00综合复习题2011-6-6-高等数学2(10-11学年第二学期)(54学时)

合集下载

高数第二学期总复习题及答案

高数第二学期总复习题及答案

高数第二学期复习题及答案1. 求球面222x y z R ++=与x z a +=的交线在x o y 面上的投影曲线的方程.()2222x y a x R z ⎧++-=⎪⎨=⎪⎩2. 判断方程22220,24x y z z x y +-=++=所表示的几何图形.(旋转抛物面,圆锥面) 3. 判断平面:230x y z ∏+-+=与直线112:311x y z l -+-==-的位置关系.(线在面内)4. 求过点()1,1,0且与125:214x y z l ---==垂直相交的直线方程.1121x y z --⎛⎫==⎪-⎝⎭5. 求通过点(1,2,1)-且通过23:212x t L y t z t =+⎧⎪=+⎨⎪=+⎩的平面方程.()2450x y z --+=6. 求过直线0230x y z x y z ++=⎧⎨-+=⎩且平行于直线23x y z==的平面方程.()726180x y z -+=7. 判断函数1sin ,0(,)0,0x y y f x y y ⎧≠⎪=⎨⎪=⎩在(0,0)点与(1,0)点的连续性.(在(0,0)点连续,在(1,0)点不连续)8. 求22(,)(0,0)1lim ()sinx y x y xy→+.()09. 求()()()2222(,)(0,0)221cos limexyx y x y xy+→-++.()010. 求(,)(0,0)lim24x y xy xy →-+.()4-11. 若00(,)0x y f x∂=∂,00(,)0x y f y∂=∂,判断(,)f x y 在点00(,)x y 的连续性和可微性.(不一定连续也不一定可微)12. 设函数(,)z f x y =在点00(,)x y 处可微,且00(,)0x f x y '=,00(,)0y f x y '=,判断函数(,)f x y 在00(,)x y 处有无极值,如果有,判断是极大值还是极小值.(可能有极值,也可能无极值)13. 设222(,)z x yf x y xy =-,其中f 具有连续偏导数,求d z .()()()3222223121222d 2d xyf x y f x y f x xf x y f x y f y ''''+++-+14. 设(),z z x y =是由e2e 2xyzz -+-=所确定,求d z .()e d d 2exyzy x x y -⎛⎫+ ⎪-⎝⎭15. 设()222,u f x y z xyz =++,其中f 具有二阶连续的偏导数,求2u x y∂∂∂.()22221112222422u xyf x z y z f xyz f zf x y ⎛⎫∂'''''''=++++ ⎪∂∂⎝⎭16. 求曲面222z x y =+在(0,1,1)-处指向下侧的单位法向量.()()0,2,1-- 17. 求曲面arctany z x=在1,1,4π⎛⎫⎪⎝⎭处指向上侧的法向量.()()1,1,2-18. 求函数()22ln u x y z=++在点()1,0,1A 处的梯度.11,0,22⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭19. 求曲面2222321x y z ++=平行于平面460x y z ++=的切平面方程.()4621x y z ++=±20. 求曲线2222223472x y z x y z⎧++=⎪⎨+=⎪⎩在点()2,1,6-处的切线和法平面方程.切线:21627284x y z +--==法平面:2728420x y z +++=21. 求曲线2322y xz x x⎧=⎪⎨=+⎪⎩在点()1,2,3处的切线和法平面方程.切线:123145x y z ---==法平面:45240x y z ++-=22. 在螺旋线()2cos ,sin ,02x y z θθθθπ===≤≤上求一点,使该点处螺旋线的切线平行于平面24x z +=.(2(2,,)24π或23(2,,)24π-)23. 交换二重积分21101d (,)d x xI x f x y y --=⎰⎰的积分次序. 21101d (,)d y yy f x y x --⎛⎫⎪⎝⎭⎰⎰ 24. 交换二重积分e ln 1d (,)d x I x f x y y =⎰⎰的积分次序.()1e 0ed (,)d yy f x y x ⎰⎰25. 把220d (,)d a ax x xI x f x y y -=⎰⎰化为极坐标形式.()2cos 24d cos ,sin d a f πθπθρθρθρρ⎛⎫ ⎪⎝⎭⎰⎰ 26. 把22222d ()d y y I y f x y x -=+⎰⎰化为极坐标形式. ()2sin 2200d d f πθθρρρ⎛⎫ ⎪⎝⎭⎰⎰ 27. 把21110d (,)d y yI y f x y x +-=⎰⎰化为极坐标形式.()2cos 400d cos ,sin d f πθθρθρθρρ⎛⎫ ⎪⎝⎭⎰⎰ 28. 求22d d Dx y x y +⎰⎰,其中区域D 为由222x y y +=及0x =所围在第一象限内的区域.169⎛⎫⎪⎝⎭29. 求()22ln 1d d Dx yx y ++⎰⎰,其中区域D为由221,0,0x y x y +≤≥≥所围成的区域.()ln 414π⎛⎫-⎪⎝⎭30. 求arctand d Dy x y x⎰⎰,其中区域D 为22224,1,,0x y x y y x y +≤+≥≤≥所围成的区域.2364π⎛⎫⎪⎝⎭31. 求224d d Dx y x y --⎰⎰,其中区域D 为以222x y x +=为边界的上半圆域.41639π⎛⎫-⎪⎝⎭32. 求2d d Dx y x y ⎰⎰,其中区域D 为1,,2xy y x x ===所围成的区域.118⎛⎫⎪⎝⎭33. 求22d d Dxx y y ⎰⎰,其中区域D 为2,x y x ==及双曲线1xy =所围成的区域.94⎛⎫⎪⎝⎭34. 设积分区域:Ω2222(0)x y z az a ++≤>,把三重积分22()d x y v Ω+⎰⎰⎰化为球面坐标下的三次积分. 22cos 432000d d sin d a r r ππϕθϕϕ⎛⎫ ⎪⎝⎭⎰⎰⎰35. 设有一物体,占有空间闭区域Ω是由圆柱面22y x x =-及平面0,0y z ==和1z =围成的,在点(,,)x y z 处的密度为22(,,)x y z z x y ρ=+,计算该物体的质量. 89⎛⎫⎪⎝⎭36. 设有一物体,占有空间闭区域Ω是以221z x y =--及0z =围成的,在点(,,)x y z 处的密度222(,,)x y z x y z ρ=++,计算该物体的质量. 2π⎛⎫ ⎪⎝⎭37. 利用三重积分计算由曲面221()2z x y =+与平面0z =和2z =所围成的介于两平面之间的立体的体积. ()4π38. 设222:1,0,0,0x y z x y z Ω++≤≥≥≥,求4d v Ω⎰⎰⎰.23π⎛⎫⎪⎝⎭39. 设L 为椭圆2212yx +=,其周长为a ,求22(2)d Lx y s +⎰ .()2a40. 设空间曲线22222:x y z x y⎧+=⎪Γ⎨=+⎪⎩,求22e d x ys +Γ⎰ .()22eπ41. 求d xyz s Γ⎰ ,其中Γ是点()1,0,2A 与()2,3,1B 之间的直线段.13114⎛⎫⎪⎝⎭42. 求()2d d 2L xxy x x y ++⎰其中L 沿222x y R +=顺时针从()0,A R 到(),0B R .22R ⎛⎫⎪⎝⎭43. 求()()esin d e cos d xxLy my x y my y -+-⎰其中L 为22x y ax +=从点(),0A a 到()0,0O 的上半圆弧,m 为常数.28m a π⎛⎫⎪⎝⎭44. 求()()22d sin d Lxy x x y y --+⎰其中L 是22y x x =-由点()0,0到()1,1的一段弧.sin 2746⎛⎫-⎪⎝⎭45. 设2222:x y z a ∑++=,求2d S ∑⎰⎰.()28a π46. 求(e cos 5)d (e sin 5)d x xCy y x y y --+-⎰,其中C 为222x y x +=自(2,0)A 到(0,0)O 的一段弧. 25(e 1)2π⎛⎫+- ⎪⎝⎭47. 计算22d d d d d d x y z xy z x y x y ∑++⎰⎰,其中∑为抛物面22z x y =+被4z =所截下部分的下侧. ()4π-48. 计算()d d ()d d ()d d y z y z z x z xx y x y ∑-+-+-⎰⎰,其中∑为圆锥面22z x y=+被1z =所截下部分的下侧.()049. 计算22222()d d I x y z x y x y ∑=+++⎰⎰,∑为下半球面221z x y=---的下侧.23π⎛⎫- ⎪⎝⎭50. 设级数21nn u ∞=∑和21nn v ∞=∑均收敛,判断以下结论是否成立(()21n n n u v ∞=+∑收敛成立 )1n n u ∞=∑收敛;1n n n u v ∞=∑条件收敛;()21n n n u v ∞=+∑收敛; ()211nn n u ∞=-∑条件收敛.51. 