一致收敛性判别及应用

合集下载

一致收敛性及其判别法(22页)

一致收敛性及其判别法(22页)

单调递减且当 y ? ?? 时,对参量 x ,g (x, y) 一致
???
地收敛于 0 , 则 f(x,y)g(x,y)dy c
在 [a,b ] 上一致收敛.
首页 ×
阿贝尔判别法 设
? ⑴
??
f(x,y)dy 在 [ a,b ] 上一致收敛.
c
⑵ 对每一个固定的 x ∈[a, b],函数 g (x, y) 为 y
首页 ×
定理19.12 设 f(x,y)在
[a,?? )? [c,?? )上连续.若
??? f(x,y)dx 关于 y在任何闭区间
[c,d ]上一致收敛,
a
??? f(x,y)dy 关于 x在任何闭区间 [a ,b]上一致收敛, c
? ? ? ? ??
??
积分 dx | f(x,y)|dy
a
c

?? dy ?? | f(x,y)|d x
c
a
中有一个收敛,则另一个积分也收敛,且
? ? ? ? ??
??
??
??
dx f(x,y)dy ? dy f(x,y)dx
a
c
c
a
首页 ×
例5 计算
? I ?
?? 0
e? px
sinbx ? sinax x
dx
(p ? 0,b ? a)
例6 计算
? I ?
?? sinax dx 0x
例7 计算
? ? (r)? ?? e? x2 cosrxdx 0
都收敛,由反常积分收敛的定义,即
? ? ? 0,?N (?,x)? c, 使得 ? M ? N ,
?| M c
f(x,y)dy ? I(x)|? ?

数项级数一致收敛

数项级数一致收敛

数项级数一致收敛(原创实用版)目录1.数项级数一致收敛的定义2.数项级数一致收敛的性质3.数项级数一致收敛的判定方法4.数项级数一致收敛的实际应用正文一、数项级数一致收敛的定义数项级数一致收敛是指,当级数的各项绝对值趋于 0 时,级数的和趋于一个确定的常数。

换句话说,如果一个级数的各项绝对值都小于某个正数ε,且级数的项数趋向于无穷,那么这个级数就是一致收敛的。

二、数项级数一致收敛的性质一致收敛的级数具有以下性质:1.有界性:级数的每一项都趋于 0,因此级数的和也有界。

2.有序性:当项数增加时,级数的和单调增加或单调减少。

3.极限存在:当级数的项数趋于无穷时,级数的和存在极限。

三、数项级数一致收敛的判定方法判断一个级数是否一致收敛,可以使用以下几种方法:1.ε-δ法:如果对于任意正数ε,总存在正数δ,使得当项数 n>δ时,级数的各项绝对值都小于ε,那么这个级数就是一致收敛的。

2.柯西准则:如果对于任意正数ε,总存在正数 N,使得当项数 n>N 时,级数的各项绝对值都小于ε,那么这个级数就是一致收敛的。

3.列恩哈德准则:如果对于任意正数ε,总存在正数 N,使得当项数n>N 时,级数的各项绝对值的倒数之和趋于 0,那么这个级数就是一致收敛的。

四、数项级数一致收敛的实际应用一致收敛的级数在数学分析中有广泛的应用,例如求和、求积分、求极限等。

在实数域、复数域以及更高级的数学领域,一致收敛的级数都是研究的重要对象。

同时,一致收敛的级数也是许多实际问题的数学模型,如求解数列的和、计算定积分等。

综上所述,数项级数一致收敛是数学分析中的一个基本概念,具有重要的理论和实际意义。

函数项级数一致收敛性判别及应用

函数项级数一致收敛性判别及应用

函数项级数一致收敛性判别及应用函数项级数是由一系列函数的和组成的级数,通常用于描述函数的展开式或泰勒级数。

对于某些函数项级数,我们希望判断其在一定的条件下是否具有一致收敛性,这对于分析和解决问题具有很大的价值。

本文将介绍一些函数项级数一致收敛性的判别方法及其应用。

一、函数项级数收敛的定义设 $f_n$ 为定义在区间 $I$ 上的函数序列,如果存在函数 $f$ 使得$\lim_{n\to\infty}f_n(x)=f(x)$ 对于所有 $x\in I$ 成立,则称函数序列$\{f_n\}$ 在 $I$ 上逐点收敛于函数 $f$,并记为 $f_n\to f$($n\to\infty$)。

二、Weierstrass 判别法Weierstrass 判别法是判断函数项级数一致收敛性的重要方法之一。

它通常用于非负函数项级数。

证明如下:设 $s_N(x)=\sum_{n=1}^{N}f_n(x)$ 为前 $N$ 项和函数,$s(x)=\sum_{n=1}^{\infty}f_n(x)$ 为级数的和函数。

由于 $|f_n(x)|\leq M_n$,所以对于 $m>n$,有 $|s_m(x)-s_n(x)|=|\sum_{k=n+1}^{m}f_k(x)|\leq\sum_{k=n+1}^{m}|f_k(x)|\leq \sum_{k=n+1}^{m}M_k$。

三、Abel 判别法1. 证明 Riemann 积分的线性性如果函数 $f(x)$ 和 $g(x)$ 在区间 $[a,b]$ 上 Riemann 可积,则它们的线性组合$\alpha f(x)+\beta g(x)$ 也在 $[a,b]$ 上 Riemann 可积,并且$$\int_a^b(\alpha f(x)+\beta g(x))dx=\alpha \int_a^bf(x)dx+\beta\int_a^bg(x)dx$$如果 $f(x)$ 和 $g(x)$ 在 $[a,b]$ 上一致连续,则它们的线性组合也在$[a,b]$ 上一致连续。

