修整抄数扫描STL点资料-FreeFormModeling(精)
FreeForm分模功能详细说明FreeFormModelinglus软件教程
Mold DemoCreating Parting Line: Load the included Vampire Boy model.Go to Tab > Moldable PartCreate a parting line curve by activating the mold toolbar feature by selecting theMoldable Part tab. Then click on the Parting Line Curve icon on the toolbar andFreeform Mold Demo -1-click on the Show Parting Line Color icon to show the parting line. The arrow on the screen indicates the mold pull direction. You can change the direction by clicking onthe Set Direction icon to check the best parting line solution. Once everything is set, click on Apply to create the parting line curve.The parting line curve direction is already set for this model, but be sure the parting line draft angle is set to zero. To check if the draft angle is set to zero for this evaluation, go to Tools > Option > Parting line draft angle. For using the Parting Line tool, always set the draft to zero so that you will get a clear blue line. If the draft is not set to zero, the parting line curve will not be created in the correct location.Currently, the mold pull direction is already set correctly. If you want to show people the different pull direction, click on the Set Direction icon to change the setting.Showing Curvature PlotFreeform Mold Demo -2-The parting line curve is very dense and trying to pick up all the details necessary. If you want to look at the level of quality of the parting line curve, you can turn on the curvature plot and create a curvature plot of each curve. Go to:View > Design Curves -> Create Curvature Plots. Then click on the parting line curves on the model. By default, the plot is set in 2D to show the noise in Z direction only; you can also set to show the noise in X and Y direction by changing the 2D Curvature icon to 3D Curvature icon on the Dynabar. [as shown below]2D curvature plot showing on noise in Z directionFreeform Mold Demo -3-3D curvature plot showing noise in X and Y directionIn most cases, you will only want to use the 2D curvature plot in the Z direction. The number shown on the curvature plot indicates the minimum radius curvature of the curve. This number can be used to determine the tool size for machining in the future. To find the tool radius, simply take the inverse of the curvature value. The equation used in this calculation is shown below:C = 1/R ; C = curvature, R = radiusEditing Parting Line CurveFreeform Mold Demo -4-machining. To avoid this problem, I am going to smooth the parting line curve. Tosmooth the parting line curve, click on the Select icon on the toolbar and then clickon the parting line curve. Change the number on the Points box to reduce thenumber of points on the curve. In most cases, you can reduce the number of point by halfthen refit it. Be aware that it may have drifted from sharp details in the XY plane.Usually, after reducing the points on the parting line, the parting line will likely still be very close to the original parting line. However it does not work for every case. In most situations, you can just reduce the points and refit it just for demo purposes.Now I will refit the parting line curve by clicking on the Fit CurveFreeform Mold Demo -5-to Clay tool under the same flyout as the Parting Line Curve tool. Then click on the parting line curve. Refitting the curve will remove the curvature plot information because the refitted curve is actually a new curve. Therefore, you have to put the curvature plot back on to see the new result. Now you can see that the refitted curves have a low curvature and noise.You can also use the Smooth Curve tool under the Parting Line Curve tool to smooth out the curves. After you are satisfied with the result, you can turn off the curvature plot.Fixing DraftFor this model, there is a draft problem. To demonstrate the draft-fixing feature, youFreeform Mold Demo -6-should point out some draft problems on the model. Indicate the areas behind the nose and the teeth (Create Parting Line actually surrounded these areas with curves, which can be deleted at this time.)The next thing to do is to fix draft. As you can see on the screen, the nose and the tooth have a draft issue. To correct the problem, I can either add material or remove material to correct the problem under the Draft option.Go back to create moldable part and then select Draft tool on the toolbar. Then click on the parting line. The problem areas are shown in blue. Now I want to add material behind the nose to the fix the draft instead of chopping off the nose to fix the draft. So I click on the Add Clay , but hold to the parting line by clicking thePreserver Parting line icon then click Apply.The changes on the model should be very quick, so you can say a few words or gesturing with your hands, then the changes should be done. The fixed model is shown below.Freeform Mold Demo -7-Shelling The ModelClick on the “d” key to show the model in See Through mode, and indicate that it is a solid model. Click the “d” key once more to return to an opaque view.Now you can shell the model. Click on Shell on the toolbar. For this model, I want a 