(完整word版)大一高数练习题

合集下载

大一上学期(第一学期)高数期末考试题(有答案)

大一上学期(第一学期)高数期末考试题(有答案)

其通解为
y C1e x C2 e2x
1, r2 2.
2
1
代入初始条件 y(0)
y (0) 1,得
C1
, C2 3
3
y
2 e
x
故所求曲线方程为:
3
五、解答题(本大题 10 分)
1 e2 x 3
y 15. 解:(1)根据题意,先设切点为 ( x0 , ln x0 ) ,切线方程:
ln x0
1
(x x0
x0 )
设 ( x) 1 x , ( x) 3 33 x,则当 x 1时( )
2.
1x
.
(A) ( x)与 (x) 是同阶无穷小,但不是等价无穷小; 是等价无穷小;
(B) ( x)与 (x)
(C) ( x) 是比 ( x) 高阶的无穷小; 无穷小 .
(D) ( x) 是比 (x) 高阶的
x
3.
F (x) 若
1
(1 q) f ( x) d x q f ( x)dx
0
q
1 [0, q ] 2 [ q,1]
q (1 故有:
q) f ( 1)
q (1
f ( 1) f ( 2)
q) f ( 2 )
0
q
1
f ( x) d x q f ( x )dx
0
0
证毕。
17.
x
F ( x) f ( t)dt , 0 x
证:构造辅助函数:
x 0, y 0 , y (0) 1 10. 解: u x7 7 x6dx du
原式
1 (1 u)
11
du
(
2 )du
7 u(1 u) 7 u u 1

大一高等数学练习题及答案解析

大一高等数学练习题及答案解析

大一高等数学练习题及答案解析 11.2.limx?0xx?.1?1x?1?x2005??ex?e?x?dx?x?y2.3.设函数y?y由方程?1xe?tdt?xdy确定,则dxx?0tfdt?ff?1fx14. 设可导,且,,则f?x??5.微分方程y4y??4y?0的通解为 .二.选择题1.设常数k?0,则函数个; 个; 1个; 0个.2.微分方程y4y?3cos2x 的特解形式为.y?Acos2x; y?Axcos2x;f?lnx?x?ke在内零点的个数为.y?Axcos2x?Bxsin2x;y?Asin2x..下列结论不一定成立的是.*f?x?dx??f?x?dxc,d?a,bca若,则必有;f?x?dx?0a,bf?0a若在上可积,则;若f?x?是周期为T的连续函数,则对任意常数a都有 xba?Taf?x?dx??f?x?dxT;tf?t?dtfx0若可积函数为奇函数,则也为奇函数. f?x??4. 设1?e1x1x2?3e, 则x?0是f的.连续点; 可去间断点;跳跃间断点; 无穷间断点. 三.计算题 1 .计算定积分x3e?xdx2.2.计算不定积分xsinxcos5x.xxa,t2处的切线的方程. .求摆线?y?a,在4. 设F??cosdt,求F?.5.设四.应用题 1.求由曲线y?xn?nlimxnn,求n??.x?2与该曲线过坐标原点的切线及x轴所围图形的面积.222.设平面图形D由x?y?2x与y?x所确定,试求D绕直线x?旋转一周所生成的旋转体的体积.ta?1,f?a?at在内的驻点为 t. 问a为何值时t最小?并求3. 设最小值.五.证明题设函数f在[0,1]上连续,在内可导且1ff=?1试证明至少存在一点??, 使得f?=1. 一.填空题: 11..limx?x?0e.4e.dy确定,则dxx?0121?1x?1?x2005??ex?e?x?dx?x?y3.设函数y?y由方程?1e?tdt?x?e?1.12x24. 设f?x?可导,且x1tfdt?f,f?1,则f?x??e2x.5.微分方程y4y??4y?0的通解为y?e二.选择题: .1.设常数k?0,则函数个; 个; 1个; 0个.2.微分方程y4y?3cos2x 的特解形式为y?Acos2xy; ?Axcos2x; ?y?Axcos2x?Bxsin2x; y?Asin2x.下列结论不一定成立的是f?lnx?x?k内零点的个数为. e 在若?c,da,b?,则必有dcf?x?dx??f?x?dxabb;f?x?dx?0a,bf?0a若在上可积,则;若f?x?是周期为T的连续函数,则对任意常数a都有a?Taf?x?dx??f?x?dxT;xtf?t?dtfx0 若可积函数为奇函数,则也为奇函数. f?x??1?e1x1x2?3e, 则x?0是f的.. 设连续点; 可去间断点;跳跃间断点; 无穷间断点. 三.计算题: 1.计算定积分?0 解:2x3e?xdx202.2设x2?t,则?x3e?xdx??1?t12tedttde?t0220-------221??t22?t?te??edt?002?? -------22131e?2?e?te?2022--------22.计算不定积分解:xsinx5cosx.xsinx111?xdx?dx?xd??4?cos5x?cos4x?4?cos4x4??cosx?--------3 x1dtanx44cosx4x113tanx?tanx?C4cos4x1-----------?xa,t2处的切线的方程..求摆线?y?a,在,a)2解:切点为 -------2k?dyasint?s)t??dxt??a即y?x?a.-------24. 设.设F??cosdt22F2xcosxcos. ,则xn?nn?1)?limxnn,求n??.1nilnxn??ln1ni?1n ---------解:n1i1limlnxn?lim?ln??lndx0n??n??nni?1--------------12ln2101?x =------------22ln2?1e?limxne 故 n??=xln10??x1四.应用题 1.求由曲线y?x?2与该曲线过坐标原点的切线及x轴所围图形的面积.解:大一高等数学期末考试试卷一、选择题2ex,x0,1. 若f??为连续函数,则a的值为.ax,x01 3-12. 已知f??2,则limh?0f?f的值为.h13-113. 定积分?2?的值为. ?20-2124. 若f在x?x0处不连续,则f在该点处.必不可导一定可导可能可导必无极限二、填空题1.平面上过点,且在任意一点处的切线斜率为3x2的曲线方程为 .2. ?dx? . ?113. limx2sinx?01= . x4. y?2x3?3x2的极大值为三、计算题1. 求limx?0xln. sin3x22. 设y?求y?.. 求不定积分?xlndx.4. 求?30?x,x?1,? fdx,其中f??1?cosx?ex?1,x?1.?5. 设函数y?f由方程?edt??costdt?0所确定,求dy. 00ytx6. 设?fdx?sinx2?C,求?fdx.3??7. 求极限lim?1??. n2n?四、解答题1. 设f??1?x,且f?1,求f. n2. 求由曲线y?cosxx??与x轴所围成图形绕着x轴旋转一周2??2所得旋转体的体积.3. 求曲线y?x3?3x2?24x?19在拐点处的切线方程.4. 求函数y?x[?5,1]上的最小值和最大值.五、证明题设f??在区间[a,b]上连续,证明bafdx?b?a1b[f?f]??f??dx.2a标准答案一、 1 B; C; D; A.二、 1 y?x?1;2; 0;0.三、 1 解原式?limx?5x5分 x?03x21分2分 x??lxn2d分 ?212x?[lndx2分21?x1?[ln?x2]?C1分解令x?1?t,则分03fdx1fdt 1分122t1??1dt 1分 1?cost1分 ?0?[et?t]1e2e1 1分两边求导得ey?y??cosx?0,分ycosx 1分 ye?cosx 1分 sinx?1cosx?dy?dx分 sinx?1解 ?fdx?12?fd2?C4分3??lim1?解原式=??n2n?322n3?32分 =e2分四、1 解令lnx?t,则x?et,f??1?et, 分 f??dt=t?et?C.2分 ?f?1,?C?0, 分fxex. 1分解 Vx2??2??cosxdx分 ?2202cos2xdx2分 ?解 ?22. 分 6x?1分 y??3x2?6x?24,y令y0,得x?1. 1分当x?1时,y0; 当1?x时,y0,分 ?为拐点, 1分该点处的切线为y?3?21. 分解y??1??2分令y??0,得x3?. 1分435y52.55,y,y1,分 ?4?435y5y最大值为. 分 ?最小值为?4?4五、证明bafdf?分 ab[f]aaf[2xdx分a[2x?df分 bbb[2x?]f?a?2?afdx分[f?f]?2?afdx,分移项即得所证分 bbb大一高数试题及答案一、填空题________ 11.函数y=arcsin√1-x+────── 的定义域为_________ √1-x2_______________。