浅析一致收敛在数学中的应用与作用

浅析一致收敛在数学中的应用与作用

浅析一致收敛在数学中的应用与作用一致收敛是数学分析中一个重要的概念,它描述了一列函数或数列在定义域内逐点收敛的程度。

一致收敛在数学中具有广泛的应用和作用,本文将从几个方面来进行浅析。

首先,一致收敛在函数序列的收敛性质证明中起着重要作用。

在分析中,我们经常需要证明一列函数的极限函数的连续性、可积性等性质。

一致收敛给了我们一个有力的工具,它提供了一种较强的收敛性条件。

具体来说,若一列函数在定义域内一致收敛于极限函数,则可以保证极限函数具有与原函数相似的性质。

例如,我们知道连续函数的一致收敛极限函数仍然是连续的,可积函数的一致收敛极限函数仍然是可积的,这些性质的证明往往需要借助一致收敛来完成。

其次,一致收敛在微积分中的应用尤为显著。

微积分中的基本问题之一就是求函数的导数和积分。

对于导函数,一致收敛的函数序列可以保证极限函数的导函数存在并且与原函数的导函数相关。

对于积分,一致收敛函数序列的极限函数可以保证积分中的极限运算与积分符号之间的交换。

这在定义一些特殊函数的时候非常有帮助,例如常见的幂级数如正弦函数、指数函数等。

此外,一致收敛还在偏微分方程的研究中具有重要作用。

偏微分方程是研究自然现象中的变化规律的数学工具,也广泛应用在物理、工程等领域中。

对于偏微分方程的数值解法,往往需要构造一列近似解函数来逼近真解,然后研究这些近似解函数的性质。

一致收敛给出了这种逼近的准确性条件,可以保证所构造的近似解函数在逼近真解时具有较好的准确性和稳定性。

最后,一致收敛还在函数级数的收敛性质中发挥着重要作用。

如幂级数、傅里叶级数等在数学分析和物理学中都有重要的应用。

一致收敛给出了级数收敛的一个更强的条件,它保证级数的极限函数在定义域内连续、可微、可积等性质。

这使得我们可以对级数的性质进行更加深入的研究和应用,例如在泰勒级数中,我们可以通过研究级数的一致收敛性质来推导函数的解析表达式,从而得到更精确的近似。

综上所述,一致收敛在数学中具有广泛的应用与作用。

函数项级数一致收敛性判别及应用

函数项级数一致收敛性判别及应用

函数项级数一致收敛性判别及应用1. 引言1.1 研究背景函数项级数是数学分析中一个重要的研究对象,它是由无穷个函数组成的无穷级数求和。

在实际的应用中,往往需要研究级数的收敛性,其中一致收敛性是一个重要的性质。

一致收敛性指的是对于每一个给定的ε>0,存在一个N,使得当n>N时,级数的部分和与其极限的差的绝对值小于ε。

函数项级数一致收敛性的研究有着重要意义,它可以帮助我们更好地理解函数序列之间的关系,从而应用到不同的数学问题中。

函数项级数的一致收敛性判别方法有多种,比较判别法和魏尔斯特拉斯判别法是常用的方法之一。

比较判别法通过比较级数与已知收敛的级数的大小关系来判断级数的收敛性,而魏尔斯特拉斯判别法则利用函数项级数中的Cauchy收敛原理来判断其收敛性。

在实际应用中,函数项级数的一致收敛性判别方法可以帮助我们解决各种数学问题,例如在微积分和数学分析中的应用。

通过深入研究函数项级数的一致收敛性,我们可以更好地理解其数学性质,为进一步的研究提供基础。

【研究背景】1.2 研究意义函数项级数是数学中重要的概念之一,它在分析学、数学物理等领域中有着广泛的应用。

研究函数项级数的一致收敛性对于深入理解这一概念的性质和特点具有重要意义。

一致收敛性是函数项级数收敛的一种较强的方式,它能够保证收敛的速度和稳定性,从而使得我们能够更好地掌握级数的性质和行为。

研究函数项级数的一致收敛性,不仅可以帮助我们更好地理解级数的收敛性质,还可以为我们解决实际问题提供有力的数学工具。

在实际应用中,我们经常会遇到需要考察函数项级数的收敛性的情况,比如在数值计算、信号处理、概率论等领域中都会涉及到函数项级数的处理。

研究函数项级数的一致收敛性具有重要的理论意义和实际应用价值。

1.3 研究目的研究目的是对函数项级数的一致收敛性进行深入探讨,通过研究不同的判别方法来确定函数项级数是否在整个定义域上一致收敛。

通过对比比较判别法和魏尔斯特拉斯判别法的优缺点,可以更好地理解和判断函数项级数的收敛性。

三个一致收敛判别法

三个一致收敛判别法

三个一致收敛判别法三个一致收敛判别法在数学中,收敛是一个十分重要的概念。

“一致收敛”则更是有着尤为深远的影响,并广泛应用于函数论中,它在解析学、实变函数论、概率论等领域都有着重要的应用。

在这个领域中,三个一致收敛判别法特别值得注意。

本文将分别介绍这三个一致收敛判别法,以期帮助读者更好地理解这一基础性概念。

一、Weierstrass 判别法Weierstrass 判别法是一种非常广泛应用于函数分析领域的一致收敛判别法。

对于一列函数 $f_n(x)$,若它满足:1.至少有一个 $M$ 使得对于所有 $n$ 和 $x$,有$|f_n(x)|≤M$。

2.对于所有 $x$,$\lim\limits_{n→∞}f_n(x)=0$。

那么就可以得到该列函数一致收敛于 $0$。

这个判别法的意义在于它表明,只要上述条件成立,我们可以放心地断言这些函数一定是一致收敛于 $0$ 的。

二、M-Test 判别法M-Test 判别法又称为 Weierstrass-M 判别法。

对于一列函数 $f_n(x)$,若它满足:1.存在一列正数$M_n$,使得对于所有$n$ 和$x$,有 $|f_n(x)|≤M_n$。

2.级数 $\sum\limits_{n=1}^∞ M_n$ 收敛。

那么该级数一致收敛。

这个判别法的意义在于它通过控制每个函数项的上界,使得级数可以变换为数列的形式,并且该数列由于是收敛的,所以可以推出级数一致收敛。

三、Abel 判别法Abel 判别法是用于判断在某些点上一致收敛的一个判别法。

对于一列可微函数 $f_n(x)$,且它满足:1.在某个区间 $I$ 上,$|f_n(x)|$ 单调递减且$∑f_n(x_0)$ 收敛。

2.对于所有 $x∈I$,有 $\lim\limits_{n→∞}f_n(x)=0$。

那么在 $I$ 上,该列函数一致收敛。

这个判别法的意义在于,它可以在符合一定条件的情况下,通过单调性的保证,轻松地推出函数列一致收敛的结论。

一致收敛级数的判别与性质

一致收敛级数的判别与性质

− nx) 。可知 un (x) 在 x
=
α
n
处达到最大值 ⎜⎛α
⎝e
⎟⎞α ⎠
1 nα
,即
0

un
(
x)

⎜⎛ ⎝
α
e
⎟⎞α ⎠
1 nα
, x ∈[0,+∞) 。
∑ 由 于
α
>1
,正项级数
∞ ⎜⎛ α
n=1 ⎝ e
⎟⎞α ⎠
1 nα
收敛,由
Weierstrass
判别法,

∑ xα e−nx (α > 1) 在[0,+∞) 上一致收敛。
是单调的,且{an(x)}在 D 上一致有界: │an(x)│ ≤ M, x∈D,n∈N+ ;

同时, ∑ bn (x) 在 D 上一致收敛。 n =1 ⑵ (Dirichlet 判别法)函数序列{an(x)}对每一固定的 x∈D 关于 ∞
n 是单调的,且{an(x)}在 D 上一致收敛于 0;同时,函数项级数 ∑ bn (x) n =1
m > n > N 与一切 x∈D,成立
∑ ∑ │ un+1(x) + un+2 (x) + " + um (x)│=
m
uk (x) −
k =1
n
uk (x)
k =1
<
ε 2

固定 x∈D,则数项级数 ∑ un (x) 满足 Cauchy 收敛原理,因而收敛。设 n=1

S(x) = ∑ un (x) , x∈D, n=1
│ un+1 (x) + un+2 (x) + " + um (x)│ ≤ │ un+1 (x) │ + │ un+2 (x) │ + " + │um (x)│ ≤ an+1 + an+2 + " + am ,

函数项级数一致收敛性判别及应用

函数项级数一致收敛性判别及应用

函数项级数一致收敛性判别及应用【摘要】本文主要讨论了函数项级数的一致收敛性判别及其应用。

首先介绍了一致收敛性判别定理,然后探讨了函数项级数在实际问题中的应用。

接着列举了几个常见的一致收敛性判别法则,帮助读者更好地理解一致收敛性。

通过应用举例,展示了函数项级数一致收敛性在数学和工程领域的实际应用。

最后讨论了函数项级数一致收敛性的收敛区域,为读者进一步深入研究提供了指导。

通过本文的学习,读者可以更好地理解函数项级数的一致收敛性及其实际应用,为相关领域的研究和应用提供了理论支持。

【关键词】函数项级数、一致收敛性、判别定理、应用、常见法则、收敛区域、举例、总结1. 引言1.1 引言函数项级数一致收敛性是函数分析中一个重要的概念,它涉及到函数序列在整个定义域上的一致收敛性问题。

在实际应用中,我们常常需要判断函数项级数是否一致收敛,以及在一致收敛的条件下如何进行求和。

掌握函数项级数一致收敛性的判别方法和应用是非常必要的。

在本文中,我们将深入探讨函数项级数的一致收敛性判别定理以及其应用。

我们将介绍一致收敛性的判别定理,包括一些常见的判别法则,以及如何判断函数项级数在整个定义域上的一致收敛性。

接着,我们将讨论函数项级数一致收敛性在实际问题中的应用,通过具体的示例来说明如何利用一致收敛性来求出函数项级数的和函数。

我们将讨论函数项级数一致收敛性的收敛区域,即函数序列的收敛性对应的区域范围。

通过本文的学习,读者将能够更加深入地理解函数项级数的一致收敛性及其在实际问题中的应用。

希望本文能够帮助读者更好地理解函数分析中关于一致收敛性的重要概念,进而提高对函数序列和级数问题的认识和应用能力。

2. 正文2.1 一致收敛性判别定理一致收敛性是函数项级数收敛性中的重要性质,它在分析数学中有着广泛的应用。

一致收敛性判别定理是判断函数项级数是否一致收敛的重要工具。

在实际问题中,我们经常需要判断一个函数项级数是否一致收敛,以确保我们得到的结果是可靠的。

一致收敛的概念和判别法

一致收敛的概念和判别法

7.1第7讲 一致收敛的概念与判别法所谓函数项级数是指级数的每项均为某一变量或多个变量的函数的级数,也就是说是无穷多个函数求和的问题,研究函数项级数主要回答下列几个问题:1. 收敛区域,即对于函数项级数:()1n n a x ∞=∑,x 在什么范围内级数是收敛的?这一问题是平凡的,因为对于给定x ,由数项级数之收敛性即可判别级数的收敛性,从而确定x 之收敛域。

2. 设()()1n n S x a x ∞==∑是收敛的,若()n a x 均为连续函数,问()S x 是否连续?回答是不一定。

例如:当1x <时,()1n n a x x −=,则有()11S x x=−,()n a x 在1x =处左连续,但()S x 在1x =处不是左连续的。

问题还可以提为:什么时候()S x 连续? 3. 可导性能否保持?即:若()n a x 均为可导函数,问()S x 是否可导?同样有问题:什么时候可导性可以保持?特别地,如果均可导,()S x 的导数与()n a x 的导数有何关系?4. 可积性问题。

即:若()n a x 均为可积函数,问()S x 是否可积?何时可积?它们的积分有何关系? 为了研究上述几个问题,我们需要引进“一致收敛”的概念。

7.2§1 一致收敛的概念讨论级数的收敛性实质上是其部分和函数()n S x 的性质,因此我们先考虑极限过程()()lim n n S x S x →∞=的性质。

上面所说的关于和函数的连续性,可导性、可积性有一个共同的特点,就是某一点x 处的连续性与可导性均与函数在该点邻域的性质有关,而不仅仅只与该点函数值相关,而可积性则更是函数在某一区间内的性质了。

另一方面,函数序列()n f x 在0x x =处是否收敛实际上只是数列()0n f x 的性质,与0x 点邻域内的性质是不相干的,因此从这一角度看,我们知道收敛性是无法用来描述其极限函数之性质的,因而有必要引入新的概念来区分不同的收敛性,以刻画函数序列的极限函数的性质。

函数项级数一致收敛的几个判别法及其应用(终极完整无敌升华版)

函数项级数一致收敛的几个判别法及其应用(终极完整无敌升华版)

函数项级数一致收敛性判别法及其应用栾娈 20111101894数学科学学院数学与应用数学11级汉班指导老师:吴嘎日迪摘要:本文证明了常用的函数项级数一致收敛性的判别法,并通过例题给出了它的应用.另外,仿照极限的夹逼原理,得到函数项级数一致收敛的夹逼判别法. 关键词:一致收敛,函数项级数,和函数1.函数列与一致收敛性(1)函数项级数一致收敛性的定义:设有函数列{S n (x )}(或函数项级数∑∞=1)(n n x u 的部分和序列)。