4mm shell. Then change the number in the Shell Thickness box on the dynabarto 4 and click Apply.Freeform Mold Demo -8-The shelling process should be done very quickly. While waiting for the model to be shelled, you can talk about the benefit of this feature. After the shell is complete, click on “d” on the keyboard again to activate the dotted mode for showing the part thickness.Click “d” to change to dotted mode to show part thicknessYou can check the part thickness by using the ruler feature. Go to Tools > Ruler or click“r” on the keyboard to activate the ruler feature. Then select Measure Thicknessicon on the Dynabar and measure the part thickness.Freeform Mold Demo -9-Creating Split JointFor better visual, turn off the clay by clicking on Blank Clay icon. The resulting screen is shown above. By turning off the clay, you can see the glue joint that you will create on the screen.Now I want to be able to create the shiplap joint. I go down to the Split Joint tool and pick on the curve on the screen. It will create a butt joint by default first (shown below) then I will create a shiplap joint on the modelFreeform Mold Demo -10-.After selecting the curve on the screen, a butt joint will be created. The creation of butt joint will not fail on this model. The shiplap joint properties box will pop up automatically when the butt joint is created.On the ShipLap Joint Properties box, set the values on the boxes to:-Offset value to 2mm because it’s a 4mm shiplap-Depth value to 2.5mm, just high enough that people can see the difference -Angle value to 5 degree so that it looks like in a angleFreeform Mold Demo -11-Ensure the Modify Region icon is selected on the dynabar then click on any two points on the outside curve of the model to define the region of the joint then click on any place on the curve within the region to create the split joint (as shown above).For the demo, create shiplap joint at only one place because for every place you do, you have to be able to select the inside curve of the split joint in the middle of the demo when you are doing Make Part and Make Insert. Therefore, to shorten the demo time and keep the audience’s attention, avoid creating more than one split joint.Next you want to show the Groove split joint feature, make an undo after the shiplap joint is created. Then select Groove Joint icon and the Groove Joint Properties box will appear.Freeform Mold Demo -12-Make sure the sum of the Offset value and the Width value does not exceed the width of the split joint, which is 4mm in this case. Otherwise, you will receive an error message. Once the values are entered, ensure the Create Split Joint icon is selected on the dynabar to create a groove joint on the entire curve. Then select the curve on the screen and a Groove Joint will be created (shown as below)Creating the groove joint for the demo is easier for the Make Part step later in the demo because you don’t have to pick the separate section all the way around the curve.Freeform Mold Demo -13-Freeform Mold Demo -14-Making PartNow I will separate the model into 2 parts, part 1 and part 2. I go to the Make Particon on the toolbar. Then select the Split Curve icon on the dynabar and click on the first split joint then the second split joint of the part. Next I click on the Part 1 Sideicon and click on the outside of the model(the face in this example) to select what is going to the part 1.When selecting the part 1 side, uncheck the Blank Clay to show the whole piece of clay. It’s easier in this way.Freeform Mold Demo -15-The first split joint is the outside curve of the part and the second split joint is the inside curve of the partThe first split joint is highlighted inFreeform Mold Demo -16-The second split joint is highlighted in green as shown on the rightnow look at the other part by selecting Work on Part of the other part in the Object List.Freeform Mold Demo -17-To turn on the object list, either click “o” on the keyboard or go to View > Object listOn the Object List, click on the part icon, and select Work On Part option to select the part that you want to work on.For the rest of the demo, we will work on one part of the model, Part 1 the face, though the other Part 2 can be done in a similar way.Freeform Mold Demo -18-Creating Mold InsertSo the next thing I will create an extent for the part, that is defining the actual mold insert dimensions, and create parting surfaces for the model.The extents can be resized to any dimension you need to fit into the mold. To resize it, you go to the set extents option (which is usually active when first entering the Mold Insert tab) and enter the XYZ values for the extents.To resize the extent, click on Create Mold Insert tab on the top of the workspace thenselect Mold Insert Properties and click on Set Extents icon on the Dynabar. Enter the desired dimension for the extent on the X,Y,Z boxes. For the demo, show people that the extent can be changed and set the numbers in the X,Y,Z boxes to a reasonable numbers. The following numbers are used for this demo:+X = 100.00, -X = -100.00+Y = 150.00, -Y = -150.00Freeform Mold Demo -19-+Z = 100.00, -Z = -100.00Freeform Mold Demo -20-Creating Extruded Parting SurfaceNext I will create the parting surfaces for the part. I go to the Extrude Parting Surfacetool then pick on two places on the curve to define the boundary. When you are picking the points to define the boundary, you don’t have to pick on the points, you can pick anywhere on the curve. The extruded surface can be created in a 45 degree angle. When extruding the surfaces from this example, extrude the surfaces perpendicularly from the form. For example, extrude it in a horizontal or vertical direction.Freeform Mold Demo -21-Creating Insert BlocksAfter the parting surface is completed, I will create a core insert block and a cavity insert blocks for the part. This can be done in a few steps.First I go to the Make Insert Blocks tool on the toolbar. Second, I pick the edge of the parting surface and the parting line. Finally, I select the side for the cavity block. To create insert blocks for the part:-Click on Parting Surface Curve icon on the Dynabar and select the edge of the extruded surface-Then select the parting line of the model (as shown below in green)Freeform Mold Demo -22--Click on Cavity Side icon on the dynabar and select the cavity side of the model.-Once the cavity side is selected, a plane will appear on the screen to represent the bottom of the cavity block.o Notes: Don’t zoom to close to the model; otherwise you will not be able to see the plane.o Notes: If you selected the top part as the cavity side, then the plane should be placed on the topside or on the bottom side if the bottom part isselected as the cavity side.- A window will pop up and asks if the plane is placed correctly, click “Yes” if the plane location is correct or “No” if the plane location is incorrect…Freeform Mold Demo -23-shown below)…Freeform Mold Demo -24-From here, I have two insert blocks, one for the core and the other one for the cavity. I can look at either one of the blocks by selecting it on the Object List.To look at the core block:-Turn on the object list and click on the core mold insert icon, and select Work On Component option-This will hide the cavity side component automatically.Freeform Mold Demo -25-Freeform Mold Demo -26-You can turn off “See Through Clay” option by View > Design Curve > See Through Clay for people easier to see to blockFreeform Mold Demo -27-Reverse Engineering the Core FaceThe next thing I will do is to create patch surface for the core. After I create the patches, I can export the file to other CAD software to build other components on the mold insert such as runners systems, water lines, sprues, and ejection pins, etc. To create the patch, I draw curves that defined the patch boundary on the core. Then using the Patch toolon the toolbar to create the batch surfaces for the core.Freeform Mold Demo -28-To draw curves defining the patch boundary on the core:-Select Draw tool under Parting Line tool-Ensure the Fit on Create icon is selected on the dynabaro Notes: DO NOT select Split on Create icon on the dynabar because it will destroy the surfaces by separating the curve into two-Turn on See Through Clay option by: View > Design Curves > See Through Clay (if you find it to be easier).-Start drawing curve on the model to cover up the entire core (as shown above)Freeform Mold Demo -29-To create patches on the core surface:-Once the curves are drawn on the surface, select the Patch tool-Ensure Fit to Clay and Manual Boundary Select icons are selected on the dynabaro Notes: Selecting the Fit to Clay icon will create patches that are more tightly fitted on the clay surface than using the Fit to Boundary icon . -Click on the curves in sequence to define the boundary of the patch. Once you are done the patches, go to the object list and folder the patches you create and label the folder something meaningful. You will need to refer to this folder later.Freeform Mold Demo -30-Exporting IGESOnce the Core side of Part 1 is patched, it can be exported as an IGES file for further modification in other CAD software.To export an IGES file of the Core side:Go to File > Export > Curves and Patches, then check the following information in the dialog box that appears:Freeform Mold Demo -31-…which will write an IGES file for CAD import. To export an STLfile of each of the blocks of the insert, for rapid prototyping:For the core, turn off the display of all Clay and Curves using the lower left display control:Then go to File > Export > Model, then, it will export the patches which will be subdivided to create polygons out of the patches.Usually, the default has adequate details when exporting the STL polygon file but if you want more detail, go to Patch Display Properties under the Blank Patches icon onFreeform Mold Demo -32-the Dynabar.Freeform Mold Demo -33-Changing the Display Resolution to High in thePatch Display Properties will give you a muchfiner tessellation of the patches.You can verify your results by reading the fileback in as an STL import and preview (but don’tkeep it, just preview it as below…Note: When exporting the Cavity side, you don’t want the