大一高等数学考卷及答案

大一高等数学考卷及答案

专业课原理概述部分一、选择题(每题1分,共5分)1.若函数f(x)在x=a处可导,则f'(a)等于()A.f(a)B.f(a+h)-f(a)/h(h趋于0)C.lim(f(a+h)-f(a))/h(h趋于0)D.f(a+h)-f(a)2.下列函数中,在x=0处连续但不可导的是()A.y=|x|B.y=x^2C.y=x^3D.y=1/x3.若函数f(x)在区间I上单调递增,则f'(x)在I上()A.必大于0B.必小于0C.可以为0D.不存在4.设函数f(x)在区间(a,b)内可导,且f'(x)>0,则f(x)在(a,b)内()A.单调递增B.单调递减C.有极值点D.无极值点5.设函数f(x)在x=a处连续,且lim(f(x)-f(a))/(x-a)=L,则f(x)在x=a处()A.可导,f'(a)=LB.可导,f'(a)不存在C.不可导D.无法确定二、判断题(每题1分,共5分)1.若函数f(x)在x=a处可导,则f(x)在x=a处一定连续。

()2.若函数f(x)在区间I上单调递增,则f'(x)在I上一定大于0。

()3.若函数f(x)在区间I上有极值点,则f'(x)在I上一定存在零点。

()4.若函数f(x)在区间I上连续,则f(x)在I上一定可积。

()5.若函数f(x)在区间I上可导,则f(x)在I上一定连续。

()三、填空题(每题1分,共5分)1.函数f(x)=x^3-3x在x=1处的导数为______。

2.函数f(x)=e^x在x=0处的导数为______。

3.函数f(x)=lnx在x=1处的导数为______。

4.函数f(x)=sinx在x=π/2处的导数为______。

5.函数f(x)=cosx在x=0处的导数为______。

四、简答题(每题2分,共10分)1.简述导数的定义。

2.简述连续与可导的关系。

3.简述罗尔定理。

4.简述拉格朗日中值定理。

大一高数练习题(打印版)

大一高数练习题(打印版)

大一高数练习题(打印版)### 大一高数练习题(打印版)#### 一、选择题1. 函数 \( f(x) = x^2 + 3x - 2 \) 的导数是:- A. \( 2x + 3 \)- B. \( 3x^2 + 2 \)- C. \( x^2 + 3 \)- D. \( 2x - 3 \)2. 极限 \( \lim_{x \to 0} \frac{\sin x}{x} \) 的值是: - A. 0- B. 1- C. \( \frac{\pi}{2} \)- D. 不存在3. 若 \( \int_{0}^{1} x^2 dx \) 等于:- A. \( \frac{1}{3} \)- B. \( \frac{1}{2} \)- C. \( \frac{1}{4} \)- D. \( \frac{1}{6} \)4. 函数 \( y = \ln(x) \) 的定义域是:- A. \( x > 0 \)- B. \( x < 0 \)- C. \( x \geq 0 \)- D. \( x \leq 0 \)5. 函数 \( y = x^3 - 6x^2 + 9x + 2 \) 的极值点是:- A. \( x = 1 \)- B. \( x = 2 \)- C. \( x = 3 \)- D. 无极值点#### 二、填空题1. 函数 \( f(x) = \sin x + \cos x \) 的导数为 \(f'(x) =________ \)。

2. 函数 \( y = x^3 - 5x^2 + 6x \) 的拐点是 \( x = ________ \)。

3. 定积分 \( \int_{1}^{2} (2x - 1) dx \) 的值为 \( ________ \)。

4. 函数 \( y = \ln x \) 的泰勒展开式在 \( x = 1 \) 处的前三项是 \( y = ________ \)。

(完整版)大一高数试题及答案.doc,推荐文档

(完整版)大一高数试题及答案.doc,推荐文档

大一高数试题及答案一、填空题(每小题1分,共10分)1.函数 的定义域为______________________。

22111arcsin xx y -+-= 2.函数上点( 0,1 )处的切线方程是______________。

2e x y += 3.设f(X )在可导,且,则0x A (x)f'=hh x f h x f h )3()2(lim000--+→= _____________。

