Heuristic search in bounded-depth trees Best-leaf-first search
基于语义分割的遥感图像分类
基于语义分割的遥感图像分类遥感图像是近年来在各行各业中广泛使用的一种技术手段。
利用遥感图像可以对地球表面进行高精度的监测和识别,具有非常重要的应用价值。
然而,遥感图像的分类是一个非常复杂的问题,因为遥感图像中的信息量非常大,需要大量的计算和分析才能进行有效的分类。
为了解决这个问题,近年来涌现出了许多基于语义分割的遥感图像分类方法,这些方法将遥感图像分割为不同的区域,并将每个区域与其所属的类别进行关联,从而实现遥感图像的自动分类。
基于语义分割的遥感图像分类方法可以分为两大类:基于光谱信息的方法和基于空间信息的方法。
基于光谱信息的方法采用了传统的图像分类技术,通常使用机器学习算法(如SVM)来训练分类器,并使用像素级别的光谱信息作为输入特征。
然而,这种方法往往不能充分考虑遥感图像的空间信息特征,分类精度有限。
因此,近年来越来越多的研究者开始采用基于空间信息的方法来解决遥感图像分类问题。
基于空间信息的方法是指将遥感图像分割为不同的区域,然后对每个区域进行分类。
这种方法通常使用语义分割技术进行遥感图像分割,然后使用语义分割结果中的每个区域作为输入进行分类。
相比于基于光谱信息的方法,基于空间信息的方法具有更好的分类精度和鲁棒性。
目前,基于空间信息的方法已经成为遥感图像分类的主流方法之一。
目前,基于语义分割的遥感图像分类研究主要集中在以下几个方向上:1. 基于深度学习的遥感图像分类方法近年来,深度学习(如卷积神经网络)在遥感图像分类中的应用越来越广泛。
这种方法可以利用大量标记数据进行训练,并能够自动学习光谱、空间和语义信息,从而实现更高的分类精度。
基于深度学习的遥感图像分类方法已经在遥感图像分类竞赛中取得了很好的成绩,是当前遥感图像分类研究的热点方向之一。
2. 基于多尺度特征的遥感图像分类方法遥感图像中往往存在着多个尺度的信息,因此采用多尺度特征进行分类可以提高分类精度。
目前,基于多尺度特征的遥感图像分类方法已经成为遥感图像分类的主要方法之一。
Lecture06
Introduction
Fuzzy systems are one of several possibilities in the area of nonlinear system identification Other universal approximators in nonlinear system identification
l 1
ˆ (t ) Y T W (t ) y
ˆ y (t ) y (t ) e (t ) Y T W (t ) e (t )
where e(t) is the prediction error that is assumed to have zero mean and variance σ2.
Neural networks Wavelets Fourier series Volterra kernels …
Introduction
The advantages of the use of fuzzy systems is their capacity:
to interact and to extract linguistic information from input–output data to describe the dynamics of the system in local regions described by the rules.
Introduction
The capacity to handle linguistic information adds an extra dimension to the identification and modeling.
The validation process will be based not only on quantitative criteria (定量标准) but also on qualitative criteria (定性标准)
一种快速稀疏贝叶斯学习的水声目标方位估计方法研究
一种快速稀疏贝叶斯学习的水声目标方位估计方法研究近年来,水声目标方位估计技术深入研究的重要性日益受到人们
的重视。
寻找快速、精准的贝叶斯学习算法,进一步提升水声目标方
位估计技术,成为当下学术界的研究热点。
随着技术的进步,一种快
速稀疏贝叶斯学习的水声目标方位估计方法研究也获得了广泛关注。
快速稀疏贝叶斯学习水声目标方位估计方法,依据建模对象实时
收集水声讯号数据,构建以 \mathcal P 概率函数为基础的混合模型,设计了一种收敛速度较快且有效保存稀疏特征结构信息的估计方法。
该方法采用 EM 算法进行参数估计,在小样本情况下,特指噪声参数
学习后且应用最大后验估计的结果,具有较高的估计精度。
此外,快速稀疏贝叶斯学习水声目标方位估计方法能够很好的避
免获取稀疏参数时出现维度灾难所带来的计算量大,同时维持与传统
贝叶斯学习方法簇性质较高的优势。
有竞争性学习的噪声参数调整来
优化贝叶斯模型,使之具有较高的精确度和更快的训练速率。
由于设
计的快速稀疏贝叶斯学习性能方法具有较快的计算速度与精确度,于
是广泛应用于各类复杂的水声目标定位的估计中。
综上所述,快速稀疏贝叶斯学习的水声目标方位估计方法是今日
水声定位中重要的研究技术,其特征有:基于模型、收敛速度快、参
数估计高效,有效防止出现维度灾难所带来的后果,为水声定位技术
的发展奠定了良好基础,可期待随着技术的进一步深入,会出现更多
改善性的研究成果。
深度学习算法在水下目标识别与追踪中的应用研究进展
深度学习算法在水下目标识别与追踪中的应用研究进展深度学习算法在水下目标识别与追踪中的应用研究近年来取得了显著的进展。
水下目标识别与追踪是水下机器人、水下智能装备和水下生物研究等领域的关键技术,具有重要的科学研究和应用价值。
深度学习算法具有强大的特征学习和模式识别能力,在水下目标识别与追踪中发挥着重要作用。
一、深度学习算法在水下目标识别中的应用1. 图像识别深度学习算法中的卷积神经网络(CNN)被广泛应用于水下目标识别中。
通过大量的训练数据和网络层次结构的优化,CNN能够有效地学习出物体的纹理、形状、颜色等特征,从而实现对水下图像中目标的自动识别。
例如,在水下机器人自主控制中,深度学习算法可以实现对水下障碍物的识别,从而使机器人能够自主规避障碍物,提高水下作业的安全性和可靠性。
2. 目标检测目标检测是水下目标识别的核心任务之一。
深度学习算法中的目标检测模型可以通过识别水下图像中的目标位置和边界框来实现目标检测。
例如,YOLO(You Only Look Once)算法通过在图像中划分网格,并利用CNN网络对每个网格进行预测,实现对水下目标的快速检测和定位。
此外,基于深度学习的目标检测算法还可以通过融合多种传感器信息(如声纳、激光雷达等)来提高识别的准确性和鲁棒性。
3. 目标跟踪深度学习算法在水下目标追踪中的应用主要包括单目标跟踪和多目标跟踪。
在单目标跟踪中,深度学习算法通过学习目标的外观特征和运动模式,实现对水下目标的实时追踪。
在多目标跟踪中,深度学习算法可以学习不同目标之间的关联性和相似性,实现对水下多目标的同时追踪。
例如,基于深度学习的卡尔曼滤波算法可以通过融合卷积神经网络和卡尔曼滤波器,实现对水下目标的准确追踪和定位。
二、深度学习算法在水下目标识别与追踪中的挑战尽管深度学习算法在水下目标识别与追踪中取得了一定的研究进展,但仍面临以下挑战:1. 数据集稀缺相对于陆地环境,水下环境的数据集相对稀缺。
基于边缘检测的抗遮挡相关滤波跟踪算法
基于边缘检测的抗遮挡相关滤波跟踪算法唐艺北方工业大学 北京 100144摘要:无人机跟踪目标因其便利性得到越来越多的关注。
基于相关滤波算法利用边缘检测优化样本质量,并在边缘检测打分环节加入平滑约束项,增加了候选框包含目标的准确度,达到降低计算复杂度、提高跟踪鲁棒性的效果。
利用自适应多特征融合增强特征表达能力,提高目标跟踪精准度。
引入遮挡判断机制和自适应更新学习率,减少遮挡对滤波模板的影响,提高目标跟踪成功率。
通过在OTB-2015和UAV123数据集上的实验进行定性定量的评估,论证了所研究算法相较于其他跟踪算法具有一定的优越性。
关键词:无人机 目标追踪 相关滤波 多特征融合 边缘检测中图分类号:TN713;TP391.41;TG441.7文献标识码:A 文章编号:1672-3791(2024)05-0057-04 The Anti-Occlusion Correlation Filtering Tracking AlgorithmBased on Edge DetectionTANG YiNorth China University of Technology, Beijing, 100144 ChinaAbstract: For its convenience, tracking targets with unmanned aerial vehicles is getting more and more attention. Based on the correlation filtering algorithm, the quality of samples is optimized by edge detection, and smoothing constraints are added to the edge detection scoring link, which increases the accuracy of targets included in candi⁃date boxes, and achieves the effects of reducing computational complexity and improving tracking robustness. Adap⁃tive multi-feature fusion is used to enhance the feature expression capability, which improves the accuracy of target tracking. The occlusion detection mechanism and the adaptive updating learning rate are introduced to reduce the impact of occlusion on filtering templates, which improves the success rate of target tracking. Qualitative evaluation and quantitative evaluation are conducted through experiments on OTB-2015 and UAV123 datasets, which dem⁃onstrates the superiority of the studied algorithm over other tracking algorithms.Key Words: Unmanned aerial vehicle; Target tracking; Correlation filtering; Multi-feature fusion; Edge detection近年来,无人机成为热点话题,具有不同用途的无人机频繁出现在大众视野。
Solving the feedback vertex set problem on undirected graphs
Feedback problems consist of removing a minimal number of vertices of a directed or undirected graph in order to make it acyclic. The problem is known to be NP complete. In this paper we consider the variant on undirected graphs. The polyhedral structure of the Feedback Vertex Set polytope is studied. We prove that this polytope is full dimensional and show that some inequalities are facet de ning. We describe a new large class of valid constraints, the subset inequalities. A branch-and-cut algorithm for the exact solution of the problem is then outlined, and separation algorithms for the inequalities studied in the paper are proposed. A Local Search heuristic is described next. Finally we create a library of 1400 random generated instances with the geometric structure suggested by the applications, and we computationally compare the two algorithmic approaches on our library. Key words: feedback vertex set, Branch-and-cut, local search heuristic, tabu search.