Split Joint patches or the core face patches visible. On the Object list, do a “work on component” on the cavity component first, then hide the Split Joint Curves and Split Joint Patches folders as shown on the right. Find the folder you created for the Core face reverse engineering patches and hide it as well.Creating ElectrodeCreating electrode off the cavity is not something that is automatically created but it is not too difficult to do. First you want to turn off the surfaces and build a plane to project the parting line onto the plane. Then draw a line to connect the curves and create a patch for the side. Once the patch is created, export it as an electrode.To Create Electrode Off the Back Cavity Block:Go to the Object list then turn off the surfaces of the core and cavity blocks and the parting surfaces as shown below.Then select New Plane/Sketch on the toolbar to create a plane. The distance between the part and the plane is equal to the distance of the side of the electrode.Select Project Curve to Plane from the flyout of the Parting line curve tool on the toolbar. Then click on the parting line curves and touch the plane. The curves will then be projected onto the plane (as shown below). Once the curve is projected, you can hide the plane on the object list.Freeform Mold Demo -34-Next select Draw from the Parting line curve tool on the toolbar. Make sure the Fit on Create icon on the dynabar is deselected because you want to make a square patch. Then draw a line connected the parting line and the projected parting line.For this model, a patch can be built with only two main curve segments (as shown below)Freeform Mold Demo -35-Freeform Mold Demo -36-dynabar so that a straight extrusion can be created. Then select the curves in sequence to create the patches (as shown below)Once the side patches are created, you can make a patch for the back but for electrodes the back patch is not required. Then export it as an STL file for tooling the electrode.。
5-UG.NX5.0--free form feature
自由曲面
通过点创建自由曲面
从极点
每个点不一定都在生成的曲面上,曲 面会尽可能逼近每个点。
Unit 5 Free form feature
Section 1
自由曲面
通过点创建自由曲面
由云点
通过读取大量的点,生成曲面,这些点的分布是散乱的、 无规律的。
用于选择点群。
用于读取文件中已创建 的点。
用于改变U、V向量方向和曲面法 向的坐标系。 选择视图:利用选择的视图作 为U-V平面,平面的法向垂直于视 图,U向指向右方,V向指向上方。 工作坐标系:利用当前工作坐 标系作为方位坐标系。 当前视图:利用当前视图作为 方位坐标系。 指定坐标系:利用以前创建的 坐标系作为方位坐标系。 指定新的坐标系:利用坐标系 的功能定义一个新的坐标系作为 方位坐标系。
自由曲面
有关自由曲面的工具栏
Unit 5 Free form feature
Section 1
自由曲面
通过点创建自由曲面 通过点 从极点 由云点
Unit 5
Section 1
Free form feature
自由曲面
通过点创建自由曲面
通过点 通过按矩形分布的一组点阵构造曲面。
设置创建曲面的闭合和闭合 方式: 两者都不:在行、列上都 不闭合。 行:在行方向上闭合,第 一行和最后一行重合。 列:在列方向上闭合,第 一列和最后一列重合。 两者皆是:都闭合
自由曲面
用于设置生成的曲面符合 各条曲线的程度。 正常:系统按正常的过 程创建实体或曲面,该选 项具有最高的精度,但占 有更多的内存。 使用样条点:要求选择 的曲线必须是具有与选择 的点数目相同的单一B样 条曲线,生成的实体将通 过控制点与曲线相切。 简单:建立尽可能简单 的曲线网格曲面。 限制生成的曲面与初始曲 线间的公差。G0:距离 公差,G1:角度公差, G2:相对公差的10%。
FreeFrom软件操作说明
Defoorm Clay-球狀變形、區域變形
Deform Clay工具欄
一、球狀變形
變形微調軸向鎖定顯示尺規清除變形預覽做對稱效果
變形範圍尺規刻度設定執行
二、區域變形
變形微調尺規刻度設定
顯示尺規變形區域弧度設定
曲線定義造型
三、曲線定義造型
Shape Clay 指令是利用兩條、三條或四條封閉的3D 曲線,通過調整使用者定義的剖面,從而改變曲線區域內模型的形狀。
它可分為三個步驟進行: 1. 選擇邊界曲線 2. 指定剖面位置 3. 調整形狀
步驟一:選擇邊界曲線
步驟二:指定剖面位置
(快捷鍵Z)
(快捷X)
(快捷鍵C)
步驟三:調整形狀
框架定義變形
四、框架定義變形
框架定義模式 座標位置微調 同步鏡射調整 順化變形 進階調整 清除 確認
單方向調整 同方向調整 斜面變形 將框架調整和視角成水準
Advanced 進階調整選單:
順向調整 線性調整 分離調整
寬度設定
框架四周同步調整
剖面定義變形
五 、依剖面变形粘土
依剖面旋转变形
依曲线排列变形
六 、依曲线变形粘土
(调整曲线便可让粘土跟着曲线自动变形)
画曲线到鼻子和眉毛上面 执行指令后调整曲线,粘土将自动调整 注:使用此指令时,3D 曲线不能贴附粘土上。
七、 Surface Fair 表面平滑 (选定一个区域,让粘土表面平滑)。
FreeForm软件教程-V10新增功能详解
第 4 页,共 20 页
广东博泰科技有限公司
FreeForm 功能中文说明
勾选
不勾选
Profile Orientation 方向定位
Clay Surface
依粘土表面方向计算
Buck Surface
依 Buck 粘土表面方向计算
Current Pull Direction 依当前拔模方向计算
Parallel
Place slices at curveedit points - 根据曲线的编辑点产生 剖面。
Reset - 按重置以清除所有的数值,重新布 置剖面。 Create Slices - 创建剖面。
第 6 页,共 20 页
广东博泰科技有限公司
FreeForm 功能中文说明
Interpolated:
Construct Clay:
1、
Layer 涂层
设定厚度,用雕刻刀局部 Copy 外形(Copy 后与原有的粘土相连在同一物件)
Example
Sculpt Clay:
(Clay)粘土
(Buck)粘土
第 3 页,共 20 页
广东博泰科技有限公司
FreeForm 功能中文说明
1、
Linit to Depth 限制深度 (设定一个深度,方便在雕刻粘土时不会超过此深度)
广东博泰科技有限公司
1. Edit and Stitch Reference Piece 编辑参考粘土并缝合
2. Slice Deform Reference 依剖面变形参考粘土
3. Tug with Curve 依曲线变形参考粘土
7、 Patches / Solids 曲面/实体 1. Edit and Stitch Solid 编辑实体并缝合
stl标准模板库 pdf
stl标准模板库 pdfSTL(Standard Template Library)标准模板库是C++语言中的一个重要组成部分,它提供了许多常用的数据结构和算法,为程序员提供了丰富的工具库,能够大大提高程序的开发效率和代码的重用性。
本文将介绍STL标准模板库的一些基本概念和常用功能,并提供相关的PDF文档供大家参考学习。
STL标准模板库主要包括容器(Containers)、迭代器(Iterators)、算法(Algorithms)三大部分。
其中容器用于存储数据,迭代器用于遍历容器中的数据,算法用于对容器中的数据进行各种操作。
STL的设计思想是将数据结构和算法分离,使得它们能够独立地进行组合和复用,从而大大提高了程序的灵活性和可维护性。
在STL标准模板库中,容器是其中最重要的部分之一。
STL提供了多种类型的容器,包括序列容器(如vector、list、deque)、关联容器(如set、map、multiset、multimap)以及无序关联容器(如unordered_set、unordered_map、unordered_multiset、unordered_multimap)。
每种容器都有其特定的特性和适用场景,程序员可以根据实际需求选择合适的容器来存储数据。
除了容器之外,STL标准模板库还提供了丰富的迭代器,用于遍历容器中的数据。
迭代器可以被看作是一个指向容器中元素的指针,它提供了统一的访问接口,使得程序员可以使用相同的方式来访问不同类型的容器。
STL中的算法通常以迭代器作为参数,通过迭代器来对容器中的数据进行各种操作,如查找、排序、删除、替换等。
在实际开发中,STL标准模板库的算法部分也是非常重要的。
STL提供了大量的算法,包括查找算法(如find、count、equal_range)、排序算法(如sort、partial_sort、nth_element)、修改算法(如copy、replace、swap)、数值算法(如accumulate、inner_product、partial_sum)等。
FreeFrom软件操作说明
六、
Tug with Curve 依曲线变形“参考粘土”
半径 变形区域侧面的形状 高品质 微调 锁定轴向 取消 执行
指令圖 示
功
能
說
明
將選取的參考物件轉為黏土
將 3D 曲線范圍內參考物件轉換成黏土 编辑参考粘土并缝合 依剖面变形“参考粘土” 依曲线变形“参考粘土”