4.设曲线过(0,1),且其上任意点(x ,y )的切线斜率为2x ,则该曲线的方程是____________。

5._____________。

=-⎰dx xx41 6.__________。

=∞→xx x 1sinlim 7.设f(x,y)=sin(xy),则fx(x,y)=____________。

9.微分方程的阶数为____________。

22233)(3dx y d x dxy d + ∞ ∞10.设级数 ∑ an 发散,则级数 ∑ an _______________。

n=1 n=1000二、单项选择题。

(1~10每小题1分,11~20每小题2分,共30分)1.设函数则f[g(x)]= ( ) x x g xx f -==1)(,1)( ① ② ③ ④xx 11-x 11-x -112.是 ( )11sin +xx ①无穷大量 ②无穷小量 ③有界变量 ④无界变量3.下列说法正确的是 ( )①若f( X )在 X =Xo 连续, 则f( X )在X =Xo 可导 ②若f( X )在 X =Xo 不可导,则f( X )在X =Xo 不连续 ③若f( X )在 X =Xo 不可微,则f( X )在X =Xo 极限不存在 ④若f( X )在 X =Xo 不连续,则f( X )在X =Xo 不可导 4.若在区间(a,b)内恒有,则在0)(",0)('><x f x f (a,b)内曲线弧y=f(x)为 ( )①上升的凸弧 ②下降的凸弧 ③上升的凹弧 ④下降的凹弧5.设,则 ( ))(')('x G x F = ① F(X)+G(X) 为常数 ② F(X)-G(X) 为常数 ③ F(X)-G(X) =0 ④⎰⎰=dx x G dxddx x F dxd )()( 1 6.( )=⎰-dx x 11-1① 0 ② 1 ③ 2 ④ 3 7.方程2x+3y=1在空间表示的图形是 ( ) ①平行于xoy面的平面 ②平行于oz轴的平面 ③过oz轴的平面 ④直线8.设,则f(tx,ty)yx y x y x y x f tan),(233++==( )① ②),(y x tf),(2y x f t ③ ④ ),(3y x f t ),(12y x tan +1 ∞9.设an ≥0,且lim ───── =p,则级数 ∑an ( ) n→∞ a n=1 ①在p〉1时收敛,p〈1时发散 ②在p≥1时收敛,p〈1时发散 ③在p≤1时收敛,p〉1时发散 ④在p〈1时收敛,p〉1时发散10.方程 y'+3xy=6x2y 是 ( ) ①一阶线性非齐次微分方程 ②齐次微分方程③可分离变量的微分方程 ④二阶微分方程 (二)每小题2分,共20分11.下列函数中为偶函数的是 ( ) ①y=ex ②y=x3+1③y=x3cosx ④y=ln│x│12.设f(x)在(a,b)可导,a〈x1〈x2〈b,则至少有一点ζ∈(a,b)使( )①f(b)-f(a)=f'(ζ)(b-a) ②f(b)-f(a)=f'(ζ)(x2-x1) ③f(x2)-f(x1)=f'(ζ)(b-a) ④f(x2)-f(x1)=f'(ζ)(x2-x1)13.设f(X )在 X =Xo 的左右导数存在且相等是f(X )在 X =Xo 可导的 ( )①充分必要的条件 ②必要非充分的条件 ③必要且充分的条件④既非必要又非充分的条件d14.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=()dx①cosx②2-cosx③1+sinx④1-sinx15.过点(1,2)且切线斜率为4x3的曲线方程为y=()①x4②x4+c③x4+1④x4-11 x16.lim───∫3tgt2dt=()x→0x3 01①0②1③──④∞3xy17.limxysin─────=()x→0x2+y2y→0①0②1③∞④sin118.对微分方程y"=f(y,y'),降阶的方法是()①设y'=p,则y"=p'dp②设y'=p,则y"=───dydp③设y'=p,则y"=p───dy1dp④设y'=p,则y"=─────pdy∞∞19.设幂级数 ∑ an xn 在xo (xo ≠0)收敛, 则 ∑ an xn 在│x│〈│xo│( )n=o n=o①绝对收敛 ②条件收敛 ③发散 ④收敛性与an 有关sinx20.设D域由y=x,y=x2所围成,则∫∫ ─────dσ= ( ) D x 1 1 sinx① ∫ dx ∫ ───── dy 0 x x__1 √y sinx② ∫ dy ∫ ─────dx 0 y x __1 √x sinx③ ∫ dx ∫ ─────dy 0 x x __1 √x sinx④ ∫ dy ∫ ─────dx 0 x x三、计算题(每小题5分,共45分)1.设求 y’ 。

大一高数试卷试题含解答.docx

大一高数试卷试题含解答.docx

大一高数试题及解答大一高数试题及答案一、填空题(每小题1分,共10分)________121.函数y=arcsin√1-x+──────的定义域为_________√1-x2_______________。

2.函数y=x+ex上点(0,1)处的切线方程是 ______________。

f( Xo+2 h)-f( Xo-3 h)3.设f( X)在 Xo 可导且f ' (Xo)=A,则lim───────────────h→o h=_____________ 。

4.设曲线过(0,1),且其上任意点(X,Y)的切线斜率为2X,则该曲线的方程是____________。

x5.∫─────dx=_____________。

1-x416.limXsin───=___________。

x→∞X7.设f(x,y)=sin(xy),则fx(x,y)= ____________。

_______R22√R-x8.累次积分∫dx∫f(X2+Y2)dy化为极坐标下的累次积分为____________。

00d3y3d2y9.微分方程───+──(─── )2的阶数为 ____________。

dx3xdx2∞∞10.设级数∑an 发散,则级数∑an _______________。

n=1n=1000二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的()内,1~10每小题1分,11~20每小题2分,共30分)(一)每小题1分,共10分11.设函数f(x)=──,g(x)=1-x,则f[g(x)]=()x111①1-──②1+──③ ────④xxx1-x12.x→ 0 时,xsin──+1是()x①无穷大量②无穷小量③有界变量④无界变量3.下列说法正确的是()①若f( X )在 X =Xo连续,则f(X)在X=Xo 可导②若f( X )在 X =Xo不可导,则f( X )在 X=Xo 不连续③若f( X )在 X =Xo不可微,则f( X )在 X=Xo 极限不存在④若f( X )在 X =Xo不连续,则f( X )在 X=Xo 不可导4.若在区间(a,b)内恒有f' (x)〈0,f " (x)〉0,则在(a,b)内曲线弧y=f(x)为()①上升的凸弧②下降的凸弧③上升的凹弧④下降的凹弧5.设F '(x)=G'(x),则()①F(X) +G (X)②F(X) -G (X)③F(X) -G (X)为常数为常数=0d④ ──∫F(x)dxd=──∫G(x)dxdxdx16.∫ │x│dx=()-1① 0② 1③ 2④ 37.方程2x+3y=1在空间表示的图形是()①平行于xoy面的平面②平行于oz轴的平面③过oz轴的平面④直线x8.设f(x,y)=x3+y3+x2ytg──,则f(tx,ty)=()y①tf(x,y)②t2f(x,y)1③t3f(x,y)④──f(x,y)t2an+1∞9.设a n≥0,且lim─────=p,则级数∑an()n→∞an=1①在p〉1时收敛,p〈1时发散②在p≥1时收敛,p〈1时发散③在p≤1时收敛,p〉1时发散④在p〈1时收敛,p〉1时发散210.方程y'+3xy=6xy是①一阶线性非齐次微分方程②齐次微分方程③可分离变量的微分方程④二阶微分方程(二)每小题2分,共20分11.下列函数中为偶函数的是()①y=e③y=xx3②y=x3+1④y=ln│x│12.设f(x)在(a,b)可导,a〈x〈1 x〈2 b,则至少有一点ζ∈(a,b)使()①f(b)-f(a)=f ' (ζ)(b-a)②f(b)-f(a)=f ' (ζ)(x2-x 1)③f(x 2)-f(x 1)=f'(ζ)(b-a)④f(x 2)-f(x 1)=f'(ζ)(x2-x 1)13.设f( X)在 X =Xo 的左右导数存在且相等是f( X)在 X =Xo 可导的()①充分必要的条件②必要非充分的条件③必要且充分的条件④既非必要又非充分的条件d14.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=()dx①cosx②2-cosx③1+sinx④1-sinx15.过点(1,2)且切线斜率为4x3的曲线方程为y=()①x 4 4②x 4+c41x16.lim─── ∫ 3tgt2dt=()x→0x301① 0② 1③ ──④ ∞3xy17.limxysin─────=()x→0x 2+y 2y→0③∞① 0②1④sin118.对微分方程y"=f(y,y'),降阶的方法是()①设y ' =p,则y"=p'dp②设y ' =p,则y"=───dydp③设y ' =p,则y"=p───dy1dp④设y ' =p,则y" =─────pdy∞∞n19.设幂级数∑ anx在x(oxo≠0)n收敛,则∑ anx在│x│〈│xo│()n=on=o①绝对收敛②条件收敛③发散④收敛性与an 有关sinx20.设D域由y=x,y=x2 所围成,则∫∫ ─────dσ=()Dx11sinx① ∫ dx∫ ───── dy0xx__1√ysinx② ∫ dy∫─────dx0yx__1√xsinx③ ∫ dx∫─────dy0xx__1√xsinx④ ∫ dy∫─────dx0xx三、计算题(每小题5分,共45分)___________y'1.设。

