抽象代数课本讲义第一章第六节
抽象代数基础第一章1.6 群的同构与同态
证明:(1)易知HN是G的子群,又由于N是G的正规子群,自然有N也是HN的正规子群,因而有商群 。令
则f是一个群同态。易知f是满同态,又 ,由同态基本定理有 。
(2)令 ,若aN=bN,则 ,而 ,所以 ,即 ,因而g的定义是合理的,易见g是一个满同态且 ,所以有同态基本定理,
《 抽象代数基础 》教案
复习思考题、作业题:
课本P28 1、4、6、9、10
下次课预习要点
有限群
实施情况及教学效果分析
学院审核意见
学院负责人签字
年月日
教学内容:
对 若 则 ,于是
,因而 ,故 ,所以 是单射,从而 是双射,
又由于,对 有
所以 是群 到 的一个同构,因而 。
10、定理5设G是循环群,如果G的阶无限,则 ;如果G的阶为n,则 。
由同态基本定理,我们可以得到两个重要的同构
11、定理6设G是一个群,N是G的正规 和 是两个群,f是集合G到 的一个映射,如果对 都有
,则称f是群G到 的一个同态。
5、命题1 f是群G到 的一个同态,e和 分别是G和 的单位元,则
(1)
(2)对 有 。
6、命题2 f是群G到 的一个同态,则
(1)Ker(f)是群G的正规子群
(2)Im(f)是群 的子群。
7、定理2 f是群G到 的一个同态,则
(1)如果H是G的子群,则f(H)是 的子群
(2)如果 是 的子群,则 是G的子群;如果 是 的正规子群,则 也是G的正规子群。
8、定理3设f是群G到 的一个满同态,如果H是G的正规子群,则f(H)是 的正规子群。
9、定理4(群的同态基本定理)设f是群G到 的一个满同态,则
抽象代数——精选推荐
抽象代数⼀、课程⽬的与教学基本要求本课程是在学⽣已学习⼤学⼀年级“⼏何与代数”必修课的基础上,进⼀步学习群、环、域三个基本的抽象的代数结构。
要求学⽣牢固掌握关于这三种抽象的代数结构的基本事实、结果、例⼦。
对这三种代数结构在别的相关学科,如数论、物理学等的应⽤有⼀般了解。
⼆、课程内容第1章准备知识(Things Familiar and Less Familiar)10课时复习集合论、集合间映射及数学归纳法知识,通过学习集合间映射为继续学习群论打基础。
1、⼏个注记(A Few Preliminary Remarks)2、集论(Set Theory)3、映射(Mappings)4、A(S)(The Set of 1-1 Mappings of S onto Itself)5、整数(The Integers)6、数学归纳法(Mathematical Induction)7、复数(Complex Numbers)第2章群(Groups) 22课时建⽴关于群、⼦群、商群及直积的基本概念及基本性质;通过实例帮助建⽴抽象概念,掌握群同态定理及其应⽤;了解有限阿贝尔群的结构。
1、群的定义和例⼦(Definitions and Examples of Groups)2、⼀些简单注记(Some Simple Remarks)3、⼦群(Subgroups)4、拉格朗⽇定理(Lagrange’s Theorem)5、同态与正规⼦群(Homomorphisms and Normal Subgroups)6、商群(Factor Groups)7、同态定理(The Homomorphism Theorems)8、柯西定理(Cauchy’s Theorem)9、直积(Direct Products)10、有限阿贝尔群(Finite Abelian Groups) (选讲)11、共轭与西罗定理(Conjugacy and Sylow’s Theorem)(选讲)第3章对称群(The Symmetric Group) 8课时掌握对称群的结构定理,了解单群的概念及例⼦。
抽象代数高等数学教材
抽象代数高等数学教材抽象代数,作为数学的一个重要分支,研究的是代数结构的抽象概念及其性质。
它是现代数学的基石之一,也是高等数学中的一门重要课程。
本教材旨在全面而系统地介绍抽象代数的基本概念、理论和方法,帮助读者建立起对抽象代数的深入理解和应用能力。
