2008年全国中考数学压轴题精选精析(2)
2008年中考数学压轴题精选(二次函数)(16题)_附详细解答和评分标准2008年中考数学压轴题精选
1.如图所示,在平面直角坐标系中,矩形ABOC的边BO在x轴的负半轴上,边OC在y轴的正半轴上,且1AB=,OB=ABOC绕点O按顺时针方向旋转60后得到矩形EFOD.点A的对应点为点E,点B的对应点为点F,点C的对应点为点D,抛物线2y ax bx c=++过点A E D,,.(1)判断点E是否在y轴上,并说明理由;(2)求抛物线的函数表达式;(3)在x轴的上方是否存在点P,点Q,使以点O B P Q,,,为顶点的平行四边形的面积是矩形ABOC面积的2倍,且点P在抛物线上,若存在,请求出点P,点Q的坐标;若不存在,请说明理由.(3)存在符合条件的点P,点Q.理由如下:矩形ABOC的面积3AB BO==∴以O B P Q,,,为顶点的平行四边形面积为OB为此平行四边形一边,又3OB=OB∴边上的高为2,依题意设点P的坐标为(2)m,点P在抛物线2829y x x=--+上28229m∴-+=解得,1m=,28m=-1(02)P∴,,228P⎛⎫- ⎪⎪⎝⎭以O B P Q,,,为顶点的四边形是平行四边形,PQ OB∴∥,PQ OB==∴当点1P的坐标为(02),时,点Q的坐标分别为1(Q,22)Q;x第26题图当点2P 的坐标为5328⎛⎫-⎪ ⎪⎝⎭,时,点Q 的坐标分别为313328Q ⎛⎫- ⎪ ⎪⎝⎭,,43328Q ⎛⎫⎪ ⎪⎝⎭,. 14分5、如图14,已知半径为1的1O 与x 轴交于A B ,两点,OM 为1O 的切线,切点为M ,圆心1O 的坐标为(20),,二次函数2y x bx c =-++的图象经过A B ,两点.(1)求二次函数的解析式;(2)求切线OM 的函数解析式;(3)线段OM 上是否存在一点P ,使得以P O A ,,为顶点的三角形与1OO M △相似.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.7、(12分)30.已知:如图14,抛物线2334y x =-+与x 轴交于点A ,点B ,与直线34y x b =-+相交于点B ,点C ,直线34y x b =-+与y 轴交于点E .(1)写出直线BC 的解析式. (2)求ABC △的面积.(3)若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动(不与A B ,重合),同时,点N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出MNB △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,MNB △的面积最大,最大面积是多少?(3)过点N 作NP MB ⊥于点P EO MB ⊥ NP EO ∴∥ BNP BEO ∴△∽△ 7分BN NPBE EO∴= 8分 图14yxOA B MO 1由直线3342y x =-+可得:302E ⎛⎫ ⎪⎝⎭, ∴在BEO △中,2BO =,32EO =,则52BE = 25322t NP∴=,65NP t ∴= 9分 16(4)25S t t ∴=-2312(04)55S t t t =-+<< 10分2312(2)55S t =--+ 11分此抛物线开口向下,∴当2t =时,125S =最大 ∴当点M 运动2秒时,MNB △的面积达到最大,最大为125. 12分 11、抛物线b ax ax y ++-=22与x 轴的一个交点为A(-1,0),与y 轴的正半轴交于点C .⑴直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点B 的坐标; ⑵当点C 在以AB 为直径的⊙P 上时,求抛物线的解析式;⑶坐标平面内是否存在点M ,使得以点M 和⑵中抛物线上的三点A 、B 、C 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由. 解:⑶存在.……………………………6分理由:如图,连接AC 、BC .设点M 的坐标为),(y x M .①当以AC 或BC 为对角线时,点M 在x 轴上方,此时CM ∥AB ,且CM =AB .由⑵知,AB =4,∴|x|=4,3==OC y .∴x =±4.∴点M 的坐标为)3,4()3,4(-或M .…9分②当以AB 为对角线时,点M 在x 轴下方. 过M 作MN ⊥AB 于N ,则∠MNB =∠AOC =90°.∵四边形AMBC 是平行四边形,∴AC =MB ,且AC ∥MB .∴∠CAO =∠MBN .∴△AOC ≌△BNM .∴BN =AO =1,MN =CO.∵OB =3,∴0N =3-1=2.∴点M的坐标为(2,M . ……………………………12分综上所述,坐标平面内存在点M ,使得以点A 、B 、C 、M 为顶点的四边形是平行四边形.其坐标为123((2,M M M -.12、(08四川达州23题)如图,将AOB △置于平面直角坐标系中,其中点O 为坐标原点,点A 的坐标为(30),,60ABO ∠=.(1)若AOB △的外接圆与y 轴交于点D ,求D 点坐标.(2)若点C 的坐标为(10)-,,试猜想过D C ,的直线与AOB △的外接圆的位置关系,并加以说明.(3)二次函数的图象经过点O 和A 求此函数的解析式.(3)依题意可设二次函数的解析式为 : y=α(x -0)(x -3)由此得顶点坐标的横坐标为:x=a a 23-=23; 即顶点在OA 的垂直平分线上,作OA 的垂直平分线EF ,则得∠EFA =21∠B =300得到EF =3EA =323 可得一个顶点坐标为(23,323) 同理可得另一个顶点坐标为(23,321-) 分别将两顶点代入y=α(x -0)(x -3)可解得α的值分别为332-,932则得到二次函数的解析式是y=332-x(x -3)或y=932 x(x -3)14、(08甘肃兰州28题)(本题满分12分)如图19-1,OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,5OA =,4OC =.(1)在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处,求D E,两点的坐标;(2)如图19-2,若AE 上有一动点P (不与A E ,重合)自A 点沿AE 方向向E 点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t 秒(05t <<),过P 点作ED 的平行线交AD 于点M ,过点M 作AE 的平行线交DE 于点N .求四边形PMNE 的面积S 与时间t 之间的函数关系式;当t 取何值时,S 有最大值?最大值是多少?(3)在(2)的条件下,当t 为何值时,以A M E ,,为顶点的三角形为等腰三角形,并求出相应的时刻点M 的坐标.(08甘肃兰州28题解析)(本题满分12分) 解:(1)依题意可知,折痕AD 是四边形OAED 的对称轴, ∴在Rt ABE △中,5AE AO ==,4AB =.3BE ∴=.2CE ∴=.E ∴点坐标为(2,4). 2分 在Rt DCE △中,222DC CE DE +=, 又DE OD =.222(4)2OD OD ∴-+= . 解得:52CD =. D ∴点坐标为502⎛⎫⎪⎝⎭, 3分(2)如图①PM ED ∥,APM AED ∴△∽△. PM AP ED AE ∴=,又知AP t =,52ED =,5AE = 5522t tPM ∴=⨯=, 又5PE t =-.而显然四边形PMNE 为矩形.215(5)222PMNE t S PM PE t t t ∴==⨯-=-+矩形 5分21525228PMNES t ⎛⎫∴=--+ ⎪⎝⎭四边形,又5052<<∴当52t =时,PMNE S 矩形有最大值258. 6分 (3)(i )若以AE 为等腰三角形的底,则ME MA =(如图①) 在Rt AED △中,ME MA =,PM AE ⊥,P ∴为AE 的中点,1522t AP AE ∴===.又PM ED ∥,M ∴为AD 的中点.过点M 作MF OA ⊥,垂足为F ,则MF 是OAD △的中位线,1524MF OD ∴==,1522OF OA ==,∴当52t =时,5052⎛⎫<< ⎪⎝⎭,AME △为等腰三角形.此时M 点坐标为5524⎛⎫ ⎪⎝⎭,. 8分(ii)若以AE 为等腰三角形的腰,则5AMAE ==(如图②)在Rt AOD △中,AD ===过点M 作MF OA ⊥,垂足为F .PM ED ∥,APM AED ∴△∽△.AP AMAE AD∴=. 555AMAE t AP AD ⨯∴====12PM t ∴==.MF MP ∴==5OF OA AF OA AP =-=-=-∴当t =(05<<),此时M 点坐标为(5-.11分综合(i )(ii )可知,52t =或t =A M E ,,为顶点的三角形为等腰三角形,相应M 点的坐标为5524⎛⎫ ⎪⎝⎭,或(5-.12分。
2008年全国中考数学压轴题精选3含答案(修)
2008年全国中考数学压轴题精选精析(三)21(08江西南昌24题)如图,抛物线2212191128y ax ax P y ax ax ⎛⎫=--+-=-- ⎪⎝⎭经过点且与抛物线,,相交于A B ,两点. (1)求a 值;(2)设211y ax ax =--+与x 轴分别交于M N ,两点(点M 在点N 的左边),221y ax ax =--与x 轴分别交于E F ,两点(点E 在点F 的左边),观察M N E F ,,,四点的坐标,写出一条正确的结论,并通过计算说明;(3)设A B ,两点的横坐标分别记为A B x x ,,若在x 轴上有一动点(0)Q x ,,且A B x x x ≤≤,过Q 作一条垂直于x 轴的直线,与两条抛物线分别交于C ,D 两点,试问当x 为何值时,线段CD 有最大值?其最大值为多少?(08江西南昌24题解析)解:(1) 点1928P ⎛⎫- ⎪⎝⎭,在抛物线211y ax ax =--+上,1191428a a ∴-++=, ··························· 2分解得12a =. ······························· 3分(2)由(1)知12a =,∴抛物线2111122y x x =--+,2211122y x x =--. ··· 5分当2111022x x --+=时,解得12x =-,21x =. 点M 在点N 的左边,2M x ∴=-,1N x =. ···· 6分当2111022x x --=时,解得31x =-,42x =. 点E 在点F 的左边,1E x ∴=-,2F x =. ················· 7分 0M F x x += ,0N E x x +=,∴点M 与点F 对称,点N 与点E 对称. ··················· 8分(3)102a => .∴抛物线1y 开口向下,抛物线2y 开口向上. ······ 9分 根据题意,得12CD y y =-22211111122222x x x x x ⎛⎫⎛⎫=--+---=-+ ⎪ ⎪⎝⎭⎝⎭. ·············· 11分A B x x x ≤≤,∴当0x =时,CD 有最大值2.·············· 12分 说明:第(2)问中,结论写成“M N ,,E F ,四点横坐标的代数和为0”或“MN EF =”均得1分.22(08江西南昌25题)如图1,正方形ABCD 和正三角形EFG 的边长都为1,点E F ,分别在线段AB AD ,上滑动,设点G 到CD 的距离为x ,到BC 的距离为y ,记HEF ∠为α(当点E F ,分别与B A ,重合时,记0α=).(1)当0α= 时(如图2所示),求x y ,的值(结果保留根号);(2)当α为何值时,点G 落在对角形AC 上?请说出你的理由,并求出此时x y ,的值(结果保留根号); (3)请你补充完成下表(精确到0.01):(4)若将“点E F ,分别在线段AB AD ,上滑动”改为“点E F,分别在正方形ABCD 边上滑动”.当滑动一周时,请使用(3)的结果,在图4中描出部分点后,勾画出点G 运动所形成的大致图形. 1.732sin150.259sin 750.966==,,.)(08江西南昌25题解析)解:(1)过G 作MN AB ⊥于M 交CD 于N ,GK BC ⊥于K .60ABG ∠= ,1BG =,图1 图2 B (E A (F D图3 H DAC B 图42MG ∴=,12BM =. ························· 2分12x ∴=-,12y =. ·························· 3分(2)当45α=时,点G 在对角线AC 上,其理由是: ············· 4分 过G 作IQ BC ∥交AB CD ,于I Q ,, 过G 作JP AB ∥交AD BC ,于J P ,.AC 平分BCD ∠,GP GQ ∴=,GI GJ ∴=.GE GF = ,Rt Rt GEI GFJ ∴△≌△,GEI GFJ ∴∠=∠.60GEF GFE ∠=∠= ,AEF AFE ∴∠=∠. 