大一高数础练习题.docx

大一高数础练习题.docx

高等数学》(理工类)1.设y = f(x)的定乂域为(0,1], 9(x) = l — lnx,则复合函数尸舟心]的定义域为; 0 < In x < 1, x e [1, e)2,已知KT时,arcta点与工是等价无穷小,则COSX. [.arctan3x 3 . 。

.a = ; lim ----------- = 一= 1,白=3;10 ax a3 .函数尸已丑+c任,W dy=_________________________ ;x 6—(2 cos 2x - sin 2x)dx;x4 . 函数VfL的拐点为;矿=e-' (x - 2) = 0, X = 2 , (2,2e-2). n5.设函数/(x)= SmX,X<| ,当。

二时,f⑴在3tz + X , x —~I 2处连续;1-^/2 ;6.设y = y(x) 是由方程八"2 = 0所确定的隐函数,则7.函数川)=工的跳跃间断点是/(r)= o, /(r)= i,x = i;8 .足分^「(Ji-/ +sinx)<ix =; 2\ll-x 2dx = ^/29 .已知点空间三个点肱(1,1,1), A(2,2,1),8(2,1,2),则ZAMB=;时3;10. 已矢口 a = (2,3,l)人= (1,2,3), axb =二、计算题(每小题6分,共42分)x = 求您以及空。

y — arctan t dx dx 2 1 解”虬(1 +尸),也= 1±Z = Z,空=-瑚2 dx t t dx 2 t1 +尸5. 计算不定积分俨日mjln(ln x)d Inx (7,-5,1)1. 求极限吨地<4=;。

arc sm2x 22. 求极限limC sin 3 x ,e dt _ 12 ____ — lim x-sinx x->0 3 sin 2 x^sin3% 右--------------=o 1 一 COS X3. 设y = e^ -sinx,求坐。

大学大一高数试题及答案

大学大一高数试题及答案

大学大一高数试题及答案一、选择题(每题5分,共20分)1. 设函数f(x)=x^2-4x+3,若f(a)=0,则a的值为()。

A. 1B. 3C. -1D. 2答案:B2. 极限lim(x→0) (sin x)/x的值为()。

A. 0B. 1C. ∞D. -1答案:B3. 若函数f(x)在点x=a处可导,则()。

A. f(x)在x=a处连续B. f(x)在x=a处不可导C. f(x)在x=a处不连续D. f(x)在x=a处的导数为0答案:A4. 设数列{a_n}满足a_1=1,a_{n+1}=2a_n+1,n∈N*,则a_3的值为()。

A. 5B. 7C. 9D. 11答案:C二、填空题(每题5分,共20分)1. 计算定积分∫(0到1) x^2 dx的值为______。

答案:1/32. 若矩阵A=\[\begin{pmatrix}1 & 2\\3 & 4\end{pmatrix}\],则A 的行列式det(A)为______。

答案:-23. 设函数f(x)=x^3-6x^2+11x-6,f'(x)=3x^2-12x+11,则f'(1)的值为______。

答案:24. 函数y=ln(x)的反函数为______。

答案:e^y三、解答题(每题10分,共60分)1. 求函数f(x)=x^3-3x^2+4x-12在x=2处的切线方程。

答案:首先计算f'(x)=3x^2-6x+4,代入x=2得到f'(2)=6,然后计算f(2)=0,所以切线方程为y-0=6(x-2),即y=6x-12。

2. 计算级数∑(1到∞) (1/n^2)的和。

答案:该级数为π^2/6。

3. 已知函数f(x)=x^3-3x^2+2,求f(x)的极值点。

答案:首先求导f'(x)=3x^2-6x,令f'(x)=0,解得x=0或x=2。

然后计算二阶导数f''(x)=6x-6,代入x=0和x=2,得到f''(0)<0,f''(2)>0,所以x=0是极大值点,x=2是极小值点。

《大一高等数学》试卷(十份)

《大一高等数学》试卷(十份)