2022年自然语言处理及计算语言学相关术语中英对译表二
自然语言处理及计算语言学相关术语中英对译表二自然语言处理及计算语言学相关术语中英对译表二 delimiter 定界符号 [定界符]denotation 外延denotic logic 符号逻辑dependency 依存关系dependency gram r 依存关系语法dependency relation 依存关系depth-first search 深度优先搜寻derivation 派生derivational bound morpheme 派生性附着语素descriptive gram r 描述型语法 [描写语法]descriptive linguistics 描述语言学 [描写语言学] desiderative 意愿的determiner 限定词deterministic algorithm 决定型算法 [确定性算法] deterministic finite state auto ton 决定型有限状态机deterministic parser 决定型语法剖析器 [确定性句法剖析程序] developmental psychology 开展心理学diachronic linguistics 历时语言学diacritic 附加符号dialectology 方言学dictionary database 辞典数据库 [词点数据库]dictionary entry 辞典条目digital pro ssing 数字处理 [数值处理] diglossia 双言digraph 二合字母diminutive 指小词diphone 双连音directed acyclic graph 有向非循环图disambiguation 消除歧义 [歧义消除] discourse 篇章discourse ysis 篇章分析 [言谈分析] discourse planning 篇章规划discourse representation theory 篇章表征理论 [言谈表示理论] discourse strategy 言谈策略discourse structure 言谈结构discrete 离散的disjunction 选言dissimilation 异化distributed 分布式的distributed cooperative reasoning 分布协调型推理distributed text parsing 分布式文本剖析disyllabic 双音节的ditransitive verb 双宾动词 [双宾语动词;双及物动词]divergen 扩散[分化]d-m (determiner-measure) construction 定量结构d-n (determiner-noun) construction 定名结构document retrieval system 文件检索系统 [文献检索系统] do in dependency 领域依存性 [领域依存关系]double insertion 交互中插double-base 双基downgrading 降级dummy 虚位duration 音长{ 学}/时段{语法学/语意学}dynamic programming 动态规划earley algorithm earley 算法echo 回声句egressive 呼气音ejective 紧喉音electronic dictionary 电子词典elementary string 根本字符串 [根本单词串] ellipsis 省略em algorithm em算法embedding 崁入emic 功能关系的empirici 经验论empty category principle 虚范畴原那么 [空范畴原理] empty word 虚词enclitics 后接成份end user 终端用户 [最终用户]endo ntric 同心的endophora 语境照应entailment 蕴涵entity 实体entropy 熵entry 条目episodic memory 情节性记忆epistemological work 认识论网络ergative verb 作格动词ergativity 作格性esperando 世界语etic 无功能关系etymology 词源学eventevent driven control 驱动型控制example-based chine translation 以例句为本的机器翻译excla tion 感慨exclusive disjunction 排它性逻辑“或”experien r case 经验者格expert system 专家系统extension 外延external argument 域外论元extraposition 移外变形 [外置转换]facility value 易度值feature 特征feature bundle 特征束feature co-ourren restriction 特征同现限制 [特性同现限制] feature instantiation 特征表达feature structure 特征结构 [特性结构]feature unification 特征连并 [特性合一]feedback 回馈felicity condition 妥适条件file structure 档案结构finite auto ton 有限状态机 [有限自动机]finite state 有限状态finite state morphology 有限状态构词法 [有限状态词法] finite-state auto ta 有限状态自动机finite-state language 有限状态语言finite-state chine 有限状态机finite-state transdu r 有限状态置换器flap 闪音flat 降音foreground infor tion 前景讯息 [前景信息]for l language theory 形式语言理论for l linguistics 形式语言学for l se ntics 形式语意学forward inferen 前向推理 [向前推理]forward-backward algorithm 前前后后算法frame 框架frame based knowledge representation 框架型知识表示frame theory 框架理论free morpheme 自由语素fregean principle fregean 原那么fricative 擦音f-structure 功能结构full text searching 全文检索function word 功能词functional gram r 功能语法functional programming 函数型程序设计 [函数型程序设计] functional senten perspective 功能句子观functional structure 功能结构functional unification 功能连并 [功能合一]functor 功能符fundamental frequency 基频garden path senten 花园路径句gb (gover ent and binding) 管辖约束geminate 重叠音gender 性generalized phrase structure gram r 概化词组结构语法 [广义短语结构语法]generative gram r 衍生语法generative linguistics 衍生语言学 [生成语言学]generic 泛指geic epistemology 发生认识论geive rker 属格标记genitive 属格gerund 动名词gover ent and binding theory 管辖约束理论gpsg (generalized phrase structure gram r) 概化词组结构语法[广义短语结构语法]gradability 可分级性gram r checker 文法检查器gram tical affix 语法词缀gram tical category 语法范畴gram tical function 语能gram tical inferen 文法推论gram tical relation 语法关系grapheme 字素haplology 类音删略head 中心语head driven phrase structure 中心语驱动词组结构 [中心词驱动词组结构]head feature convention 中心语特征继承原理 [中心词特性继承原理]head-driven phrase structure gram r 中心语驱动词组结构律heteronym 同形heuristic parsing 经验式句法剖析heuristics 经验知识hidden rkov model 隐式马可夫模型hierarchical structure 阶层结构 [层次结构]holophrase 单词句homograph 同形异义词homonym 同音异义词homophone 同音词homophony 同音异义homorganic 同部位音的horn clause horn 子句hpsg (head-driven phrase structure gram r) 中心语驱动词组结构语法hu n- chine inte 人机界面hypernym 上位词hypertext 超文件 [超文本]hyponym 下位词hypotactic 主从结构的ic (immediate constituent) 直接成份icg (infor tion-based case gram r) 讯息为本的格位语法idiom 成语 [熟语]idiosyncrasy 特异性illocutionary 施为性immediate constituent 直接成份imperative 祈使句implicative predicate 蕴含谓词implicature 含意indexical 标引的indirect object 间接宾语indirect speech act 间接言谈行动 [间接言语行为] indo-european language 印欧语言inductional inferen 归纳推理inferen chine 推理机器infinitive 不定词 [to 不定式]infix 中缀inflection/inflexion 屈折变化inflectional affix 屈折词缀infor tion extraction 信息撷取infor tion pro ssing 信息处理 [信息处理]infor tion retrieval 信息检索infor tion scien 信息科学 [信息科学; 情报科学] infor tion theory 信息论 [信息论]inherent feature 固有特征inherit 继承inheritan 继承inheritan hierarchy 继承阶层 [继承层次]inheritan of attribute 属性继承innateness position 语法天生假说insertion 中插inside-outside algorithm 里里外外算法instantiation 表达instrumental (case) 工具格integrated parser 集成句法剖析程序integrated theory of discourse ysis 篇章分析综合理论 [言谈分析综合理论]in igen intensive production 知识密集型生产intensifier 加强成分intensional logic 内含逻辑intensional se ntics 内涵语意学intensional type 内含类型interjection/excla tion 感慨词inter-level 中间成分interlingua 中介语言interlingual 中介语(的)interlocutor 对话者internalise 内化international phoic association (ipa) 国际学会inter 网际网络interpretive se ntics 诠释性语意学intonation 语调intonation unit (iu) 语调单位ipa (international phoic association) 国际学会ir (infor tion retrieval) 信息检索is-a relation is-a 关系isomorphi 同形现象iu (intonation unit) 语调单位junction 连接keyword in context 上下文中关键词[上下文内关键词] kinesics 体势学knowledge acquisition 知识习得knowledge base 知识库knowledge based chine translation 知识为本之机器翻译knowledge extraction 知识撷取 [知识题取]knowledge representation 知识表示kwic (keyword in context) 关键词前后文 [上下文内关键词] label 卷标labial 唇音labio-dental 唇齿音labio-velar 软颚唇音lad (language acquisition devi ) 语言习得装置lag 发声延迟language acquisition 语言习得language acquisition devi 语言习得装置language engineering 语言工程language generation 语言生成language intuition 语感language model 语言模型language technology 语言科技left-corner parsing 左角落剖析 [左角句法剖析] lem 词元lenis 弱辅音letter-to-phone 字转音lexeme 词汇单位lexical ambiguity 词汇歧义lexical category 词类lexical con ptual structure 词汇概念结构lexical entry 词项lexical entry selection standard 选词标准lexical integrity 词语完整性lexical se ntics 词汇语意学lexical-functional gram r 词汇功能语法lexicography 词典学lexicology 词汇学lexicon 词汇库 [词典;词库]lexis 词汇层lf (logical form) 逻辑形式lfg (lexical-functional gram r) 词汇功能语法liaison 连音linear bounded auto ton 线性有限自主机linear pre den 线性次序lingua franca 共通语linguistic decoding 语言译码linguistic unit 语言单位linked list 串行loan 外来语local 局部的locali 方位主义localizer 方位词locus model 轨迹模型locution 惯用语logic 逻辑logic array work 逻辑数组网络logic programming 逻辑程序设计 [逻辑程序设计] logical form 逻辑形式logical operator 逻辑算子 [逻辑算符]logic-based gram r 逻辑为本语法 [基于逻辑的语法] long term memory 记忆longest tch principle 最长匹配原那么 [最长一致法] lr (left-right) parsing lr 剖析chine dictionary 机器词典chine language 机器语言chine learning 机器学习chine translation 机器翻译chine-readable dictionary (mrd) 机读辞典crolinguistics 宏观语言学rkov chart 马可夫图the tical linguistics 数理语言学ximum entropy 最大熵m-d (modifier-head) construction 偏正结构mean length of utteran (mlu) 语句平均长度measure of infor tion 讯习测度 [信息测度] memory based 根据记忆的mental lexicon 心理词汇库mental model 心理模型mental pro ss 心理过程 [智力过程;智力处理] metalanguage 超语言metaphor 隐喻metaphorical extension 隐喻扩展metarule 律上律 [元规那么]metathesis 易位microlinguistics 微观语言学middle structure 中间式结构mini l pair 最小对mini list program 微言主义mlu (mean length of utteran ) 语句平均长度modal 情态词modal auxiliary 情态助动词modal logic 情态逻辑modifier 修饰语modular logic gram r 模块化逻辑语法modular parsing system 模块化句法剖析系统modularity 模块性(理论)module 模块monophthong 单元音monotonic 单调monotonicity 单调性montague gram r 蒙泰究语法 [蒙塔格语法] mood 语气morpheme 词素morphological affix 构词词缀morphological deposition 语素分解morphological pattern 词型morphological pro ssing 词素处理morphological rule 构词律 [词法规那么] morphological segmentation 语素切分morphology 构词学morphophonemics 词音学 [形态音位学;语素音位学] morphophonological rule 形态音位规那么morphosyntax 词句法motor theory 肌动理论movement 移位mrd ( chine-readable dictionary) 机读辞典模板,内容仅供参考。
基于自注意力深度哈希的海量指纹索引方法
基于自注意力深度哈希的海量指纹索引方法
吴元春;赵彤
【期刊名称】《计算机工程与应用》
【年(卷),期】2022(58)18
【摘要】现有的指纹索引方法大多是基于实数值特征向量,当应用于大规模指纹库时无法避免计算资源与存储空间消耗巨大的问题。
为了在海量指纹库中进行高效快速检索并得到实时响应结果,提出了一种全新的基于有监督深度哈希的指纹索引方法。
将传统指纹领域知识与自注意力深度哈希模型相结合。
传统领域知识用于指纹图像预处理来获取指纹二值骨架图,自注意力深度哈希模型进行特征提取与哈希映射得到二进制编码。
其中特征提取模块使用Transformer结构替换卷积神经网络来提取指纹细节特征,此外模型中加入了自动对齐模块并设计了一种STN-AE的结构来辅助训练该模块。
