二次函数综合问题之抛物线与直线交点个数问题
抛物线与直线交点问题
1、本节复习课主要复习直线与抛物线交点的问题,
2、在解题过程中,计算要求比较高,应夯实基础提高应用
3、充分利用“图象”这个载体随时随地渗透数形结合的数学思想
1、(2013门头沟一模23)已知关于x的一元二次方程 .
(1)求证:无论 取任何实数,方程都有两个实数根;
(2)当 时,关于x的二次函数 的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且2AB=3OC,求m的值;
(3)在(2)的条件下,过点C作直线 ∥x轴,将二次函数图象在y轴左侧的部分沿直线 翻折,二次函数图象的其余部分保持不变,得到一个新的图象,记为G.请你结合图象回答:当直线 与图象G只有一个公共点时,b的取值范围.
2、(2013丰台一模23)二次函数 的图象如图所示,其顶点坐标为M(1,-4).
(4)求二次函数的解析式;
11、(2014东城一模23)已知:关于x的一元二次方程mx2﹣(4m+1)x+3m+3=0(m>1).
(1)求证:方程有两个不相等的实数根;
(2)设方程的两个实数根分别为x1,x2(其中x1>x2),若y是关于m的函数,且y=x1﹣3x2,求这个函数的解析式;
(3)将(2)中所得的函数的图象在直线m=2的左侧部分沿直线m=2翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当关于m的函数y=2m+b的图象与此图象有两个公共点时,b的取值范围.
并求直线l的解析式
方法总结:
例4:已知:抛物线
(1)当c=-3时,求出抛物线与x轴的交点坐标
(2)当-2<x<1时,抛物线与x轴有且只有一个交点,求c的取值范围
方法总结:线段与抛物线的交点,要结合直线与抛物线交点和函数的图象综合分析
二次函数交点问题,解析式,应用
二次函数的交点问题巧解方法:1、二次函数与x 轴、y 轴的交点:分别令y=0,x=0;2、二次函数与一次、反比例函数或者与其他函数等的相点:联立两个函数表达式,解方程.例1、如图,直线ι经过A (3,0),B (0,3)两点,且与二次函数y=x 2+1的图象,在第一象限内相交于点C .求:(1)△AOC 的面积;(2)二次函数图象顶点与点A 、B 组成的三角形的面积.例2、已知抛物线y =x 2-2x-8,(1)求证:该抛物线与x 轴一定有两个交点,并求出这两个交点的坐标。
(2)若该抛物线与x 轴的两个交点为A 、B ,且它的顶点为P ,求△ABP 的面积例3、.如图,抛物线2y x bx c =+-经过直线3y x =-与坐标轴的两个交点A 、B ,此抛物线与x 轴的另一个交点为C ,抛物线顶点为D.(1)求此抛物线的解析式;(2)点P 为抛物线上的一个动点,求使APC S ∆:ACD S ∆=5 :4的点P 的坐标。
例4、已知抛物线y=12x2+x-52.(1)用配方法求它的顶点坐标和对称轴.(2)若该抛物线与x轴的两个交点为A、B,求线段AB的长.例5、已知抛物线y=mx2+(3-2m)x+m-2(m≠0)与x轴有两个不同的交点.(1)求m的取值范围;(2)判断点P(1,1)是否在抛物线上;(3)当m=1时,求抛物线的顶点Q及P点关于抛物线的对称轴对称的点P′的坐标,并过P′、Q、P三点,画出抛物线草图.例6.已知二次函数y=x2-(m-3)x-m的图象是抛物线,如图2-8-10.(1)试求m为何值时,抛物线与x轴的两个交点间的距离是3?(2)当m为何值时,方程x2-(m-3)x-m=0的两个根均为负数?(3)设抛物线的顶点为M,与x轴的交点P、Q,求当PQ最短时△MPQ的面积.训练题1.抛物线y=a (x -2)(x +5)与x 轴的交点坐标为 .2.已知抛物线的对称轴是x=-1,它与x 轴交点的距离等于4,它在y 轴上的截距是-6,则它的表达式为 .3.若a >0,b >0,c >0,△>0,那么抛物线y=ax 2+bx +c 经过 象限.4.抛物线y=x 2-2x +3的顶点坐标是 .5.若抛物线y=2x 2-(m +3)x -m +7的对称轴是x=1,则m= .6.抛物线y=2x 2+8x +m 与x 轴只有一个交点,则m= .7.已知抛物线y=ax 2+bx +c 的系数有a -b +c=0,则这条抛物线经过点 .8.二次函数y=kx 2+3x -4的图象与x 轴有两个交点,则k 的取值范围 .9.抛物线y=x 2-2x +a 2的顶点在直线y=2上,则a 的值是 .10.抛物线y=3x 2+5x 与两坐标轴交点的个数为( )A .3个B .2个C .1个D .无11.如图1所示,函数y=ax 2-bx +c 的图象过(-1,0),则的值是()A .-3B .3C .D .-12.已知二次函数y=ax 2+bx +c 的图象如图2所示,则下列关系正确的是( )A .0<-<1B .0<-<2C .1<-<2D .-=113.已知二次函数y=x 2+mx +m -2.求证:无论m 取何实数,抛物线总与x 轴有两个交点.14.已知二次函数y=x 2-2kx +k 2+k -2.(1)当实数k 为何值时,图象经过原点?(2)当实数k 在何范围取值时,函数图象的顶点在第四象限内?a b a ca cbc b a +++++2121a b 2a b 2a b 2a b2函数解析式的求法例一、已知抛物线上任意三点时,通常设解析式为一般式y=ax2+bx+c,然后解三元方程组求解;1.已知二次函数的图象经过A(0,3)、B(1,3)、C(-1,1)三点,求该二次函数的解析式。
二次函数压轴题交点个数问题(习题及答案)
交点个数问题(习题)
1.在平面直角坐标系中,点A(10,0),以OA为直径在第一象
限内作半圆,B为半圆上一点,连接AB并延长至C,使BC=AB,过C作CD⊥x轴于点D,交线段OB于点E,已知CD=8,抛物线经过O,E,A三点.
(1)∠OBA=_______;
(2)求抛物线的函数表达式;
(3)若P为抛物线上位于第一象限内的一个动点,以P,O,A,E为顶点的四边形面积记为S,则S取何值时,相应的点P有且只有3个?
2.如图,直线y =kx 与抛物线2422273
y x =-
+交于点A (3,6).(1)求直线y =kx 的解析式和线段OA 的长.(2)若点B 为抛物线上对称轴右侧的点,点E 在线段OA 上(点E 与点O ,A 不重合),点D (m ,0)是x 轴正半轴上的动点,且满足∠BAE =∠BED =∠AOD .则当m 在什么范围时,符合条件的点E 的个数分别是1个、2个?
3.如图,在平面直角坐标系中,抛物线y=x2+(k-1)x-k(k>0)与
直线y=kx+1交于点A,与x轴交于B,C两点(点B在点C 的左侧).则在直线y=kx+1上是否存在唯一的点Q,使得∠OQB=90°?若存在,请求出此时k的值;若不存在,请说明理由.
【参考答案】
1.(1)90°;(2)21584
y x x =-+;(3)当S =16时,点P 有且只有3个
2.
(1)235;y x OA ==.(2)当94m =
时,符合条件的点E 有1个;当904m <<
时,符合条件的点E 有2个. 3.当255
k =或1时,存在唯一的点Q ,使得∠OQB =90°.。
二次函数小综合-二次函数与交点问题
二次函数小综合-二次函数与交点问题例1(2018四调题改)抛物线y =x 2-kx -k ,A (1,-2),B (4,10),抛物线与线段AB (包含A 、B 两点)有两个交点,那么k 的取值范围为_______.解:线段AB 的解析式是_______(1≤x ≤4),联立抛物线与直线解析式方程得x 2-4x +6=kx +k ,该方程在1≤x ≤4时有两根,此方程可以看作定抛物线_______(1≤x ≤4),与过定点C (-1,0)的动直线_____.(填写解析式,上同),有两个交点,画出图像如图. 根据图像回答问题:M 点的坐标为______,N 坐标为______; l 1的k 值为________;l 2的k 值为________.所以,仅有两个交点时,k 的取值范围为_____________.41l 1l 2NMC Oxyy =4x -6,y =x 2-4x +6,y =kx +k , (1,3),(4,6),k =±211-6,k =65,-6+211<k ≤65. 例2.直线y =2x ﹣5m 与抛物线y =x 2﹣mx ﹣3在0≤x ≤4范围内只有一个公共点,则m 的取值范围为 ﹣5<m ≤或m =8﹣2.解:联立可得:x 2﹣(m +2)x +5m ﹣3=0,令y =x 2﹣(m +2)x +5m ﹣3,∴直线y =2x ﹣5m 与抛物线y =x 2﹣mx ﹣3在0≤x ≤4范围内只有一个公共点, 即y =x 2﹣(m +2)x +5m ﹣3的图象在0≤x <4上只有一个交点, 当△=0时,即△=(m +2)2﹣4(5m ﹣3)=0解得:m =8±4,当m =8+4时,x ==5+2>4当m=8﹣4时,x==5﹣2,满足题意,当△>0,∴令x=0,y=5m﹣3,令x=4,y=m+5,∴(m+5)(5m﹣3)<0,∴﹣5<m<令x=0代入x2﹣(m+2)x+5m﹣3=0,解得:m=,此该方程的另外一个根为:,故m=也满足题意,故m的取值范围为:﹣5<m≤或m=8﹣2例3.在平面直角坐标系中,A(﹣2,0),B(1,﹣6),若抛物线y=ax2+(a+2)x+2与线段AB有且仅有一个公共点,则a的取值范围是﹣5<a≤1且a≠0或a=8+4.解:当抛物线过A点,B点为临界,代入A(﹣2,0)则4a﹣2(a+2)+2=0,解得:a=1,代入B(1,﹣6),则a+(a+2)+2=﹣6,解得:a=﹣5,又a≠0,当a=﹣5时,抛物线与线段AB有两个交点,所以a的取值范围是﹣5<a≤1且a≠0.∵直线AB的解析式为y=﹣2x﹣4,由,消去y得到:ax2+(a+4)x+6=0,当△=0时,直线AB与抛物线只有一个交点,∴(a+4)2﹣24a=0,解得a=8+4或8﹣4,经检验:当a=8+4时,切点在线段AB上,符合题意,当a=8﹣4时,切点不在线段AB上,不符合题意,故答案为﹣5<a≤1且a≠0或a=8+4.例4.已知二次函数y=(m﹣2)x2﹣4mx+2m﹣6的图象与x轴负半轴至少有一个交点,则m的取值范围为()A.1<m<3B.1≤m<2或2<m<3C.m<1D.m>3【解答】解:∵二次函数y=(m﹣2)x2﹣4mx+2m﹣6,∴m﹣2≠0,∴m≠2,当①图象与x轴的交点有两个,原点的两侧各有一个,则,解得2<m<3;②图象与x轴的交点都在x轴的负半轴,则,解得:1≤m<2.综上可得m的取值范围是:1≤m<2或2<m<3 故选:B.例5.已知a、b为y关于x的二次函数y=(x﹣c)(x﹣c﹣1)﹣3的图象与x轴两个交点的横坐标,则|a﹣c|+|c﹣b|的值为解:当y=0时,(x﹣c)(x﹣c﹣1)﹣3=0,(设a<b),整理得x2﹣(2c+1)x+c2+c﹣3=0,△=(2c+1)2﹣4(c2+c﹣3)=13,x=,所以a=c+,b=c+,所以|a﹣c|+|c﹣b|=c﹣a+b﹣c=b﹣a=c+﹣(c+)=.故答案为.练习1已知点A ,B 的坐标分别为(1,0),(2,0).若二次函数y =x 2+(a ﹣3)x +3的图象与线段AB 只有一个交点,则a 的取值范围是 ﹣1≤a <﹣或a =3﹣2 .解:依题意,应分为两种情况讨论, ①当二次函数顶点在x 轴下方, 若y x =1<0且y x =2≥0,即,解得此不等式组无解;若y x =2<0且y x =1≥0,即,解得﹣1≤a <﹣;②当二次函数的顶点在x 轴上时, △=0,即(a ﹣3)2﹣12=0,解得a =3±2,而对称轴为x =﹣,可知1≤﹣≤2,故a =3﹣2.故答案为:﹣1≤a <﹣或a =3﹣2.2.(2018预测)已知抛物线y =x 2-2mx +9m -1,当-3≤x ≤3时,使y =m 成立的x 的值恰好只有一个,则m 的取值范围是_________________.447m -≤<-或415m =-3.(2018新观察四调模拟卷)已知A (-1,6)、B (4,1)抛物线y =x 2+b 与线段AB 只有唯一公共点,则b 的取值范围是_________________. -15≤b <5或214b =4.已知二次函数y =x 2+x +c (b ,c 为常数),且当﹣1<x <1时,抛物线与x 轴有且只有一个公共点,求c 的取值范围; ∵对称轴x =﹣=﹣,∴当﹣1<x <1时,抛物线与x 轴有且只有一个公共点,则①此公共点一定是顶点,∴△=1﹣4c =0,即c =,②一个交点的横坐标小于等于﹣1,另一交点的横坐标小于1而大于﹣1, ∴1﹣1+c ≤0,1+1+c >0,解得﹣2<c ≤0. 综上所述,c 的取值范围是:c =或﹣2<c ≤0;5.已知a、b为抛物线y=(x﹣c)(x﹣c﹣d)﹣2与x轴交点的横坐标,a<b,则|a﹣c|+|c ﹣b|的值为b﹣a.解:当x=c时,y=﹣2<0,由图可知,a<c<b,则|a﹣c|+|c﹣b|=c﹣a+b﹣c=b﹣a.故答案为b﹣a.6.二次函数y=x2﹣4mx+1﹣2m,当﹣1<x<1时,抛物线与x轴有一个公共点,求m的取值范围.解:∵当﹣1<x<1时,抛物线与x轴有一个公共点,∴可得以下几种情况:①,解得m=.②,解得m>.③,解得m<﹣1.∴综上,m>,m<﹣1或m=时当﹣1<x<1时,抛物线与x轴有一个公共点.。
二次函数线段及交点问题
专题八:二次函数之线段及交点问题 求线段长度例题1 :在平面直角坐标系中,抛物线y=−12x2+52x−2与x轴交于A、B(A点在B点的左侧)与y轴交于点C。
(1)如图1,连接AC、BC,求△ABC的面积。
(2)如图2:①过点C作CR∥x轴交抛物线于点R,求点R的坐标;②点P为第四象限抛物线上一点,连接PC,若∠BCP=2∠ABC时,求点P坐标。
(3)如图3,在(2)的条件下,点F在AP上,过点P作PH⊥x轴于H点,点K在PH的延长线上,AK=KF,∠KAH=∠FKH,PF= −4√2a,连接KB并延长交抛物线于点Q,求PQ的长。
练习1 . 如图,在平面直角坐标系中,点O为坐标原点,抛物线y=x2+bx+c交x 轴于A、B两点,交y轴于点C,直线y=x﹣3经过B、C两点.(1)求抛物线的解析式;(2)过点C作直线CD⊥y轴交抛物线于另一点D,点P是直线CD下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点P作PE⊥x轴于点E,PE交CD 于点F,交BC于点M,连接AC,过点M作MN⊥AC于点N,设点P的横坐标为t,线段MN的长为d,求d与t之间的函数关系式;(3)在(2)的条件下,连接PC,过点B作BQ⊥PC于点Q(点Q在线段PC上),BQ交CD于点T,连接OQ交CD于点S,当ST=TD时,求线段MN的长.x2+bx+c与x轴交于A(﹣练习2 . 如图,在平面直角坐标系中,已知抛物线y= 321,0),B(2,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)直线y=﹣x+n与该抛物线在第四象限内交于点D,与线段BC交于点E,与x轴交于点F,且BE=4EC.①求n的值;②连接AC,CD,线段AC与线段DF交于点G,△AGF与△CGD是否全等?请说明理由;(3)直线y=m(m>0)与该抛物线的交点为M,N(点M在点N的左侧),点M关于y轴的对称点为点M',点H的坐标为(1,0).若四边形OM'NH的面积为5.求点H到OM'的距离d的值.3求线段之间关系例题1 :已知直线y=k x+b与抛物线y=ax2(a>0)相交于A、B两点(点A在点B的左侧),与y轴正半轴相交于点C,过点A作AD⊥x轴,垂足为D.(1)若∠AOB=60°,AB∥x轴,AB=2,求a的值;(2)若∠AOB=90°,点A的横坐标为﹣4,AC=4BC,求点B的坐标;(3)延长AD、BO相交于点E,说明线段DE和CO的数量关系。
二次函数压轴题交点个数问题(讲义及答案)