《高等数学试卷》一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ).A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2,则有( ).A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3.函数1122222-++--=y x y x y 的定义域是( ).A.(){}21,22≤+≤y x y x B.(){}21,22<+<y x y xC.(){}21,22≤+<y x y x D (){}21,22<+≤y x y x4.两个向量a 与b垂直的充要条件是( ).A.0=⋅b aB.0 =⨯b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极小值是( ). A.2 B.2- C.1 D.1-6.设y x z sin =,则⎪⎭⎫ ⎝⎛∂∂4,1πyz =( ).A.22B.22-C.2D.2-7.若p 级数∑∞=11n p n 收敛,则( ). A.p 1< B.1≤p C.1>p D.1≥p8.幂级数∑∞=1n nnx 的收敛域为( ).A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是( ).A.x -11 B.x -22 C.x -12 D.x-21 10.微分方程0ln =-'y y y x 的通解为( ). A.x ce y = B.x e y = C.x cxe y = D.cx e y = 二.填空题(4分⨯5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=∂∂∂yx z 2_____________________________.4.x+21的麦克劳林级数是___________________________. 5.微分方程044=+'+''y y y 的通解为_________________________________. 三.计算题(5分⨯6)1.设v e z usin =,而y x v xy u +==,,求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin,其中22224:ππ≤+≤y x D .4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径).5.求微分方程x e y y 23=-'在00==x y 条件下的特解.四.应用题(10分⨯2)1.要用铁板做一个体积为23m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?2..曲线()x f y =上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点⎪⎭⎫ ⎝⎛31,1,求此曲线方程 .试卷3参考答案一.选择题 CBCAD ACCBD 二.填空题1.0622=+--z y x .2.()()xdy ydx xy +cos .3.19622--y y x .4.()n n n n x ∑∞=+-0121.5.()xe x C C y 221-+= .三.计算题 1.()()[]y x y x y e x z xy +++=∂∂cos sin ,()()[]y x y x x e yz xy +++=∂∂cos sin . 2.12,12+=∂∂+-=∂∂z y y z z x x z . 3.⎰⎰=⋅πππρρρϕ202sin d d 26π-.4.3316R . 5.x xe ey 23-=.四.应用题1.长、宽、高均为m 32时,用料最省.2..312x y =《高数》试卷4(下)一.选择题(3分⨯10)1.点()1,3,41M ,()2,1,72M 的距离=21M M ( ). A.12 B.13 C.14 D.152.设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为( ). A.6π B.4π C.3π D.2π 3.函数()22arcsin y x z +=的定义域为( ).A.(){}10,22≤+≤y x y xB.(){}10,22<+<y x y xC.()⎭⎬⎫⎩⎨⎧≤+≤20,22πy x y x D.()⎭⎬⎫⎩⎨⎧<+<20,22πy x y x 4.点()1,2,1--P 到平面0522=--+z y x 的距离为( ). A.3 B.4 C.5 D.6 5.函数22232y x xy z --=的极大值为( ). A.0 B.1 C.1- D.216.设223y xy x z ++=,则()=∂∂2,1xz ( ).A.6B.7C.8D.9 7.若几何级数∑∞=0n nar是收敛的,则( ).A.1≤rB. 1≥rC.1<rD.1≤r8.幂级数()nn xn ∑∞=+01的收敛域为( ).A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1- 9.级数∑∞=14sin n n na是( ).A.条件收敛B.绝对收敛C.发散D.不能确定 10.微分方程0ln =-'y y y x 的通解为( ). A.cx e y = B.x ce y = C.x e y = D.x cxe y = 二.填空题(4分⨯5)1.直线l 过点()1,2,2-A 且与直线⎪⎩⎪⎨⎧-==+=t z t y t x 213平行,则直线l 的方程为__________________________.2.函数xye z =的全微分为___________________________. 3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________. 4.211x+的麦克劳林级数是______________________. 5.微分方程03=-ydx xdy 在11==x y 条件下的特解为______________________________.三.计算题(5分⨯6)1.设k j b k j i a32,2+=-+=,求.b a ⨯2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,y z x z ∂∂∂∂ 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z ∂∂∂∂ 4.如图,求球面22224a z y x =++与圆柱面ax y x 222=+(0>a )所围的几何体的体积.5.求微分方程023=+'+''y y y 的通解.四.应用题(10分⨯2) 1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.2.如图,以初速度0v 将质点铅直上抛,不计阻力,求质点的运动规律().t x x =(提示:g dtxd -=22.当0=t 时,有0x x =,0v dt dx =)试卷4参考答案一.选择题 CBABA CCDBA.二.填空题 1.211212+=-=-z y x . 2.()xdy ydx exy+.3.488=--z y x .4.()∑∞=-021n n n x . 5.x y =. 三.计算题1.k j i238+-.2.()()()y y x y y y y x yz y y y y x x z 3333223cos sin cos sin cos sin ,sin cos cos sin +++-=∂∂-=∂∂ .3.22,z xy xzy z z xy yz x z +-=∂∂+-=∂∂. 4.⎪⎭⎫ ⎝⎛-3223323πa . 5.x x e C e C y --+=221. 四.应用题 1.316. 2. 00221x t v gt x ++-=.《高数》试卷5(上)一、 填空题(每小题3分, 共24分)1. 函数219y x=-的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7.20_______________________.x td e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin x x e x →-;2.; 233lim 9x x x →--3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2x y x =+, 求(0)y '. 2. cos xy e =, 求dy . 3. 设x y xy e +=, 求dydx.四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2. ln(1)x x dx +⎰.3.120x e dx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解. 八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷5参考答案一.1.(3,3)- 2.4a = 3.2x = 4.()x xe f e '5.126.07.22x xe - 8.二阶 二.1.原式=0lim 1x x x→= 2.311lim36x x →=+3.原式=112221lim[(1)]2x x e x--→∞+=三.1.221,(0)(2)2y y x ''==+2.cos sin xdy xedx =-3.两边对x 求写:(1)x y y xy e y +''+=+'x y x y e y xy yy x e x xy ++--⇒==--四.1.原式=ln 2cos x x C -+2.原式=2221ln(1)()ln(1)[ln(1)]222x x x d x x d x +=+-+⎰⎰=222111ln(1)ln(1)(1)221221x x x x dx x x dx x x+-=+--+++⎰⎰ =221ln(1)[ln(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x xe d x e e ==-⎰ 五. 2sin , 1.,,122t dy dy t t x y dx dxπππ======且当时切线:1,1022y x x y ππ-=--+-=即法线:1(),1022y x x y ππ-=--+--=即六.1231014(1)()33S x dx x x =+=+=⎰22211221(1)11()22V x dy y dyy y ππππ==-=-=⎰⎰七.特征方程:2312613032(cos 2sin 2)x r r r iy e C x C x -++=⇒=-±=+八.11()dxdxx x x y ee edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0x yC ==⇒= 1xx y e x-∴=《高等数学》试卷6(下)一、选择题(本题共10小题,每题3分,共30分) 1、二阶行列式 2 -3 的值为( d )4 5A 、10B 、20C 、24D 、222、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为( c ) A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为( c ) A 、2 B 、3 C 、4 D 、54、函数z=xsiny 在点(1,4π)处的两个偏导数分别为( a ) A 、,22 ,22 B 、,2222- C 、22- 22- D 、22- ,22 5、设x 2+y 2+z 2=2Rx ,则yzx z ∂∂∂∂,分别为( ) A 、z y z R x --, B 、z y z R x ---, C 、zyz R x ,-- D 、zyz R x ,- 6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为( )(面积A=2R π) A 、R 2A B 、2R 2A C 、3R 2A D 、A R 221 7、级数∑∞=-1)1(n nnn x 的收敛半径为( )A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为( )A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n9、微分方程(y``)4+(y`)5+y`+2=0的阶数是( ) A 、一阶 B 、二阶 C 、三阶 D 、四阶 10、微分方程y``+3y`+2y=0的特征根为( ) A 、-2,-1 B 、2,1 C 、-2,1 D 、1,-2 二、填空题(本题共5小题,每题4分,共20分) 1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。