若对任给的0>ε,存在只依赖于ε的正整数N (ε),使n > N (ε)时,不等式ε<-)()(x S x S n对X 上一切x 都成立,则称{S n (x )}(∑∞=1)(n n x u )在X 上一致收敛于S (x ).一致收敛的定义还可以用下面的方式来表达: 设 =-S S n Xx ∈s u p )()(x S x S n -,如果 0lim =-∞→S S n n 就称S n (x )在X 上一致收敛于S(x ).例1 讨论 =+=X xn nxx S n 在221)([0,1]的一致收敛性 由于S (x )=0, 故211)(m a x 1=⎪⎭⎫ ⎝⎛==-≤≤n S x S S S n n x o n ,不收敛于零,故在[0,1]上非一致收敛 (2)函数项级数一致收敛的几何意义:函数列{f n}一致收敛于的f 几何意义:对任给的正数ε,存N ,对一切序号大于N 的曲线y=fn(x )都落在以曲线y= f (x )+ε与y=f (x )-ε为上,下边界的带形区域内. 2.函数列一致收敛的判别准则(充要条件)柯西准则函数项级数)(1x u k k ∑∞=在I 上一致收敛的充要条件是;εε<+++==∈∀∈∀>∀∈=∃>∀++++++=++∑)(...)()()(-)()(,,,,0211)(x u x u x u x S x S x uI x N p N n N N N p n n n n p n p n n k kE 都有及证明:必要性: 已知)(1x u k k ∑∞=在区间I 一致收敛,设其和函数式S (x ),即2)()(ε<-x S x S n也有2)()(ε<-+x S x S p n于是εεε=+<-+-≤-+-=-=+++++=∑22)()()()()()()()()()()(1x S x S x S x S x S x S x S x S x S x S x un p n n p n n p n pn n k k充分性:已知I x N p N n N N N ∈∀∈∀>∀∈=∃>∀++及,,)(,0εε 有ε<=+=+=∑)(-)()(1x S x S x un p n pn n k k从而)(1x u k k ∑∞=在区间收敛S (x ),因为p 是任意正整数,所以当∞→p 时,上述不等式有ε<-)()(x S x S n 即函数项级数)(1x u k k ∑∞=在区间I 一致收敛. 余项准则函数列{f }n 在D 上一致收敛于f 的充要条件是0)()(sup lim =-∈∞→x f x f n Dx n3.函数项级数一致收敛判别法 (1)充分条件定理1(魏尔斯特拉斯判别法)若对充分大的n ,恒有实数n a 使得n n a x u ≤)(对X 上任意的x 都成立,并且数项级数)(x u a n n ∑∑收敛,则在X 上一致收敛.证明 由∑n a 的收敛性,对任给的ε>0,可得N (ε),使n >N (ε)时 ε<++++++p n n n a a a ...21(p=1,2,…), 对X 上的一切的x 我们有≤++≤++++++)(...)()(...)(11x u x u x u x u p n n p n n ε<++++++p n n n a a a ...21, 由一致收敛的柯西充要条件即得定理的结论.例2 若∑n a 绝对收敛,则∑n a sin nx 和∑n a cos nx 在),(+∞-∞内都是绝对收敛和一致收敛的级数. 事实上,n n a nx a ≤sin , n n a nx a ≤cos , 由魏尔斯特拉斯判别法即可得证. 定理2(阿贝尔判别法)若在X 上)(x b n ∑一致收敛,又对X 中每一固定的x ,数列(x a n 单调.而对任意的n 和X 中每个x ,有L x a n ≤)((不依赖于x 和n 的定数),那么)()(x b x a n n ∑在X 上一致收敛.这个定理与数项级数的阿贝尔定理相似,其证明也大体相同,只要利用阿贝尔引理即可。

理学第讲一致收敛级数的判别和性质

理学第讲一致收敛级数的判别和性质

k
Bk bi , k 1、2、3...... i 1
p
p1

ak bk a p Bp (ak1 ak )Bk .
k 1
k 1
引理( Abel引理),设ak 、bk 为两数列,
k
且Bk bi , k 1、2、3......, i 1
且 (1)ak 单调;
(2)Bk 有界:Bk M (k 1、2、3......);
对一切x D成立.
(5)余和函数rn ( x)在D上一致趋于0. (6)任意点列xn D,有rn ( xn ) ( 0 n ).
定理(weierstrass判别法)设 un ( x),x D满足 n1
un ( x) an ,x D
且 an收敛,则 un ( x)在D上一致收敛.
n1
n1
根据Cauchy原理, an ( x)bn ( x)在D上一致收敛. n1
例 : 设an收敛,则an xn在0,1上一致收敛.
证明:因为 xn 关于n单调,且
xn 1,x 0,1,n N
又an收敛(当然关于x 0,1一致收敛), 由Abel判别法,an xn在0,1上一致收敛。
例 : 设an单调收敛于0,则 an cos nx与 an sin nx
故 un ( x)在D上一致收敛。 n1
例:若an绝对收敛,则an cosnx与an sinnx在,
上一致收敛。
证明:因为 an cosnx an , an sinnx an ,
而 an 收敛
由weierstrass判别法,
则an cosnx与an sinnx在,上一致收敛.
引理( Abel变换):设an、bn是两数列,记
本节主要任务: (1)函数项级数的一致收敛判别法;

函数列一致收敛的判别方法

函数列一致收敛的判别方法

函数列一致收敛的判别方法一致收敛是函数列中每个函数都在一些集合上趋于同一个极限的性质。

本文将介绍几种判别函数列一致收敛的方法,包括Cauchy准则、Weierstrass判别法、Dini定理以及一些常见的特殊函数列。

1. Cauchy准则Cauchy准则是函数列一致收敛的重要判别法之一、设函数列{f_n(x)}在集合E上定义,对于任意ε>0,存在N,使得当n,m>N时,对于任意的x∈E,有,f_n(x)-f_m(x),<ε。

当满足这个条件时,函数列{f_n(x)}在集合E上一致收敛。

2. Weierstrass判别法Weierstrass判别法是函数列一致收敛的常用方法之一、设函数列{f_n(x)}在集合E上定义,如果存在一个收敛的正数级数∑M_n,使得对于任意的n和x∈E,有,f_n(x),<M_n,则函数列{f_n(x)}在集合E上一致收敛。

3. Dini定理Dini定理是另一种判别函数列一致收敛的方法。

设函数列{f_n(x)}在集合E上定义,如果函数列逐点收敛于函数f(x),且对于集合E中的任意一个点x,以及任意的ε>0,存在函数列的一个有限子列{f_{n_k}(x)},使得,f_{n_k}(x)-f(x),≤ε,那么函数列{f_n(x)}在集合E上一致收敛。

4.常见特殊函数列除了上述常用的方法外,对于一些特殊函数列,也可以使用特定的方法来判别它们的一致收敛性。

(1)幂级数的一致收敛性:对于幂级数∑a_n(x-x_0)^n,其一致收敛域为该级数的收敛域。

(2)可导函数列的一致收敛性:如果函数列{f_n(x)}在集合E上的导函数都存在,且导函数的函数列{f_n'(x)}一致收敛于函数g(x),那么函数列{f_n(x)}在集合E上一致收敛于一些函数f(x),且f(x)可导,且导函数为g(x)。

