人教版数学七年级下册第六章《实数》单元测试3

合集下载

人教版七年级数学下册 第六章 实数。单元测试题精选(Word版附答案)

人教版七年级数学下册 第六章 实数。单元测试题精选(Word版附答案)

人教版七年级数学下册第六章实数。

单元测试题精选(Word版附答案)人教版七年级数学第6章《实数》单元测试题精选完成时间:120分钟满分:150分得分评卷人:______________ 姓名:______________ 成绩:______________一、选择题(本大题10小题,每小题4分,共40分。

每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入表格内)题号 1 2 3 4 5 6 7 8 9 10答案 B A D A A C D C B B二、填空题(每题5分,共20分)11.m = 3.n = 1.(m+n)^5 = 243.12.(1) 0.000 521 7 (2) 0.002 284.13.3.14.x = 8.三、解答题(共90分)15.1) x = ±5/3;2) x = 3/5.16.1.17.a = 9.b = -8.3a+b的算术平方根为 5.18.已知 $m=\lfloor 313\rfloor$。

$n=0.13$,求 $m-n$ 的值。

19.如图,计划围一个面积为 $50\text{ m}^2$ 的长方形场地,一边靠旧墙(墙长为 $10$ m),另外三边用篱笆围成,并且它的长与宽之比为 $5:2$。

讨论方案时,XXX说:“我们不可能围成满足要求的长方形场地。

”小军说:“面积和长宽比例是确定的,肯定可以围得出来。

”请你判断谁的说法正确,为什么?解:设长为 $5x$,宽为 $2x$,则面积为 $10x^2$,另一条边长为 $10-5x$,由题意得 $10x^2=(10-5x)\times2x$,解得$x=1$,长为 $5$,宽为 $2$,可以围成满足要求的长方形场地,小军的说法正确。

20.若 $x+3+(y-3)^2=3$,则 $(xy)^{\frac{2015}{3}}$ 等于多少?解:移项得 $(y-3)^2=3-x-3=-x$,所以 $xy=\frac{3-x}{y-3}$,将其代入 $(xy)^{\frac{2015}{3}}$ 得 $\left(\frac{3-x}{y-3}\right)^{\frac{2015}{3}}$,根据乘方的运算法则,得$\left(\frac{3-x}{y-3}\right)^{671}$。

【3套精选】人教版初中数学七年级下册第六章《实数》单元测试题(含答案)

【3套精选】人教版初中数学七年级下册第六章《实数》单元测试题(含答案)

人教版七年级下册第六章实数单元同步测试一、选择题1、以下说法正确的选项是()A.负数没有立方根B.一个正数的立方根有两个,它们互为相反数C.假如一个数有立方根,则它必有平方根D.不为 0 的任何数的立方根,都与这个数自己的符号同号2、以下语句中正确的选项是()A.-9 的平方根是 -3B.9 的平方根是 3C.9 的算术平方根是3D.9 的算术平方根是 33、以下说法中正确的选项是()A、若 a 为实数,则a0 B 、若 a 为实数,则 a 的倒数为1aC、若 x,y 为实数,且x=y ,则x y D 、若 a 为实数,则a204、估量287 的值在A. 7和8之间B. 6和 7之间C. 3和4之间D. 2和 3之间5、以下各组数中,不可以作为一个三角形的三边长的是()A、 1、 1000、 1000B、 2、 3、5C、32,42,52D、38 , 327 , 3646、以下说法中,正确的个数是()(1)- 64 的立方根是- 4;( 2)49的算术平方根是7 ;(3)1的立方根为1;(4)1是27341的平方根。

16A 、1B 、2C 、3D 、47、一个数的平方根与立方根相等,则这个数是( )A.1B. ±1C.0D. —18、假如 3 2.37 1.333 , 3 23.7 2.872 ,那么 3 0.0237 约等于().A. 13.33B. 28.72C. 0.1333D. 0.28729、若x 1 +( y+2 ) 2=0,则( x+y ) 2017=( )A .﹣ 1B . 1C . 32017D .﹣ 3201710、若 0a 1,则 a, a 2, 1的大小关系是 ()a二、填空题11、 0.0036 的平方根 是,81 的算术平方根是.12、若a 的平方根为 3 ,则 a=.13、假如一个数的平方根是 a+6 和 2a-15 ,则这个数为。

14、比较大小:5 11(填“>”、“<”或“ =”).15、比较大小: 3 10 ________5 ( 填“>”或 “<” ) .16、立方等于它自己的数是。

人教版七年级数学下册-第六章《实数》单元测试(含答案)

人教版七年级数学下册-第六章《实数》单元测试(含答案)

七年级下册 第六章《实数》单元测试姓名: 班级: 座号:一、单选题(共8题;共32分)1.一个正数的两个平方根分别是2a-1与-a+2,则a 的值为( )A. 1B. -2C. 2D. -12.实 数 1−2a 有平方根,则 a 可以取的值为 ( ) A. 12 B. 1 C. √2 D. π3.下列说法错误的是( ) A. 0的平方根是0 B. 4的平方根是±2 C. ﹣16的平方根是±4 D. 2是4的平方根4.若 √x 3+√y 3=0 ,则x 和y 的关系是( ).A. x =y =0B. x 和y 互为相反数C. x 和y 相等D. 不能确定5.已知正方体的体积为64,则这个正方体的棱长为( )A. 4B. 8C. 4√2D. 2√26.下列语句正确的是( )A. √64 的立方根是2B. -3是27的立方根C. 125216 的立方根是 ±56D. (−1)2 的立方根是-17.在 18 ,-82, √8 ,√83 四个数中,最大的是( ) A. 18 B. -82 C. √8 D. √838.下列四个式子:① √8<√10 ;② √65 <8;③ √5−12 <1;④ √5−12 >0.5. 其中大小关系正确的式子的个数是( )A. 1个B. 2个C. 3个D. 4个二、填空题(共6题;共24分)1.若某个正数的平方根是 a −3 和 a +5 ,则这个正数是________.2.3是m 的一个平方根,则m 的另一个平方根是________,m =________.3.已知2b+1的平方根为±3,3a+2b ﹣1的算术平方根为4,则2b ﹣3a 的立方根是________.4.若 √0.0000049133 =0.017, √x 3 =17, √−4.9133 =y ,则x =________,y =________.5.绝对值小于 √41 的整数有________个.6.若a 是小于1的正数,则a, 1a ,-a 的大小关系用“<”连接起来 ________________________________三、计算题(共2题;共20分)1.求x 的值:(1)(x ﹣1)2=25 (2)8x 3﹣125=02.已知a 是一64的立方根,b 的算术平方根为2.(1)写出a ,b 的值;(2)求3b 一a 的平方根,四、综合题(共3题;共19分)1.请将图中数轴上标有字母的各点与下列实数对应起来,并回答下列问题:π , −√3 , √73 , −212(1)A________、B________、C________、D________;(2)把这四个数用“<”连接起来__________________________________;(3)在这四个点中,到1的距离小于2个单位长度的有__________________________________ (填字母). 2仔细观察下列各数,回答问题: −√3 ,0, √0.25 , π , −|−112| , √3(1)在数轴上表示上述各数中的非负数(标在数轴上方,无理数标出大致位置),并把它们用“<”号连接.(2)上述各数中介于−2与−1之间的数有______________个.3.数学活动课上,王老师说:“ √2是无理数,无理数就是无限不循环小数,同学们,你能把√2的小数部分全部写出来吗?”大家议论纷纷,小明同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用√2﹣1表示它的小数部分.”王老师说:“小明同学的说法是正确的,因为√2的整数部分是1,将这个数减去其整数部分,差就是小数部分,”请你解答:(1)填空题:√3的整数部分是____________;小数部分是____________.(2)已知8+ √3=x+y,其中x是一个整数,且0<y<1,求出2x+(y- √3)2012的值。

人教版七年级数学下册第六章第三节实数试题(含答案) (67)

人教版七年级数学下册第六章第三节实数试题(含答案) (67)

人教版七年级数学下册第六章第三节实数练习试题三(含答案) 把下列各数分别填入相应的集合里:12.5,3,0,,20192π- 正有理数集合:{ …} 负分数集合:{ …}整数集合:{ …} 自然数集合:{ …}【答案】正有理数集合:13,20192⎧⎫⋅⋅⋅⎨⎬⎩⎭,负分数集合:{}-2.5⋅⋅⋅,整数集合:{}0,2019⋅⋅⋅自然数集合:{}0,2019⋅⋅⋅,【解析】【分析】根据正有理数、负分数、整数、、以及自然数的定义,分别填入相应的集合即可.【详解】 正有理数集合:13,20192⎧⎫⋅⋅⋅⎨⎬⎩⎭,; 负分数集合:{}-2.5⋅⋅⋅,; 整数集合:{}0,2019⋅⋅⋅;自然数集合:{}0,2019⋅⋅⋅,【点睛】此题主要考查实数的分类,熟练掌握,即可解题.62.定义:对于一个数x ,我们把[x]称作x 的相伴数;若x ≥0,则[x]=x-1,若x<0,则[x]=x+1。

例:[0.5]=-0.5(1)求[43]= , [-3]= ;(2)当a>0,b<0时,有[a]=[b],试求(b-a)4-6(12a²b+52a-b)+3ba²+9b的值;(3)计算2[x]-[x+2].【答案】(1)13;-2;(2)﹣14;(3)当x<-2时,2[x]-[x+2] =x-1;当-2≤x<0时,2[x]-[x+2] =x+1;当x≥0时2[x]-[x+2]= x-3.【解析】【分析】(1)根据相伴数的定义计算即可;(2)先化简所求的整式,再根据相伴数的定义求出a、b的关系,然后代入即可;(3)根据相伴数的定义对x进行分类讨论即可.【详解】解:(1)根据题意:[43]=41133-=,[-3]= -3+1=-2;(2)(b-a)4-6(12a²b+52a-b)+3ba²+9b=(b-a)4-3a²b-15a+6b+3ba²+9b =(a-b)4-15(a-b)∵a>0,b<0,[a]=[b]∴a-1=b+1∴a-b=2将a-b=2代入,得:原式=24-15×2=﹣14;(3)①当x<0,x+2<0时,即x<-2时2[x]-[x+2]=2(x+1)-(x+2+1)=2x+2-x-3=x-1;②当x<0,x+2≥0时,即-2≤x<0时2[x]-[x+2]=2(x+1)-(x+2-1)=2x+2-x-1=x+1;③当x≥0,x+2≥0时,即x≥0时2[x]-[x+2]=2(x-1)-(x+2-1)=2x-2-x-1=x-3;综上所述:当x<-2时,2[x]-[x+2] =x-1;当-2≤x<0时,2[x]-[x+2] =x+1;当x≥0时2[x]-[x+2]= x-3.【点睛】此题考查的是定义新运算,掌握相伴数的定义和分类讨论的数学思想是解决此题的关键.63.计算下列各题:(1)1213663⎛⎫+-⨯ ⎪⎝⎭(2(3)2214572(2)6213⎛⎫-+÷--⨯- ⎪⎝⎭【答案】(1)-6;(2)-6;(3)-5【解析】【分析】(1)直接利用乘法分配律计算得出答案;(2)直接利用立方根以及算平方根化简得出答案;(3)直接利用有理数的混合运算法则计算得出答案.【详解】(1)原式=16×36+23×36−36 =6+24−36=−6;(2)原式=−2−5+1=−6;(3)原式=−25+18+2=−5.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.64.(1)已知4的算术平方根为a ,﹣27的立方根为b ,最大负整数是c ,则a=______,b=_____,c=_____;(2)将(1)中求出的每个数表示在数轴上.(3)用“<”将(1)中的每个数连接起来.【答案】(1)2,-3,-1;(2)见解析;(3)-3<-1<2.【解析】【分析】(1)根据算术平方根的定义,立方根的定义和最大负整数求出即可;(2)把各个数在数轴上表示出来即可;(3)根据实数的大小比较法则比较即可.【详解】(1)∵4的算术平方根为a,−27的立方根为b,最大负整数是c,∴a=2,b=−3,c=−1,故答案为:2,−3,−1;(2)在数轴上表示为:;(3)由熟知可得:−3<−1<2.【点睛】本题考查了算术平方根,立方根,正数和负数,数轴和实数的大小比较等知识点,能求出各个数是解此题的关键.65.画数轴,在数轴上表示下列各数,并用“<”号连接下列各数:﹣5,+2,﹣1.5,0,23,72 -.【答案】如图所示,见解析;725 1.50223-<-<-<<<.【解析】【分析】本题考察数在数轴上的表示方法,原点坐标为负数即小于零的数,原点右边为正数,即大于零的数,﹣5,+2,﹣1.5,0,23,72-可以按照顺序在数轴上表示出来.【详解】如图所示:725 1.50223-<-<-<<<.【点睛】考察数在数轴上的表示法,及数比较大小66.如果规定a bad bcc d=-,(1)求75 38;(2)当(1)(3)2(21)x xx x+--的值为1时,求x的值.【答案】(1)41;(2)27x=;【解析】【分析】(1)先展开,再根据有理数的运算法则求出即可;(2)先展开,再根据整式的运算法则进行计算,最后求出x即可.【详解】解:(1)7538=7×8﹣3×5=56﹣15=41;(2)∵(1)(3)2(21)x x x x +--=1,∴(x +1)(2x ﹣1)﹣2x (x ﹣3)=1,∴7x ﹣1=1, 即27x =.【点睛】此题考查了整式的混合运算,有理数的混合运算和解一元一次方程,能正确根据整式的运算法则和有理数的混合运算法则进行化简和计算是解此题的关键.67.计算:(1)113428⎛⎫-- ⎪⎝⎭(2)()()2352⎛-÷-- ⎝. 【答案】(1) 2.5;(2)-2.【解析】【分析】(1)先计算立方根,再用乘法分配律计算即可;(2)先计算乘方和开方,再计算除法和减法即可.【详解】(1)原式=113113(4)(4)(4)(4)428428⎛⎫--⨯-=⨯--⨯--⨯- ⎪⎝⎭=-1+2+1.5 =2.5; (2)原式=525(8)2⎛⎫÷---= ⎪⎝⎭-10+8=-2【点睛】本题考查了有理数的混合运算,正确运用运算律可以简化运算过程,正确确定符号是关键.68.观察下列等式:第1个等式:111113132a ⎛⎫==- ⎪⨯⎝⎭, 第2个等式:2111135235a ⎛⎫==- ⎪⨯⎝⎭, 第3个等式:3111157257a ⎛⎫==- ⎪⨯⎝⎭, 第4个等式:4111179279a ⎛⎫==- ⎪⨯⎝⎭… (1)按上述规律填空,第5个等式:a 5= = .(2)用含n 的代数式表示第n 个等式:a n = = (n 为正整数).(3)求a 1+a 2+a 3+…+a 50的值.【答案】(1)1911⨯,12(11911-);(2)1(21)(21)n n -+,11122121n n ⎛⎫- ⎪-+⎝⎭;(3)50101. 【解析】【分析】(1)根据题目中的式子的特点,找到规律,可以写出第五个等式;(2)根据题目中的式子的特点,总结出规律,利用规律即可写出第n 个等式;(3)根据(2)中的结果,将每一项拆分成两项 ,然后相加之和发现中间项可以抵消,然后再计算即可.【详解】解:(1)第1个等式:11111(1)13(211)(211)23a ===-⨯⨯-⨯⨯+, 第2个等式:21111135(221)(22351)2a ⎛⎫===- ⎪⨯⨯-⨯⨯+⎝⎭, 第3个等式:31111157(231)(23571)2a ⎛⎫===- ⎪⨯⨯-⨯⨯+⎝⎭, 第4个等式:41111179(241)(241)279a ⎛⎫===- ⎪⨯⨯-⨯⨯+⎝⎭… ∴第5个等式:511111(251)(251)9112911a ⎛⎫===- ⎪⨯-⨯⨯+⨯⎝⎭ ∴511119112911a ⎛⎫==- ⎪⨯⎝⎭故答案为:1911⨯,1112911⎛⎫- ⎪⎝⎭; (2)a n =1(21)(21)n n -+=11122121n n ⎛⎫- ⎪-+⎝⎭, 故答案为:1(21)(21)n n -+,11122121n n ⎛⎫- ⎪-+⎝⎭; (3)a 1+a 2+a 3+…+a 5011111111111(1)()()()23235257299101=-+-+-++- 11111111(1)23355799101=-+-+-++- 11(1)2101=- 11002101=⨯50101=【点睛】本题主要考查有理数的运算,找到规律是解题的关键.69.若(2a+4)2与|2b﹣1|互为相反数.(1)求a,b的值;(2)规定一种新运算:a*b=a+b,求(a2b)*(3ab)+5a2b﹣4ab的值.【答案】(1)a=﹣2,b=12;(2)13.【解析】【分析】(1)根据相反数的概念和平方,绝对值的非负性即可得出a,b的值;(2)直接利用已知运算公式结合整式的加减运算法则进而得出答案.【详解】解:(1)由(2a+4)2与|2b﹣1|互为相反数得(2a+4)2+|2b﹣1|=0,240,210a b∴+=-=,∴a=﹣2,b=12;(2)原式=a2b+3ab+5a2b﹣4ab =6a2b﹣ab把a=﹣2,b=12代入上式得:原式=6×(﹣2)2×12﹣(﹣2)×12=12+1=13.【点睛】本题主要考查相反数的概念,绝对值的非负性和整式的化简求值,掌握去括号,合并同类项的法则是解题的关键.70.把下列各数分别填入相应的集合里:﹣3,﹣222,0,37,﹣3.14,2018,0.070070007 (3)(1)负数集合:{ …};(2)正分数集合:{ …};(3)非负整数集合:{ …};(4)无理数集合:{ …}.【答案】(1)23,, 3.143---;(2)227;(3)0,2018;(4)0.070070007…,3π.【解析】【分析】根据实数的分类,逐一进行分类,可得答案.【详解】解:(1)负数集合:{23,, 3.143---…}; (2)正分数集合:{227…}; (3)非负整数集合:{0,2018…};(4)无理数集合:{0.070070007…,3π…}【点睛】本题主要考查实数的分类,掌握实数的分类是解题的关键.。