第一章:群论1.1 群的定义与性质1.2 群的子群与商群1.3 幺半群与半群1.4 群同态与同构1.5 群的作用与置换群第二章:环论2.1 环的定义与性质2.2 整环与域2.3 环的同态与同构2.4 素理想与极大理想2.5 多项式环与唯一因子分解整环第三章:域论3.1 域的定义与性质3.2 代数扩域与超越扩域3.3 有限域与伽罗华理论3.4 不可约多项式与域的扩张第四章:线性代数4.1 线性空间的定义与性质4.2 线性变换与矩阵4.3 特征值与特征向量4.4 正交矩阵与对角化4.5 线性空间的直和与内积空间第五章:模论5.1 模的定义与性质5.2 子模与商模5.3 生成元与基本定理5.4 非交换环上的模5.5 自由模与有限生成模第六章:域扩张与代数闭包6.1 域扩张的概念与性质6.2 代数元与超越元6.3 代数闭包与代数簇6.4 代数闭域与代数不变量6.5 有理函数与分式域的构造第七章:范畴论与同调代数7.1 范畴的基本概念与性质7.2 范畴的构造与自然变换7.3 函子与函子范畴7.4 外代数与同调代数基础7.5 奇异同调与同调算子第八章:群表示论8.1 群表示的基本概念与性质8.2 单群与群同态8.3 群表示与欣格尔引理8.4 卷积公式与算术引理8.5 特殊群的表示与表示的构造结语:本教材通过系统而严谨的讲解,涵盖了抽象代数的核心内容,旨在培养读者对抽象代数的兴趣和学习动力,提升读者对数学的抽象思维能力和证明能力。
在学习的过程中,读者还可结合习题和实例进行巩固和应用,从而更好地掌握抽象代数的理论与方法。
希望本教材能成为读者学习抽象代数的重要参考资料,为他们在数学领域的探索和研究奠定坚实基础。
抽象代数教学大纲
《抽象代数》课程教学大纲课程编号:总学时: 54 总学分: 3 开课学期:第5学期适用专业小学教育(理)一、课程性质、目的与任务本课程是小学教育(理)专业选修课,课程主要内容为集合与映射、群论初步、环与域。
整环的因子分解理论和域的扩张二、课程教学的基本要求通过对本课程的学习,使学生掌握《近世代数》的一系列基本概念与基本理论,掌握现代数学的基本方法,培养学生正确运用现代数学的知识和方法来解决实际问题的能力,并为进一步学习后续课程及相关课程打好基础。
三、课程的主要内容、重点和难点第一章基本概念(一)、教学内容集合:子集与真子集,并集、交集。
映射:映射的定义,以及象与逆象的概念。
代数运算:代数运算的定义及表示法,二元运算的概念。
结合律:结合律的定义。
交换律:交换律的定义。
分配律:分配律的定义。
一一映射:满射、单射、一一映射;变换、单射变换、满射变换及一一变换。
同态:同态映射、同态满射。
同构、自同构:同构映射、自同构。
等价关系与集合:关系、等价关系,分类、全体代表团、剩余类。
重点:一一映射、同态、同构、自同构、分类。
难点:建立映射关系与同构关系,等价关系与分类之间的相互转换。
(二)教学基本要求1、理解集合的概念,了解元素与集合之间的关系,以及集合之间的运算。
2、理解映射的概念,能在集合之间建立映射关系,并能判断两个映射是否相同。
3、掌握代数运算与映射的关系,能建立有限集合之间的运算表。
4、掌握将结合律、交换律、第一、第二分配律推广到n元的定理,并能判断给定的运算能否满足结合律、交换律以及两种分配律。
5、掌握一一映射的定义,并能建立两个集合之间的满射、单射、一一映射,能判定给定的映射是否是一一映射。
6、掌握同态映射的概念,理解同态与同态满射的关系,并能判定映射是否是同态满射,掌握具有同态满射的集合之间的联系。
7、掌握同构映射和自同构的概念,能区分同态与同构的差别,理解两个具有同构关系的集合之间的关系,并能判定给定的映射和运算是否是同构关系,能建立两个集合之间的同构映射。
近世代数(抽象代数)课件
意一个二元运算,并将其称为乘法.当 ab c
时, c 称为 a 与 b 的乘积;甚至还将等式 ab c
简写成 ab c .
6
Logo
§1 代数运算
例 1 设 R 是实数集.于是,平常的加法“”,减 法“-”和乘法“”都是 R 上的二元运算;除法“”是 R , R \{0}到 R 的代数运算,不是 R 上的二元运算.