(3)连续函数列的一致收敛性:如果函数列{f_n(x)}在集合E上的函数都连续,且函数列{f_n(x)}一致收敛于函数f(x),那么函数f(x)也连续。

函数项级数一致收敛性

函数项级数一致收敛性

函数项级数一致收敛性有关问题的讨论函数项级数是微积分的主要内容之一,是数学分析研究的重点.用函数项级数(或函数列)来表示(或定义)一个函数,判断其一致收敛性是关键.从函数项级数一致收敛的定义及性质出发,下面主要讨论函数项级数(或函数列)一致收敛性的判别及其应用.1 函数项级数一致收敛的相关定义定义1.1[]1(31)P 设函数列{})(x S n 是函数项级数∑∞=1)(n nx u的部分和函数列,若,0>∀ε 存在正整数)(εN ,当n >)(εN 时,不等式∑=-nk kx S x u1)()(=)()(x S x S n -<ε对I 上一切x 都成立,则称∑∞=1)(n nx u在I 上一致收敛于()S x .一致收敛的定义还可以用下面的方式来表达: 定义1.1[]2(67)'P 函数列{})(x S n (或∑∞=1)(n nx u)在I 上一致收敛于()S x⇔∞→n lim Ix ∈sup )(x R n =0)()(sup lim =-∈∞→x S x S n Ix n ,其中)(x R n =()()n S x S x -称为函数项级数∑∞=1)(n nx u的余项.定义1.2 函数列{})(x S n 在I 上非一致收敛于()S x⇔00>∃ε,0>∀N ,N n >∃0,I x ∈∃0,使得)()(000x S x S n -≥0ε.定义 1.3 函数列{})(x S n 在区间()b a ,内的任一闭区间上一致收敛时,称{})(x S n 在区间()b a ,内闭一致收敛.2 一致收敛函数项级数的性质[]3(417430)P -定理2.1(逐项取极限) 设级数∑∞=1)(n nx u在0x 的某个空心邻域0U (0x )={}δ<-<||0:0x x x 内一致收敛,0lim x x →()n n u x c =.则∑∞=1n nc收敛,且limx x →∑∞=1)(n nx u=∑∞=→1)(lim 0n n x x x u =∑∞=1n n c . (1)定理2.2(连续性) 若)(x u n 在区间I 上连续(1,2,n =⋅⋅⋅),∑∞=1)(n nx u在I 上一致收敛,则()S x≡∑∞=1)(n n x u 在I 上连续.定理2.2' 若)(x u n 在(,)a b 内连续(1,2,n =⋅⋅⋅),∑∞=1)(n nx u在(,)a b 内闭一致收敛,则()S x ≡∑∞=1)(n nx u在(,)a b 内连续.定理2.3(逐项求导) 若级数∑∞=1)(n nx u区间I 上满足以下三条:(1)级数∑∞=1)(n nx u在I 上收敛(或验证在I 上至少有一个收敛点);(2))(x u n 在I 上有连续导数(1,2,n =⋅⋅⋅); (3)1()n n u x ∞='∑在I 上一致收敛(或在I 的任一内闭区间上一致收敛),则∑∞=1)(n nx u区间I 上可微,且可逐项求导,即在I 上有d dx∑∞=1)(n n x u =1()n n d u x dx ∞=⎛⎫⎪⎝⎭∑ (2) 定理2.4(逐项求积分) 若级数∑∞=1)(n nx u的各项连续,并且此级数在[,]a b 上一致收敛,则有11()()b bn n aan n u x dx u x dx ∞∞===∑∑⎰⎰(3)一般地,若当∞→n 时,()0bn aR x dx →⎰,则上式为真.3 一致收敛性的判断判别一致收敛的方法有多种,下面将分别进行介绍和讨论.3.1 利用一致收敛的定义通常称定义1.1为“N -ε法”,定义1.2为“确界法”,从中还可以得到一种更简便的方法“放大法”:若,0n n N α+∀∈∃>,使得)(,)()(I x x S x S n n ∈∀≤-α,且n →∞时,0n α→,则n →∞时,()n S x 在I 上一致收敛于()S x .例1 讨论级数2321()()()n n u x x xx x x ∞==+-+-+⋅⋅⋅∑在下列区间的一致收敛性.(1)210≤≤x , (2)10≤≤x . 解 令nnk k n x x u S ==∑=1)(,则001;()lim ()1 1.nn x S x S x x →∞≤<⎧==⎨=⎩ (1)当210≤≤x 时,()0S x =. ,0>∀ε若)()(x S x S n -=ε<⎪⎭⎫⎝⎛≤nn x 21,只要2ln 1lnε>n ,取1ln[]ln 2N ε=,则当N n >时,∀]21,0[∈x 均有)()(x S x S n -=0)(-x S n <ε. 因此∑∞=1)(n nx u 在]21,0[上一致收敛于零. (2)方法1 取0ε,使2100<<ε,不论n 多大,只要取nx 21=,就有)21()21(n n n S S -=021ε>.因此,∑∞=1)(n nx u在[0,1]上收敛而非一致收敛.方法2 01;()()()11.nn n x x R x S x S x x ⎧≤<=-=⎨=⎩故01sup ()1n x R x ≤≤≡.因此,∑∞=1)(n nx u在[0,1]上非一致收敛.注意在(1)中找N 的方法与技巧,对()()n S x S x -适当放大时,应使N 与x 无关,只与ε有关. 例2 设101()()n n i if x f x nn -==+∑,1,2,n =⋅⋅⋅,其中()f x 为连续函数,证明序列{}()n f x 在任何有限闭区间[,]a b 上一致收敛.证 记{}()n f x 的极限函数为()F x ,则111101()lim ()()()()(01;0,1,,1).i n n x x i n i n xn x i i n i i F x f x f t dt f t dt f x nn n i n θθ+--++→∞+======++<<=⋅⋅⋅-∑∑⎰⎰由于()f x 在[,1]a b +上连续,故在[,1]a b +上一致连续,即,0>∀ε()0δδε∃=>,使对于',''[,1]x x a b ∀∈+,只要当'''x x δ-<时,就有(')('')f x f x ε-<.取1[]1N δ=+,则当,n N a x b >≤≤时,有()11()()[,1][,1]0,1,,1i i i i i i x x x a b x a b i n n n n n N n n nθθδ++-+<<<+∈+++∈+=⋅⋅⋅-且,.于是110011()()()().n n i n i i i i F x f x f x f x n n n n nθεε--==-≤++-+<=∑∑因此{}()n f x 在[,]a b 上一致收敛于()f x .例3 试证:221(1)nn n n x∞=-+∑在(,)-∞+∞内一致收敛. 证 易知(,)x ∀∈-∞+∞,当n 充分大时,22n n x ⎧⎫⎨⎬+⎩⎭单调减且趋于0.故该级数为莱布尼茨型级数.则有2211()0(1)1n n R x n x n +≤≤→+++ ()n →+∞所以级数 221(1)nn n n x ∞=-+∑在(,)-∞+∞内一致收敛. 3.2 柯西准则判断一致收敛性[]5(31)P定理3.2(一致收敛的柯西准则) 函数项级数1()n n u x ∞=∑ (部分和函数列()nSx )在I 上一致收敛的充分必要条件为:,0>∀ε总存在正整数N =)(εN ,使N n >时,不等式12()()()n n n p u x u x u x +++++⋅⋅⋅+<ε )()((x S x S n p n -+<)ε对任意的正整数p 和I 上任意的x 都成立.当1=p 时得到函数项级数一致收敛的必要条件.推论 函数项级数1()n n u x ∞=∑在数集I 上一致收敛⇒函数列{})(x un在I 上一致收敛于零,即,0>∀ε+∈∃N N ,当n N >时,I x ∈∀都有)(x u n <ε.例4 设{}()n u x 为[,]a b 上的可导函数列,且在[,]a b 上1()nk k u x C ='≤∑,C 是不依赖与x 和n的正数.证明:若1()n n u x ∞=∑在[,]a b 上收敛,则必为一致收敛.证 0ε∀>,取m 充分大,将[,]a b m 等分,使得4b a m Cε-<.顺次以12,,,m x x x ⋅⋅⋅表示各小区间段的中点.由已知得,∑∞=1)(n i nx u收敛⇒()0,,,i i i i N N x n N εε∀>∃=>时,有1()2n pk i k n u x ε+=+<∑,()p N +∀∈.令12max{,,,}m N N N N =⋅⋅⋅,则[,]x a b ∀∈(不妨设x 位于第i 个小区间段,{}1,2,,i m ∈⋅⋅⋅),于是11111()()(())()()iin p n pn p n pn pxxkkikkikx x k n k n k n k n k n u x u x u t dt u x u t dt +++++=+=+=+=+=+''=+≤+∑∑∑∑∑⎰⎰2.222i C x x εεεε<+-≤+=原命题得证.注意:在证明过程中对1()n pkk n u x +=+∑进行变形时,有一个重要方法可利用—阿贝尔变换.3.3 判别函数项级数一致收敛性的常用方法判别函数项级数一致收敛性除根据定义和柯西准则外,还可以根据级数各项的特性来判别,常用以下判别法.3.3.1 Weierstrass 判别法 定理3.3.1 (Weierstrass 判别法)[]1(32)P 设函数项级数1()n n u x ∞=∑定义在数集I 上,1nn M∞=∑为收敛的正项级数,若对一切x I ∈,有(),n n u x M ≤1,2,n =⋅⋅⋅,则函数项级数1()n n u x ∞=∑在I 上一致收敛.其中1nn M∞=∑称为1()n n u x ∞=∑的优级数,因此该定理也称为优级数判别法.求优级数的方法有多种,主要有以下方法:(1)观察法; 例5 证明:21cos n nxn ∞=∑在x <+∞时一致收敛. 提示:22cos 1nx n n≤可证. (2)找出()n u x 的最大值法; 例6 证明21(1)nn xx ∞=-∑在[0,1]上一致收敛.提示:求出通项()n u x 的最大值点(求导法),2nx n =+时. (3)利用已知不等式法; 例7 讨论5211n nxn x∞=+∑在区间x <+∞上的一致收敛性. 解 当x <+∞时,552212n x n x +≥,于是,3522112nx n x n ≤+.又因31212n n ∞=∑收敛,故级数 5211n nxn x∞=+∑在(,)-∞+∞上一致收敛. (4)利用某些已知公式进行变形,等等. 例8 证明21nxn x e∞-=∑在(0,)+∞内一致收敛.证 利用泰勒公式,2212nxn x e nx =+++⋅⋅⋅ ()x R ∈.从而 222222222122nxx x x en x n x nnx -=<=+++⋅⋅⋅(0)x >. 而级数212n n∞=∑一致收敛,因此由优级数判别法可知原级数在(0,)+∞内一致收敛.3.3.2 Abel 判别法和Dirichlet 判别法对级数1()nn u x ∞=∑,若()n u x =()()n na xb x .定理3.3.2 (Abel 判别法)[]1(33)P 设(1)()1n n a x ∞=∑在区间I 上一致收敛;(2)对于每一个x I ∈,{}()n b x 是单调的;(3){}()n b x 在I 上一致有界,即对一切x I ∈和n N +∈,存在正数M ,使得()n b x M ≤,则级数1()n n u x ∞=∑在I 上一致收敛.定理3.3.3 (Dirichlet 判别法)[]1(34)P 设(1)()1n n a x ∞=∑的部分和函数列1()()nnk k Sx a x ==∑(1,2,)n =⋅⋅⋅在I 上一致有界;(2)对于每一个x I ∈,{}()n b x 是单调的; (3)在I 上,()0n b x →→,()n →∞,则级数1()nn ux ∞=∑在I 上一致收敛.例9讨论1n ∞=在区间0x <<+∞上的一致收敛性.解(1)n -=.由于1(1)n n ∞=-∑收敛,且与x 无关,故它对x 而言是一对于每一个(0,)x ∈+∞1≤.因此由Abel 判别法可知原级数在(0,)+∞上一致收敛.例10讨论(1)211)n n n -∞=10x ≤上的一致收敛性.解(1)21(1)2k k nk -=-≤∑,记()n b x =.>,故()nb x≤→(10)x≤,故()nb x单调一致地趋于零.因此,由Dirichlet判别法知,级数在[10,10]-上一致收敛.例11 证明21(1)sin1nnnxx nxx∞=--∑在1(,1)2内一致收敛.证原级数=11(1)sin11nn nnx xnxx x∞=-⋅+-∑.其中11n x+对任意1(,1)2x∈关于n单调,且一致有界:111n x≤+.下面考察级数1(1)sin1nnnx xnxx∞=--∑.因为111sin2sin sin22sin2n nk kxkx kxx===∑∑1111[cos()cos()]222sin2nkk x k xx==--+∑1cos cos()112212sin sin sin224xx nxx-+=≤≤1((,1),1,2,)2x n∈=⋅⋅⋅所以1sinnkkx=∑在1(,1)2内一致有界.而21(1)1,(,1)112n nn nx x xxx x x x--=∈-+++⋅⋅⋅+关于n单减,又2111001n nn nx xx x x nx n--≤≤<→+++⋅⋅⋅+1(,1)2x∈.所以(1)1nnx xx--在1(,1)2上单减一致收敛于0.由Dirichlet判别法可知,级数1(1)sin1nnnx xnxx∞=--∑在1(,1)2内一致收敛.则由Abel判别法可知原级数在1(,1)2上一致收敛.3.3.3 Dini定理定理3.3.4(Dini定理)[]3(407)P设()0nu x≥,在[,]a b上连续,1,2,n=⋅⋅⋅.又1()nnu x∞=∑在[,]a b上收敛于连续函数()f x ,则1()n n u x ∞=∑在[,]a b 上一致收敛于()f x .证 (反证法) 若1()n n u x ∞=∑在[,]a b 上非一致收敛,则00ε∃>,使得0,,[,]N N n N x a b +∀∈∃>∃∈,有00()n R x ε≥.取1N =,知11n ∃>,1[,]x a b ∃∈使110()n R x ε≥,令1N n =知21n n ∃>,2[,]x a b ∃∈ ,使220()n R x ε≥,如此下去,我们得到{}n 的子序列12k n n n <<⋅⋅⋅<<⋅⋅⋅使得0()k n k R x ε≥(1,2,)k =⋅⋅⋅ (1) 利用致密性原理,在有界数列{}k x 里,存在收敛子列{}0[,]j k x x a b →∈ ()j →+∞,因()n R x 单减(关于n ),所以m N +∀∈,当jk n m >时,有0()()j k j jm k n k R x R x ε≥≥ (因式(1)) 由于()()()m m R x f x S x ≡-连续,所以j →+∞时,对0()j m k R x ε≥取极限,知 00()m R x ε≥, ()m N +∀∈, 与1()n n u x ∞=∑在[,]a b 上收敛矛盾.