(完整word版)大一高数练习题.doc

(完整word版)大一高数练习题.doc

1.填空题1、当 x0 时, 1 cosx 与 x 2 相比较是同阶无穷小。

lim sin 2 x1/32、x 03x 23、曲线 xt (1 cost ), y sin t 在 t 处的切线斜率为-1/24、当 k 满足条件 __x>2_________时,积分dx k1 收敛1 x5、曲线 y | x | 的极值点是 x=06、设函数 y1x 2,则 dy2 xdx1 x^ 27、若 f (t ) lim(1t)x ,则 f (t)e txx8、 2 cos 5 x sin 3 xdx29、若 f (t ) tln 2xdx ,则 f (t)ln 2t1、微分方程dydx 0 的通解为 siny=x2102xcos y__________1、当 x 0 时, 1 cosx 与 2x 2 相比较是无穷小 .、设函数 f (x)x 3sin1当 x 0,则.x2f (0)当 x 03、设 f (x) ( x 5)( x 3)( x 2)( x 4) ,则方程 f ( x) 0 有个实根 .、当 k 满足条件 时,积分 dx收敛 . 4 ___________ 2 xk 15、设函数 y1x 2 ,则 dy.6、函数 yx( x 2) 的极值点是. 7、 lim x sin a(a 0).xx8、若 f (t )te x 2 dx ,则 f(t ).19、 x 2 sin 3 xdx.、微分方程 dxdy0 的通解为 ___________.10cos x2 y一、 单项选择题(每小题 2 分,共 10 分) 、函数 y ln x 的定义域为( B )13 xA (0, )B (,3]C (0,3) D(0,3]2、函数 f (x) 在x 0 处 f ( x 00)f ( x 0 0) 是 f (x) 在 x 0 处连续的( B )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 无关条件3、函数 f ( x) 3 x 9 在 x 0处( C )A 不连续 ;B 可导;C 连续但不可导;D 无定义4、下列式子中,正确的是( B )A.C.f ( x)dx f (x) B.df ( x 2 )dx f ( x 2 )dxf ( x)dx f ( x)D. d f (x)dxf ( x)5、设A .f (x) e x ,则 f (ln x) dx_C______.1x 1B. ln x CC.D. ln x CCCxx二、单项选择题(每小题 2 分,共 10 分)1.函数 f ( x)14 x 2的定义域为( C).xA .; B.( 2,2) ; C.[ 2,0) (0,2] ; D. [ 2, ) .[ 2,2]2、若 f ( x) 在 x 0 的邻域内有定义,且 f ( x 00)f ( x 0 0) ,则( B ).A f (x) 在 x 0 处有极限,但不连续;B f ( x) 在 x 0 处有极限,但不一定连续 ;2C f (x) 在 x 0 处有极限,且连续;D f ( x) 在 x 0 处极限不存在,且不连续。

大一高数试题及答案

大一高数试题及答案

大一高数试题及答案一、选择题(每题5分,共20分)1. 设函数f(x)=x^3-3x,求f'(x)的值。

A. 3x^2-3B. x^2-3C. 3x^2+3D. x^3-3答案:A2. 求极限lim(x→0) (sinx/x) 的值。

A. 0B. 1C. 2D. -1答案:B3. 设曲线y=x^2+1与直线y=2x+3相交于点A和点B,求交点的横坐标。

A. -2, 1B. 1, 2C. -1, 2D. 1, -2答案:C4. 计算定积分∫(0,1) x^2 dx。

A. 1/3B. 1/2C. 2/3D. 1/4答案:B二、填空题(每题5分,共20分)5. 设函数f(x)=x^2-4x+3,求f(2)的值。

答案:-16. 求不定积分∫(1/x) dx。

答案:ln|x|+C7. 设函数f(x)=e^x,求f'(x)的值。

答案:e^x8. 计算定积分∫(0,π) sinx dx。

答案:2三、解答题(每题10分,共60分)9. 求函数f(x)=x^3-6x^2+11x-6的极值点。

解:首先求导数f'(x)=3x^2-12x+11,令f'(x)=0,解得x=1或x=11/3。

当x<1或x>11/3时,f'(x)>0,函数单调递增;当1<x<11/3时,f'(x)<0,函数单调递减。

因此,x=1为极大值点,x=11/3为极小值点。

10. 求曲线y=x^3-3x^2+2在点(1,0)处的切线方程。

解:首先求导数y'=3x^2-6x,代入x=1得y'|_(x=1)=-3。

切线方程为y-0=-3(x-1),即y=-3x+3。

11. 计算二重积分∬D (x^2+y^2) dxdy,其中D是由x^2+y^2≤4所围成的圆域。

解:将二重积分转换为极坐标系下的形式,即∬D (x^2+y^2) dxdy = ∫(0,2π) ∫(0,2) (ρ^2) ρ dρ dθ = 8π。

大一高数试题及答案

大一高数试题及答案

大一高数试题及答案一、选择题(每题3分,共15分)1. 函数f(x) = x^2 + 3x - 2在x=1处的导数是:A. 0B. 4C. 6D. 82. 曲线y = x^3 - 2x^2 + x - 5在点(1, -7)处的切线斜率是:A. -1B. 0C. 1D. 23. 定积分∫(0,1) x^2 dx的值是:A. 1/3B. 1/4C. 1/5D. 1/64. 函数f(x) = sin(x) + cos(x)的周期是:A. πB. 2πC. π/2D. 4π5. 以下哪个级数是收敛的:A. 1 - 1/2 + 1/3 - 1/4 + ...B. 1 + 1/2 + 1/3 + 1/4 + ...C. 1 - 1/2 + 1/4 - 1/8 + ...D. 1 + 2 + 3 + 4 + ...二、填空题(每题2分,共10分)6. 函数f(x) = x^3 - 2x^2 + x - 5在x=2时的值是________。

7. 函数f(x) = e^x的导数是________。

8. 定积分∫(1, e) 1/x dx的值是________。

9. 函数y = ln(x)的反函数是________。

10. 函数f(x) = x^2 + 2x + 3的最小值是________。

三、解答题(共75分)11. 求函数f(x) = x^3 - 6x^2 + 11x - 6的极值点。

(10分)12. 证明函数f(x) = x^3在R上是单调递增的。

(10分)13. 求定积分∫(0, 2) (2x + 1)^2 d x,并求出其几何意义。

(15分)14. 解不等式:x^2 - 4x + 3 < 0。

(15分)15. 利用泰勒公式展开e^x在x=0处的前三项,并计算其近似值。

(25分)四、附加题(10分)16. 假设你有一个函数f(x) = x^4 - 4x^3 + 6x^2 - 4x + 2,求其在区间[0, 1]上的最小值。

大一高数试题及答案

大一高数试题及答案

大一高数试题及答案一、选择题1. 设函数 f(x) = x^2 + 3x + 2,下面哪个选项是其导函数?A. f'(x) = 2x + 3B. f'(x) = 2x + 6C. f'(x) = x^2 + 3x + 2D. f'(x) = 3x^2 + 2x + 32. 已知函数 f(x) 连续,则 f(x) = 3x 的解集为:A. x ∈ RB. x = 3C. x = 0D. x = -33. 设函数 y = x^3 - 2x^2 + 3x + 4,求其极值点。