判别下列级数的收敛性,若收敛,是绝对收敛还是条件收敛.21(1)sin ln(1)nn n ∞=⎡⎤-⎢⎥+⎣⎦∑(条件收敛),11(1)1ln n n n n n-∞=-+∑(绝对收敛),31arctan n n n ∞=∑(绝对收敛),()111n n n n ∞=+-∑(发散),()()12111n n n n ∞-=-+∑(条件收敛),()()111ln 1n n n -∞=-+∑(条件收敛). 52. 判断1!nn n n∞=∑的敛散性.(收敛)53. 判断1!21nn n ∞=+∑的敛散性.(发散)54. 判断13!nnn nn ∞=∑的敛散性.(收敛)55. 求幂级数2321(1)2nn nn xn∞-=-∑的收敛域. ()2,2⎡⎤-⎣⎦56. 求幂级数21212n nn n x∞=-∑的收敛域. ()(2,2)-57. 求幂级数()112(1)nn n x n∞-=+-∑的收敛域.(]()3,1--58. 求幂级数()21211nnn x n ∞=-+∑的收敛域.13,22⎛⎫⎡⎤ ⎪⎢⎥⎣⎦⎝⎭59. 微分方程323e x y y y x -'''++=的特解形式为________.()e ()x x Ax B -+ 60. 微分方程369(1)e x y y y x '''-+=+的特解形式为________.()23e ()x x Ax B + 61. 微分方程244e x y y y x '''-+=的特解形式为________.()()22e x Ax B x +62. 求以12e (cos 2sin 2)xy C x C x =+为通解的二阶常系数齐次线性微分方程.()250y y y '''-+=63. 已知二阶常系数齐次线性微分方程的两个特解为212e ,e x xy y -==,求其方程.()20y y y '''+-=64. 已知二阶常系数齐次线性微分方程的两个特解为12e ,e x xy y x ==,求其方程.()20y y y '''-+=65. 求以12e xy C C =+为通解的二阶常系数齐次线性微分方程.()0y y '''-=66. 已知123,,y y y 是某二阶非齐次线性微分方程的三个解,且2131y y y y -≠-常数,则方程的通解为________.()()()1212311C y y C y y y -+-+ 67. 求微分方程2d 1d 0xy x x y +-=满足初始条件1e x y ==的特解.()211e xy +-=68. 求解2110x y y x x y =⎧'=-+⎪⎨⎪=⎩.ln x y x ⎛⎫= ⎪⎝⎭69. 求解32cos xy y x x '-=.()()2sin y x x C =+70. 求解004306,10x x y y y y y =='''-+=⎧⎪⎨'==⎪⎩.()32e 4e x x y =+1.求过直线1123:11x y z L ---==-且平行于直线221:211x y z L +-==的平面方程.解:直线1L 上的一点(1,2,3)A ,方向向量1(1,0,1)s =-,2L 的方向向量2(2,1,1)s = 从而所求平面的法向量121013211ijkn s s i j k =⨯=-=-+∴所求平面的方程为:(1)3(2)(3)0x y z ---+-=即320x y z -++=2.设()22,,z f xy x y=+其中f具有二阶连续偏导数,求2z x y∂∂∂.解:121222z f y f x yf xf x∂''''=⋅+⋅=+∂()()2111122122222z z f y f x f y x f x f y x yy x ∂∂∂⎛⎫'''''''''==+⋅+⋅+⋅+⋅ ⎪∂∂∂∂⎝⎭()221112122224f xyf x y f xyf '''''''=++++ 3.求曲线e cos ,e sin ,e t t t x t y t z ===在0t =时的法平面与切线方程. 解:()e (cos sin ),()e (sin cos ),()e t t t x t t t y t t t z t '''=-=+= ∴在0t =处的切向量为:()(0),(0),(0)(1,1,1)T x y z '''==又 0t =时对应曲线上的点(1,0,1),∴切线方程:101111x y z ---==,法平面方程:1010x y z -+-+-=,即20x y z ++-= 4.计算22()d d ,Dx y x y +⎰⎰其中 22:24,02D x x y x x -≤≤-≤≤.解::0,2cos 22D πθθρ≤≤≤≤22223202cos ()d d d d d d DDx y x y πθρρρθθρρ+=⋅=⎰⎰⎰⎰⎰⎰()42041cos d πθθ=-⎰20312+2cos2+cos 4d 22ππθθθ⎛⎫=-⎪⎝⎭⎰20312+sin2+sin 4)28ππθθθ⎡⎤=-⎢⎥⎣⎦54π=5.计算()22d ,x y v Ω+⎰⎰⎰其中Ω是由曲面222x y z +=与平面2z =所围成的空间闭区域.解:2:02,02,22z ρθπρΩ≤≤≤≤≤≤,则()223d d d d x y v z ρθρΩΩ+=⎰⎰⎰⎰⎰⎰222232d d d z πρθρρ=⎰⎰⎰2246230162(2)d 222123ρρρππρρπ⎡⎤=-=-=⎢⎥⎣⎦⎰6.计算22()d (sin )d ,LI x y x x y y =--+⎰其中L 是圆周22y x x =-由点(0,0)到 (1,1)的一段弧.解:22,sin P x y Q x y =-=--,则1P Q yx∂∂=-=∂∂ ∴曲线积分与路径无关取折线:0,:01;:1,:01OB y x BA x y =→=→∴OBBAI =+⎰⎰1122d (1sin )d x x y y =+--⎰⎰131sin 2324⎛⎫=+-+ ⎪⎝⎭71sin 264=-+7.计算()()()222d d d d d d ,y z y z z x z x x y x y ∑-+-+-⎰⎰其中∑为锥面22(0)z x y z h =+≤≤的外侧.解:补*222:()z h x y h ∑=+≤取上侧,则2P y z =-,2Q z x =-,2R x y =-, 0P Q R xyz∂∂∂===∂∂∂由Gauss 公式得,*0d 0v Ω∑+∑==⎰⎰⎰⎰⎰**22()d d ()d d xyD x y x y x y x y ∑∑=-=-⎰⎰⎰⎰⎰⎰2224d (cos sin )d 4h h ππθρθρθρρ=-=⎰⎰故**44044h h ππ∑∑+∑∑=-=-=-⎰⎰⎰⎰⎰⎰8.判定级数12ln 2n nn n ∞=⎛⎫+ ⎪⎝⎭∑的敛散性. 解:0lim2n n n→∞= n ∴→∞时,ln 122n n n n ⎛⎫+ ⎪⎝⎭∴由比较审敛法知:1ln 12n n n ∞=⎛⎫+ ⎪⎝⎭∑与12n n n ∞=∑有相同的敛散性.下面只要判定12nn n ∞=∑的敛散性1121lim 122nn n n n +→∞+⋅=< ,故由比值法,知12n n n∞=∑收敛 ∴12ln 2n n n n ∞=⎛⎫+ ⎪⎝⎭∑收敛 9.求幂级数12121(1)n nn n xn∞-=+-∑的收敛域.解:()2121121211nn nn n n n xxnn∞∞-==++-=∑∑,令221nn n u xn+=,则22212(23)limlim1(21)n n nn n nn xu n x u n n x++→∞→∞+=⋅=++当21x <,即1x <时,2121nn n xn∞=+∑收敛,21x>,即1x >时,2121nn n xn∞=+∑发散,当1x =时,121n n n∞=+∑发散;1x =-时,121n n n∞=+∑发散, ∴原级数的收敛域:()1,1-10.求微分方程cos d cot 5ed xy y x x+=的通解.解: 对应的齐次线性方程:d cot 0d y y x x+=,即1cos d d sin x y x yx=-两端积分,得ln ln(sin )ln y x C =-+ sin Cy x∴=用常数变易法,设原方程的通解为:()sin C x y x=代入原方程,得cos 2()sin ()cos ()cos 5e sin sin x C x x C x x C x x x x'-+=cos ()5sin e xC x x '∴= 从而cos ()5e xC x C =-+∴原方程的通解:cos 5esin xCy x-+=1.求直线⎩⎨⎧=---=+-0923042:z y x z y x l 在平面14:=+-∏z y x 上的投影直线的方程.解:过直线l 的平面束()092342=---++-z y x z y x λ即()()()0921432=--++-+λλλλz y x ,又l 的投影直线与l 确定的平面与平面∏垂直()()01,1,421,4,32=-⋅---+∴λλλ 即01311=+λ,解得1113-=λ所以投影直线⎩⎨⎧=+-=--+140117373117z y x z y x 。