交点个数问题(讲义)知识点睛交点个数问题是确定函数与几何图形是否存在交点及个数的问题,常见问法有交点个数情况、交点是否唯一、存在唯一位置等.处理此类问题的考虑:①交点唯一的情形考虑切点(直线与圆相切)、端点(经过线段端点)、交点(取值范围内唯一).②多交点问题常建立方程,转化为方程解个数问题.精讲精练1.如图,菱形ABCD的边长为2cm,∠BAD=60°.点P从点A出发,以3cm/s的速度,沿AC向点C作匀速运动;与此同时,点Q也从点A出发,以1cm/s的速度,沿射线AB作匀速运动,当点P运动到点C时,P,Q两点都停止运动.设点P的运动时间为t(s).(1)当点P异于A,C时,请说明PQ∥BC;(2)以点P为圆心、PQ的长为半径作圆,请问:在整个运动过程中,t为怎样的值时,⊙P与边BC分别有1个公共点和2个公共点?2.如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A(6,0),B(0,8),点C的坐标为(0,m),过点C作CE⊥AB于点E,点D为x轴上的一动点,连接CD,DE,以CD,DE为边作□CDEF.(1)当0<m<8时,求CE的长(用含m的代数式表示);(2)点D在整个运动过程中,若存在唯一的位置,使得□CDEF 为矩形,请求出所有满足条件的m的值.3.在平面直角坐标系xOy中,点A的坐标为(0,1),取一点B(b,0),连接AB,作线段AB的垂直平分线l1,过点B作x轴的垂线l2,记l1,l2的交点为P.(1)当b=3时,在图1中补全图形(尺规作图,不写作法,保留作图痕迹).(2)小慧多次取不同数值b,得出相应的点P,并把这些点用平滑的曲线连接起来发现:这些点P竟然在一条曲线L上.①设点P的坐标为(x,y),试求y与x之间的关系式,并指出曲线L是哪种曲线;②设点P到x轴、y轴的距离分别是d1,d2,求d1+d2的范围,当d1+d2=8时,求点P的坐标;③将曲线L在直线y=2下方的部分沿直线y=2向上翻折,得到一条“W”形状的新曲线,若直线y=kx+3与这条“W”形状的新曲线有4个交点,直接写出k的取值范围.图14.已知二次函数y=ax2-2ax+c(a<0)的最大值为4,且抛物线过点79()24-,,点P(t,0)是x轴上的动点,抛物线与y轴交点为C,顶点为D.(1)求该二次函数的解析式及顶点D的坐标;(2)求|PC-PD|的最大值及对应的点P的坐标;(3)设Q(0,2t)是y轴上的动点,若线段PQ与函数22y a x a x c=-+的图象只有一个公共点,请直接写出t的取值.【参考答案】1.(1)证明略;(2)当4361332≤,,t t t =-<-=时有一个交点;当4361t -<≤时,有两个交点.2.(1)CE =3(8)5m -;(2)满足条件的m 的值为699607213,,或--.3.(1)作图略;(2)①21122y x =+,抛物线;②P 1(3,5),P 2(-3,5);③3333k -<<4.(1)223y x x =-++,D (1,4);(2)2,P (-3,0);(3)332t <≤,72t =或3t -≤。
二次函数综合问题之抛物线与直线交点个数问题
二次函数综合问题之抛物线与直线交点个数1.(2014•北京)在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4).(1)求抛物线得表达式及对称轴;(2)设点B关于原点得对称点为C,点D就是抛物线对称轴上一动点,记抛物线在A,B之间得部分为图象G(包含A,B两点).若直线CD 与图象G有公共点,结合函数图象,求点D纵坐标t得取值范围.考点: 待定系数法求二次函数解析式;待定系数法求一次函数解析式;二次函数得最值.专题: 计算题.分析:(1)将A与B坐标代入抛物线解析式求出m与n得值,确定出抛物线解析式,求出对称轴即可;(2)由题意确定出C坐标,以及二次函数得最小值,确定出D纵坐标得最小值,求出直线BC解析式,令x=1求出y得值,即可确定出t得范围.解答:解:(1)∵抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4),代入得:,解得:,∴抛物线解析式为y=2x2﹣4x﹣2,对称轴为直线x=1;(2)由题意得:C(﹣3,﹣4),二次函数y=2x2﹣4x﹣2得最小值为﹣4,由函数图象得出D纵坐标最小值为﹣4,设直线BC解析式为y=kx+b,将B与C坐标代入得:,解得:k=,b=0,∴直线BC解析式为y=x,当x=1时,y=,则t得范围为﹣4≤t≤.点评:此题考查了待定系数法求二次函数解析式,待定系数法求一次函数解析式,以及函数得最值,熟练掌握待定系数法就是解本题得关键.2.(2011•石景山区二模)已知:抛物线与x轴交于A(﹣2,0)、B(4,0),与y轴交于C(0,4).(1)求抛物线顶点D得坐标;(2)设直线CD交x轴于点E,过点B作x轴得垂线,交直线CD于点F,将抛物线沿其对称轴上下平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可以平移多少个单位长度,向下最多可以平移多少个单位长度?考点:二次函数图象与几何变换;二次函数得性质;待定系数法求二次函数解析式.专题: 探究型.分析:(1)先设出过A(﹣2,0)、B(4,0)两点得抛物线得解析式为y=a(x+2)(x﹣4),再根据抛物线与y轴得交点坐标即可求出a得值,进而得出此抛物线得解析式;(2)先用待定系数法求出直线CD解析式,再根据抛物线平移得法则得到(1)中抛物线向下平移m各单位所得抛物线得解析式,再将此解析式与直线CD得解析式联立,根据两函数图象有交点即可求出m得取值范围,进而可得到抛物线向下最多可平移多少个单位;同理可求出抛物线向上最多可平移多少个单位.解答:解:(1)设抛物线解析式为y=a(x+2)(x﹣4),∵C点坐标为(0,4),∴a=﹣,(1分)∴解析式为y=﹣x2+x+4,顶点D坐标为(1,);(2分)(2)直线CD解析式为y=kx+b.则,,∴,∴直线CD解析式为y=x+4,(3分)∴E(﹣8,0),F(4,6),若抛物线向下移m个单位,其解析式y=﹣x2+x+4﹣m(m>0),由消去y,得﹣x2+x﹣m=0,∵△=﹣2m≥0,∴0<m≤,∴向下最多可平移个单位.(5分)若抛物线向上移m个单位,其解析式y=﹣x2+x+4+m(m>0),方法一:当x=﹣8时,y=﹣36+m,当x=4时,y=m,要使抛物线与EF有公共点,则﹣36+m≤0或m≤6,∴0<m≤36;(7分)方法二:当平移后得抛物线过点E(﹣8,0)时,解得m=36,当平移后得抛物线过点F(4,6)时,m=6,由题意知:抛物线向上最多可以平移36个单位长度,(7分)综上,要使抛物线与EF有公共点,向上最多可平移36个单位,向下最多可平移个单位.点评:本题考查得就是二次函数得图象与几何变换,涉及到用待定系数法求一次函数与二次函数得解析式、二次函数与一次函数得交点问题,有一定得难度.3.(2013•丰台区一模)二次函数y=x2+bx+c得图象如图所示,其顶点坐标为M(1,﹣4).(1)求二次函数得解析式;(2)将二次函数得图象在x轴下方得部分沿x轴翻折,图象得其余部分保持不变,得到一个新得图象,请您结合新图象回答:当直线y=x+n与这个新图象有两个公共点时,求n得取值范围.考点:待定系数法求二次函数解析式;二次函数图象与几何变换.分析:(1)确定二次函数得顶点式,即可得出二次函数得解析式.(2)求出两个边界点,继而可得出n得取值范围.解答:解:(1)因为M(1,﹣4)就是二次函数y=(x+m)2+k得顶点坐标,所以y=(x﹣1)2﹣4=x2﹣2x﹣3,(2)令x2﹣2x﹣3=0,解之得:x1=﹣1,x2=3,故A,B两点得坐标分别为A(﹣1,0),B(3,0).如图,当直线y=x+n(n<1),经过A点时,可得n=1,当直线y=x+n经过B点时,可得n=﹣3,∴n得取值范围为﹣3<n<1,翻折后得二次函数解析式为二次函数y=﹣x2+2x+3当直线y=x+n与二次函数y=﹣x2+2x+3得图象只有一个交点时,x+n=﹣x2+2x+3,整理得:x2﹣x+n﹣3=0,△=b2﹣4ac=1﹣4(n﹣3)=13﹣4n=0,解得:n=,∴n得取值范围为:n>,由图可知,符合题意得n得取值范围为:n>或﹣3<n<1.点评:本题考查了待定系数法求二次函数解析式得知识,难点在第二问,关键就是求出边界点时n得值.4.(2009•北京)已知关于x得一元二次方程2x2+4x+k﹣1=0有实数根,k为正整数.(1)求k得值;(2)当此方程有两个非零得整数根时,将关于x得二次函数y=2x2+4x+k﹣1得图象向下平移8个单位,求平移后得图象得解析式;(3)在(2)得条件下,将平移后得二次函数得图象在x轴下方得部分沿x轴翻折,图象得其余部分保持不变,得到一个新得图象.请您结合这个新得图象回答:当直线y=x+b(b<k)与此图象有两个公共点时,b得取值范围.考点: 二次函数综合题.专题:综合题.分析:(1)综合根得判别式及k得要求求出k得取值;(2)对k得取值进行一一验证,求出符合要求得k值,再结合抛物线平移得规律写出其平移后得解析式;(3)求出新抛物线与x轴得交点坐标,再分别求出直线y=x+b经过点A、B时得b得取值,进而求出其取值范围.本题第二问就是难点,主要就是不会借助计算淘汰不合题意得k值.解答:解:(1)由题意得,△=16﹣8(k﹣1)≥0.∴k≤3.∵k为正整数,∴k=1,2,3;(2)设方程2x2+4x+k﹣1=0得两根为x1,x2,则x1+x2=﹣2,x1•x2=.当k=1时,方程2x2+4x+k﹣1=0有一个根为零;当k=2时,x1•x2=,方程2x2+4x+k﹣1=0没有两个不同得非零整数根;当k=3时,方程2x2+4x+k﹣1=0有两个相同得非零实数根﹣1.综上所述,k=1与k=2不合题意,舍去,k=3符合题意.当k=3时,二次函数为y=2x2+4x+2,把它得图象向下平移8个单位得到得图象得解析式为y=2x2+4x﹣6;(3)设二次函数y=2x2+4x﹣6得图象与x轴交于A、B两点,则A(﹣3,0),B(1,0).依题意翻折后得图象如图所示.当直线y=x+b经过A点时,可得b=;当直线y=x+b经过B点时,可得b=﹣.由图象可知,符合题意得b(b<3)得取值范围为<b<.(3)依图象得,要图象y=x+b(b小于k)与二次函数图象有两个公共点时,显然有两段.而因式分解得y=2x2+4x﹣6=2(x﹣1)(x+3),第一段,当y=x+b过(1,0)时,有一个交点,此时b=﹣.当y=x+b过(﹣3,0)时,有三个交点,此时b=.而在此中间即为两个交点,此时﹣<b<.第二段,将平移后得二次函数得图象在x轴下方得部分沿x轴翻折后,开口向下得部分得函数解析式为y=﹣2(x﹣1)(x+3).显然,当y=x+b与y=﹣2(x﹣1)(x+3)(﹣3<x<1)相切时,y=x+b与这个二次函数图象有三个交点,若直线再向上移,则只有两个交点.因为b<3,而y=x+b(b小于k,k=3),所以当b=3时,将y=x+3代入二次函数y=﹣2(x﹣1)(x+3)整理得, 4x2+9x﹣6=0,△>0,所以方程有两根,那么肯定不将有直线与两截结合得二次函数图象相交只有两个公共点.这种情况故舍去.综上,﹣<b<.点评:考查知识点:一元二次方程根得判别式、二次函数及函数图象得平移与翻折,最后还考到了与一次函数得结合等问题.不错得题目,难度不大,综合性强,考查面广,似乎就是一个趋势或热点.5.(2012•东城区二模)已知关于x得方程(1﹣m)x2+(4﹣m)x+3=0.(1)若方程有两个不相等得实数根,求m得取值范围;(2)若正整数m满足8﹣2m>2,设二次函数y=(1﹣m)x2+(4﹣m)x+3得图象与x轴交于A、B两点,将此图象在x轴下方得部分沿x轴翻折,图象得其余部分保持不变,得到一个新得图象.请您结合这个新得图象回答:当直线y=k x+3与此图象恰好有三个公共点时,求出k得值(只需要求出两个满足题意得k值即可).考点:二次函数综合题.分析:(1)根据方程有两个不相等得实数根,由一元二次方程得定义与根得判别式可求m得取值范围;(2)先求出正整数m得值,从而确定二次函数得解析式,得到解析式与x轴交点得坐标,由图象可知符合题意得直线y=kx+3经过点A、B.从而求出k得值.解答:解:(1)△=(4﹣m)2﹣12(1﹣m)=(m+2)2,由题意得,(m+2)2>0且1﹣m≠0.故符合题意得m得取值范围就是m≠﹣2且m≠1得一切实数.(2)∵正整数m满足8﹣2m>2,∴m可取得值为1与2.又∵二次函数y=(1﹣m)x2+(4﹣m)x+3,∴m=2.…(4分)∴二次函数为y=﹣x2+2x+3.∴A点、B点得坐标分别为(﹣1,0)、(3,0).依题意翻折后得图象如图所示.由图象可知符合题意得直线y=kx+3经过点A、B.可求出此时k得值分别为3或﹣1.…(7分)注:若学生利用直线与抛物线相切求出k=2也就是符合题意得答案.点评:本题考查了二次函数综合题.(1)考查了一元二次方程根得情况与判别式△得关系:△>0⇔方程有两个不相等得实数根.(2)得到符合题意得直线y=kx+3经过点A、B就是解题得关键.6.在平面直角坐标系中,抛物线y=﹣x2+mx+m2﹣3m+2与x轴得交点分别为原点O与点A,点B(4,n)在这条抛物线上.(1)求B点得坐标;(2)将此抛物线得图象向上平移个单位,求平移后得图象得解析式;(3)在(2)得条件下,将平移后得二次函数得图象在x轴下方得部分沿x轴翻折,图象得其余部分保持不变,得到一个新得图象.请您结合这个新得图象回答:当直线y=x+b与此图象有两个公共点时,b得取值范围.考点: 二次函数综合题.专题:压轴题.分析:(1)把原点坐标代入抛物线,解关于m得一元二次方程得到m得值,再根据二次项系数不等于0确定出函数解析式,再把点B坐标代入函数解析式求出n得值,即可得解;(2)根据向上平移纵坐标加解答即可;(3)把直线解析式与抛物线解析式联立,消掉y得到关于x得一元二次方程,根据△=0求出b得值,然后令y=0求出抛物线与x轴得交点坐标,再求出直线经过抛物线与x轴左边交点得b值,然后根据图形写出b得取值范围即可.解答:解:(1)∵抛物线经过原点O,∴m2﹣3m+2=0,解得m1=1,m2=2,当m=1时,﹣=﹣=0,∴m=2,∴抛物线得解析式为y=﹣x2+3x,∵点B(4,n)在这条抛物线上,∴n=﹣×42+3×4=﹣8+12=4,∴点B(4,4);(2)∵抛物线得图象向上平移个单位,∴平移后得图象得解析式y=﹣x2+3x+;(3)联立,消掉y得,﹣x2+3x+=x+b,整理得,x2﹣5x+2b﹣7=0,△=(﹣5)2﹣4×1×(2b﹣7)=0,解得b=,令y=0,则﹣x2+3x+=0,整理得,x2﹣6x﹣7=0,解得x1=﹣1,x2=7,∴抛物线与x轴左边得交点为(﹣1,0),当直线y=x+b经过点(﹣1,0)时,×(﹣1)+b=0,解得b=,∴当直线y=x+b与此图象有两个公共点时,b得取值范围为b>或b<.点评:本题就是二次函数综合题,主要利用了解一元二次方程,二次函数图象上点得坐标特征,二次函数图象与几何变换,难点在于(3)求出直线与抛物线有三个交点时得b值,作出图形更形象直观.7.关于x得二次函数y=x2+2x+k﹣1得图象与x轴有交点,k为正整数.(1)求k得值;(2)当关于x得二次函数y=x2+2x+k﹣1与x轴得交点得横坐标均就是负整数时,将关于x得二次函数y=x2+2x+k﹣1得图象向下平移4个单位,求平移后得图象得解析式;(3)在(2)得条件下,将平移后得二次函数得图象在x轴下方得部分沿x轴翻折,图象得其余部分保持不变,得到一个新得图象.请您结合这个新得图象回答:当直线y=(b<3)与此图象有两个公共点时,b得取值范围.考点: 二次函数综合题.分析:(1)综合根得判别式及k得要求,求出k得取值;(2)对k得取值进行一一验证,求出符合要求得k值,再结合抛物线平移得规律写出其平移后得解析式;(3)求出新抛物线与x轴得交点坐标,再分别求出直线y=x+b经过点A、B时得b得取值,进而求出其取值范围. 解答:解:(1)由题意得,△=4﹣4(k﹣1)≥0.∴k≤2.