第一章 群 论
LOGO
1
目录
§1 代数运算 §2 群的概念 §3 子 群 §4 循环群 §5 正规子群与商群 §6 群的同构与同态 §7 有限群
2
Logo
§1 代数运算
设 A1, A2 , , An ( n 为正整数)都是集合.我们将 集合
{(a1, a2 , , an ) | ai Ai , i 1, 2, n} 称为 A1, A2 , , An 的直积或笛卡儿积,记作
A1 A2 An . 特别地,当 A1 A2 An A 时, A1 A 2 A n 可 以简记作 An (读作 A 的 n 次方).这里约定,当 n 1 时, A1 A 2 A n 就是 A1 .
3
Logo
§1 代数运算
定义 1.1 设 A1, A2 , , An ( n 为正整数)和 A 都是非空集合. A1 A2 An 到 A 的映射 又 称 为 A1, A2 , , A n 到 A 的 代 数 运 算 ; 特 别 地, An 到 A 的映射又称为 A 上的 n 元运算.
设 A 是一个非空集合. f 是 A 上的一个二
元运算.于是,对于任意的 a, b A ,存在唯
一的 c A ,使得 f (a, b) c .我们约定,将等
式 f (a, b) c 改写成 afb c .
《抽象代数》课程大纲(草稿-细节待完善)
《抽象代数》课程大纲(草稿-细节待完善)一、课程简介课程名称:抽象代数学时/学分:68/4先修课程:线性代数(E)面向对象:致远学院本科生(计算机班)教学目标:本课程是为致远学院(计算机班)开设的系列代数课程的第二部分。
通过整个课程的学习使学生掌握近世代数学(又叫抽象代数)的基本理论、思想与方法,使学生的计算能力和抽象思维能力得到系统的训练和提高,为将来进一步学习其它专业课程和将来的应用奠定坚实的代数基础。
在教学过程中特别强调结合具体的例子来理解近世代数学的数学思想和思维方法,注意介绍最新的科研成果以开阔同学的视野。
主要内容:群(子群、群同态及基本定理、 Sylow定理、群作用及其应用),环(环同态、理想、商环、 多项式环与矩阵环),域(素子域,域的扩张, 可裂域与有限域)二、教学内容第一章 预备知识主要内容:等价关系、等价类、商集合与满映射; 数论中的整除与同余:Euler定理与Fermat小定理重点与难点:商集合与满映射的一一对应性第二章群与对称性主要内容:群的定义以及重要例子(循环群、二面体群与其他旋转群);子群与旁集(Coset): Lagrange定理,计数公式(1);正规子群与商群;群同态基本定理重点与难点:群同态基本定理;商群第三章群作用主要内容:群作用与群方程;各种具体的群作用(共轭作用;Cayley定理;抽象群作用);Burnside引理及其应用;Sylow定理及其应用重点与难点:群作用;轨道个数的计数公式(即群方程)第四章环主要内容:子环与理想、商环;多项式环及其商环;模n的剩余类环;PID与欧氏整环;整环中的素元与不可约元;UFD重点与难点:理想与商环;环的特征;分解问题第五章域主要内容:素域与域扩张; 单扩域;代数扩域:定义及例子;分裂域、正规扩域; 有限域:重点是分裂域和有限域重点与难点:域扩张;分裂域三、教学进度安排第一章.预备知识(6课时)1.1.等价关系、等价类、商集合与满映射(4学时)1.2.初等数论中的整除与同余:Euler定理与Fermat小定理(2学时)习题课(2学时)第二章. 群与对称性(20学时)2.1.群的定义以及重要例子(循环群、二面体群与其他旋转群;置换群) (4学时)2.2.子群与旁集(Coset): Lagrange定理,计数公式(1);由子集生成的子群;群的表达式(generators and relations)(6学时)2.3.正规子群与商群: 定义;重要例子;Cauchy引理(作为商群的应用)(4学时)2.4. 群同态基本定理以及第一第二同构定理; (2学时)2.5. 自同构与内自同构(2学时)2.6. 群的内、外直积(2学时)习题课(2学时)第三章. 群作用(共10学时)3.1抽象群作用: 轨道; 稳定化子; 计数公式(2)(2学时)3.2 群方程;各种具体的群作用(共轭作用;Cayley定理;抽象群作用)(3学时)3.3 Burnside引理及其应用(2学时)3.4 Sylow定理及其应用(3学时)习题课(2学时)第四章.