最后在NIST4、NIST14、FVC2000、FVC2002、
FVC2004等公开指纹数据集上进行了实验,实验结果证实该方法在提高海量指纹库中的检索速度以及降低存储消耗等方面是卓有成效的。
【总页数】10页(P241-250)
【作者】吴元春;赵彤
【作者单位】中国科学院大学计算机科学与技术学院;中国科学院大学数学科学学院;中国科学院大数据挖掘和知识管理重点实验室
【正文语种】中文
【中图分类】TP391
【相关文献】
1.基于相对距离哈希方法的一种高维索引
2.一种基于子空间学习的图像语义哈希索引方法
3.一种基于图像感知哈希的海量恶意代码分类方法
4.基于稀疏索引和哈希表的访问控制策略检索方法
5.基于注意力机制的医学影像深度哈希检索算法
因版权原因,仅展示原文概要,查看原文内容请购买。
An Improved Heuristic Algorithm for UAV Path Planning in 3D Environment
An Improved Heuristic Algorithm for UAV Path Planning in 3D Environment Zhang Qi1, Zhenhai Shao1, Yeo Swee Ping2, Lim Meng Hiot3, Yew Kong LEONG4 1School of Communication Engineering, University of Electronic Science and Technology of China2Microwave Research Lab, National University of Singapore3Intelligent Systems Center, Nanyang Technological University4Singapore Technologye-mail:beijixing2006@,zhenhai.shao@, eleyeosp@.sg,emhlim@.sg, leongyk@Abstract—Path planning problem is one of core contents of UAV technology. This paper presents an improved heuristic algorithm to solve 3D path planning problem. In this study the path planning model is built based on digital map firstly, and then the virtual terrain is introduced to eliminate a significant amount of search space, from 3-Dimensions to 2-Dimensions. Subsequently the improved heuristic A* algorithm is applied to generate UAV trajectory. The algorithm is featured with various searching steps and weighting factor for each cost component. The simulation results have been done to validate the effectiveness of this algorithm.Keywords-unmanned aerial vehicle (UAV); path planning; virtual terrain; heuristic A* algorithmI.I NTRODUCTIONPath planning is required for an unmanned aerial vehicle (UAV) to meet the objectives specified for any military or commercial application. The general purpose of path planning is to find the optimal path from a start point to a destination point subject to the different operational constraints (trajectory length, radar exposure, collision avoidance, fuel consumption, etc) imposed on the UAV for a particular mission; if, for example, the criterion is simply to minimize flight time, the optimization process is then reduced to a minimal cost problem.Over decades several path planning algorithms have been investigated. Bortoff [1] presented a two-step path planning algorithm based on Voronoi partitioning: a graph search method is first applied to generate a rough-cut path which is thereafter smoothed in accordance with his proposed virtual-force model. Anderson et al. [2] also employed Voronoi approaches to generate a family of feasible trajectories. Pellazar [3], Nikolos et al. [4] and Lim et al. [5] opted for genetic algorithms to navigate the UAV. The calculus-of-variation technique has been adopted in [6]-[7] to find an optimal path with minimum radar illumination.In this paper, an improved heuristic algorithm is presented for UAV path planning. The path planning environment is built in section II, and the algorithm is depicted in section III, the following section presents experimental results which can validate the effectiveness of the proposed algorithm.II.P ATH PLANNING MODELSeveral factors must be taken into account in path planning problem: terrain information, threat information, and UAV kinetics. These factors form flight constraints which must be handled in planning procedure.Many studies use the mathematical function to simulate terrain environment [4]. This method is quick and simple, but compared with the real terrain which UAV flying across, it lacks of reality and universality. In this study, terrain information is constructed by DEM (digital elevation model) data, which is released by USGS (U.S. Geological Survey) as the true terrain representation.Threat information is also considered in path planning. In modern warfare, almost all anti-air weapons need radar to track and lock air target. Here the main threat is radar illumination. Radar threat density can be represented by radar equation, because the intrinsic radar parameters are determined before path planning. The threat density can be regarded inversely proportional to R4, where R is the distance from the UAV’s current location to a particular radar site.For simplicity, UAV is modeled as a mass point traveling at a constant velocity and its minimum turning radius is treated as a fixed parameter.III.P ATH PLANNING A PPRO A CHA.Virtual terrain for three-dimensional path planningUnlike ground vehicle routing planning, UAV path planning is a 3D problem in real scenario. In 3D space, not only terrain and threat information is taken into account, but also UAV specifications, such as max heading angle, vertical angle, and turning radius are incorporated for comprehensive consideration.The straightforward method for UAV path planning is partitioning 3D space as 3D grid and then some algorithms are applied to generate path. However, for any algorithm the computational time is mainly dependent on the size of search space. Therefore, for efficiency consideration, a novel concept of constructing a 2D search space which is based on original 3D search space is proposed, which is called virtual terrain. The virtual terrain is constructed above the real terrain according to the required flight safety clearance2010 Second International Conference on Intelligent Human-Machine Systems and Cyberneticsheight, as it is shown in Figure 1. . A’B’C’D’ is the real terrain and ABCD is virtual terrain. H is the clearance height between two surfaces. Virtual terrain enables path planning in 2D surface instead of 3D grid and can reduce search spaceby an order of magnitude.Figure 1. virtual terrain above real terrainB. Path planning algorithmA* algorithm [8]-[9] is a well-known graph search procedure utilizing a heuristic function to guide its search. Given a consistent admissible condition, A* search is guaranteed to yield an optimal path [8]. At the core of the algorithm is a list containing all of the current states. At each iterative step, the algorithm expands and evaluates the adjacent states of all current states and decides whether any of them should be added to the list (if not in the list) or updated (if already in the list) based on the cost function:()()()f n g n h n =+ (1)where f(n) is the total cost at the current vertex, g(n)denotes the actual cost from the start point to the current point n , and h(n) refers to the pre-estimated cost from the current point n to the destination point. For applications that entail searching on a map, the heuristic function h(n) is assigned with Euclidean distance.UAV path planning is a multi criteria search problem. The actual cost g(n) in this study is composed by three items: distance cost D(n), climb cost C(n) and threat cost T(n). So g(n) can be described as follows:()()()()g n D n C n T n =++ (2) Usually, the three components of g(n) are not treatedequally during UAV task. One or two is preferred to the others. We can achieve this by introducing a weighting factor w in (2).123()()()()g n w D n w C n w T n =++ (3) w i is weighting factor and 11mi i w ==∑. For example, ifthreat cost T(n) is for greater concern in particular task, the value of w i should be increased respectively.C. The improvement of path planning strategyVirtual terrain in part A enhanced computational efficiency by transforming 3D path planning space into 2D search plane. The further improvement can be achieved by applying a new developed strategy. The path planner expands and evaluates next waypoint in virtual terrain by this developed strategy is shown in Fig. 2, 3. This planning strategy employs various searching steps by defining a searching window which can represent the information acquired by UAV on board sensors. It enables different searching steps to meet different threat cost distribution. After searching window is set, UAV performance limits is imposed in searching window based on virtual terrain. Here the UAV performance limits include turning radius, heading and vertical angle. In Fig. 3, the point P(x, y, z) is current state, and the arrow represents current speed vector. The gray points show available states which UAV can reach innext step under the limits imposed by UAV performance.Figure 2.Searching windowFigure 3. Available searching states at P(x, y, z)IV. SIMULATIONSimulation is implemented based on section II andsection III. In this simulation, terrain data is read from USGS1 degree DEM. The DEM has 3 arc-second interval alonglongitude and latitude respectively. Also five radar threats are represented according radar equation in simulation environment. Here clearance height h is set 200 to definevirtual terrain. UAV maximal heading angle and vertical angle is 20。