∵k为正整数,∴k=1,2;(2)设方程x2+2x+k﹣1=0得两根为x1,x2,则x1+x2=﹣2,x1•x2=k﹣1.当k=1时,图象y=x2+2x+k﹣1与x轴有一个交点为(0,0),不合题意;当k=2时,图象y=x2+2x+k﹣1与x轴有一个交点为(﹣1,0),符合题意;综上所述,k=2符合题意.当k=2时,二次函数为y=x2+2x+1,把它得图象向下平移4个单位得到得图象得解析式为:y=x2+2x﹣3;(3)设二次函数y=x2+2x﹣3得图象与x轴交于A、B两点,则A(﹣3,0),B(1,0).依题意翻折后得图象如图所示.当直线y=x+b经过A点时,可得b=;当直线y=x+b经过B点时,可得b=﹣.由图象可知,符合题意得b(b<3)得取值范围为:﹣<b<.点评:此题主要考查了一元二次方程根得判别式、二次函数及函数图象得平移与翻折,最后还考到了与一次函数得结合等问题.不错得题目,难度不大,综合性强.8.(2014•东城区一模)已知:关于x得一元二次方程mx2﹣(4m+1)x+3m+3=0(m>1).(1)求证:方程有两个不相等得实数根;(2)设方程得两个实数根分别为x1,x2(其中x1>x2),若y就是关于m得函数,且y=x1﹣3x2,求这个函数得解析式; (3)将(2)中所得得函数得图象在直线m=2得左侧部分沿直线m=2翻折,图象得其余部分保持不变,得到一个新得图象.请您结合这个新得图象回答:当关于m得函数y=2m+b得图象与此图象有两个公共点时,b得取值范围.考点: 一次函数综合题.专题:压轴题.分析:(1)列式表示出根得判别式△,再根据△>0,方程有两个不相等得实数根证明;(2)利用求根公式法求出x1、x2,然后代入关系式整理即可得解;(3)作出函数图象,然后求出m=2时得函数值与以及m=1时得翻折图象得对应点得坐标,再代入直线解析式求出b值,然后结合图形写出b得取值范围即可.解答:(1)证明:△=(4m+1)2﹣4m(3m+3)=4m2﹣4m+1=(2m﹣1)2,∵m>1,∴(2m﹣1)2>0,∴方程有两个不等实根;(2)解:x=,∴两根分别为=3,=1+,∵m>1,∴0<<1,∴1<1+<2,∵x1>x2,∴x1=3,x2=1+,∴y=x1﹣3x2,=3﹣3(1+),=﹣,所以,这个函数解析式为y=﹣(m>1);(3)解:作出函数y=﹣(m>1)得图象,并将图象在直线m=2左侧部分沿此直线翻折,所得新图形如图所示,m=2时,y=﹣,m=1时,y=﹣=﹣3,∴函数图象直线m=2左侧部分翻折后得两端点坐标为(3,﹣3),(2,﹣),当m=3时,2×3+b=﹣3,解得b=﹣9,当m=2时,2×2+b=﹣,解得b=﹣,所以,此图象有两个公共点时,b得取值范围﹣9<b<﹣.点评:本题就是一次函数综合题型,主要利用了根得判别式,求根公式法解一元二次方程,一次函数与反比例函数交点问题,难点在于(3)确定出翻折部分得两个端点得坐标以及有两个交点时得b得取值范围,作出图形更形象直观.9.(2013•门头沟区一模)已知关于x得一元二次方程.(1)求证:无论m取任何实数,方程都有两个实数根;(2)当m<3时,关于x得二次函数得图象与x轴交于A、B两点(点A在点B得左侧),与y轴交于点C,且2AB=3OC,求m得值;(3)在(2)得条件下,过点C作直线l∥x轴,将二次函数图象在y轴左侧得部分沿直线l翻折,二次函数图象得其余部分保持不变,得到一个新得图象,记为G.请您结合图象回答:当直线与图象G只有一个公共点时,b得取值范围.考点: 二次函数综合题.分析:(1)运用根得判别式就可以求出△得值就可以得出结论;(2)先当x=0或y=0就是分别表示出抛物线与x轴与y轴得交点坐标,表示出AB、OC得值,由2AB=3OC建立方程即可求出m得值;(3)把(2)m得值代入抛物线得解析式就可以求出抛物线得解析式与C点得坐标,当直线经过点C时就可以求出b得值,由直线与抛物线只有一个公共点建立方程,根据△=0就可以求出b得值,再根据图象就可以得出结论.解答:解:(1)根据题意,得△=(m﹣2)2﹣4××(2m﹣6)=(m﹣4)2,∵无论m为任何数时,都有(m﹣4)2≥0,即△≥0.∴无论m取任何实数,方程都有两个实数根;(2)由题意,得当y=0时,则,解得:x1=6﹣2m,x2=﹣2,∵m<3,点A在点B得左侧,∴A(﹣2,0),B(﹣2m+6,0),∴OA=2,OB=﹣2m+6.当x=0时,y=2m﹣6,∴C(0,2m﹣6),∴OC=﹣(2m﹣6)=﹣2m+6.∵2AB=3OC,∴2(2﹣2m+6)=3(﹣2m+6),解得:m=1;(3)如图,当m=1时,抛物线得解析式为y=x2﹣x﹣4,点C得坐标为(0,﹣4).当直线y=x+b经过点C时,可得b=﹣4,当直线y=x+b(b<﹣4)与函数y=x2﹣x﹣4(x>0)得图象只有一个公共点时,得x+b═x2﹣x﹣4.整理得:3x2﹣8x﹣6b﹣24=0,∴△=(﹣8)2﹣4×3×(﹣6b﹣24)=0,解得:b=﹣.结合图象可知,符合题意得b得取值范围为b>﹣4或b<﹣.点评:本题就是一道一次函数与二次函数得综合试题,考查了一元二次方程根得判别式得运用,二次函数与坐标轴得交点坐标得运用,轴对称得性质得运用,解答时根据函数之间得关系建立方程灵活运用根得判别式就是解答本题得关键.。
二次函数最值与交点问题
3、已知抛物线 、直线 ,若对于任意的x的值, 恒成立,则m的值为。
知识点三:图形存在性问题
【例题精讲】
1、在平面直角坐标系xOy中,将二次函数y=x2-1的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N。若一个点的横坐标与纵坐标均为整数,则该点称为整点,则M与N所围成封闭图形内(包括边界)整点的个数为()
A.- B. 或- C.2或- D.2或 或-
2、二次函数y=x2﹣2x﹣3,当m﹣2≤x≤m时的最大值为5,则m的值可能为( )
A.0或6B.4或﹣2C.0或4D.6或﹣2
3、已知抛物线y=(x-m)2-(x-m),其中m是常数,抛物线与x轴交于A、B两点(点A在点B的左侧),若0<x< 时,恒有y<0,则m的取值范围是.
2、二次函数 ,点A(0,3),点B在直线y=2上运动,A、B、C顺时针排列,AB=BC,AB⊥BC,点C在抛物线内部,记点B的横坐标为t,则t的取值范围是。
1、已知a<b,函数y=-x2+x(a≤x≤b)的最大值、最小值为2b和2a,则a+b=
2、已知P(0,1)和Q(1,0),若二次函数 的图象与线段PQ有交点,则a的取值范围为。
3、已知二次函数y=x2-(m+1)x-5m(m为常数),在-3≤x≤1的范围内至少有一个x的值使y≥2,则m的取值范围是__________
4、已知二次函数y=x2-2hx+h,当自变量x的取值在-1≤x≤1的范围中时,函数有最小值n,则n的最大值是__________。
中考数学压轴专项--二次函数交点个数问题练习答案版(可编辑)
二.交点个数问题1.(2016·滨州)抛物线y=2x 2﹣2x+1与坐标轴的交点个数是( )A .0B .1C .2D .32.(2016•烟台)反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,则t 的取值范围是( ) A .t <B .t >C .t≤D .t≥3.(2015•杭州模拟)下列关于函数y=(m 2﹣1)x 2﹣(3m ﹣1)x+2的图象与坐标轴的公共点情况:①当m ≠3时,有三个公共点; ②m=3时,只有两个公共点; ③若只有两个公共点,则m=3; ④若有三个公共点,则m ≠3. 其中描述正确的有( )个.A .一个B .两个C .三个D .四个4.在同一直线坐标系中,若正比例函数y=k 1x 的图像与反比例函数2k y x的图像没有公共点,则A.1k +2k <0B.1k +2k >0C.1k 2k <0D.1k 2k >05.在平面直角坐标系中,直线y =-x +2与反比例函数1y x=的图象有唯一公共点.若直线y x b =-+与反比例函数1y x=的图象有2个公共点,则b 的取值范围是( )A.b ﹥2 B.-2﹤b ﹤2 C.b ﹥2或b ﹤-2 D.b ﹤-2第5题图 第6题图6.如图过点C (1,2)分别作x 轴、y 轴的平行线,交直线y=﹣x+6于A 、B两点,若反比例函数y=kx(x >0)的图象与△ABC 有公共点,则k 的取值范围是( )A .2≤k ≤9B .2≤k ≤8C .2≤k ≤5D .5≤k ≤87.(2016·青岛)已知二次函数y= 3X 2+C 与正比例函数y = 4x 的图象只有一个交点,则c 的值为_____。
8.如图,以扇形OAB 的顶点O 为原点,半径OB 所在的直线为x 轴,建立平面直角坐标系,点B 的坐标为(2,0),若抛物线21y x k 2=+与扇形OAB 的边界总有两个公共点,则实数k 的取值范围是 。
(完整版)二次函数交点问题,解析式,应用
二次函数的交点问题巧解方法:1、二次函数与x 轴、y 轴的交点:分别令y=0,x=0;2、二次函数与一次、反比例函数或者与其他函数等的相点:联立两个函数表达式,解方程.例1、如图,直线ι经过A (3,0),B (0,3)两点,且与二次函数y=x 2+1的图象,在第一象限内相交于点C .求:(1)△AOC 的面积;(2)二次函数图象顶点与点A 、B 组成的三角形的面积.例2、已知抛物线y =x 2-2x-8,(1)求证:该抛物线与x 轴一定有两个交点,并求出这两个交点的坐标。
(2)若该抛物线与x 轴的两个交点为A 、B ,且它的顶点为P ,求△ABP 的面积例3、.如图,抛物线2y x bx c =+-经过直线3y x =-与坐标轴的两个交点A 、B ,此抛物线与x 轴的另一个交点为C ,抛物线顶点为D.(1)求此抛物线的解析式;(2)点P 为抛物线上的一个动点,求使APC S ∆:ACD S ∆=5 :4的点P 的坐标。
例4、已知抛物线y=12x2+x-52.(1)用配方法求它的顶点坐标和对称轴.(2)若该抛物线与x轴的两个交点为A、B,求线段AB的长.例5、已知抛物线y=mx2+(3-2m)x+m-2(m≠0)与x轴有两个不同的交点.(1)求m的取值范围;(2)判断点P(1,1)是否在抛物线上;(3)当m=1时,求抛物线的顶点Q及P点关于抛物线的对称轴对称的点P′的坐标,并过P′、Q、P三点,画出抛物线草图.例6.已知二次函数y=x2-(m-3)x-m的图象是抛物线,如图2-8-10.(1)试求m为何值时,抛物线与x轴的两个交点间的距离是3?(2)当m为何值时,方程x2-(m-3)x-m=0的两个根均为负数?(3)设抛物线的顶点为M,与x轴的交点P、Q,求当PQ最短时△MPQ的面积.训练题1.抛物线y=a (x -2)(x +5)与x 轴的交点坐标为 .2.已知抛物线的对称轴是x=-1,它与x 轴交点的距离等于4,它在y 轴上的截距是-6,则它的表达式为 .3.若a >0,b >0,c >0,△>0,那么抛物线y=ax 2+bx +c 经过 象限.4.抛物线y=x 2-2x +3的顶点坐标是 .5.若抛物线y=2x 2-(m +3)x -m +7的对称轴是x=1,则m= .6.抛物线y=2x 2+8x +m 与x 轴只有一个交点,则m= .7.已知抛物线y=ax 2+bx +c 的系数有a -b +c=0,则这条抛物线经过点 .8.二次函数y=kx 2+3x -4的图象与x 轴有两个交点,则k 的取值范围 .9.抛物线y=x 2-2x +a 2的顶点在直线y=2上,则a 的值是 .10.抛物线y=3x 2+5x 与两坐标轴交点的个数为( )A .3个B .2个C .1个D .无11.如图1所示,函数y=ax 2-bx +c 的图象过(-1,0),则的值是()A .-3B .3C .D .-12.已知二次函数y=ax 2+bx +c 的图象如图2所示,则下列关系正确的是( )A .0<-<1B .0<-<2C .1<-<2D .-=113.已知二次函数y=x 2+mx +m -2.求证:无论m 取何实数,抛物线总与x 轴有两个交点.14.已知二次函数y=x 2-2kx +k 2+k -2.(1)当实数k 为何值时,图象经过原点?(2)当实数k 在何范围取值时,函数图象的顶点在第四象限内?a b a ca cbc b a +++++2121a b 2a b 2a b 2a b2函数解析式的求法例一、已知抛物线上任意三点时,通常设解析式为一般式y=ax2+bx+c,然后解三元方程组求解;1.已知二次函数的图象经过A(0,3)、B(1,3)、C(-1,1)三点,求该二次函数的解析式。
二次函数2交点问题
二次函数交点问题(2016 中考)27在平面直角坐标系xOy 中,抛物线221(0)y mx mx m m =-+->与x 轴的交点为A ,B. (1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫整点.① 当m=1时,求线段AB 上整点的个数;② 若抛物线在点A ,B 之间的部分与线段AB 所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m 的取值范围.(2012•北京)23.已知二次函数23(1)2(2)2y t x t x =++++在0x =和2x =时的函数值相等。
(1) 求二次函数的解析式;(2) 若一次函数6y kx =+的图象与二次函数的图象都经过点(3)A m -,,求m 和k 的值;(3) 设二次函数的图象与x 轴交于点B C ,(点B 在点C 的左侧),将二次函数的图象在点B C ,间的部分(含点B 和点C )向左平移(0)n n >个单位后得到的图象记为G ,同时将(2)中得到的直线6y kx =+向上平移n 个单位。
请结合图象回答:当平移后的直线与图象G 有公共点时,n 的取值范围。
(2015)27. 在平面直角坐标系xOy 中,过点(0,2)且平行于x 轴的直线,与直线1y x =-交于点A ,点A 关于直线1x =的对称点为B ,抛物线21:C y x bx c =++经过点A ,B 。
(1)求点A ,B 的坐标;(2)求抛物线1C 的表达式及顶点坐标;(3)若抛物线22:(0)C y ax a =≠与线段AB 恰有一个公共点,结合函数的图象,求a 的取值范围。
(2013海淀 一模)23.在平面直角坐标系xOy 中,抛物线22y mx mx n =-+与x 轴交于A 、B 两点,点A 的坐标为(2,0)-. (1)求B 点坐标; (2)直线y =12x +4m +n 经过点B . ①求直线和抛物线的解析式;②点P 在抛物线上,过点P 作y 轴的垂线l ,垂足为(0,)D d .将抛物线在直线l 上方的部分沿直线l 翻折,图象的其余部分保持不变,得到一个新图象G .请结合图象回答:当图象G 与直线y =12x +4m +n 只有两个公共点时,d 的取值范围是 .(2013昌平一模)23. 已知抛物线22y x kx k =-+-+.(1)求证:无论k 为任何实数,该抛物线与x 轴都有两个交点; (2)在抛物线上有一点P (m ,n ),n <0,OP =103,且线段OP 与x 轴正半轴所夹锐角的正弦值为45,求该抛物线的解析式;(3)将(2)中的抛物线x轴上方的部分沿x轴翻折,与原图象的另一部分组成一个新的图形M,当直线y x b=-+与图形M有四个交点时,求b的取值范围.-1-111xOy(2014•北京)23.(7分)(2014•北京)在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD 与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.(2013•北京)23.在平面直角坐标系x O y中,抛物线222--=mxmxy(0≠m)与y轴交于点A,其对称轴与x轴交于点B。
直线与抛物线的交点问题
(2)联立yy= =2xx2--x2-,6,解得xy11==46,,xy22==--14,. ∴点E,F的坐标分别为(-1,-4),(4,6). (3)由图象可知,当-1<x<4时,一次函数值大于二次函数值.