证毕.注意:Dini 定理在和函数便于求得的情况下应用比较方便.例12 证明函数列1(),(1,2,)(1)n x nnf x n xe n==⋅⋅⋅++在区间[0,1]上一致收敛.证 当n →∞时,(1)n x x e n +→,且(1)(1,2,),n x xn e n+=⋅⋅⋅都在[0,1]上连续,故由Dini 定理可知函数列(1)n x n ⎧⎫+⎨⎬⎩⎭在[0,1]上一致收敛于xe .由于(1)1111e (1)(1)(1)x n x nx x xn x n n n xe e n x x e e e n n ++---=+⎡⎤+++++⎢⎥⎣⎦(1)1xn x n x e e n ≤+-+- 1(1)1xnn x e e n =-++-在[0,1]上一致收敛于0()n →∞.又11xe+,11nx nx e n ⎛⎫++ ⎪⎝⎭(1,2)n =⋅⋅⋅在[0,1]上连续,因此,在[0,1]上,当n →∞时,原函数列一致收敛于11xe+. 3.4 一致有界与等度连续 定义3.4.1{}()n f x 在I 上一致有界,是指:,0>∃M 对一切I x ∈,都有()(1,2,n f x M n ≤=)⋅⋅⋅成立.例13[]3(410)P 设{}()n f x 在区间[0,1]上一致有界,试证存在一个子序列,在[0,1]的一切有理点收敛.证 我们知道[0,1]的全体有理点可以排成一个数列{}n a .因{}()n f x 一致有界,故{}1()n f a 是有界数列.由致密性原理知其中存在收敛的子序列.为了便于叙述,记此收敛的子序列为{}1,1()n f a ,于是{}{}1,()()n n f x f x ⊂在1x a =处收敛.同理,因{}1,2()nfa 是有界数列,又必存在收敛子列{}2,2()n f a .即{}{}2,1,()()n n f x f x ⊂,{}2,()n f x 在12,x a a =处都收敛.如此不断地进行下去,不断地在子序列里取子序列,使{},()k n f x 在12,,,k x a a a =⋅⋅⋅处收敛,于是得到一串子序列:1,11,21,31,2,12,22,32,3,13,23,33,,1,2,3,(),(),(),,(),(),(),(),,(),(),(),(),,(),(),(),(),,(),n n n n n n n n f x f x f x f x f x f x f x f x f x f x f x f x f x f x f x f x ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅最后能用上表对角线元素组成一个子序列{},()n n f x ,即1,12,23,3(),(),(),f x f x f x ,⋅⋅⋅,(),n n f x ⋅⋅⋅易知此序列在点(1,2,)i a i =⋅⋅⋅上收敛.事实上,{}(1,2,)i a i ∀∈⋅⋅⋅,已知上面的子序列中第i 个子序列在i a 处收敛,而,1,1(),()i i i i f x f x ++⋅⋅⋅是第i 个子序列的子序列,故{},()n n f x 在i a 点上收敛.由此知{},()n n f x 在{}12,,,,n a a a ⋅⋅⋅⋅⋅⋅上收敛.定义 3.4.2 设Ω是区间I 上定义的函数族,Ω上的函数在I 上等度连续,是指:0ε∀>,0δ∃>,当12x x I ∈,且12x x δ<-时有12()()()f x f x f ε-<∀∈Ω.特别,I 上定义的函数序列{}()n f x ,在I 上等度连续,是指:0,0εδ∀>∃>,当12x x I∈,且12x x δ<-时有12()()()n n f x f x n N ε+-<∀∈.例14 设函数序列()n f x 在区间[,]a b 上等度连续的,且有()0,1,2,n f x n ≥=⋅⋅⋅.试证:若在[,]a b 上有()()n f x f x →()n →∞,则在[,]a b 上有()()n f x f x →→()n →∞.证 因{}n f 等度连续,0,0εδ∀>∃>,当12x x I ∈,且12x x δ<-时有12()()2n n f x f x ε-<,令∞→n 取极限可得εε<≤-2)()(21x f x f .此即表明)(x f 在I 上一致连续,从而()f x 连续.由Dini 定理知,在[,]a b 上,()()n f x f x →→()n →∞.4 函数项级数非一致收敛的判断这里也给出几种巧证函数项级数非一致收敛的方法,这些方法为一些教科书所忽视,但对判别函数项级数非一致收敛却十分有用.4.1 利用定义法判别(见例1用“N ε-法”) 4.2 利用柯西准则法判别由函数项级数一致收敛的柯西准则,可以得到以下命题. 命题 4.2.1 ()1n n u x ∞=∑在区间I 上非一致收敛⇔00,,,,,N N n N x I p N ε++∃>∀∈∃>∃∈∃∈有1().n pkk n u x ε+=+≥∑(证明略)特别,当n →∞时,若通项n u 在区间I 上非一致收敛于0,则函数项级数()nu x ∑在区间I 上非一致收敛.根据函数列一致收敛的概念,又有以下命题.命题 4.2.2 若函数项级数1()nn ux ∞=∑在区间I 上逐点收敛,且在区间I 中存在一点列{}n x ,使lim ()0n n n u x →∞≠,则函数项级数1()n n u x ∞=∑区间I 上非一致收敛.(证明略) 例15 证明级数1sin n nxn ∞=∑在0x =的邻域内非一致收敛.分析 要证片段01sin n pk n kx k ε+=+≥∑(某个事先给定的正数).取p n =,又在[,]42ππ上恒有sin sin 4x π≥,则只要使[,]42kx ππ∈,就有2211sin 11sin sin 424nn k n k n kx k k ππ=+=+≥⋅≥∑∑. 为此,取4n x x nπ==,因为12n k n +≤≤,所以(1)244442n k n nnnπππππ<+≤⋅≤⋅=,即[,]442k n πππ⋅∈.则n N +∀∈,有2220111sin()sinsin 144sin 24nnnnk n k n k n k kx n k kk πππε=+=+=+⋅=≥>==∑∑∑因此可取0ε=(证明略) 例16 证明:11(1)x n n x e n n ∞=⎡⎤-+⎢⎥⎣⎦∑在(0,)+∞上非一致收敛. 证 因为n N +∀∈,当x →+∞时,易知1(1)x n x e n n ⎡⎤-+⎢⎥⎣⎦→∞. 所以对任意(0,)x ∈+∞,当n →∞时,通项1(1)x n x e n n ⎡⎤-+⎢⎥⎣⎦非一致收敛于0. 所以原级数在(0,)+∞非一致收敛.例17 讨论级数112sin3n n n x∞=∑在(0,)+∞上的一致收敛性. 解 显然原级数在(0,)+∞上逐点收敛,取2(0,)3nn n x =∈+∞,1,2,n =⋅⋅⋅,有1()2sin1()2n n n nu x n =→→∞,故原级数在(0,)+∞上非一致收敛. 4.3 利用一致收敛函数列的性质判别[8](3637)P -一致收敛函数列的性质:设各项连续的函数列{})(x S n 在区间上一致收敛于)(x S ,则对任何以)(00I x x ∈为极限的数列{}n x ,都有 )()(lim 0x S x S n n =∞→.由上性质可得如下命题: 命题4.3.1 若连续的函数项级数1()n n u x ∞=∑(记1()()nnk k Sx u x ==∑)在区间I 上逐点收敛于)(x S ,且{}0,:n x I x I ∃∈∃⊂ 0lim n n x x →∞=有0lim ()()n n n S x S x →∞≠,则函数项级数1()nn ux ∞=∑在区间I 上非一致收敛于)(x S .(证明略)例18 讨论函数项级数1sin ([0,1))pn nxp n ∞=∈∑在[0,]π上的一致收敛性. 解 由Dirichlet 判别法易知该级数在区间[0,]π上逐点收敛,设其和函数为()S x ,则(0)0S =.取1[0,](1,2,)n x n nπ=∈=⋅⋅⋅,则0()n x n →→∞,而11111sinsin sin 1()sin n nn n nknp k k k k k k k kk n n n u x k k n n n ======≥≥=∑∑∑∑∑所以 10111lim ()lim sin sin 0(0)nn k n n n k k ku x xdx S n n →∞→∞==≥=>=∑∑⎰.故原级数在[0,]π上非一致收敛.4.4 利用和函数的连续性质及端点发散性判别 命题4.4.1 若连续函数项级数1()nn ux ∞=∑在区间I 上逐点收敛于和函数)(x S ,且0x I ∃∈,)(x S 在0x 处不连续,则函数项级数1()nn ux ∞=∑在区间I 上非一致收敛于)(x S .(证明略)命题4.4.2[9](63)P 若函数项级数1()nn ux ∞=∑在区间(,]a b (或(,)a +∞)上逐点收敛,但在左端点x a =处发散,n N +∀∈,()n u x 在左端点x a =(右)连续,则函数项级数1()n n u x ∞=∑在区间(,]a b(或(,)a +∞)上非一致收敛.证 用反证法. 假设函数项级数1()nn ux ∞=∑在区间(,]a b (或(,)a +∞)上一致收敛.即0,,,(,]N N n N x a b ε+∀>∃∈∀>∀∈或(,)a +∞,有12()()()n n n p u x u x u x ε+++++⋅⋅⋅+<.又因n N +∈,()n u x 在左端点x a =(右)连续,令x a →(或a +),对上式两端取极限,得12()()()n n n p u a u a u a ε+++++⋅⋅⋅+≤则级数收敛,与已知矛盾,故函数项级数1()n n u x ∞=∑在区间(,]a b (或(,)a +∞)上非一致收敛.例19 讨论函数项级数1nxn ne∞-=∑在区间为(0,)+∞上的一致收敛性.解 易知函数项级数1nxn ne∞-=∑在区间(0,)+∞上逐点收敛,且每一项都在0x =处连续,而函数项级数1nxn ne∞-=∑在0x =处发散,故该函数项级数在(0,)+∞上非一致收敛.该题还可利用其它方法判别,但相比较而言此方法更为简便. 例20 讨论0(1)nn x x∞=-∑在区间01x ≤≤上的一致收敛性.解 10()(1)(1)1nnkk n n k k S x x xx x x +===-=-=-∑∑.于是101;()lim ()0 1.n n x S x S x x →∞≤<⎧==⎨=⎩取0ε,使0102ε<<,不论n多么大,只要取x = ,就有011122n S S ε-=-=>因此,级数(1)nn x x∞=-∑在[0,1]上收敛而非一致收敛.5 综合应用例21[]4(368)P证明级数2312(1)x nn e n∞=+-∑在任何有界区间[,]a b 上一致收敛.证 [,]x a b ∀∈,12(1)nn n∞=-∑,且余项()()23221()0()111cn e R x n n n n ≤≤+→→∞+++ {}(max ,)c a b =, 故 [,]lim sup ()0n n x a b R x →∞∈=.所以级数12(1)nn n∞=-∑[,]a b 上一致收敛.例22 证明:级数(1)1(1)nxn x n nxen xe ∞---=⎡⎤--⎣⎦∑在闭区间01x ≤≤上收敛但非一致收敛,而它的和在此区间上是连续函数.证 考虑部分和(1)1()(1)nkx k x nxn k S x kxe k xe nxe ----=⎡⎤=--=⎣⎦∑,显然在[0,1]上其极限函数()S x 存在(即级数的和)且连续:()lim ()0n n S x S x →∞==.但此级数在[0,1]上非一致收敛.用反证法.若不然,则对任给的0ε>,存在数()N N ε=,使当n N ≥时,对于[0,1]上的一切x 值,均有()()n S x S x ε-<.今取1012e ε-=,应有11()()2n S x S x e --<.取01x x n ==,则也应有11()()2n S x S x e --<,但另一方面,却有10000()()()n n S x S x S x eε--==>,矛盾.证毕.例23[]4(385)P 证明函数11()x n f x n ∞==∑在(1,)+∞无穷次可微. 证 (1)先证()f x 在(1,)+∞上可微.任取0(1,)x ∈+∞,则0δ∃>使得00112x x δδ<+≤<+<∞.在0[1,2]x δδ++上,考察111ln ()x x n n nn n∞∞=='=-∑∑.由于01ln ln 0,[1,2]x n n x x n n δδδ+≤≤∈++ 而121ln lim 0n n n n δδ++→∞⋅=.由比较判别法知11ln n n nδ∞+=∑收敛.从而函数项级数1ln x n nn ∞=-∑在0[1,2]x δδ++一致收敛.故函数()f x 在0[1,2]x δδ++上可微且111ln ()()x x n n n f x n n ∞∞==''==-∑∑,则001ln ()x n nf x n∞='=-∑.由0(1,)x ∈+∞的任意性,()f x 在(1,)+∞上可微,且1ln ()x n nf x n ∞='=-∑. (2)再证对任意自然数k ,均有 ()1(1)ln ()k k k xn nfx n ∞=-=∑. 事实上,当1k =时,由(1)知结论成立.假设m k =时结论成立,则当1m k =+时,考察: 1111(1)ln (1)ln ()k k k k x xn n n nn n ++∞∞==--'=∑∑. 由于1111(1)ln ln k k k x n n n n δ++++-≤,0[1,2]x x δδ∈++.而1121ln lim 0k n n n n δδ+++→∞⋅=.故级数111ln k n n nδ+∞+=∑收敛,从而函数项级数1(1)ln ()k k xn nn ∞=-'∑在0[1,2]x δδ++一致收敛,故函数()()k f x 在0[1,2]x δδ++可微,且 11()'11(1)ln (1)ln (())()k k k k k x xn n n nfx n n ++∞∞==--'==∑∑. 由以上证明可知函数()f x 在(1,)+∞无穷次可微.通过以上对函数项级数(函数列)一致收敛非一致收敛相关问题的讨论,希望能对这部分内容的学习提供一些参考.。