一、
Edit Ref. Piece Selection 將選取的參考物件轉為黏土
取消選取
全部清除
工具大小
選考層
選取
马路科技顾问股份有限公司
FreeForm 功能说明
Reference Piece-参考粘土功能 Reference Piece-工具栏
功 能 名 稱
Edit Ref. Piece Selection Edit Ref. Piece with Curve Loop Edit and Stitch Reference Piece Slice Deform Reference Tug with Curve
FreeForm 功能说明
三、
选曲线
Edit and Stitch Reference Piece 编辑参考粘土并缝合
选粘土 设定粘土精度 粘土厚度 预留边界 转换粘土 选边界 选粘土 缝合
不勾选时将在当前的参考粘土上进行缝合;勾选时将 Copy 一个参考粘土层
Example
四、
Slice Deform Reference 依剖面变形“参考粘土” 注:(此指令用法同粘土,区别只是在于一个针对粘土,一个针对“参考粘土” , 详细功能说明请参考 此指令)。
全選
選取范圍向外擴展
析出選取部分邊界
選取部分轉為黏土
FreeForm V 新增功能说明 FreeForm Modeling lus软件教程
FreeForm Modeling Plus V11新增功能中文说明概述:FreeForm Modeling Plus V11.0 版本新增了15项新功能(下图以红线圈起的图标为完全新功能),其次在原有指令的基础上加强并改进了功能,使新版本使用更方便,快捷,整体造型能力更加强大。
一、新增指令:1、 Construct Claya、curve network to clay(依曲线网格转换黏土);b、Pattern piece(依曲线复制物件);c、Extrude to plane(延伸黏土至2D平面);2、 Sculpt Claya、Smooth with Curve(依曲面填充黏土)3、 Deform Claya、Lattice Deform(依网格框架变形黏土);4、Select/Move Claya、Select Objects with box框选物件;b、Align to path(使黏土依路径排列);c、Select clay with Patch(依曲面选择黏土)5、 Patches/Solidsa 、Create Ring Patch(依两条环形曲线建曲面);b 、Curve network to Solid(依曲线网格转换实体);6、Analysis Toolsa 、Analysze Fit (分析黏土贴附程度); b、Analysze Inter s ection (分析相交黏土); c 、Analysze Thickness (分析黏土厚度)d 、Dimensional Bounding Box (显示黏土的空间边界);e 、Ruler(3D 测试);二、新增指令功能详细说明:1、curve network to clay(依曲线网格转换黏土);2、Pattern piece(依曲线复制物件)微调旋转物体方向移动锁定轴向从曲线端点排列最后一个物件的比例生成新的图层旋转方式选择球珠和3D 线,设定球珠数量。
修整抄数扫描STL点资料-FreeForm Modeling Plus软件教程
• • • • • • •
• • • • • •
第 1 页,共 5 页
广东博泰科技有限公司
FreeForm 范例手册
Fill Holes
01*首先导入扫描点数据 (File>Import>model )。 Bigeye >Scan_ data>Scan.stl *在输入 STL 时,先以内定的精度输 入,若有必要时,可将精度提高, 再重新输入。 *此对象尺寸较小,因此精度需高一 些 。 *预览时黄色部分为抄数数据,绿色 部分为 FreeForm 自动修补的数据, 故选择 Fill Holes . 02*创建一个 2D 平面,并描绘出物体 的特征线(如:眼睛和底座) (圆的直径为 4.7mm) 。 *提示: 线也可以复制, 2D 复制方法: Ctrl+C=Copy 复制 ; Ctrl+V=Paste 粘帖。 目录表显示如下: *执行选择工具,点击粘土,“Ctrl+I” 反选, Delete 将多余的碎片删除。 按
Create Plane
Select lump of clay
*选择
全选,
复制一个,
粘贴至另一个物件,以备修 整后作误差检测。
Draw curve
03*在眼睛的周圈画 3D 线, 再执 Pieces\ Separate with curve 依曲线分割,将 眼睛拆分为另外一个对象。
第 2 页,Biblioteka 5 页第 5 页,共 5 页
Tug
Box 选择此指令。 *执行 Wire cut clay 将方框内的部分 切除。
Wire cut clay &
选择切除 2D 线区域内的。 *若泥土中间有空洞时,无法执行 四线拉面指令,这样可利用 增加泥土的方式填充里面 后便可执行。 *注: 也可使用 Wire cut 指令来填补。 06*增加眼睛。 打开对象目录显示旧的眼睛,以作 为位置的参考对象。 *按 F7 开启辅助窗口来控制位置。 *选择圆球, 在适当的位置增加眼睛, 尺寸为 9.5mm 。
FreeForm软件教程-V10新增功能详解
Taper Ends:
Width 1 - Width 2 – 渐变效果:输入起始点和终止点宽 度不一致的数值,得到渐变效果。
Swap Ends - 反转起始点和终止点宽度的数值。
Offset Above Surface:
Thickness - 设定凸条距离粘土表面间隔一个厚度。
一、FreeForm V10.0 新增指令如下:
1、Sketch 2D 平面线 1. Extend/Retract Sketch Curve 延伸 2D 曲线
2、Construct Clay 构建粘土 1. Layer 涂层
3、Sculpt Clay 雕刻黏土 1. Linit to Depth 限制深度
缝合
不勾选时将在当前的参考粘土上进行缝合;勾选时将 Copy 一个参考粘土层 第 8 页,共 20 页
广东博泰科技有限公司
Example
FreeForm 功能中文说明
2、
Slice Deform Reference 依剖面变形“参考粘土”
注:(此指令用法同上,区别只是在于一个针对粘土,一个针对“参考粘土”,
二、新增指令功能详细说明:
第 2 页,共 20 页
广东博泰科技有限公司
FreeForm 功能中文说明
Sketch:
1、
Extend/Retract Sketch Curve 延伸 2D 曲线
曲线的延伸方式
延长现有的曲线 延长的部分成另一条曲线
曲线长度
细部说明:
Tangent Reflection Curvature Tangent(to point)
Example
Mold:
第 9 页,共 20 页
FreeFrom软件操作说明
FreeForm 功能说明
04.右圖為修整平順的線段,此時即 可開始建構分模面。
05.點選
Draw Curve(繪製 3D
曲線)功能,定義出分模面的邊 界線。 ※請定義出 4 個邊的邊界線。
06. 請點選 曲面功能。
Create Patch 進入
07.點選設定工具列的
Fit to
取消選取
選取
全選
工具大小
最大值分析
清除颜色
取消
最大误差值
建立两个不同的图层
对两物件分别进行全选(也可以 只选取其中一部分)
执行后产生的结果,误差最小的以 蓝色显示,误差最大的以红色显示
六、
選取
Tolerance Map 设定粘土公差,以颜色分析误差。
全選 工具大小 清除颜色 取消
取消選取
全部清除
容许公差值, 输入最小的公差值也 要是当前粘土精度的 2 倍
完成後共可匯出6格式母模面stl格式格式母模面stl格式止口iges格式分模面iges格式fixdraftselection局部消除倒扣example拔模方向选择粘土取消选择全选执行更新颜色工具大小全部取消往前切往后切拔模角度切除粘土增加粘土马路科技顾问股份有限公司freeform功能说明wwwratcomtwanalyzefit分析黏土误差建立两个不同的图层对两物件分别进行全选也可以只选取其中一部分执行后产生的结果误差最小的以蓝色显示误差最大的以红色显示tolerancemap设定粘土公差以颜色分析误差
06.母模面: 提示:橙色的是 STL 資料,藍 色的是 IGES 曲面,可分別輸出 STL 和 IGES 給後續的模具制作 和加工。
马路科技顾问股份有限公司
FreeForm 功能说明
FreeFrom软件操作说明
使用圓球體工具雕刻黏土。工具球由外往内雕可减少粘土,由内往外雕 可增加粘土。(以下雕刻工具都一样) 使用立方體工具雕刻黏土。 使用圓柱體刮刀雕刻黏土。 使用圓柱體工具雕刻黏土。 使用三角形用刮刀工具雕刻黏土。必须 使用球體工具擠壓黏土。 依工具球大小吸附黏土。
先画一条或两条 3D 线。 先画一条或两条 3D 线。
依工具球大小吸附黏土為尖狀黏土。 使用球體工具在黏土表面打磨順滑。 選定一個區域使黏土順滑。 设定一个深度,方便在雕刻粘土时不会超过此深度。
一、Smooth Area 功能加強
球狀圈選工具 全選 圈選工具尺寸 順化範圍邊界柔化 球狀清除工具 全部清除 開啟遮罩功能
马路科技顾问股份有限公司
FreeForm 功能说明
Sculpt Clay-各種形狀切削刀具、表面順化工具
Sculpt Clay 工具欄
功 能 名 稱 Carve with Ball Carve with Cube Carve with Scraper Carve with Corn Dog Carve with Angle Carve with Loop Carve with Razor Carve with Knife Smudge Attract Spikes Smooth Smooth Area Limit to Depth 指令圖 示 功 能 說 明
順化程度
introduction to finite element methods
introduction to finite elementmethodsFinite element methods (FEM) are numerical techniques used to solve partial differential equations (PDEs) and other mathematical models in engineering and scientific applications. The basic idea behind FEM is to divide a domain into small elements, and then approximate the solution over each element using simple functions. These approximations are then combined to obtain a近似解 for the entire domain.One of the key advantages of FEM is its ability to handle complex geometries and boundary conditions. By dividing the domain into small elements, FEM can accurately represent curved boundaries and irregular shapes. Additionally, FEM can handle a wide variety of boundary conditions, including Dirichlet, Neumann, and Robin boundary conditions.Another advantage