(1)求直线与抛物线的交点坐标,只需联立直线与抛物线的表达 式,解关于x,y的方程组,即可求得交点坐标;
解:(1)证明:联立yy==kx2x-+41x,. 化简,得 x2-(4+k)x-1=0.∵Δ =(4+k)2+4>0.
故直线 l 与该抛物线总有两个交点.
(2)当 k=-2 时,y=-2x+1.过点 A 作 AF⊥x 轴于点 F,过点 B 作 BE⊥x 轴于点 E.
联立yy= =-x2-2x4+x,1. 解得xy= =-1+1-22,2或xy= =12-2-2, 1. ∴A(1- 2,2 2-1),B(1+ 2,-1-2 2).
(2)利用一次函数y=kx+t和二次函数y=ax2+bx+c的图象比较两 函数值的大小,即确定不等式kx+t>ax2+bx+c或kx+t<ax2+bx+c的解 集,运用数形结合进行分析判断,其中函数值较大,表现在图象上即图象 在上方;函数值较小,表现在图象上即图象在下方.
1.如图,二次函数的图象与x轴相交于A,B两点,与y轴相交于点C, 点C,D是二次函数图象上关于对称轴对称的一对对称点,一次函数的图象 经过点B,D.
∴AF=2 2-1,BE=1+2 2. ∵直线 y=-2x+1 与 x 轴的交点 C 的坐标为(12,0),∴OC=21. ∴S△AOB=S△AOC+S△BOC =21OC·AF+21OC·BE =21OC·(AF+BE) =21×12×(2 2-1+1+2 2) = 2.
Байду номын сангаас
九年级数学二次函数交点问题专题
九年级二次函数交点问题专题【知识解读】二次函数与坐标轴交点问题笔记二次函数图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点.这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根当△>0时,抛物线与x轴有2个交点当△=0时,抛物线y=ax2+bx+c与x轴有1个交点当△<0时,抛物线y=ax2+bx+c与x轴没有交点【实战演练】二次函数与坐标轴交点问题例题1、二次函数y=kx2−6x+3的图象与x轴有两个交点,则k的取值范围是()A.k<3B. k<3且k≠0C. k≤3D. k≤3且k≠0练习1、已知二次函数y=x2−2mx+m2+3(m是常数),该函数的图象与x轴的交点个数为。
练习2、抛物线y=mx2+(2m−1)x+m−1与x轴的交点个数是()A.0个B.1个C.2个D.无法确定【知识解读】二次函数与一次函数交点问题笔记二次函数图象与一次函数图象的交点个数:解决二次函数y=ax2+bx+c与一次函数y=kx+m的交点个数问题,我们可以把两个函数解析式联立,即ax2+bx+c=kx+m,求这个一元二次方程的判别式即可。
若△>0,则二次函数与一次函数的图象有两个交点;若△=0,则二次函数与一次函数的图象有一个交点;若△<0,则二次函数与一次函数的图象没有交点次;函数图象与一次函数图象的交点坐标求解二次函数y=ax2+bx+c与一次函数y=kx+m的交点坐标问题,我们可以把两个函数解析式联立,即ax2+bx+c=kx+m,,求这个一元二次方程的解即可,解就是交点的横坐标,代入任意一个解析式中,求出的y值为纵坐标。
【实战演练】二次函数与一次函数交点问题例题5(1)判断直线y=−x+1与抛物线y=x2−3x+1是否有交点,如果有交点,求出交点坐标。
(2)当b为何值时,直线y=3x+b与抛物线y=x2+2x−1只有一个交点例题6、在平面直角坐标系中,抛物线y=ax2与直线y=2x+3相交于A、B两点,已知点A的坐标(-1,1),求点B的坐标。
2023年中考数学总复习专题23二次函数推理计算与证明综合问题 (学生版)
专题23二次函数推理计算与证明综合问题【例1】(2022•北京)在平面直角坐标系xOy中,点(1,m),(3,n)在抛物线y=ax2+bx+c (a>0)上,设抛物线的对称轴为直线x=t.(1)当c=2,m=n时,求抛物线与y轴交点的坐标及t的值;(2)点(x0,m)(x0≠1)在抛物线上.若m<n<c,求t的取值范围及x0的取值范围.【例2】(2022•绍兴)已知函数y=﹣x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.【例3】(2022•青岛)已知二次函数y=x2+mx+m2﹣3(m为常数,m>0)的图象经过点P (2,4).(1)求m的值;(2)判断二次函数y=x2+mx+m2﹣3的图象与x轴交点的个数,并说明理由.【例4】(2022•杭州)设二次函数y1=2x2+bx+c(b,c是常数)的图象与x轴交于A,B两点.(1)若A,B两点的坐标分别为(1,0),(2,0),求函数y1的表达式及其图象的对称轴.(2)若函数y1的表达式可以写成y1=2(x﹣h)2﹣2(h是常数)的形式,求b+c的最小值.(3)设一次函数y2=x﹣m(m是常数),若函数y1的表达式还可以写成y1=2(x﹣m)(x﹣m﹣2)的形式,当函数y=y1﹣y2的图象经过点(x0,0)时,求x0﹣m的值.【例5】(2022•安顺)在平面直角坐标系中,如果点P的横坐标和纵坐标相等,则称点P为和谐点.例如:点(1,1),(,),(﹣,﹣),……都是和谐点.(1)判断函数y=2x+1的图象上是否存在和谐点,若存在,求出其和谐点的坐标;(2)若二次函数y=ax2+6x+c(a≠0)的图象上有且只有一个和谐点(,).①求a,c的值;②若1≤x≤m时,函数y=ax2+6x+c+(a≠0)的最小值为﹣1,最大值为3,求实数m的取值范围.一.解答题(共20题)1.(2022•瑞安市校级三模)已知抛物线y=ax2﹣2ax﹣2+a2(a≠0).(1)求这条抛物线的对称轴;若该抛物线的顶点在x轴上,求a的值;(2)设点P(m,y1),Q(4,y2)在抛物线上,若y1<y2,求m的取值范围.2.(2022•西城区校级模拟)在平面直角坐标系xOy中,点A(x1,y1)、点B(x2,y2)为抛物线y=ax2﹣2ax+a(a≠0)上的两点.(1)求抛物线的对称轴;(2)当﹣2<x1<﹣1且1<x2<2时,试判断y1与y2的大小关系并说明理由;(3)若当t<x1<t+1且t+2<x2<t+3时,存在y1=y2,求t的取值范围.3.(2022•新野县三模)在平面直角坐标系中,已知抛物线y=ax2﹣4ax+2.(1)抛物线的对称轴为直线,抛物线与y轴的交点坐标为;(2)若当x满足1≤x≤5时,y的最小值为﹣6,求此时y的最大值.4.(2022•萧山区二模)在平面直角坐标系中,已知二次函数y=ax2+(a﹣1)x﹣1.(1)若该函数的图象经过点(1,2),求该二次函数图象的顶点坐标.(2)若(x1,y1),(x1,y2)为此函数图象上两个不同点,当x1+x2=﹣2时,恒有y1=y2,试求此函数的最值.(3)当a<0且a≠﹣1时,判断该二次函数图象的顶点所在象限,并说明理由.5.(2022•盈江县模拟)抛物线C1:y=x2+bx+c的对称轴为x=1,且与y轴交点的纵坐标为﹣3.(1)求b,c的值;(2)抛物线C2:y=﹣x2+mx+n经过抛物线C1的顶点P.①求证:抛物线C2的顶点Q也在抛物线C1上;②若m=8,点E是在点P和点Q之间抛物线C1上的一点,过点E作x轴的垂线交抛物线C2于点F,求EF长度的最大值.6.(2022•沂水县二模)抛物线y=ax2+bx经过点A(﹣4,0),B(1,5);点P(2,c),Q (x0,y0)是抛物线上的点.(1)求抛物线的顶点坐标;(2)若x0>﹣6,比较c、y0的大小;(3)若直线y=m与抛物线交于M、N两点,(M、N两点不重合),当MN≤5时,求m 的取值范围.7.(2022•姜堰区二模)设一次函数y1=2x+m+n和二次函数y2=x(2x+m)+n.(1)求证:y1,y2的图象必有交点;(2)若m>0,y1,y2的图象交于点A(x1,a)、B(x2,b),其中x1<x2,设C(x3,b)为y2图象上一点,且x3≠x2,求x3﹣x1的值;(3)在(2)的条件下,如果存在点D(x1+2,c)在y2的图象上,且a>c,求m的取值范围.8.(2022•西城区校级模拟)已知抛物线y=x2﹣4mx+4m2﹣1.(1)求此抛物线的顶点的坐标;(2)若直线y=n与该抛物线交于点A、B,且AB=4,求n的值;(3)若这条抛物线经过点P(2m+1,y1),Q(2m﹣t,y2),且y1<y2,求t的取值范围.9.(2022•黄岩区一模)在平面直角坐标系中,已知抛物线y1=ax2+bx+3与直线y2=x+1.(1)当抛物线y1=ax2+bx+3与直线y2=x+1两个交点的横坐标分别为﹣1和2时.①求抛物线解析式;②直接写出当y1>y2,时x的取值范围;(2)设y=y1﹣y2,当x=m时y=M,x=n时y=N,当m+n=1(m≠n)时,M=N.求证:a+b=1.10.(2022•路桥区一模)在平面直角坐标系中,已知二次函数y=x2﹣(m+2)x+m(m是常数).(1)求证:不论m取何值,该二次函数的图象与x轴总有两个交点;(2)若点A(2m+1,7)在该二次函数的图象上,求该二次函数的解析式;(3)在(2)的条件下,若抛物线y=x2﹣(m+2)x+m与直线y=x+t(t是常数)在第四象限内有两个交点,请直接写出t的取值范围.11.(2022•安徽模拟)已知:抛物线y=x2﹣2mx+m2﹣2与直线x=﹣2交于点P.(1)若抛物线经过(﹣1,﹣2)时,求抛物线解析式;(2)设P点的纵坐标为y p,当y p取最小值时,抛物线上有两点(x1,y1),(x2,y2),且x1<x2≤﹣2,比较y1与y2的大小;(3)若线段AB两端点坐标分别是A(0,2),B(2,2),当抛物线与线段AB有公共点时,直接写出m的取值范围.12.(2022•富阳区一模)已知抛物线y=a(x﹣1)(x﹣).(1)若抛物线过点(2,1),求抛物线的解析式;(2)若该抛物线上任意不同两点M(x1,y1)、N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0,试判断点(2,﹣9)在不在此抛物线上;(3)抛物线上有两点E(0,n)、F(b,m),当b≤﹣2时,m≤n恒成立,试求a的取值范围.13.(2022•河东区二模)已知抛物线y=a(x+3)(x﹣4)与y轴交于点A(0,﹣2).(Ⅰ)求抛物线y=a(x+3)(x﹣4)的解析式及顶点坐标;(Ⅱ)设抛物线与x轴的正半轴的交点为点B,点P为x轴上一动点,点D满足∠DP A =90°,PD=P A.(i)若点D在抛物线上,求点D的坐标;(ii)点E(2,﹣)在抛物线上,连接PE,当PE平分∠APD时,求出点P的坐标.14.(2022•长春模拟)在平面直角坐标系中,已知抛物线y=x2+bx+c(b、c是常数)经过点(0,﹣1)和(2,7),点A在这个抛物线上,设点A的横坐标为m.(1)求此抛物线对应的函数表达式并写出顶点C的坐标.(2)点B在这个抛物线上(点B在点A的左侧),点B的横坐标为﹣1﹣2m.①当△ABC是以AB为底的等腰三角形时,求OABC的面积.②将此抛物线A、B两点之间的部分(包括A、B两点)记为图象G,当顶点C在图象G上,记图象G最高点的纵坐标与最低点的纵坐标的差为h,求h与m之间的函数关系式.(3)设点D的坐标为(m,2﹣m),点E的坐标为(1﹣m,2﹣m),点F在坐标平面内,以A、D、E、F为顶点构造矩形,当此抛物线与矩形有3个交点时,直接写出m的取值范围.15.(2022•长春二模)在平面直角坐标系中,抛物线y=x2﹣2mx+m2与y轴的交点为A,过点A作直线l垂直于y轴.(1)求抛物线的对称轴(用含m的式子表示);(2)将抛物线在y轴右侧的部分沿直线l翻折,其余部分保持不变,组成图形G,点M (x1,y1),N(x2,y2)为图形G上任意两点.①当m=0时,若x1<x2,判断y1与y2的大小关系,并说明理由;②若对于x1=m﹣1,x2=m+1,都有y1>y2,求m的取值范围;(3)当图象G与直线y=m+2恰好有3个公共点时,直接写出m的取值范围.16.(2022•开福区校级一模)已知:抛物线C1:y=ax2+bx+c(a>0).(1)若顶点坐标为(1,1),求b和c的值(用含a的代数式表示);(2)当c<0时,求函数y=﹣2022|ax2+bx+c|﹣1的最大值;(3)若不论m为任何实数,直线与抛物线C1有且只有一个公共点,求a,b,c的值;此时,若k≤x≤k+1时,抛物线的最小值为k,求k的值.17.(2022•安徽模拟)已知二次函数y=ax2﹣x+c的图象经过点A(﹣2,2),该图象与直线x=2相交于点B.(1)求点B的坐标;(2)当c>0时,求该函数的图象顶点纵坐标的最小值;(3)点M(m,0)、N(n,0)是该函数图象与x轴的两个交点.当m>﹣2,n<3时,结合函数图象分析a的取值范围.18.(2022•江都区一模)对某一个函数给出如下定义:如果存在实数M,对于任意的函数值y,都满足y≤M,那么称这个函数是有上界函数.在所有满足条件的M中,其最小值称为这个函数的上确界.例如,函数y=﹣(x﹣3)2+2是有上界函数,其上确界是2.(1)函数①y=x2+2x+1和②y=2x﹣3(x≤5)中是有上界函数的为(只填序号即可),其上确界为;(2)若反比例函数y=(a≤x≤b,a>0)的上确界是b+1,且该函数的最小值为2,求a、b的值;(3)如果函数y=﹣x2+2ax+2(﹣1≤x≤3)是以6为上确界的有上界函数,求实数a的值.19.(2022•亭湖区校级一模)已知抛物线y=ax2﹣(3a﹣1)x﹣2(a为常数且a≠0)与y 轴交于点A.(1)点A的坐标为;对称轴为(用含a的代数式表示);(2)无论a取何值,抛物线都过定点B(与点A不重合),则点B的坐标为;(3)若a<0,且自变量x满足﹣1≤x≤3时,图象最高点的纵坐标为2,求抛物线的表达式;(4)将点A与点B之间的函数图象记作图象M(包含点A、B),若将M在直线y=﹣2下方的部分保持不变,上方的部分沿直线y=﹣2进行翻折,可以得到新的函数图象M1,若图象M1上仅存在两个点到直线y=﹣6的距离为2,求a的值.20.(2022•义安区模拟)已知抛物线的图象经过坐标原点O.(1)求抛物线解析式.(2)若B,C是抛物线上两动点,直线BC:y=kx+b恒过点(0,1),设直线OB为y =k1x,直线OC为y=k2x.①若B、C两点关于y轴对称,求k1k2的值.②求证:无论k为何值,k1k2为定值.。
二次函数抛物线与直线交点个数问题