90EAF ∠= ,45AEF AFE ∴∠=∠= .即45α=时,点G 落在对角线AC 上. ··················· 6分 (以下给出两种求x y ,的解法)方法一:4560105AEG ∠=+=,75GEI ∴∠=.在Rt GEI △中,sin 754GI GE ==,1GQ IQ GI ∴=-=. ······················ 7分1x y ∴==. ·························· 8分 方法二:当点G 在对角线AC 上时,有122+= ··························· 7分解得1x =1x y ∴==. ·························· 8分 (3)α153045607590x0.130.030.030.130.290.50B (EA (FDQy0.50 0.29 0.13 0.03 0 0.03 0.13··················· 10分 (4)由点G 所得到的大致图形如图所示:······················· 12分说明:1.第(2)问回答正确的得1分,证明正确的得2分,求出x y ,的值各得1分;2.第(3)问表格数据,每填对其中4空得1分;3.第(4)问图形画得大致正确的得2分,只画出图形一部分的得1分.23(08山东滨州23题)(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等,试判断AB 与CD 的位置关系,并说明理由.BDCA(2)结论应用:①如图2,点M 、N 在反比例函数y=)0( k xk的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F. 试应用(1)中得到的结论证明:MN ∥EF.y xONMF E②若①中的其他条件不变,只改变点M ,N 的位置如图3所示,请判断MN 与E 是否平行.H AC DB(08山东滨州23题解析)(1)证明:分别过点C 、D 作.CG AB DH AB ⊥⊥、 垂足为G 、H ,则090.CGA DHB ∠=∠=CG DHABC ABD ∴∴∴∴ 与的面积相等CG=DH四边形CGHD 为平行四边形AB CD.(2)①证明:连结MF ,NE设点M 的坐标为11(,)x y ,点N 的坐标为22(,)x y , ∵点M ,N 在反比例函数()0ky k x= 的图象上, ∴11x y k =,22x y k =2,ME y NF x OF x ⊥⊥∴= 1轴,轴OE=y112211221122EFM EFN EFM EFN S x y k S x y k S S ∴====∴=由(1)中的结论可知:MN ∥EF 。
2008年全国中考数学压轴题精选(三)
2008年全国中考数学压轴题精选精析(三)27.(08山东滨州)23、(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等,试判断AB 与CD 的位置关系,并说明理由.BDCA(2)结论应用:①如图2,点M 、N 在反比例函数y=)0(>k xk的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F. 试应用(1)中得到的结论证明:MN ∥EF.y xO NMF E②若①中的其他条件不变,只改变点M ,N 的位置如图3所示,请判断MN 与E 是否平行.yxO NM(08山东滨州23题解析)23.(1)证明:分别过点C 、D 作.CG AB DH AB ⊥⊥、 垂足为G 、H ,则090.CGA DHB ∠=∠=CG DHABC ABD ∴∴∴∴ 与的面积相等CG=DH四边形CGHD 为平行四边形AB CD.(2)①证明:连结MF ,NE设点M 的坐标为11(,)x y ,点N 的坐标为22(,)x y ,∵点M ,N 在反比例函数()0ky k x= 的图象上, ∴11x y k =,22x y k =2,ME y NF x OF x ⊥⊥∴= 1轴,轴OE=y112211221122EFM EFN EFM EFN S x y k S x y k S S ∴====∴=由(1)中的结论可知:MN ∥EF 。
②MN ∥EF 。
31(08山东临沂)26.(本小题满分13分) 如图,已知抛物线与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,3)。
⑴求抛物线的解析式;⑵设抛物线的顶点为D ,在其对称轴的右侧的抛物线上是否存在点P ,使得△PDC 是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由; ⑶若点M 是抛物线上一点,以B 、C 、D 、M 为顶点的四边形是直角梯形,试求出点M 的坐标。
(08山东临沂26题解析)26.⑴∵抛物线与y 轴交于点C (0,3),∴设抛物线解析式为)0(32≠++=a bx ax y ………1分 根据题意,得⎩⎨⎧=++=+-,0339,03b a b a ,解得⎩⎨⎧=-=.2,1b a∴抛物线的解析式为322++-=x x y ………………………………………2分 ⑵存在。
2008年全国中考数学压轴题精选[2]
2008年全国中考数学压轴题精选1.(08福建莆田)如图:抛物线经过A (-3,0)、B (0,4)、C (4,0)三点. (1) 求抛物线的解析式.(2)已知AD = AB (D 在线段AC 上),有一动点P 从点A 沿线段AC 以每秒1个单位长度的速度移动;同时另一个动点Q 以某一速度从点B 沿线段BC 移动,经过t 秒的移动,线段PQ 被BD 垂直平分,求t 的值;(3)在(2)的情况下,抛物线的对称轴上是否存在一点M ,使MQ+MC 的值最小?若存在,请求出点M 的坐标;若不存在,请说明理由。
(注:抛物线2y ax bx c =++的对称轴为2b x a=-)2.(08甘肃白银等9市)如图,在平面直角坐标系中,四边形OABC 是矩形,点B 的坐标为(4,3).平行于对角线AC 的直线m 从原点O 出发,沿x 轴正方向以每秒1个单位长度的速度运动,设直线m 与矩形OABC 的两边..分别交于点M 、N ,直线m 运动的时间为t (秒). (1) 点A 的坐标是__________,点C 的坐标是__________; (2) 当t= 秒或 秒时,MN=21AC ; (3) 设△OMN 的面积为S ,求S 与t 的函数关系式; (4) 探求(3)中得到的函数S 有没有最大值?若有,求出最大值;若没有,要说明理由.3.(08广东广州)如图,在梯形ABCD 中,AD ∥BC ,AB=AD=DC=2cm ,BC=4cm ,在等腰△PQR 中,∠QPR=120°,底边QR=6cm ,点B 、C 、Q 、R 在同一直线l 上,且C 、Q 两点重合,如果等腰△PQR 以1cm/秒的速度沿直线l 箭头所示方向匀速运动,t 秒时梯形ABCD 与等腰△PQR 重合部分的面积记为S 平方厘米 (1)当t=4时,求S 的值(2)当4t ≤≤10,求S 与t 的函数关系式,并求出S 的最大值4.(08广东深圳)如图9,在平面直角坐标系中,二次函数)0(2>++=a c bx ax y 的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),OB =OC ,tan∠ACO=31. (1)求这个二次函数的表达式.(2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.(3)若平行于x 轴的直线与该抛物线交于M 、N 两点,且以MN 为直径的圆与x 轴相切,求该圆半径的长度.(4)如图10,若点G (2,y )是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,△APG 的面积最大?求出此时P 点的坐标和△APG 的最5.(08贵州贵阳)某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x元.求:(1)房间每天的入住量y(间)关于x(元)的函数关系式.(2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式.(3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式;当每个房间的定价为每天多少元时,w有最大值?最大值是多少?6.(08湖北恩施)如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若∆ABC固定不动,∆AFG 绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n.(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明.(2)求m与n的函数关系式,直接写出自变量n的取值范围.(3)以∆ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2).在边BC上找一点D,使BD=CE,求出D点的坐标,并通过计算验证BD2+CE2=DE2.(4)在旋转过程中,(3)中的等量关系BD2+CE2=DE2是否始终成立,若成立,请证明,若不成立,7.(08湖北荆门)已知抛物线y =ax 2+bx +c 的顶点A 在x 轴上,与y 轴的交点为B (0,1),且b =-4ac . (1) 求抛物线的解析式;(2) 在抛物线上是否存在一点C ,使以BC 为直径的圆经过抛物线的顶点A ?若不存在说明理由;若存在,求出点C 的坐标,并求出此时圆的圆心点P 的坐标;(3) 根据(2)小题的结论,你发现B 、P 、C 三点的横坐标之间、纵坐标之间分别有何关系?8.(08湖北荆州)如图,等腰直角三角形纸片ABC 中,AC =BC =4,∠ACB =90º,直角边AC在x 轴上,B 点在第二象限,A (1,0),AB 交y 轴于E ,将纸片过E 点折叠使BE 与EA 所在直线重合,得到折痕EF (F 在x 轴上),再展开还原沿EF 剪开得到四边形BCFE ,然后把四边形BCFE 从E 点开始沿射线EA 平移,至B 点到达A 点停止.设平移时间为t (s ),移动速度为每秒1个单位长度,平移中四边形BCFE 与△AEF 重叠的面积为S. (1)求折痕EF 的长;(2)是否存在某一时刻t 使平移中直角顶点C经过抛物线243y x x =++的顶点?若存在,求出t 值;若不存在,请说明理由;(3)直接写出....S 与t 的函数关系式及自变量t 的取值范围.BC B P P9.(08湖北天门)如图①,在平面直角坐标系中,A点坐标为(3,0),B点坐标为(0,4).动点M从点O出发,沿OA方向以每秒1个单位长度的速度向终点A运动;同时,动点N 从点A出发沿AB方向以每秒35个单位长度的速度向终点B运动.设运动了x秒.(1)点N的坐标为(________________,________________);(用含x的代数式表示)(2)当x为何值时,△AMN为等腰三角形?(3)如图②,连结ON得△OMN,△OMN可能为正三角形吗?若不能,点M的运动速度不变,试改变点N的运动速度,使△OMN为正三角形,并求出点N的运动速度和此时x的值.10.(08湖北武汉)如图 1,抛物线y=ax2-3ax+b经过A(-1,0),C(3,2)两点,与y轴交于点D,与x轴交于另一点B.(1)求此抛物线的解析式;(2)若直线y=kx-1(k≠0)将四边形ABCD面积二等分,求k的值;(3)如图2,过点 E(1,-1)作EF⊥x轴于点F,将△AEF绕平面内某点旋转180°后得△MNQ(点M,N,Q分别与点 A,E,F 对应),使点M,N在抛物线上,求点M,N的坐标.11.(08湖北咸宁)如图①,正方形 ABCD 中,点A 、B 的坐标分别为(0,10),(8,4),点C 在第一象限.动点P 在正方形 ABCD 的边上,从点A 出发沿A →B →C →D 匀速运动,同时动点Q 以相同速度在x 轴上运动,当P 点到D 点时,两点同时停止运动,设运动的时间为t 秒.(1) 当P 点在边AB 上运动时,点Q 的横坐标x (长度单位)关于运动时间t (秒)的函数图象如图②所示,请写出点Q 开始运动时的坐标及点P 运动速度; (2) 求正方形边长及顶点C 的坐标;(3) 在(1)中当t 为何值时,△OPQ 的面积最大,并求此时P 点的坐标. (1) 附加题:(如果有时间,还可以继续 解答下面问题,祝你成功!)