2010-2011(2)高等数学I2试题(A)

2010-2011(2)高等数学I2试题(A)

广州大学2010-2011学年第二学期考试卷课 程:高等数学Ⅰ2(90学时) 考 试 形 式:闭卷考试学院:____________ 专业班级:__________ 学号:____________ 姓名:___________一.填空题(每小题4分,本大题满分20分)1.已知(1,1,1)AB = ,(2,3,4)AC = ,则AB AC ⨯=____________,三角形ABC 的面积S =______.2.方程2221x y z +-=表示一个______叶双曲面,此曲面是由yOz 面上的双曲线221y z -=绕______轴旋转一周生成.3.曲面222236x y z ++=上点(1,1,1)-处的法向量n =____________,切平面方程为_______________________.4.若曲线积分(1,2)24(0,0)()d d I y f x x x y y =+⎰与路径无关,则()f x =________,积分值I =______.5.将下列函数展开成(1)x -的幂级数:(1) 12x =-________________________________________,(02x <<); (2) 21(2)x =-________________________________________,(02x <<).1.求函数2z x =.2.设vz u =,2u x y =+,v xy =,求z x∂∂.3.在曲线23x t y t z t =⎧⎪=⎨⎪=⎩上求一点,使曲线在此点的切线平行于平面21x y z ++=.1.设D 为半圆:0y ≤≤计算22d d 1DyI x y xy=++⎰⎰.2.已知曲线2:(01)C y x x =≤≤,计算d CI x s =⎰.3.计算220d xI x y =⎰⎰.讨论级数11()(0)nn a a n ∞=+>∑的收敛性.五.(本题满分11分)求幂级数11(1)n nn x n -∞=-∑的收敛域及和函数.设(,)z z x y =是由22222280x xy y yz z -+--+=确定的函数,求(,)z z x y =的驻点,并判别它们是否为极值点,是极大值点还是极小值点?一个具有常密度μ,半径为a的半球形物体,占有空间区域Ω≤≤:0z求该物体的质心.。

11学年第二学期大学数学2试卷(A卷)-参考答案

11学年第二学期大学数学2试卷(A卷)-参考答案

2011-2012学年第 2 学期 大学数学Ⅱ 华南农业大学期末考试试卷(A 卷)-参考答案 一、1. 0.8; 2. 31e --; 3. 518; 4. 416 ; 5. )1(t ; 6. (4.412,5.588) 二、1. B 2. C 3. A 4. B 5. C 6. D 三、1. 解 设A =“任取一产品,经检验认为是合格品” B =“任取一产品确是合格品” 依题意()0.9,()0.1,()0.95,()0.02P B P B P A B P A B ==== (2分) 则(1)()()(|)()(|)P A P B P A B P B P A B =+0.90.950.10.020.857.=⨯+⨯=(5分)(2) ()(|)0.90.95(|)0.9977()0.857P B P A B P B A P A ⨯===. (8分) 2. 解 (1) 由2114a a -+=得1231().22舍去或a a ==- (3分) (2) X 的分布律为 (5分) (3) X 的分布函数为 0,10,111,12,1244()113,23,234241111,3,3424x x x x F x x x x x <⎧<⎧⎪⎪⎪≤<⎪≤<⎪⎪⎪==⎨⎨+≤<⎪⎪≤<⎪⎪⎪⎪≥++≥⎩⎪⎩ (8分)3. 解(1)111011{1}{11}12x x P X P X e dx e dx e ---<=-<<===-⎰⎰. (3分)(2)当0y ≤时,()()()20F y P Y y P X y =<=<=; (5分) 当0y >时,()()(20x x F y P X y P X dx dx --=<=<== (8分)所以2Y X =的密度函数为0,0()()0y f y F y y ≤⎧⎪'==>. (10分)4. 解 (1)因为随机变量X 与Y 相互独立, ( 1分)所以它们的联合密度函数为:3,03,0(,)()()0,y X Y e x y f x y f x f y -⎧≤≤>==⎨⎩其他(3分)(2){}(,)y x P Y X f x y dxdy <<=⎰⎰3300[]x y edy dx -=⎰⎰ (6分) 330(1)x e dx -=-⎰3390181()333xx e e --=+=+()9183e -=+ (8分)(3)解:由密度函数可知~(0,3),~(3)X U Y E (10分) 所以,22(30)311(),(),12439D X D Y -==== (12分) 由X 与Y 相互独立,得3131()()()4936D X Y D X D Y -=+=+= (14分) 四、1. 解 检验假设 20:0.0004H σ=,21:0.0004H σ≠. (1分) 依题意,取统计量:222(1)~(1)n S n χχσ-=-,15n =. (3分) 查表得临界值:220.0252(1)(14)26.1n αχχ-==,220.97512(1)(14) 5.63n αχχ--==, (5分) 计算统计量的观测值得: 22140.02521.8750.0004χ⨯==. (6分) 因2220.9750.025(14)(14)χχχ<<,故接受原假设0H ,即认为总体方差与规定的方差无显著差异. (8分) 2. 解 (1)(2) 解 因为F =5.6681>0.01(3,16) 5.29F =,所以拒绝0H ,即认为不同的贮藏方法对粮食含水率的影响在检验水平0.01α=下有统计意义. (8分)3. 解 2.10=x ,239=y (2分)6.252.10101066221012=⨯-=-=∑=x n x l i i xx (3分)6622392.101025040101=⨯⨯-=-=∑=y x n y x l i i i xy (4分)故1662ˆ25.8625.6xy xx l l β==≈;01ˆˆ23925.8610.224.77y x ββ=-=-⨯=- (6分) 因此所求回归直线方程为 ˆ24.7725.86y x =-+ (8分)。

《高等数学二》考试题及答案

《高等数学二》考试题及答案

《高等数学(二)》期末复习题一、选择题1、若向量b 与向量)2,1,2(-=a 平行,且满足18-=⋅b a ,则=b ( A ) (A ) )4,2,4(-- (B )(24,4)--, (C ) (4,2,4)- (D )(4,4,2)--.2、在空间直角坐标系中,方程组2201x y z z ⎧+-=⎨=⎩代表的图形为 ( C )(A )直线 (B) 抛物线 (C ) 圆 (D)圆柱面 3、设22()DI xy dxdy =+⎰⎰,其中区域D 由222x y a +=所围成,则I =( D )(A)224ad a rdr a πθπ=⎰⎰ (B) 22402ad a adr a πθπ=⎰⎰(C)2230023a d r dr a πθπ=⎰⎰ (D) 2240012a d r rdr a πθπ=⎰⎰4、 设的弧段为:230,1≤≤=y x L ,则=⎰L ds 6 ( A )(A )9 (B) 6 (C )3 (D)235、级数∑∞=-11)1(n nn的敛散性为 ( B ) (A ) 发散 (B) 条件收敛 (C) 绝对收敛 (D) 敛散性不确定 6、二重积分定义式∑⎰⎰=→∆=ni i i i Df d y x f 10),(lim),(σηξσλ中的λ代表的是( D )(A )小区间的长度 (B)小区域的面积 (C)小区域的半径 (D)以上结果都不对 7、设),(y x f 为连续函数,则二次积分⎰⎰-1010d ),(d xy y x f x 等于 ( B )(A )⎰⎰-1010d ),(d xx y x f y (B) ⎰⎰-1010d ),(d yx y x f y(C)⎰⎰-x x y x f y 1010d ),(d(D)⎰⎰101d ),(d x y x f y8、方程222z x y =+表示的二次曲面是 ( A )(A )抛物面 (B )柱面 (C )圆锥面 (D ) 椭球面9、二元函数),(y x f z =在点),(00y x 可微是其在该点偏导数存在的( B ). (A ) 必要条件 (B ) 充分条件 (C ) 充要条件 (D ) 无关条件 10、设平面曲线L 为下半圆周 21,y x =--则曲线积分22()Lx y ds +=⎰( C )(A) 0 (B) 2π (C) π (D) 4π 11、若级数1nn a∞=∑收敛,则下列结论错误的是 ( B )(A)12nn a∞=∑收敛 (B)1(2)nn a∞=+∑收敛 (C)100nn a∞=∑收敛 (D)13nn a∞=∑收敛12、二重积分的值与 ( C )(A )函数f 及变量x,y 有关; (B) 区域D 及变量x,y 无关; (C )函数f 及区域D 有关; (D) 函数f 无关,区域D 有关。