二次函数之抛物线与直线交点个数21.(2014?北京)在平面直角坐标系 xOy 中,抛物线 y=2x +mx+n 经过点 A (0,﹣ 2),B (3,4). (1)求抛物线的表达式及对称轴;( 2)设点 B 关于原点的对称点为 C ,点 D 是抛物线对称轴上一动点,记抛物线在 A , B 之间的部分为图象 G (包 含 A , B 两点).若直线 CD 与图象 G 有公共点,结合函数图象,求点 D 纵坐标 t 的取值范围.时, y= ,则 t 的范围为﹣ 4 ≤t ≤ .考点 : 待定系数法求二次函数解析式;待定系数法求一次函数解析式;二次函数的最值. 专题 : 计算题. 分析: 代入得: 将 B 与 C 坐标代入得: 解得: k= , b=0, ∴直线 BC 解析式为 y= x ,当 x=1菁优网 此题考查了待定系数法求二次函数解析式,待定系数法求一次函数解析式,以及函数的最值,熟练掌握待 定系数法是解本题的关键.2.(2011?石景山区二模)已知:抛物线与 x 轴交于 A (﹣ 2, 0)、 B ( 4,0),与 y 轴交于 C (0,4). ( 1)求抛物线顶点 D 的坐标;( 2)设直线 CD 交 x 轴于点 E ,过点 B 作 x 轴的垂线,交直线 CD 于点 F ,将抛物线沿其对称轴上下平移,使抛物 线与线段 EF 总有公共点. 试探究: 抛物线向上最多可以平移多少个单位长度, 向下最多可以平移多少个单位长度? 1)先设出过 A (﹣ 2,0)、B (4,0)两点的抛物线的解析式为 y=a( x+2 )(x ﹣ 4),再根据抛物线与 y 轴的交点坐标即可求出 a 的值,进而得出此抛物线的解析式;( 2)先用待定系数法求出直线 CD 解析式,再根据抛物线平移的法则得到( 1)中抛物线向下平移 m 各单位所得抛物线的解析式,再将此解析式与直线 CD 的解析式联立,根据两函数图象有交点即可求出 m 的取 值范围,进而可得到抛物线向下最多可平移多少个单位;同理可求出抛物线向上最多可平移多少个单位.考点 : 二次函数图象与几何变换;二次函数的性质;待定系数法求二次函数解析式. 专题 : 探究型.分析:菁优网 E (﹣ 8,0),F (4,6),∵△ = ﹣ 2m ≥0,∴ 0< m ≤ ,∴向下最多可平移 个单位.( 5分)方法一:当 x=﹣8 时, y=﹣36+m ,当 x=4 时, y=m ,要使抛物线与 EF 有公共点,则﹣ 36+m ≤0或 m ≤6,∴0<m ≤36;(7 分)方法二:当平移后的抛物线过点 E (﹣ 8,0)时,解得 m=36 ,当平移后的抛物线过点 F ( 4,6)时, m=6,由题意知:抛物线向上最多可以平移 36个单位长度, (7分)综上,要使抛物线与 EF 有公共点,向上最多可平移 36 个单位,向下最多可平移 个单位.点评: 本题考查的是二次函数的图象与几何变换,涉及到用待定系数法求一次函数与二次函数的解析式、二次函 数与一次函数的交点问题,有一定的难度.23.(2013?丰台区一模)二次函数 y=x +bx+c 的图象如图所示,其顶点坐标为 M (1,﹣ 4). (1)求二次函数的解析式;( 2)将二次函数的图象在 x 轴下方的部分沿 x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合 新图象回答:当直线 y=x+n 与这个新图象有两个公共点时,求 n 的取值范围.考点 : 待定系数法求二次函数解析式;二次函数图象与几何变换.菁优网 解之得: x 1=﹣1, x 2=3, 故 A ,B 两点的坐标分别为 A (﹣ 1,0),B (3,0). 如图,当直线 y=x+n ( n < 1), 经过 A 点时,可得 n=1 , 当直线 y=x+n 经过 B 点时, 可得 n= ﹣ 3, ∴n 的取值范围为﹣ 3<n <1, 翻折后的二次函数解析式为二次函数 y=﹣ x 2+2x+32当直线 y=x+n 与二次函数 y=﹣ x 2+2x+3 的图象只有一个交点时, 2x+n= ﹣x +2x+3 , 整理得: x 2﹣ x+n ﹣3=0,2 △ =b ﹣4ac=1﹣4(n ﹣3)=13﹣4n=0 , 解得: n= ,∴n 的取值范围为: n > ,若抛物线向下移 m 个单位,其解析式 y=﹣ x * 2+x+4 ﹣m (m >0),消去 y ,得﹣若抛物线向上移 m 个单位,其解析式y= ﹣ x 2+x+4+m m >0),由图可知,符合题意的n 的取值范围为:n> 或﹣3< n<1.点评:本题考查了待定系数法求二次函数解析式的知识,难点在第二问,关键是求出边界点时n 的值.24.(2009?北京)已知关于x 的一元二次方程2x +4x+k ﹣1=0 有实数根,k 为正整数.(1)求k 的值;2(2)当此方程有两个非零的整数根时,将关于x 的二次函数y=2x 2+4x+k ﹣1的图象向下平移8 个单位,求平移后的图象的解析式;(3)在(2)的条件下,将平移后的二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线y= x+b(b<k)与此图象有两个公共点时, b 的取值范围.二次函数综合题.综合题.1)综合根的判别式及k 的要求求出k 的取值;2)对k 的取值进行一一验证,求出符合要求的k 值,再结合抛物线平移的规律写出其平移后的解析式;3)求出新抛物线与x 轴的交点坐标,再分别求出直线y= x+b 经过点 A 、 B 时的 b 的取值,进而求出其取值范围.本题第二问是难点,主要是不会借助计算淘汰不合题意的k 值.解答:解:(1)由题意得,△ =16 ﹣8(k﹣1)≥0.∴ k ≤3.∵k 为正整数,∴ k=1,2,3;2(2)设方程2x +4x+k ﹣1=0 的两根为x1,x2 ,则x1+x2=﹣2,x1?x2= .1 2 1 2 当k=1 时,方程2x2+4x+k ﹣1=0 有一个根为零;2当k=2 时,x1?x2= ,方程2x +4x+k ﹣1=0 没有两个不同的非零整数根;2当k=3 时,方程2x2+4x+k ﹣1=0 有两个相同的非零实数根﹣1.综上所述,k=1 和k=2 不合题意,舍去,k=3 符合题意.22当k=3 时,二次函数为y=2x 2+4x+2 ,把它的图象向下平移8 个单位得到的图象的解析式为y=2x 2+4x﹣6;2(3)设二次函数y=2x +4x ﹣6的图象与x轴交于A、B 两点,则A(﹣3,0),B(1,0).依题意翻折后的图象如图所示.当直线y= x+b 经过 A 点时,可得b= ;当直线y= x+b 经过 B 点时,可得b=﹣.由图象可知,符合题意的b(b< 3)的取值范围为<b< .(3)依图象得,要图象y= x+b( b 小于k)与二次函数图象有两个公共点时,显然有两段.2而因式分解得y=2x +4x﹣6=2(x﹣1)(x+3 ),第一段,当y= x+b 过(1,0)时,有一个交点,此时b=﹣.当y= x+b 过(﹣3,0)时,有三个交点,此时b= .而在此中间即为两个交点,此时﹣< b< .第二段,将平移后的二次函数的图象在x 轴下方的部分沿x 轴翻折后,开口向下的部分的函数解析式为y=﹣2(x﹣1)(x+3 ).显然,当y= x+b 与y= ﹣2(x﹣1)(x+3)(﹣3< x< 1)相切时,y= x+b 与这个二次函数图象有三个交点,若直线再向上移,则只有两个交点.因为b<3,而y= x+b(b小于k,k=3),所以当b=3时,将y= x+3 代入二次函数y=﹣2(x﹣1)(x+3)整理得,2 4x2+9x﹣6=0,△>0,所以方程有两根,那么肯定不将有直线与两截结合的二次函数图象相交只有两个公共点.这种情况故舍去.综上,﹣ < b< .点评:考查知识点:一元二次方程根的判别式、二次函数及函数图象的平移与翻折,最后还考到了与一次函数的结合等问题.不错的题目,难度不大,综合性强,考查面广,似乎是一个趋势或热点.25.(2012?东城区二模)已知关于x 的方程(1﹣m)x2+(4﹣m)x+3=0 .(1)若方程有两个不相等的实数根,求m 的取值范围;2(2)若正整数m满足8﹣2m> 2,设二次函数y=(1﹣m)x2+(4﹣m)x+3 的图象与x 轴交于A、B 两点,将此图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线y=kx+3 与此图象恰好有三个公共点时,求出k 的值(只需要求出两个满足题意的k 值即可).考点:二次函数综合题.分析:(1)根据方程有两个不相等的实数根,由一元二次方程的定义和根的判别式可求m 的取值范围;(2)先求出正整数m 的值,从而确定二次函数的解析式,得到解析式与x 轴交点的坐标,由图象可知符合题意的直线y=kx+3 经过点A、B.从而求出k 的值.解答:解:(1)△=(4﹣m)2﹣12(1﹣m)=(m+2)2,2由题意得,(m+2 )2> 0且1﹣m≠0.故符合题意的m 的取值范围是m≠﹣2且m≠1 的一切实数.(2)∵正整数m 满足8﹣2m> 2,∴ m可取的值为1和2.2又∵二次函数y=(1﹣m)x2+(4﹣m)x+3,∴m=2.⋯(4 分)2∴二次函数为y=﹣x2+2x+3 .∴A 点、B 点的坐标分别为(﹣1,0)、(3,0).依题意翻折后的图象如图所示.由图象可知符合题意的直线y=kx+3 经过点 A 、B.可求出此时k 的值分别为 3 或﹣1.⋯(7 分)注:若学生利用直线与抛物线相切求出k=2 也是符合题意的答案.点评:本题考查了二次函数综合题.(1)考查了一元二次方程根的情况与判别式△ 的关系:△ >0? 方程有两个不相等的实数根.(2)得到符合题意的直线y=kx+3 经过点 A 、B 是解题的关键.6.在平面直角坐标系中,抛物线y=﹣x2+ mx+m 2﹣3m+2与x轴的交点分别为原点O和点A,点B(4,n)在这条抛物线上.(1)求 B 点的坐标;(2)将此抛物线的图象向上平移个单位,求平移后的图象的解析式;(3)在(2)的条件下,将平移后的二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线y= x+b 与此图象有两个公共点时, b 的取值范围.考点:二次函数综合题.专题:压轴题.分析:(1)把原点坐标代入抛物线,解关于m 的一元二次方程得到m 的值,再根据二次项系数不等于0 确定出函数解析式,再把点 B 坐标代入函数解析式求出n 的值,即可得解;(2)根据向上平移纵坐标加解答即可;(3)把直线解析式与抛物线解析式联立,消掉y 得到关于x 的一元二次方程,根据△=0 求出 b 的值,然后令y=0 求出抛物线与x 轴的交点坐标,再求出直线经过抛物线与x 轴左边交点的 b 值,然后根据图形写出 b 的取值范围即可.解答:解:(1)∵抛物线经过原点O,2∴ m ﹣3m+2=0 ,解得m1=1 ,m2=2,当m=1 时,﹣= ﹣=0,∴ m=2 ,∴抛物线的解析式为y= ﹣x2+3x,∵点B(4,n)在这条抛物线上,2∴ n=﹣×4 +3×4=﹣8+12=4 ,∴点B(4,4);2)∵抛物线的图象向上平移个单位,∴平移后的图象的解析式 y=﹣ x 2+3x+ ;消掉 y 得,﹣ x 2+3x+ = x+b ,2 整理得, x 2﹣ 5x+2b ﹣ 7=0,2 △=(﹣ 5)2﹣4×1×(2b ﹣ 7)=0,解得 b= , 令 y=0 ,则﹣ x 2+3x+ =0 ,2 整理得, x 2﹣6x ﹣ 7=0, 解得 x 1=﹣ 1, x 2=7, ∴抛物线与 x 轴左边的交点为(﹣ 1, 0),当直线 y= x+b 经过点(﹣ 1, 0)时, ×(﹣ 1)+b=0,本题是二次函数综合题,主要利用了解一元二次方程,二次函数图象上点的坐标特征,二次函数图象与几 何变换,难点在于( 3)求出直线与抛物线有三个交点时的 b 值,作出图形更形象直观.27.关于 x 的二次函数 y=x +2x+k ﹣ 1 的图象与 x 轴有交点, k 为正整数. (1)求 k 的值;22(2)当关于 x 的二次函数 y=x 2+2x+k ﹣ 1 与 x 轴的交点的横坐标均是负整数时,将关于 x 的二次函数 y=x 2+2x+k ﹣ 1 的图象向下平移 4 个单位,求平移后的图象的解析式;( 3)在( 2)的条件下,将平移后的二次函数的图象在 x 轴下方的部分沿 x 轴翻折,图象的其余部分保持不变,得 到一个新的图象.请你结合这个新的图象回答:当直线 y= (b <3)与此图象有两个公共点时, b 的取值范围. 3)联立解得 b= ,b 的取值范围为 b > 或 b < .二次函数综合题.考点:分析:解答:<b< .菁优网 点评:此题主要考查了一元二次方程根的判别式、二次函数及函数图象的平移与翻折,最后还考到了与一次函数的结合等问题.不错的题目,难度不大,综合性强.28.(2014?东城区一模)已知:关于x 的一元二次方程mx2 3﹣(4m+1)x+3m+3=0 (m>1).(1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为x1,x2(其中x1>x2),若y 是关于m 的函数,且y=x 1﹣3x2,求这个函数的解析式;(3)将(2)中所得的函数的图象在直线m=2 的左侧部分沿直线m=2 翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当关于m 的函数y=2m+b 的图象与此图象有两个公共点时, b 的取值范围.考点:一次函数综合题.专题:压轴题.分析:(1)列式表示出根的判别式△,再根据△ >0,方程有两个不相等的实数根证明;(2)利用求根公式法求出x1、x2,然后代入关系式整理即可得解;(3)作出函数图象,然后求出m=2 时的函数值与以及m=1 时的翻折图象的对应点的坐标,再代入直线解析式求出b值,然后结合图形写出 b 的取值范围即可.解答:(1)证明:△=(4m+1)2﹣4m(3m+3)=4m2﹣4m+1= (2m﹣1)2,∵ m> 1,3∴(2m﹣1)2> 0,∴方程有两个不等实根;(2)解:x=∴两根分别为=3,=1+ ,=1+ ,∵ m> 1,∴ 0< < 1 ,∴ 1< 1+ < 2,∵ x1 > x2 ,∴ x1=3,x2=1+ ,∴ y=x1﹣3x2,(3)解:作出函数y=﹣(m>1)的图象,并将图象在直线m=2 左侧部分沿此直线翻折,所得新图形如图所示,m=2 时,y= ﹣,m=1 时,y= ﹣=﹣3,∴函数图象直线m=2 左侧部分翻折后的两端点坐标为(3,﹣3),(2,﹣),当m=3 时,2×3+b=﹣3,解得b= ﹣9,当m=2 时,2×2+b= ﹣,解得b= ﹣所以,此图象有两个公共点时, b 的取值范围﹣9< b<﹣本题是一次函数综合题型,主要利用了根的判别式,求根公式法解一元二次方程,一次函数与反比例函数交点问题,难点在于(3)确定出翻折部分的两个端点的坐标以及有两个交点时的 b 的取值范围,作出图形更形象直观.9.(2013?门头沟区一模)已知关于x 的一元二次方程.(1)求证:无论m 取任何实数,方程都有两个实数根;(2)当m< 3 时,关于x 的二次函数的图象与x 轴交于A、B 两点(点 A 在点 B 的左侧),与y 轴交于点C,且2AB=3OC ,求m 的值;(3)在(2)的条件下,过点C作直线l∥ x轴,将二次函数图象在y 轴左侧的部分沿直线l翻折,二次函数图象的其余部分保持不变,得到一个新的图象,记为G.请你结合图象回答:当直线与图象G 只有一个公共点时,b 的取值范围.=3﹣3(1+ ),=﹣,所以,这个函数解析式为y=﹣(m> 1);考点:二次函数综合题.分析:(1)运用根的判别式就可以求出△的值就可以得出结论;(2)先当x=0或y=0是分别表示出抛物线与x轴和y轴的交点坐标,表示出AB 、OC的值,由2AB=3OC 建立方程即可求出m 的值;(3)把(2)m的值代入抛物线的解析式就可以求出抛物线的解析式和 C 点的坐标,当直线经过点C时就可以求出b的值,由直线与抛物线只有一个公共点建立方程,根据△=0 就可以求出b的值,再根据图象就可以得出结论.解答:解:(1)根据题意,得△ =(m﹣2)2﹣4× ×(2m﹣6)=(m﹣4)2,∵无论m 为任何数时,都有(m﹣4)2≥0,即△≥0.∴无论m 取任何实数,方程都有两个实数根;(2)由题意,得当y=0 时,则,解得:x1=6﹣2m,x2=﹣2,∵ m< 3,点 A 在点 B 的左侧,∴A(﹣2,0),B(﹣2m+6,0),∴ OA=2 ,OB= ﹣2m+6 .