如果点P 、Q 保持原速度速度不变,当点P 沿A →B →C →D 匀速运动时,OP 与PQ 能否相等,若能,写出所有符合条件的t 的 值;若不能,请说明理由.12.(08湖南长沙)如图,六边形ABCDEF 内接于半径为r (常数)的⊙O ,其中AD 为直径,且AB=CD=DE=FA.(1)当∠BAD=75 时,求BC ⌒的长; (2)求证:BC ∥AD ∥FE ;(3)设AB=x ,求六边形ABCDEF 的周长L 关于x 的函数关系式,并指出x 为何值时,L 取得最大值.(第24题图①) 图②D13(08湖南益阳)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A 、B 、C 、D 分别是“蛋圆”与坐标轴的交点,已知点D 的坐标为(0,-3),AB 为半圆的直径,半圆圆心M 的坐标为(1,0),半圆半径为2.(1) 请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围; (2)你能求出经过点C 的“蛋圆”切线的解析式吗?试试看;(3)开动脑筋想一想,相信你能求出经过点D 的“蛋圆”切线的解析式.14.(08江苏常州)如图,抛物线24y x x =+与x 轴分别相交于点B 、O ,它的顶点为A ,连接AB,把AB 所的直线沿y 轴向上平移,使它经过原点O,得到直线l ,设P 是直线l 上一动点.(1) 求点A 的坐标;(2) 以点A 、B 、O 、P 为顶点的四边形中,有菱形、等腰梯形、直角梯形,请分别直接写出这些特殊四边形的顶点P 的坐标;(3) 设以点A 、B 、O 、P 为顶点的四边形的面积为S,点P 的横坐标为x,当46S +≤≤+,求x 的取值范围.15、(08江苏淮安)如图所示,在平面直角坐标系中.二次函数y=a(x-2)2-1图象的顶点为P ,与x 轴交点为 A 、B ,与y 轴交点为C .连结BP 并延长交y 轴于点D. (1)写出点P 的坐标;(2)连结AP ,如果△APB 为等腰直角三角形,求a 的值及点C 、D 的坐标; (3)在(2)的条件下,连结BC 、AC 、AD ,点E(0,b)在线段CD(端点C 、D 除外)上,将△BCD 绕点E 逆时针方向旋转90°,得到一个新三角形.设该三角形与△ACD 重叠部分的面积为S ,根据不同情况,分别用含b 的代数式表示S .选择其中一种情况给出解答过程,其它情况直接写出结果;判断当b 为何值时,重叠部分的面积最大?写出最大值.16.(08江苏连云港)如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2.将它们分别放置于平面直角坐标系中的AOB △,COD △处,直角边OB OD ,在x 轴上.一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至PEF △处时,设PE PF ,与OC 分别交于点M N ,,与x 轴分别交于点G H ,. (1)求直线AC 所对应的函数关系式;(2)当点P 是线段AC (端点除外)上的动点时,试探究:①点M 到x 轴的距离h 与线段BH 的长是否总相等?请说明理由;②两块纸板重叠部分(图中的阴影部分)的面积S 是否存在最大值?若存在,求出这个最大值及S 取最大值时点P 的坐标;若不存在,请说明理由.17.(08江苏连云港)我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆.例如线段AB 的最小覆盖圆就是以线段AB 为直径的圆.(1)请分别作出图1中两个三角形的最小覆盖圆(要求用尺规作图,保留作图痕迹,不写作法);(2)探究三角形的最小覆盖圆有何规律?请写出你所得到的结论(不要求证明); (3)某地有四个村庄E F G H ,,,(其位置如图2所示),现拟建一个电视信号中转站,为了使这四个村庄的居民都能接收到电视信号,且使中转站所需发射功率最小(距离越小,所需功率越小),此中转站应建在何处?请说明理由.18、(08江苏南京)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为(h)x ,两车之间的距离.......为(km)y ,图中的折线表示y 与x 之间的函数关系.根据图象进行以下探究: 信息读取(1)甲、乙两地之间的距离为 km ; (2)请解释图中点B 的实际意义; 图象理解(3)求慢车和快车的速度;(4)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围; 问题解决(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?A AB B CC 80100 (图1)GF(图2) y19、(08江苏南通)已知双曲线k y x=与直线14y x =相交于A 、B 两点.第一象限上的点M(m ,n )(在A 点左侧)是双曲线ky x=上的动点.过点B 作BD ∥y 轴交x 轴于点D .过N (0,-n )作NC ∥x 轴交双曲线ky x=于点E ,交BD 于点C . (1)若点D 坐标是(-8,0),求A 、B 两点坐标及k 的值.(2)若B 是CD 的中点,四边形OBCE 的面积为4,求直线CM 的解析式.(3)设直线AM 、BM 分别与y 轴相交于P 、Q 两点,且MA =pMP ,MB =qMQ ,求p -q 的值.20、(08江苏宿迁)如图,⊙O 的半径为1,正方形ABCD 顶点B 坐标为)0,5(,顶点D 在⊙O 上运动.(1)当点D 运动到与点A 、O 在同一条直线上时,试证明直线CD 与⊙O 相切;(2)当直线CD 与⊙O 相切时,求CD 所在直线对应的函数关系式;(3)设点D 的横坐标为x ,正方形ABCD 的面积为S ,求S 与x 之间的函数关系式,并求出S 的最大值与最小值.21、(08江苏泰州)已知二次函数)0(21≠++=a c bx ax y 的图象经过三点(1,0),(-3,0),(0,23-)。
2008年数学中考试题分类汇编(压轴题)
2008年数学中考试题分类汇编压轴题(2008年芜湖市)如图,已知 (4,0)A ,(0,4)B ,现以A 点为位似中心,相似比为9:4,将OB 向右侧放大,B 点的对应点为C . (1) 求C 点坐标及直线BC 的解析式;(2) 一抛物线经过B 、C 两点,且顶点落在x 轴正半轴上,求该抛物线的解析式并画出函数图象;(3) 现将直线BC 绕B 点旋转与抛物线相交与另一点P ,请找出抛物线上所有满足到直线AB距离为P .河北 周建杰 分类(2008年泰州市)29.已知二次函数y 1=ax 2+bx +c (a ≠0)的图像经过三点(1,0),(-3,0),(0,-23). (1)求二次函数的解析式,并在给定的直角坐标系中作出这个函数的图像;(5分) (2)若反比例函数y 2=x2(x >0)的图像与二次函数y 1=ax 2+bx +c (a ≠0)的图像在第一象限内交于点A (x 0,y 0),x 0落在两个相邻的正整数之间,请你观察图像,写出这两个相邻的正整数;(4分) (3)若反比例函数y 2=xk(x >0,k >0)的图像与二次函数y 1=ax 2+bx +c (a ≠0)的图像在第一象限内的交点A ,点A 的横坐标x 0满足2<x 0<3,试求实数k 的取值范围.(5分)(2008年南京市)28.(10分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为(h)x ,两车之间的距离.......为(km)y ,图中的折线表示y 与x 之间的函数关系.根据图象进行以下探究: 信息读取(1)甲、乙两地之间的距离为 km ; (2)请解释图中点B 的实际意义; 图象理解(3)求慢车和快车的速度;(4)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围; 问题解决(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?(2008年巴中市)已知:如图14,抛物线2334y x =-+与x 轴交于点A ,点B ,与直线34y x b =-+相交于点B ,点C ,直线34y x b =-+与y 轴交于点E .(1)写出直线BC 的解析式. (2)求ABC △的面积.(3)若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动(不与A B ,重合),同时,点N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出MNB △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,MNB △的面积最大,最大面积是多少?第29题图(第28题)y(2008年自贡市)抛物线)0(2≠++=a c bx ax y 的顶点为M ,与x 轴的交点为A 、B (点B 在点A 的右侧),△ABM 的三个内角∠M 、∠A 、∠B 所对的边分别为m 、a 、b 。
2008年全国中考数学压轴题精选7--8
2008年全国中考数学压轴题精选(七)61.(08广东中山22题)将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB 重合,直角边不重合,已知AB=8,BC=AD=4,AC 与BD 相交于点E ,连结CD . (1)填空:如图9,AC= ,BD= ;四边形ABCD 是 梯形. (2)请写出图9中所有的相似三角形(不含全等三角形).(3)如图10,若以AB 所在直线为x 轴,过点A 垂直于AB 的直线为y 轴建立如图10的平面直角坐标系,保持ΔABD 不动,将ΔA BC 向x 轴的正方向平移到ΔFGH 的位置,FH 与BD 相交于点P ,设AF=t ,ΔFBP 面积为S ,求S 与t 之间的函数关系式,并写出t 的取值值范围.(08广东中山22题解析)解:(1)…………………………1分等腰;…………………………2分(2)共有9对相似三角形.(写对3-5对得1分,写对6-8对得2分,写对9对得3分)①△DCE 、△ABE 与△ACD 或△BDC 两两相似,分别是:△DCE ∽△ABE ,△DCE ∽△ACD ,△DCE ∽△BDC ,△ABE ∽△ACD ,△ABE ∽△BDC ;(有5对)②△ABD ∽△EAD ,△ABD ∽△EBC ;(有2对) ③△BAC ∽△EAD ,△BAC ∽△EBC ;(有2对)所以,一共有9对相似三角形.…………………………………………5分(3)由题意知,FP ∥AE , ∴ ∠1=∠PFB , 又∵ ∠1=∠2=30°,∴ ∠PFB =∠2=30°,∴ FP =BP.…………………………6分过点P 作PK ⊥FB 于点K ,则FK BK ==∵ AF =t ,AB =8,∴ FB =8-t ,1(8)2BK t =-.在Rt △BPK 中,1tan 2(8)tan 30(8)26PK BK t t =⋅∠=-︒=-. ……………………7分 DCAE图9图10∴ △FBP的面积11(8))226S FB PK t t =⋅⋅=⋅-⋅-, ∴ S 与t 之间的函数关系式为:28)S t =-,或243S t =-+分 t 的取值范围为:08t ≤<. …………………………………………………………9分62.(08河北省卷26题)如图15,在Rt ABC △中,90C ∠=,50AB =,30AC =,D E F ,,分别是AC AB BC ,,的中点.点P 从点D 出发沿折线DE EF FC CD ---以每秒7个单位长的速度匀速运动;点Q 从点B 出发沿BA 方向以每秒4个单位长的速度匀速运动,过点Q 作射线QK AB ⊥,交折线BC CA -于点G .点P Q ,同时出发,当点P 绕行一周回到点D 时停止运动,点Q 也随之停止.设点P Q ,运动的时间是t 秒(0t >). (1)D F ,两点间的距离是 ;(2)射线QK 能否把四边形CDEF 分成面积相等的两部分?若能,求出t 的值.若不能,说明理由;(3)当点P 运动到折线EF FC -上,且点P 又恰好落在射线QK 上时,求t 的值; (4)连结PG ,当PG AB ∥时,请直接..写出t 的值.(08河北省卷26题解析)解:(1)25. (2)能.如图5,连结DF ,过点F 作FH AB ⊥于点H , 由四边形CDEF 为矩形,可知QK 过DF 的中点O 时,QK 把矩形CDEF 分为面积相等的两部分(注:可利用全等三角形借助割补法或用中心对称等方法说明), 此时12.5QH OF ==.