环(16学时)4.1 定义(均有单位元且为结合环)以及重要例子(矩阵环,多项式环,形式幂级数环, 整数剩余类环) (2学时)4.2子环与理想: 重点是理想; 理想的生成问题;(2学时)4.3商环与环同态:同态基本定理及其应用(4学时)4.4 素理想与整环;最大理想与域 (2学时)4.5 多项式环及其商环的表达(与多项式带余除法的联系)(2学时)4.6. PID与欧氏环(2学时)4.7. 整环中的不可约元与素元;UFD理论介绍(2学时)习题课(2学时)第五章. 域(共12学时)5.1素域与域扩张: 强调与线性代数的联系(2学时)5.2单扩域;代数扩域: 强调与多项式环商环构造的联系(4学时)5.3 分裂域与正规扩域(2学时)5.4有限域(4)习题课(2学时)第六章. 偏序集、格与Bool代数(共4学时)6.1 偏序集与格 (2学时)6.2 Bool代数(2学时)习题课-总复习(2学时)四、课程考核及说明(1) 20%为平时成绩20%为大作业(小论文)60%为考试成绩(2)总课时(68学时)之外安排大约12学时习题课,由助教唱主角;另有若干次答疑(一般放在第8周后的周六或者周日进行)。
简单的抽象代数基本知识2
2,环的又一定义 代数系统[R;+,*],其中+和*为定义在R上的二元 运算,满足下述条件, (1) [R;+]为Abel群 (2) [R;*]为半群 (3) +,*满足分配律: a*(b+c)=(a*b)+(a*c), (b+c)*a=(b*a)+(c*a) 则称[R;+,*]为环。
域f上的所有多项式在多项式加法和乘法下作成一个有幺元的交换环记为fx称为域f多项式运算department这个域称为二元域应用在电话电报电视传真计算机中数据传输打印机vcd机cd机纠错码上以及卫星图片的传输等
编 码 理 论 基 础
哈尔滨工程大学理学院 信息与计算科学系 林 锰
Department of Mathematics, College of Sciences
第一章 简介抽象代数基本知识
1 2 3 授课预计 (6学时) 群的相关概念 环的相关概念 域及域上多项式
§2.2 环 的 相 关 概 念 一, 环的定义及相关内容 1,定义:设R是一个非空集合,其中有“+” “·” 两种二元代数运算,R叫做一个环,如果 1) a+b=b+a, 2) a+(b+c)=(a+b)+c, 3) G中有一个元素0,适合a+0=a, 4) 对于G中任意a,有-a,适合a+(-a)=0, 5) a·(b·c)=(a·b)·c, 6) a·(b+c)=a·b+a·c,(a+b) ·c=a·c+b·c。
则集合:
(a + I ) ⊗ (b + I ) = a ⋅ b + I
《近世代数》PPT课件
定理1.5.1 假设一个集合A的代数运算 同时适合结合
律与交换律,那么在 a1a2 an中,元素的次序 可以调换.
例 判定下列有理数集Q上的代数运算 是否适合结合律,
交换律?
(1) a b a b ab (适合结合律和交换律 )
(2) ab(ab)2 (适合交换律,但不适合结合律)
(3) aba (适合结合律,但不适合交换律 )
定义1.9.2 设 是集合 A的代数运算. 若 是 A到 A的 一个同构映射(同态映射),则称 是 A的一个自 同构 (自同态).
小结
同态是把代数运算考虑在内的映射,即是用来
比较两个代数结构的工具.
返回
在代数学中,两个同构的代数结构一般认为是相同的. 22
§1.10 等价关系与集合的分类
定义1.10.1 A设 是集合,D对,.错 一个 AA 到 D 的映射
注: 变换 是 A到A自身的一个映射.
小结
为了比较两个集合,我们引入了单射,满射,一
一映射和变换的概念.
返回
19
§1.8 同态
定义1.8.1 设 , 分别是集合的代数运算, : A A 是一个映
射,若 a,bA,有 (ab ) (a ) (b ),
则称 是 A到 A 的一个同态.
例1 A=Z (整数集), 是普通加法; A ={1,-1}, 是普通乘法.
定义1.2.2 设 1 , 2是A到B的两个映射,若对 aA,
有 1(a)2(a), 则称 1 与 2 是相等的,记作 1 2.
注: 映射相等 构成映射的三要素(值域、定义域、对
应法则)全相同.
例5 设 AB 为正整数集 .