管理学常用英文单词
Aaccess discrimination 进入歧视action research 动作研究adjourning 解散adhocracy 特别结构administrative principle 管理原则artifacts 人工环境artificial intelligence 人工智能工巧匠avoiding learning 规避性学习ambidextrous approach 双管齐下策略Bbalance sheet 资产负债表BCG matrix 波士顿咨询集团矩阵bona fide occupation qualifications 善意职业资格审查bounded rationality 有限理性bureaucracy 官僚机构benchmarking 标杆瞄准bounded rationality perspective 有限理性方法boundary—spanning roles 跨超边界作用CComputer—aided design and computer—automated manufacturing(CAD/CAM)计算机辅助设计与计算机自动生产confrontation 对话consortia 企业联合change agent 变革促进者chaos theory 混沌理论charismatic leaders 魅力型领导者charity principle 博爱原则coercive power 强制权cohesiveness 凝聚力collaborative management 合作型管理comparable worth 可比较价值competitive benchmarking 竞争性基准confrontation meeting 碰头会constancy of purpose 永久性目标contingency approach 权变理论corporate social performance 公司社会表现corporate social responsibility公司社会责任corporate social responsiveness公司社会反应critical incident 关键事件current assets 流动资产current liabilities 流动负债culture strength 文化强度creative department 创造性部门craft technology 技艺性技术contextual dimension 关联性维度continuous process production 连续加工生产collectivity stage 集体化阶段clan control 小团体控制clan culture 小团体文化coalition 联合团体collaborative 协作网络centrality 集中性centraliazation 集权化charismatic authority 竭尽忠诚的权力Ddecentralization 分权democracy management 民主管理departmentalization 部门化differential rate system 差别报酬系统dialectical inquiry methods 辩证探求法division of labor 劳动分工downward mobility 降职流动dynamic engagement 动态融合dynamic network 动态网络domain 领域direct interlock 直接交叉divisional form 事业部模式differentiation strategy 差别化战略decision premise 决策前提dual—core approach 二元核心模式Eelectronic data—processing(EDP)电子数据处理employee—oriented style 员工导向型风格empowerment 授权encoding 解码end—user computing 终端用户计算系统entrepreneurship 企业家精神equity 净资产equity theory 公平理论espoused value 信仰价值ethnocentric manager 种族主义的管理者expectancy theory 期望理论expense budget 支出预算expense center 费用中心external audit 外部审计external stakeholders 外部利益相关者extrinsic rewards 外部奖励ethic ombudsperson 伦理巡视官external adaption 外部适应性elaboration stage 精细阶段entrepreneurial stage 创业阶段escalating commitment 顽固认同Ffamily group 家庭集团financial statement 财务报表flat hierarchies 扁平型结构flexible budget 弹性预算force—field theory 场力理论formal authority 合法权力formal systematic appraisal 正式的系统评估franchise 特许经营权formalization stage 规范化阶段functional grouping 职能组合formal channel of communication 正式沟通渠道Ggame theory 博弈论general financial condition 一般财务状况geocentric manager 全球化管理者general manager 总经理globalization 全球化gossip chain 传言链grapevine 传言网global strategic partnership 全球战略伙伴关系general environment 一般环境generalist 全面战略geographic grouping 区域组合global company 全球公司global geographic structure 全球区域结构HHawthorne effect 霍桑效应heuristic principles 启发性原理hierarchy 科层制度hiring specification 招聘细则horizontal linkage model 横向联系模型hybrid structure 混合结构high tech 高接触high—velocity environments 高倍速环境Iimpoverished management 放任式管理Iincome statement 损益表information transformation 信息转换infrastructure 基础设施integrative process 整合过程intelligent enterprises 智力企业internal audit 内部审计internal stakeholder 内部相关者internship 实习intrapreneurship 内部企业家精神intrinsic reward 内在报酬inventory 库存,存货internal integration 内部整合interorganization relationship 组织间的关系intergroup conflict 团体间冲突interlocking directorate 交叉董事会institutional perspective 机构的观点intuitive decision making 直觉决策idea champion 构思倡导者incremental change 渐进式变革informal organizational structure 非正式组织结构informal performance appraisal 非正式业绩评价Jjob description 职务描述job design 职务设计job enlargement 职务扩大化job enrichment 职务丰富化job rotation 职务轮换job specialization 职务专业化Kkey performance areas 关键业务区key result areas 关键绩效区Llabor productivity index 劳动生产力指数laissez management 自由化管理large batch production 大批量生产lateral communication 横向沟通leadership style 领导风格least preferred co—worker(LPC)最不喜欢的同事legitimate power 合法权力liability 负债liaison 联络者line authority 直线职权liquidity 流动性liaison role 联络员角色long—linked technology 纵向关联技术losses from conflict 冲突带来的损失low—cost leadership 低成本领先Mmanagement by objective 目标管理Managerial Grid 管理方格matrix bosses 矩阵主管management champion 管理倡导者materials—requirements planning(MRP)物料需求计划Mslow,s hierarchy of needs 马斯洛需求层次论marketing argument 管理文化多元化营销观multiculturalism 文化多元主义multidivisional firm 多部门公司moral rules 道德准则management by walking around(MBWA)走动式管理matrix structure 矩阵结构multinational enterprise(MNE)跨国公司moral relativism 道德相对主义mechanistic system 机械式组织middle—of-the—road management 中庸式管理meso theory 常态理论multidomestic strategy 多国化战略mediating technology 调停技术Nnaïve relativism 朴素相对主义need—achievement 成就需要norming 规范化norms 规范nonprogrammed decisions 非程序化决策nonsubstitutability 非替代性nonroutine technology 非例行技术niche 领地Ooff—the—job training 脱产培训on—the—job training 在职培训operational budget 运营预算order backlog 订单储备organic system 有机系统organizational development(OD)组织发展orientation 定位outcome interdependence 结果的相互依赖性outplacement services 外延服务organization ecosystem 组织生态系统Pparadox of authority 权威的矛盾paradox of creativity 创造力的矛盾paradox of disclosure 开放的矛盾paradox of identify 身份的矛盾paradox of individuality 个性的矛盾paradox of regression 回归的矛盾partial productivity 部分生产率participative management 参与式管理path—goal model 路径目标模型peer recruiter 同级招聘political action committees(PACs)政治活动委员会polycentric manager 多中心管理者portfolio framework 业务组合框架portfolio investment 资产组合投资positive reinforcement 正强化production flexibility 生产柔性profitability 收益率programmed decisions 程序化决策psychoanalytic view 精神分析法paradigm 范式personal ratios 人员比例pooled dependence 集合性依存professional bureaucracy 专业官僚机构problem identification 问题识别problemistic search 问题搜寻population ecology model 种群生态模型Qquality 质量quality circle 质量圈question mark 问题类市场quid pro quo 交换物Rrational model of decision making 理性决策模式realistic job preview(RJP)实际工作预览reciprocal interdependence 相互依存性resource dependence 资源依赖理论routine technology 例行技术retention 保留rational approach 理性方法rational model 理性模型rational—legal authority 理性—合法权威Ssemivariable cost 准可变成本sense of potency 力量感sensitivity training 敏感性训练sexual harassment 性骚扰short-run capacity changes 短期生产能力变化single-strand chain 单向传言链situational approach 情境方法situational force 情境力量situational leadership theory 情境领导理论sliding-scale budget 移动规模预算small-batch production 小规模生产sociotechnical approaches 社会科技方法span of management 管理幅度staff authority 参谋职权standing plan 长设计划step budget 分步预算stewardship principle 管家原则stimulus 刺激storming 调整阶段strategic management 战略管理strategic partnering 战略伙伴关系strategy formulation 战略制定strategy implementation 战略实施strategic control 战略控制strategic contingencies 战略权变satisficing 满意度subsystems 子系统subunits 子单位synergy 协同system boundary 系统边界structure dimension 结构性维度sequential interdependence 序列性依存self—directed team 自我管理型团队specialist 专门战略strategy and structure changes 战略与结构变革symptoms of structural deficiency 结构无效的特征Ttall hierarchies 高长型科层结构task force or project team 任务小组或项目团队task independence 任务的内部依赖性task management 任务型管理task-oriented style 任务导向型管理风格total productivity 全部生产率Total Quality Management 全面质量管理training positions 挂职培训training program 培训程序transactional leaders 交易型领导transformational leaders 变革型领导treatment discrimination 歧视待遇two-factory theory 双因素理论two—boss employees 双重主管员工technical or product champion 技术或产品的倡导者Uunfreezing 解冻unit production 单位产品Vvariation 变种子variety 变量valence 效价variable costs 可变成本vertical communication 纵向沟通vertical integration 纵向一体化vestibule training 仿真培训volume flexibility 产量的可伸缩性vertical linkage 纵向连接venture team 风险团队value based leadership 基于价值的领导Wwin—lose situation 输赢情境win-win situation 双赢情境workforce literacy 员工的读写能力work in progress 在制品work flow redesign 工作流程再造成work flow automation 工作流程自动化whistle blowing 揭发Zzero-sum 零—-—和zone of indifference(area of acceptance)无差异区域(可接受区域)。
粒子群优化算法详细易懂-很多例子
算法流程
1. Initial:
初始化粒子群体(群体规模为n),包括随机位置fitness function ,评价每个粒子的适应度。
3. Find the Pbest:
对每个粒子,将其当前适应值与其个体历史最佳位置(pbest)对应 的适应值做比较,如果当前的适应值更高,则将用当前位置更新历 史最佳位置pbest。
迅速丧失群体多样性, 易陷入局优而无法跳出.