A. (1, 6)B. (-1, -3)C. (0, 4)D. (2, 2)二、计算题1. 求函数 f(x) = 2x^2 + 5x - 3 的两个零点。

2. 求函数 f(x) = x^3 - 3x^2 + 2x - 4 在 x = 2 处的导数值。

三、解答题1. 求函数 f(x) = x^2 + 3x + 2 的顶点坐标及对称轴方程。

2. 求函数 f(x) = x^3 - 3x^2 + 2x - 4 在整个定义域上的单调区间。

答案解析:一、选择题1. A解析:由 f(x) = x^2 + 3x + 2,对 x 进行求导得到 f'(x) = 2x + 3。

2. A解析:由 f(x) = 3x,函数 f(x) 直接写出,解集为整个实数集 R。

3. B解析:求导得到 f'(x) = 3x^2 - 4x + 3,令 f'(x) = 0 解得 x = -1,代入原函数求得 y = -3,故极值点为 (-1, -3)。

二、计算题1. 首先,通过求根公式或配方法可得到两个零点 x1 = 1 和 x2 = -1.5。

2. 对函数 f(x) = x^3 - 3x^2 + 2x - 4 进行求导得到 f'(x) = 3x^2 - 6x + 2,将 x = 2 代入得到 f'(2) = 8。

大一高数考试试题

大一高数考试试题

大一高数考试试题一、选择题(每题3分,共30分)1. 下列函数中,哪一个不是周期函数?A. y = sin(x)B. y = cos(x)C. y = e^xD. y = tan(x)2. 微积分基本定理表明,定积分可以通过什么方法求得?A. 极限B. 导数C. 积分D. 微分3. 如果函数f(x)在点x=a处连续,那么lim (x→a) f(x)等于:A. f(a)B. 0C. 1D. ∞4. 下列哪个选项是罗尔定理的前提条件?A. 函数在区间[a,b]上可导B. 函数在区间(a,b)内连续C. 函数在区间[a,b]上单调递增D. 函数在点a和点b处的值相等5. 曲线y = x^2在点(1,1)处的切线斜率是:A. 0B. 1C. 2D. -16. 以下哪个级数是收敛的?A. ∑(1/n^2)B. ∑(1/n)C. ∑((-1)^n)/nD. ∑(n)7. 函数f(x) = x^3 - 6x^2 + 11x - 6的零点个数是:A. 0B. 1C. 2D. 38. 以下哪个函数是奇函数?A. y = x^2B. y = |x|C. y = sin(x)D. y = cos(x)9. 如果一个函数在某区间内可导,且导数恒大于0,则该函数在该区间内是:A. 单调递增的B. 单调递减的C. 有界D. 无界的10. 曲线y = ln(x)的水平渐近线方程是:A. y = 0B. y = 1C. y = xD. y = -x二、填空题(每题4分,共20分)11. 定积分∫(0,1) x^2 dx 的值是 _______。

12. 函数f(x) = 2x - 3在区间[1,4]上的最大值是 _______。

13. 利用导数研究函数f(x) = x^3 + x^2 - x - 1的单调性,可以得出在区间 _______ 上单调递增。

14. 利用洛必达法则计算极限lim (x→0) [sin(x)/x] 的结果是_______。

(完整word版)大一高数期末考试题(精)

(完整word版)大一高数期末考试题(精)

一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。

4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x +(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(lim .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim(cos cos cos )→∞-+++=22221L n n nnn n ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,0cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)cos()()0x ye y xy xy y +''+++=cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:1033()x f x dx xe dx ---=+⎰⎰⎰03()x xd e --=-+⎰⎰00232cos (1sin )x xxe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰令3214e π=--12. 解:由(0)0f =,知(0)0g =。

大一高数试题及规范标准答案

大一高数试题及规范标准答案

大一高数试题及规范标准答案大一高数试题及答案一、填空题(每小题1分,共10分)________ 11.函数y=arcsin√1-x2+──────的定义域为_________√1-x2_______________。

2.函数y=x+ex上点(0,1)处的切线方程是______________。

f(Xo+2h)-f(Xo-3h)3.设f(X)在Xo可导且f'(Xo)=A,则lim───────────────h→o h=_____________。

4.设曲线过(0,1),且其上任意点(X,Y)的切线斜率为2X,则该曲线的方程是____________。

x5.∫─────dx=_____________。

1-x416.limXsin───=___________。

x→∞X7.设f(x,y)=sin(xy),则fx(x,y)=____________。

_______R √R2-x28.累次积分∫dx∫f(X2+Y2)dy化为极坐标下的累次积分为____________。

0 0d3y3d2y9.微分方程───+──(───)2的阶数为____________。

dx3xdx2∞∞10.设级数∑an发散,则级数∑an_______________。

n=1 n=1000二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的()内,1~10每小题1分,11~20每小题2分,共30分)(一)每小题1分,共10分11.设函数f(x)=──,g(x)=1-x,则f[g(x)]=()x111①1-──②1+──③────④xxx1-x12.x→0 时,xsin──+1是()x①无穷大量②无穷小量③有界变量④无界变量3.下列说法正确的是()①若f(X )在X=Xo连续,则f(X )在X=Xo可导②若f(X )在X=Xo不可导,则f(X )在X=Xo不连续③若f(X )在X=Xo不可微,则f(X )在X=Xo极限不存在④若f(X )在X=Xo不连续,则f(X )在X=Xo不可导4.若在区间(a,b)内恒有f'(x)〈0,f"(x)〉0,则在(a,b)内曲线弧y=f(x)为()①上升的凸弧②下降的凸弧③上升的凹弧④下降的凹弧5.设F'(x) =G'(x),则()①F(X)+G(X) 为常数②F(X)-G(X) 为常数③F(X)-G(X) =0dd④──∫F(x)dx=──∫G(x)dxdxdx16.∫│x│dx=()-1①0②1③2④3,. 7.方程2x+3y=1在空间表示的图形是()①平行于xoy面的平面②平行于oz轴的平面③过oz轴的平面④直线x8.设f(x,y)=x3+y3+x2ytg──,则f(tx,ty)=()y①tf(x,y)②t2f(x,y)1③t3f(x,y)④──f(x,y)t2an+1∞9.设an≥0,且lim─────=p,则级数∑an()n→∞an=1①在p〉1时收敛,p〈1时发散②在p≥1时收敛,p〈1时发散③在p≤1时收敛,p〉1时发散④在p〈1时收敛,p〉1时发散10.方程y'+3xy=6x2y是()①一阶线性非齐次微分方程②齐次微分方程③可分离变量的微分方程④二阶微分方程(二)每小题2分,共20分11.下列函数中为偶函数的是()①y=ex②y=x3+1③y=x3cosx④y=ln│x│12.设f(x)在(a,b)可导,a〈x1〈x2〈b,则至少有一点ζ∈(a,b)使()①f(b)-f(a)=f'(ζ)(b-a)②f(b)-f(a)=f'(ζ)(x2-x1)③f(x2)-f(x1)=f'(ζ)(b-a)④f(x2)-f(x1)=f'(ζ)(x2-x1)13.设f(X)在X=Xo 的左右导数存在且相等是f(X)在X =Xo 可导的()①充分必要的条件②必要非充分的条件③必要且充分的条件④既非必要又非充分的条件d14.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=()dx①cosx②2-cosx③1+sinx④1-sinx15.过点(1,2)且切线斜率为4x3的曲线方程为y=()①x4②x4+c③x4+1④x4-11x16.lim───∫3tgt2dt=()x→0 x301①0②1③──④∞3xy17.limxysin─────=()x→0 x2+y2y→0①0②1③∞④sin118.对微分方程y"=f(y,y'),降阶的方法是()①设y'=p,则y"=p'dp②设y'=p,则y"=───dydp③设y'=p,则y"=p───dy1dp④设y'=p,则y"=─────pdy∞∞19.设幂级数∑anxn在xo(xo≠0)收敛,则∑anxn在│x│〈│xo│()n=o n=o①绝对收敛②条件收敛③发散④收敛性与an有关sinx20.设D域由y=x,y=x2所围成,则∫∫─────dσ=()D x1 1 sinx①∫dx∫─────dy0 x x__1 √y sinx②∫dy∫─────dx0 y x__1 √x sinx③∫dx∫─────dy0 x x__1 √x sinx④∫dy∫─────dx0 x x三、计算题(每小题5分,共45分)___________/x-11.设y=/──────求y' 。