含参量反常积分的一致收敛性的判别方法

含参量反常积分的一致收敛性的判别方法

含参量反常积分的一致收敛性的判别方法一、定义首先,我们来回顾一下含参量反常积分的定义。

设函数$f(x,t)$定义在区间$[a,b]$上的一个闭区间$[c,d]$,则含参量反常积分可以表示为:$$\int_a^b f(x,t)dx$$其中,函数$f(x,t)$称为被积函数,参数$t$称为参数。

参数$t$取值在闭区间$[c,d]$上。

1.依据一致收敛的定义如果对任意给定的$\epsilon>0$,存在正数$\delta$,当$,x-a,<\delta$且$t\in[c,d]$时,$,f(x,t)-f(a,t),<\epsilon$,则函数$f(x,t)$在区间$[a,b]$上关于$x$一致收敛。

这是最常用的判别方法之一2.莱布尼茨定理对于含参量反常积分,如果被积函数$f(x,t)$在闭区间$[c,d]$上关于$t$是逐点收敛的,并且对所有$x\in[a,b]$,极限$\lim_{t\to\infty}f(x,t)$存在,则函数$f(x,t)$在区间$[a,b]$上一致收敛。

3.狄利克雷判别法狄利克雷判别法主要用于判别含参变量正交级数的一致收敛性,但同样适用于含参量反常积分。

如果被积函数$f(x,t)$和其导数$f'(x,t)$在$[a,b]$上对于$t$关于$x$一致有界,并且在区间$[c,d]$上关于$x$一致收敛,则函数$f(x,t)$在区间$[a,b]$上一致收敛。

4.魏尔斯特拉斯判别法魏尔斯特拉斯判别法是判别含参量反常积分收敛性的重要方法之一、如果被积函数$f(x,t)$在闭区间$[c,d]$上对于$t$关于$x$一致有界,并且对于任意给定的$x\in[a,b]$,被积函数$f(x,t)$对于参数$t$在闭区间$[c,d]$上关于$x$一致收敛,则函数$f(x,t)$在区间$[a,b]$上一致收敛。

5.独立变量法独立变量法是一种常用的判别方法。

对于含参量反常积分$\int_a^bf(x,t)dx$,将被积函数$f(x,t)$视为关于$x$的函数,并对其进行研究。

函数项级数一致收敛性判别法及其应用.doc

函数项级数一致收敛性判别法及其应用.doc

函数项级数一致收敛性判别法及其应用函数项级数一致收敛性的判别是试题中经常会遇到的问题,这里我把常用的函数项级数一致性的判别法归纳如下:1.定义法这种方法常用于证明函数项级数在某个区间的一致收敛性,下面我们一起来看一个关于用定义法证明的例题:例1 证明函数项级数∑∞=-11k k x 在[-21,21]上的一致收敛性。

证明:由题意得 ∑∞=-11k k x =xx n --11 则∞→n lim (x x n --11)=x -11 其中]21,21[-∈x ε<≤-≤-=--1211|1|)()(n n n n x x x x x s x s 其中]21,21[-∈x 故 取N=[21ln ln ε],则 对有,上述的,,0N n N >∀∃>∀εε<|s(x )-(x )s |n 因此,由定义可知,此级数在]21,21[-上一致收敛。

2.Cauchy 收敛原理用Cauchy 收敛原理既可以证明级数一致收敛,也可以证明级数不一致收敛,我们经常看到的是用它来证明级数一致收敛,下面我们看一个用它来证明级数不一致收敛的例子。

例2 判别级数 ∑∞=1sin n n nx 的一致收敛性。

其中)2,0(π∈x 解: 由Cauchy 收敛原理有:有:),2,0(,,,,00πε∈∃>∃∀>∃x N m n Nm|sinmx ...2)x sin(n 1)x sin(n ||sin ...2)2sin(1)1sin(|+++++≥+++++++m mx n x n n x n 取nx n m 1,2==,则:21sin 1sin 2sin ...)12sin()11sin(ε==≥+++++≥mn mn n故此级数不一致收敛。

3.weierstrass 判别法这种判别法往往通过正项级数的收敛性来判断,用起来比较方便。

下面我们来看一下有关的例子。

例3 若∑∞=1n n a 绝对收敛,由weierstrass 判别法易知:nx a n n cos 1∑∞=在),(+∞-∞上一致收敛。

函数项级数一致收敛性判别及应用

函数项级数一致收敛性判别及应用

函数项级数一致收敛性判别及应用引言函数项级数是数学中一个十分重要的分支,其为一种在函数空间内定义的级数,具有广泛的应用价值。

在实际应用中,对函数项级数的一致收敛性的判断是十分必要的,本文将探讨关于函数项级数的一致收敛性判别及其应用。

设${f_n(x)}(n = 1,2,…,+\infty)$ 是区间 [a,b] 上的一列函数,$S_n(x) =\sum\limits_{k=1}^n f_k(x)$,如果当$n → +∞$ 时,$S_n(x)$ 在区间 [a,b] 上一致收敛于 $S(x)$,即$$\forall ε>0,∃N,使得n/m>N,∀x∈[a,b],满足|S_n(x)-S_m(x)|<ε.$$则称$S_n(x) = \sum\limits_{k=1}^n f_k(x)$在区间[a,b]上一致收敛于$S(x)$.如果$S_n(x)$在区间[a,b]上一致收敛,则称该级数是一致收敛的。