粒子群算法的构成要素 -权重因子 权重因子:惯性因子 、学习因子
vikd =wvikd-1
c1r1( pbestid
xk 1 id
)
c2
r2
(
gbestd
xk 1 id
)
粒子的速度更新主要由三部分组成:
前次迭代中自身的速度 vk
学习因子
自我认知部分
c1r1( pbestid
xk 1 xk vk 1
第九讲daili
粒子群算法
33
初始位置:
初始速度:
群体历史最优解:pg
x(0) 1
个体历史最优解:pi xi0 , (i 1, 2, 3, 4, 5)
更新速度,得:
60
60
60
60
vk1 vk 2 ( pk xk ) 2( pg xk ),
第九讲daili
Vi =Vi1,Vi2,...,Vid
Xi =Xi1,Xi2,...,Xid
Study Factor 區域
最佳解
運動向量
全域 最佳解
pg
慣性向量
Vik =Vik1+C1*r1*(Pbesti -Xik1)+C2*r2*(gbest -Xik1)
基于粗糙集的决策树雷达辐射源识别方法
De ii n Tr e Ra a cso e d r Em i e c g ii n Ba e n Ro g e t r Re o n to s d o u h S t t
HU Ke, ANG ng—y a பைடு நூலகம்W Ho un
术 与数据库 比较查询 , 灰关联分析 和证 据理论 , 网络 , 神经 数
1 引言
雷达辐射源识别既是雷达侦察 中重要 内容 , 为战场态 又
据融合法等¨ 。统计模式识别的方法可以定量比较, ] 便于计
T ed cso e a ee tbih db sdo h eaieq a tt fi o aina drcg i a a mi e i as h eiint ec nb sa l e a e nterlt u i o r t eo z rd re t rsg l . r s v n y f n m o n n e t n T eme o nrd c d i hsp p ri rv stet dt nld cso reai mei n i l e h e iinte h t d ito u e ti a e mp oe h r i o a e iin t t t a d smpi ste d cso re h n a i e rh c i f srcu e h esmuainrsl ei eefcie e sa drla it ftemeh d tgv sab ssfrei n t g tu tr.T i lt ut vr yt fet n s n ibl o to .I ie a i o l o e s f h v e i y h miai n
t e i a to n i n n n tr r n e o s le s c r b e ,a n w meh d i p o o e sa l h d cso h mp c fe v r me ta d i e f e c .T ov u h p o lms e to s r p s d t e t b i e iin o n e o s t e t e o ie r d mi e i as i h s p p r r o r c g z a a e t r s e n r t n g l n t i a e .Ra a mi e i as a e p o e s d b u h S t r t A tr d e t r sg l rc s e y Ro g e sf . fe r t n r i s d s r t a in a d a t b t e u t n.i o tn e a d rl t e q a t y o fr a in o a h at b t r b mn d ic ei t t i u e r d c i z o n r o mp r c n eai u i fi o a v n t n m t fec t ueaeo t e . o i r
近岸海域多目标检测与跟踪技术研究
近岸海域多目标检测与跟踪技术研究随着人类社会的不断发展,航运业有了巨大的进展,航运业的前进推动了人类对于海洋更深入的了解,而在航运业中,对于海洋中各种各样的目标进行检测和跟踪,是其中非常重要的一环。
近年来,近岸海域对于各方面的要求更加严格,因此针对近岸海域中的多个目标,进行精细化的检测和跟踪技术研究,已经成为了当前航运业中的研究热点问题。
一、近岸海域检测技术1. 目标检测原理现代目标检测技术主要分为两种方法:一种是基于特征寻找的方法,一种是基于分类器的方法。
基于特征寻找的方法主要是将目标进行特征提取,通过特征组合得到目标的区域信息,进而辨别是否是目标。
而基于分类器的方法,则是利用机器学习方法,将大量的目标样本进行训练,从而从样本中学习到了目标特征的内在规律。
2. 海洋目标的检测海洋中的目标种类繁多,且目标环境变化多样化。
在海洋环境中进行目标检测时,应根据不同的环境与所需探测目标选择不同的探测手段,如红外、激光、雷达等。
同时,通过对目标的特征进行提取和分析,辨别目标是否是所需要的。
二、船舶多目标跟踪技术船舶多目标跟踪技术是近年来航运业中的研究热点问题,跟踪目标的数量是非常庞大的,因此此技术必须具备可扩展性、可靠性和数据全面性。
1. 多目标跟踪算法多目标跟踪算法主要由四部分组成:检测、匹配、跟踪和预测四个过程。
具体而言,就是从检测出的目标中选取可靠的跟踪目标,通过目标之间的相互距离计算和目标运动方向的预测等方式,实现目标的跟踪。
2. 基于深度学习的多目标跟踪算法近年来,随着深度学习技术的发展,基于深度学习的多目标跟踪算法逐渐成为近岸海域目标跟踪的研究热点。
其中采用的技术包括卷积神经网络、循环神经网络和自注意力等,极大地提高了目标检测和跟踪的准确性和可靠性。
三、结论航运业中的近岸海域多目标检测与跟踪技术在海洋运输、渔业、海洋环境保护等方面有着极为重要的作用,在未来的航运业发展中具有广泛的应用前景。
而伴随着技术的不断更新迭代,我们相信在今后的研究中,以上技术将不断得到优化和完善,取得更为优异的成果。
多约束复杂环境下UAV航迹规划策略自学习方法
第47卷第5期Vol.47No.5计算机工程Computer Engineering2021年5月May2021多约束复杂环境下UAV航迹规划策略自学习方法邱月,郑柏通,蔡超(华中科技大学人工智能与自动化学院多谱信息处理技术国家级重点实验室,武汉430074)摘要:在多约束复杂环境下,多数无人飞行器(UAV)航迹规划方法无法从历史经验中获得先验知识,导致对多变的环境适应性较差。
提出一种基于深度强化学习的航迹规划策略自学习方法,利用飞行约束条件设计UAV的状态及动作模式,从搜索宽度和深度2个方面降低航迹规划搜索规模,基于航迹优化目标设计奖惩函数,利用由卷积神经网络引导的蒙特卡洛树搜索(MCTS)算法学习得到航迹规划策略。
仿真结果表明,该方法自学习得到的航迹规划策略具有泛化能力,相对未迭代训练的网络,该策略仅需17%的NN-MCTS仿真次数就可引导UAV在未知飞行环境中满足约束条件并安全无碰撞地到达目的地。
关键词:深度强化学习;蒙特卡洛树搜索;航迹规划策略;策略自学习;多约束;复杂环境开放科学(资源服务)标志码(OSID):中文引用格式:邱月,郑柏通,蔡超.多约束复杂环境下UAV航迹规划策略自学习方法[J].计算机工程,2021,47(5):44-51.英文引用格式:QIU Yue,ZHENG Baitong,CAI Chao.Self-learning method of UAV track planning strategy in complex environment with multiple constraints[J].Computer Engineering,2021,47(5):44-51.Self-Learning Method of UAV Track Planning Strategy inComplex Environment with Multiple ConstraintsQIU Yue,ZHENG Baitong,CAI Chao(National Key Laboratory for Multi-Spectral Information Processing Technologies,School of Artificial Intelligence and Automation,Huazhong University of Science and Technology,Wuhan430074,China)【Abstract】In a complex multi-constrained environment,the Unmanned Aerial Vehicle(UAV)track planning methods generally fail to obtain priori knowledge from historical experience,resulting in poor adaptability to a variable environment.To address the problem,this paper proposes a self-learning method for track planning strategy based on deep reinforcement learning.Based on the UAV flight constraints,the design of the UAV state and action modes is optimized to reduce the width and depth of track planning search.The reward and punishment function is designed based on the track optimization objective.Then,a Monte Carlo Tree Search(MCTS)algorithm guided by a convolutional neural network is used to learn the track planning strategy.Simulation results show that the track planning strategy obtained by the proposed self-learning method has generalization pared with the networks without iterative training,the strategy obtained by this method requires only17%of the number of NN-MCTS simulation times to guide the UAV to reach the destination safely without collision and satisfy the constraints in an unknown environment.【Key words】deep reinforcement learning;Monte Carlo Tree Search(MCTS);track planning strategy;strategy self-learning;multiple constraints;complex environmentDOI:10.19678/j.issn.1000-3428.00574920概述战场环境中的无人飞行器(Unmanned Aerial Vehicle,UAV)航迹规划任务需要考虑多方面的因素,如无人飞行器的性能、地形、威胁、导航与制导方法等,其目的是在低风险情况下以更低的能耗得到最优航迹。
机器人自主导航与定位技术测试考核试卷
3.请详细说明视觉SLAM中的特征提取、特征匹配和运动估计三个关键步骤的作用及其相互关系。()
4.在机器人路径规划中,解释A*算法和RRT(Rapidly-exploring Random Trees)算法的基本思想,并比较它们的优缺点。()
三、填空题(本题共10小题,每小题2分,共20分,请将正确答案填到题目空白处)
1.在机器人自主导航中,______是一种通过传感器数据来同时完成地图构建和定位的技术。()
2.机器人导航中的______算法是一种基于启发式的搜索算法,用于寻找从起点到目标点的最优路径。()
3.在视觉SLAM中,______是一种常用的前端处理技术,用于提取图像中的特征点。()
8. AB
9. ABC
10. ABCD
11. AB
12. ABCD
13. ABC
14. ABC
15. ABCD
16. ABC
17. ABC
18. ABCD
19. ABC
20. ABC
三、填空题
1. SLAM
2. A*算法
3.特征提取
4.避障算法
5.粒子滤波器
6.信标定位
7. IMU(惯性测量单元)
8.路径跟踪控制
A.速度控制
B.方向控制
C.轨迹跟踪
D.动态避障
19.以下哪些方法可以用于机器人的地形感知?()
A.激光雷达
B.摄像头
C.触觉传感器
D.红外传感器
20.以下哪些技术可以用于提高机器人定位的实时性?()
A.并行计算
B.硬件加速
C.算法优化
python随机森林贝叶斯调参
在Python中,随机森林和贝叶斯模型都是常用的机器学习模型,调参的过程对于模型的性能至关重要。
以下是如何使用Python进行随机森林和贝叶斯模型的参数调整的基本步骤。
随机森林参数调整:随机森林模型的参数包括
n_estimators(树的数量)、max_depth(树的最大深度)、min_samples_split(分割内部节点所需的最小样本数)等。
你可以使用Python的sklearn.model_selection模块中的GridSearchCV或RandomizedSearchCV函数来寻找最佳参数。
贝叶斯参数调整:贝叶斯模型的参数通常包括先验分布的参数和后验分布的参数。
这些参数可以通过交叉验证、网格搜索或者贝叶斯优化等方式进行调参。
基于深度学习的遥感影像松材线虫病树提取
Computer Science and Application 计算机科学与应用, 2021, 11(5), 1419-1426Published Online May 2021 in Hans. /journal/csahttps:///10.12677/csa.2021.115145基于深度学习的遥感影像松材线虫病树提取吴思琪长江大学地球科学学院,湖北武汉收稿日期:2021年4月24日;录用日期:2021年5月19日;发布日期:2021年5月26日摘要松材线虫病对我国松树类物种具有极大的伤害,需要对病虫区域进行准确高效的确定以提早防治。
这种病在传播方式上具有跳跃特性。
它具有传播途径多种多样、发病部位较隐蔽难以发现、病情潜伏时间长、发病速度迅速、治理不方便等特点,严重时会导致大量松树病死,导致环境和森林景观的严重损坏,并可能导致严重的经济和环境损失。
本论文通过使用深度学习目标检测中的RetinaNet方法,将无人机拍摄的影像作为训练样本,充分利用深度学习目标检测方法的优势,将其对比SSD和YOLO v3方法的识别效果,实现病虫树木的高效判别。
对松材线虫病树区域展开定位研究,在节省人工成本的同时能迅速防止病虫害对松树的疾病扩散,为清除和防治病害区域扩散至更大范围提供有效帮助。
关键词松材线虫病,深度学习,目标检测Remote Sensing Image Extraction of PineWood Nematode Disease Tree Based onDeep LearningSiqi WuSchool of Geosciences, Yangtze University, Wuhan HubeiReceived: Apr. 24th, 2021; accepted: May 19th, 2021; published: May 26th, 2021AbstractPine wood nematode disease is very harmful to pine species in China, so it is necessary to deter-mine the pest area accurately and efficiently in order to prevent it in advance. The disease has a吴思琪leaping characteristic in its mode of transmission. It has the characteristics of diversity, strong concealment of transmission route, long incubation period of disease, fast transmission speed and inconvenient management. When it is serious, a large number of pine trees will die, causing se-rious damage to environment and forest landscape, and may lead to serious economic and envi-ronmental damage. In this paper, through the use of RetinaNet method in deep learning target de-tection, the unmanned aerial vehicle images are taken as training samples, making full use of the advantages of deep learning target detection method, the recognition effect of SSD and Yolo V3 method is compared, and the efficient identification of pest trees is realized. The research on the location of pine wood nematode disease tree area can save the labor cost and prevent the spread of diseases and insect pests on pine trees quickly, which can provide effective help for clearing and controlling the spread of disease area to a wider range.KeywordsPine Wood Nematode Disease, Deep Learning, Target Detection Array Copyright © 2021 by author(s) and Hans Publishers Inc.This work is licensed under the Creative Commons Attribution International License (CC BY 4.0)./licenses/by/4.0/1. 引言松材线虫是松树的毁灭性病害,在1982年被人们发现时便迅速蔓延,对大片的松林构成了毁灭性威胁。
基于猎人猎物优化算法的函数寻优算法
基于猎人猎物优化算法的函数寻优算法猎人猎物优化算法(Hunting Search Algorithm,HSA)是一种基于群体智能算法的函数寻优方法。
它模拟了猎人猎物的行为,通过迭代更新猎人的位置和速度,来最优解。
本文将介绍HSA的原理、流程以及优缺点,并分析其在函数寻优问题中的应用。
HSA的原理是基于猎物生态系统的运行机制。
在猎物生态系统中,猎人通过追踪猎物的位置来狩猎,而猎物则通过自身的生存能力逃离猎人的追踪。
猎人追踪猎物的过程是一个迭代的过程,每个猎人根据自己的速度和位置信息来调整自己的行动。
HSA的流程大致分为以下几个步骤:1.初始化猎物和猎人的位置和速度,设置适应度函数。
2.根据适应度函数计算每个猎人的适应度值。
3.根据猎物和猎人的位置和速度更新公式,更新每个猎人的位置和速度。
4.计算更新后每个猎人的适应度值。
5.若满足停止条件,则输出最优解;否则回到步骤3HSA的优点在于多样性和自适应性。
猎人与猎物在过程中保持一定距离,保证过程的多样性,可以更好地避免局部最优解。
同时,HSA根据猎人的速度和适应度值来调整速度和范围,提高了的自适应性。
HSA在函数寻优问题中的应用非常广泛。
例如,在经济学中,可以利用HSA来优化投资组合的分配;在机器学习中,可以用HSA来优化神经网络的参数;在工程领域中,可以利用HSA来优化复杂系统的设计等等。
HSA不仅可以用于连续型函数,也可以用于离散型函数。
只需要将适应度函数适应到不同类型的问题上即可。
然而,HSA也存在一些缺点。
首先,HSA的参数设置对算法的性能影响较大,需要经过一定的调试和优化。
其次,HSA的收敛速度相对较慢,特别是在解空间维度较高的情况下。
最后,HSA对目标函数的光滑程度要求较高,不适用于非光滑目标函数的优化问题。
总之,猎人猎物优化算法是一种基于群体智能的函数寻优方法,在解决实际问题中具有一定的优势。
但是,在实际应用中需要仔细调整参数,考虑问题的特点,以达到更好的优化效果。
直觉模糊集人工鱼群搜索的人脑切片图像分解
直觉模糊集人工鱼群搜索的人脑切片图像分解
王睿
【期刊名称】《科技通报》
【年(卷),期】2014(30)10
【摘要】精密的大脑切片图像的微细分解处理是进行图像特征分析的基础,传统的人工鱼群算法对图像微细区域进行分解时,融入局部信息导致图像噪声增强,难以有
效提取图像的数值特征信息,分解效果不好。
提出一种基于直觉模糊集的人工鱼群
搜索算法,根据模糊集理论,进行直觉模糊集构造。
在人工鱼群寻优搜索到的引领粒
子附近自组织搜索更优特征解,利用直觉模糊集的均匀遍历特性全局搜索微细特征,
不需要人为的干预,更适合处理一些模糊的和不确定的问题,适用于图像的微细分解。
仿真实验得出该算法在处理含强噪声的脑切片图像时,微细分解精度很好,精度和计
算复杂度等方面较传统方法有优越性。
【总页数】3页(P148-150)
【关键词】人工鱼群;图像分割;模糊集;微细特征