of FEM is its flexibility in choosing the type of basis functions used to approximate the solution over each element. Common basis functions include linear, quadratic, and cubic polynomials, as well as Lagrange and Hermite polynomials. The choice of basis functions depends on the nature of the problem and the desired accuracy of the solution.FEM also offers several advantages in terms of computational efficiency. By using matrix-based formulations, FEM can take advantage of modern numerical algorithms and computing hardware to solve large-scale problems efficiently. Additionally, FEM can be easily parallelized, allowing for the efficient use of multiple processors or computing nodes.In summary, finite element methods are powerful numerical techniques that can be used to solve a wide variety of engineering and scientific problems. Their ability to handle complex geometries and boundary conditions, as well as their flexibility in choosing basis functions and computational efficiency, make FEM an attractive choice for many applications.。
freeform拆件方法
freeform拆件方法Freeform 拆件方法是一种常见的3D模型拆件方法,主要用于设计,制造和可视化领域。
它允许设计师将复杂的模型拆分成更简单的部分,以便于后续处理和制造。
本文将讲解Freeform拆件方法的基本原理和具体步骤,以及其在实践中的应用。
Freeform拆件方法的基本原理是将3D模型分解为具有平滑边缘和适当数量的顶点的几何形状。
这样做可以使制造过程更容易和准确,因为简单的形状可以更容易地制作和加工。
此外,拆件过程还可以减少加工时需要的时间和人力成本。
具体步骤如下:1. 导入3D模型首先需要将3D模型导入到拆件软件中,常用的软件有Rhino、SolidWorks和3ds Max 等。
在导入模型之前,需要确定要拆除的部分以及导入时需要设置的单位和比例尺。
2. 选择拆件方法在选择拆件方法之前,需要考虑拆件的目的和要求。
主要有两种拆件方法:面拆件和实体拆件。
面拆件采用表面建模技术,将3D模型拆分为平面形状,适用于需要制造精度高和几何形状规则的产品。
实体拆件则针对复杂的有机形状,使用体积建模技术对3D模型进行切割和分割。
3. 选择切割平面或者切割体在建模软件中实现拆件的过程中,需要先选择一个或多个分解平面或者分解体。
分解平面将形状分解为简单的平面形状,而分解体则将形状分解为简单的几何体。
选择适当的分解方法可以减少后续制造和加工的困难程度。
4. 进行切割操作选择切割平面或切割体后,就可以对模型进行切割操作。
切割操作是将模型沿着选择的平面或体进行割裂,这样就可以将模型分为两个或多个部分。
在进行操作之前,需要设置相应的切割方向、角度和深度等参数,以保证切割效果的精度和符合要求。
5. 优化拆件效果在将模型分解为较简单的形状之后,需要进行优化操作。
这就是对得到的分解形状进行调整、合并、分割等处理,以保证拆件后得到的形状达到预期效果。
优化过程需要人工检查和调整,确保每个部分都符合设计要求。
6. 导出分解部件完成拆件和优化之后,可以将分解后的部件导出,以便于后续的制造、加工和可视化。
简述扫描模型前模型检查的注意事项
简述扫描模型前模型检查的注意事项下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!扫描模型前模型检查的注意事项在进行扫描模型前的模型检查时,有一些关键的注意事项需要牢记。
三维stl数据拟合原理
三维stl数据拟合原理Three-dimensional STL data fitting is a process of adjusting the shape and dimensions of a 3D model to align with another 3D model or a set of specific measurements. This process is essential in various fields, including manufacturing, engineering, and design. 三维STL数据拟合是一种调整三维模型形状和尺寸以与另一个三维模型或一组特定测量值对齐的过程。
这个过程在制造业、工程和设计等各个领域都是至关重要的。
When it comes to the fitting process, the first step is to analyze the initial STL data and identify the areas that require adjustments. This may involve comparing the model to a reference model or a set of measurements to determine the discrepancies. Following this, the next step is to utilize specialized software to modify the 3D model and achieve the desired fit. 在拟合过程中,第一步是分析初始STL数据并确定需要调整的区域。
这可能涉及将模型与参考模型或一组测量值进行比较,以确定差异。
接下来,利用专业软件修改三维模型,实现期望的拟合。
One of the key techniques used in STL data fitting is the utilization of surface registration algorithms. These algorithms enable the matching of surfaces from two different 3D models and align themto achieve a precise fit. The registration process involves identifying corresponding points on the surfaces, calculating the transformation needed, and applying it to achieve the best fit. STL数据拟合中使用的关键技术之一是表面配准算法。
STL(fileformat)-Wikipedia,thefreeencyclopedia
facet normal n i n j n kouter loopvertex v1x v1y v1zvertex v2x v2y v2zvertex v3x v3y v3zendloopendfacetwhere each n or v is a floating point number in sign-mantissa 'e'-sign-exponent format, e.g., "-2.648000e-002" (noting that each "v" must be non-negative). The file concludes with:endsolid nameThe structure of the format suggests that other possibilities exist (e.g., facets with more than one 'loop', or loops with more than three vertices) but in practice, all facets are simple triangles.White space (spaces, tabs, newlines) may be used anywhere in the file except within numbers or words. The spaces between 'facet' and 'normal' and between 'outer' and 'loop' are required.[2]Binary STLBecause ASCII STL files can become very large, a binary version of STL exists. A binary STL file has an 80 character header (which is generally ignored – but which should never begin with 'solid' because that will lead most software to assume that this is an ASCII STL file). Following the header is a 4 byte unsigned integer indicating the number of triangular facets in the file. Following that is data describing each triangle in turn. The file simply ends after the last triangle.Each triangle is described by twelve 32-bit-floating point numbers: three for the normal and then three for theX/Y/Z coordinate of each vertex – just as with the ASCII version of STL. After the twelve floats there is a two byte unsigned 'short' integer that is the 'attribute byte count' – in the standard format, this should be zero because most software does not understand anything else.