当x=0 时,y=2m ﹣ 6 ,∴ C(0,2m﹣6),∴ OC=﹣(2m ﹣6)= ﹣2m+6 .∵ 2AB=3OC ,∴2(2﹣2m+6)=3(﹣2m+6),解得:m=1 ;(3)如图,当m=1 时,抛物线的解析式为y= x2﹣x﹣4,点 C 的坐标为(0,﹣4).当直线y= x+b 经过点 C 时,可得b=﹣4,当直线y= x+b (b<﹣4)与函数y= x2﹣x﹣4(x > 0)的图象只有一个公共点时,得2x+b═ x ﹣x﹣4.2整理得:3x2﹣8x﹣6b﹣24=0 ,∴△ =(﹣8)2﹣4×3×(﹣6b﹣24)=0,解得:b= ﹣.结合图象可知,符合题意的b的取值范围为b>﹣4或b<﹣.点评:本题是一道一次函数与二次函数的综合试题,考查了一元二次方程根的判别式的运用,二次函数与坐标轴的交点坐标的运用,轴对称的性质的运用,解答时根据函数之间的关系建立方程灵活运用根的判别式是解答本题的关键.1)将 A 与 B 坐标代入抛物线解析式求出m 与n 的值,确定出抛物线解析式,求出对称轴即可;2)由题意确定出 C 坐标,以及二次函数的最小值,确定出 D 纵坐标的最小值,求出直线BC 解析式,令x=1 求出y 的值,即可确定出t 的范围.2解答:解:(1)∵抛物线y=2x* 2+mx+n 经过点A(0,﹣2),B(3,4),,解得:∴抛物线解析式为y=2x2﹣4x﹣2,对称轴为直线x=1 ;(2)由题意得:C(﹣3,﹣4),二次函数y=2x2﹣4x﹣2 的最小值为﹣4,由函数图象得出 D 纵坐标最小值为﹣4,设直线BC 解析式为y=kx+b ,,解答:解:(1)设抛物线解析式为y=a(x+2)(x﹣4),∵C 点坐标为(0,4),∴ a=﹣,( 1 分)2∴解析式为y= ﹣x* 2+x+4,顶点 D 坐标为(1,);(2分)2)直线CD 解析式为y=kx+b .则,∴直线CD 解析式为y= x+4 ,( 3 分)分析:(1)确定二次函数的顶点式,即可得出二次函数的解析式.(2)求出两个边界点,继而可得出n 的取值范围.解答:解:(1)因为M(1,﹣4)是二次函数y=(x+m)2+k 的顶点坐标,22所以y=(x﹣1)2﹣4=x2﹣2x﹣3,2(2)令x2﹣2x﹣3=0,(1)综合根的判别式及k 的要求,求出k 的取值;(2)对k的取值进行一一验证,求出符合要求的k 值,再结合抛物线平移的规律写出其平移后的解析式;(3)求出新抛物线与x 轴的交点坐标,再分别求出直线y= x+b 经过点 A 、 B 时的 b 的取值,进而求出其取值范围.解:(1)由题意得,△ =4﹣4(k﹣1)≥0.∴ k ≤2.∵k 为正整数,∴ k=1,2;2(2)设方程x* 2+2x+k ﹣1=0 的两根为x1,x2,则x1+x2=﹣2,x1?x2=k﹣1.时,图象y=x 2+2x+k ﹣1与x轴有一个交点为(0,0),不合题意;2 当k=12当k=2 时,图象y=x 2+2x+k ﹣1与x轴有一个交点为(﹣1,0),符合题意;综上所述,k=2 符合题意.22当k=2 时,二次函数为y=x 2+2x+1 ,把它的图象向下平移 4 个单位得到的图象的解析式为:y=x 2+2x﹣3;2(3)设二次函数y=x 2+2x﹣3的图象与x轴交于A、B 两点,则A(﹣3,0),B(1,0).依题意翻折后的图象如图所示.当直线y= x+b 经过 A 点时,可得b= ;当直线y= x+b 经过 B 点时,可得b=﹣.。
抛物线与线段交点问题 教案
二次函数与直线、线段交点问题一、直线与二次函数的交点问题已知二次函数c bx ax y ++=2(1)y 轴与二次函数c bx ax y ++=2得交点为(0, c ). (2)与y 轴平行的直线h x =与二次函数c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2).(3)二次函数与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.二次函数与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔二次函数与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔二次函数与x 轴相切 此时二次函数为;2()y a x h =-总结完全平方形式的二次函数与x 轴只有一个交点③没有交点⇔0<∆⇔二次函数与x 轴相离.注意这种情况 当a >0,y 值恒>0,当a <0,y值恒<0,(4)平行于x 轴的直线与二次函数的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根. 例1 二次函数y=ax 2+bx+c 的图象如图所示,若方程2ax bx c ++=k 有两个不相等的实数根,则k 的取值范围( ) 若方程2ax bx c ++c=k 无实数根,则k 的取值范围 ( ) 若方程2ax bx c ++=k 相等两实数根,则k 的取值范围( ) 解: 2ax bx c ++c=k 解的情况可以看成 直线y k = 与c bx ax y ++=2交点情况 由图像可知:1) 方程有两个不相等的实数根,即y k = 与c bx ax y ++=2有两个交点,则k >-3 2) 方程无实数根,即y k = 与c bx ax y ++=2无交点,则k <-3 3)方程有相等实数根,即y k = 与c bx ax y ++=2有一个交点,则k =-3 (5)一次函数()0≠+=k n kx y 的图像l与二次函数()02≠++=a c bx ax y 的图像G的交点,由方程组cbx ax y n kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l与G 有两个交点; ②方程组只有一组解时⇔l与G 只有一个交点;③方程组无解时⇔l与G 没有交点.当直线与二次函数有两个交点时c bx ax y nkx y ++=+=2 化简 为2()0ax b k x c n +-+-=两交点横坐标为1,x 2,x 则有 1212,b k c nx x x x a a--+=-=两横坐标的距离=∣12x x - ∣()()221212124x x x x x x -=+-(6)二次函数与x 轴两交点之间的距离:若二次函数c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故ac x x a b x x =⋅-=+2121,两横坐标的距离=∣12x x - ∣=()()221212124x x x x x x -=+-典型考题、例2 判断有无解情况 二次函数y=ax 2+bx+c 的图象如图所示,1)若方程2ax bx c ++=m 有两个不相等的实数根,则m 的取值范围( ) 2)若方程2ax bx c ++=m 无实数根,则m 的取值范围 ( ) 3)若方程2ax bx c ++=m 相等两实数根,则m 的取值范围( ) 解析同例 1答案 1)m <2 2)m >2 3)m=2例3 二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,讨论|ax 2+bx +c |=k (k ≠0)解的情况解:设y=|ax 2+bx +c | ,则它的图像如下:|ax 2+bx +c |=k 解的情况,可以看成y=|ax 2+bx +c | 与y=k 图像的交点情况 由图像可知:1) 当k <0,y=k 与y=|2ax bx c ++| 无交点,所以方程无解 2) 当k >3,y=k 与y=|2ax bx c ++| 有两个交点,所以方程有两解 3) 0<k <3,y=k 与y=|2ax bx c ++|有4个交点,所以方程有4个解 4)k =3,y=k 与y=|2ax bx c ++|有3个交点,所以方程有3个解例 4 二次函数y =2ax bx c ++a ≠0)的图象如图所示,直线y kx n =+,则方程2()0ax b k x c n +-+-=根的情况( )解:2()0ax b k x c n +-+-= 解的情况可以看成二次函数y =2ax bx c ++与直线y kx n =+ 有无交点情况 由图可知:y =ax 2+bx+c 与直线y kx n =+有两个交点,故原方程有两个不等实根 2、利用一次函数与二次函数交点横坐标关系例5 如图,二次函数y=﹣x 2+2x+3与x 轴相交于A 、B 两点,与y 轴交于C ,顶点为D ,二次函数的对称轴DF 与BC 相交于点E ,与x 轴相交于点F . (1)求线段DE 的长;(2)设过E 的直线与二次函数相交于M (x 1,y 1),N (x 2,y 2),试判断当|x 1﹣x 2|的值最小时,直线MN 与x 轴的位置关系,并说明理由;y kx n =+解:由二次函数223y x x =-++ 可知C(0,3) 令y=0 则223x x -++=0,解得 x=-1,x=3∴A(-1,0),B(3,0) ∴顶点D(1,4) ∴DF=4设直线BC 的解析式为y=kx+b,代入B(3,0),C(0,3)得: 3k+b=0 k=-1 b=3 解得 b=3 ∴ 解析式为:y=-x+3 当x=1时,y=2∴解析式为;y=﹣x+3, 当x=1时,y=2 ∴E(1,2) ∴EF=2∴DE=DF-EF=4-2=2(2)设直线MN 的解析式为y=kx+b , ∵E (1,2), ∴2=k+b , ∴k=2﹣b ,∴直线MN 的解析式y=(2﹣b )x+b , ∵点M,N 的坐标是方程组 y=(2-b)x+by=-x 2+2x+3 的解 整理得 x 2-bx+b-3=0 ∴ x 1+x 2=b x 1x 2=b-321221214)(x x x x x x -+=-=)3(42--b b=8)2(2+-b∴当b=2,时21xx - 最小值为22∵b=2时,y=(2-b)+b=2 ∴直线MN//x 轴二、二次函数与线段交点问题二次函数与线段交点,由于线段是直线的一部分,所以首先考虑该线段所在的直线是否与二次函数有交点,再根据条件求值,常见考点如下: 1、 与x 轴平行的线段例6如图2y ax bx =+的对称轴为1x =与y t =在-1≤x ≤4有解,求t 的取值范围解: 2y ax bx =+ 与y=t 在-1≤x ≤4有解情况,可以看成 二次函数2y ax bx =+ 与直线y=t 在-1≤x ≤4交点情况 由图可知 当二者有交点时,-1≤t ≤8,此时2y ax bx =+ 与y=t 在-1≤x ≤4有解 2、 二次函数与y kx n =+在特定范围有解例 7:二次函数221y x bx =-+与线段的的两个端点(-1,1),(3,4)的线段只有一个交点,求b 的值解: 过设(-1,1),(3,4)两点的直线方程设为y kx b =+ 则 - -k + b =1 3k +b =4解得 34k =74b =所以线段 3744y x =+ (-1≤x ≤4)221y x bx =-+3744y x =+ 在 -1≤x ≤4 有一个解∴ 只须233(2)044x b x -+-= 在 -1≤x ≤4 有一个解即问题转化为二次函数 y=233(2)44x b x -+- 在-1≤x ≤4与x 轴有一个交点情况分两种情况:1) 抛物线与x 轴的左交点落在-1~3 之间,如图由图像可知 当 1x =-时,y ≥0 即 有1+(2b+34)-34≥0 ① 当x =3 时,y <0 即 有9-(2b+34)×3-34<0 ②解①②得:b >12) 抛物线与x 轴的右交点落在-1~3 之间,如图由图像可知 当 1x =-时,y <0 即 有1+(2b+34)-34-<0 ③ 当x =3 时,y ≥0 即 有9-(2b+34)×3-34≥0 ④解得:b <12-综上 b >1 或 b <12-3、图形与二次函数交点例8 已知,正方形ABCD,A(0,-4),B(1,-4),C(1,-5),D(0,-5),抛物线224y x mx m =+--(m 为常数) 顶点为M,1)抛物线经过定点坐标是 ,顶点M 的坐标(用m 的代数式表示是 )2)若抛物线224y x mx m =+--(m 为常数)与正方形ABCD 的边有交点,求m 的取值范围(2) 因为二次函数过定点(2,0),即二次函数与x 轴交于(2,0) 当函数左交点为(2,0)时,有 -2m>2,即m <-4,该二次函数与正方形无交点。
中考数学压轴题专题-二次函数与交点公共点综合问题
专题13二次函数与交点公共点综合问题【例1】(2021•宜昌)在平面直角坐标系中,抛物线y1=﹣(x+4)(x﹣n)与x轴交于点A和点B(n,0)(n≥﹣4),顶点坐标记为(h1,k1).抛物线y2=﹣(x+2n)2﹣n2+2n+9的顶点坐标记为(h2,k2).(1)写出A点坐标;(2)求k1,k2的值(用含n的代数式表示)(3)当﹣4≤n≤4时,探究k1与k2的大小关系;(4)经过点M(2n+9,﹣5n2)和点N(2n,9﹣5n2)的直线与抛物线y1=﹣(x+4)(x﹣n),y2=﹣(x+2n)2﹣n2+2n+9的公共点恰好为3个不同点时,求n的值.【例2】(2021•德州)小刚在用描点法画抛物线C1:y=ax2+bx+c时,列出了下面的表格:x…01234…y…36763…(1)请根据表格中的信息,写出抛物线C1的一条性质:;(2)求抛物线C1的解析式;(3)将抛物线C1先向下平移3个单位长度,再向左平移4个单位长度,得到新的抛物线C2;①若直线y=x+b与两抛物线C1,C2共有两个公共点,求b的取值范围;②抛物线C2的顶点为A,与x轴交点为点B,C(点B在点C左侧),点P(不与点A重合)在第二象限内,且为C2上任意一点,过点P作PD⊥x轴,垂足为D,直线AP交y轴于点Q,连接AB,DQ.求证:AB∥DQ.【例3】(2021•黔西南州)如图,直线l:y=2x+1与抛物线C:y=2x2+bx+c相交于点A(0,m),B(n,7).(1)填空:m=,n=,抛物线的解析式为.(2)将直线l向下移a(a>0)个单位长度后,直线l与抛物线C仍有公共点,求a的取值范围.(3)Q是抛物线上的一个动点,是否存在以AQ为直径的圆与x轴相切于点P?若存在,请求出点P 的坐标;若不存在,请说明理由.【例4】(2021•绵阳)如图,二次函数y=﹣x2﹣2x+4﹣a2的图象与一次函数y=﹣2x的图象交于点A、B (点B在右侧),与y轴交于点C,点A的横坐标恰好为a.动点P、Q同时从原点O出发,沿射线OB分别以每秒和2个单位长度运动,经过t秒后,以PQ为对角线作矩形PMQN,且矩形四边与坐标轴平行.(1)求a的值及t=1秒时点P的坐标;(2)当矩形PMQN与抛物线有公共点时,求时间t的取值范围;(3)在位于x轴上方的抛物线图象上任取一点R,作关于原点(0,0)的对称点为R′,当点M恰在抛物线上时,求R′M长度的最小值,并求此时点R的坐标.【例5】(2020•襄阳)如图,直线y=−12x+2交y轴于点A,交x轴于点C,抛物线y=−14x2+bx+c经过点A,点C,且交x轴于另一点B.(1)直接写出点A,点B,点C的坐标及拋物线的解析式;(2)在直线AC上方的抛物线上有一点M,求四边形ABCM面积的最大值及此时点M的坐标;(3)将线段OA绕x轴上的动点P(m,0)顺时针旋转90°得到线段O′A′,若线段O′A′与抛物线只有一个公共点,请结合函数图象,求m的取值范围.