08线性代数(A)卷
2008年线性代数考试A卷
2
第 2 页 共 7页
学院
姓名
学号
任课老师
选课号
………密………封………线………以………内………答………题………无………效……
0 0⎞ ⎛ 1 ⎟ ⎜ P = ⎜ 2 −1 0⎟ , ⎜ − 4 1 1⎟ ⎠ ⎝
−1
所以有
0 0⎞ ⎛ 1 0 0 ⎞⎛ 1 0 0 ⎞⎛ 1 ⎟ ⎟⎜ ⎟⎜ ⎜ A = PBP = ⎜ 2 − 1 0 ⎟⎜ 0 0 0 ⎟⎜ 2 − 1 0 ⎟ ⎜ 2 1 1 ⎟⎜ 0 0 − 1⎟⎜ − 4 1 1 ⎟ ⎠ ⎠⎝ ⎠⎝ ⎝
⎛ λ1 0 ⎜ ⎜ 0 λ2 T −1 P AP = P AP = ⎜ " " ⎜ ⎜0 0 ⎝
0⎞ ⎟ " 0⎟ , " "⎟ ⎟ " λn ⎟ ⎠ "
3.设 n 元非齐次线性方程组是 Ax = b ,它对应的齐次线性方程组是 Ax = 0 ,则下面结 论中正确的是( ② ). ① 若 Ax = 0 有惟一解,则 Ax = b 也有惟一解; ② 若 Ax = b 有无穷多个解,则 Ax = 0 也有无穷多个解; ③ 若 Ax = 0 有无穷多个解,则 Ax = b 也有无穷多个解; ④ 若 Ax = 0 有惟一解,则 Ax = b 无解. 分析:A 未必是方阵。 4.设 α 1 , α 2 , β 线性无关, α 2 , α 3 , β 线性相关,则下面结论正确的是( ④ )。 ① ③ k1α 1 + k 2α 2 + k 3α 3 = 0 仅有零解; k1α 2 + k 2α 3 = β 必有解; ② ④ k1α 1 + k 2α 2 + k 3α 3 = 0 必有非零解; k1α 1 + k 2α 2 + k 3 β = α 3 必有解。
线性代数07-08第一学期期末(A卷)答案
北京师范大学珠海分校2007-2008学年第一学期期末考试(A )答案开课单位: 应用数学系 课程名称: 线性代数 任课教师:__李兴斯 考试类型:_ 闭卷_ 考试时间:__120 __分钟 学院___________ 姓名___________ 学号______________ 班级____________试卷说明:(本试卷共4页,满分100分)------------------------------------------------------------------------------------------------------一、 填空(每空3分,共30分)1、行列式123456____0_____789=2、行列式sin cos cos sin _______+-=-32323302xxxx 3、设行列式 -5 11 1 31 0 2D =1,则+=21232A A 04、设A ,B 均为三阶方阵且||,||A B ==65,则||______=30AB5、设A 为3阶方阵,且A =3,则A -=13 96、设矩阵A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭11111101101,则A 的秩()R A = 3 7、已知4阶矩阵A 的伴随矩阵的行列式8=*A ,则=A 28、向量组,,,⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1234111110221002αααα线性相关还是无关 线性相关试卷装订线9、设向量()(),,,,,x αα==1212369线性相关,则___3____=x10、设4元方程组=0Ax 的系数矩阵A 的秩为2,则其解向量的秩应为 2二、选择题(每小题3分,共15分)1、行列式197621962394180第3行第2列元素的代数余子式A =32( D )(A )3; (B )6; (C )9; (D )12。
2、若1112131112131212223221222331323331323323,2323a a a a a a D a a a D a a a a a a a a a ==,则()21=D C D(A )2; (B )4; (C )6; (D )8。
武汉理工2008年末-线代-A
武汉理工大学教务处试题标准答案及评分标准用纸| 课程名称——线性代数—— ( A 卷) |一、填空题:(每小题3分,共15分)1.6;2.⎪⎪⎪⎪⎪⎭⎫⎝⎛--233421(未写出的元素为0);3.-128;4.2;5..3535<<-t二、选择题: 1.B ; 2.C ; 3.B ; 4.C ; 5.A (每小题3分,共15分)三、计算题: 1.()20092008000020082008000200920091200800020092008000020092008200820082007⨯⨯-+⨯=D (5分)=2007200720092008+ (10分)2.首先,11)(6---=E A B (3分)其次,⎪⎪⎪⎭⎫⎝⎛=-7431A , (5分)⎪⎪⎪⎭⎫ ⎝⎛=--6321E A , (7分)()⎪⎪⎪⎭⎫ ⎝⎛=---6/13/12/111EA, (9分) 最后, .123⎪⎪⎪⎭⎫ ⎝⎛=B (10分) 注:矩阵中未写出的元素为0。