高等数学Ⅱ复习题部分答案

高等数学Ⅱ复习题部分答案

一、单选题(共86题,86分)1、A、 0B、 1C、 2D、 3E、 42、A、 1B、 0C、 2D、 3E、 43、A、 0B、 2C、 3D、 1E、 4 4、A、 0B、 1C、 2D、 eE、 3 5、A、 0B、 1C、 2D、 3E、 46、A、 1B、 0C、 2D、 3E、 47、A、 ln3B、 ln2C、 0D、 1E、 28、A、 1B、 0C、 2D、 3E、 49、A、 1-exB、 eC、 ex+eD、 0E、 110、A、连续但偏导不存在B、偏导存在但不连续C、连续且偏导存在D、既不连续偏导也不存在11、A、 0B、 1C、 2D、 3E、 412、A、 1B、 0C、 2D、 3E、 413、A、 1B、 2C、 3D、 4E、 014、A、 0B、 1C、 2D、 3E、 e15、A、 0B、 2C、 3D、 4E、 116、A、 eB、 1C、 2D、 4E、 317、A、 ln3B、 ln2C、 1D、 2E、 318、A、 1B、 0C、 2D、 3E、 419、A、 1-exB、 ex+eC、 eD、 0E、 120、A、连续但偏导不存在B、偏导存在但不连续C、既不连续偏导也不存在D、连续且偏导存在21、下列关于多元函数连续、偏导及可微说法正确的是()A、若可微,则偏导存在B、若连续,则偏导存在C、若偏导存在,则连续D、若偏导存在,则可微22、A、B、C、D、23、A、 dx+2dy+dzB、 dx+dy+dzC、 2dx+dy+dzD、 2dx+2dy+dz24、A、 1B、 -1C、 0D、 225、A、B、C、D、26、设u=cos(xy),则du=( ).A、 -cos(xy)(ydx+xdy)B、 -sin(xy)(ydx+xdy)C、 cos(xy)(ydx+xdy)D、 sin(xy)(ydx+xdy)27、A、 2B、 4C、 -2D、 128、A、 2B、 0C、 1D、 329、A、 3B、 2C、 1D、 030、A、B、C、 yD、31、A、B、C、D、32、A、 2x+2y-z=0B、 2x+2y-z-1=0C、 2x+2y-z-2=0D、 2x+y-z-2=033、A、必要条件但非充分条件B、充分条件但非必要条件C、既非必要条件也非充分条件D、充要条件34、A、 4B、 8C、 6D、 1035、A、 x+y-8z=116B、 x-y-8z=120C、 x-y+8z=110D、 x+y+8z=14036、A、 2B、 1C、 3D、 437、A、 4,0B、 1,2C、 0,4D、 2,138、A、 -2B、 2C、 -4D、 439、A、 (1,1)B、 (1,2)C、 (1,-1)D、 (2,1)40、A、 1B、 2C、 0D、 341、A、 3B、 6C、 9D、 042、A、 1+sin1B、 1-cos1C、 1-sin1D、 043、A、 4B、 5C、 -4D、 -544、A、 2B、 3C、 1D、 445、A、 3SB、 2SC、 SD、 4S46、A、 2B、 3C、 1D、 047、A、 2B、 1C、 0D、 448、A、 1B、 0C、 2D、 -149、A、大于0B、等于0C、无法确定D、小于050、A、B、C、 0D、 151、A、 1B、 2C、 3D、 052、A、 aB、 abcC、 bD、 053、A、 22πB、 21πC、 20πD、 25π54、A、 2πB、 4πC、 0D、 8π55、A、πB、π/2C、 0D、 256、A、 13/9B、 14/9C、 1D、 057、A、 0B、C、 2D、 158、A、 2πB、 4πC、πD、 3π59、A、 2B、 1C、 0D、 360、A、B、C、D、61、B、 16C、 8D、 1062、A、 3B、 1C、 0D、 463、A、I=JB、I<JD、无法判断I,J大小64、A、4πB、0C、2D、2π65、A、0B、4πC、266、A、-2B、4C、-4D、267、A、πB、2πC、π/2D、4π68、A、10B、8C、-8D、-1069、A、1B、2C、4D、070、A、dxB、dx+dyC、-dyD、dy71、A、(0,0)不是函数的极小值点B、(0,0)是函数的极大值点C、(0,0)是函数的极小值点D、(0,0)不是函数的极值点72、A、{4,4,8}B、{2,4,4}C、{4,4,12}D、{2,2,4}73、A、B、C、D、74、A、B、2C、/2D、175、A、B、C、D、76、A、连续B、极限不存在C、极限存在但不连续D、没有定义77、A、 0B、1C、 2D、 378、A、1B、2C、-2D、079、A、1B、-1C、2D、 380、A、48πB、16πC、24πD、π81、A、B、C、D、82、A、0B、1C、2D、383、A、B、C、D、84、A、e+1B、e-1C、-e-1D、e85、设C为一条平面闭曲线,方向为逆时针,则下面可表示所围区域D面积的是( )A、B、C、D、86、A、B、C、D、二、判断题(共18题,18分)1、√2、×3、√4、5、是否正确?√6、质心与形心两个概念没有任何区别.7、8、9、偏导存在且连续可以推出函数可微√10、计算空间体的体积只有二重积分和三重积分两种方法,其他类型的积分不能处理体积的问题.×11、二元函数在某点极值存在,且该点处偏导存在,则偏导数一定为零.12、二元函数在开区域内部如果只有一个极值点,则该极值点为最值点.13、二元函数在某点极限存在当且仅当沿任何方向任意路径趋近于该点处极限均存在且相等.14、偏导存在能推出连续,连续不能推出偏导存在×15、二重积分的几何意义是曲顶柱体体积的代数和.√16、质心与形心两个概念是有所不同的.√17、方向导数是一个数,梯度是一个向量√18、×19、函数f(x,y,z)在有界闭区Ω上连续时,f(x,y,z)在Ω三重积分必存在。

2010-2011 第二学期 高等数学 期中考试 答案

2010-2011 第二学期 高等数学 期中考试 答案

中国矿业大学徐海学院2010-2011学年第二学期《高等数学》(理工类)期中试卷答案一、 填空题(每小题3分,共27分).1. }1,0,0|),{(2≠>≥-x x y x y x2. 43.)2,1(-4. 320y y y '''-+=5.(1,0)2(2)dz edx e dy =++6.22400y x z ⎧-+=⎨=⎩7. 2220y z x +-=8. 2360x y z -++=或(1)2(1)3(1)0x y z +--++= 9. 4二、计算下列偏导数或导数1、已知arctan()z xy =,而x y e =,求d z d x. 解:d z d x =z z dy x y dx ∂∂+∂∂221()1()xy x e xy xy =+++2(1)1()y x xy +=+2、设函数z z x y =(,)由方程e z xy z+=+1所确定,求x z ∂∂,z y ∂∂,∂∂∂2zx y.解:zx x ze yz yz e +==+1,)1( (),e z xz x ez y y z+==+113222)1()1()1(1z zz z y zze xye e e z ye e y x z +-+=+-+=∂∂∂ 或 设1),,(--+=xy z e z y x F z,x F y =-,y F x =-1z z F e =+1x x z z F y z F e =-=+,1y y zz F xz F e=-=+ 22231(1)(1)(1)z zz zy z z e ye z z e xye x y e e +-∂+-==∂∂++ 3、设2(,)z f xy x y =+,(,)f u v 具有二阶连续偏导数,求2,z z x x y∂∂∂∂∂.解:''12zyf f x∂=+∂ 2'"''''''111122122(2)2z f y xf yf xf yf x y∂=++++∂∂ 三、计算题1、求过点()4,2,0且与两平面12=+z x 和23=-z y 平行的直线方程. 解:已知两平面的法向量为1(1,0,2),n = 2(0,1,3),n =-则所求直线的方向向量12,,s n s n ⊥⊥12102013i j ks n n =⨯=-(2,3,1),=-则所求直线的方程为024231x y z ---==-。

2011级本科高等数学(二)期末试题及解答A(多学时、经180)

2011级本科高等数学(二)期末试题及解答A(多学时、经180)