【题组一】1.(2021•苏州模拟)问题一:已知二次函数:y=(x﹣m)2﹣2m﹣(m为常数),当m取不同的值时,其图象构成一个“抛物线系”.我们发现:是当m取不同数值时,此二次函数的图象的顶点在同一条直线上,那么这条直线的表达式是.问题二:已知直线l:y=x﹣2交x轴于点A,交y轴于点B,抛物线L:y=(x﹣m)2﹣2m﹣(m 为常数)图象的顶点为C.(1)如图1,若点C在Rt△AOB的内部(不包括边界),求m的取值范围;(2)如图2,当抛物线L的图象经过点A,B时,在抛物线上(AB的下方)是否存在点P,使∠ABO =∠ABP?若存在,求出点P的横坐标;若不存在.请说明理由.2.(2021•东城区二模)在平面直角坐标系xOy中,抛物线y=ax2﹣3ax+1与y轴交于点A.(1)求抛物线的对称轴;(2)点B是点A关于对称轴的对称点,求点B的坐标;(3)已知点P(0,2),Q(a+1,1).若线段PQ与抛物线与恰有一个公共点,结合函数图象,求a 的取值范围.3.(2021•南关区一模)在平面直角坐标系中,把函数y=ax2+2bx+2(a、b为常数)的图象记为G.(1)求G与y轴交点的坐标.(2)当b=2时,G与x轴只有一个交点,求a的值.(3)①设k≠0,若点A(2﹣k,t)在G上,则点B(2+k,t)必在G上,且G过点C(3,﹣1),求G的函数表达式.②点D(1,y1)、E(4,y2)是①中函数图象上的两点,比较y1与y2的大小.③点P(m,y3)、Q(m+3,y4)是①中函数图象上的两点,比较y3与y4的大小.(4)矩形FHMN四个顶点的坐标分别为F(1,﹣2)、H(4,﹣2)、M(4,4)、N(1,4),当a=﹣1时,函数y=ax2+2bx+2(x≥0)的图象在矩形FHMN内部的部分均为自左向右下降时,直接写出b 的取值范围.4.(2021•九江一模)在平面直角坐标系xOy中,抛物线y=﹣x2+2mx﹣m2+m的顶点为A.(1)求抛物线的顶点坐标(用含m的式子表示);(2)若点A在第一象限,且OA=,求抛物线的解析式;(3)已知点B(m﹣1,m﹣2),C(2,2).若该抛物线与线段BC有公共点,结合函数图象,求出m 的取值范围.【题组二】5.(2021•邯郸模拟)如图1,在平面直角坐标系xOy中,已知抛物线G:y=ax2﹣4ax+1(a>0).(1)若抛物线过点A(﹣1,6),求出抛物线的解析式;(2)当1≤x≤5时,y的最小值是﹣1,求1≤x≤5时,y的最大值;(3)已知直线y=﹣x+1与抛物线y=ax2﹣4ax+1(a>0)存在两个交点,若两交点到x轴的距离相等,求a的值;(4)如图2,作与抛物线G关于x轴对称的抛物线G',当抛物线G与抛物线G'围成的封闭区域内(不包括边界)共有11个横、纵坐标均为整数的点时,直接写出a的取值范围.6.(2021•姜堰区一模)已知,二次函数y=ax2+2ax﹣3a(a为常数,且a≠0)的图象与x轴交于点A、B (点B在点A的左侧),与y轴交于点C,将点A绕着点C顺时针旋转90°至点P.(1)求A、B两点的坐标;(2)设点P的坐标为(m,n),试判断m+n的值是否发生变化?若不变,请求出m+n的值;若变化,请说明理由;(3)若点D、Q在平面直角坐标系中,且D(0,﹣1),D、Q、P、C四点构成▱CPDQ.①求点Q的坐标(用含a的代数式表示);②若▱CPDQ的边DQ与二次函数的图象有公共点,直接写出满足条件的a的取值范围.7.(2021•襄州区二模)在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过点A(0,6)和B(﹣2,﹣2).(1)求c的值,并用含a的代数式表示b.(2)当a=时,①求此函数的表达式,并写出当﹣4≤x≤2时,y的最大值和最小值.②如图,抛物线y=ax2+bx+c与x轴的左侧交点为C,作直线AC,D为直线AC下方抛物线上一动点,过点D作DE⊥OC于点E,与AC交于点F,作DM⊥AC于点M.是否存在点D使△DMF的周长最大?若存在,请求出D点的坐标;若不存在,请说明理由.(3)若线段GH的端点G、H的坐标分别为(﹣5,10)、(1,10),此二次函数的图象与线段GH只有一个公共点,求出a的取值范围.8.(2021•朝阳区校级三模)在平面直角坐标系xOy中,已知抛物线y=x2﹣2x+1+m.(1)求此抛物线的顶点坐标(用含m的式子表示);(2)如果当﹣2<x<﹣1时,y>0,并且当2<x<3时,y<0,求该抛物线的表达式;(3)如果(2)中的抛物线与x轴相交于A、B(点A在点B左侧),现将x轴下方的图象沿x轴向上翻折,得到的图象与剩余的图象组成的图形记为M,当直线l:y=﹣x+k与M有两个公共点时,直接写出k的取值范围.【题组三】9.(2021•天心区二模)定义:二元一次不等式是指含有两个未知数(即二元),并且未知数的次数是1次(即一次)的不等式;满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集,如:x+y>3是二元一次不等式,(1,4)是该不等式的解.有序实数对可以看成直角坐标平面内点的坐标,于是二元一次不等式(组)的解集就可以看成直角坐标系内的点构成的集合.(1)已知A(,1),B(1,﹣1),C(2,﹣1),D(﹣1,﹣1)四个点.请在直角坐标系中标出这四个点,这四个点中是x﹣y﹣2≤0的解的点是.(2)设的解集在坐标系内所对应的点形成的图形为G.①求G的面积;②反比例函数y=(x>0)的图象和图形G有公共点,求k的取值范围;(3)设的解集围成的图形为M,直接写出抛物线y=mx2﹣2mx+m+与图形M有交点时m的取值范围.10.(2021•西城区校级模拟)在平面直角坐标系xOy中,抛物线y=﹣x2+2mx﹣m2+m+2,(1)该抛物线的顶点坐标为(用含m的代数式表示);(2)若该抛物线经过点A(x1,y1)和点B(x2,y2),其中x1<m<x2,且x1+x2<2m,则y1与y2的大小关系是:y1y2(填“>,=,或<”号);(3)点C(﹣4,﹣2),将点C向右平移6个单位长度,得到点D.当抛物线y=﹣x2+2mx﹣m2+m+2与线段CD有且只有一个公共点时,结合函数图象,求m的取值范围.11.(2021•商水县三模)已知抛物线y=ax2+bx+c经过A(2,0),B(1,)两点,对称轴是直线x=1.(1)求抛物线的解析式;(2)若C(m,y1),D(n,y2)为抛物线y=ax2+bx+c上两点(m<n).Q为抛物线上点C和点D之间的动点(含点C,D),点Q纵坐标的取值范围为,求m+n的值;(3)已知点E(p,﹣p),F(2,1),若抛物线与线段EF有一个交点,求p的取值范围.12.(2021•靖江市一模)已知抛物线y=x2+(m﹣2)x﹣3,抛物线与坐标轴交于点A(3,0)、B两点.(1)求抛物线解析式;(2)当点P(2,a)在抛物线上时.①如图1,过点P不与坐标轴平行的直线l1与抛物线有且只有一个交点,求直线l1的方程;②如图2,若直线l2:y=2x+b交抛物线于M,点M在点P的右侧,过点P(2,a)作PQ∥y轴交直线l2于点Q,延长MQ到点N使得MQ=NQ,试判断点N是否在抛物线上?请说明理由.【题组四】13.(2020•滨湖区模拟)如图,在平面直角坐标系中,直线y=12x﹣2与x轴交于点A,与y轴交于点C,抛物线y=12x2+bx+c经过A、C两点,与x轴的另一交点为点B.(1)求抛物线的函数表达式;(2)点D为直线AC下方抛物线上一动点;①连接CD,是否存在点D,使得AC平分∠OCD?若存在,求点D的横坐标;若不存在,请说明理由.②在①的条件下,若点P为抛物线上位于AC下方的一个动点,以P、C、A、D为顶点的四边形面积记作S,则S取何值或在什么范围时,相应的点P有且只有两个?14.(2020•姜堰区二模)二次函数y=6x2−23x+m(m>0)的图象交y轴于点A,顶点为P,直线PA与x轴交于点B.(1)当m=1时,求顶点P的坐标;(2)若点Q(a,b)在二次函数y=6x2−23x+m(m>0)的图象上,且b﹣m>0,试求a的取值范围;(3)在第一象限内,以AB为边作正方形ABCD.①求点D的坐标(用含m的代数式表示);②若该二次函数的图象与正方形ABCD的边CD有公共点,请直接写出符合条件的整数m的值.15.(2020•天心区模拟)如图,抛物线y=−845(+(x﹣3m)(其中m>0)与x轴分别交于A、B 两点(A在B的右侧),与y轴交于点C;(1)点B的坐标为(−3,0),点A的坐标为(3m,0)(用含m的代数式表示),点Cm的代数式表示);(2)若点P为直线AC上的一点,且点P在第二象限,满足OP2=PC•PA,求tan∠APO的值及用含m 的代数式表示点P的坐标;(3)在(2)的情况下,线段OP与抛物线相交于点Q,若点Q恰好为OP的中点,此时对于在抛物线上且介于点C与顶点之间(含点C与顶点)的任意一点M(x0,y0)总能使不等式n≤式2n−916≥−4x02+3x0+138恒成立,求n的取值范围.16.(2020•开福区校级二模)如图,抛物线y=mx2+4mx﹣12m(m<0)与x轴相交于点A、B(点A在点B的右边),顶点为C.(1)求A、B两点的坐标;(2)若△ABC为等边三角形,点M(x0,y0)为抛物线y=mx2+4mx﹣12m(m<0)上任意一点,总有n−856≥02+403y0﹣298成立,求n的最小值;(3)若m=−12,点P为x轴上一动点,若α=∠CAB+∠CPB,当tanα=4时,求P点的坐标.【题组五】17.(2020•天心区校级模拟)对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最大值称为这个函数的边界值.例如,图中的函数是有界函数,其边界值是1.(1)分别判断函数y=1(x>0)和y=x+2(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+2(a≤x≤b,b>a)的边界值是3,且这个函数的最小值也是3,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足34≤t≤1?18.(2020•思明区校级模拟)已知抛物线C:y1=a(x﹣h)2﹣1,直线l:y2=kx﹣kh﹣1.(1)判断命题“抛物线C的对称轴不可能是y轴”的真假,并说明理由;(2)求证:直线l恒过抛物线C的顶点;(3)①当a=﹣1,m≤x≤2时,y1≥x﹣3恒成立,直接写出m的取值范围;②当0<a≤2,k>0时,若在直线l下方的抛物线C上至少存在两个横坐标为整数的点,求k的取值范围.19.(2020•海陵区一模)已知抛物线y1=ax2﹣2amx+am2+4,直线y2=kx﹣km+4,其中a≠0,a、k、m是常数.(1)抛物线的顶点坐标是,并说明上述抛物线与直线是否经过同一点(说明理由);(2)若a<0,m=2,t≤x≤t+2,y1的最大值为4,求t的范围;(3)抛物线的顶点为P,直线与抛物线的另一个交点为Q,对任意的m值,若1≤k≤4,线段PQ(不包括端点)上至少存在两个横坐标为整数的点,求a的范围.20(2020•遵化市三模)已知点P(2,﹣3)在抛物线L:y=ax2﹣2ax+a+k(a,k均为常数,且a≠0)上,L交y轴于点C,连接CP.(1)用a表示k,并求L的对称轴及L与y轴的交点坐标;(2)当L经过(3,3)时,求此时L的表达式及其顶点坐标;(3)横、纵坐标都是整数的点叫做整点.如图,当a<0时,若L在点C,P之间的部分与线段CP所围成的区域内(不含边界)恰有4个整点,求a的取值范围;(4)点M(x1,y1),N(x2,y2)是L上的两点,若t≤x1≤t+1,当x2≥3时,均有y1≥y2,直接写出t的取值范围.【题组六】21.(2020•中原区校级模拟)如图1所示,抛物线=232+B+与x轴交于A、B两点,与y轴交于点C,已知C点坐标为(0,4),抛物线的顶点的横坐标为72,点P是第四象限内抛物线上的动点,四边形OPAQ是平行四边形,设点P的横坐标为m.(1)求抛物线的解析式;(2)求使△APC的面积为整数的P点的个数;(3)当点P在抛物线上运动时,四边形OPAQ可能是正方形吗?若可能,请求出点P的坐标,若不可能,请说明理由;(4)在点Q随点P运动的过程中,当点Q恰好落在直线AC上时,则称点Q为“和谐点”,如图(2)所示,请直接写出当Q为“和谐点”的横坐标的值.22.(2020•丰台区二模)在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+3a与y轴交于点A.(1)求点A的坐标(用含a的式子表示);(2)求抛物线与x轴的交点坐标;(3)已知点P(a,0),Q(0,a﹣2),如果抛物线与线段PQ恰有一个公共点,结合函数图象,求a 的取值范围.23.(2020•密云区二模)在平面直角坐标系xOy中,抛物线C1:y=x2+bx+c与x轴交于A、B两点(点A 在点B的左侧),与y轴交于点C.点B的坐标为(3,0),将直线y=kx沿y轴向上平移3个单位长度后,恰好经过B、C两点.(1)求k的值和点C的坐标;(2)求抛物线C1的表达式及顶点D的坐标;(3)已知点E是点D关于原点的对称点,若抛物线C2:y=ax2﹣2(a≠0)与线段AE恰有一个公共点,结合函数的图象,求a的取值范围.24.(2020•惠安县校级模拟)已知抛物线C:y=ax2+bx+c(a>0)的顶点在第一象限,且与直线y=1只有一个公共点.(1)若抛物线的对称轴为直线x=1,求a、c之间应当满足的关系式;(2)若b=﹣2,点P是抛物线的顶点,且点P与点Q关于y轴对称,△OPQ是等腰直角三角形.①求抛物线的解析式;②直线y=kx(k>0)与抛物线C1交于两不同点A、B(点A在点B的左侧),与直线y=﹣2x+4交于点R.求证:对于每个给定的实数k,总有1O+1O=2O成立.。
初中数学北师大九年级下册(2023年新编) 二次函数抛物线与直线交点问题教案
直线与抛物线的交点问题探究
【授课班级】9年级A班
【执教者】叶嘉眉
【课程分析】《直线与抛物线的交点问题探究》是义务教育教科书《数学》(北师大版九年级下抛物线章节中的适应学情的阶段专题研究课。
中考中该部分内容是常规常考题型,所以有必要进行系统研究归纳。
同时交点问题的深度研究又对后面有关抛物线中三角形面积等问题打下坚实基础。
本节内容是在学生学习了抛物线基本性质、一次函数相关知识的基础上进行的,它既是对前面所学知识的总结与归纳,同时也是对这些知识的拓展与延伸。
【学情分析】所教A班基础较为薄弱,数学思维较弱,学生对二次函数的理解不深刻,尤其是对函数图像认识较为肤浅,不能有效的将函数图像和数之间结合,对函数与方程的关系理解更不到位,本节教学由浅入深,由特殊到一般的提出问题,由形到数进行转化,引导学生自主探究、合作交流,观察、思考、讨论来解决问题。
【教学目标】
1. 经历探索抛物线与直线的交点问题的过程,体会图像与函数解析式之间的联系。
2、理解图像交点与方程解之间的关系,并能灵活运用解决相关问题,进一步培养数形结合思想。
3、通过培养学生共同观察和讨论,进一步提高合作交流意识。
【学习重点】1、熟练掌握抛物线与直线有两个交点、一个交点、没有交点的判定条件。
2、掌握抛物线与直线交点求解方式。
【学习难点】理解方程和函数之间关系,掌握数形结合思想。
【问题群设置】
1、主问题:直线与抛物线的交点问题
2、问题群
问题一:抛物线与直线的交点个数是由什么决定的?
问题二:抛物线与直线的交点坐标怎么求?