3.方程组的系数行列式()()⇒≠+-=---=012111111λλλλλA (3分) (1)21≠-≠λλand,时,方程组有唯一解; (5分)(2)当2=λ时,方程组的增广矩阵)()(100021104211~B R A R B <⇒⎪⎪⎪⎭⎫ ⎝⎛--此时方程组无解; (7分)(3)当1-=λ时,方程组的增广矩阵⇒<=⇒⎪⎪⎪⎭⎫ ⎝⎛3)()(000000001111~B R A R B此时方程组有无穷多个解,其通解为.),(0011010112121R k k k k X ∈⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-= (10分)4.解:观察知,矩阵A 的第一列加上第二列的(-1)倍,然后再交换第二列和第三列即得B ,(4分)根据初等方阵的定义,两次初等 列变换所对应的初等方阵分别为:⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-1111111,;(8分) 再根据初等行变换的实质得,⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=11111111111X . (10分)注:矩阵中未写出的元素为0。
2008线性代数A参考答案
2007~2008学年第二学期《线性代数》A 卷参考答案及评分标准一、单项选择(每小题2分,共20分)请将正确选项前的字母填入下表中1、2-。
2、159206915-⎛⎫⎪-⎝⎭。
3、4。
4、213/21/2-⎛⎫⎪-⎝⎭。
5、 3 。
6、3。
7、 0 。
8、2。
9、1/λ。
10、222123122344x x x x x x x ++++ 三、计算题(1、2每小题6分,其余每小题6分,共40分)1、解:212223242322A A A A +++=1222232********* ……3分122201220011001---=1=- ……6分2、解:由AX A X =+有()A E X A -=()1002001002001101200101201111120112A E A ⎛⎫⎛⎫⎪ ⎪-=→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ ……4分 200120012X ⎛⎫⎪∴=- ⎪ ⎪-⎝⎭……6分 3、解:由225A A E O --=有()()32A E A E E -+= ……3分320A E A E -+=≠有30A E -≠ 所以3A E -可逆 ……6分 且11(3)()2A E A E --=+ ……7分4、解:()1234310111512112370122318100001397000TTTTαααα⎛⎫ ⎪--⎛⎫⎪⎪- ⎪ ⎪-=→ ⎪ ⎪- ⎪ ⎪- ⎪⎝⎭ ⎪⎝⎭……3分 ∴1234,,,αααα线性相关,1234(,,,)2R αααα=,12,αα是它的一个极大无关组,……4分且31241237, 222αααααα=-=+. ……7分5、解:矩阵A 的特征方程为0)1)(2(163530642=--=-+--=-λλλλλλA E得特征值 12321==-=λλλ ……3分当21-=λ时有⎩⎨⎧=-=+⎪⎩⎪⎨⎧=-+=+=--00,036303306632313212121x x x x x x x x x x x 即它的基础解系是⎪⎪⎪⎭⎫ ⎝⎛-111,所以对应于21-=λ的全部特征向量是)0(111≠⎪⎪⎪⎭⎫⎝⎛-c c ……5分当132==λλ时有 02,6306306321212121=+⎪⎩⎪⎨⎧=+=+=--x x x x x x x x 即它的基础解系是向量⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-100012及,所以对应于132==λλ的全部特征向量是不全为零)2121,(100012c c c c ⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛- ……7分6、解: 22020021201002000410011201001201001A E -⎛⎫⎛⎫⎪ ⎪---⎪⎪⎪⎪-⎛⎫=→⎪ ⎪⎪-⎝⎭⎪ ⎪- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭……3分112012001P -⎛⎫⎪∴=- ⎪ ⎪⎝⎭……6分 222123123(,,)24f x x x y y y=-+ ……7分 四、证明题(每题5分,共10分)1、证明:由 AB O = 有 12(,,,)s A X X X O = 即12(,,,)s AX AX AX O = 得i AX O = ()1,2,i s =即i X 为A X O =的s 个解 ……2分 显然12()(,,,)()s R B R X X X n R A =≤-即()()R A R B n +≤ ……3分 2、证明:()123,,3R ααα= ,()1234,,,3R αααα= 