由20BF =,HBF CBA △∽△,得16HB =. 故12.5161748t +==. (3)①当点P 在EF 上6(25)7t ≤≤时,如图6. 4QB t =,7DE EP t +=,图15B图6由PQE BCA △∽△,得7202545030t t--=. 21441t ∴=. ②当点P 在FC 上6(57)7t ≤≤时,如图7. 已知4QB t =,从而5PB t =,由735PF t =-,20BF =,得573520t t =-+. 解得172t =. (4)如图8,213t =;如图9,39743t =.(注:判断PG AB ∥可分为以下几种情形:当6027t <≤时,点P 下行,点G 上行,可知其中存在PG AB ∥的时刻,如图8;此后,点G 继续上行到点F 时,4t =,而点P 却在下行到点E 再沿EF 上行,发现点P 在EF 上运动时不存在PG AB ∥;当6577t ≤≤时,点P G ,均在FC 上,也不存在PG AB ∥;由于点P 比点G 先到达点C 并继续沿CD下行,所以在6787t <<中存在PG AB ∥的时刻,如图9;当810t ≤≤时,点P G ,均在CD 上,不存在PG AB ∥)63.(08湖北十堰25题)已知抛物线b ax ax y ++-=22与x 轴的一个交点为A(-1,0),与y 轴的正半轴交于点C .⑴直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点B 的坐标; ⑵当点C 在以AB 为直径的⊙P 上时,求抛物线的解析式;⑶坐标平面内是否存在点M ,使得以点M 和⑵中抛物线上的三点A 、B 、C 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由.B图7B图8B图9(08湖北十堰25题解析)解:⑴对称轴是直线:1=x ,点B 的坐标是(3,0). ……2分说明:每写对1个给1分,“直线”两字没写不扣分.⑵如图,连接PC ,∵点A 、B 的坐标分别是A(-1,0)、B (3,0),∴AB =4.∴.AB PC 242121=⨯==在Rt △POC 中,∵OP =PA -OA =2-1=1, ∴.PO PC OC 3122222=-=-=∴b =.3 ………………………………3分 当01=-=,y x 时,,a a 032=+--∴.a 33=………………………………4分 ∴.x x y 3332332++-= ………………5分 ⑶存在.……………………………6分理由:如图,连接AC 、BC .设点M 的坐标为),(y x M .①当以AC 或BC 为对角线时,点M 在x 轴上方,此时CM ∥AB ,且CM =AB .由⑵知,AB =4,∴|x|=4,3==OC y .∴x =±4.∴点M 的坐标为)3,4()3,4(-或M .…9分说明:少求一个点的坐标扣1分.②当以AB 为对角线时,点M 在x 轴下方. 过M 作MN ⊥AB 于N ,则∠MNB =∠AOC =90°.∵四边形AMBC 是平行四边形,∴AC =MB ,且AC ∥MB .∴∠CAO =∠MBN .∴△AOC ≌△BNM .∴BN =AO =1,MN =CO ∵OB =3,∴0N =3-1=2.∴点M 的坐标为(2,M . ……………………………12分说明:求点M 的坐标时,用解直角三角形的方法或用先求直线解析式,然后求交点M 的坐标的方法均可,请参照给分.综上所述,坐标平面内存在点M ,使得以点A 、B 、C 、M 为顶点的四边形是平行四边形.其坐标为123((2,M M M -.说明:①综上所述不写不扣分;②如果开头“存在”二字没写,但最后解答全部正确,不扣分。
2008年全国各地中考试题数学压轴题精选专辑【25页】
【编者的话】新课改后的中考数学压轴题已从传统的考察知识点多、难度大、复杂程度高的综合题型,逐步转向数形结合、动态几何、动手操作、实验探究等方向发展。
这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等。
从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等。
但纵观全国各省、市的中考数学试题,它的压轴题均是借鉴于上年各地的中考试题演变而来。
所以,研究上年各地的中考试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向。
只的这样,学生能力得以的培养,解题方法、技巧得以掌握,学生才能顺利地解答未来中考的压轴题。
2008年全国各地中考试题压轴题精选专辑几何与函数问题【知识纵横】客观世界中事物总是相互关联、相互制约的。
几何与函数问题就是从量和形的侧面去描述客观世界的运动变化、相互联系和相互制约性。
函数与几何的综合题,对考查学生的双基和探索能力有一定的代表性,通过几何图形的两个变量之间的关系建立函数关系式,进一步研究几何的性质,沟通函数与几何的有机联系,可以培养学生的数形结合的思想方法。
【典型例题】【例1】(上海市)已知AB?2,AD?4,?DAB?90,AD∥BC(如图).E是射线BC上的动点(点E 与点B不重合),M是线段DE的中点.(1)设BE?x,△ABM的面积为y,求y关于x的函数解析式,并写出函数的定义域;(2)如果以线段AB为直径的圆与以线段DE为直径的圆外切,求线段BE的长;(3)联结BD,交线段AM于点N,如果以A,N,D为顶点的三角形与△BME相似,求线段BE的长.?【例2】(山东青岛)已知:如图(1),在Rt△ACB中,?C?90,AC?4cm,BC?3cm,?A A B E C B 备用图 C 【思路点拨】(1)取AB中点H,联结MH;(2)先求出 DE; (3)分二种情况讨论。
2008年全国中考数学压轴题精选(六)
2008年全国中考数学压轴题精选(六)51.(08湖南郴州27题)(本题满分10分)如图10,平行四边形ABCD 中,AB =5,BC =10,BC 边上的高AM =4,E 为 BC 边上的一个动点(不与B 、C 重合).过E 作直线AB 的垂线,垂足为F . FE 与DC 的延长线相交于点G ,连结DE ,DF .. (1) 求证:ΔBEF ∽ΔCEG .(2) 当点E 在线段BC 上运动时,△BEF 和△CEG 的周长之间有什么关系?并说明你的理由. (3)设BE =x ,△DEF 的面积为 y ,请你求出y 和x 之间的函数关系式,并求出当x 为何值时,y 有最大值,最大值是多少?(08湖南郴州27题解析)(1) 因为四边形ABCD 是平行四边形, 所以AB DG 1分 所以,B GCE G BFE ∠=∠∠=∠所以BEF CEG △∽△ ·············································································· 3分 (2)BEF CEG △与△的周长之和为定值. ···················································· 4分 理由一:(利用作矩形的方法)过点C 作FG 的平行线交直线AB 于H ,因为GF ⊥AB ,所以四边形FHCG 为矩形.所以 FH =CG ,FG =CH 因此,BEF CEG △与△的周长之和等于BC +CH +BH由 BC =10,AB =5,AM =4,可得CH =8,BH =6, 所以BC +CH +BH =24 ··············································································· 6分理由二:由AB =5,AM =4,可知在Rt △BEF 与Rt △GCE 中,有:4343,,,5555EF BE BF BE GE EC GC CE ====, 所以,△BEF 的周长是125BE , △ECG 的周长是125CE 又BE +CE =10,因此BEF CEG 与的周长之和是24. ··································· 6分 (3)设BE =x ,则43,(10)55EF x GC x ==- 图10MBDCEF Gx AA M xH GF EDCB2所以21143622[(10)5]2255255y EF DG x x x x ==-+=-- ······························ 8分 配方得:2655121()2566y x =--+. 所以,当556x =时,y 有最大值. ·································································· 9分最大值为1216. ···························································································· 10分52(08湖南郴州28题)(本题满分10分)如图13,在平面直角坐标系中,圆M 经过原点O ,且与x 轴、y 轴分别相交于()()8006A B --,、,两点.(1)求出直线AB 的函数解析式;(2)若有一抛物线的对称轴平行于y 轴且经过点M ,顶点C 在⊙M 上,开口向下,且经过点B ,求此抛物线的函数解析式;(3)设(2)中的抛物线交x 轴于D 、E 两点,在抛物线上是否存在点P ,使得ABC PDE S S ∆∆=101?若存在,请求出点P 的坐标;若不存在,请说明理由.(08湖南郴州28题解析)解:(1)设AB 的函数表达式为.b kx y +=∵()(),6,0,0,8--B A ∴⎩⎨⎧=-+-=.6,80b b k ∴⎪⎩⎪⎨⎧-=-=.6,43b k∴直线AB 的函数表达式为364y x =--. ························································· 3分 (2)设抛物线的对称轴与⊙M 相交于一点,依题意知这一点就是抛物线的顶点C 。
2008年全国中考数学压轴题精选(5)(含答案)
2008年全国中考数学压轴题精选精析(五)1.(08云南双柏)25.(本小题(1)~(3)问共12分;第(4)、(5)问为附加题10分,每小题5分已知:抛物线y =ax 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB <OC )是方程x 2-10x +16=0的两个根,且抛物线的对称轴是直线x =-2.(1)求A 、B 、C 三点的坐标; (2)求此抛物线的表达式; (3)求△ABC 的面积;(4)若点E 是线段AB 上的一个动点(与点A 、点B 不重合),过点E 作EF ∥AC 交BC 于点F ,连接CE ,设AE 的长为m ,△CEF 的面积为S ,求S 与m 之间的函数关系式,并写出自变量m 的取值范围;(5)在(4)的基础上试说明S 是否存在最大值,若存在,请求出S 的最大值,并求出此时点E 的坐标,判断此时△BCE 的形状;若不存在,请说明理由.2. (08浙江湖州)24.(本小题12分)已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F是边BC上的一个动点(不与B C,重合),过F点的反比例函数(0)ky k x=>的图象与AC 边交于点E . (1)求证:AOE △与BOF △的面积相等; (2)记OEF ECF SS S =-△△,求当k 为何值时,S 有最大值,最大值为多少?(3)请探索:是否存在这样的点F ,使得将CEF △沿EF 对折后,C 点恰好落在OB 上?若存在,求出点F 的坐标;若不存在,请说明理由.3.(08浙江嘉兴)24.如图,直角坐标系中,已知两点(00)(20)O A ,,,,点B 在第一象限且OAB △为正三角形,OAB △的外接圆交y 轴的正半轴于点C ,过点C 的圆的切线交x 轴于点D .(1)求B C ,两点的坐标; (2)求直线CD 的函数解析式; (3)设E F ,分别是线段AB AD ,上的两个动点,且EF 平分四边形ABCD 的周长.试探究:AEF △的最大面积?4.(08浙江丽水)24.如图,在平面直角坐标系中,已知点A 坐标为(2,4),直线2=x与x 轴相交于点B ,连结OA ,抛物线2x y =从点O 沿OA 方向平移,与直线2=x交于点P ,顶点M到A 点时停止移动. (1)求线段OA所在直线的函数解析式; (2)设抛物线顶点M 的横坐标为m , ①用m 的代数式表示点P 的坐标; ②当m 为何值时,线段PB 最短;(3)当线段PB 最短时,相应的抛物线上是否存在点Q ,使△QMA 的面积与△PMA 的面积相等,若存在,请求出点Q 的坐标;若 不存在,请说明理由.5.(08浙江衢州)24、(本题14分)已知直角梯形纸片OABC 在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,32),C(0,32),点T 在线段OA 上(不与线段端点重合),将纸片折叠,使点A 落在射线AB 上(记为点A ′),折痕经过点T ,折痕TP 与射线AB 交于点P ,设点T 的横坐标为t ,折叠后纸片重叠部分(图中的阴影部分)的面积为S ; (1)求∠OAB 的度数,并求当点A ′在线段AB 上时,S 关于t 的函数关系式; (2)当纸片重叠部分的图形是四边形时,求t 的取值范围;(3)S 存在最大值吗?若存在,求出这个最大值,并求此时t 的值;若不存在,请说明理由。