人教版七年级数学下册第六章第三节实数试题(含答案) (79)

人教版七年级数学下册第六章第三节实数试题(含答案) (79)

人教版七年级数学下册第六章第三节实数练习试题三(含答案)计算:(111-()()2212224⎛---⨯- ⎝ 【答案】(1) 2;(2) 6-【解析】【分析】(1)利用立方根定义和绝对值的代数意义计算即可;(2)分别进行乘方、开立方、开平方的运算,然后合并即可.【详解】11-3113=+--312=+-2=;(2)()221224⎛---⨯ ⎝ 1144242=--⨯-⨯ 411=---6=-.【点睛】本题考查了实数的运算,涉及了绝对值、乘方、开平方等知识,熟练掌握运算法则是解本题的关键.82.计算:(1)-12018+|-6|×12+(13)2×(-3)2 (2)0.25÷(-12)2-(0.875-156+34)×24 【答案】(1)3;(2)6【解析】【分析】(1)根据实数的运算法则,先乘除后加减;(2)根据实数的运算法则,先乘除后加减.【详解】(1)原式=-1+6×12+199⨯ =-1+3+1=3(2)原式=1711342424244864⎛⎫⨯-⨯-⨯+⨯ ⎪⎝⎭=1214418-+-=6【点睛】此题主要考查实数的运算,熟练掌握运算法则,即可解题.83是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,因为121的小数部分.请解答下列问题: 的整数部分是__________,小数部分是__________.(2)3的整数部分为a ,小数部分为b ,求1a b --的值.(3)已知9x y =+,其中x 是整数,且01y <<.则求x y +的平方根的值.【答案】(13;(2)4-;(3)±3【解析】【分析】(1的范围,即可得出答案;(23的范围,求出a 、b 的值,再代入求出即可;(3x 、y 的值,再代入求出即可.【详解】(1)∵<4,的整数部分是3-3;(2)∵,∴3<5,∴3-1,∴1a b --(3)∵,∴,∴,∴x=7,∴x y +=9,∴x y +的平方根是3±.【点睛】3、题的关键.84.定义:如果2b n =,那么称b 为n 的布谷数,记为()b g n =.例如:因为328=,所以()3(8)23g g ==,因为1021024=,所以()10(1024)210g g ==.(1)根据布谷数的定义填空:g (2)=________________,g (32)=___________________.(2)布谷数有如下运算性质:若m ,n 为正整数,则()()()=+g mn g m g n ,()()m g g m g n n ⎛⎫=- ⎪⎝⎭. 根据运算性质解答下列各题:①已知(7) 2.807g =,求 (14)g 和74g ⎛⎫ ⎪⎝⎭的值; ②已知(3)g p =.求(18)g 和316g ⎛⎫ ⎪⎝⎭的值. 【答案】(1)1;5;(2)①3.807,0.807;②12p +;4p -.【解析】【分析】(1)根据布谷数的定义把2和32化为底数为2的幂即可得出答案;(2)①根据布谷数的运算性质, g (14)=g (2×7)=g (2)+g (7),7(7)(4)4g g g ⎛⎫=- ⎪⎝⎭,再代入数值可得解; ②根据布谷数的运算性质, 先将两式化为2(18)(2)(3)g g g =+,3()(3)(16)16g g g =-,再代入求解. 【详解】解:(1)g (2)=g (21)=1,g (32)=g (25)=5;故答案为1,32;(2)①g (14)=g (2×7)=g (2)+g (7),∵g (7)=2.807,g (2)=1,∴g (14)=3.807;7(7)(4)4g g g ⎛⎫=- ⎪⎝⎭g (4)=g (22)=2, ∴74g ⎛⎫ ⎪⎝⎭=g (7)-g (4)=2.807-2=0.807;故答案为3.807,0.807;②∵()3g p =.∴22(18)(23)(2)(3)12g g g g p =⨯=+=+;3()(3)(16)416g g g p =-=-. 【点睛】本题考查有理数的乘方运算,新定义;能够将新定义的运算转化为有理数的乘方运算是解题的关键.85.把下列各数填在相应的横线上:﹣2.7,0.11,1113-,03π 非正数: ;正分数: ;自然数: ;无理数: ;正有理数: .【答案】﹣2.7,1113-,0;0.11,1.414;3π;0.111.414.【解析】【分析】 根据非正数,正分数,自然数,无理数,正有理数的定义,可得答案.【详解】解:非正数:﹣2.7,1113-,0; 正分数:0.11,1.414; 自然数:0;3π; 正有理数:0.11,1.414.故答案为:﹣2.7,1113-,0;0.11,1.414;03π;0.11,1.414. 【点睛】本题考查实数,掌握实数的分类是解题关键.86.若0<x <1,比较x 2,x 1x,这四个数的大小:_____.【答案】x 2<x 1x< 【解析】【分析】用特殊值法,根据实数大小的比较法则(实数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.)依次计算即可.【详解】解:取特殊值x =0.01,x2=0.0001,x =0.01=0.1,1x=10, 0.0001<0.01<0.1<10,则x 2<x 1x<.故答案为:x 2<x 1x <. 【点睛】本题考查实数大小比较的法则,解题的关键是牢记法则.87.先阅读内容,然后解答问题:因为:111111111111,,12223233434910910=-=-=-=-⨯⨯⨯⨯ 所以:1111122334910+++⋯+⨯⨯⨯⨯=1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭… =1﹣111111122334910+-+-+- =1﹣191010= 问题:(1)请你猜想(化为两个数的差):120152016⨯= ;120142016⨯= ;(2)若a 、b 为有理数,且|a ﹣1|+(ab ﹣2)2=0,求111(1)(1)(2)(2)ab a b a b +++++++…+1(2018)(2018)a b ++的值. 【答案】(1)1120152016-,1140284032-;(2)20192020. 【解析】【分析】 (1)根据题目中式子的特点可以写出猜想;(2)根据|a-1|+(ab-2)2=0,可以取得a 、b 的值,代入然后由规律对数进行拆分,从而可以求得所求式子的值.【详解】解:(1)1112015201620152016=-⨯, 111111()2014201622014201640284032=⨯-=-⨯, 故答案为:1120152016-,1140284032-; (2)∵|a ﹣1|+(ab ﹣2)2=0,∵a ﹣1=0,ab ﹣2=0,解得,a =1,b =2, ∵1111+(1)(1)(2)(2)(2018)(2018)ab a b a b a b +++++++++…… =111112233420192020+++⋯+⨯⨯⨯⨯ =1﹣1111111+2233420192020+-+-+-…… =1﹣12020=20192020. 【点睛】本题考查数字的变化类、非负数的性质、有理数的混合运算,解答本题的关键是明确题意,求出所求式子的值.88.阅读下列材料:小亮为了计算2201720182019122222+++⋅⋅⋅+++的值,采用以下方法:设2201720182019122222S =+++⋅⋅⋅+++①则232018201920202222222 S =+++⋅⋅⋅+++②②①-得()()2320182019202022017201820192222222122222S S -=+++⋅⋅⋅+++-+++⋅⋅⋅+++232018201920202201720182019222222122222S ∴=+++⋅⋅⋅+++----⋅⋅⋅--- 202021S ∴=-2201720182010920212222212∴=+++⋅⋅⋅++-+请仿照小亮的方法.......解决以下问题: (1)291012222+++⋅⋅⋅++=______;(2)2991333+++⋅⋅⋅+=______;(3)求21n a a a +++⋅⋅⋅+的值(0a >,n 是正整数,请写出计算过程).【答案】(1)1121- ;(2)100312-; (3)当1a =时,1S n =+当1a ≠时,n 11a 1S a +--= 【解析】【分析】(1)根据题意可知291012222S =+++++ ,左右两边同时乘以2,得到23910112222222S =++++++,两式相减即可求出答案.(2)根据题意可知2991333S =++++,左右两边同时乘以3,得到2399100333333S =+++++,两式相减即可求出答案.(3)根据题意可知21n S a a a =+++⋅⋅⋅+,左右两边同时乘以a ,得231n n aS a a a a a +=+++⋅⋅⋅++,两式相减即可求出答案.【详解】(1)设291012222S =+++++① 则23910112222222S =++++++②②-①得1121S =- (2)设2991333S =++++① 则2399100333333S =+++++②100231S =-100312S -∴= (3)设21n S a a a =+++⋅⋅⋅+①则231n n aS a a a a a +=+++⋅⋅⋅++②②-①得1(1)1n a S a +-=-当1a =时,1S n =+当1a ≠时,n 11a 1S a +--= 【点睛】本题主要考查了错位相减法求一组规律数的和,掌握题目中给出的信息,找到规律是解题的关键.89.对于有理数a ,b ,定义一种新运算“”.规定:a b a b a b =++-.例如121212=++- 31=+4= (1)计算()24-的值; (2)若a ,b 在数轴上的位置如图所示,化简a b .【答案】(1)8;(2)2a -【解析】(1)根据新定义计算可得出答案;(2)由数轴可知,a b 的正负,从而判断出,a b a b +-的正负,再利用绝对值的性质化简即可.【详解】(1)()2(4)2(24)2684=+-+--=+-=(2)由数轴可知0,0a b <>,且a b >∴0,0a b a b +<-<()()2a b a b a b a b a b a b a b a ∴=++-=-+--=---+=-【点睛】本题主要结合绝对值的性质考查了新运算,掌握绝对值的性质是解题的关键. 90.计算(1)5-(-13)+(﹣29)(22(3)-12019-|-4|+(-5)2× 25【答案】(1)-11;(2)-10;(3)5.【解析】【分析】(1)根据有理数加减运算法则计算即可;(2)先去括号,再根据有理数的加减运算法则计算即可;(3)先算乘方、去绝对值,再进行乘法的运算,最后进行有理数的加减运算即可.【详解】(1)解:原式=5+13-29=18-29=-11.(2)解:原式=4+2-16=-10.(3)解:原式=-1-4+25×25=-5+10=5.【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质进行化简.。

人教版初中七年级下册数学第六章单元测试卷(3)(附答案解析)

人教版初中七年级下册数学第六章单元测试卷(3)(附答案解析)