定义 1 : ; a1 1 ( a ) , a ,
《抽象代数》课程教学大纲
《抽象代数》课程教学大纲Abstract Algebra课程代码:课程性质:专业基础理论课/必修适用专业:开课学期:4总学时数:56总学分数:3.5编写年月:2004年7月修订年月:2007年7月执笔:陈建新一、课程的性质和目的抽象代数是信息安全方向的重要基础课程之一,主要介绍群,环,域(以及模)的基本概念和基本理论。
通过以上知识的学习和习题的训练,培养学生的抽象思维能力和严密的逻辑推理能力,使学生们将受到良好的代数训练,并为进一步学习数学得到一个扎实的代数基础。
二、课程教学内容及学时分配1. 基本概念(12学时)了解变换的概念,区分变换与映射的不同。
理解代数运算的概念,会判断给定的运算是否代数运算。
对于给定的代数运算,会验证是否满足结合律,交换律以及左右分配律。
给定两个不同的代数系统,会判断二者是否同态或者同构。
最后,在这一部分还要求理解等价关系和集合分类之间的关系,对给定的等价关系,如何确定一个集合的分类,反之,给定一个集合的分类又掌握确定怎样的一个等价关系的方法。
2.群(12学时)理解群和交换群的定义,群的一些简单的性质以及逆元和单位元在群中的作用。
了解同群有密切关系但比群更广泛的代数系统半群。
掌握群中元素的阶的概念和表示方法。
会求一些简单群中的指定元素的阶。
理解子群的概念,和群的分类:平凡子群及真子群。
知道给定群的子群的单位元和逆元与该群的关系。
掌握非空子集做成子群的充要条件。
知道中心元素的概念,会找一些简单群的中心。
理解循环群的生成,循环群的子群和循环群的关系。
会判断n阶循环群中的一个元素是否可以生成这个循环群。
了解变换群的概念,理解抽象群和变化群之间的联系。
理解置换群,循环和对换的定义,会用循环和循环的乘积来表示置换。
了解奇置换和偶置换的概念和它们之间的关系。
掌握置换的简单运算:置换间的相乘,置换逆的求法和置换的阶。
理解陪集,指数的定义和Lagrange定理的内容。
了解Lagrange定理所给出的陪集和指数与群的阶之间的关系。
《抽象代数基础》教案
《抽象代数基础》教案第一章:引言1.1 课程简介介绍抽象代数的基础知识和重要地位解释抽象代数与其他数学分支的关系1.2 抽象代数的基本概念定义集合、元素和运算举例说明一些基本的抽象代数结构1.3 抽象代数的历史发展回顾代数的发展历程介绍抽象代数的起源和发展趋势第二章:群论基础2.1 群的定义与性质引入群的定义和表示方法探讨群的性质,如封闭性、结合律等2.2 子群与陪集定义子群和陪集的概念研究子群与原群的关系以及陪集的性质2.3 群的同态与同构引入群同态和同构的概念探讨同态和同构的性质和条件第三章:环与域3.1 环的定义与性质引入环的定义和表示方法探讨环的性质,如加法封闭性、乘法结合律等3.2 素环与最大素环定义素环和最大素环的概念探讨素环和最大素环的性质和判定条件3.3 域的概念与性质引入域的概念和表示方法探讨域的性质,如乘法封闭性和零因子性等第四章:域扩张与伽罗瓦理论4.1 域扩张的定义与性质引入域扩张的概念和表示方法探讨域扩张的性质和条件4.2 伽罗瓦理论的基本概念引入伽罗瓦理论的基本概念,如伽罗瓦群、伽罗瓦扩展等探讨伽罗瓦理论的应用和意义4.3 域扩张的判定定理介绍判定域扩张的一些重要定理,如伽罗瓦定理等举例说明这些定理的应用和证明过程第五章:线性代数基础5.1 线性空间与线性映射引入线性空间和线性映射的概念探讨线性空间和线性映射的性质和运算5.2 矩阵与行列式引入矩阵和行列式的概念探讨矩阵和行列式的性质和运算规则5.3 特征值与特征向量引入特征值和特征向量的概念探讨特征值和特征向量的性质和应用第六章:向量空间与线性变换6.1 向量空间的概念与性质定义向量空间和子空间探讨向量空间的性质,如基的概念和维数6.2 线性变换与线性映射引入线性变换和线性映射的概念探讨线性变换的性质和运算规则6.3 特征值与特征向量进一步探讨特征值和特征向量的性质应用特征值和特征向量解决线性变换的问题第七章:特征值问题的应用7.1 特征值问题的解法介绍特征值问题的解法,如幂法和特征值算法探讨解法的有效性和适用条件7.2 特征值在实际问题中的应用举例说明特征值在物理学、工程学和经济学等领域中的应用分析特征值问题在实际问题中的解法和效果7.3 特征值问题的进一步研究介绍特征值问题的进一步研究方向,如谱理论和解的存在性等探讨特征值问题在科学研究中的重要性和挑战性第八章:向量空间的同构与对偶性8.1 向量空间的同构定义向量空间的同构和等价探讨同构的性质和判定条件8.2 向量空间的对偶性引入向量空间的对偶性和对偶空间探讨对偶性的性质和应用8.3 对偶性与共轭性探讨对偶性与共轭性的关系和联系应用对偶性和共轭性解决向量空间的问题第九章:张量分析基础9.1 