【作者】王睿
【作者单位】四川职业技术学院计算机科学系
【正文语种】中文
【中图分类】TP391.41
【相关文献】
1.直觉模糊集的一对分解定理 [J], 周炜;雷英杰
2.基于人工鱼群算法的信号MP稀疏分解在图像压缩中的应用 [J], 刘昊;王玲
3.直觉模糊集和区间值模糊集的截集、分解定理和表现定理 [J], 袁学海; 李洪兴; 孙凯彪
4.基于复合分解与直觉模糊集的红外与可见光图像融合方法 [J], 朱亚辉;高逦
5.双枝模糊集与直觉模糊集的关系(Ⅲ)——分解定理 [J], 李选海;李明海;刘锋因版权原因,仅展示原文概要,查看原文内容请购买。
基于分形维度的林业遥感图像树种分类识别
基于分形维度的林业遥感图像树种分类识别
周晨;刘磊
【期刊名称】《计算机仿真》
【年(卷),期】2022(39)2
【摘要】传统的树种分类识别方法未进行最大池化操作,导致树种分类识别精度差。
现引入分形维度进行林业遥感图像树种分类识别。
通过ROI区域截取获取遥感树
种图像,利用直方图均衡化方法进行原始图像预处理,以便获得高质量与清晰度的林
业遥感图像;通过分形维度理论分析提取的林业遥感图像纹理特征,完成卷积神经网
络模型的优化构建;将林业遥感图像纹理特征输入卷积层,经卷积层的卷积操作并计
算特征数据,池化池通过最大池化操作卷积层输出的数据;通过Relu激活函数对林
业遥感图像树种纹理特征进行深度分析,利用Softmax分类器实现树种分类识别。
实验结果表明,上述方法预处理后的遥感图像质量高,且林业遥感图像树种分类识别
的效率高,分类识别的时间低至35.7ms,分类识别的准确率高达95.62%。
【总页数】5页(P212-216)
【作者】周晨;刘磊
【作者单位】西安科技大学测绘科学与技术学院;电子科技大学成都学院
【正文语种】中文
【中图分类】TP391
【相关文献】
1.基于特征的模糊神经网络遥感图像目标分类识别
2.基于高阶神经网络的遥感图像分类识别研究
3.基于光学遥感图像的目标检测与分类识别方法
4.基于光学遥感图像的目标检测与分类识别方法
5.基于高光谱遥感图像的树种(树种组)分类
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Heuristic Search in Bounded-depth Trees:Best-Leaf-First SearchWheeler Rumlruml@Technical Report TR-01-02Harvard UniversityJanuary30,2002AbstractMany combinatorial optimization and constraint satisfaction prob-lems can be formulated as a search for the best leaf in a tree of bounded depth.When exhaustive enumeration is infeasible,a rational strategy visits leaves in increasing order of predicted cost.Previous system-atic algorithms for this setting follow a predetermined search order, making strong implicit assumptions about predicted cost and using problem-specific information inefficiently.We introduce a framework, best-leaf-first search(BLFS),that employs an explicit model of leaf cost.BLFS is complete and visits leaves in an order that efficiently approximates increasing predicted cost.Different algorithms can be derived by incorporating different sources of information into the cost model.We show how previous algorithms are special cases of BLFS. We also demonstrate how BLFS can derive a problem-specific model during the search itself.Empirical results on latin square completion, binary CSPs,and number partitioning problems suggest that,even with simple cost models,BLFS yields competitive or superior perfor-mance and is more robust than previous methods.BLFS can be seen as a model-based extension of iterative-deepening A*,and thus it uni-fies search for combinatorial optimization and constraint satisfaction with traditional AI heuristic search for shortest-path problems.11IntroductionIn a combinatorial optimization problem,one must choose one of a discrete number of possible values for each problem variable in such a way that the problem-specific objective function is minimized.Often,this task is formulated as a tree search in which one selects a variable at each node and branches on its possible values.The goal then is tofind the leaf with the lowest cost.Because these trees grow exponentially with problem size, complete enumeration of the leaves is often infeasible,and one attempts to visit the best leaves one can in the time available.One can think of constraint satisfaction problems in a similar way,with the goal being tofind a leaf that violates zero constraints.Because an optimal leaf is recognizable in this case,visiting one early in the search can save an enormous amount of time.Several different tree search procedures have been proposed for this set-ting.Depth-first search has the advantage of minimal overhead,generating each internal node in the tree no more than once.Often,a heuristic scoring function is used to rank the children of a node,and the search visits the preferred childfirst.If always choosing the preferred child does not yield an optimal solution,depth-first search revisits the decisions lowest in the treefirst.This may be a poor strategy if the node ordering function can be inaccurate at the top of the tree.In limited discrepancy search(Harvey and Ginsberg,1995;Korf,1996),decisions at all levels of the tree are revisited quickly.A decision at which the top-ranked child node is not selected is called a discrepancy.Limited discrepancy search explores all paths with k discrepancies before any with k+1discrepancies.Other algorithms,such as depth-bounded discrepancy search(Walsh,1997)and iterative broadening (Ginsberg and Harvey,1992),use still different search orders.Each of these algorithms can be viewed as making strong assumptions regarding the expected costs of different leaves(Ruml,2001a).Depth-first search,for instance,is a rational choice only if one assumes that the cost of every leaf whose path includes a discrepancy at the root is greater than the cost of the worst leaf that does not.Equivalently,the penalty for taking a discrepancy at a given depth is assumed to be greater than the cost of taking discrepancies at all deeper depths.Limited discrepancy search,on the other hand,assumes that discrepancies cost the same at all depths.Unfortunately, it is not always clear in advance which search order is best,and those faced with a new search problem are reduced to running many pilot experiments.In this paper,we explore the advantages of representing the search al-gorithm’s assumptions explicitly,in the form of a cost model.Because the2search uses an explicit model,it can depend on parameters which are esti-mated on-line from the search tree itself,rather than assumed beforehand.It is also easy to arrange for it to take advantage of information such as heuris-tic child scores.We introduce a framework,best-leaf-first search(BLFS),for systematic search using such a model.The central idea is to visit leaves in an order that approximates increasing predicted cost.This is achieved by visiting all leaves whose predicted cost falls within afixed bound,and then iteratively raising the bound.After outlining BLFS,we will see two instantiations of the framework. Thefirst,indecision search,uses a cost model that depends on the heuristic scores along the path to a leaf.We evaluate the algorithm’s performance on both latin square completion and random binary CSPs.The second instan-tiation uses a cost model whose parameters are learned from the leaf costs observed during the search.We evaluate this algorithm on two different for-mulations of the combinatorial optimization problem of number partitioning. The results from both algorithms suggest that BLFS provides competitive or superior performance and is more robust than existing algorithms.We will conclude by showing how BLFS is analogous to the iterative-deepening A* (IDA*)algorithm for shortest-path problems(Korf,1985).Their common framework of single-agent rationality provides a clean unification of search for combinatorial optimization and constraint satisfaction with the tradition of heuristic search in artificial intelligence for shortest-path problems.2Best-Leaf-First SearchThe basic structure of BLFS is a simple loop in which we carry out successive depth-first searches.Each search visits all leaves whose cost is predicted to fall within a cost bound.Because the predicted costs are generated by a known model,we can choose bounds that are expected to cause twice as many nodes to be visited as on the previous iteration.Pseudo-code is shown in Figure1.In order to implement this scheme,we must equip BLFS with a model of leaf costs that can support two different operations.Thefirst is to predict,given a search node,the lowest cost of any leaf below it.This function is used to guide the search within each iteration of BLFS,allowing the algorithm to avoid descending into any subtree that does not contain a leaf we wish to visit on this iteration(step9).The second operation the model must support is to predict,given a cost bound,the number of nodes that would be visited if that bound were used.This can be used to helpfind an appropriate cost bound for each iteration(step5).In the3BLFS-outer1.Visit a few leaves2.Nodes-desired←number of nodes visited so far3.Loop until time runs out:4.Double nodes-desired5.Estimate cost bound that visits nodes-desired nodes6.Visit all leaves within cost bound(see BLFS-inner)BLFS-inner(node,bound)7.If leaf(node),visit(node)8.else,for each child of node:9.If best-completion(child)≤bound10.BLFS-inner(child,bound)Figure1:Simplified pseudo-code for best-leaf-first search. experiments reported below,a simple bisection search was performed over possible cost bounds,searching for one that yielded,according to the model, approximately the desired number of nodes.Any prediction within5%of the desired value or greater by less than50%was deemed sufficient.The search was limited to10bisections.To guard against inaccurate predictions, an iteration was terminated after visiting three times the desired number of nodes.By approximately doubling the number of nodes visited on each itera-tion,BLFS limits its overhead in the worst-case situation in which the entire tree must be searched.In such a situation,depth-first search is optimal.If we assume that the full tree has n nodes,the worst case for BLFS is when its second-to-last iteration visits n−1nodes.In such a case,all previous iterations visit a combined total of roughly n nodes,and thus BLFS visits roughly3n nodes,only three times more than optimal.In practice,the main overhead in the algorithm has been cost bound estimation,which consumes up to40%of the search time for short runs in our prototype implementa-tion.This overhead can be nearly eliminated,however,by augmenting the bisection search with memory and interpolation.The basic BLFS framework is remarkably simple.In the remainder of this paper,we will demonstrate its power andflexibility by instantiating the framework using two different cost models.Thefirst model