2011级本科高等数学(二)期末试题及解答A(理工类多学时、经管类多学时)一、单项选择题(本大题共5小题,每小题3分,共15分)1.z x y x (,)000=和z x y y (,)000=是可微函数z z x y =(,)在点(,)x y 00处取得极值的( A ).(A) 必要条件但非充分条件; (B) 充分条件但非必要条件; (C) 充要条件; (D) 既非必要条件也非充分条件. [经180]二阶常系数线性差分方程2120x x x y y y ++++=的通解为( A ).(A)*12()(1)x x y A A x =+-; (B) *12()(2)xx y A A x =+-;(C) *12()2x x y A A x =+; (D) *12()1x x y A A x =+.2. 设u xy =,则22(1,1)u x∂=∂( B ).(A)12; (B) 14-; (C)1; (D)0.3. 若方程0y py qy '''++=的系数满足10p q ++=,则该方程有特解( B ). (A) y x =; (B) x y e =; (C) x y e -=; (D) sin y x =.4. 设21()DI x y dxdy =+⎰⎰,32()DI x y dxdy =+⎰⎰,其中22:(2)(2)2D x y -+-≤,则1I ,2I 的大小关系是 ( C ).(A)12I I >; (B) 12I I =; (C) 12I I ≤; (D) 12I I ≥.5. 设222222()d ,:4I f x y z V x y z z Ω=++Ω++≤⎰⎰⎰,f 为连续函数,则I =( D ).(A) ()4cos 2220d d sin d f r r r ππϕθϕϕ⎰⎰⎰; (B) ()24cos 22202d d sin d f r r r ππϕθϕϕ⎰⎰⎰; (C) ()24cos 220d d sin d f r r r ππϕθϕϕ⎰⎰⎰; (D) ()24cos 2220d d sin d f r r r ππϕθϕϕ⎰⎰⎰.[经180] 曲线cos (0)2y x x π=≤≤与2x π=及0y =所围的平面图形绕y 轴旋转所成旋转体的体积为(D ).(A) 2π; (B)π; (C) (2)ππ+; (D)(2)ππ-.二、填空题(本大题共5小题,每小题3分,共15分)6. 幂级数12n nn x n ∞=∑的收敛半径R = 1/2 .7. 若2(,)sin()f x y y x x x y =++-,则(,)x f x x '= 3x . 8. 设函数()f u 可微,且1(0)4f '=,则22(4)z f x y =-在点(1,2)处的全微分 (1,2)dz= 2dx dy - .9. 交换二次积分的次序()()2224111211d ,d d ,d x x x x f x y y x f x y y -+----+⎰⎰⎰⎰222204d (,)d y y y y f x y x ---=⎰⎰.10. 设曲线2224:1x y z L z ⎧++=⎨=⎩,则曲线积分22221d 23Lz s x y z π+=++⎰. [经180] 二重积分2221()d d 2x y x y x y π+≤+=⎰⎰.三、解答题(本大题共6小题,每小题8分,共48分)11.求极限00ln(1sin())lim1xy x y xy e →→+-. 解:00ln(1sin())lim1xy x y xy e →→--00sin()lim x y xy xy →→-= (4分) 00lim1x y xyxy →→-==-. (8分)12.设2(,)sin()x y f x y xy e -=-,求(0,1)x f ,(0,1)y f .解:22cos()x y x f y xy e -=- (3分) 22cos()x y y f xy xy e -=+ (6分) 1(0,1)1x f e -=-,1(0,1)y f e -=. (8分)13.设2322(,,)u x y z x y y z xz =++,求)1,1,1(du .解:322x u xy z =+,2232y u x y yz =+,22z u y xz =+ (3分) (1,1,1)3x u =,(1,1,1)5y u =,(1,1,1)3z u = (5分) (1,1,1)353du dx dy dz =++. (8分)14. 设,e x x z f y y ⎛⎫= ⎪⎝⎭,其中函数f 具有二阶连续偏导数,求2z x y ∂∂∂.解:121x z f ye f x y∂=+∂ (4分) 221112221232e 1(1)e e x x x z x f x f y f f f x y y y y∂=-+-+-+∂∂. (8分) 15.计算曲线积分2(22)(4)Lxy y dx x x dy -+-⎰ , 其中L 是取圆周229x y +=的正向闭曲线.解: ,,Q P x x x y∂∂=-=-∂∂2422.Q P x y∂∂-=-∂∂2 (4分) 由格林公式,有 原式().Dd σππ=-=-⋅⋅=-⎰⎰222318 (8分) [经180] 计算二重积分{}222d d ,(,)02Dx y x y D x y x y y +=≤≤-⎰⎰.解 2sin 22220d d d d Dx y x y πϕϕρρ+=⎰⎰⎰⎰(4分)320816sin d 39πϕϕ==⎰. (8分)16.设曲线段2:(01)L y x x =≤≤上任意一点(,)x y 处的线密度函数12x μ=,求该曲线段的质量.解 12d Lm x s =⎰ (4分)1201214d 551x x x =+=-⎰. (8分)[经180] 求一曲线方程,这曲线通过原点,并且它在点(,)x y 处的切线斜率等于2x y +.解: 依题意: ',().y x y y =+⎧⎨=⎩200 (3分)则: x y x Ce =--+22. (6分)把 ()y =00 代入上式, 得C =2.故().x y e x =--21 (8分)四、解答题(本大题共2小题,每小题6分,共12分) 17.利用高斯公式计算曲面积分xdydz ydzdx zdxdy ∑++⎰⎰ ,其中∑是长方体:{}(,,)0,0,0x y z x a y b z c Ω=≤≤≤≤≤≤整个表面的外侧. 解: ,,.Px Q y R z === (2分),,PQRxy z∂∂∂===∂∂∂111 (3分) 则由高斯公式有原式().dv abc Ω=++=⎰⎰⎰1113 (6分)[经180]已知曲线22:4z x y C x y z ⎧=+⎨++=⎩,求C 上距离原点最远的点和最近的点,并求最远距离和最近距离.解 22222()(4)L x y z x y z x y z λμ=++++-+++-, (2分)220x L x x λμ=++=,220y L y y λμ=++=,20z L z λμ=-+=,220x y z +-=,40x y z ++-=解得12(2,2,8),(1,1,2)M M --, (4分) 由问题的实际意义知,1M 为最远点,2M 为最近点max min 62,6d d ==. (6分)18.求级数20(1)!nn n x n ∞=+∑的收敛区间及和函数.解:222(1)1!lim lim(1)(2)2(1)!n n n n n R n n n n →∞→∞++⎛⎫==+=+∞ ⎪++⎝⎭+ 所以收敛区间为(,)-∞+∞. (2分)令20(1)()!nn n S x x n ∞=+=∑,则211000(1)11()()!!!xxn n nn n n n n n S x dx x dx x x x xS x n n n ∞∞∞+===+++====∑∑∑⎰⎰(4分) ()1100001()(1)!!!n n x n x x n n n n x x S x x dx x xe x e n n n +∞∞∞==='''⎛⎫⎛⎫+⎛⎫'=====+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑⎰ ()2()(1)(31)x x S x x x e x x e '=+=++ (6分) [经180] 求级数01!nn n x n ∞=+∑的收敛区间及和函数. 解:222(1)1!lim lim(1)(2)2(1)!n n n n n R n n n n →∞→∞++⎛⎫==+=+∞ ⎪++⎝⎭+ 所以收敛区间为(,)-∞+∞. (3分) 令01()!nn n S x x n ∞=+=∑,则 ()100001()(1)!!!n n x n x x n n n n x x S x x dx x xe x e n n n +∞∞∞==='''⎛⎫⎛⎫+⎛⎫'=====+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑⎰ (6分)五、解答题(本大题共2小题,每小题5分,共10分)19. 将函数()ln(3)f x x =+展开成幂级数.解:()1001111(1)ln(3)()333331()3n n n n n n x x x x x ∞∞+==-'+==⋅=-=+--∑∑,3x <(3分)11100(1)(1)ln(3)ln 333(1)n n xn n n n n n x x dx x n ∞∞+++==--+-==+∑∑⎰. 110(1)ln(3)ln 33(1)nn n n x x n ∞++=-+=++∑ (5分)20. 设函数(,)z f x y =具有二阶连续偏导数,且满足方程:2222260z z zx x y y ∂∂∂+-=∂∂∂∂,作变换23u x yv x y=-⎧⎨=+⎩,求在新变量(,)u v 下,方程2222260z z z x x y y∂∂∂+-=∂∂∂∂的形式. 解:,23z z z z z z x u v y u v∂∂∂∂∂∂=+=-+∂∂∂∂∂∂ (2分) 22222222z z z zx u u v v ∂∂∂∂=++∂∂∂∂∂,22222223z z z zx y u u v v∂∂∂∂=-++∂∂∂∂∂∂ 22222224129z z z zy u u v v ∂∂∂∂=-+∂∂∂∂∂ (4分) 所以,222226z z z x x y y ∂∂∂+-=∂∂∂∂225zu v∂∂∂,原方程可化为2z u v∂∂∂=0 (5分)。