单元检测卷一.选择题.1.(3分)一块面积为10m2的正方形草坪,其边长()A.小于3m B.等于3m C.在3m与4m之间D.大于4m2.(3分)﹣是的()A.相反数B.倒数C.绝对值D.算术平方根3.(3分)若a=,则估计a的值所在的范围是()A.1<a<2 B.2<a<3 C.3<a<4 D.4<a<54.(3分)如图所示,下列存在算术平方根的是()A.a﹣b B.ab C.b﹣a D.a+b5.(3分)若式子+有意义,则x的取值范围是()A.x≥2 B.x≤3 C.x≥3 D.2≤x≤36.(3分)下列说法不正确的是()A.无理数是无限不循环小数B.凡带根号的数都是无理数C.开方开不尽的数是无理数D.数轴上的点不是表示有理数,就是表示无理数7.(3分)已知a≠0,a、b互为相反数,则下列各组数中互为相反数的有()①a+1与b+1;②2a与2b;③与;④与.A.1组 B.2组 C.3组 D.4组8.(3分)(﹣0.7)2的平方根是()A.﹣0.7 B.±0.7 C.0.7 D.0.499.(3分)下列式子中,正确的是()A.10<<11 B.11<<12 C.12<<13 D.13<<14 10.(3分)在实数﹣7,0.9,,﹣,,中,无理数有()A.1个 B.2个 C.3个 D.4个11.(3分)如图,数轴上A、B两点对应的实数分别是1和,若点A关于点B 的对称点为点C,则点C所对应的实数为()A.B.1+C.2+D.+1二.填空题.12.(3分)的值为.13.(3分)写出一个3到4之间的无理数.14.(3分)﹣8的立方根与4的平方根之和为.15.(3分)若|x﹣1|=,则x=.16.(3分)观察分析下列数据,按规律填空:,2,,2,,…,(第n个数).三.解答题.17.计算.(1)++(2)|﹣|+.18.已知5+的小数部分是a,4﹣的小数部分是b,求a+b的值.19.求满足下列各式x的值.(1)2y2﹣8=0(2)(x+3)3=﹣27.20.若c=,其中a=6,b=8,求c的值.21.若c2=a2+b2,其中c=25,b=15,求a的值.22.已知一个正方体的体积是1000cm3,现在要在它的8个角上分别截去8个大小相同的小正方体,使截去后余下的体积是488cm3,问截得的每个小正方体的棱长是多少?23.我们可以把根号外的数移到根号内,从而达到化简的目的.例如:2==.(1)请仿照上例化简.①3②﹣(2)请化简a.参考答案与试题解析一.选择题.1.(3分)一块面积为10m2的正方形草坪,其边长()A.小于3m B.等于3m C.在3m与4m之间D.大于4m【考点】2B:估算无理数的大小.【分析】易得正方形的边长,看在哪两个正整数之间即可.【解答】解:正方形的边长为,∵<<,∴3<<4,∴其边长在3m与4m之间,故选C.【点评】考查估算无理数的大小;常用夹逼法求得无理数的范围.2.(3分)﹣是的()A.相反数B.倒数C.绝对值D.算术平方根【考点】28:实数的性质.【分析】和为0的两数为相反数,由此即可求解.【解答】解:∵﹣+=0,∴﹣是的相反数.故选:A.【点评】本题主要考查了相反数的概念:两个相反数它们符号相反,绝对值相同.3.(3分)若a=,则估计a的值所在的范围是()A.1<a<2 B.2<a<3 C.3<a<4 D.4<a<5【考点】2B:估算无理数的大小.【专题】11 :计算题.【分析】应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围即可求解.【解答】解:∵16<20<25,∴4<<5.故选:D.【点评】此题主要考查了无理数的估算能力,“夹逼法”是估算的一般方法,也是常用方法.4.(3分)如图所示,下列存在算术平方根的是()A.a﹣b B.ab C.b﹣a D.a+b【考点】22:算术平方根.【分析】根据a、b在数轴上的位置确定出b﹣a<0,a+b<0,a﹣b>0,ab<0,然后再根据算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根可得a﹣b有算术平方根.【解答】解:根据数轴可得:a>0,b<0,|a|<|b|,则:b﹣a<0,a+b<0,a﹣b>0,ab<0,存在算术平方根的是a﹣b,故选:A.【点评】此题主要考查了算术平方根,关键是掌握算术平方根的概念,非负数a 的算术平方根a 有双重非负性:①被开方数a是非负数;②算术平方根a 本身是非负数.5.(3分)若式子+有意义,则x的取值范围是()A.x≥2 B.x≤3 C.x≥3 D.2≤x≤3【考点】72:二次根式有意义的条件.【专题】11 :计算题.【分析】根据二次根式有意义的条件可得,然后再解不等式组可得解集.【解答】解:由题意得,解①得:x≥2,解②得:x≤3,不等式组的解集为:2≤x≤3,故选:D.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.6.(3分)下列说法不正确的是()A.无理数是无限不循环小数B.凡带根号的数都是无理数C.开方开不尽的数是无理数D.数轴上的点不是表示有理数,就是表示无理数【考点】26:无理数.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合选项进行选择.【解答】解:A、无理数是无限不循环小数,该说法正确,故本选项错误;B、不是所有根号的数都是无理数,例如是有理数,原说法错误,故本选项正确;C、开方开不尽的数是无理数,该说法正确,故本选项错误;D、数轴上的点不是表示有理数,就是表示无理数,该说法正确,故本选项错误.故选B.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.7.(3分)已知a≠0,a、b互为相反数,则下列各组数中互为相反数的有()①a+1与b+1;②2a与2b;③与;④与.A.1组 B.2组 C.3组 D.4组【考点】28:实数的性质.【分析】根据互为相反数的和为0,可得两个数的关系.【解答】解:a≠0,a、b互为相反数,①a+1+b+1=2,故①不是相反数;②2a+2b=2(a+b)=0,故②是相反数;③0,故③不是相反数;④=0,故④是相反数.故选:B.【点评】本题考查了相反数,注意不为0的两个数的和为0,这两个数互为相反数.8.(3分)(﹣0.7)2的平方根是()A.﹣0.7 B.±0.7 C.0.7 D.0.49【考点】21:平方根.【专题】11 :计算题.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根.【解答】解:∵(﹣0.7)2=0.49,又∵(±0.7)2=0.49,∴0.49的平方根是±0.7.故选B.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.9.(3分)下列式子中,正确的是()A.10<<11 B.11<<12 C.12<<13 D.13<<14【考点】2B:估算无理数的大小.【专题】11 :计算题.【分析】先把127前后的两个完全平方数找到,即可判断的范围.【解答】解:∵102=100,112=121,122=144,且121<127<144,∴11<<12故选B.【点评】此题要考查了利用平方的方法来估算无理数的大小,要求小数熟练掌握平方根的性质.10.(3分)在实数﹣7,0.9,,﹣,,中,无理数有()A.1个 B.2个 C.3个 D.4个【考点】26:无理数.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【解答】解:=3,无理数有:,,共2个.故选B.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.11.(3分)如图,数轴上A、B两点对应的实数分别是1和,若点A关于点B 的对称点为点C,则点C所对应的实数为()A.B.1+C.2+D.+1【考点】29:实数与数轴.【分析】设点C所对应的实数是x.根据中心对称的性质,即对称点到对称中心的距离相等,即可列方程求解.数轴上两点间的距离等于数轴上表示两个点的数的差的绝对值,即较大的数减去较小的数.【解答】解:设点C所对应的实数是x.则有x﹣=﹣1,x=2﹣1.故选A.【点评】此题主要考查了数轴上两点间的距离的计算方法以及中心对称的性质,解题关键利用对称的性质及数轴上两点间的距离解决问题.二.填空题.12.(3分)的值为1.【考点】73:二次根式的性质与化简;6E:零指数幂;6F:负整数指数幂.【专题】11 :计算题.【分析】根据0指数,负整数指数的性质,二次根式的性质进行计算.【解答】解:原式=(﹣2)+1+2=1.故答案为:1.【点评】本题考查了0指数,负整数指数的性质,二次根式的性质.a﹣p=(a ≠0),a0=1(a≠0),=a(a≥0).13.(3分)写出一个3到4之间的无理数π.【考点】2B:估算无理数的大小.【专题】26 :开放型.【分析】按要求找到3到4之间的无理数须使被开方数大于9小于16即可求解.【解答】解:3到4之间的无理数π.答案不唯一.【点评】本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.14.(3分)﹣8的立方根与4的平方根之和为0或﹣4.【考点】2C:实数的运算;21:平方根;24:立方根.【专题】11 :计算题.【分析】利用平方根及立方根的定义列出算式,计算即可得到结果.【解答】解:根据题意得:﹣8的立方根为﹣2,4的平方根为±2,则﹣8的立方根与4的平方根之和为0或﹣4.故答案为:0或﹣4.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.15.(3分)若|x﹣1|=,则x=+1,1﹣.【考点】28:实数的性质.【专题】11 :计算题.【分析】根据到一点距离相等的点有两个,可得答案.【解答】解:|x﹣1|=,x﹣1=或x﹣1=﹣,x=+1,或x=1﹣,故答案为:+1,1﹣.【点评】本题考查了实数的性质,到一点距离相等的点有两个,注意不要漏掉.16.(3分)观察分析下列数据,按规律填空:,2,,2,,…,(第n个数).【考点】37:规律型:数字的变化类.【专题】2A :规律型.【分析】第一数为;第二个数为;第3个数为,那么第n个数为.【解答】解:第n个数为.【点评】解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.三.解答题.17.计算.(1)++(2)|﹣|+.【考点】2C:实数的运算.【专题】11 :计算题.【分析】(1)原式利用平方根及立方根的定义化简,计算即可得到结果;(2)原式利用绝对值及二次根式的化简公式计算即可得到结果.【解答】解:(1)原式=9﹣3+4=10;(2)原式=﹣+3﹣=3﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.已知5+的小数部分是a,4﹣的小数部分是b,求a+b的值.【考点】2B:估算无理数的大小.【专题】11 :计算题.【分析】首先得出的取值范围,进而分别得出a,b的值,即可得出答案.【解答】解:∵<<,∴2<<3,∴5+的小数部分是a,则a=5+﹣7=﹣2+,∵4﹣的小数部分是b,∴b=4﹣﹣1=3﹣,∴a+b的值为:﹣2++3﹣=1.【点评】此题主要考查了估计无理数的方法,得出a,b的值是解题关键.19.求满足下列各式x的值.(1)2y2﹣8=0(2)(x+3)3=﹣27.【考点】24:立方根;21:平方根.【专题】11 :计算题.【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)方程利用立方根的定义化简即可求出解.【解答】解:(1)方程变形得:y2=4,开方得:y=±2;(2)开立方得:x+3=﹣3,解得:x=﹣6.【点评】此题考查了立方根,以及平方根,熟练掌握各自的定义是解本题的关键.20.若c=,其中a=6,b=8,求c的值.【考点】22:算术平方根.【专题】11 :计算题.【分析】将a与b的值代入已知等式计算即可求出c的值.【解答】解:当a=6,b=8时,c=====10.【点评】此题考查了算术平方根,熟练掌握平方根定义是解本题的关键.21.若c2=a2+b2,其中c=25,b=15,求a的值.【考点】22:算术平方根.【专题】11 :计算题.【分析】将b与c代入已知等式计算即可求出a的值.【解答】解:将c=25,b=15,代入c2=a2+b2,得625=a2+225,∴a2=400,解得:a=±20.【点评】此题考查了算术平方根,熟练掌握平方根定义是解本题的关键.22.已知一个正方体的体积是1000cm3,现在要在它的8个角上分别截去8个大小相同的小正方体,使截去后余下的体积是488cm3,问截得的每个小正方体的棱长是多少?【考点】24:立方根.【专题】12 :应用题.【分析】由于个正方体的体积是1000cm3,现在要在它的8个角上分别截去8个大小相同的小正方体,使截去后余下的体积是488cm3,设截得的每个小正方体的棱长xcm,根据已知条件可以列出方程1000﹣8x3=488,解方程即可求解.【解答】解:设截得的每个小正方体的棱长xcm,依题意得1000﹣8x3=488,∴8x3=512,∴x=4,答:截得的每个小正方体的棱长是4cm.【点评】此题主要考查了立方根的应用,其中求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号.23.我们可以把根号外的数移到根号内,从而达到化简的目的.例如:2==.(1)请仿照上例化简.①3②﹣(2)请化简a.【考点】73:二次根式的性质与化简.【专题】11 :计算题.【分析】(1)利用已知计算方法将根号外的因数平方后移到根号内部即可;(2)利用已知计算方法将根号外的因式平方后移到根号内部即可,注意符号.【解答】解:(1)①3==,②﹣=﹣=﹣;(2)a=﹣=﹣.【点评】此题主要考查了二次根式的化简,正确确定二次根式的符号是解题关键.。