we will consider is a static one that is specified before the search begins.43BLFS with a Fixed Model:Indecision Search As mentioned earlier,heuristic child ranking is often used to guide tree search.Most such ranking functions actually return a numerical score for each child,although the precise semantics of this score varies.Thefirst cost model we will consider is based on these scores.We will assign each child a cost based on how much worse its score is than the score of the best child. If the child scores are s0,...,s b,child i has a cost of s i−s0.Furthermore, we will assume that the cost of a leaf is simply the maximum of the costs of the nodes along its path from the root.This is a generalization of iterative broadening,which assumes that the cost of a leaf reflects the maximum rank of any child along its path.Another way to think about this cost model is that the cost of a node reflects how decisively the heuristic score separated it from the best child.Paths involving nodes for which the heuristic was indecisive in its ranking will be explored earlier in the search than those involving nodes whose scores were much worse.For this reason,we can call this instantiation of BLFS indecision search.It is easy to support the operations needed for BLFS using this cost model.Because the preferred child is always free,the predicted cost of the best leaf below any node is just the maximum cost of any node encountered enroute to the node itself.To predict the number of nodes visited for a given cost bound,we assume independence and estimate the average expected branching factor at each level of the tree.This depends on the number of children at each level whose costs we expect to fall below the cost bound. Although we probably do not know all of the costs we will see,we will have seen many of them during the previous iteration of indecision search.Recall that each iteration explores a superset of the previous one,and that all of the child scores at each node of the previous search will have been computed in order to guide that search(step9).We will use these scores as samples to estimate the probability distribution over possible costs for each child rank at each level of the tree.In the experiments reported here,these estimated distributions were represented as histograms(see the appendix for details). The expected effective branching factor at each level,call it b k,can then be computed using the probability that each possible number of children is the5most we can afford,1which we write as p(max is i):p(max is i)=p(can afford i)×(1−p(can afford i+1))b k=max-num-children ki=1i×p(max is i)If a node at level k is a leaf with probability leaf-prob k,then the number of nodes at that level,nodes k,can be computed from the number of nodes at the previous level that aren’t leaves,times their fertility:nodes0=1nodes k=nodes k−1×(1−leaf-prob k−1)×b k−1The leaf-prob k parameters can be easily estimated during the previous it-eration.By summing the nodes k over the levels of the tree(and adding in the leaves generated at each level),we can estimate the number of nodes that will be visited for a given cost bound.Note that,although we estimate on-line the node costs we expect to observe in the tree,the underlying leaf cost model itself isfixed as exactly the maximum node cost in the path,and is not adjusted during search.The initial iteration of the algorithm(step1) visits all leaves of predicted cost zero.Other schemes in addition to iterative broadening can be viewed as ap-proximations to indecision search.The randomized restarting technique of Gomes,Selman,and Kautz(1998)and the GRASP methodology of Feo and Resende(1995)both randomly permute all children whose scores are within a specified distance from the preferred child,between iterations of search. These techniques depend on an equivalence parameter that must be tuned using pilot experiments,and restarting also depends on a time limit param-eter.Also,because they regard closely-scoring children as equivalent,these techniques throw away information that can be systematically exploited by indecision search.Experiments were also performed using a cost model that predicted the cost of a leaf to be the sum of the child costs along its path,rather than just the maximum.This model seemed to perform similarly,and is morecumbersome to manipulate,so we omit further discussion of it(see Ruml (forthcoming)for details).3.1EvaluationWe can use constraint satisfaction problems to evaluate indecision search,as they are commonly solved using a heuristic scoring function to rank children in increasing order of‘constrainingness.’We will examine two domains:latin square completion and random binary CSPs.3.1.1Latin SquaresA latin square is an n by n array in which each cell has one of n colors.Each row and column must contain each color exactly once.Gomes and Selman (1997)proposed the completion of partially-filled latin squares as a chal-lenging benchmark problem,noting that it provides both regular structure, due to the row and column constraints,and random elements,due to the preassigned cells.We used forward-checking,choosing variables to assign according to the most-constrained variable heuristic of Br´e laz(1979)and ranking values according to the logarithm of the promise heuristic of Geelen (1992).Following Meseguer and Walsh(1998),we used1,000latin squares, each with30%of the cells assigned,filtering out any unsatisfiable problems. We tested depth-first search(DFS),two version of Korf’s improved limited discrepancy search(ILDS),one taking discrepancies at the topfirst and the other taking them at the bottomfirst,depth-bounded discrepancy search (DDS),and indecision search.2The performance of the algorithms is shown in Figure2in terms of the fraction of problems solved within a given number of node generations. Small horizontal error bars mark95%confidence intervals around the means. Depth-first search was limited to10,000nodes per problem,hence its mean is a lower bound.From thefigure,we see that25%of the problems were solved by visiting a single leaf(the greedy solution).Depth-first search enumerates leaves very efficiently,but is notoriously brittle and becomes hopeless lost on many problems(Gomes et al.,2000).The discrepancy search algorithms immediately retreat to the root.Indecision searchfirst explores all ties, which may occur at intermediate levels of tree.As the searches progress, the algorithms biased toward discrepancies at the top seem to be paying aF r a c t i o n o f P r o b l e m s S o l v e d 0.80.60.40.2Log10(Nodes Generated) 3.93.63.33.02.7Indecision ILDS (bottom)ILDS (top)DDS DFSFigure 2:Distribution of search times when completing 21×21latin squares with 30%of the cells preassigned.price,as their progress comes in spurts.Indecision search makes efficient use of the heuristic score information,exhibiting a smooth performance profile,and it solves all the problems within 4,000nodes (note the logarithmic scale).Similar behavior was observed on smaller instances,although the advantage of indecision search over the discrepancy methods seemed to increase as problems grew larger.3.1.2Binary CSPsBinary CSPs have received much attention in the literature and were used by Meseguer and Walsh (1998)to evaluate depth-bounded discrepancy search and interleaved depth-first search.They tested on satisfiable problems of the n,m,p 1,p 2 type.These problems have n variables,each with m possible values.Exactly p 1n (n −1)/2of the possible pairs of variables are constrained and exactly p 2m 2of the possible value combinations are disallowed for each of those pairs.As p 2increases toward 0.36,the constraints become tighter and the problems become more difficult to solve,exposing differences in performance between the algorithms.We will use the same heuristics as employed above with latin squares.8CSP Class ILDS Indec.9,84026,98180,851973,43757,118418,829in Figure3.A tree of depth d and branching factor b requires db parameters, one for each edge at each level.This generalizes DFS,ILDS,and DDS.Because these edge costs will vary depending on the problem,we will estimate them during the search.In step1of BLFS,we will visit10random leaves.Each path forms a linear equation in the parameters of the model.If leaf i is the cost of the i th leaf visited,then three random paths might yield: L1+L2+R3=leaf1L1+R2+L3=leaf2R1+L2+L3=leaf3After visiting each leaf(in either step1or7),we will update the parame-ters using a simple on-line linear regression algorithm.(In the experiments reported below,the method of Murata et al.(1997)was used.It gave very slightly better results when learning from random paths than the methods discussed by Sutton(1992).)To help ensure that the current cost bound yields the predicted number of nodes,a static copy of the model is made at the start of each iteration to guide the search.To further aid learning, the costs estimated in the experiments below were further constrained at the start of each iteration to be increasing with child rank at each depth. (In other words,it was assumed that the underlying ranking function was helpful rather than deceptive.)This cost model also easily supports the operations required for BLFS. The cost of the best leaf in any subtree is just the sum of the edges traversed so far plus the sum of the costs of the cheapest options at each of the remaining levels.These optimal completions can be precomputed at the start of each iteration.To estimate the number of nodes that will be visited for a given bound,we just estimate the branching factor at each level,as for indecision search.We can consider the cost bound to be an allowance that is spent as we descend the tree.By estimating the distribution of allowance values expected at each level of the tree,we can estimate how many children whose best completion will be affordable at that level.