2008年全国各地中考数学模拟试卷压轴题汇编含详细解析和评分标准(精选)
如图,二次函数m x mx y +++=)14(412(m <4)的图象与x 轴相交于点A 、B 两点. (1)求点A 、B 的坐标(可用含字母m 的代数式表示); (2)如果这个二次函数的图象与反比例函数xy 9=的图象相交于点C ,且 ∠BAC 的余弦值为4,求这个二次函数的解析式.解:(1)当时0=y ,0)14(412=+++m x mx ,………………………………(1分) 04)4(2=+++m x m x ,m x x -=-=21,4.……………………………(2分)∵4<m ,∴A (–4,0),B (m -,0)………………………………(4分) (2) 过点C 作CD ⊥x 轴,垂足为D ,cos ∠BAC 54==AC AD ,设AD =4k ,AC =5k , 则CD =3k . ……………………(5分) ∵OA =4,∴OD =4k –4, 点C (4k –4,3k ) . …………………………………(6分)∵点C 在反比例函数x y 9=的图象上,∴4493-=k k . ………………(7分) ,03442=--k k 23),(2121=-=k k 舍去. ……………………………(8分)∴C (2,29).……………………(1分) ∵点C 在二次函数的图象上,∴m m+++⨯=)14(2241292,………(1分) ∴,1=m ………………(10分) ∴二次函数的解析式为145412++=x x y . ……………………………(12分)如图,直角梯形ABCD 中,AD ∥BC ,∠A =90o ,∠C =60°,AD =3cm ,BC =9cm .⊙O 1的圆心O 1从点A 开始沿折线A —D —C 以1cm/s 的速度向点C 运动,⊙O 2的圆心O 2从点B 开始沿BA 边以3cm/s 的速度向点A 运动,⊙O 1半径为2cm ,⊙O 2的半径为4cm ,若O 1、O 2分别从点A 、点B 同时出发,运动的时间为t s(1)请求出⊙O 2与腰CD 相切时t 的值;(2)在0s <t ≤3s 范围内,当t 为何值时,⊙O 1与⊙O 2外切?解:(1)如图所示,设点O 2运动到点E 处时,⊙O 2与腰CD 相切. 过点E 作EF ⊥DC ,垂足为F ,则EF =4cm .………………1分 方法一,作EG ∥BC ,交DC 于G ,作GH ⊥BC ,垂足为H . 通过解直角三角形,求得EB =GH =3)3389(⨯-cm .………………4分 所以t =(3389-)秒.………………6分 方法二,延长EA 、FD 交于点P .通过相似三角形,也可求出EB 长. 方法三,连结ED 、EC ,根据面积关系,列出含有t 的方程,直接求t . (2)由于0s<t ≤3s ,所以,点O 1在边AD 上.………………7分 如图所示,连结O 1O 2,则O 1O 2=6cm .………………8分由勾股定理得,2226)336(=-+t t ,即01892=+-t t .………………10分 解得t 1=3,t 2=6(不合题意,舍去).………………12分(第26题)所以,经过3秒,⊙O 1与⊙O 2外切.………………14分3.(本题满分12分)正方形ABCD 的边长为4,P 是BC 上一动点,QP ⊥AP 交DC 于Q ,设PB =x ,△ADQ 的面积为y .(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围.(2)(1)中函数若是一次函数,求出直线与两坐标轴围成的三角形面积,若是二次函数,请利用配方法求出抛物线的对称轴和顶点坐标.(3)画出这个函数的图象.(4)点P 是否存在这样的位置,使△APB 的面积是△ADQ 的面积的32,若存在,求出BP 的长,若不存在,说明理由.解:(1)画出图形,设QC =z ,由Rt △ABP ~Rt △PCQ ,x -44=z x , z =4)4(x x -,①y =21×4×(4-z ),② 第25题图(1)把①代入② y=21x 2-2x +8(0<x <4). B B26(2)y=21x 2-2x +8=21(x -2)2+6. ∴对称轴为x =2,顶点坐标为(2,6).(3)如图所示 第25题图(2) (4)存在,由S △APB =32S △ADQ ,可得y =3x , ∴21x 2—2x +8=3x , ∴x =2,x =8(舍去),∴当P 为BC 的中点时,△P AB 的面积等于△ADQ 的面积的32.4.(14分)函数y =-43x -12的图象分别交x 轴,y 轴于A ,C 两点, (1)求出A 、C 两点的坐标.(2)在x 轴上找出点B ,使△ACB~△AOC ,若抛物线经过A 、B 、C 三点,求出抛物线的解析式.(3)在(2)的条件下,设动点P 、Q 分别从A 、B 两点同时出发,以相同的速度沿AC 、BA 向C 、A 运动,连结PQ ,设AP=m ,是否存在m 值,使以A 、P 、Q 为顶点的三角形与△ABC 相似,若存在,求出所有的m 值;若不存在,请说明理由.解.(1)A (-16,0) C (0,-12) ··································································· 2分 (2)过C 作CB ⊥AC ,交x 轴于点B ,显然,点B 为所求, ······················ 3分 则OC2=OA ×OB 此时OB=9,可求得B (9,0) ·········································· 5分 此时经过A ,B ,C 三点的抛物线的解析式为:y=121x2+127x-12 ·································································································· 8分(3)当PQ ∥BC 时,△APQ ~△ACB ······························································· 9分得AC AP =AB AQ ········································································································ 10分 ∴20m =2525m 解得m=9100 ············································································ 11分当PQ ⊥AB 时,△APQ ~△ACB ········································································· 12分得:AC AQ =AB AP ···································································································· 13分 ∴2025m -=25m 解得m=9125 ········································································ 14分5.(本题满分10分)如图,在直角坐标系中,以点A(3,0)为圆心,以32为半径的圆与x 轴交于B 、C 两点,与y 轴交于D 、E 两点. (1)求D 点坐标.(2)若B 、C 、D 三点在抛物线c bx ax y ++=2上,求这个抛物线的解析式.(3)若⊙A 的切线交x 轴正半轴于点M ,交y 轴负半轴于点N ,切点为P ,∠OMN=30º,试判断直线MN 是否经过所求抛物线的顶点?说明理由.解:(1)连结AD ,得OA=3,AD=23 ……………………1分 ∴OD =3, D(0,-3) ………………………………………………2分(2)由B (-3,0),C (33,0),D (0,-3)三点在抛物线c bx ax y ++=2上,……3分得 ⎪⎩⎪⎨⎧=-++=+-=c c b a c b a 333270330 解得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-==333231c b a ………………………………5分∴3332312--=x x y …………………………………………………………6分 (3)连结AP ,在Rt △APM 中,∠PMA==30º,AP=23 ∴AM =43, M (53,0) …………………………7分5333530tan =⋅=︒⋅=MO ONxx∴N (0,-5) ……………………………………………8分 直线MN 解析式为:533-=x y 抛物线顶点坐标为(3,-4) ………………………………9分∵45333533-=-⨯=-x ∴抛物线顶点在直线MN 上. ……………………………10分6、(12分)如图3.以A(0,3)为圆心的圆与x 轴相切于坐标点O,与y 轴相交于点B,弦BD 的延长线交x 轴的负半轴于点E, 且∠BEO = 600 , AD 的延长线交x 轴于点C. (1)分别求点E, C 的坐标.(2)求经过A 、C 两点,且以过E 而平行于y 轴的直线为对称轴的抛物线的函数解析式.(3)设抛物线的对称轴与AC 的交点为M ,试判断以M 点为圆心, ME 为半径的圆与☉A 的位置关系,并说明理由.7、一个圆柱的一条母线为AB,BC 是上底面的直径.一只蚂蚁从点A 出发,沿着圆柱的表面爬行到点C .⑴如图①,如果底面周长为24cm,高为4cm,那么蚂蚁的最短行程是多少cm?⑵如图②,如果底面半径为rcm,高为hcm,那么你认为蚂蚁可能有哪几种行程较短的路径?试画出平面展开图说明路径(至少画两种不同的路径),不必说明理由.⑶通过计算比较②中各种路径的长度,你能得到什么一般性的结论?或者说,蚂蚁选择哪条路径可使行程最短?BB8、(12分)某企业有员工300人,生产A 种产品,平均每人每年可创造利润m 万元(m 为大于零的常数)。
2008年全国中考数学压轴题精选(四)
- 1 - 2008年全国中考数学压轴题精选精析(四)46.(08四川凉山)25.(9分)如图,在ABC △中90ACB ∠= ,D 是AB 的中点,以DC 为直径的O 交ABC △的三边,交点分别是G F E ,,点.GE CD ,的交点为M,且ME =:2:5MD CO =.(1)求证:GEF A ∠=∠.(2)求O 的直径CD 的长.(3)若cos 0.6B ∠=,以C 为坐标原点,CA CB ,所在的直线分别为X 轴和Y 轴,建立平面直角坐标系,求直线AB 的函数表达式.(08四川凉山25题解析)25.(9分) (1)连接DF CD 是圆直径,90CFD ∴∠= ,即DF BC ⊥90ACB ∠= ,DF AC ∴∥. ························································································· 1分 BDF A ∴∠=∠. 在O 中BDF GEF ∠=∠,GEF A ∴∠=∠. ····························· 2分(2)D 是Rt ABC △斜边AB 的中点,DC DA ∴=,DCA A ∴∠=∠,又由(1)知GEF A ∠=∠,DCA GEF ∴∠=∠.又OME EMC ∠=∠ ,OME ∴△与EMC △相似 ··························································· 3分 OM ME ME MC∴= 2ME OM MC ∴=⨯ ··················································································· 4分又ME =,296OM MC ∴⨯==:2:5MD CO = ,:3:2OM MD ∴=,:3:8OM MC ∴= ········································· 5分 设3OM x =,8MC x =,3896x x ∴⨯=,2x ∴=∴直径1020CD x ==. ······································································································· 6分 (3)Rt ABC △斜边上中线20CD =,40AB ∴=在Rt ABC △中cos 0.6BC B AB∠==,24BC ∴=,32AC ∴= ································· 7分 设直线AB 的函数表达式为y kx b =+, 根据题意得(320)A ,,(024)B ,第25题图第25题图- 2 - 024320k b k b ⨯+=⎧∴⎨⨯+=⎩ 解得3424k b ⎧=-⎪⎨⎪=⎩ ∴直线AB 的函数解析式为3244y x =-+(其他方法参照评分) ···································· 9分。