123,,ααα 线性无关 1234,,,αααα线性相关 则有 4112233m m m αααα=++ 成立 ……2分 设 112233454()0k k k k ααααα+++-=有 112233454112233()0k k k k k m m m ααααααα+++-++= 1411242234334()()()0k k m k k m k k m kαααα-+-+-+=……3分 ()1235,,,4R αααα=1235,,,αααα 线性无关则有141242343400k k m k k m k k m k -=⎧⎪-=⎪⎨-=⎪⎪=⎩ 解之有 12340k k k k ==== ……4分故 12354,,,ααααα-线性无关 即12354(,,,)4R ααααα-=……5分。
《线性代数》模拟试卷(A)卷
厦门大学网络教育2008-2009学年第一学期《线性代数》模拟试卷( A )卷一、单项选择题(每小题3分,共24分).1. 若111221226a a a a =,则121122212020021a a a a --的值为( ). A .12; B. -12; C. 18; D. 0. 2. 设A B 、为同阶方阵,则下面各项正确的是( ).A.若0AB =, 则0A =或0B =;B.若0AB =,则0A =或0B =;C.22()()A B A B A B -=-+;D.若A B 、均可逆,则111()AB A B ---=.3. 若方程组12312302403690x t x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 的基础解系含有两个解向量,则 t =( ). A .2; B .4; C .6; D .8.4. 已知方程组A x b =对应的齐次方程组为0Ax =,则下列命题正确的是( ).A .若0Ax =只有零解,则Ax b =一定有唯一解;B .若0Ax =有非零解,则Ax b =一定有无穷解;C .若Ax b =有无穷解,则0Ax =一定有非零解;D .若Ax b =有无穷解,则0Ax =一定只有零解.5. 设12, u u 是非齐次线性方程组Ax b =的两个解,则以下结论正确的是( ).A .12u u +是Ax b =的解;B .12u u -是Ax b =的解;C .1ku 是Ax b =的解(1k ≠);D .12u u -是0Ax =的解. 6. 设123,,a a a 线性相关,则以下结论正确的是( ).A .12,a a 一定线性相关;B .13,a a 一定线性相关;C .12,a a 一定线性无关;D .存在不全为零的数123,,k k k ,使得1122330k a k a k a ++=.7. 若20000101A x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦与200010001B ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦相似,则x =( ). A .-1; B .0; C .1; D .2.8. 二次型f(x 1,x 2,x 3)=32232221x x 12x 3x 3x +++是( ).A. 正定的;B. 半正定的;C. 负定的;D. 不定的.二、填空题(每小题4分,共24分)1. 设802020301A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,*A 为A 的伴随矩阵,则*A =_________. 2. 非齐次线性方程组m n A x b ⨯=有唯一解的充分必要条件是_________.3. 设方程组123131232 1 2 53(8)8x x x x x x x a x ++=⎧⎪+=⎨⎪+++=⎩,当a 取__________时,方程组无解.4. 设向量组1(1,3,)a k =-,2(1,0,0)a =,3(1,3,2)a =-线性相关,则k =_________.5. 二次型3231212322213214225),,(x x x x x tx x x x x x x f +-+++=为正定二次型,则t 的取值范围是_____________.6. 3阶方阵A 的特征值分别为1,-2,3,则21()A -的特征值为_________.三、计算题(共38分).1. (10分) 计算行列式 3112513420111533D ---=---.2. (10分) 求123221343A ⎛⎫ ⎪= ⎪ ⎪⎝⎭的逆矩阵1A -.3. (10分)求向量组)11,9,5,8(),2,1,1,3(),10,7,1,1(),1,1,1,2(4321=--=-==αααα的一个极大线性无关组,并将其余向量用此极大线性无关组线性表示.4. (8分)已知111131111A -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,求A 的特征值. 四、证明题(每小题7分,共14分).1. 