人教版七年级数学下册第六章《 实数》单元同步复习题及答案

人教版七年级数学下册第六章《 实数》单元同步复习题及答案

第六章《实数》单元同步检测试卷一.选择题(共10小题)1.下列各数3.14,,0.,,2.131 331 333 1…(相邻两个1之间3的个数逐次多1),,,其中无理数的个数为()A.2个B.3个C.4个D.5个2.在如图所示的数轴上表示﹣2的点在()A.点A和点B之间B.点B和点C之间C.点C和点D之间D.点D和点E之间3.若a=,b=﹣|﹣|,c=,则a、b、c的大小关系是()A.a>b>c B.c>a>b C.b>a>c D.c>b>a4.当式子的值取最小值时,a的取值为()A.0B.C.﹣1D.15.有一个数值转换器,流程如下:当输入x的值为64时,输出y的值是()A.2B.C.D.6.已知,则的平方根为()A.1B.C.±1D.7.,,则1720的平方根为()A.13.11B.±13.11C.41.47D.±41.478.下列说法:①=﹣10;②数轴上的点与实数成一一对应关系;③﹣3是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,正确的个数有()A.2个B.3个C.4个D.5个9.若把﹣写成整数a与正的纯小数x的和,那么整数a的值为()A.﹣3B.﹣4C.﹣5D.﹣610.如图,O为原点,实数a、b、c在数轴上对应的点分别为A、B、C,则下列结论正确的是()A.ac<bc B.c2<ac C.b2<bc D.ab<bc二.填空题(共5小题)11.若一个数x的平方根是m﹣3和m﹣7,那么这个数x是.12.已知2x+1的平方根是±3,则﹣5x﹣7的立方根是.13.若k<<k+1(k是整数),则k=.14.当x取时,代数式2﹣取值最大,并求出这个最大值.15.小亮求的近似值,下面是他的草稿纸上的部分内容:3.52=12.25,3.82=14.44,3.92=15.21,3.852=14.8225,3.872=14.9769,3.882=15.0544,3.8752=15.015625依据以上数据,可以得到的近似值(精确到0.01)是.三.解答题(共6小题)16.把下列各数填在相应的大括号中3.1415926,8,,0.275,0,﹣,﹣6,π,﹣0.25,﹣|﹣2|,2.5353353335…分数:{…}非负整数:{…}无理数:{…}.17.已知2a﹣1的算术平方根是3,3a+b﹣9的立方根是2,c是的整数部分,求7a﹣2b﹣2c的平方根.18.(1)若x,y为实数,且x=+4,求(x﹣y)2的平方根;(2)已知x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.19.阅读理解∵<<,即2<<3.∴1<﹣1<2∴﹣1的整数部分为1.∴﹣1的小数部分为﹣2.解决问题:已知a是﹣3的整数部分,b是﹣3的小数部分,求(﹣a)3+(b+4)2的平方根.20.定义:可以表示为两个互质整数的商的形式的数称为有理数,整数可以看作分母为1的有理数;反之为无理数.如不能表示为两个互质的整数的商,所以,是无理数.可以这样证明:设与b是互质的两个整数,且b≠0.则a2=2b2因为b是整数且不为0,所以,a是不为0的偶数,设a=2n,(n是整数),所以b2=2n2,所以b也是偶数,与a,b是互质的正整数矛盾.所以,是无理数.仔细阅读上文,然后,请证明:是无理数.21.阅读下面的文字,解答问题大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:<<,即2<<3,∴的整数部分为2,小数部分为(﹣2)请解答:(1)的整数部分是,小数部分是.(2)如果的小数部分为a,的整数部分为b,求|a﹣b|+的值.(3)已知:9+=x+y,其中x是整数,且0<y<1,求x﹣y的相反数.参考答案一.选择题(共10小题)1.B.2.C.3.D.4.B.5.C.6.C.7.D.8.C.9.C.10.A.二.填空题(共5小题)11.412.﹣3.13.9.14.5,2.15.3.87.三.解答题(共6小题)16.解:分数:{3.1415926,,0.275,﹣,﹣0.25};非负整数:{8,9,0};无理数:{π,2.5353353335…},故答案为:3.1415926,,0.275,﹣,﹣0.25;8,9,0,;π,2.5353353335…,17.解:∵2a﹣1的算术平方根是3,∴2a﹣1=9,∴a=5,∵3a+b﹣9的立方根是2,∴3a+b﹣9=8,∴b=2,∵c是的整数部分,,∴c=3,∴7a﹣2b﹣2c=35﹣4﹣6=25,∴7a﹣2b﹣2c的平方根是±5.18.解:(1)由题意得:,解得y=3,∴x=4,∴(x﹣y)2=1,∴(x﹣y)2的平方根是±1.(2)由x﹣2的平方根是±2,2x+y+7的立方根是3,得x﹣2=4,2x+y+7=27,解得x=6,y=8.∴x2+y2=100,∴x2+y2的算术平方根是10.19.解:∵<<,∴4<<5,∴1<﹣3<2,∴a=1,b=﹣4,∴(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17=16,∴(﹣a)3+(b+4)2的平方根是:±4.20.解:设与b是互质的两个整数,且b≠0.则,a2=5b2,因为b是整数且不为0,所以a不为0且为5的倍数,设a=5n,(n是整数),所以b2=5n2,所以b也为5的倍数,与a,b是互质的正整数矛盾.所以是无理数.21.解:(1)∵,∴的整数部分是7,小数部分是﹣7.故答案为:7;﹣7.(2)∵,∴,∵,∴b=2,∴|a﹣b|+===5.(3)∵,∴11<9+<12,∵9+=x+y,其中x是整数,且0<y<1,∴x=11,y==,∴x﹣y==,∴x﹣y的相反数是:.。

新人教版初中数学七年级下册第六章《实数》单元测试及答案

新人教版初中数学七年级下册第六章《实数》单元测试及答案

人教版七年级数学下册章末质量评估第六章实数人教版七年级数学下册第六章实数单元检测卷一、选择题1. 若一个数的算术平方根等于它的相反数,则这个数是( D )A.0 B. 1C.0或1 D . 0或± 12.以下各式建立的是 ( C )A.=-1B.=± 1C.=- 1D.=± 13.与最靠近的整数是 ( B )A. 0B. 2C. 4D. 54.. 若x- 3 是 4 的平方根,则x 的值为( C)A. 2B.±2C.1或5 D. 165.以下说法中,正确的个数有( A )①两个无理数的和是无理数;②两个无理数的积是有理数;③无理数与有理数的和是无理数;④有理数除以无理数的商是无理数.A.1个B.2个C.3个D.4个6.以下选项中正确的选项是(C)A. 27 的立方根是± 3B.的平方根是± 4C. 9 的算术平方根是3D.立方根等于平方根的数是17.. 用计算器计算44.86 的值为 ( 精准到 0.01)( C )A. 6.69 B.6.7 C.6.70 D.± 6.708.一个底面是正方形的水池,容积是11.52m 3,池深 2m,则水池底边长是( C ) A. 9.25m B.13.52m C.2.4m D.4.2m9. 比较 2, ,的大小 , 正确的选项是( C )A.2<<B.2<<C.<2<D.<<210. 假如一个实数的算术平方根等于它的立方根,那么知足条件的实数有 (C)A .0 个B . 1 个 om]C .2 个D . 3 个二、填空题11. 3 的算术平方根是 ____ 3____.12. (1) 一个正方体的体积是 216cm 3,则这个正方体的棱长是____6________cm ;(2) 表示 _______9_____ 的立方根;13. 已知 a , b 为两个连续整数,且 a< 15<b ,则 a + b 的值为 7 .14. 已知一个有理数的平方根和立方根相同,则这个数是 ______0______ .15.实数 1- 2的相反数是2 - ,绝对值是 2- .113____3, 415. 0________.16.写出 9到 23之间的全部整数: 三、解答题17. 求以下各数的平方根和算术平方根:(1)1.44 ;解: 1.44 的平方根是 ± 1.44 =±1.2 ,算术平方根是1.44 = 1.2.169(2) 289;169169 13 169 13 解: 289的平方根是 ±289= ±17, 算术平方根是289=17.92(3)( - 11) .解: (-9 )2 的平方根是±(-9)2=±9 ,算术平方根是(-9 )2=9.[]1111111111 18.已知一个正数x 的两个平方根分别是3-5m和 m- 7,求这个正数x 的立方根.由已知得 (3 - 5m)+ (m- 7)=0 ,-4m- 4=0,解得: m=-1.因此 3- 5m=8, m- 7=- 8.2因此 x=( ±8) =64.19.计算:(1)2+3 2-5 2;(2)2(7- 1) +7;431(3) 0.36 ×÷;1218(4)|3-2| +| 3-2| -| 2-1| ;34(5)1-0.64 --8+-|7- 3|.25解: (1)原式=(1+3-5)×2=- 2.(2)2(7-1)+7= 27- 2+7=37- 2.2 1(3)原式= 0.6×11÷2人教版七年级数学下册第六章实数章末综合测试卷一.选择题(共10 小题)1.以下式子,表示 4 的平方根的是()A.4B.42C. -4D.±42.若a是无理数,则a 的值能够是()1A.4B. 1C. 2D.93.已知实数a, b 在数轴上对应的点如下图,则以下式子正确的选项是()A. -a<-b B. a+b<0C. |a|<|b|D.a-b>04.实数 3的大小在以下哪两个整数之间,正确的选项是()A.0和1B.1和2C.2和3D.3和 45.若一个正方形的面积为7,它的周长介于两个相邻整数之间,这两个相邻整数是()A.9,10B. 10,11C. 11,12D.12,136.在 -3、 0、 6、 4 这四个数中,最大的数是()A. -3B. 0C. 6D.47.以下说法正确的选项是()A.立方根等于它自己的实数只有0 和 1B .平方根等于它自己的实数是 0C . 1 的算术平方根是± 1D .绝对值等于它自己的实数是正数8.已知 a , b 为两个连续整数,且 a< 13<b,则 a+b 的值为()A .9B . 8C . 7D .69.假如一个实数的平方根与它的立方根相等,则这个数是()A .0B .正实数C .0和1D .110.有以下说法:①实数与数轴上的点一一对应; ②2- 7的相反数是 7-2;③在1和3 之间的无理数有且只有2, 3, 5, 7这4个;④ 2+3x-4x2是三次三项式;⑤绝对值等于自己的数是正数; 此中错误的个数为()A .1B . 2C . 3D .4二.填空题(共 6 小题)11. 4 的算术平方根是 ,-64 的立方根是 .12.若 m 为整数,且 5<m<10,则 m=13.某个正数的平方根是 x 与 y,3x-y 的立方根是 2,则这个正数是 .14.已知实数 a 、 b 都是比 2 小的数,此中 a 是整数, b 是无理数,请依据要求,分别写出一个 a 、 b 的值: a=, b=.15.如图,在数轴上点A ,B 表示的数分别是1,-2,若点B ,C 到点A 的距离相等,则点C所表示的数是.16.如图,长方形内有两个相邻的正方形, 面积分别为 4 和 3 ,那么暗影部分的面积为 .三.解答题(共 7 小题)17.求 x 的值:(1)2x 2-32=0;(2)(x-1)3=2743-64|+(-3)23 12518.计算:-|-27919.已知 2 的平方等于 a,2b-1 是 27 的立方根 , ± c-2表示 3 的平方根.( 1)求 a,b,c 的值;( 2)化简对于 x 的多项式: |x-a|-2(x+b)-c, 此中 x < 4.20.正数 x 的两个平方根分别为 3-a 和 2a+7.( 1)求 a 的值;( 2)求 44-x 这个数的立方根.21.定义新运算:对随意实数a 、b ,都有 a △ b=a 2-b 2,比如: (3△ 2)=32 -22=5,求 (1△ 2)△ 4的值.22.如图甲,这是由8 个相同大小的立方体构成的魔方,整体积为 64cm 3.( 1)这个魔方的棱长为 cm;( 2)图甲中暗影部分是一个正方形ABCD,求这个正方形的边长;(3)把正方形 ABCD 搁置在数轴上,如图乙所示,使得点A 与数1 重合,则 D 在数轴上表示的数为.23.有两个大小完整相同的长方形 OABC 和 EFGH 重合放在一同,边 OA 、 EF 在数轴上, O 为数轴原点(如图 1),长方形 OABC 的边长 OA 的长为 6 个坐标单位.( 1)数轴上点 A 表示的数为.( 2)将长方形 EFGH 沿数轴所在直线水平挪动①若挪动后的长方形 EFGH 与长方形 OABC 重叠部分的面积恰巧等于长方形OABC 面积的1 ,则3挪动后点 F 在数轴上表示的数为.②若出行 EFGH 向左水平挪动后, D 为线段 AF 的中点,求当长方形EFGH 挪动距离 x 为什么值时, D、 E 两点在数轴上表示的数是互为相反数?答案:1.D2.C3.C4.B5.B6.D7.B8.C9.A10.C11.2,-412.313.414.1,15.2+16.2-317. 解:( 1)∵ 2x2-32=0,∴2x2=32,则 x2=16,因此 x=±4 ;(2)∵(x-1)3=27,∴x-1=3,则 x=4.18.2 5解:原式=3-4+3- 3=-2.19.解:( 1)由题意知 a=22=4,2b-1=3 ,b=2;c-2=3, c=5;(2)∵ x<4,∴|x-a|-2 ( x+b)-c=|x-4|-2 ( x+2) -5=4-x-2x-4-5=-3x-5.20. 解:( 1)∵正数 x 的两个平方根是3-a 和 2a+7,∴3-a+ (2a+7)=0,解得: a=-10( 2)∵ a=-10, ∴ 3-a=13, 2a+7=-13. ∴这个正数的两个平方根是± 13,∴这个正数是 169. 44-x=44-169=-125 , -125 的立方根是 -5.21. 解:( 1△ 2)△ 4 =( 12-22)△ 4=( -3)人教版七年级数学下册第六章实数章末能力测试卷一.选择题(共 10 小题)1.计算: 27 =()A .3B .± 3C .3 3D .332 3, π,此中,无理数共有() 2.以下实数 0,,3A .1 个B .2 个C .3 个D .4 个22)3.若 a =4,b =9,且 ab<0,则 a-b 的值为(A . -2B .± 5C .5D .-54.假如一个实数的平方根与它的立方根相等,则这个数是()A .0B .正实数C .0和1D .15.给出以下说法:① -2 是 4 的平方根;②9 的算术平方根是9;③327 =-3;④ 2 的平方根是2 .此中正确的说法有()A .0 个B .1 个C .2 个D .3 个6.以下变形正确的选项是( )A . 17=±4B . 3 27 =±3C . ( 4)2 =-4D . ± 121 =± 119 37.一个数的立方根是 4 ,这个数的平方根是( )A .8B . -8C .± 8D .± 48.实数 a 、 b 在数轴上的对应点的地点如下图,则正确的结论是( ) A . b>-2B . -b<0C . -a>bD .a>-b9.在数 -3,-(-2),0, 9 中,大小在 -1 和 2 之间的数是()A . -3B . -(-2)C .0D . 910.如图将 1、2 、3 、 6 按以下方式摆列.若规定(m,n)表示第 m 排从左向右第n 个数,则 (5,4)与 (15,8)表示的两数之积是( )A .1B . 2C . 6D .3 2二.填空题(共 6 小题)11.4的平方根是, 1 的立方根是,16 的算术平方根是.912. 16 的算术平方根与 -8 的立方根之和是.13.一个正方体,它的体积是棱长为 2cm 的正方体的体积的 8 倍,则这个正方体的棱长是cm .14.对于正实数 a , b 作新定义: a ⊙ b=2 ab, 若 25 ⊙ x 2=4,则 x 的值为 .15.|15 4|=.16.数轴上从左到右挨次有 A 、B 、C 三点表示的数分别为a 、b 、 10, 此中 b 为整数,且满足|a+3|+|b-2|=b-2, 则 b-a=.三.解答题(共7 小题)4 | 364 |( 3)2 3 12517.计算:27918.求以下各式中x 的值:2(1)9x -4=0;(2)(3x-1)3 +64=0.31和 a+13,求这个数的立方根.19.已知一个数的两个平方根分别是220.已知 -8 的平方等于a, b 的平方等于121,c 的立方等于 -27,d 的算术平方根为5.(1)写出 a,b,c,d 的值;(2)求 d+3c 的平方根;(3)求代数式 a-b2+c+d 的值.21.有一个边长为 9cm 的正方形和一个长为 24cm 、宽为 6cm 的长方形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少厘米?22.已知表示a, b 两个实数的点在数轴上的地点如下图,化简|a-b|+|a+b|.23.阅读达成问题:数轴上,已知点A、 B、 C.此中, C 为线段 AB 的中点:AB 的长为,C 点表示的数(1)如图,点 A 表示的数为 -1,点 B 表示的数为3,则线段为;(2)若点 A 表示的数为 -1,C 点表示的数为2,则点 B。

人教版数学七年级下册第六章实数检测题测试卷(含答案)

人教版数学七年级下册第六章实数检测题测试卷(含答案)