张量的定义与运算引入张量的概念和表示方法探讨张量的运算规则和性质9.2 张量空间与张量映射定义张量空间和张量映射探讨张量空间和张量映射的性质和运算9.3 张量分析的应用举例说明张量分析在物理学、工程学和计算机科学等领域中的应用分析张量分析在实际问题中的解法和效果回顾本课程的主要概念、定理和方法10.2 抽象代数的进一步研究介绍抽象代数进一步研究的主要方向和热点问题探讨抽象代数在科学研究和应用中的前景和挑战10.3 课程学习评价与反思分析学生在本课程学习中的表现和收获提出学生应如何继续学习和提高自己在抽象代数方面的能力重点和难点解析重点环节1:群的定义与性质群的定义和表示方法是理解抽象代数结构的基础,需要重点掌握。
拔尖班抽象代数讲义
第十一讲 环的整性与模 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.10 整性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.11 模的概念 第十二讲 线性代数模拟 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.12 模的基本知识 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.13 同态基本定理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.14 模的直和 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.15 自由模 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 第十三讲 主理想整环上有限生成模的结构定理的应用 . . . . . . . . . . . . . . . . . . 3.16 定理证明的唯一性部分 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.17 定理的应用 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 第十四讲 一些代数常识 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.18 代数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.19 范畴语言简介 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 域扩张理论 第十五讲 分裂域 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 4.2 4.3 4.4 4.5 4.6 域扩张基本常识 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 分裂域 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 何时|Gal(E/F )| = [E : F ]? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 定理补证
研究生抽象代数课件
抽象代数第一章 集合与映射1.1逻辑命题:能判断正误的一句话。
逻辑:研究命题之间的关系。
1.2 集合集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合。
集合中元素的特性:(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的。
(2)互异性:集合中的元素一定是不同的。
(3)无序性:集合中的元素没有固定的顺序。
集合的表述方法:列举法,描述法。
元素与集合的关系(1)属于: 如果a 是集合A 的元素,就说a 属于A ,记作a∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作 要注意“∈”的方向,不能把a∈A 颠倒过来写。
集合与集合的关系:包含与不包含。
包含:如果集合B 的元素都是A 的元素,就称B 为A 的子集,或A 包含B,记为B ⊂A 。
例如,偶数全体包含于自然数全体。
集族:以集合为元素的集合。
以I 为指标集的一个集族,可以记作:{}是集合,i iA AI i ∈∀。
例如:},,,{321 A A A 是以自然数集为指标集的集族。