1. Weierstrass判别法证明充分性:根据三角不等式,容易得出$$|S_n(x)-S_m(x)|≤\sum_{i=n+1}^m|f_i(x)|\\ ≤ \sum_{i=n+1}^mM_i$$ 因此$$|S_n(x)-S_m(x)| ≤ \epsilon \quad\rightarrow\quad \sum_{i=n+1}^{+\infty}M_i<\epsilon$$ 故$\sum\limits_{i=1}^{+\infty}f_i(x)$一致收敛。

必要性:由于$\sum\limits_{i=1}^{+\infty}f_i(x)$一致收敛于$S(x)$,因此$\forall ε>0$,$\exists N$,使得$\forall m,n>N$,$\forall x∈[a,b]$,都有$$|S_m(x)-S_n(x)|<ε$$ 再根据三角不等式,可得$$|f_n(x)+\cdots+f_{m-1}(x)|=|S_m(x)-S_n(x)+(-f_m(x)+f_m(x))+\cdots+(-f_{n-1}( x)+f_{n-1}(x))|\leq S(x)-S_N(x)$$ 由于$f_n(x)$在区间$[a,b]$上有界,因此$|f_n(x)|\leq M_n$。

函数项级数一致收敛性判别及应用

函数项级数一致收敛性判别及应用

函数项级数一致收敛性判别及应用函数项级数是指形如∑an(x)的无穷级数,其中an(x)是关于变量x的函数序列。

函数项级数是数学分析中重要的研究对象,其一致收敛性判别和应用有着广泛的应用背景和数学意义。

一、一致收敛性定义对于函数项级数∑an(x),如果对于任意给定的ε>0,存在正整数N,当n>N时,对于任意的x∈D(D是定义域),都有|∑an(x)-Sn(x)|<ε成立,则称∑an(x)在D上一致收敛。

Weierstrass判别法为函数项级数的一致收敛性提供了重要的判别标准。

通过找到一个收敛的函数项级数作为比较序列,即可判定原函数项级数的一致收敛性。

Abel判别法通过研究函数项级数的部分和序列来判定其一致收敛性。

如果部分和序列是有界的,并且各个部分和序列的差异在逐渐缩小,则可以判断函数项级数的一致收敛性。

3. Dini判别法设函数项级数∑an(x)在闭区间[a,b]上对于任意的x∈[a,b],都有an(x)单调递减(或递增),且∑an(x)在[a,b]上收敛,则∑an(x)在闭区间[a,b]上一致收敛。

Dini判别法是针对闭区间的函数项级数的一致收敛性进行判别。

如果函数项级数在闭区间上对于任意的点都是单调递减(或递增)的,并且收敛,则该函数项级数在闭区间上一致收敛。

三、函数项级数的应用1. 函数项级数的积分和导数若∑an(x)在[a,b]上一致收敛到f(x),则在[a,b]上可以逐项积分和逐项求导得到∑∫an(x)dx和∑d(an(x))/dx成立。

这意味着可以通过积分和导数的特性对函数项级数进行处理,从而得到函数项级数的性质。

3. 函数项级数的逐项表示对于某些函数,可以通过将其展开成函数项级数的形式,从而简化对函数的研究和操作。

三角函数的展开成傅里叶级数等。

总结:函数项级数一致收敛性判断是研究函数项级数性质的重要方法。

Weierstrass判别法、Abel判别法和Dini判别法为判断函数项级数一致收敛性提供了有效的工具。

一致收敛性判别及应用

一致收敛性判别及应用

一致收敛性判别及应用摘要:函数是高等数学中重要的内容之一,但是函数项级数与函数列的一致收敛性问题往往是初学者学习函数的最大障碍,本文对函数项级数、函数列的一致收敛性的常用判别方法进行简单分析并阐述其应用。

关键词:函数项级数 函数列 一致收敛 判别法及应用设(){}n x ⎰为定义在区间Z 上的函数序列,假如那么就存在x 1,x 2∈Z ,当|x 1-x 2|<,对于一切n 有|()()12n -n X X ⎰⎰|<,则称之为函数序列(){}n x ⎰在区间Z 上等度连续。

假设函数列{}n ⎰与函数⎰定义在区间Z 上,假如对于任意给的正数|()()n x -x ⎰⎰|<以上情况则称之为{}n ⎰在区间Z 上一致收敛于⎰。

一、函数列及其一致收敛性假设1⎰,2⎰,,n ⎰,是一列定义在同一数集Z 上的函数,那么则称为定义在Z 上的函数列,可以表达为:{}n ⎰或n ⎰,n=1,2,。

(1) 以x 0∈Z 带入以上数列,可以得出以下数列:(2)假如数列(2)收敛,那么则称为数列(1)在点0X 收敛,x 0则是函数列(1)的收敛点,当函数列(1)在数集D Z 上每一个收敛点都出现收敛时,则称(1)在数集D 上收敛,这时候D 上面的每一个点x 都有相应的数列(){}n x ⎰的一个极限值与之相对应,根据这个对应法则所确定的D 上的函数,则称为函数列(1)的极限函数假如将此极限函数记作为⎰,那么则有:或者是:(),x ∈D例 1 设,n=1,2,,为定义在(-,。

证明:设>0,当>0时,由于有:||=|n x |,只要N (=,当n >(||=|x n |<|x|N=.当x=0,x=1,对于任何正整数n ,都存在||=0<,||=0<.以上结果证明了{}n ⎰在(]-1,1上收敛。

例2 定义在()-∞∞,上的函数列,n=1,2,。

由于对于任何的实数x ,都存在sin nx n≤1n,因此,对于任意>0,只要符合n >N=,就存在sin nx -0n<所以,函数列{}sin nx/n 的收敛域为()-∞∞,。

一致收敛的比较判别法

一致收敛的比较判别法

一致收敛的比较判别法一致收敛的比较判别法是数学分析中的一种重要策略,适用于求解函数序列的收敛性问题。

其主要思想是通过比较函数序列与已知函数的大小关系,来推断函数序列的收敛性。

下面我们就来详细介绍一下这一方法。

1. 一致收敛的概念在介绍一致收敛的比较判别法之前,我们先来了解一下一致收敛这个概念。

对于一个函数序列{f_n(x)},如果存在一个函数f(x),使得对于任何给定的正数ε,都存在一个正整数N,当n>N时,有|f_n(x)-f(x)|<ε成立,那么我们称这个函数序列一致收敛于函数f(x)。

这种收敛方式相比于点态收敛和平均收敛而言,更加强一些,也更适合于一些特殊函数的收敛性分析。

2. 比较判别法的基本思路有了一致收敛的概念之后,我们就可以开始介绍一致收敛的比较判别法了。

这种方法的基本思路就是通过一个已知函数g(x),与函数序列{f_n(x)}相比较,从而来推断{f_n(x)}的收敛性。

具体来说,如果存在一个正整数N和正数M,使得对于任意的x和n>N,有|f_n(x)|≤M|g(x)|成立,那么我们就可以得出结论:若g(x)一致收敛,那么{f_n(x)}一致收敛;反之,若{f_n(x)}不一致收敛,则g(x)也不一致收敛。

3. 举例说明为了更好地理解一致收敛的比较判别法,我们举个例子来说明。

考虑两个函数序列{a_n(x)}和{b_n(x)},其中a_n(x)=x^n/(1+x^n),b_n(x)=x^n。

我们想知道这两个函数序列是否一致收敛。

由于比较判别法的思路是将未知的函数序列与已知的函数相比较,因此我们可以先找到一个已知函数g(x),它能够与{a_n(x)}或{b_n(x)}进行比较。

因为a_n(x)的极限函数是f(x)=1(当x>0时),因此我们取g(x)=1,那么对于任意的x和n,有|a_n(x)|≤1|g(x)|成立。

因此,根据比较判别法,可以得出结论:{a_n(x)}一致收敛于f(x)=1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一致收敛性判别及应用摘要:函数是高等数学中重要的内容之一,但是函数项级数与函数列的一致收敛性问题往往是初学者学习函数的最大障碍,本文对函数项级数、函数列的一致收敛性的常用判别方法进行简单分析并阐述其应用。

关键词:函数项级数 函数列 一致收敛 判别法及应用设(){}n x ⎰为定义在区间Z 上的函数序列,假如那么就存在x 1,x 2∈Z ,当|x 1-x 2|<,对于一切n 有|()()12n -n X X ⎰⎰|<,则称之为函数序列(){}n x ⎰在区间Z 上等度连续。

假设函数列{}n ⎰与函数⎰定义在区间Z 上,假如对于任意给的正数|()()n x -x ⎰⎰|<以上情况则称之为{}n ⎰在区间Z 上一致收敛于⎰。

一、函数列及其一致收敛性假设1⎰,2⎰,,n ⎰,是一列定义在同一数集Z 上的函数,那么则称为定义在Z 上的函数列,可以表达为:{}n ⎰或n ⎰,n=1,2,。

(1) 以x 0∈Z 带入以上数列,可以得出以下数列:(2)假如数列(2)收敛,那么则称为数列(1)在点0X 收敛,x 0则是函数列(1)的收敛点,当函数列(1)在数集D Z 上每一个收敛点都出现收敛时,则称(1)在数集D 上收敛,这时候D 上面的每一个点x 都有相应的数列(){}n x ⎰的一个极限值与之相对应,根据这个对应法则所确定的D 上的函数,则称为函数列(1)的极限函数假如将此极限函数记作为⎰,那么则有:或者是:(),x ∈D例 1 设,n=1,2,,为定义在(-,。

证明:设>0,当>0时,由于有:||=|n x |,只要N (=,当n >(||=|x n |<|x|N=.当x=0,x=1,对于任何正整数n ,都存在||=0<,||=0<.以上结果证明了{}n ⎰在(]-1,1上收敛。