人教版七年级下册第六章实数检测题测试卷(含答案)一、选择题(每题3分,共30分) 1.下列各数中为无理数的是( )A.9B .3.14C .πD .02.在实数-13,-1,0,3中,最小的实数是( )A .-1B .0C .-13D. 33.116的平方根是( )A .±12B .±14C.14 D.12 4.若a 3=-27,则a 的倒数是( )A .3B .-3C.13D .-135.面积为8的正方形的边长在( )A .0和1之间B .1和2之间C .2和3之间D .3和4之间6.下列等式正确的是( )A.22=2B.33=3C.44=4D.55=57.下列命题是真命题的是( )A .如果一个数的相反数等于这个数本身,那么这个数一定是0B .如果一个数的倒数等于这个数本身,那么这个数一定是1C .如果一个数的平方等于这个数本身,那么这个数一定是0D .如果一个数的算术平方根等于这个数本身,那么这个数一定是0 8.制作一个表面积为30 cm 2的无盖正方体纸盒,则这个正方体纸盒的棱长是( ) A. 6 cmB. 5 cmC.30 cmD .±5 cm9.已知x -1的立方根是1,2y +2的算术平方根是4,则x +y 的平方根是( )A .9B .±9C .±3D .310.已知实数a ,b 在数轴上对应的点的位置如图所示,则下列式子正确的是( )(第10题)A.ab>0 B.a+b<0 C.|a|<|b| D.a-b>0二、填空题(每题3分,共24分)11.4的算术平方根是_______,9的平方根是_______,-8的立方根是_______.12.已知a为实数,若-a2有意义,则-a2=________.13.计算:|2-3|+2=________.14.一个正数的平方根分别是x+1和x-5,则x=________.15.实数28-2的整数部分是________.16.如图,数轴上A,B两点之间表示整数的点有________个.(第16题)17.已知 2 019≈44.93,201.9≈14.21,那么20.19≈__________.18.一个数值转换器,原理如图所示.当输入x为512时,输出y的值是________.(第18题)三、解答题(19题16分,20,22题每题8分,21,23题每题10分,24题14分,共66分)19.计算:(1)0.09+38-14;(2) 33-2(3-1);(3)|3-32|-32-(-5)2;(4)214-(-2)4+31-1927-(-1)2 019.20.求下列各式中x的值:(1)(x+2)3+1=7 8;(2)25(x2-1)=24.21.已知|2a+b|与3b+12互为相反数.(1)求2a-3b的平方根;(2)解关于x的方程ax2+4b-2=0.22.座钟的摆摆动一个来回所需的时间称为一个周期,其计算公式为T=2πl g,其中T表示周期(单位:s),l表示摆长(单位:m),g≈9.8 m/s2.假如一台座钟的摆长为0.5 m,它每摆动一个来回发出一次滴答声,那么在一分钟内,该座钟大约发出多少次滴答声(可利用计算器计算,其中π≈3.14)?23.如图,一只蚂蚁从点A沿数轴向右直爬2个单位长度到达点B,点A表示-2,设点B所表示的数为m.(1)求m的值;(2)求|m-1|+(m+2)2的值.(第23题)24.你能找出规律吗?(1)计算:9×16=________,9×16=________;25×36=________,25×36=________.(2)请按找到的规律计算:①5×125;②123×935.(3)已知a=2,b=10,用含a,b的式子表示40.答案一、1. C 2. A 3. A 4. D 5. C 6. A7.A8. A9. C10.D点拨:根据a,b在数轴上对应的点的位置可知1<a<2,-1<b <0,∴ab<0,a+b>0,|a|>|b|,a-b>0.故选D.二、11. 2;±3;-212. 013. 314.215. 316. 417. 4.4918. 3 2三、19.解:(1)原式=0.3+2-12=1.8;(2)原式=33-23+2=3+2;(3)原式=32-3-32-5=-8;(4)原式=94-16+3827-(-1)=32-4+23+1=-56.20.解:(1)(x+2)3=-18,x+2=-12,x=-52;(2)x2-1=2425,x2=4925,x=±75.21.解:由题意,得2a+b=0,3b+12=0,解得b=-4,a=2.(1)2a-3b=2×2-3×(-4)=16,所以2a-3b的平方根为±4.(2)把b=-4,a=2代入方程,得2x2+4×(-4)-2=0,即x2=9,解得x=±3.22.解:由题意知l=0.5 m,g≈9.8 m/s2,∴T=2πlg≈2×3.14×0.59.8≈1.42(s).∴在一分钟内,该座钟大约发出601.42≈42(次)滴答声.23.解:(1)∵蚂蚁从点A沿数轴向右直爬2个单位长度到达点B,∴点B所表示的数比点A表示的数大2.∵点A表示-2,点B表示m,∴m=-2+2.(2)|m-1|+(m+2)2=|-2+2-1|+(-2+2+2)2=|-2+1|+4=2-1+4=2+3.24.解:(1)12;12;30;30(2)①原式=5×125=625=25;②原式=53×485=16=4.(3)40=2×2×10=2×2×10=a2b。

七年级数学下册《第六章 实数》单元检测卷(附带答案)

七年级数学下册《第六章 实数》单元检测卷(附带答案)

七年级数学下册《第六章 实数》单元检测卷(附带答案)一、选择题(每题3分,共30分)1.9的平方根是( ) A.3 B.-3C.±3D.不存在 2.38=( )A.2B.-2C.±2D.不存在3.下列说法正确的是( ) A.-0.064的立方根是0.4 B.-9的平方根是±3 C.16316D.0.01的立方根是0.0000014.若a 3=-27,则a 的倒数是( )A .3B .-3C.13D .-135.面积为8的正方形的边长在( )5. ,且,则的值为( )A .B .C .1D .1或6. 已知x ,y ,则y x 的立方根是( )AB .-2C .-8D .±27.下列命题中正确的是( )①0.027的立方根是0.3 不可能是负数 ③如果a 是b 的立方根,那么ab≥0 ④一个数的平方根与其立方根相同,则这个数是1. A .①③ B .②④ C .①④ D .③④8.一个数的算术平方根等于这个数的立方根,那么这个数是( )A.1B.0或1C.0D. ±19.下列实数317 -π 3.14159 8 327 12中无理数有( )A.2个B.3个C.4个D.5个10.如图,数轴上A ,B 两点对应的实数分别是1和3,若AB=BC ,则点C 所对应的实数是( )A.231B.13+C.23D.231二、填空题(每题3分,共24分) 11.4是_____的算术平方根.2316,27a b ==-||a b a b -=-+a b 1-7-7-()2320x y -+=363a12.25的算术平方根是_______.13.若一个正数的两个不同的平方根分别是2a﹣1和﹣a+2,则这个正数是.14.若a<0,化简=.15.已知10+的整数部分是x,小数部分是y,求x﹣y的相反数.16.已知x,y都是实数,且y=x-3+3-x+4,则y x=________.17.点A在数轴上和表示1的点相距6个单位长度,则点A表示的数为________.18.若两个连续整数x,y满足x<5+1<y,则x+y的值是________.三、解答题(满分46分,19题6分,20、21、22、23、24题每题8分)19.(6分)计算:(1)|-2|+3-8-(-1)2017(2)9-(-6)2-3-27.20.(8分)求下列各式中x的值.(1)(x-3)2-4=21 (2)27(x+1)3+8=0.21.(本题8分)已知与互为相反数,求的平方根.22.你能找出规律吗?(1)计算:9×16=________,9×16=________ 25×36=________,25×36=________.(2)请按找到的规律计算:5×125 ②123×935.(3)已知a=2,b=10,用含a,b的式子表示40.23.如图,用两个面积为28cm的小正方形纸片剪拼成一个大的正方形.(1)大正方形的边长是________cm(2)请你探究是否能将此大正方形纸片沿着边的方向裁出一个面积为214cm的长方形纸片,使它的长宽之比为2:1,若能,求出这个长方形纸片的长和宽,若不能,请说明理由.24.已知:31a+的立方根是2-,21b-的算术平方根3,c43(1)求,,a b c的值(2)求922a b c-+的平方根.参考答案一.填空题题号12345678910答案C B C D B C A B A A二.选择题11.【答案】16【解析】试题解析:∵42=16∴4是16的算术平方根12.【答案】513.【解答】解:∵一个正数的两个平方根分别是2a﹣1与﹣a+2∴2a﹣1﹣a+2=0解得:a=﹣1故2a﹣1=﹣3则这个正数是:(﹣3)2=9故答案为:914.【答案】1﹣a15.【答案】16.【答案】6417.【答案】1-6或1+6点拨:数轴上到某个点距离为a(a>0)个单位长度的点有两个.注意运用数形结合思想,利用数轴帮助分析.18.【答案】7点拨:∵2<5<3,∴3<5+1<4.∵x<5+1<y,且x,y为两个连续整数,∴x=3,y=4.∴x+y=3+4=7.三.解答题19.【答案】解:(1)原式=2-2+1=1.(4分)(2)原式=3-6+3=0.(8分)20.【答案】解:(1)移项得(x-3)2=25,∴x-3=5或x-3=-5,∴x=8或-2.(5分)(2)移项整理得(x+1)3=-827,∴x+1=-23,∴x=-53.(10分)21.【答案】解:根据相反数的定义可知:解得:a=-8,b=364的平方根是:22.【答案】解:(1)12 12 30 30(2)①原式=5×125=625=25②原式=53×485=16=4(3)40=2×2×10=2×2×10=a2b.23.【答案】(1)4 (2)不能,理由见解析.【解析】(1)根据已知正方形的面积求出大正方形的边长即可(2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再判断即可.解:(1)两个正方形面积之和为:2×8=16(cm2)∴拼成的大正方形的面积=16(cm 2) ∴大正方形的边长是4cm 故答案为:4(2)设长方形纸片的长为2xcm ,宽为xcm 则2x •x =14 解得:7x =2x 7>4∴不存在长宽之比为2:1且面积为214cm 的长方形纸片. 24.【答案】(1)3,5,6a b c =-== (2)其平方根为4± 【解析】(1)根据立方根,算术平方根,无理数的估算即可求出,,a b c 的值 (2)将(1)题求出的值代入922a b c -+,求出值之后再求出平方根. 解:(1)由题得318,219a b +=--= 3,5a b ∴=-= 364349<6437∴<6c ∴=3,5,6a b c ∴=-==(2)当3,5,6a b c =-==时()99223561622a b c -+=⨯--+⨯=∴其平方根为164±±。

人教版七年级数学下册第六章第三节实数试题(含答案) (55)

人教版七年级数学下册第六章第三节实数试题(含答案) (55)

人教版七年级数学下册第六章第三节实数练习试题三(含答案)老师在讲“实数”时画了一个图(如图),即“以数轴的单位长度为边作一个正方形,然后以原点为圆心,正方形的对角线长为半径画弧交数轴于点A.(1)A点表示的数是多少?(2)请类比上面的作法在数轴上画出表示B.(请保留作图痕迹)【答案】(1);(2)见解析【解析】【分析】(1)首先根据勾股定理求出正方形对角线的长度,即为OA的长,然后结合数轴的知识即可求解;(2)利用题中给出的方法画图,再从数轴上画出来即可解决问题.【详解】解:(1)∵12+12=2,∴,∴A点表示的数是-;(2)如图以数轴的单位长度为边,作3×2的长方形,以数轴上的原点O为圆心,长方形的对角线的长为半径作弧与数轴负半轴交于一点B,则点B表示的数就是【点睛】本题主要考查了实数与数轴之间的定义关系,勾股定理,此题不仅要结合图形,还需要熟悉平方根的定义.也要求学生了解数形结合的数学思想.42.阅读下列内容,然后解答问题: 因为:111111111111,,12223233434910910=-=-=-⋯=-⨯⨯⨯⨯ 所以:1111122334910+++⋯+⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+⋯+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1111111122334910=-+-+-+⋯+- 1911010=-= 问题:计算:(1)111111223342015201620162017+++⋯++⨯⨯⨯⨯⨯ (2)111133557++⨯⨯⨯ (3)111113355720152017+++⋯+⨯⨯⨯⨯ 【答案】(1)20162017 ;(2)37;(3)10082017【解析】【分析】(1)分子为1,分母是两个连续自然数的乘积,规律是111(1)1n n n n =-⨯++,依此抵消即可求解;(2)分子为1,分母是两个连续奇数的乘积,规律是1111(21)(21)22121n n n n ⎛⎫=- ⎪-+-+⎝⎭,依此抵消即可求解;(3)分子为1,分母是两个连续奇数的乘积,规律是1111(21)(21)22121n n n n ⎛⎫=- ⎪-+-+⎝⎭,依此抵消即可求解. 【详解】(1)原式1111111111223342015201620162017⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+⋯+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 1111111123342015201620162017=-+-+⋯+-+- =112017- =20162017 (2)原式=11111111123235257⎛⎫⎛⎫⎛⎫-+-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 1111111233557⎛⎫=-+-+- ⎪⎝⎭ 11127⎛⎫=- ⎪⎝⎭=37(3)原式11111111111123235257220152017⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 11111111123355720152017⎛⎫=-+-+-++- ⎪⎝⎭ 11122017⎛⎫=- ⎪⎝⎭ =10082017【点睛】考查了有理数的混合运算,解决这类题目要找出变化规律,消去中间项,只剩首末两项,使运算变得简单.43.(阅读材料)即23,∴11<2,1的整数部分为1,-12(解决问题)(1的小数部分是;(2)已知a4的整数部分,b4的小数部分,求代数式(﹣a)3+(b+4)2的值.【答案】(19;(2)21.【解析】【分析】(1)由于81<91<100分;(2)4的整数部分和小数部分,再代入代数式进行计算即可.【详解】(1)∵81<91<100,∴910,9,9;(2)∵16<21<25,∴45,∵a4的整数部分,b4的小数部分,∴a=4﹣4=0,b=4,∴(﹣a )3+(b +4)2=0+21=21.【点睛】本题考查了估算无理数的大小,熟练掌握估算无理数大小的方法和无理数整数部分和小数部分的表示方法是解题关键.44.规定一种新的运算:a ※b =a ×b -b 2+1.例如:3※(-4)=3×(-4)-(-4)2+1=-27.请用上述规定计算下列各式:(1)2※5;(2)[3※(-2)]※5.【答案】(1)-14;(2)-69.【解析】【分析】(1)把新运算中的a 、b 分别代入2和5进行计算即可;(2)把新运算中的a 、b 分别代入3和-2进行计算后再与5进行运算即可.【详解】解:(1)2※5=2×5-52+1=-14;(2)∵3※(-2)=3×(-2)-(-2)2+1=-9∴ [3※(-2)]※5=(-9)※5=(-9)×5-52+1=-69【点睛】本题主要考查了有理数的混合运算,按照规定将新运算转化为有理数的混合运算是解决此题的关键.45.把下列各数填入相应括号里:35,8.2,-7,0,-0.3,102,-3.1010010001…,1.47,2.非负整数集合:{ …}分数集合:{ …}无理数集合:{ …}负数集合:{ …}【答案】见解析.【解析】【分析】根据非负整数集合、分数集合、无理数集合和负数集合的定义对题目进行分析,即可得到答案.【详解】非负整数{0,102 }分数{8.2,-0.3,35,1.47,} 无理数{2π,-3.1010010001...} 负数{35,-7,-0.3,-3.1010010001...} 【点睛】本题考查实数的分类,解题的关键是掌握非负整数集合、分数集合、无理数集合和负数集合的定义.46.已知21a -的平方根是3±,39a b +-的立方根是2,c分,求2a b c ++的值..【答案】16【解析】【分析】直接利用平方根以及立方根和估算无理数的大小得出a ,b ,c 的值进而得出答案.【详解】解:∵2a-1的平方根是±3,∴2a-1=9,解得:a=5,∵3a+b-9的立方根是2,∴15+b-9=8,解得:b=2,∵c∴c=7,则a+2b+c=5+4+7=16.【点睛】此题主要考查了实数的运算,涉及了平方根以及立方根和估算无理数的大小,正确得出a ,b ,c 的值是解题关键.47.计算(1(0221-+. (2)()()()()221222x x x x ⎡⎤+--+⨯⎣⎦. 【答案】(1)124;(2)32820x x + 【解析】【分析】(1)根据算术平方根、立方根、负整数指数幂以及零次幂的性质分别化简,然后计算即可;(2)运用完全平方公式和平方差公式将括号内的式子化简合并,同时计算乘方,最后计算多项式乘单项式即可.【详解】(1)原式13214=-++124=; (2)原式()()2222144x x x x ⎡⎤=++--⨯⎣⎦()2254x x =+⨯32820x x =+. 【点睛】本题考查了实数的混合运算和整式的混合运算,熟练掌握运算法则及乘法公式是解题关键.48.计算下列各题:(12;(220191()2(1)2-++-; (3)24326(3)10a a a a ⋅+-;(4)2222113(2)()422xy y x xy --- 【答案】(1)1(2);(3)0;(4)26443526x y x y x y --.【解析】【分析】(1)先计算立方根和平方,再根据实数的加减法法则计算即可得出答案;(2)先计算平方根、绝对值和乘方,再根据实数的四则混合运算法则计算即可得出答案;(3)根据同底数幂的乘法、积的乘方和幂的乘方运算计算即可得出答案;(4)先利用积的乘方运算展开第一个括号,再利用单项式乘以多项式展开即可得出答案.【详解】解:(1)原式=23-=1(2)原式=12212⎛⎫⨯-+ ⎪⎝⎭=(3)原式=666910a a a +-=0(4)原式=24221134422x y y x xy ⎛⎫-- ⎪⎝⎭ =26443526x y x y x y --【点睛】本题主要考查了实数的四则混合运算以及整式的混合运算,熟练掌握各种运算法则是解决本题的关键.49.(12(2)-(2)解方程组:326y x x y =-⎧⎨+=⎩. 【答案】(1)1;(2)30x y =⎧⎨=⎩. 【解析】【分析】(1)根据有理数的乘方、立方根定义、二次根式的性质分别求出每一部分的值,再合并即可;(2)将①代入②,可以求出3x =,然后将将3x =代入①.可以求出y .【详解】(12(2)-+ 641=--1=(2)解方程组:326y xx y=-⎧⎨+=⎩①②解:将①代入②,得236x x+-=39x=3x=将3x=代入①,得y=∴此方程组的解为30 xy=⎧⎨=⎩.【点睛】本题考查了绝对值、有理数的乘方、立方根定义、二次根式的性质,解一元一次方程组的应用,能熟记各个知识点是解此题的关键.50(102013 1)(1)(1)2π-⨯---+【答案】0【解析】【分析】分别进行二次根式的化简、负整数次幂、零次幂、开立方运算,然后合并. 【详解】解:原式=4-2+1-3=0【点睛】本题考查到了实数的运算.。