2010-2011学年二学期高等数学期末复习题(B卷)答案

2010-2011学年二学期高等数学期末复习题(B卷)答案

{学年}学年第{学期}学期考试《{课程名称}》试卷{卷标},共2页,第1页2010-2011学年第二学期期末复习题(B 卷)标准答案课程名称: 高等数学 共 页考试时间: 120 分钟 总分:100分 考试方式: {闭卷开卷} 适用专业(班级): 题目部分,(卷面共有17题,100分,各大题标有题量和总分) 一、选择 (5小题,共15分) 1.C 2.C 3.A 4.C 5.D二、填空 (5小题,共15分) 1.132.10(,).yyd v f x v d x ⎰⎰3.(4,3,0) 4.yy x-25.S S f ()()()ππππ=-=-=-443 三、计算 (7小题,共70分) 1.y =1时,z f x x=+-=11() 所以f x x ()-=-11令xt x t -==+112,() 所以f t t t t f xx x()(),()=+-=+=+1122222所以()z y x x y x x y =+-+-=+-≥≥()(),12110022.解:⎰⎰⎰⎰+++=+AB BD ADd )(d )(sy xs y x L2d 2)]1([d )(1AB=-+=+⎰⎰x x x s y x 0d 2)]1([d )(01BD=++=+⎰⎰-x x xs y x 0d )0(d )(11AD=+=+⎰⎰-x xs y x 故 2d )(=+⎰Ls yx3.由函数()αxy +=1的幂级数展开式,有nn nn n n n n 101!151151510008.002.01101!15115151101!21515110151110111.1332515⋅⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛-+-+=⋅⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛-+⎪⎭⎫⎝⎛-+⋅+=⎪⎭⎫ ⎝⎛+=∑∑∞=∞=由最后的无穷级数满足Leibniz 判别法条件,故()43510101!3251151510008.002.011.1-<⋅⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-≤-+-{学年}学年第{学期}学期考试《{课程名称}》试卷{卷标},共2页,第2页因而0192.10008.002.011.15=-+≈误差不超过0001.0。

高等数学二期末复习题及答案

高等数学二期末复习题及答案

高等数学二期末复习题及答案集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]《高等数学(二)》期末复习题一、选择题1、若向量与向量)2,1,2(-=a 平行,且满足18-=⋅,则=( )(A ) )4,2,4(-- (B )(24,4)--,(C ) (4,2,4)- (D )(4,4,2)--.2、在空间直角坐标系中,方程组2201x y z z ⎧+-=⎨=⎩代表的图形为 ( )(A )直线 (B) 抛物线 (C ) 圆 (D)圆柱面 3、设22()DI x y dxdy =+⎰⎰,其中区域D 由222x y a +=所围成,则I =( )(A) 22400a d a rdr a πθπ=⎰⎰ (B) 224002ad a adr a πθπ=⎰⎰(C)2230023a d r dr a πθπ=⎰⎰ (D) 2240012a d r rdr a πθπ=⎰⎰4、 设的弧段为:230,1≤≤=y x L ,则=⎰L ds 6 ( )(A )9 (B) 6 (C )3 (D) 235、级数∑∞=-11)1(n nn的敛散性为 ( )(A ) 发散 (B) 条件收敛 (C) 绝对收敛 (D) 敛散性不确定6、二重积分定义式∑⎰⎰=→∆=ni i i i Df d y x f 10),(lim ),(σηξσλ中的λ代表的是( )(A )小区间的长度 (B)小区域的面积 (C)小区域的半径 (D)以上结果都不对 7、设),(y x f 为连续函数,则二次积分⎰⎰-1010d ),(d xy y x f x 等于 ( )(A )⎰⎰-1010d ),(d xx y x f y(B) ⎰⎰-1010d ),(d yx y x f y(C)⎰⎰-xx y x f y 1010d ),(d(D)⎰⎰1010d ),(d x y x f y8、方程222z x y =+表示的二次曲面是 ( )(A )抛物面 (B )柱面 (C )圆锥面 (D )椭球面9、二元函数),(y x f z =在点),(00y x 可微是其在该点偏导数存在的( ). (A ) 必要条件 (B ) 充分条件 (C ) 充要条件 (D ) 无关条件10、设平面曲线L 为下半圆周 y =则曲线积分22()L x y ds +=⎰( )(A) 0 (B) 2π (C) π (D) 4π11、若级数1n n a ∞=∑收敛,则下列结论错误的是 ( )(A)12n n a ∞=∑收敛 (B) 1(2)n n a ∞=+∑收敛 (C)100nn a∞=∑收敛 (D) 13n n a ∞=∑收敛12、二重积分的值与 ( )(A )函数f 及变量x,y 有关; (B) 区域D 及变量x,y 无关; (C )函数f 及区域D 有关; (D) 函数f 无关,区域D 有关。

2011-2012学年合肥工业大学第二学期《高等数学》试卷和参考答案

2011-2012学年合肥工业大学第二学期《高等数学》试卷和参考答案

2011----2012学年第二学期期末考题解答一.填空题(每小题3分, 满分15分)1. 过直线L:x-1y+2z-2==且垂直于平面3x+2y-z=5的平面方程是2-32_________.【解】应填:x-8y-13z+9=0.直线L的方向向量s={2,-3,2}.已知平面的法向量n1={3,2,-1},设所求平面的法向量为n,由题意知n⊥s且n⊥n1,故可取ijk n=s⨯n1=2-32={-1,8,13},32-由条件知,所求平面过点P0(1,-2,2)于是所求平面方程为,-(x-1)+8(y+2)+13(z-2)=0,即x-8y-13z+9=0.2. 设x2+2xy+y+zez=1,则dz【解】应填:-2dx-dy.由x+2xy+y+ze=1,两边求全微分,得 2z(0,1)=2xdx+2ydx+2xdy+dy+(1+z)ezdz=0,当x=0,y=1时,代入原方程得z=0,所以dz(0,1)=-2dx-dy.3. 椭圆抛物面∑:z=2x+y在点P0(1,-1,3)处的法线方程是___________.【解】应填:22x-1y+1z-3==. 4-2-1曲面∑在点P0(1,-1,3)处的法向量可取为n={4x,2y,-1}(1,-1,3)={4,-2,-1},于是曲面∑在点P0(1,-1,3)处的法线方程为x-1y+1z-4=-2=3-1.4.曲面z=与z=x2+y2所围立体的体积为.【解】应填:6. V=⎰⎰⎰dv=2π0dθ1rπΩ⎰⎰0rdr⎰r2dz=6.5. 设L为上半圆周y=⎰(xL-xy+y2)ds=____________.【解】应填:π.由对称性,代入技巧及几何意义可得⎰2L(x-xy+y2)ds=⎰Lds+0=π二.选择题(每小题3分, 满分15分)1.方程y''-3y'+2y=1+2x-3ex的特解形式为(). (A)(ax+b)ex (B) (ax+b)xex(C) ax+b+cex(D) ax+b+cxex【解】选(D)2.设unn=(-1),则级数().(A)∑∞∞∞u2n与∑un都收敛(B)n=1n=1∑u2n与n=1∑un都发散n=1 (C)∑∞∞∞∞u2n收敛,而n发散(D)u2n发散,而n收敛n=1∑un=1∑n=1∑u【解】选(C)3.二元函数f(x,y)的两个偏导数fx¢(x,y),fy¢(x,y)在点P0(x0,y0)处都连续是f(x,y)在点P0(x0,y0)处可微分的()(A) 充分条件 (B) 必要条件(C) 充要条件 (D) 既非充分也非必要条件【解】若fx¢(x,y),fy¢(x,y)在点P0(x0,y0)都连续,则f(x,y)在点P0(x0,y0)处可微分,选(A)4.⎰10dx⎰2x1=()(A)121 (B))131 (C)(D【解】原积分=⎰dy0101121==⎰231.选(B) )⎧x2-π≤x<05. 设f(x)=⎨,则周期为2π的函数f(x)的傅立叶级数在x=2π处⎩x-π0≤x<π收敛于.(A)-π2 (B)-π (C)0 (D)π 2【解】选(A)三. (10分) 设z=f(xy,xy)+g(),其中f有二阶连续偏导数,g有二阶导yx∂2z数,求.∂x∂y【解】根据复合函数求偏导公式得∂z1y=f1'⋅y+f2'⋅+g'⋅(-2), ∂xyx∂2z∂⎛∂z⎫∂⎛1y⎫= ⎪= f1'⋅y+f2'⋅+g'⋅(-2)⎪∂x∂y∂y⎝∂x⎭∂y⎝yx⎭x11xy1=f1'+y[f11''x+f12''⋅(-2)]-2f2'+[f21''x+f22''⋅(-2)]-g''⋅3-g'⋅2yyyyxx1xy1=f1'+xyf11''-2f2'-3f22''-3g''-2g'yyxxx2四. (10分) 求z=f(x,y)=x-y在闭区域D:+y2≤1上的最大值和最小值.22【解】在D的内部,⎧fx'=2x=0⇒(0,0)为驻点,且f(0,0)=0 ⎨'f=-2y=0⎩y在D的边界上,x2x25x22222+y=1⇒y=1-⇒z=x-y=-1由444(-2≤x≤2)dz5x==0⇒x=0,此时,y=±1,,则有f(0,±1)=-1,dx2比较上述函数值知,f(±2,0)=4函数z=f(x,y)=x-y在D上的最大值为4,最小值为-1.五. (10分) 求微分方程y''=22y'+xex的通解. x1p=xex, x【解】不显含y,故令y'=p,则y''=p',代入原方程得p'-利用通解公式求得通解为p=x(ex+C1),积分得原方程通解为1y=(x-1)ex+C1x2+C2.2六. (12分)(Ⅰ)试确定可导函数f(x),使在右半平面内,y[2-f(x)]dx+xf(x)dy为某函数u(x,y)的全微分,其中f(1)=2;(Ⅱ)求u(x,y);【解】(Ⅰ)P=y[2-f(x)],Q=xf(x).因为y[2-f(x)]dx+xf(x)dy是函数u(x,y)的全微分,所以有即∂Q∂P, =∂x∂yf(x)+xf'(x)=2-f(x),故xf'(x)+2f(x)=2.上述微分方程的通解为f(x)=1+所以C.由f(1)=2得C=1, x21. x2f(x)=1+(Ⅱ)在右半平面内取(x0,y0)=(1,0),则11u(x,y)=⎰P(x,0)dx+⎰Q(x,y)dy=⎰0(x+)dy=y(x+).10xxxyy七. (12分) 求幂级数∞∑n(n+1)xn=1∞n的收敛域及和函数.【解】易求得其收敛域为(-1,1),令S(x)=∑n(n+1)x=x∑n(n+1)xnn=1n=1∞n-1=x⋅S1(x),其中S1(x)=∑n(n+1)xn-1,n=1∞∞两边积分⎰再积分xS1(x)dx=∑⎰n(n+1)xn=1∞xn-1dx=∑(n+1)xn,n=1⎰(⎰xxS1(x)dx)dx=∑⎰(n+1)xdx=∑xnn=1∞x∞n+1n=1x2. =1-x因此x22S1(x)=()''=,1-x(1-x)3故原级数的和S(x)=2x,x∈(-1,1).(1-x)3八. (12分) 计算积分I=⎰⎰(y-z)dzdx+(x+2z)dxdy∑,其中∑是抛物面z=x2+y2(0≤z≤1),取下侧.【解】补S0:z=1(x2+y2 1),取上侧,设∑与∑0围成空间区域Ω, Ω及∑0在xOy平面上的投影区域Dxy:x+y≤1.由Gauss公式,I=22∑+∑0 ⎰⎰(y-z)dzdx+(x+2z)dxdy-⎰⎰(y-z)dzdx+(x+2z)dxdy ∑0=⎰⎰⎰[Ω∂∂(y-z)+(x+2z)]dv-⎰⎰(y-z)dzdx+(x+2z)dxdy ∂y∂z∑0∑0=3⎰⎰⎰dv-⎰⎰(y-z)dzdx+(x+2z)dxdy. Ω因为∑0垂直于zOx平面,∑0在zOx平面上的投影区域面积为零,所以⎰⎰(y-z)dzdx=0.∑0I=3⎰⎰[⎰2Dxy1x+y2dz]dxdy-⎰⎰[x+2(x2+y2)]dxdy Dxy2π1=⎰⎰(3-5x2-5y2)dxdy=⎰dθ⎰(3-5r2)rdr=Dxy00π.2九. (4分) 设函数ϕ(y)具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分ϕ(y)dx+2xydy2x+y24L的值恒为同一常数.证明:对右半平面x>0内的任意分段光滑简单闭曲线C,有ϕ(y)dx+2xydy2x+y24C=0;【证明】将C分解为:C=l1+l2,另作一条曲线l3围绕原点且与C相接,则ϕ(y)dx+2xydy2x+y24C=ϕ(y)dx+2xydy2x+y24l1+l3-ϕ(y)dx+2xydy2x+y24l2+l3=0.。

