 = −0.64 , I3 = −0.512 , I4 = −0.4096 ;
∑ εt
=
1 − 0.5B 1 −1.3B + 0.4B2
Xt
=
1 1 − 0.8B
Xt
=

(
i=0
0.8i ) X t

9.某序列的逆函数为: I1 = 0.5 , Ik = 0.3(0.7)k −2 ( k ≥ 2 ),求模型表达式。
相关文档
最新文档