直积或笛卡尔积:设A 、B 是非空集合,定义A 、B 的直积或笛卡尔积},|),{(B b A a b a B A ∈∀∈∀=⨯。
问题:如何定义无限的集族的笛卡尔积?1.3 映射一、映射的相关定义映射:设A 、B 是非空集合,:f A B → 的对应关系。
如果B y A x ∈∃∈∀1, 使得 ()f x y =,则称f 是从集合A 到集合B 的映射。
判断映射的数学法则:原像相同则像也相同,即A x x ∈∀21,,如果 21x x =,那么 )()(21x f x f =。
单射:若映射满足原像不同则像也不同,即A x x ∈∀21,,如果 21x x ≠,那么)()(21x f x f ≠。
等价判断:如果)()(21x f x f =,那么21x x =。
满射:设:f A B → 的映射,如果对于B 中任意的元素都存在原像,那么称f 为满射;即A B y ∈∃∈∀x ,使得y )(=x f 。
抽象代数
一、课程目的与教学基本要求本课程是在学生已学习大学一年级“几何与代数”必修课的基础上,进一步学习群、环、域三个基本的抽象的代数结构。
要求学生牢固掌握关于这三种抽象的代数结构的基本事实、结果、例子。
对这三种代数结构在别的相关学科,如数论、物理学等的应用有一般了解。
二、课程内容第1章准备知识(Things Familiar and Less Familiar)10课时复习集合论、集合间映射及数学归纳法知识,通过学习集合间映射为继续学习群论打基础。
1、几个注记(A Few Preliminary Remarks)2、集论(Set Theory)3、映射(Mappings)4、A(S)(The Set of 1-1 Mappings of S onto Itself)5、整数(The Integers)6、数学归纳法(Mathematical Induction)7、复数(Complex Numbers)第2章群(Groups) 22课时建立关于群、子群、商群及直积的基本概念及基本性质;通过实例帮助建立抽象概念,掌握群同态定理及其应用;了解有限阿贝尔群的结构。
1、群的定义和例子(Definitions and Examples of Groups)2、一些简单注记(Some Simple Remarks)3、子群(Subgroups)4、拉格朗日定理(Lagrange’s Theorem)5、同态与正规子群(Homomorphisms and Normal Subgroups)6、商群(Factor Groups)7、同态定理(The Homomorphism Theorems)8、柯西定理(Cauchy’s Theorem)9、直积(Direct Products)10、有限阿贝尔群(Finite Abelian Groups) (选讲)11、共轭与西罗定理(Conjugacy and Sylow’s Theorem)(选讲)第3章对称群(The Symmetric Group) 8课时掌握对称群的结构定理,了解单群的概念及例子。
【抽象代数】06-理想与直和
【抽象代数】06-理想与直和1. 同态与理想 同态定理和正规⼦群在分析群的结构中起到了重要的作⽤,我们可以对环进⾏同样的讨论。
若环R_1到另⼀个系统R_2有映射f:R_1\mapsto R_2,满⾜公式(1),这样的映射称为同态映射。
若映射为满的,则称R_1,R_2同态,记作R_1\sim R_2。
容易证明R_2也是环,且R_1的零元、负数、单位元、逆元、可交换等性质都会映射到R_2中,但零因⼦却不⼀定保持。
f(a+b)=f(a)+f(b);\quad f(ab)=f(a)f(b)\tag{1} • 求证:Z_m\sim Z_n的充要条件是n\mid m。
在群中已经知道,任何同态映射都对应于⼀个正规⼦群(同态核),同样环同态的研究可以等价到对同态核的研究。
和群⼀样,环同态的同态核就是R_2中零元素的原像。
容易证明同态核是⼀个⼦环,正如正规⼦群的特殊性⼀样,它也不是普通的⼦环。
考虑零元素的归零性,同态核⼀定满⾜以下条件。
⼀般地,环R中的加法⼦群N如果满⾜以下右边⼀式,它称为环的左(右)理想,两式都满⾜的叫理想,记作N\trianglelefteq R,容易证明理想(包括左右理想)都是⼦环。
n\in N,\: r\in R\quad\Rightarrow\quad rn\in N,\: nr\in N\tag{2} 由定义知理想⾸先是加法群的⼦群,故它在加法下是正规⼦群。
容易证明,加法群⾥到正规⼦群陪集的同态映射在环⾥也是同态映射(乘法封闭),故环的每个同态映射也与环的理想⼀⼀对应,理想担当起了正规⼦群的作⽤。
和正规⼦群⼀样,理想不具有传递性,即理想的理想不⼀定是理想。
容易证明,理想的交集还是理想,循环环的任何⼦环都是它的理想。