2008年中考二次函数压轴题(2)范文
一、信息迁移1. (2008湖南省益阳市,12分)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图12,点A 、B 、C 、D 分别是“蛋圆”与坐标轴的交点,已知点D 的坐标为(0,-3),AB 为半圆的直径,半圆圆心M 的坐标为(1,0),半圆半径为2.(1) 请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围; (2)你能求出经过点C 的“蛋圆”切线的解析式吗?试试看;(3)开动脑筋想一想,相信你能求出经过点D 的“蛋圆”切线的解析式.二、猜想、探究题2. (2008吉林省长春市,10分)在直角坐标系中,抛物线2y x bx c =++经过点(010),和点(42),.(1)求这条抛物线的解析式.(3分)(2)如图,在边长一定的矩形ABCD 中,1CD =.点C 在y 轴右侧沿抛物线2y x bx c =++滑动,在滑动过程中CD x ∥轴,AB 在CD 的下方.当点D 在y 轴上时,AB 落在x 轴上. ①求边BC 的长.(2分)②当矩形ABCD 在滑动过程中被x 轴分成两部分的面积比为1:4,求点C 的坐标.(5分)3. (2008吉林省吉林市,10分)如图,在平面直角坐标系中,矩形OABC 的顶点(03)A ,、(10)C -,.将矩形OABC 绕原点O 顺时针方向旋转90,得到矩形OA B C '''.设直线BB '与x 轴交于点M 、与y 轴交于点N ,抛物线经过点C 、M 、N .解答下列问题:(1)设直线BB '表示的函数解析式为y mx n =+,求m n 、; (2)求抛物线表示的二次函数的解析式;(3)在抛物线上求出使PB C OABC S S ''=△矩形的所有点P 的坐标.x4. (2008江苏省苏州市,9分)如图,抛物线(1)(5)y a x x =+-与x 轴的交点为M N ,.直线y kx b =+与x 轴交于(20)P -,,与y 轴交于C .若A B ,两点在直线y kx b =+上,且AO BO ==,AO BO ⊥.D 为线段MN 的中点,OH 为Rt OPC △斜边上的高.(1)OH 的长度等于 ;k = ,b = .(2)是否存在实数a ,使得抛物线(1)(5)y a x x =+-上有一点E ,满足以D N E ,,为顶点的三角形与AOB △相似?若不存在,说明理由;若存在,求所有符合条件的抛物线的解析式,同时探索所求得的抛物线上是否还有符合条件的E 点(简要说明理由);并进一步探索对符合条件的每一个E 点,直线NE 与直线AB 的交点G 是否总满足10PB PG <5. (2008江苏省泰州市,14分)已知二次函数21(0)y ax bx c a =++≠的图像经过三点(10),,(30)-,,302⎛⎫- ⎪⎝⎭,.(1)求二次函数的解析式,并在给定的直角坐标系中作出这个函数的图像;(5分)(2)若反比例函数22y x=(0x >)的图像与二次函数21y ax bx c =++(0a ≠)的图像在第一象限内交于点00()A x y ,,0x 落在两个相邻的正整数之间.请你观察图像,写出这两个相邻的正整数;(4分)(3)若反比例函数2ky x=(00k x >>,)的图像与二次函数21y ax bx c =++(0a ≠)的图像在第一象限内的交点为A ,点A 的横坐标0x 满足023x <<,试求实数k 的取值范围.(5分)6. (2008江苏省镇江市,8分)如图,在直角坐标系xOy 中,点P 为函数214y x =在第一象限内的图象上的任一点,点A 的坐标为(01),,直线l 过(01)B -,且与x 轴平行,过P 作y 轴的平行线分别交x 轴,l 于C Q ,,连结AQ 交x 轴于H ,直线PH 交y 轴于R .(1)求证:H 点为线段AQ 的中点; (2)求证:①四边形APQR 为平行四边形;②平行四边形APQR 为菱形;(3)除P 点外,直线PH 与抛物线214y x =有无其它公共点?并说明理由.xx本题是由中考数学研究组卷而成,需要更多中考试题请你联系QQ:3/11班级_____________________ 姓名____________________ 考场号____________ 考号___________---------------------------------------------------------密--------------------------------封--------------------------------线------------------------------------------------(图2)(图3)FFF(图1)7. (2008江苏省徐州市,10分)如图1,一副直角三角板满足AB BC =,AC DE =,90ABC DEF ∠=∠=,30EDF ∠=.【操作】将三角板DEF 的直角顶点E 放置于三角板ABC 的斜边AC 上,再将三角板....DEF ...绕点..E .旋转..,并使边DE 与边AB 交于点P ,边EF 与边BC 交于点Q . 【探究一】在旋转过程中, (1)如图2,当1CEEA=时,EP EQ 与满足怎样的数量关系?并给出证明; (2)如图3,当2CEEA=时,EP EQ 与满足怎样的数量关系?并说明理由; (3)根据你对⑴、⑵的探究结果,试写出当CEm EA=时,E PE Q 与满足的数量关系式为 ,其中m 的取值范围是 (直接写结论,不必证明). 【探究二】若2CEEA=且30AC =cm ,连P Q ,设△EPQ 的面积为S (2cm ),在旋转过程中, (1)S 是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由; (2)随着S 取不同的值,对应△EPQ 的个数有哪些变化?求出相应S 的值或取值范围.解:8. (2008江苏省盐城市,12分)如图,直线3y x b =+经过点B(2),且与x 轴交于点A .将抛物线213y x =沿x 轴作左右平移,记平移后的抛物线为C ,其顶点为P . (1)求∠BAO 的度数;(2)抛物线C 与y 轴交于点E ,与直线AB 交于两点,其中一个交点为F . 当线段EF ∥x 轴时,求平移后的抛物线C 对应的函数关系式; (3)在抛物线213y x =平移过程中,将△PAB 沿直线AB 翻折得到△DAB ,点D 能否落在抛物线C 上?如能,求出此时抛物线C 顶点P 的坐标;如不能,说明理由.9. (2008江苏省扬州市,14分)已知:矩形ABCD 中,1AB =,点M 在对角线AC 上,直线l 过点M 且与AC 垂直,与AD 相交于点E .(1)如果直线l 与边BC 相交于点H (如图1),AM =31AC 且AD =a ,求AE 的长;(用含a 的代数式表示) (2)在(1)中,又直线l 把矩形分成的两部分面积比为2∶5,求a 的值;(3)若AM =41AC ,且直线l 经过点B (如图2),求AD 的长;(4)如果直线l 分别与边AD 、AB 相交于点E 、F ,AM =41AC .设AD 长为x ,△AEF 的面积为y ,求y与x 的函数关系式,并指出x 的取值范围.(求x 的取值范围可不写过程)10. (2008湖南省湘潭市,10分)已知抛物线2y ax bx c =++经过点A (5,0)、B (6,-6)和原点. (1)求抛物线的函数关系式;(2)若过点B 的直线y kx b '=+与抛物线相交于点C (2,m ),请求出∆OBC 的面积S 的值. (3)过点C 作平行于x 轴的直线交y 轴于点D ,在抛物线对称轴右侧位于直线DC 下方的抛物线上,任取一点P ,过点P 作直线PF 平行于y 轴交x 轴于点F ,交直线DC 于点E . 直线PF 与直线DC 及两坐标轴围成矩形OFED (如图),是否存在点P ,使得∆OCD 与∆CPE 相似?若存在,求出点P 的坐标;若不存在,请说明理由.备用图A D CB E HM l 图1 A DC BE M 图2 l xyF -2 -4-6ACE PDB5 2 1 24 6 G本题是由中考数学研究组卷而成,需要更多中考试题请你联系QQ:5/11班级_____________________ 姓名____________________ 考场号____________ 考号___________---------------------------------------------------------密--------------------------------封--------------------------------线------------------------------------------------11.(2008江西省南昌市,12分)如图,抛物线2212191128y ax ax P y ax ax ⎛⎫=--+-=-- ⎪⎝⎭经过点且与抛物线,,相交于A B ,两点.(1)求a 值;(2)设211y ax ax =--+与x 轴分别交于M N ,两点(点M 在点N 的左边),221y ax ax =--与x 轴分别交于E F ,两点(点E 在点F 的左边),观察M N E F ,,,四点的坐标,写出一条正确的结论,并通过计算说明;(3)设A B ,两点的横坐标分别记为A B x x ,,若在x 轴上有一动点(0)Q x ,,且A B x x x ≤≤,过Q 作一条垂直于x 轴的直线,与两条抛物线分别交于C ,D 两点,试问当x 为何值时,线段CD 有最大值?其最大值为多少?12. (2008辽宁省十二市,14分)如图,在平面直角坐标系中,直线y =与x 轴交于点A ,与y 轴交于点C,抛物线2(0)y ax x c a =-+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标;(2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由;(3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.13. (2008辽宁省大连市,10分)如左图,点C ,B 分别为抛物线C 1:121+=x y 、抛物线C 2:22222c x b x a y ++=的顶点,分别过点B ,C 作x 轴的平行线,交抛物线C 1,C 2于点A ,D ,且AC =BD . (1)求点A 的坐标;(2)如右图,若将抛物线C 1:“121+=x y ”改为抛物线“11212c x b x y ++=”,其他条件不变,求CD 的长和2a 的值.附加题(5分):如右图,若将抛物线C 1:“121+=x y ”改为抛物线“11211c x b x a y ++=”,其他条件不变,求21b b +的值.14. (2008辽宁省沈阳市,14分)如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,OB =ABOC 绕点O 按顺时针方向旋转60后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c =++过点A E D ,,.(1)判断点E 是否在y 轴上,并说明理由; (2)求抛物线的函数表达式;(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.15. 在平面直角坐标系中给定以下五个点17(30)(14)(03)(10)24A B C D E ⎛⎫-- ⎪⎝⎭,,,,,,,,,.(1)请从五点中任选三点,求一条以平行于y 轴的直线为对称轴的抛物线的解析式; (2)求该抛物线的顶点坐标和对称轴,并画出草图; (3)已知点1514F ⎛⎫- ⎪⎝⎭,在抛物线的对称轴上,直线174y =过点1714G ⎛⎫- ⎪⎝⎭,且垂直于对称轴.