设列矩阵12(,,,)T n X x x x = 满足1T X X =,E 为n 阶单位阵,2T H E XX =-,证明: H 是对称阵,且T HH E =.2. 证明二次型22256444f x y z xy xz =---++是负定的.答案:一.1.A 1211121112111112222122212221212220220(1)22122021a a aa a a a a a a a a a a a a =-=-==--2. B 由矩阵的理论可得选项B3. C 基础解系含有两个解向量3()2()1r A r A ⇒-=⇒=,12312324006369000A t t ⎛⎫⎛⎫ ⎪ ⎪=→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,6t =时,()1r A =4. C 当()()r A r A =时,Ax b =有解5. D 1212()2A u u Au Au b b b +=+=+=,因此12u u +不是Ax b =的解, 下面的选项类似讨论6. D 由线性相关的定义可得选项D7. B 相似矩阵具有相同的特征值8.D f 的矩阵是100036063A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,A 的各阶主子式为:1110a =>,103003=>,10003613366270063A ==⋅⋅-⋅=-<,因此f 为不定的 二.1.16 8022016124301A ==-=, 33***416A A A E A AA A ====⇒=2. n A r =)( 由方程组解的理论可得3. 0 方程组无解可得()(,)r A r A b ≠11211121112110120111011153880223001a a a ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥→--→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+--⎣⎦⎣⎦⎣⎦,(,)3r A b =,当0a =时,()2r A =。
2008-2009学年线性代数试卷A及答案
华南农业大学期末考试试卷(A 卷)2008-2009学年第2学期 考试科目: 线性代数考试类型:(闭卷) 考试时间: 120 分钟学号 姓名 年级专业 题号 一 二 三 四 五 六 总分 得分 评阅人试卷说明: T A 表示矩阵A 的转置矩阵,*A 表示矩阵A 的伴随矩阵,1A -表示矩阵A 的逆矩阵,A 表示方阵A 的行列式, R (A )表示矩阵A 的秩, I 是单位矩阵.一. 选择题(本大题共5小题,每小题3分,共15分)在每小题的选项中,只有一项符合要求,把所选项前的字母填在题中括号内1. 设n B A 均为,阶方阵,满足等式0=AB ,则必有( C )(A) 0=A 或 0=B(B) 0=+B A () 0||=A 或 0||=B(D) 0||||=+B A2. 已知,,A B C 均为n 阶可逆方阵,且ABC I =,则下列结论必然成立的是( C )(A) ACB I = (B) BAC I = () BCA I = (D) CBA I =3.设有n 维向量组(Ⅰ):12,,,r ααα 和(Ⅱ):12,,,()m m r ααα> ,则( B )(A) 向量组(Ⅰ)线性无关时,向量组(Ⅱ)线性无关() 向量组(Ⅰ)线性相关时,向量组(Ⅱ)线性相关 (C) 向量组(Ⅱ)线性相关时,向量组(Ⅰ)线性相关 (D) 向量组(Ⅱ)线性无关时,向量组(Ⅰ)线性相关4.设n 元齐次线性方程组AX =0的系数矩阵A 的秩为r ,则AX =0有非零解的充分必要条件是( B )5. Matlab 软件中, 在命令窗口输入[1:3][321]'*, 显示ans=( D )二、填空题(本大题共6小题,每小题4分,满分24分)6. ⎪⎪⎪⎭⎫ ⎝⎛=100010021A ,则=-1A120010001-⎛⎫⎪ ⎪ ⎪⎝⎭. (A) r=n() r<n(C) r ≥n(D) r>n(A) 7 (B) 8 (C) 9 () 107. 设t ηηη,,,21 及t t ηληληλ+++ 2211都是非齐次线性方程组b A =X 的解向量,则=+++t λλλ 21______1__________.8. 矩阵20002023A a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦与矩阵10002000B b ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦相似, 则a b += . 9. 设123,1,1),0,2,3),1,0,1),k ααα===(((则当k = 时,α1,α2,α3 线性相关.10.设A 为三阶方阵,其特征值2,1,3,- 则*A = .11.已知二次型222123112132233(,,)2245f x x x x tx x x x x x x x =+-+++正定, 则t 的取值范围为 .三、计算题12.