(As in indecision search,these distributions are manipulated as histograms,as described in the appendix.)At the root,the allowance distribution is a spike at the given cost bound.The distribution of allowance at the next level is just the sum, over the possible children,of the portion of the current distribution that falls above the best completion cost for that child,translated toward zero by that cost.Each distribution in the sum is weighted by the proportion of the probability that survived the truncation.10L o g 10(D i f f e r e n c e )-4-5-6-7Nodes Generated 1,000,000800,000600,000400,000200,000DDS Probing ILDS BLFS DFSFigure 4:Greedy partitioning of 128numbers4.1EvaluationWe evaluated the algorithm on two different formulations of the combinato-rial optimization problem of number partitioning.The objective is to divide a given set of numbers into two disjoint groups such that the difference between the sums of the two groups is as small as possible.It has been used by many authors as a benchmark for search algorithms (Johnson et al.,1991;Korf,1996;Walsh,1997;Ruml,2001a).Following Ruml,we used instances with 12844-digit numbers or 25682-digits numbers.Arbitrary precision integer arithmetic was used in the implementation,and results were normalized as if the original numbers had been between 0and 1.The logarithm of the partition difference was used as the leaf cost.4.1.1Greedy Number PartitioningThe first formulation of partitioning as a search is a straightforward greedy encoding in which the numbers are sorted in descending order and then each decision places the largest remaining number in a partition,preferring the partition with the currently smaller sum.Figures 4and 5compare the11L o g 10(D i f f e r e n c e )-2-4-6-8Nodes Generated 2,000,0001,600,0001,200,000800,000400,000DDS ILDS Probing BLFS DFSFigure 5:Greedy partitioning of 256numbers12L o g 10(D i f f e r e n c e )-10.4-10.8-11.2-11.6-12.0Nodes Generated1,000,000800,000600,000400,000200,000DDS DFS BLFS ILDSFigure 6:CKK representation for partitioning 128numbersperformance of BLFS with DFS,ILDS,DDS,and the adaptive probing al-gorithm of Ruml (2001a),which guides search using a similar learned cost model but is stochastic and incomplete.Error bars in the figures indicate 95%confidence intervals around the mean.Although BLFS does not sur-pass DFS in this search space,it does seem to consistently track DFS as the problem size increases,unlike ILDS and DDS,whose solution quality actu-ally decreases on the larger problems.BLFS also does not seem to suffer in comparison to adaptive probing,even though it has a further guarantee of completeness.4.1.2CKK Number PartitioningA more sophisticated representation for number partitioning was suggested by Korf (1995),based on the heuristic of Karmarkar and Karp (1982).The essential idea is to postpone the assignment of numbers to particular parti-tions and merely constrain pairs of number to lie in either different bins or the same bin.Numbers are considered in decreasing order and constrained sets are reinserted in the list according to the remaining difference they rep-resent.Figure 6and 7compare the performance of BLFS with DFS,ILDS,13L o g 10(D i f f e r e n c e )-12.8-13.2-13.6-14.0Nodes Generated 2,000,0001,600,0001,200,000800,000400,000DDS DFS ILDS BLFSFigure 7:CKK representation for partitioning 256numbers14f(n)from user additiveg(n)learned from user updating boundcost,unlike with IDA*.This unification clarifies the common confusion that many newcomers to AI feel when they see the term‘heuristic search’applied to both shortest-path problems with an explicit h(n)and also to procedures like DFS with a node ordering function.BLFS makes it clear that a node ordering function is just a rough indicator of the cost of the best leaf in the subtree,and by adhering to this semantics,it approximates a rational search order.6Possible ExtensionsIt would be very interesting to explore other models besides those inves-tigated here.It should be straightforward to combine on-line learning of weights with the heuristic child scores used in indecision search.This would relax the assumption that heuristic scores are strictly comparable across levels.Multiple models could be trained simultaneously and the one with the lowest error on the previous iteration could be used to guide search.By constraining adjacent costs to be similar,fewer parmeters would be needed in the model,and it might be feasible to consider learning models for both value choice and variable choice(Ruml,2001b).BLFS currently does not take into account the uncertainty in its cost model or the possible benefits of visiting a leaf predicted to be poor.A drastically misestimated cost can cause the search to avoid the correspond-ing edge and fail to correct the estimate.One way to remedy this would be to use as a node evaluation the probability that the node leads to the optimal leaf.This could be computed from a child cost model by estimating variance and assuming normality,following Ruml(2001a).The cost bound on each iteration would become a probability bound.This seems similar to the methods proposed by Bedrax-Weiss(1999),although her algorithm was trained and scheduled off-line.Techniques for managing the trade-offbetween time and expected solu-tion improvement are orthogonal to this work,and could be applied on top of it.Mayer(1994)and Hansson(1998)have done preliminary work in this direction.7ConclusionsWe introduced best-leaf-first search(BLFS),a new framework for search-ing the bounded-depth trees that arise in combinatorial optimization and16constraint satisfaction problems.BLFS generalizes previous work,and rep-resents thefirst successful rational approach to search for this setting.Em-pirical results show that,even with simple cost models,BLFS performs well on a variety of synthetic benchmark problems,yielding results competitive with or superior to the best previous method for each problem.It retains completeness while adapting on-line to individual problem instances,and uses an explicit model of its assumptions.Perhaps most importantly,BLFS shows how search for combinatorial optimization and constraint satisfaction can be viewed from a perspective similar to that of traditional heuristic search for shortest-path problems,as the strategy of a rational agent trying to efficiently take advantage of heuristic information for problem-solving. 8AcknowledgmentsStuart Shieber and the Harvard AI Research Group gave numerous helpful suggestions and comments.This work was supported in part by NSF grants CDA-94-01024and IRI-9618848.9Appendix:Histogram ImplementationThe probability distributions described in the text are estimated on-line us-ing histograms.When adding samples to an empty histogram,individual data values are recorded until afixed size limit is reached(100in the ex-periments reported here).At this point,each value becomes the center of a bin which reaches halfway to its neighboring values.(Bins on the ends are symmetrical.)When additional samples are added,the weights of the appro-priate bins are increased.When the weight of a single bin exceeds twice the lowest weight of any adjacent pair of bins,the heavy bin is split into equal halves and the light pair is collapsed.Operations such as the addition of distributions are fairly straightforward but tedious to program.Four cases must be considered,as the two distributions involved may each consist of point-like values or bins.Considering histogram elements in a random order avoids biasing bin accuracy.Time complexity is bounded by the square of the histogram size limit.Source code will be made freely available at the author website.17ReferencesBedrax-Weiss,Tania.1999.Optimal Search Protocols.Ph.D.thesis,Uni-versity of Oregon,Eugene,August.Br´e laz,Daniel.1979.New methods to color the vertices of a -munications of the ACM,22(4):251–256,April.Feo,T.A.and M.G.C.Resende.1995.Greedy randomized adaptive search procedures.Journal of Global Optimization,6:109–133.Geelen,P.A.1992.Dual viewpoint heuristics for binary constraint satisfac-tion problems.In B.Neumann,editor,Proceedings of ECAI-92,pages 31–35.Ginsberg,Matthew L.and William D.Harvey.1992.Iterative broadening.Artificial Intelligence,55:367–383.Gomes,Carla P.and Bart Selman.1997.Problem structure in the presence of perturbations.In Proceedings of AAAI-97,pages221–226.Gomes,Carla P.,Bart Selman,Nuno Crato,and Henry Kautz.2000.Heavy-tailed phenomena in satisfiability and constraint satisfaction problems.Journal of Automated Reasoning,24:67–100.Gomes,Carla P.,Bart Selman,and Henry Kautz.1998.Boosting combina-torial search through randomization.In Proceedings of AAAI-98.Hansson,Othar.1998.Bayesian Problem-Solving Applied to Scheduling.Ph.D.thesis,University of California,Berkeley.Harvey,William D.and Matthew L.Ginsberg.1995.Limited discrepancy search.In Proceedings of IJCAI-95,pages607–613.Morgan Kaufmann.Johnson,David S.,Cecilia R.Aragon,Lyle A.McGeoch,and Catherine Schevon.1991.Optimization by simulated annealing:An experimental evaluation;Part II,graph coloring and number partitioning.Operations Research,39(3):378–406,May-June.Karmarkar,Narenda and Richard M.Karp.1982.The differencing method of set partitioning.Technical Report UCB/CSD82/113,Computer Sci-ence Division,University of California,Berkeley.Korf,Richard E.1985.Depth-first iterative-deepening:An optimal admis-sible tree search.Artificial Intelligence,27(1):97–109.18。