《高等数学Ⅱ》复习题及答案

《高等数学Ⅱ》复习题及答案

课程名称:《高等数学Ⅱ》一、 单项选择题 (从下列各题的四个备选答案中选出一个正确答案,选错或未选者,此题不得分,每小题2分,共40分。

)二、 多项选择题 (从下列各题四个备选答案中选出正确答案,答案选错者,该题不得分,每小题 4分,共 40 分。

)三、 判断题 (你认为下列命题是正确的,就在题后方括号内加“A ”,错误的加“B ”。

每小题判断2分,共20分。

)《高等数学Ⅱ》(A )卷一、 单选题 (每题2分,共40分)1. 当+∞→n 时,下列数列中哪项数列收敛( )A 、⎭⎬⎫⎩⎨⎧n 1B 、{}n n )1(-C 、{}n lgD 、{}2n2.=-→)3(lim 22x x ( )A 、1-B 、2C 、1D 、3-3.=-+∞→)213lim 2x x x (( )A 、∞B 、3C 、0D 、44. =---→24lim 222x x x x ( )A 、∞B 、34C 、0D 、15. 下列哪项为无穷小?( )A 、x cos )0(→xB 、x 1)0(→xC 、x tan )0(→xD 、x2)0(→x6. =→x xx 5sin lim0( ) A 、51B 、1C 、0D 、5 7. =+∞→x x x 2)21(lim ( )A 、2eB 、1C 、eD 、4e8. 若x x y 1ln +=,则=dy ( )A 、211x x -B 、211x x +C 、dx x x )11(2-D 、dx x x )11(2+9. 由参数方程⎩⎨⎧=+=t y t x sin 2143确定的函数的导数=dx dy ( )A 、26cos t t B 、t t cos 62 C 、26cos t t- D 、t t cos 62-10. =+∞→x xx ln lim( )A 、0B 、∞-C 、∞+D 、1 11. 下列各组函数中,是相同的函数的是( ).A 、()()2ln 2ln f x x g x x == 和B 、()||f x x = 和 ()g x =C 、()f x x = 和 ()2g x =D 、()||x f x x=和 ()g x =1 12. 函数()()20ln 10x f x x a x ≠⎪=+⎨⎪=⎩ 在0x =处连续,则a =( ).A 、0B 、14 C 、1 D 、213. 曲线ln y x x =的平行于直线10x y -+=的切线方程为( ). A 、1y x =- B 、(1)y x =-+ C 、()()ln 11y x x =-- D 、y x = 14. 设函数()||f x x =,则函数在点0x =处( ).A 、连续且可导B 、连续且可微C 、连续不可导D 、不连续不可微14. 点0x =是函数4y x =的( ).A 、驻点但非极值点B 、拐点C 、驻点且是拐点D 、驻点且是极值点15. 曲线1||y x =的渐近线情况是( ). A 、只有水平渐近线 B 、只有垂直渐近线C 、既有水平渐近线又有垂直渐近线D 、既无水平渐近线又无垂直渐近线 17.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). A 、1f C x ⎛⎫-+ ⎪⎝⎭B 、1fC x ⎛⎫--+ ⎪⎝⎭C 、1f C x ⎛⎫+ ⎪⎝⎭D 、1f C x ⎛⎫-+ ⎪⎝⎭18.x x dxe e -+⎰的结果是( ).A 、arctan x e C +B 、arctan x eC -+ C 、x x e e C --+D 、ln()x x e e C -++ 19. 下列定积分为零的是( ).A 、424arctan 1x dx x ππ-+⎰ B 、44arcsin x x dx ππ-⎰ C 、112x xe e dx --+⎰ D 、()121sin x x x dx -+⎰ 20. 设()f x 为连续函数,则()12f x dx '⎰等于( ).A 、()()20f f -B 、()()11102f f -⎡⎤⎣⎦C 、()()1202f f -⎡⎤⎣⎦ D 、()()10f f - 二、 多选题 (每题4分,共40分)21、在空间直角坐标系中,不是方程22z x y =+的图形是( )。

2011高等数学2

2011高等数学2

2011年成人高等学校专升本招生全国统一考试高等数学(二)试题一、选择题:1~10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1=--→11lim 21x x x ( C )。

A 0 B 1 C 2 D 3 知识点:计算0型极限:解:=--→11lim21x x x 212lim 1=→x x ; 或=--→11lim 21x x x =-+-→1)1)(1(lim 1x x x x 2)1(lim 1=+→x x 2 已知函数)(x f 的导函数13)(2--='x x x f ,则曲线)(x f y =在2=x 处的切线斜率是(C ).A 3B 5C 9D 11 知识点:切线斜率 )()(00x f x y k '='=, 本题91212)2(=--='=f k3 设函数21x y =, 则='y ( B )。