人教版数学七年级下册-第六章《实数》单元测试(含答案)

人教版数学七年级下册-第六章《实数》单元测试(含答案)

第六章《实数》单元测试姓名:班级:座号:一、单选题(共8题;共32分)1. 9的算术平方根是()A. 81B. ±81C. 3D. ±32. -8的立方根是()A. B. C.D.3.在,1.01001000100001,2 ,3.1415,- ,,0,,这些数中,无理数共有()A. 2个B. 3个C. 4个D. 5个4.下列说法中错误的是( )A. 0的算术平方根是0B. 36的平方根为±6C.D. -4的算术平方根是-25.已知a2=25, =7,且|a+b|=a+b,则a﹣b的值为()A. 2或12B. 2或﹣12C. ﹣2或12D. ﹣2或﹣126.,则a与b的关系是()A. B. a与b相等 C. a与b互为相反数 D. 无法判定7.下列计算或说法:①±3都是27的立方根;②=a;③的立方根是2;④=±4,其中正确的个数是()A. 1个B. 2个C. 3个 D. 4个8.下列六种说法正确的个数是()①无限小数都是无理数;②正数、负数统称实数;③无理数的相反数还是无理数;④无理数与无理数的和一定还是无理数;⑤无理数与有理数的和一定是无理数;⑥无理数与有理数的积一定仍是无理数.A. 1B. 2C. 3 D . 4二、填空题(共24分)1.算术平方根等于本身的实数是________.2.﹣125的立方根是________.3.比较大小:﹣π________﹣3.14(选填“>”、“=”、“<”).4.某正数的平方根是n+l和n﹣5,则这个数为________.5.已知一个正数的两个平方根是x﹣7和3x﹣1,则x的值是________.6.方程(x﹣1)3﹣8=0的根是 ________7.若=2﹣x,则x的取值范围是________;若3+ 的小数部分是m,3﹣的小数部分是n,则m+n=________.三、求下列各式中x的值(共10分)(1)(2x﹣1)2=9 (2)2x3﹣6=四、解答题(共10分)1.已知某数的平方根是a+3和2a﹣15,求1﹣7a的立方根。

精选人教版初中数学七年级下册第六章《实数》单元综合练习题(含答案解析)

精选人教版初中数学七年级下册第六章《实数》单元综合练习题(含答案解析)

人教版七年级数学下册能力提升卷:第六课实数一.选择题(共10小题) 1.下列计算错误的是( ) A .-3+2=-1B .(-0.5)×3×(-2)=3C .232⎛⎫- ⎪⎝⎭=-3D -1.12 ) A .8B .-8C .2D .-23.如果-b 是a 的立方根,则下列结论正确的是( ) A .3b -=aB .-b=3aC .b=3aD .3b =a4.-125 ) A .-2B .4C .-8D .-2或-85.小明在作业本上做了4=-5;②=4=-6,他做对的题有( ) A .1道B .2道C .3道D .4道6.数轴上A 、B 两点表示的数分别是-3和3.则表示的点位于A 、B 两点之间的是( )A .πB .-4CD .1037.实数a ,b 在数轴上的位量如图所示,则下列结论正确的是( ) A .|a+b|=a-bB .|a-b|=a-bC .|a+b|=-a-bD .|a-b|=b-a8.在数3,(---中,大小在-1和2之间的数是( )A .-3B .-(-2)C .0D 9.下列各数中:是无理数的有( )A .1个B .2个C .3个D .4个10.已知a,b为两个连续整数,且,<<则a+b的值为()a bA.9 B.8 C.7 D.6二.填空题(共6小题)11.64的平方根是,立方根是,算术平方根是.12.若30.3670=30.7160, 3.670=1.542,则3367== .13.若m的立方根,则m+3=14.|4|-=15.写出一个比4大且比5小的无理数:.161的值在两个整数a与a+1之间,则a= .三.解答题(共8小题)17.求出下列x的值(1)4(x-1)2-36=0(2)27(x+1)3=-6418.(1+.(2|119.已知一个正数的两个平方根分别为a和3a-8 (1)求a的值,并求这个正数;(2)求217a-的立方根.20.把下列各数的序号填在相应的大括号内:①-17;②π;③8||;5--④31;-⑤1;36⑥-0.92;⑦23;-+⑧-;⑨1.2020020002;正实数{ }负有理数{ }无理数{ }从以上9个数中选取2个有理数,2个无理数,用“+、-、×、÷”中的3种不同的运算符号将选出的4个数进行运算(可以用括号),使得计算结果为正整数,列出式子并计算.22.已知2a-1的平方根是±3,已知2a-1的平方根是±3,3a+b-9的立方根是2,c的整数部分,求a+b+c的平方根.23.如图,面积为30的长方形OABC 的边OA 在数轴上,O 为原点,OC=5,将长方形OABC 沿数轴水平移动,O,A,B,C 移动后的对应点分别记为1111,,,,O A B C 移动后的长方形1111O A B C 与原长方形OABC 重叠部分的面积记为S . (1)当S 恰好等于人教版七年级数学下册第六章 实数 能力检测卷一.选择题(共10小题) 1.16的平方根是( ) A .4B .-4C .16或-16D .4或-42.下列各等式中计算正确的是( )A ±4B C =-3 D = 323.若方程2(4)x -=19的两根为a 和b ,且a>b,则下列结论中正确的是( ) A .a 是19的算术平方根 B .b 是19的平方根 C .a-4是19的算术平方根D .b+4是19的平方根4.给出下列说法:①-2是49;③;④2的平) A .0个B .1个C .2个D .3个5.如果-b 是a 的立方根,则下列结论正确的是( ) A .3b -=aB .-b=3aC .b=3aD .3b =a6.已知一个正数的两个平方根分别为3a-1和-5-a,则这个正数的立方根是( ) A .-2B .2C .3D .47.若一个正方形的面积为7,它的周长介于两个相邻整数之间,这两个相邻整数是( ) A .9,10B .10,11C .11,12D .12,138 ) A .线段AB 上B .线段BC 上C .线段CD 上D .线段DE 上9.已知a、b均为正整数,且a>,b>,则a+b的最小值为( )A.6 B.7 C.8 D.910.在实数,3.1415926,π2,,,,,0.1010010001…(相邻两个1中间一次多1个0)中,无理数有( )A.2个B.3个C.4个D.5个二.填空题(共6小题)11.4的平方根是; 的立方根是.12.非零整数x、y+0,请写出一对符合条件的x、y的值:.13.一个正方体,它的体积是棱长为2cm的正方体的体积的8倍,则这个正方体的棱长是cm.14.5x+9的立方根是4,则2x+3的平方根是.15小的无理数.16.数轴上从左到右依次有A、B、C三点表示的数分别为a、b其中b为整数,且满足|a+3|+|b-2|=b-2,则b-a= .三.解答题(共7小题)17.求出下列x的值.(1)16x2-49=0;(2)24(x-1)3+3=0.18.计算++-|1|19.已知|a|=5,b2=4,c3=-8.(1)若a<b,求a+b的值;(2)若abc>0,求a-3b-2c的值.20.已知a+1的算术平方根是1,-27的立方根是b-12,c-3的平方根是±2,求a+b+c 的平方根.21.阅读材料:我们定义:如果两个实数的差等于这两个实数的商,那么这两个实数就叫做“差商等数对”.即:如果a-b=a÷b,那么a 与b 就叫做“差商等数对”,记为(a,b).例如: 4-2=4÷2;932-=9÷3;21(1)2⎛⎫--- ⎪⎝⎭=1÷(1);2⎛⎫-- ⎪⎝⎭则称数对91(4,2),,3,,122⎛⎫⎛⎫--⎪ ⎪⎝⎭⎝⎭是“差商等数对”.根据上述材料,解决下列问题: (1)下列数对中,“差商等数对”是______(填序号);①(-8.1,-9),②11,,22⎛⎫⎪⎝⎭③+ (2)如果(x,4)是“差商等数对”,请求出x 的值;22.对于实数a ,我们规定:用符号的最大整数,称为a 的根整数,例如:=3,=3.(1)仿照以上方法计算:==.(2)若=1,写出满足题意的x 的整数值人教版七年级数学下册第六章实数单元检测题一、选择题(每题3分,共30分)1.-3的绝对值是( ) A.33 B .-33 C. 3 D.132.下列实数中无理数是( )A. 1.21B.3-8 C.3-32 D.2273. 下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有()A.0个B.1个C.2个D.3个4.下列说法正确的是 ()A.无限小数是无理数B.不循环小数是无理数C.无理数的相反数还是无理数D.两个无理数的和还是无理数5.如果x2=2,有;当x3=3时,有,想一想,从下列各式中,能得出的是()A.x2=±20B.x20=2C.x±20=20D.x3=±206.下列选项中正确的是()A.27的立方根是±3B.的平方根是±4C.9的算术平方根是3D.立方根等于平方根的数是17.下列四个数中的负数是()A.﹣22 B.2)1( C.(﹣2)2 D.|﹣2|8无理数一定是无限不循环小数②算术平方根最小的数是零③﹣6是(﹣6)2的一个算术平方根④﹣=其中正确的是()A.①②③B.②③④C.①②④D.①③④9. 已知3≈1.732,30≈5.477,那么300 000≈()A.173.2 B.±173.2 C.547.7 D.±547.7二、填空题(本大题共8小题,共32分)1.比较大小:(填写“<”或“>”)2.观察分析下列数据,寻找规律:0,3,6,3,12,15,18,…,那么第13个数据是________.3.已知实数m满足+=,则m=.4.已知,a 23 <b ,且a 、b 是两个连续的整数,则|a+b|= . 5.若的值在两个整数a 与a +1之间,则a= .6.如图,正方形ABCD 被分成两个小正方形和两个长方形,如果两个小正方形的面积分别是6cm 2和2cm 2,那么两个长方形的面积和为 cm 2. 7.请写出一个大于8而小于10的无理数: .8.数轴上有A 、B 、C 三个点,B 点表示的数是1,C 点表示的数是,且AB=BC ,则A 点表示的数是 .三、解答题(38分)1.(6分)已知实数a ,b 满足a -14+|2b +1|=0,求b a 的值.2.(6分)已知,求的算术平方根.3.(6分)计算: (1)9×(﹣32)+4+|﹣3|(2).4.(本题8分)将下列各数填在相应的集合里.π,3.141 592 6,-0.456,3.030 030 003…(每两个3之间依次多1个0).有理数集合:{…};无理数集合:{…};正实数集合:{…};整数集合:{…}.5.(12分)数学活动课上,张老师说:“2是无理数,无理数就是无限不循环小数,同学们,你能把2的小数部分全部写出来吗?”大家议论纷纷,晶晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用(2-1)表示它的小数部分.”张老师说:“晶晶同学的说法是正确的,因为1<2<4,所以1<2<2,所以2的整数部分是1,将这个数减去其整数部分,差就是小数部分.”亮亮说:“既然如此,因为2<5<3,所以5的小数部分就是(5-2)了.”张老师说:“亮亮真的很聪明.”接着,张老师出示了一道练习题:已知8+3=x+y,其中x是一个整数,且0<y<1,请你求出2x+(3-y)2 019的值.参考答案:。