验证:以(10)E ,为圆心,EF 为半径的圆与直线174y =相切.请你进一步验证,以抛物线上的点1724D ⎛⎫ ⎪⎝⎭,为圆心DF 为半径的圆也与直线174y =相切.由此你能猜想到怎样的结论.16. (2008内蒙古呼和浩特市,10分)如图已知二次函数图象的顶点坐标为(11)C ,,直线y kx m=+的图象与该二次函数的图象交于A B ,两点,其中A 点坐标为51324⎛⎫ ⎪⎝⎭,,B 点在y 轴上,直线与x 轴的交点为F .P 为线段AB 上的一个动点(点P 与A B ,不重合),过P 作x 轴的垂线与这个二次函数的图象交于E 点.(1)求k m ,的值及这个二次函数的解析式;x本题是由中考数学研究组卷而成,需要更多中考试题请你联系QQ:7/11班级_____________________ 姓名____________________ 考场号____________ 考号___________---------------------------------------------------------密--------------------------------封--------------------------------线------------------------------------------------(2)设线段PE 的长为h ,点P 的横坐标为x ,求h 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)D 为直线AB 与这个二次函数图象对称轴的交点,在线段AB 上是否存在点P ,使得以点P E D ,,为顶点的三角形与BOF △相似?若存在,请求出P 点的坐标;若不存在,请说明理由.17. (2008内蒙古呼伦贝尔市,13分)如图:已知抛物线的顶点为(21)A ,,且经过原点O ,与x 轴的另一个交点为B .(1)求抛物线的解析式;(2)在抛物线上求点M ,使MOB △的面积是AOB △面积的3倍;(3)连结OA ,AB ,在x 轴下方的抛物线上是否存在点N ,使OBN △与OAB △相似? 若存在,求出N 点的坐标;若不存在,说明理由.18. (2008青海省西宁市,3分)如图,已知半径为1的1O 与x 轴交于A B ,两点,OM 为1O 的切线,切点为M ,圆心1O 的坐标为(20),,二次函数2y x bx c =-++的图象经过A B ,两点. (1)求二次函数的解析式;(2)求切线OM 的函数解析式;(3)线段OM 上是否存在一点P ,使得以P O A ,,为顶点的三角形与1OO M △相似.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.19. (2008山东省,12分)在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM =x .(1)用含x 的代数式表示△MNP 的面积S ; (2)当x 为何值时,⊙O 与直线BC 相切?(3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少?20. (2008山东省济南市,4分)已知:抛物线2y ax bx c =++(a ≠0),顶点C (1,3-),与x 轴交于B D 图2 B图1 图3A、B两点,(10)A-,.(1)求这条抛物线的解析式.(2)如图,以AB为直径作圆,与抛物线交于点D,与抛物线对称轴交于点E,依次连接A、D、B、E,点P为线段AB上一个动点(P与A、B两点不重合),过点P作PM⊥AE于M,PN⊥DB于N,请判断PM PNBE AD+是否为定值? 若是,请求出此定值;若不是,请说明理由.(3)在(2)的条件下,若点S是线段EP上一点,过点S作FG⊥EP,FG分别与边.AE、BE相交于点F、G(F与A、E不重合,G与E、B不重合),请判断PA EFPB EG=是否成立.若成立,请给出证明;若不成立,请说明理由.21. (2008山东省临沂市,3分)如图,已知抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,3).⑴求抛物线的解析式;⑵设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;⑶若点M是抛物线上一点,以B、C、D、M为顶点的四边形是直角梯形,试求出点M的坐标.三、动态几何22. (2008湖南省郴州市,10分)如图,平行四边形ABCD中,AB=5,BC=10,BC边上的高AM=4,E为BC边上的一个动点(不与B、C重合).过E作直线AB的垂线,垂足为F.FE与DC的延长线相交于点G,连结DE,DF..(1)求证:ΔBEF ∽ΔCEG.(2)当点E在线段BC上运动时,△BEF和△CEG的周长之间有什么关系?并说明你的理由. (3)设BE=x,△DEF的面积为y,请你求出y和x之间的函数关系式,并求出当x为何值时,y有最大值,最大值是多少?23. (2008吉林省长春市,10分)如图,在直角坐标系中,四边形OABC为矩形,(80)A,、(06)C,,点M是OA的中点.P、Q两点同时从点M出发,点P沿x轴向右运动;点Q沿x轴先向左运动MBDCEFGxA本题是由中考数学研究组卷而成,需要更多中考试题请你联系QQ:9/11班级_____________________ 姓名____________________ 考场号____________ 考号___________---------------------------------------------------------密--------------------------------封--------------------------------线------------------------------------------------至原点O 后,再向右运动到点M 停止,点P 随之停止运动.P 、Q 两点运动的速度均为每秒1个单位.以PQ 为一边向上作正方形PRLQ .设点P 的运动时间为t (秒),正方形PRLQ 与矩形OABC 重叠部分(阴影部分)的面积为S (平方单位). (1)用含t 的代数式表示点P 的坐标.(1分)(2)分别求出当15t t ==,时,线段PQ 的长.(2分)(3)求S 与t 之间的函数关系式.(5分)(4)连结AC ,当正方形PRLQ 与ABC △重叠部分为三角形时,直接写出....t 的取值范围.(2分) (答题卡上的备用图供解题时使用)24. (2008吉林省吉林市,10分)如图①,在长为6厘米,宽为3厘米的矩形PQMN 中,有两张边长分别为2厘米和1厘米的正方形纸片ABCD 和EFGH ,且BC 在PQ 上,EF 在PN 上,1PB =厘米,12PF =厘米.从初始时刻开始,纸片ABCD 沿PQ 以2厘米/秒的速度向右平移,同时纸片EFGH 沿PN 以1厘米/秒的速度向上平移,当点C 与点Q 重合时,两张纸片同时停止移动.设平移时间为t 秒时(如图②),纸片ABCD 扫过的面积为1S ,纸片EFGH 扫过的面积为2S ,AP PG GA 、、所围成图形的面积为S (这里规定线段的面积为0,扫过的面积含纸片的面积).解答下列问题: (1)当12t =时,PC = ,PA = , 此时PA PG GA +(填“=”或“≠”); (2)求S 与之间的函数关系式;(3)请探索是否存在t 值12t ⎛⎫> ⎪⎝⎭,使1245S S S +=+.若存在,求出t 值;若不存在,说明理由.25. (2008江苏省连云港市,14分)如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2.将它们分别放置于平面直角坐标系中的AOB △,COD △处,直角边OB OD,在x轴上.一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至PEF △处时,设PE PF ,与OC 分别交于点M N ,,与x 轴分别交于点G H ,.(1)求直线AC 所对应的函数关系式;(2)当点P 是线段AC (端点除外)上的动点时,试探究:①点M 到x 轴的距离h 与线段BH 的长是否总相等?请说明理由; ②两块纸板重叠部分(图中的阴影部分)的面积S 是否存在最大值?若存在,求出这个最大值及S 取最大值时点P 的坐标;若不存在,请说明理由.① ② NMQ P (备用图)26. (2008江苏省无锡市,9分)已知抛物线22y ax x c =-+与它的对称轴相交于点(14)A -,,与y 轴交于C ,与x 轴正半轴交于B .(1)求这条抛物线的函数关系式; (2)设直线AC 交x 轴于D P ,是线段AD 上一动点(P 点异于A D ,),过P 作PE x ∥轴交直线AB 于E ,过E 作EF x ⊥轴于F ,求当四边形OPEF 的面积等于72时点P 的坐标.27. (2008辽宁省十二市,12分)如图,在Rt ABC △中,90A ∠=,AB AC =,BC =等腰梯形DEFG (GF DE ∥)的底边DE 与BC 重合,两腰分别落在AB AC ,上,且G F ,分别是AB AC ,的中点.(1)求等腰梯形DEFG 的面积;(2)操作:固定ABC △,将等腰梯形DEFG 以每秒1个单位的速度沿BC 方向向右运动,直到点D 与点C 重合时停止.设运动时间为x 秒,运动后的等腰梯形为DEF G ''(如图15).探究1:在运动过程中,四边形BDG G '能否是菱形?若能,请求出此时x 的值;若不能,请说明理由.探究2:设在运动过程中ABC △与等腰梯形DEFG 重叠部分的面积为y ,求y 与x 的函数关系式.28. (2008内蒙古乌兰察布市,14分)两个直角边为6的全等的等腰直角三角形Rt AOB △和Rt CED △,按如图一所示的位置放置,点O 与E 重合.(1)Rt AOB △固定不动,Rt CED △沿x 轴以每秒2个单位长度的速度向右运动,当点E 运动到与点B 重合时停止,设运动x 秒后,Rt AOB △和Rt CED △的重叠部分面积为y ,求y 与x 之间的函数关系式;(2)当Rt CED △以(1)中的速度和方向运动,运动时间2x =秒时, Rt CED △运动到如图二所示的位置,若抛物线214y x bx c =++过点A G ,,求抛物线的解析式; (3)现有一动点P 在(2)中的抛物线上运动,试问点P 在运动过程中是否存在点P 到x 轴或y 轴的距离为2的情况,若存在,请求出点P 的坐标;若不存在,请说明理由.FGAF 'G 'A F G (D )BC (E )本题是由中考数学研究组卷而成,需要更多中考试题请你联系QQ: 11/11 班级_____________________ 姓名____________________ 考场号____________ 考号___________ ---------------------------------------------------------密--------------------------------封--------------------------------线------------------------------------------------ 29. (2008山东省济南市,4分)已知:如图,直线y =+x 轴相交于点A ,与直线y =相交于点P . (1)求点P 的坐标. (2)请判断OPA ∆的形状并说明理由. (3)动点E 从原点O 出发,以每秒1个单位的速度沿着O →P →A 的路线向点A 匀速运动(E 不与点O 、A 重合),过点E 分别作EF ⊥x 轴于F ,EB ⊥y 轴于B .设运动t 秒时,矩形EBOF 与△OP A 重叠部分的面积为S . 求:① S 与t 之间的函数关系式. ② 当t 为何值时,S 最大,并求S 的最大值. 30. (2008山东省济宁市,12分)ABC △中,90C ∠=,60A ∠=,2AC =cm .长为1cm 的线段MN 在ABC △的边AB 上沿AB 方向以1cm/s 的速度向点B 运动(运动前点M 与点A 重合).过M N ,分别作AB 的垂线交直角边于P Q ,两点,线段MN 运动的时间为t s . (1)若AMP △的面积为y ,写出y 与t 的函数关系式(写出自变量t 的取值范围); (2)线段MN 运动过程中,四边形MNQP 有可能成为矩形吗?若有可能,求出此时t 的值;若不可能,说明理由; (3)t 为何值时,以C P Q ,,为顶点的三角形与ABC △相似?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以可设点 P 的坐标为 (a,3 a) .