板书设计:直线与抛物线的交点问题探究
1、交点个数(△)
2、求交点(联立方程组)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.二次函数综合问题之抛物线与直线交点个数1.(2014•)在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD 与图象G有公共点,结合函数图象,求点D纵坐标t的取值围.考点:待定系数法求二次函数解析式;待定系数法求一次函数解析式;二次函数的最值.专题:计算题.分析:(1)将A与B坐标代入抛物线解析式求出m与n的值,确定出抛物线解析式,求出对称轴即可;(2)由题意确定出C坐标,以及二次函数的最小值,确定出D纵坐标的最小值,求出直线BC解析式,令x=1求出y的值,即可确定出t的围.解答:解:(1)∵抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4),代入得:,解得:,∴抛物线解析式为y=2x2﹣4x﹣2,对称轴为直线x=1;(2)由题意得:C(﹣3,﹣4),二次函数y=2x2﹣4x﹣2的最小值为﹣4,由函数图象得出D纵坐标最小值为﹣4,设直线BC解析式为y=kx+b,将B与C坐标代入得:,解得:k=,b=0,∴直线BC解析式为y=x,当x=1时,y=,则t的围为﹣4≤t≤.点评:此题考查了待定系数法求二次函数解析式,待定系数法求一次函数解析式,以及函数的最值,熟练掌握待定系数法是解本题的关键.2.(2011•石景山区二模)已知:抛物线与x轴交于A(﹣2,0)、B(4,0),与y轴交于C(0,4).(1)求抛物线顶点D的坐标;(2)设直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴上下平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可以平移多少个单位长度,向下最多可以平移多少个单位长度?考点:二次函数图象与几何变换;二次函数的性质;待定系数法求二次函数解析式.专题:探究型.分析:(1)先设出过A(﹣2,0)、B(4,0)两点的抛物线的解析式为y=a(x+2)(x﹣4),再根据抛物线与y轴的交点坐标即可求出a的值,进而得出此抛物线的解析式;(2)先用待定系数法求出直线CD解析式,再根据抛物线平移的法则得到(1)中抛物线向下平移m各单位所得抛物线的解析式,再将此解析式与直线CD的解析式联立,根据两函数图象有交点即可求出m的取值围,进而可得到抛物线向下最多可平移多少个单位;同理可求出抛物线向上最多可平移多少个单位.解答:解:(1)设抛物线解析式为y=a(x+2)(x﹣4),∵C点坐标为(0,4),∴a=﹣,(1分)∴解析式为y=﹣x2+x+4,顶点D坐标为(1,);(2分)(2)直线CD解析式为y=kx+b.则,,∴,∴直线CD解析式为y=x+4,(3分)∴E(﹣8,0),F(4,6),若抛物线向下移m个单位,其解析式y=﹣x2+x+4﹣m(m>0),由消去y,得﹣x2+x﹣m=0,∵△=﹣2m≥0,∴0<m≤,∴向下最多可平移个单位.(5分)若抛物线向上移m个单位,其解析式y=﹣x2+x+4+m(m>0),方法一:当x=﹣8时,y=﹣36+m,当x=4时,y=m,要使抛物线与EF有公共点,则﹣36+m≤0或m≤6,∴0<m≤36;(7分)方法二:当平移后的抛物线过点E(﹣8,0)时,解得m=36,当平移后的抛物线过点F(4,6)时,m=6,由题意知:抛物线向上最多可以平移36个单位长度,(7分)综上,要使抛物线与EF有公共点,向上最多可平移36个单位,向下最多可平移个单位.点评:本题考查的是二次函数的图象与几何变换,涉及到用待定系数法求一次函数与二次函数的解析式、二次函数与一次函数的交点问题,有一定的难度.3.(2013•丰台区一模)二次函数y=x2+bx+c的图象如图所示,其顶点坐标为M(1,﹣4).(1)求二次函数的解析式;(2)将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合新图象回答:当直线y=x+n与这个新图象有两个公共点时,求n的取值围.考点:待定系数法求二次函数解析式;二次函数图象与几何变换.分析:(1)确定二次函数的顶点式,即可得出二次函数的解析式.(2)求出两个边界点,继而可得出n的取值围.解答:解:(1)因为M(1,﹣4)是二次函数y=(x+m)2+k的顶点坐标,所以y=(x﹣1)2﹣4=x2﹣2x﹣3,(2)令x2﹣2x﹣3=0,解之得:x1=﹣1,x2=3,故A,B两点的坐标分别为A(﹣1,0),B(3,0).如图,当直线y=x+n(n<1),经过A点时,可得n=1,当直线y=x+n经过B点时,可得n=﹣3,∴n的取值围为﹣3<n<1,翻折后的二次函数解析式为二次函数y=﹣x2+2x+3当直线y=x+n与二次函数y=﹣x2+2x+3的图象只有一个交点时,x+n=﹣x2+2x+3,整理得:x2﹣x+n﹣3=0,△=b2﹣4ac=1﹣4(n﹣3)=13﹣4n=0,解得:n=,∴n的取值围为:n>,由图可知,符合题意的n的取值围为:n>或﹣3<n<1.点评:本题考查了待定系数法求二次函数解析式的知识,难点在第二问,关键是求出边界点时n的值.4.(2009•)已知关于x的一元二次方程2x2+4x+k﹣1=0有实数根,k为正整数.(1)求k的值;(2)当此方程有两个非零的整数根时,将关于x的二次函数y=2x2+4x+k﹣1的图象向下平移8个单位,求平移后的图象的解析式;(3)在(2)的条件下,将平移后的二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线y=x+b(b<k)与此图象有两个公共点时,b的取值围.考点:二次函数综合题.专题:综合题.分析:(1)综合根的判别式及k的要求求出k的取值;(2)对k的取值进行一一验证,求出符合要求的k值,再结合抛物线平移的规律写出其平移后的解析式;(3)求出新抛物线与x轴的交点坐标,再分别求出直线y=x+b经过点A、B时的b的取值,进而求出其取值围.本题第二问是难点,主要是不会借助计算淘汰不合题意的k值.解答:解:(1)由题意得,△=16﹣8(k﹣1)≥0.∴k≤3.∵k为正整数,∴k=1,2,3;(2)设方程2x2+4x+k﹣1=0的两根为x1,x2,则x1+x2=﹣2,x1•x2=.当k=1时,方程2x2+4x+k﹣1=0有一个根为零;当k=2时,x1•x2=,方程2x2+4x+k﹣1=0没有两个不同的非零整数根;当k=3时,方程2x2+4x+k﹣1=0有两个相同的非零实数根﹣1.综上所述,k=1和k=2不合题意,舍去,k=3符合题意.当k=3时,二次函数为y=2x2+4x+2,把它的图象向下平移8个单位得到的图象的解析式为y=2x2+4x﹣6;(3)设二次函数y=2x2+4x﹣6的图象与x轴交于A、B两点,则A(﹣3,0),B(1,0).依题意翻折后的图象如图所示.当直线y=x+b经过A点时,可得b=;当直线y=x+b经过B点时,可得b=﹣.由图象可知,符合题意的b(b<3)的取值围为<b<.(3)依图象得,要图象y=x+b(b小于k)与二次函数图象有两个公共点时,显然有两段.而因式分解得y=2x2+4x﹣6=2(x﹣1)(x+3),第一段,当y=x+b过(1,0)时,有一个交点,此时b=﹣.当y=x+b过(﹣3,0)时,有三个交点,此时b=.而在此中间即为两个交点,此时﹣<b<.第二段,将平移后的二次函数的图象在x轴下方的部分沿x轴翻折后,开口向下的部分的函数解析式为y=﹣2(x﹣1)(x+3).显然,当y=x+b与y=﹣2(x﹣1)(x+3)(﹣3<x<1)相切时,y=x+b与这个二次函数图象有三个交点,若直线再向上移,则只有两个交点.因为b<3,而y=x+b(b小于k,k=3),所以当b=3时,将y=x+3代入二次函数y=﹣2(x﹣1)(x+3)整理得,4x2+9x﹣6=0,△>0,所以方程有两根,那么肯定不将有直线与两截结合的二次函数图象相交只有两个公共点.这种情况故舍去.综上,﹣<b<.点评:考查知识点:一元二次方程根的判别式、二次函数及函数图象的平移与翻折,最后还考到了与一次函数的结合等问题.不错的题目,难度不大,综合性强,考查面广,似乎是一个趋势或热点.5.(2012•东城区二模)已知关于x的方程(1﹣m)x2+(4﹣m)x+3=0.(1)若方程有两个不相等的实数根,求m的取值围;(2)若正整数m满足8﹣2m>2,设二次函数y=(1﹣m)x2+(4﹣m)x+3的图象与x轴交于A、B两点,将此图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线y=kx+3与此图象恰好有三个公共点时,求出k的值(只需要求出两个满足题意的k值即可).考点:二次函数综合题.分析:(1)根据方程有两个不相等的实数根,由一元二次方程的定义和根的判别式可求m的取值围;(2)先求出正整数m的值,从而确定二次函数的解析式,得到解析式与x轴交点的坐标,由图象可知符合题意的直线y=kx+3经过点A、B.从而求出k的值.解答:解:(1)△=(4﹣m)2﹣12(1﹣m)=(m+2)2,由题意得,(m+2)2>0且1﹣m≠0.故符合题意的m的取值围是m≠﹣2且m≠1的一切实数.(2)∵正整数m满足8﹣2m>2,∴m可取的值为1和2.又∵二次函数y=(1﹣m)x2+(4﹣m)x+3,∴m=2.…(4分)∴二次函数为y=﹣x2+2x+3.∴A点、B点的坐标分别为(﹣1,0)、(3,0).依题意翻折后的图象如图所示.由图象可知符合题意的直线y=kx+3经过点A、B.可求出此时k的值分别为3或﹣1.…(7分)注:若学生利用直线与抛物线相切求出k=2也是符合题意的答案.点评:本题考查了二次函数综合题.(1)考查了一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根.(2)得到符合题意的直线y=kx+3经过点A、B是解题的关键.6.在平面直角坐标系中,抛物线y=﹣x2+mx+m2﹣3m+2与x轴的交点分别为原点O和点A,点B(4,n)在这条抛物线上.(1)求B点的坐标;(2)将此抛物线的图象向上平移个单位,求平移后的图象的解析式;(3)在(2)的条件下,将平移后的二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线y=x+b与此图象有两个公共点时,b的取值围.考点:二次函数综合题.专题:压轴题.分析:(1)把原点坐标代入抛物线,解关于m的一元二次方程得到m的值,再根据二次项系数不等于0确定出函数解析式,再把点B坐标代入函数解析式求出n的值,即可得解;(2)根据向上平移纵坐标加解答即可;(3)把直线解析式与抛物线解析式联立,消掉y得到关于x的一元二次方程,根据△=0求出b的值,然后令y=0求出抛物线与x轴的交点坐标,再求出直线经过抛物线与x轴左边交点的b值,然后根据图形写出b 的取值围即可.解答:解:(1)∵抛物线经过原点O,∴m2﹣3m+2=0,解得m1=1,m2=2,当m=1时,﹣=﹣=0,∴m=2,∴抛物线的解析式为y=﹣x2+3x,∵点B(4,n)在这条抛物线上,∴n=﹣×42+3×4=﹣8+12=4,∴点B(4,4);(2)∵抛物线的图象向上平移个单位,∴平移后的图象的解析式y=﹣x2+3x+;(3)联立,消掉y得,﹣x2+3x+=x+b,整理得,x2﹣5x+2b﹣7=0,△=(﹣5)2﹣4×1×(2b﹣7)=0,解得b=,令y=0,则﹣x2+3x+=0,整理得,x2﹣6x﹣7=0,解得x1=﹣1,x2=7,∴抛物线与x轴左边的交点为(﹣1,0),当直线y=x+b经过点(﹣1,0)时,×(﹣1)+b=0,解得b=,∴当直线y=x+b与此图象有两个公共点时,b的取值围为b>或b<.点评:本题是二次函数综合题,主要利用了解一元二次方程,二次函数图象上点的坐标特征,二次函数图象与几何变换,难点在于(3)求出直线与抛物线有三个交点时的b值,作出图形更形象直观.7.关于x的二次函数y=x2+2x+k﹣1的图象与x轴有交点,k为正整数.(1)求k的值;(2)当关于x的二次函数y=x2+2x+k﹣1与x轴的交点的横坐标均是负整数时,将关于x的二次函数y=x2+2x+k﹣1的图象向下平移4个单位,求平移后的图象的解析式;(3)在(2)的条件下,将平移后的二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线y=(b<3)与此图象有两个公共点时,b的取值围.考点:二次函数综合题.分析:(1)综合根的判别式及k的要求,求出k的取值;(2)对k的取值进行一一验证,求出符合要求的k值,再结合抛物线平移的规律写出其平移后的解析式;(3)求出新抛物线与x轴的交点坐标,再分别求出直线y=x+b经过点A、B时的b的取值,进而求出其取值围.解答:解:(1)由题意得,△=4﹣4(k﹣1)≥0.∴k≤2.∵k为正整数,∴k=1,2;(2)设方程x2+2x+k﹣1=0的两根为x1,x2,则x1+x2=﹣2,x1•x2=k﹣1.当k=1时,图象y=x2+2x+k﹣1与x轴有一个交点为(0,0),不合题意;当k=2时,图象y=x2+2x+k﹣1与x轴有一个交点为(﹣1,0),符合题意;综上所述,k=2符合题意.当k=2时,二次函数为y=x2+2x+1,把它的图象向下平移4个单位得到的图象的解析式为:y=x2+2x﹣3;(3)设二次函数y=x2+2x﹣3的图象与x轴交于A、B两点,则A(﹣3,0),B(1,0).依题意翻折后的图象如图所示.当直线y=x+b经过A点时,可得b=;当直线y=x+b经过B点时,可得b=﹣.由图象可知,符合题意的b(b<3)的取值围为:﹣<b<.点评:此题主要考查了一元二次方程根的判别式、二次函数及函数图象的平移与翻折,最后还考到了与一次函数的结合等问题.不错的题目,难度不大,综合性强.8.(2014•东城区一模)已知:关于x的一元二次方程mx2﹣(4m+1)x+3m+3=0 (m>1).(1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为x1,x2(其中x1>x2),若y是关于m的函数,且y=x1﹣3x2,求这个函数的解析式;(3)将(2)中所得的函数的图象在直线m=2的左侧部分沿直线m=2翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当关于m的函数y=2m+b的图象与此图象有两个公共点时,b的取值围.考点:一次函数综合题.专题:压轴题.分析:(1)列式表示出根的判别式△,再根据△>0,方程有两个不相等的实数根证明;(2)利用求根公式法求出x1、x2,然后代入关系式整理即可得解;(3)作出函数图象,然后求出m=2时的函数值与以及m=1时的翻折图象的对应点的坐标,再代入直线解析式求出b值,然后结合图形写出b的取值围即可.解答:(1)证明:△=(4m+1)2﹣4m(3m+3)=4m2﹣4m+1=(2m﹣1)2,∵m>1,∴(2m﹣1)2>0,∴方程有两个不等实根;(2)解:x=,∴两根分别为=3,=1+,∵m>1,∴0<<1,∴1<1+<2,∵x1>x2,∴x1=3,x2=1+,∴y=x1﹣3x2,=3﹣3(1+),=﹣,所以,这个函数解析式为y=﹣(m>1);(3)解:作出函数y=﹣(m>1)的图象,并将图象在直线m=2左侧部分沿此直线翻折,所得新图形如图所示,m=2时,y=﹣,m=1时,y=﹣=﹣3,∴函数图象直线m=2左侧部分翻折后的两端点坐标为(3,﹣3),(2,﹣),当m=3时,2×3+b=﹣3,解得b=﹣9,当m=2时,2×2+b=﹣,解得b=﹣,所以,此图象有两个公共点时,b的取值围﹣9<b<﹣.点评:本题是一次函数综合题型,主要利用了根的判别式,求根公式法解一元二次方程,一次函数与反比例函数交点问题,难点在于(3)确定出翻折部分的两个端点的坐标以及有两个交点时的b的取值围,作出图形更形象直观.9.(2013•门头沟区一模)已知关于x的一元二次方程.(1)求证:无论m取任何实数,方程都有两个实数根;(2)当m<3时,关于x的二次函数的图象与x轴交于A、B 两点(点A在点B的左侧),与y轴交于点C,且2AB=3OC,求m的值;(3)在(2)的条件下,过点C作直线l∥x轴,将二次函数图象在y轴左侧的部分沿直线l翻折,二次函数图象的其余部分保持不变,得到一个新的图象,记为G.请你结合图象回答:当直线与图象G只有一个公共点时,b的取值围.考点:二次函数综合题.分析:(1)运用根的判别式就可以求出△的值就可以得出结论;(2)先当x=0或y=0是分别表示出抛物线与x轴和y轴的交点坐标,表示出AB、OC的值,由2AB=3OC建立方程即可求出m的值;(3)把(2)m的值代入抛物线的解析式就可以求出抛物线的解析式和C点的坐标,当直线经过点C时就可以求出b的值,由直线与抛物线只有一个公共点建立方程,根据△=0就可以求出b的值,再根据图象就可以得出结论.解答:解:(1)根据题意,得△=(m﹣2)2﹣4××(2m﹣6)=(m﹣4)2,∵无论m为任何数时,都有(m﹣4)2≥0,即△≥0.∴无论m取任何实数,方程都有两个实数根;(2)由题意,得当y=0时,则,解得:x1=6﹣2m,x2=﹣2,∵m<3,点A在点B的左侧,∴A(﹣2,0),B(﹣2m+6,0),∴OA=2,OB=﹣2m+6.当x=0时,y=2m﹣6,∴C(0,2m﹣6),∴OC=﹣(2m﹣6)=﹣2m+6.∵2AB=3OC,∴2(2﹣2m+6)=3(﹣2m+6),解得:m=1;(3)如图,当m=1时,抛物线的解析式为y=x2﹣x﹣4,点C的坐标为(0,﹣4).当直线y=x+b经过点C时,可得b=﹣4,当直线y=x+b(b<﹣4)与函数y=x2﹣x﹣4(x>0)的图象只有一个公共点时,得x+b═x2﹣x﹣4.整理得:3x2﹣8x﹣6b﹣24=0,∴△=(﹣8)2﹣4×3×(﹣6b﹣24)=0,解得:b=﹣.结合图象可知,符合题意的b的取值围为b>﹣4或b<﹣.点评:本题是一道一次函数与二次函数的综合试题,考查了一元二次方程根的判别式的运用,二次函数与坐标轴的交点坐标的运用,轴对称的性质的运用,解答时根据函数之间的关系建立方程灵活运用根的判别式是解答本题的关键.。