人教版七年级数学第六章第3节《实数》单元训练题 (4)(含答案解析)

人教版七年级数学第六章第3节《实数》单元训练题 (4)(含答案解析)
5.C
【解析】
负数小于零,零小于正数,两个负数绝对值大的反而小,根据实数的大小比较法则解答.
∵ ,
∴ <
∴ < <0<1,
故选:C.
此题考查实数的大小比较法则,熟记法则是解题的关键.
6.C
【解析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【解析】
根据无理数的意义(有理数是指有限小数或无限循环小数)填上即可;根据无理数的意义(无理数是指无限不循环小数)判断即可;分数包括有限小数和无限循环小数和分数)判断即可.
30.实数的大小比较:2__________ .(填“>”、“=”或“<”)
【答案与解析】
1.B
【解析】
利用立方根的定义,将x的值代入如图所示的流程,取27的立方根为3,为有理数,再次代入,得 ,为无理数符合题意,即为y值.
根据题意,x=27,取立方根得3,3为有理数,再次取3的立方根,得 ,为无理数.符合题意,即输出的y值为 .
本题考查了新定义下的实数运算,解题的关键是明确题意,找出所求问题需要的条件.
16.6-
【解析】
分别进行乘方、平方根与立方根以及绝对值的计算,最后进行实数的加减混合运算即可.
=-1+2-(-3)+2-
=6- .
本题主要考查乘方、平方根与立方根以及绝对值的计算,熟记实数的运算法则是解题关键.
17.-7,0, ,-2.55555……,3.01,+9;4.020020002…, ;-7,0,+9; ,-2.55555……,3.01

精选人教版初中数学七年级下册第六章《实数》单元测试及答案

精选人教版初中数学七年级下册第六章《实数》单元测试及答案

精选⼈教版初中数学七年级下册第六章《实数》单元测试及答案⼈教版七年级数学下册第六章实数复习检测试题⼀、选择题(每⼩题3分,共30分)1.下列各数中最⼤的数是( )A.3 C.π D.-32.下列说法正确的是()A.任何数都有算术平⽅根B.只有正数有算术平⽅根C.0和正数都有算术平⽅根D.负数有算术平⽅根3.下列语句中,正确的是( )A.⽆理数都是⽆限⼩数B.⽆限⼩数都是⽆理数C.带根号的数都是⽆理数D.不带根号的数都是⽆理数4.的⽴⽅根是( )A.-1B.OC.1D. ±15.在-1.732,π,3.,2,3.212 212 221…(每相邻两个1之间依次多⼀个2),3.14这些数中,⽆理数的个数为( )A.5个B.2个C.3个D.4个6.有下列说法:①实数和数轴上的点⼀⼀对应;②不含根号的数⼀定是有理数;③负数没有平⽅根;④是17的平⽅根.其中正确的有()A.3个B.2个C.1个D.0个7.下列说法中正确的是( )A.若a为实数,则a≥0B.若a为实数,则a的倒数为1 aC.若x,y为实数,且x=yD.若a为实数,则a2≥08.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣59.实数a,b在数轴上的位置如图所⽰,则|a|-|b|可化简为( )A.a-bB.b-aC.a+bD.-a-b10.如图,数轴上的点A,B,C,D分别表⽰数﹣1,1,2,3,则表⽰2﹣的点P应在()A.线段AO上B.线段OB上C.线段BC上D.线段CD上⼆、填空题(每⼩题3分,共24分)1.按键顺序是“,,则计算器上显⽰的数是.2.⼀个数的平⽅根和它的⽴⽅根相等,则这个数是.3.计算:-2+-|-2|=.4.若某数的平⽅根为a+3和2a-15,则这个数是.5.⽐较⼤⼩:-23-0.02;3.6.定义运算“@”的运算法则为:x@y=xy﹣1,下⾯给出关于这种运算的⼏种结论:①(2@3)@(4)=19;②x@y=y@x;③若x@x=0,则x﹣1=0;④若x@y=0,则(xy)@(xy)=0.其中正确结论的序号是.7.计算:|3-π|+-的结果是.三、解答题(共46分)1.计算(6分)(1)|1-|+||+|-2|+|2-|;(2) (-2)3×---.2.(6分)求未知数的值:(1)(2y﹣3)2﹣64=0;(2)64(x+1)3=27.3.(8分)已知=0,求实数a,b的值,并求出的整数部分和⼩数部分.4.(8分)设a.b为实数,且=0,求a2﹣的值.5. (10分)王⽼师给同学们布置了这样⼀道习题:⼀个数的算术平⽅根为2m-6,它的平⽅根为±(m-2),求这个数.⼩张的解法如下:依题意可知,2m-6是(m-2),-(m-2)两数中的⼀个.(1)当2m-6=m-2时,解得m=4.(2)所以这个数为2m-6=2×4-6=2.(3)当2m-6=-(m-2)时,解得m=83.(4)所以这个数为2m-6=2×83-6=-23.(5)综上可得,这个数为2或-23.(6)王⽼师看后说,⼩张的解法是错误的.你知道⼩张错在哪⾥吗?为什么?请予以改正.6.(8分)设的整数部分和⼩数部分分别是x,y,试求x,y的值与x﹣1的算术平⽅根.参考答案与解析⼀、选择题1.B2. C3.A4.C5.D6.A7.D8.B9.C 10. A A⼆、填空题11.4 12.0 13.1 14. 49 15.<> 16. ①②④17.1三、解答题1. 解:(1)原式1221-+=-.(2)原式=-8×4-4×14-3=-32-1-3=-36. 2 ⼈教版初中数学七年级下册第六章《实数》检测卷含答案⼀、选择题(每⼩题3分,共30分) 1. 916的平⽅根是( )A. C. 34 D. ±342. ,227,π-20.121 221 222 1…(相邻两个“1”之间依次多⼀个“2”)中,有理数有( )A. 1个B. 2个C. 3个D. 4个3. 若x 2=16,则5-x 的算术平⽅根是( )A. ± 1B. ±4C. 1或9D. 1或34. 下列说法中,不正确的是( )A. 0.027的⽴⽅根是0.3B. -8的⽴⽅根是-2C. 0的⽴⽅根是0D. 125的⽴⽅根是±55. 的值在( )A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间6. ⼀个⾃然数的算术平⽅根是a ,则下⼀个⾃然数的算术平⽅根是( )A. B. +1C. a+1D.7. 如图,数轴上A,B和5.1,则A,B两点之间表⽰整数的点共有( )A. 6个B. 5个C. 4个D. 3个8. ≈0.793 7≈1.710 0,那么下列各式正确的是( )A. B. ≈7.937C. D. ≈79.379. 0,则a与b的关系是( )A. a=b=0B. a与b相等C. a与b互为相反数D. a=1 b10. 若a2=(-5)2,b3=(-5)3,则a+b的值为( )A. 0B. ±10C. 0或10D. 0或-10⼆、填空题(每⼩题3分,共24分)11. ⽐较⼤⼩:-5 -26(填“>”“=”或“<”).12. 3-11的相反数是,绝对值是.13. =3,则2x+5的平⽅根是.14. ⼩成编写了⼀个程序:输⼊x→x2→⽴⽅根→倒数→算术平⽅根→12,则x为.15. 若数m,n满⾜(m-1)20,则(m+n)5=.16. 已知36=x3,z是16的算术平⽅根,则2x+y-5z的值为.17. 点A在数轴上和原点相距3个单位长度,点B在数轴上和原点相距5个单位长度,则A,B两点之间的距离是.18. 对于任意不相等的两个数a,b,定义⼀种运算※如下:a※b,如3※2= 5.那么12※4=.三、解答题(共66分)19. (8分)计算:1-3;(1)3+1+3+||(2)25+144.20. (8分)求下列各式中的x的值:(1)25(x-1)2=49;(2)64(x-2)3-1=0.21. (9分)已知2a-1的平⽅根是±3,3a+b-1的平⽅根是±4,求a+2b的平⽅根.22. (9分)已知某正数的两个平⽅根分别是a +3和2a -15,b 的⽴⽅根是-2,求3a +b 的算术平⽅根.23.⼈教版七年级数学下册第六章实数单元综合能⼒提升测试卷⼀、选择题(每⼩题3分,共30分)1.下列选项中正确的是()A .27的⽴⽅根是±3B .16 的平⽅根是±4C .9的算术平⽅根是3D .⽴⽅根等于平⽅根的数是1 2.在实数﹣0.8,2015,﹣,四个数中,是⽆理数的是() A .﹣0.8 B .2015 C .﹣D . 3.(-)2的平⽅根是() A . B .- C . D .± 4.下列四个数中的负数是()A .﹣22B .C .(﹣2)2D . |﹣2|5.|的值为()A.5 B .5-2 C .1D .2-16.在下列各式中正确的是()A .=-2B .=3C .=8D .=2 7.⼀个⾃然数a 的算术平⽅根为x ,则a+1的⽴⽅根是()A B C D8.下列结论中正确的个数为() 72233722331512512515152)1(-662)2(-1622(1)零是绝对值最⼩的实数;(2)数轴上所有的点都表⽰实数;(3)⽆理数就是带根号的数;(4)-的⽴⽅根为±; A .1个 B .2个 C .3个 D .4个9=3,则(x+3)2的值是()A.81 B .27C .9 D.310.若有理数a 和b 在数轴上所表⽰的点分别在原点的右边和左边,则-︱a -b ︱等于()A .aB .-aC .2b +aD .2b -a⼆、填空题(每⼩题3分,共30分)11.在下列各数中⽆理数有个。

人教版七年级数学下册第六章《实数》单元测试(附有答案)

人教版七年级数学下册第六章《实数》单元测试(附有答案)

人教版七年级数学下册第六章《实数》 班级: 姓名: 分数: 一、选择题(每题3分,共30分) 1.下列各数中最大的数是( ) A.3 B.2 C.π D.-32.下列无理数中,在-2与1之间的是( )A.-B.-C.D.3.若901k k <<+ (k 是整数),则k =( )A. 6B. 7C.8D. 94.若a ,b 为实数,且229943a ab a -+-=++,则a b +的值为( ) A .-1 B .1 C .1或7 D .75.下列式子中,正确的是( )A .B .C .D . 6.若,则估计的值所在的范围是( ) A.B. C. D. 7. ()29-的平方根是x ,64的立方根是y ,则x +y 的值为( )A.3B.7C.3或7D.1或78.已知一个正方形的边长为a ,面积为S ,则( )A. a S =B. S 的平方根是aC. a 是S 的算术平方根D. S a ±=9.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为点M ,N ,P ,Q ,若n +q =0,则m ,n ,p ,q 四个实数中,绝对值最大的一个是( )A .pB .qC .mD .n10.在数轴上表示5和-3的两点间的距离是( )A. 5+3B. 5-3C.-(5+3)D. 3-5二、填空题(每题3分,共15分)11. 若x 的立方根是-,则x= . 12. 已知5-a +3+b ,那么 . 13. 设n 为正整数,且n 3+2n 2是一个奇数的平方,则满足条件的n 中,最小的两个数之和为 .14. 若m 、n 满足()0312=++-n m ,则=+n m .15. 实a 、b 在数轴上的位置如图所示,则化简()2a b b a -++= . 三、解答题(共65分)16.(8分)实数a ,b 在数轴上的位置如图所示.化简:|a-b|-.17.(9分)已知28-++=b a a M 是()8+a 的算术平方根,423+--=b a b N 是()3-b 的立方根,求N M +的平方根.18.(9分)已知a 、b 、c 满足. (1)求a 、b 、c 的值;(2)试问以a 、b 、c 为边能否构成三角形?若能构成三角形,请求出三角形的周长,若不能,请说明理由.19.(9分)设2+的整数部分和小数部分分别是x 、y ,试求x 、y 的值与x ﹣1的算术平方根.20.(9分)已知:字母a 、b 满足021=-+-b a . 求()()()()()()2001201112211111++++++++++b a b a b a ab 的值.21.(10分)已知x x x y 93113+---=,求323-+y x 的平方根.22.(10分)已知5+11的小数部分为a,5-11的小数部分为b,求:(1)a+b的值;(2)3a-2b的值.23.(11分)如图是一个体积为25 cm3的长方体工件,其中a,b,c表示的是它的长、宽、高,且a∶b∶c=2∶1∶3,请你求出这个工件的表面积(结果精确到0.1 ).参考答案1-10 BBDDA ADCAA11.- 12. 8 13.30 14.-2 15. a 2- 16. |a-b|-=a-b-a=-b.17. 解:因为是的算术平方根, 所以又是的立方根, 所以解得 所以M =3,N =0,所以M + N =3.所以M + N 的平方根为18. 解:(1)由题意得:a ﹣=0;b ﹣5=0;c ﹣=0, 解之得:a==2,b=5,c==3; (2)根据三角形的三边关系可知,a 、b 、c 能构成三角形.此时三角形的周长为a+b+c=2+5+3=5+5.19. 解:因为4<6<9,所以2<<3,即的整数部分是2,所以2+的整数部分是4,小数部分是2+﹣4=﹣2,即x=4,y=﹣2,所以==.20. 解:a =1,b =2原式=20132012143132121⨯++⨯+⨯+=1-21+21-31+31-41+…+2013120121-=1-20131=20132012 21. 2±22.(1)7(2)511-17 23. 由题意设a=2x cm,b=x cm,c=3x cm,根据题意知2x ·x ·3x=25,所以x 3=,所以x=, 所以工件的表面积=2ab+2ac+2bc=4x 2+12x 2+6x 2=22x 2=22×≈57.0(cm 2). 答:这个工件的表面积约为57.0 cm 2.。

【3套精选】人教版初中数学七年级下册第六章《实数》单元综合练习卷(含答案解析)

【3套精选】人教版初中数学七年级下册第六章《实数》单元综合练习卷(含答案解析)