[2]Floating point numbers are represented as IEEE floating point numbers and are assumed to be little endian, although this is not stated in documentation.UINT8[80] – HeaderUINT32 – Number of trianglesforeach triangleREAL32[3] – Normal vectorREAL32[3] – Vertex 1REAL32[3] – Vertex 2REAL32[3] – Vertex 3UINT16 – Attribute byte countendColor in binary STLThere are at least two variations on the binary STL format for adding color information:The VisCAM and SolidView software packages use the two 'attribute byte count' bytes at the end ofevery triangle to store a 15 bit RGB color:bit 0 to 4 are the intensity level for blue (0 to 31)bits 5 to 9 are the intensity level for green (0 to 31)bits 10 to 14 are the intensity level for red (0 to 31)bit 15 is 1 if the color is validbit 15 is 0 if the color is not valid (as with normal STL files)The Materialise Magics software does things a little differently. It uses the 80 byte header at the top of the file to represent the overall color of the entire part. If color is used, then somewhere in the header should be the ASCII string "COLOR=" followed by four bytes representing red, green, blue and alpha channel (transparency) in the range 0–255. This is the color of the entire object unless overridden at each facet.Magics also recognizes a material description; a more detailed surface characteristic. Just after"COLOR=RGBA" specification should be another ASCII string ",MATERIAL=" followed by threecolors (3 ! 4 bytes): first is a color of diffuse reflection, second is a color of specular highlight, and third is an ambient light. Material settings are preferred over color. The per-facet color is represented in the two 'attribute byte count' bytes as follows:bit 0 to 4 are the intensity level for red (0 to 31)bits 5 to 9 are the intensity level for green (0 to 31)bits 10 to 14 are the intensity level for blue (0 to 31)bit 15 is 0 if this facet has its own unique colorbit 15 is 1 if the per-object color is to be usedThe red/green/blue ordering within those two bytes is reversed in these two approaches – so while these formats could easily have been compatible the reversal of the order of the colors means that they are not – and worse still, a generic STL file reader cannot automatically distinguish between them. There is also no way to have facets be selectively transparent because there is no per-facet alpha value – although in the context of current rapid prototyping machinery, this is not important.The facet normalIn both ASCII and binary versions of STL, the facet normal should be a unit vector pointing outwards from the solid object. In most software this may be set to (0,0,0) and the software will automatically calculate a normal based on the order of the triangle vertices using the 'right-hand rule'. Some STL loaders (e.g. the STL plugin for Art of Illusion) check that the normal in the file agrees with the normal they calculate using the right-hand rule and warn you when it does not. Other software may ignore the facet normal entirely and use only the right-hand rule. Although it is rare to specify a normal that cannot be calculated using the right-hand rule, in order to be entirely portable, a file should both provide the facet normal and order the vertices appropriately. A notable exception is SolidWorks which uses the normal for shading effects.History of useStereolithography machines are 3D printers that can build any volume shape as a series of slices. Ultimately these machines require a series of closed 2D contours that are filled in with solidified material as the layers are fused together. A natural file format for such a machine would be a series of closed polygons corresponding to different Z-values. However, since it's possible to vary the layer thicknesses for a faster though less precise build, it was easier to define the model to be built as a closed polyhedron that can be sliced at the necessary horizontal levels.The STL file format appears capable of defining a polyhedron with any polygonal facet, but in practice it's only ever used for triangles, which means that much of the syntax of the ASCII protocol is superfluous.To properly form a 3D volume, the surface represented by any STL files must be closed and connected, where every edge is part of exactly two triangles, and not self-intersecting. Since the STL syntax does not enforce this property, it can be ignored for applications where the closedness doesn't matter. The closedness only matters insofar as the software which slices the triangles requires it to ensure that the resulting 2D polygons are closed. Sometimes such software can be written to clean up small discrepancies by moving vertices that are close together so that they coincide. The results are not predictable, but it is often sufficient.Use in other fieldsSTL file format is simple, so it is easy to output. Consequently, many computer-aided design systems can output the STL file format. Although the output is simple to produce, some connectivity information is discarded.Many computer-aided manufacturing systems require triangulated models. STL format is not the most memory and computationally efficient method for transferring this data, but STL is often used to import the triangulated geometry into the CAM system. The format is commonly available, so the CAM system will use it. In order to use