对⼀般环R,显然Ra和aR分别是它的左右理想。
理想是⼀种特殊的⼦环,每个环R都有\{0\}和R两个平凡理想,其它理想叫真理想,没有真理想的环叫单环。
从理想的定义知,对任何n\in N有nR\subseteq N,相⽐较群来看,这个结构是“坍塌”的,由此联想到单环和“好”的环之间⼀定有什么关系。
3、Abstract Algebra(抽象代数 文字版)-36页
8
CHAPTER 1. 代数
置换中剩下的内容,包括置换的共轭,置换的型,置换群的性质,交错群的不可解性等,你 在抽象代数的课程中都会学到,本文旨在为对代数有兴趣的人开个头,因为我觉得过早的介绍 一些比较深入的知识不太好。关于置换的内容上面讲的东西已经完全够用了,这也算是代数的 一个开头,希望以上的讲解能对你理解代数起到一点帮助。
123 123
123
·
=
132 321
231
由于我们的变量写在右边,相乘的操作既是从左边的第一行开始,顺着表去找到最终的
像,如要计算 1 的像,我们就看第二个置换把 1 映到 3,第一个置换把 3 映到 2,故最终
我们在右边的 1 下面写 2,其他的也是类似的操作。
当 Sn 的元素个数增加时把置换全部写出显然不现实,我们知道 n 元置换应有 n! 个。但 关键的是这种记号并不能满足我们的需要(记号读起来并不方便,而且并不能直白的反
Theorem 1.1.1
设 A = {a1, a2, · · · , an} 是置换 σ 的一个轨道,则 σ 在 A 上的作用可以用一个轮换来表示: σ|A = (a1a2 · · · an)
其中集合 {a1, a2, · · · , an} = {a1, a2, · · · , an}。
我们先证明一个引理:
Definition 1.1.4
我们先来定义一个置换的轨道。我们可以看到一个置换在作用的过程中有可能保持某一
个点不动,也有可能让几个点之间一直循环,来看一个例子:
123456
σ=
231465
这个置换保持元素 4 不动,并且通过不断作用 σ, 我们只会让 {1, 2, 3}, {5, 6} 这两个子集
近世代数 电子版 第1讲
第 1 讲(3课时)第 一 章 基 本 概 念§1—6 集合、映射及代数运算 ,结合律、交换律及分配律一、集合定义1:若干个(有限或无限多个)固定事物的全体叫做一个集合(简称集)。
集合中的每个事物叫做这个集合的元素(简称元)。
例1:师院99级数学与应用数学专业的全体学生组成一个集。
而每个学生就称为这个集中的元素。
定义2:没有元素的集合叫做空集,记为∅,且∅是任一集合的子集。
例2:一切满足方程0122=+x 的实数组成的集合是空集。
(1)集合的要素:确定性、相异性、无序性。
例3:“由我院胖子组成的集合”这不能组成一个集合。
(违反了确定性)例4:集合中的元素要求两两互异。
即:{1,2,2,3}={1,2,3}。
(2)集合表示:习惯上用大写拉丁字母A ,B ,C …表示集合,习惯上用小写拉丁字母a ,b ,c …表示集合中的元素。
若a 是集合A 中的元素,则记为A a A a ∉∈否则记为,。
表示集合通常有三种方法:1、枚举法(列举法):例5:A ={1,2,3,4},B ={1,2,3,…,100}。
2、描述法:{})(,)(x p x p x A =—元素x 具有的性质。
例6:{}41≤≤∈=a Z a a A 且。
显然例6中的A 就是例5的A 。
3、绘图法:用文氏图(Diagram Venn )可形象地表现出集合的特征及集合之间的关系。
例7:利用例5的A 和B ,可构制出文氏图:(3)集合的蕴含(包含) 定义3:若集B 中每个元素都属于集A ,则称B 是A 的子集,记为A B ⊂,否则说B 是A 的子集,记为A B ⊄.思考题1:如何用语言陈述“A B ⊄”?定义4:设A B ⊂,且存在B a A a ∉∈但,那么称B 是A 的真子集,否则称B 不是A 的真子集。
思考题2:若A B ⊂,但B 不是A 的真子集,这意味着什么?定义5:若集合A 和B 含有完全一样的元素,那么称A 与B 相等,记为A =B .结论1:显然,A B B A B A ⊂⊂⇔=且.(4)集合的运算①集合的并:{}B x A x x B A ∈∈=或 ②集合的交:{}B x A x x B A ∈∈=且 ③集合的差:{}B x A x x B A ∉∈=-且 ④集合在全集内的补:{}A x E x x A ∉∈=且⑤集合的布尔和(对称差):{})()()()( B A B A A B B A B A x B x A x x B A -=--=∉∈∈=⊕但或 ⑥集合的卡氏积:{}B b A a b a B A ∈∈=⨯且),(注:B A ⨯中的元素可看成由A 和B 坐标轴所张成的平面上的点。