A 31x -B 32x -C31x Dx 1知识点:幂函数导数公式1)(-='a aax x 。

解:332222)()1(x x x x y -=-='='='--4已知函数)(x f 在区间(-∞,+∞)内单调增加,则使)2()(f x f >成立的x 的取值范围是( A )A (2,+∞)B (-∞,0)C (-∞,2)D (0,2) 知识点:单调增加的定义:21x x >时有)()(21x f x f >;本题2>x 时有)2()(f x f >5 设函数1cos +=x y ,则=dy ( C )。

A dx x )1(sin +B dx x )1(cos +C xdx sin -D xdx sin知识点:导数公式,求导规则 v u v u '±'='±)(,微分公式6⎰=-dx x x )sin (( B )。

高等数学2(下册)试题答案以及复习要点汇总(完整版)

高等数学2(下册)试题答案以及复习要点汇总(完整版)

高等数学(2)试题答案以及复习要点汇总一. 选择题 (每题3分,共15分)1. 设(,)f x y 具有一阶连续偏导数,若23(,)f x x x =,224(,)2x f x x x x =-,则2(,)y f x x = [ A ](A) 3x x + ; (B) 2422x x + ; (C) 25x x + ; (D) 222x x + 。

解:选A 。

23(,)f x x x = 两边对 x 求导:222(,)(,)23x y f x x f x x x x +⋅=,将 224(,)2x f x x x x =- 代入得 242222(,)3y x x xf x x x -+= ,故 23(,)y f x x x x =+ 。

2.已知()()dy y x x by dx x y axy 22233sin 1cos +++-为某二元函数的全微分,则a 和b 的值分别为 [ C ] (A) –2和2; (B) –3和3; (C)2和–2; (D) 3和–3;解:选C 。

x y axy yPxy x by x Q cos 236cos 22-=∂∂=+=∂∂ 2,2=-=a b3. 设∑为曲面z =2-(x 2+y 2)在xoy 平面上方的部分,则⎰⎰∑=zdS I =[ D ]()⎰⎰-+-2202220412)(rrdr r r d A πθ;()()⎰⎰+-22220412rdr r r d B πθ; ()()⎰⎰-22202rdr r d C πθ;()()⎰⎰+-22220412rdr r r d D πθ。

解:选D 。

()⎰⎰+-=22220412rdr r r d I πθ 。

4. 设有直线410:30x y z L x y --+=⎧⎨+-=⎩,曲面222z x y z =-+在点(1,1,1)处的切平面∏,则直线L 与平面∏的位置关系是: [ C ] (A) L ⊂∏; (B) //L ∏; (C) L ⊥∏; (D) L 与∏斜交 。

00综合复习题2021 6 6 高等数学2(10 11学年第二学期)(54学时)

00综合复习题2021 6 6 高等数学2(10 11学年第二学期)(54学时)

00综合复习题2021 6 6 高等数学2(10 11学年第二学期)(54学时)00综合复习题2021-6-6-高等数学2(10-11学年第二学期)(54学时)高等数学II综合复习题(1011学年第二学期)2022年6月6日1、设? x20x20f(t)dt?X2(1?X2),求f(x)f(t)dt?2x2(1?x2),求f(x)2.设定?3、设f(5)?2,4、设f(3)?2,??503f(x)dx?3,计算?xf?(x)dx050f(x)dx?1.计算?xf?(x) dx035、计算? 3.3倍?X3122dx6。

计算(x?1?x)DX2??11? x7。

计算?411dx8.计算x(1?x)2??0cosxdx9。

计算3?1601dx1?x2?z?zyx10、设z?yx,求x?1。

11.设z?xy,求? 十、Y十、yy?1x?1岁?12? Zy12。

设定Z?x、乞求?x22?z?2z2y?3和。

13.设z?x,求? x2?十、Y2Z和。

?x?yu214、设z?v?z?z,而u?xy,v?x?y,求和。

? YX2215。

将隐式函数设置为?z?z和。

z?2xz?y?0,求? YX316。

将隐式函数设置为?z?ze?z?xyz?0,求和。

? YXxy417。

设置平面面积d?(x,y)x2?y?11x2??,将二重积分i???f(x,y)d?化为二次积分。

D18。

交换二次积分i??dx?f(x,y)dy00的积分次序。

22219.设置平面区域D?(x,y)x?Yr、是吗?0,计算????4d?D20。

已知椭圆区域D的面积为4?,计算??4d?d121、计算十、0和y?由0,?包围的平面面积,??Xydxdy,其中积分区域D由一条直线x组成?Y1.D22。

计算??xydxdy,其中积分区域d是由直线y?x,x?1及y?0所围成的平面区域。

d23。

计算??(2x2?y2?1)2dx2?y2dxdy,其中积分区域d为:1?x2?y2?4.24.计算??sinx2?y2dxdy,其中积分区域d为:x2?y2?4.d25.用g表示由曲线YLNX和直线x?Y1和y?1.附上的平面图(所需图纸)(1)找到G的面积;(2)计算G绕Y轴旋转形成的旋转体的体积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学Ⅱ 综合复习题(1011学年第二学期)2011-6-6
1、设
)1()(2202x x dt t f x +=⎰
,求 )(x f
2、设
)1(2)(220
2x x dt t f x -=⎰
,求)(x f
3、设 3)(2)5(5
0==⎰dx x f f , ,计算 dx x f x ⎰'5
)(
4、设 1)(2)3(3
==⎰
dx x f f ,
,计算 dx x f x ⎰'3
)(
5、计算

-++3
3
231dx x
x x 6、计算 ⎰--+1
12
2)1(dx x x 7. 计算

+4
1
)
1(1
dx x x 8. 计算
3
cos xdx π

9、计算

+16
11
dx x
10、设y yx z =,求1
12
==∂∂∂y x y x z 。

11. 设x
xy z =,求
1
1
2==∂∂∂y x y x z
12、设y
x z =,求
22x z ∂∂ 和y x z ∂∂∂2。

13. 设3
2+=y x z ,求
22x z ∂∂ 和y
x z
∂∂∂2。

14、设 v
u z 2
=
,而 2
2
,y x v xy u -==, 求 x
z
∂∂和 y z ∂∂。

15、设隐函数为
023
=+-y xz z , 求
x
z
∂∂和 y z ∂∂。

16、设隐函数为
04
=++xyz z e xy
, 求 x
z
∂∂和 y z ∂∂。

17、设平面区域
{
}1
),(2≤≤=y x y x D ,将二重积分 ⎰⎰=D
d y x f I σ),( 化为二次积分。

18、交换二次积分
dy
y x f dx I x ⎰⎰=2
1
),( 的积分次序。

19、设平面区域 {}
0,),(2
22≥≤+=y R y x y x D ,计算
⎰⎰D
d σ4
20、已知椭圆区域 D 的面积为 π4,计算
⎰⎰D
d σ4
21、计算
dxdy xy D
⎰⎰,其中积分区域D 是由直线 01==+x y x ,
及 0=y 所围成的平面区域, 22、计算
dxdy xy D
⎰⎰,其中积分区域D 是由直线 1==x x y , 及 0=y 所围成的平面区域。

23. 计算
dxdy y x y x D ⎰⎰
+-+2
22
22)12(, 其中积分区域D 为: 4122≤+≤y x .
24. 计算
dxdy y x D
⎰⎰
+2
2sin , 其中积分区域D 为:422≤+y x . 25. 用G 表示由曲线
x y ln =及直线1=+y x 和1=y 围成的平面图形(需作图),
(1) 求G 的面积; (2) 求G 绕y 轴旋转一周而成的旋转体体积. 26、用G 表示由曲线
2x y = 及直线 2=+y x 和 0=x 围成的平面图形。

(须作图)
(1)求G 的面积; (2)求G 绕X 轴旋转一周而成的旋转体体积。

27、用G 表示由曲线
x
y 1
= 及直线 x y = 和 2=x 围成的平面图形。

(须作图)
(1)求G 的面积; (2)求G 绕X 轴旋转一周而成的旋转体体积。

28、设)(2)(0
2x f dt t f t x
=+⎰
,求)(x f 。

29. 设
)(2sin )(0x f tdt t tf x
=+⎰, 求)(x f .
30、设)(31)
(202
x f dt t
t f t x
=++⎰,求)(x f 。

31、设 1y 和 2y 是微分方程 )()(x Q y x P y =+' 的两个特解,求方程的通解。

32、求微分方程
2+='y y ,满足20==x y 的特解。

33、求微分方程 x e y y =-',满足20==x y 的特解。

相关文档
最新文档