the data, the CAM system may have to reconstruct the connectivity.STL can also be used for interchanging data between CAD/CAM systems and computational environments such as Mathematica.NotesIn Windows, the extension .stl is used to mean Certificate Trust List, and a .stl file will be labeled as such, even though it will still be a stereolithography.See alsoAdditive Manufacturing File Format, an ASTM standard that has native support for color, multiplematerials, and constellationsPLY (file format), an alternative file format offering more flexibility than most stereolithographyapplications.Wavefront .obj file, a 3D geometry definition file format with .obj file extensionMeshLab, a free and open source cross-platform application for visualizing, processing and convertingthree-dimensional meshes to or from the STL file format.CloudCompare, another open source application for handling STL files.Mathematica, a technical computing system that can work with STL files.References1. ^ STL2.0 May Replace Old, Limited File Format (/stl-file-format.html). (2009-10-30). Retrieved on 2013-07-29.2. ^ a b c Burns, Marshall (1993). Automated Fabrication. Prentice Hall. ISBN 978-0-13-119462-5.3. ^ , The StL Format: Standard Data Format for Fabbers, reprinted from Marshall Burns, AutomatedFabrication, /~fabbers/StL.asp stating, "The object represented must be located in the all-positive octant. In other words, all vertex coordinates must be positive-definite (nonnegative and nonzero) numbers. The StL file does not contain any scale information; the coordinates are in arbitrary units."StereoLithography Interface Specification, 3D Systems, Inc., July 1988StereoLithography Interface Specification, 3D Systems, Inc., October 1989SLC File Specification, 3D Systems, Inc., 1994Chua, C. K; Leong, K. F.; Lim, C. S. (2003), Rapid Prototyping: Principles and Applications (2nd ed.), World Scientific Publishing Co, ISBN 981-238-117-1 Chapter 6, Rapid Prototyping Formats. Page 237, "The STL (STeroLithography) file, as the de facto standard, has been used in many, if not all, rapidprototyping systems." Section 6.2 STL File Problems. Section 6.4 STL File Repair.External linksThe StL Format (/~fabbers/StL.asp): Standard Data Format for FabbersInstructions for exporting STL files from various CAD packages(/html/stl.html) (courtesy of ProtoCAM)Retrieved from "/w/index.php?title=STL_(file_format)&oldid=582753672" Categories: 3D printing CAD file formats3D graphics file formatsThis page was last modified on 22 November 2013 at 00:58.Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy.Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.。
FreeFormFeatures自由建模讲解
Free Form Features模块培训
自由形状特征概述
• 自由形状特征(free form features)定义
DESign
自由形状特征是指那些不能利用体素、标准成形特征或含有直线、弧和二次曲线的草
图构建的形状。
自由形状特征概述
。绝大多数实际产品的设计都离不开自由形状特征。
DESign
• 自由形状特征(free form features)是CAD模块的重要组成部分。是高端软件的重要标志
等的参数间隔方式建立。若截面线上包含直线和曲线,点的间隔方式是不同的。 1. 2. 直线:根据等弧长方式间隔点。 曲线:根据等角度方式间隔点。
对齐方式
用点对齐(Alignment By Point):用点对齐方式用于不同形状的截面线的对齐,特别是截面线
具有尖角或有不同截面形状时,应该采用点对齐方法。该对齐方法可以使用零公差,表明点
过曲线网格(Through Curve Mesh)
操作步骤:
1. 选择主曲线1(或点),选择OK,出现方向箭头。同理按顺序依次选择其 他主曲线,最后选择OK,结束主曲线的选择。
2. 选择交叉线,每选择完一组交叉线,选择OK一次,同理按顺序依次选择 其他交叉线,最后选择OK,结束交叉线的选择。 3. 选择脊柱线,选择OK;如果不选脊柱线,直接选择OK,出现对话框。 4. 选择强调方式(Emphasis),确定生成的体更加靠近哪组曲线。 5. 输入相交公差,或使用默认值。 6. 选择起始或最后线串的边界约束方式。(主曲线和交叉线) 7. 选择构造类型,最后选择OK。
3d打印模型数据处理的基本流程
3d打印模型数据处理的基本流程3D打印技术是一种快速制造技术,它可以将数字模型转化为实体模型。
在3D打印过程中,数字模型数据处理是非常重要的一步。
本文将介绍3D打印模型数据处理的基本流程。
1. 模型设计需要进行模型设计。
模型设计可以使用CAD软件、3D建模软件等工具进行。
在设计模型时,需要考虑到模型的尺寸、形状、结构等因素。
设计完成后,需要将模型导出为STL格式的文件。
2. STL文件修复STL文件是3D打印中最常用的文件格式。
但是,由于STL文件是由三角形网格组成的,因此在导出STL文件时,可能会出现一些问题,如模型表面不光滑、模型中存在空洞等。
这些问题需要进行修复。
可以使用专业的STL修复软件进行修复,也可以使用一些免费的在线修复工具。
3. 模型切片模型切片是将3D模型分解为一层一层的2D图像的过程。
这些2D 图像将被用于3D打印机的打印。
在模型切片过程中,需要考虑到打印材料、打印精度等因素。
可以使用专业的切片软件进行切片,也可以使用3D打印机自带的切片软件。
4. 生成G代码G代码是3D打印机的控制代码。
在模型切片完成后,需要将切片后的2D图像转化为G代码。
G代码包含了3D打印机的运动轨迹、打印速度、温度等参数。
可以使用专业的G代码生成软件进行生成,也可以使用3D打印机自带的软件进行生成。
5. 打印将生成的G代码上传到3D打印机中,进行打印。
在打印过程中,需要注意打印材料的温度、打印速度、打印精度等参数。
打印完成后,需要进行后处理,如去除支撑结构、打磨表面等。
总结3D打印模型数据处理的基本流程包括模型设计、STL文件修复、模型切片、生成G代码和打印。
在这个过程中,需要使用一些专业的软件和工具。
同时,需要注意打印材料的温度、打印速度、打印精度等参数,以保证打印质量。
freeform基本指令
Freeform软件常用工具指令说明(一)2013-09-14 12:46:03这些工具都是雕刻工具,按右下角的小三角可飞出不同形状的雕刻工具,可根据需要进行选择。
选择工具后,当用针点笔触碰到模型时,按下针点笔上的按钮,可以在模型上进行雕刻,当用力将针点笔推入模型内时可以在模型上建立突起,在下面的工具属性栏中可以改变工具的大小和粘土的硬度(在使用其它工具时,如下面有相同的图标表示的意思相同),或者有一个更快捷的方式,直接按住"P"字母键,可以实现同样功能。
对于需要长时间使用雕刻工具,可以有效缓解手指的疲劳。
Freeform软件基本指令说明(二)2013-09-15 22:09:35smudge工具是挤压粘土工具,它不光可以外部,而且也可以内部使用,使用该工具时不但所接触的粘土会变形,附近的clay也会随之变形,在工具属性栏中比“carve”工具多了一个属性“Area of influenc”,可以调节改变clay的程度。
Freeform软件基本指令文字说明(三)2013-09-25 21:58:031、该工具是吸附粘土工具,在飞出的工具中有spikes工具,他吸起的粘土形状要比attract吸的更尖,它也可以在模型的内外使用。
2、smooth工具是光滑工具,按下针点笔在物体表面来回的移动,可使表面变得更加光滑,在下面的工具属性栏中可以改变大小和光滑的等级,有10级,可以用1-0的数字键快速的改变,1的等级最低,0的等级最高,等级越高,就越光滑,飞出的smooth area工具,可以对要光滑的区域进行选区,是增加选区,是减少选区,是全选物体,是取消选区。
3、这两个工具都是增加粘土工具,可以添加球形、圆锥形、圓錐形和任意形,在下面的工具列中可以选取形状和大小。
Freeform软件基本指令说明(四)2013-09-27 21:01:01这两个工具主要用来改变物体的形状,Tug主要用来局部改变物体的形状,当选择该工具贴近物体表面时,按下针点笔,就可以随便地的移动粘土,在下面的工具属性栏中有precise movement选项,选中该选项,可以精确的移动针点笔,它的快捷键是shift.还有Axis snap选项,选中它之后,光标只能沿着坐标轴移动,Deform用来整体地改变物体的形状,选中它,物体表面将会出现一个矩形方框,我们可以通过改变方框来改变物体的形状。