A
P
IC
M
N
II
过点 M 作 x 轴的垂线,设垂足为点 K ,则有 MK h .
O G KB H
E
F
x
因为点 M 在直线 OC 上,所以有 M (2 h, h) . · ····· 6 分
(第 24 题答图)
因为纸板为平行移动,故有 EF ∥ OB ,即 EF ∥ GH .
(1) 写出点 P 的坐标;
(2) 连结 AP,如果△ APB 为等腰直角三角形,求 a 的值及点 C、D 的坐标;
(3) 在 (2) 的条件下, 连结 BC、AC、AD,点 E(0 ,b) 在线段 CD(端点 C、D 除外 ) 上 , 将△ BCD
绕点 E 逆时针方向旋转 90°,得到一个新三角形. 设该三角形与△ ACD 重叠部分的面积为 S,
将点 M 的坐标代入,可得 h 4h (3 3a) .解得 h a 1.
而 BH OH OB a 1,从而总有 h BH . ················ 10 分
②由①知,点 M 的坐标为 (2 a 2,a 1) ,点 N 的坐标为 a,1 a . 2
S S△ONH S△ONG
1 a2
3 a
3
解:( 1) 900; · ······························
1分
(2)图中点 B 的实际意义是:当慢车行驶 4h 时,慢车和快车相遇. ······· 2 分
(3)由图象可知,慢车 12h 行驶的路程为 900km,
900
所以慢车的速度为
75(km / h) ; ····················
y
求出这个最大
A
P
IC
M
N
II
O G B HD
E
F
x
(第 24 题图)
(08 江苏连云港 24 题解析) 24.解:( 1)由直角三角形纸板的两直角边的长为
知 A, C 两点的坐标分别为 (1,2),(2,1) .
1 和 2,
设直线 AC 所对应的函数关系式为 y kx b . ················ 2 分
1 (3
a) .
2
2
1
3
所以 OG OH GH a (3 a) ( a 1) .
2
2
故 G 点坐标为
3 (a
1),0
.
2
8分 10 分
设直线 PG 所对应的函数关系式为 y cx d ,
3 a ca d,
c2
则有
0
3 c( a
1)
解得
d.
d
3 3a
2
所以,直线 PG 所对的函数关系式为 y 2x (3 3a) . ············ 8 分
112.5km ,所以两列快车出
发的间隔时间是 112.5 150 0.75(h) ,即第二列快车比第一列快车晚出发 0.75h . · 10 分
17( 08 江苏南通)(第 28 题 14 分)
28.已知双曲线
y
k 与直线 y
1 x 相交于
A、B 两点 .第一象限上的点
M( m,n)(在 A 点
x
4
左侧)是双曲线
y
k 上的动点 . 过点
B 作 BD∥ y 轴交
x 轴于点
D. 过 N( 0,- n)作
x
NC∥ x 轴交双曲线 y k 于点 E,交 BD于点 C. x
( 1)若点 D坐标是(- 8, 0),求 A、B 两点坐标及 k 的值 . ( 2)若 B 是 CD的中点,四边形 OBCE的面积为 4,求直线 CM的解析式 . ( 3)设直线 AM、BM分别与 y 轴相交于 P、Q两点,且 MA=pMP, MB=qMQ,求 p- q 的值 .
若三角形为直角或钝角三角形,则其最小覆盖圆是以三角形最长边(直角或钝角所对的边)
为直径的圆. ·······························
8分
( 3)此中转站应建在 △ EFH 的外接圆圆心处(线段 EF 的垂直平分线与线段 EH 的垂直
平分线的交点处) . · ··············· 理由如下:
别放置于平面直角坐标系中的 △ AOB , △COD 处,直角边 OB,OD 在 x 轴上.一直尺
从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至
△PEF 处时,设
PE,PF 与 OC 分别交于点 M, N ,与 x 轴分别交于点 G,H .
(1)求直线 AC 所对应的函数关系式; (2)当点 P 是线段 AC (端点除外)上的动点时,试探究: ①点 M 到 x 轴的距离 h 与线段 BH 的长是否总相等?请说明理由; ②两块纸板重叠部分 (图中的阴影部分) 的面积 S 是否存在最大值?若存在, 值及 S 取最大值时点 P 的坐标;若不存在,请说明理由.
-4 -3 -2 -1 0
-1
123 x
-2
-3
-4
(第 28题)
13( 08 江苏淮安)(本题答案暂缺) 28.( 本小题 14 分 )
如图所示,在平面直角坐标系中.二次函数
y=a(x-2) 2-1 图象的顶点为 P,与 x 轴交点
为 A 、 B,与 y 轴交点为 C.连结 BP并延长交 y 轴于点 D.
则 EMF
EHF 50.0o 53.8o EGF .
故点 G 在 e O 内,从而 e O 也是四边形 EFGH 的最小覆盖圆.
所以中转站建在 △ EFH 的外接圆圆心处,能够符合题中要求.
························
12 分
16( 08 江苏南京) 28.( 10 分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车
自变量 x 的取值范围是 4 ≤ x ≤ 6. ·····················
(5)慢车与第一列快车相遇 30 分钟后与第二列快车相遇,此时,慢车的行驶时间是
把 x 4.5代入 y 225x 900 ,得 y 112.5 .
7分 4.5h .
此时,慢车与第一列快车之间的距离等于两列快车之间的距离是
E (第 25 题图 2)
(08 江苏连云港 25 题解析) 25.解:( 1)如图所示: A
80o
············· A
100o
4分
B
CB
C
(第 25 题答图 1)
(注:正确画出 1 个图得 2 分,无作图痕迹或痕迹不正确不得分)
(2)若三角形为锐角三角形,则其最小覆盖圆为其外接圆;
··········· 6 分
3 ( a 1) . ···············
22所以源自3 h3 (a1) ,得 h
a 1 ,而 BH
OH
OB
a 1,
22
从而总有 h BH . ····························
法二:故 Rt△ PHG ∽ Rt△ PFE ,可得 GH
EF 1
.
PH PF 2
故 GH
1 PH
10 分
M G
由 HEF
HEG GEF 47.8o 35.1o 82.9o ,
EHF 50.0o , EFH 47.1o ,
H
32.4o
49.8
o
53.8o
50.0o
44.0o
47.1o F
47.8 o35.1o
E (第 25 题答图 2)
故 △EFH 是锐角三角形, 所以其最小覆盖圆为 △EFH 的外接圆, 设此外接圆为 e O ,直线 EG 与 e O 交于点 E, M ,
y
·M
D
O·
B
A x
C EN
(第 28 题)
(08 江苏南通 28 题解析) 28.解:( 1)∵ D(- 8,0),∴ B 点的横坐标为- 8,代入 y 1 x 4
中,得 y=- 2. ∴ B 点坐标为(- 8,- 2).而 A、B 两点关于原点对称,∴ A(8, 2).
从
而
k 8 2 16 .……………………………………………………………………3
12
3分
当慢车行驶 4h 时,慢车和快车相遇,两车行驶的路程之和为
900km,所以慢车和快车行驶
的速度之和为 900 225(km / h) ,所以快车的速度为 150km/h. ········· 4 分 4
900
(4)根据题意,快车行驶 900km 到达乙地,所以快车行驶
6(h) 到达乙地,此时两车
又 EF PF ,所以 PH GH .
法一:故 Rt△ MKG ∽ Rt △PHG ∽ Rt △PFE ,
GK GH EF 1
从而有
.
MK PH PF 2
得 GK
1 MK
1 h , GH
1 PH
1 (3 a) .
2
2
2
2
13 所以 OG OK GK 2h h h .
22
又有 OG OH GH
1 a (3 a)
分
(2)∵ N(0,- n),B 是 CD的中点, A、 B、 M、E 四点均在双曲线上,
∴ mn k , B(- 2m,- n ),C(- 2m,- n), E(- m,- n). …………… 4 2
k b 2, k 1,
有
解得
2k b 1. b 3.
所以,直线 AC 所对应的函数关系式为 y x 3 . ··············
(2)①点 M 到 x 轴距离 h 与线段 BH 的长总相等.