例2 定义在()-∞∞,上的函数列,n=1,2,。

由于对于任何的实数x ,都存在sin nx n≤1n,因此,对于任意>0,只要符合n >N=,就存在sin nx -0n<所以,函数列{}sin nx/n 的收敛域为()-∞∞,。

二、一致收敛判别法对于函数项级数的一致收敛性判别方法早有人研究过,且硕果累累,常见的判别方法有:柯西一致收敛准则、魏尔斯特拉斯判别法、狄利克雷判别法等等,在这里我们就不一一介绍了,下面介绍比较常用的判别法。

莱布尼兹判别法定理一:设(){}n x μ在区间[]a b ,上的连续函数列,且对于[]a b ε∀∈,,都存在(1)()()n+1n 0x x μμ≤≤,其中N +,(2).则交错函数顶级数()()n n 1-1x μ∞⊂∑在[]a b ,上一致收敛。

证明:已知函数列(){}n x μ在区间[]a b ,上单调减少且收敛于0,每一项也都存在连续。

而()()()()n-1n k k+11k=1-x =x -x -x μμμμ⎡⎤⎣⎦∑,所以在[]a b ,连续非负,由狄尼定理可以得知函数项级数在区间(){}nx μ在区间[]a b ,一致收敛于0。

又存在()nkk=1-1=-1+1-1+1-1+1∑因此()kn =1-1∞∑有界,即是()nn =1-1∞∑的部分与函数列在区间由狄利克雷判别法我们可以知道:交错函数项级数()()nn n=1-1x μ∞∑在区间[]a b ,一致收敛。

例3 证明()n-12n=1-1n+x∞∑在区间证明:21n+x ⎧⎫⎨⎬⎩⎭是任意闭区间[]a b ,的连续函数列,且存在x ∈[]a b ,,,,由定理一:设(){}n x μ在区间[]a b ,上的连续函数列,且对于[]a b ε∀∈,,都存在(1)()()n n+1x x 0μμ≥≥,其中,(2).则交错函数顶级数()()n n 1-1x μ∞⊂∑在[]a b ,上一致收敛。

我们可以知道,函数项级数()n-12n=1-1n+x∞∑在区间[]a b ,一致收敛。

M 一判别法定理二: 设有函数级数()n n=1x μ∞∑,存在一收敛的正项级数n n=1α∞∑使得对于∈1,存在()()n n nx lim=+0μκκα→∞∞≥>则函数项级数()n n=1x μ∞∑在区间I 一致收敛。

证明:从以上条件已知()()n n nx lim=+0μκκα→∞∞≥>,即是0ε∃>,N ∈,x ∈I 有|-|<,即是()n 0n x -+-μκεκακ<<()0n +εκα,又因为n n=1α∞∑存在收敛,则()0n n=1+εκα∞∑也存在收敛,由M-判别法得出函数顶级数()n n=1x μ∞∑在区间I 一致收敛。

上面我们谈了函数项级数的判别法,下面我们简单阐述函数列的判别法。

(一)点的收敛函数列(){}n x ⎰在0x 点收敛于()n x ⎰,指的是:,N 属于自然数,当n >N 的时候,存在()()0n x -n x ε⎰⎰<.注:在以上情况中,对于,满足其收敛定义要求的自然数N 不是固定不变的,是有无穷个的。

我们可以推理为,假如N 满足了收敛定义的要求,那么N+1,N+2,N+n 都满足收敛定义的要求。

以上的无穷多个自然数N ,构成一个无穷自然数集合E=﹛﹜。

这在点0x 的收敛,实质上是一个数列的收敛问题。

(二)、逐点收敛假设函数列(){}n x ⎰在点集E 上面收敛于(){}x ⎰,即是0ε∀∈E ,(){}n x ⎰都在0x 这一个点收敛于()0x ⎰,这时候存在()()0n x -n x ε⎰⎰<。

(注:0x N 是与0x 以及ε有关的,且与两者都有关,对于不同的0x ,有着不同的(三)、一致收敛假设在点集E 上的函数列(){}n x ⎰与()x ⎰函数,对于,当n >N时,x ∀∈E 时,则存在()()n x -n x ε⎰⎰<,那么则称为函数列(){}n x ⎰在点集E 上一致收敛于()x ⎰。

下面进行论述:例4:(){}n x ⎰ ={}n x 在[]a b ,(1>a >0)上存在共同的N ;同时,在[)0,1上不存在共同的大N 。

证明:从(){}n x ⎰中我们可以得知,x ∀∈(-1,1),那么则存在()()nn n x =lim x →∞⎰=0即是:(){}n x ⎰ ={}n x 在(-1,1)内收敛于()x ⎰=0. 对>0,要使n >N 与a ≥x ≥-a 成立,则必须使()()n n x -x =x ε⎰⎰<成立当x ≠0的时候,存在n <log ε,只要n >N ,那么就会存在n<log ε即是:当n >loglog εα(成立只需要将N 的取值范围定在log log εα⎡⎤⎢⎥⎣⎦即可, N 的值就是共同的大N(在再证:当x ∈的时候,存在01=2ε 对于(自然数)都存在N =2N >N 0x =∈使()()11--220001n x -x =x =2=2N N N ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭⎰⎰成立。

这说明了集合()(){}x x 0000n n x -x N N N ε∀∃⎰⎰,,,在对应>有<不存在上界。

所以:(){}n x ⎰ ={}n x在上不存在共同的大N ,即是在三:一致收敛性的应用从以上我们可以基本的了解函数顶级数及函数列的一致收敛性,下面我们在此基础上对一致收敛性的基本应用进行理解: (一)、内闭一致收敛假设E 作为区间,假如对于任意[]αβ,E ,(){}n x ⎰在[]αβ,上都一致收敛于()x ⎰,那么则称为(){}n x ⎰在区间E 内闭一致收敛于()x ⎰。

若在(){}n x ⎰区间E 内闭一致收敛于()x ⎰,则在E 上收敛于()x ⎰ (){}n x ⎰ ={}n x ,虽然在上一致收敛,即是对(-1,1)内任何一个闭区间上都一致收敛,以上性质称之为内闭一致收敛。

下面我们继续以上定义: 对0x ∀∈E ,那么一定存在E ,使由于(){}n x ⎰在E 内闭一致收敛于()x ⎰,因此,在[]αβ,上也收敛于()x ⎰,我们可以很明显的看出收敛于()0x ⎰,从而在E 上收敛于()x ⎰。

反之则不一定成立:例如{}n x 在(-1,1)内闭一致收敛于0,但是在(-1,1)内则不一致收敛;{}nx 在上不一致收敛,当然在(-1,1)内不一致收敛。

(二)、近于一致收敛设(){}n x ⎰与()x ⎰定义在点集E 的函数,如对δ∀>0,e E 使<δ而(){}n x ⎰在E\上一致收敛,则称之为(){}n x ⎰在E 上近于一致收敛,即是:当去掉一个测度可以任意小的某点集之后一致收敛。

从以上我们可以得知:内闭一致收敛,对于E 确定义为区间,对于δ∀>0(预先得知的)可以使得集合E\之测度小于δ(因为对于点集E ,总是存在闭集E E(F\E )<δ,所以,对于区间绝对成立)。

以上说明了内闭一致收敛,当然近一致收敛。

反之则不一定成立。

例五:定义在的函数列(){}n x ⎰(当x 为无理数)在近于一致收敛于0,但是在不收敛(不内闭一致收敛)。

例6:已知函数序列(){}n x ⎰=),n=1,2,在区间上连续且可微,证明(){}n x ⎰在上一致收敛。

证明:函数序列(){}n x ⎰在区间上连续且可微,且存在M=1,对于任意的x ∈及n ∈N ,则存在()n x =()222x2x 2x 1x n n 1+n x≤≤由以上内容可知()n x ⎰=),n=1,2,在区间上一直连续。

我们证明一致收敛的时候可以采取反向证明法,即是证明函数的不一致收敛,证明不一致收敛的常用方法如下: ①、利用定义证明。

②、利用求极值的方法,()n r x =()k k=n+1x μ∞∑,假如Sup|()n r x |0(n),那么()k k=n+1x μ∞∑在I 上不一致收敛;如果n(x )(x )(n )(x ∈I ),但是Sup ()()n x -x ⎰⎰0(n),则()n x ⎰在I 上不一致收敛。

③、利用Cauehy 准则(适用于函数顶级数与函数列). ④、利用与函数或者极限函数的不连续性。

⑤、利用各种结论函数顶级数与函数列的一致收敛性存在很多证明与应用,需要我们更加细致的去探索。

参考文献[1] 赵书改,曹怀信.小波级数的部分和的一致收敛性[J].兰州理工大学学报,2012,38(2):146-149.[2] 赵书改,曹怀信.小波级数的一致收敛性[J].纺织高校基础科学学报,2012,25(1):30-32.[3] 王振乾,彭建奎,王立萍等.关于函数项级数一致收敛性判定的讨论[J].甘肃联合大学学报(自然科学版),2010,24(4):111-113.[4] 赵书改,曹怀信.高维小波展开式的一致收敛性[J].山东大学学报(理学版),2010,45(10):89-92.[5] 何挺.函数列一致收敛性和Dini定理[J].安顺学院学报,2012,14(3):127-129.[6] 毛一波.函数项级数一致收敛性的判定[J].重庆文理学院学报(自然科学版),2006,5(4):55-56.[7] 龙明生,欧阳耀.紧集上单调函数序列的收敛性[J].宜春学院学报,2011,33(8):27-28.[8] 李晓红,马占春.函数列一致收敛性的推广[J].高师理科学刊,2007,27(4):13-14,17.[9] 高慧.含参量非正常积分一致收敛性的几个判别方法[J].延安职业技术学院学报,2011,25(3):99-101,104.[10] 刘秀梅.函数列在不同区间上一致收敛性的研究[J].大学数学,2008,24(6):160-164.。

相关文档
最新文档