大一(第一学期)高数期末考试题及答案【呕心沥血整理版】

大一(第一学期)高数期末考试题及答案【呕心沥血整理版】

大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f 。

(A )(0)2f '= (B)(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A)()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点.4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x+(C )1x - (D )2x +。

二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(l i m .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则。

7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ 。

8. =-+⎰21212211arcsin -dx xx x 。

三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.填空题
1、当0→x 时,x cos 1-与2x 相比较是 同阶 无穷小。

2、=→2
203sin lim x x x 1/3 3、曲线(1cos ),sin x t t y t =-=在t π=处的切线斜率为 -1/2
4、当k 满足条件__x>2_________时,积分⎰+∞-1
1k x dx 收敛 5、曲线||x y =的极值点是 x=0
6
、设函数y =则dy =
2xdx
7、若()lim(1)x x t
f t x →∞
=+,则=')(t f e t 8、⎰-=2235sin cos π
πxdx x 0 9、若⎰=t
xdx t f 12ln )(,则=')(t f ln 2 t
10、微分方程0cos 2=-y dx x dy 的通解为siny=x 2__________ 1、当0→x 时,x cos 1-与22x 相比较是 无穷小.
2、设函数⎪⎩⎪⎨⎧=≠=0001sin )(3x x x x x f 当当,则=')0(f .
3、设)4)(2)(3)(5()(--++=x x x x x f ,则方程0)(='x f 有 个实根.
4、当k 满足条件___________时,积分1
2k dx x +∞+⎰收敛. 5、设函数21x y -=,则dy = .
6、函数)2(-=x x y 的极值点是 .
7、=≠∞→)0(sin lim a x
a x x . 8、若⎰=t x dx e t f 02
)(,则=')(t f .
9、⎰-=π
πxdx x 32sin .
10、微分方程
0cos 2=-x dy y dx 的通解为___________.
一、 单项选择题(每小题2分,共10分)
1、函数x x y -=3ln 的定义域为(B ) A ),0(+∞ B ]3,(-∞ C )3,0( D ]3,0(
2、函数()f x 在0x 处)0()0(00+=-x f x f 是()f x 在0x 处连续的( B )
A. 充分非必要条件
B. 必要非充分条件
C. 充要条件
D. 无关条件
3、函数93)(+=x x f 在0=x 处(C )
A 不连续 ;
B 可导;
C 连续但不可导;
D 无定义
4、下列式子中,正确的是(B )
A.
()()f x dx f x '=⎰ B. 22()()d f x dx f x dx =⎰ C. ()()f x dx f x =⎰ D.⎰=)()(x f dx x f d
5、设()x f x e -=,则(ln )f x dx x
=⎰
_C______. A . 1C x + B. ln x C + C. 1C x -+ D. ln x C -+ 二、单项选择题(每小题2分,共10分)
1.函数241)(x x
x f -+=的定义域为( C ).
A .]2,2[-;
B. )2,2(-;
C. ]2,0()0,2[ -;
D. ),2[+∞. 2、若)(x f 在0x 的邻域内有定义,且)0()0(00+=-x f x f ,则(B ).
A )(x f 在0x 处有极限,但不连续;
B )(x f 在0x 处有极限,但不一定连续;
C )(x f 在0x 处有极限,且连续;
D )(x f 在0x 处极限不存在,且不连续。

3、函数1)(-=x x f 在0=x 处(C ).
A 不连续 ;
B 可导;
C 连续但不可导;
D 无定义 4、若214lim 31
x x ax x →-++=+,则a =(B ). A 3; B 5; C 2; D 1
5、若x e -是)(x f 的原函数,则⎰=dx x xf )(( B ). A c x e x +--)1(; B c x e x ++-)1(
C c x e x +--)1(;
D c x e x ++--)1(
二、 计算题(每小题8分,共32分)
1、求x
x x x x 30sin cos lim -→=1/2 2、设方程133=-+x xy y 确定隐函数)(x y y =,求)0(y ' y ’ (0)=
3、设)
4)(3()2)(1(++++=x x x x y 求dy 4、求解微分方程
x x y dx dy cos cos =- 三、计算题(每小题8分,共32分)
1、求x
x x x sin cos 1lim 0-→ 2、设)(x y y =由1=+y x xe ye 确定,求)(x y '
3、求曲线⎩⎨⎧==t
y t x cos 2sin 在点(0,1)处的法线方程 4、求解微分方程x x y dx
dy sin sin =+
四、计算题(每小题10分,共20分)
1、求dx x x ⎰+1
2、求⎰2108dx e x
四、计算题(每小题10分,共20分)
1、求dx e
e x x ⎰+-1 2、求⎰104dx e
x
五、应用题(12分)
要建造一个体积为)(23m V π=的圆柱形封闭容器,问怎样选择它的底半径和高,使所用的材料最省?
六、证明题(6分)
证明不等式 1ln(0)x x x +>>.
六、证明题(6分)
若)(x f 在1x >时连续且单调增加,试证1
1()()1x x f t dt x ϕ=-⎰也单调增加。

相关文档
最新文档