人教版七年级数学下册第六章实数质量评估试卷 一、选择题(每小题3分,共30分)1.-3的绝对值是( )A.33 B.-33C. 3 D.1 32.在实数-227,9,π,38中,是无理数的是( )A.-227 B.9C.π D.3 83.下列四个数中,最大的一个数是( ) A.2 B. 3 C.0 D.-24.某正数的平方根为a5和4a-255,则这个数为( )A.1 B.2C.4 D.95.下面实数比较大小正确的是( )A.3>7 B.3> 2C.0<-2 D.22<36.实数a在数轴上的位置如图1所示,则下列说法不正确的是( )图1A.a的相反数大于2 B.a的相反数是2C.|a|>2 D.2a<07.如图2,在数轴上点A表示的数为3,点B表示的数为6.2,点A,B之间表示整数的点共有( )图2A.3个 B.4个C.5个 D.6个8.|5-6|=( )A.5+ 6 B .5- 6C .-5- 6D .6- 59.若x-1+(y+1)2=0,则x-y的值为( )A.-1 B.1C.2 D.310. 已知3≈1.732,30≈5.477,那么300 000≈( ) A.173.2 B.±173.2C.547.7 D.±547.7二、填空题(每小题4分,共20分)11.比较大小:3-2 > -23(填“>”“<”或“=”).12.计算:9-14+38-|-2|=.13.3-5的相反数为,4-17的绝对值为的绝对值为,绝对值为327的数为 .14.用“*”表示一种新运算:对于任意正实数a,b,都有a*b=b+1,例如8*9=+1=4,那么15*196= .15.观察分析下列数据,寻找规律:0,3,6,3,12,15,18,…,那么第13个数据是个数据是.三、解答题(共70分)16.(6分)求下列各式的值.求下列各式的值.(1)252-242×32+42;(2)2014-130.36-15×900;(3)|a -π|+|2-a |(2<a <π).(精确到0.01)17.(8分)求下列各式中x 的值.的值.(1)x 2-5=4; (2)(x -2)3=-0.125.18.(8分)已知实数a ,b 满足a -14+|2b +1|=0,求b a 的值.的值.19.(8分)芳芳同学手中有一块长方形纸板和一块正方形纸板,其中长方形纸板的长为3 dm ,宽为2 dm ,且两块纸板的面积相等.,且两块纸板的面积相等.(1)求正方形纸板的边长(结果保留根号).(2)芳芳能否在长方形纸板上截出两个完整的,且面积分别为2 dm 2和3 dm 2的正方形纸板?判断并说明理由.(提示:2≈1.414,3≈1.732人教版七年级下册 第六章 实数 单元同步测试一、选择题1、下列说法正确的是(、下列说法正确的是( ) A.A.负数没有立方根负数没有立方根负数没有立方根B.B.一个正数的立方根有两个,它们互为相反数一个正数的立方根有两个,它们互为相反数一个正数的立方根有两个,它们互为相反数C.C.如果一个数有立方根,则它必有平方根如果一个数有立方根,则它必有平方根如果一个数有立方根,则它必有平方根D.D.不为不为0的任何数的立方根,都与这个数本身的符号同号的任何数的立方根,都与这个数本身的符号同号 2、下列语句中正确的是(、下列语句中正确的是() A.-9的平方根是的平方根是-3 -3 -3 B.9的平方根是3 3 C.9的算术平方根是3± D.9的算术平方根是3 3、下列说法中正确的是(、下列说法中正确的是( )A 、若a 为实数,则0³aB 、若、若a 为实数,则a 的倒数为a1C 、若x,y 为实数,且x=y x=y,则,则y x = D、若a 为实数,则02³a 4、估算728-的值在的值在A. 7和8之间之间B. 6和7之间之间C. 3和4之间之间D. 2和3之间之间 5、下列各组数中,不能作为一个三角形的三边长的是(、下列各组数中,不能作为一个三角形的三边长的是( )A 、1、10001000、、1000 1000B 、2、3、5C 、2225,4,3 D 、38,327,3646、下列说法中,正确的个数是(、下列说法中,正确的个数是( )(1)-)-6464的立方根是-的立方根是-44;(;(22)49的算术平方根是7±;(;(33)271的立方根为31;(;(44)41是161的平方根。

【3套精选】人教版初中数学七年级下册第六章《实数》单元测试及答案(1)

【3套精选】人教版初中数学七年级下册第六章《实数》单元测试及答案(1)

人教版初中数学七年级下册第六章《实数》检测卷含答案一、 (每小 3 分,共 30 分 )1.9的平方根是 () 16A.3B.3C.33 4±4D. ±442.在数 5 ,22,π-2,3- 27 ,0.121221 222 1⋯ (相两个“ 1”之挨次多一个7“2” )中,有理数有 ()A.1 个B.2 个C.3个D.4个3.若 x2= 16, 5- x 的算平方根是 ()A. ±1B. ±4C.1或9D.1 或34.以下法中,不正确的选项是()A. 0.027 的立方根是 0.3B. - 8 的立方根是- 2C. 0 的立方根是 0D. 125 的立方根是±55.估 38 的在()A.4和5之B.5和 6之C.6和7之D.7和 8之6.一个自然数的算平方根是a,下一个自然数的算平方根是()A. a 2 + 1B. a +1C. a+ 1D. a + 17.如,数上 A,B 两点表示的数分 2 和5.1,A,B两点之表示整数的点共有 ()A.6 个B.5 个C. 4个D.3个8.已知3 0.5 ≈0.793 7,3 5≈ 1.710 ,0那么以下各式正确的选项是()A.3500 ≈17.100B. 3500≈ 7.937C.3500 ≈171.00D.3 500 ≈79.379. 若3a+3 b =0,则a与b的关系是()A. a= b= 0B. a 与 b 相等C. a 与 b 互为相反数1 D. a=b10. 若a2=(-5)2,b3=(-5)3,则a+b的值为()A. 0B. ±10C.0或 10D.0 或-10二、填空题 (每题 3 分,共 24 分 )11.比较大小:- 5-26(填“>”“=”或“<” ).12. 3-11的相反数是,绝对值是.13.若 x + 2 =3,则2x+5的平方根是.14.小成编写了一个程序:输入 x→x2→立方根→倒数→算术平方根→1,则 x 2为.15.若数m,n知足-2+n + 2= 0,则 (m+ n)5=.(m 1)16.已知36= x,y =3,z是16的算术平方根,则2x+ y-5z 的值为.17.点 A 在数轴上和原点相距 3 个单位长度,点 B 在数轴上和原点相距5个单位长度,则 A, B 两点之间的距离是.18.关于随意不相等的两个数a, b,定义一种运算※以下:a + ba※ b=,如 3※2a - b=3+ 25.那么 12※4=.=3- 2三、解答题 (共 66 分 )19.(8 分 )计算:(1) 3+1+ 3+|1-3|;(2) 25-3- 1++3- 64.14420.(8 分 )求以下各式中的 x 的值:(1)25(x- 1)2= 49;(2)64(x- 2)3- 1= 0.21.(9 分 )已知 2a- 1 的平方根是±3, 3a+b- 1 的平方根是±4,求 a+ 2b 的平方根 .22.(9 分 )已知某正数的两个平方根分别是a+ 3 和 2a- 15,b 的立方根是- 2,求 3a+ b 的算术平方根 .23.人教版七年级数学下册第六章实数单元检测卷人教版七年级数学下册第六章实数单元检测卷(含答案)一、选择题1.81 的算术平方根是 ( A ) A .9 B .±9 C .3 D .±32. 以下说法正确的选项是 ( D )A. 一个数的立方根有两个,它们互为相反数B. 一个数的立方根比这个数平方根小C. 假如一个数有立方根,那么它必定有平方根D.与互为相反数3.预计20 的算术平方根的大小在(C )A .2 与3 之间B.3 与4之间 C .4 与5 之间D.5 与6之间4. 若一个数的算术平方根等于它的相反数,则这个数是 ( D )5. 若一个数的立方根是 -3, 则该数为 ( B )6.以下运算中,正确的有 ( A ) ①-=- ;②=± 4;③=;④ =-=-3.A .1 个B.2 个x +C.3 个D.4 个 7. 假如一个正数的两个平方根为1 和 x - ,那么 x 的值是( C )3 A .4 B .2 C .1 D .±2 8. 若一个数的一个平方根是 8,则这个数的立方根是( D)A. ±2B. ±4C.2D.49.. 有以下说法:①实数和数轴上的点一一对应; ②不带根号的数必定是有理数,带根号的数都是无理数;③是分数;④负数没有平方根;⑤无穷小数都是无理数,无理数都是无穷小数; ⑥- 2 是A .2 B .34 的平方根.此中正确的有几个 (C .4 DB.5)10. 以下各数中是无理数的为 ( A )1A. 2 B .0 C. 2017 D .-1二、填空题11.16的算术平方根是答案: 212.立方根等于自己的数为 __________.答案: 0,-1 ,113.如图是一个简单的数值运算程序,若输入x 的值为,则输出的数值为____________;答案: 214. 化简- ( 5+7) - | 5-7| 的结果为 ________.答案:- 2715.17的整数部分是 __________,小数部分是 ________.答案: 417-416.16 的平方根与﹣ 8 的立方根的和是 _______.答案:2或﹣6三、解答题17.计算:(1)2+3 2-5 2;(2)2( 7- 1) +7;(3) 0.36 ×431 121÷8;(4)| 3-2| +| 3-2| -| 2-1| ;(5) 1-0.64 -3- 8+4-| 7-3|.25解: (1) 原式= (1 +3-5) ×2=- 2.(2)2( 7-1) +7=2 7-2+ 7=3 7-2.21 32 12(3) 原式= 0.6 ×11÷ 2= 5× 11×2=55.(4) 原式= 3- 2+2-3- 2+1=3-2 2.2(5) 原式= 0.6 -( -2) +5-3+ 7= 7.18. 求以下各式的值:24222(1)1+25;(2) 25 -24 ; (3) (- 3) .解: (人教版七年级数学下册章末质量评估 第六章实数人教版七年级数学下册第六章实数 单元检测卷一、选择题1. 若一个数的算术平方根等于它的相反数,则这个数是 ( D )A .0 B. 1C .0或1D . 0 或± 12. 以下各式建立的是 ( C ) A.=-1B.=± 1C. =-1D. =± 13.与 最靠近的整数是 (B )A . 0B. 2C. 4D. 54.. 若 x - 3 是 4 的平方根,则 x 的值为 ( C)A . 2B .±2C .1或5 D. 16 5.以下说法中,正确的个数有 (A )①两个无理数的和是无理数;②两个无理数的积是有理数; ③无理数与有理数的和是无理数;④有理数除以无理数的商是无理数.A .1 个B. 2 个C.3 个D.4 个6. 以下选项中正确的选项是(C)A . 27 的立方根是±3B . 的平方根是± 4C . 9 的算术平方根是3D .立方根等于平方根的数是 17.. 用计算器计算 44.86 的值为 ( 精准到 0.01)( C)A . 6.69B . 6.7 C. 6.70 D .± 6.708.一个底面是正方形的水池,容积是 11.52m 3,池深 2m ,则水池底边长是 ( C )A . 9.25mB.13.52m C.2.4mD. 4.2m9. 比较 2, ,的大小 , 正确的选项是( C )A.2<<B.2<<C.<2< D. < <210. 假如一个实数的算术平方根等于它的立方根,那么知足条件的实数有 (C)A . 0 个B . 1 个 om]C . 2 个D .3个二、填空题11. 3 的算术平方根是 ____ 3____.312. (1) 一个正方体的体积是216cm ,则这个正方体的棱长是____6________cm ;(2) 表示 _______9_____ 的立方根;13. 已知 a , b 为两个连续整数,且 a<15<b ,则 a + b 的值为 7 .14. 已知一个有理数的平方根和立方根同样,则这个数是 ______0______ .15.实数 1- 2的相反数是2 - ,绝对值是 2- .113____3, 415. 0________.16.写出 9到 23之间的全部整数: 三、解答题17. 求以下各数的平方根和算术平方根:(1)1.44 ;解: 1.44 的平方根是 ± 1.44 =±1.2 ,算术平方根是1.44 = 1.2.169 (2);289169169 13 169 13 解: 289的平方根是 ±289= ±17, 算术平方根是289=17.92(3)( - 11) .解: (- 9 ) 2 的平方根是 ±(-9)2=±9,算术平方根是(- 9 )2 = 9.[]111111111118.已知一个正数 x 的两个平方根分别是 3-5m 和 m - 7,求这个正数 x 的立方根.由已知得 (3 - 5m)+ (m- 7)=0 ,-4m- 4=0,解得: m=-1.因此 3- 5m=8, m- 7=- 8.因此 x=( ±8) 2=64.因此 x 的立方根是4.19.计算:(1)2+3 2-5 2;(2)2(7- 1) +7;43 1(3)0.36 ×121÷8;(4)|3-2| +| 3-2| -| 2-1| ;(5) 1-0.64 - 3 - 8+ 4 - |7- 3|.25解: (1) (2)2(原式= (1 + 3- 5) ×2=- 2.7-1)+7=2 7-2+7=37- 2.2 1(3)原式= 0.6×11÷2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 实数 单元检测
一、填空题(每小题3分,共计27分)
1.49的平方根是________,36的算术平方根是________,-8的立方根是________.
2.若433=a ,则a =________;若422=b ,则b =________.
3.在实数0,π,0.73,9,2中,无理数有________.
4.用计算器求32003的按键顺序为________.
5.3
641-的倒数是________,3
2的负倒数是________. 6.如果正数x 的平方根为a +2与3a -6,则363a +=________.
7.若3||=a ,2=b ,且ab <0,则a +b =________.
8.比较大小:231________321
,-3.14________-π.
9.点A 在数轴上和原点相距5个单位,点B 在数轴上和原点相距3个单位,且点B 在点A 左边,则AB 之间的距离为________
二、选择题(每小题3分,共计27分)
10.若a <0,则3a -5|a |等于( )
A .8a
B .-2a
C .-8a
D .2a
11.下列计算正确的是( )
A .3163238=⋅
B .652535=⋅
C .662234=⋅
D .28827=⋅
12.下列各组数中互为相反数的一组是( )
A .-2与2)2(-
B .-2与38-
C .-2与2
1- D .|-2|与2
13.16的立方根和平方根分别为( )
A .316,±4
B .34±,2
C .316,2
D .34,±2
14.不查表,估计56的大小应在( )
A .6~7之间
B .7~7.5之间
C .7.5~8之间
D .8.0~8.5之间
15.一个正方形水池,池深2米,容积为11.52立方米,则此水池的边长为( )
A .9.25米
B .13.52米
C .2.4米
D .4.2米
16.下列说法正确的是( )
A .正整数,负整数统称为整数
B .正有理数,0,负有理数统称为有理数
C .无理数是指开方开不尽的数
D .41的平方根是2
1 17.实数a ,b 在数轴上表示的位置如图所示,则( )
A .b >a
B .| a |>| b |
C .-a <b
D .-b >a
18.用计算器求3315-的按键顺序正确的是( )
A .。

相关文档
最新文档