(7分) 已知100110,021A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭131011,002B ⎛⎫⎪=- ⎪ ⎪⎝⎭求:2T A AB +13.(8分)计算下列行列式3214214314324321四、解方程组14. (10分)求方程组123412341234311232x x x xx x x xx x x x⎧⎪--+=⎪-+-=⎨⎪⎪--+=-⎩的通解.五、解答题15.(10分)求下列向量组的秩,并求一个最大无关组:a1=(1, 2,-1, 4)T,a2=(9, 100, 10, 4)T, a3= (-2,-4, 2,-8)T.16. (8分) 已知1121 342 012A--⎛⎫⎪= ⎪⎪-⎝⎭,求A的伴随矩阵*A.17.(12分) 设212122221A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求一个正交阵P ,使1P AP -=Λ为对角阵.六、证明题18.(6分) 设向量组322211,a a b a a b +=+= 433,a a b += 144,a a b +=, 证明向量组4321,,,b b b b 线性相关.2008—2009第二学期《线性代数》(A )参考答案和评分标准一. 选择题(本大题共5小题,每小题3分,共15分)1. C2. C3. B4. B5. D二、填空题(本大题共6小题,每小题4分,满分24分)6. 120010001-⎛⎫⎪ ⎪⎪⎝⎭ 7. 18. 8 9. -1/2 10. 36 11. 405t -<<三、计算题12.T T A AB A E B 2(2)+=+=1001001001102010310021001112⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥⎪ ⎪ ⎪-+⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-⎝⎭⎝⎭⎝⎭⎣⎦3分100300110330021114⎛⎫⎛⎫ ⎪⎪=- ⎪⎪ ⎪⎪-⎝⎭⎝⎭ 5分 300030754⎛⎫ ⎪= ⎪ ⎪⎝⎭7分 13.将行列式第2、3、4列加到第1列上,得3214214314324321=32110214101431043210=101110222031104321------ 4分=10400440311--- 6分=160 8分14.11110111101111011131002410024111231/200121/200000⎛⎫⎛⎫⎛⎫------ ⎪ ⎪ ⎪--→-→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎝⎭ 4分 x x x x x x 1234340241--+=⎧⎨-=⎩,x x x x x x x x 1324132431-=-⎧⎨+=++⎩, 5分 取x x 2400⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,得*120120η⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪⎝⎭, 6分取x x 2410,01⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,x x 1311,02⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 8分 得齐次方程组基础解系为121110,0201ξξ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 9分通解为x x k kx x 12123411120101022010⎛⎫⎪⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎪⎝⎭10分 15. 192192192210040820010110201900004480320000A ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦6分rank(A)=2 7分 所以向量组的秩为2. 8分 a 1=(1, 2, -1, 4)T , a 2=(9, 100, 10, 4)T 不成比例,所以 a 1,a 2为最大无关组. 10分16. 因为1*1,||A A A -=2分*1111||||A A AA A ---==4分 1||1A -=- 6分*1||1*A A -=-=121342012--⎛⎫ ⎪--- ⎪ ⎪-⎝⎭8分17.123(1)(1)(5),1,1,5A E λλλλλλλ-=-+--=-==, 3分对应于11λ=-,由 ()0A E x += 得111122ξ-⎛⎫ ⎪=- ⎪ ⎪⎝⎭,单位化,得111162p -⎛⎫ ⎪=- ⎪ ⎪⎝⎭; 6分 对应于21λ=,由 ()0A E x -= 得2110ξ-⎛⎫ ⎪= ⎪ ⎪⎝⎭,单位化,得211120p -⎛⎫⎪= ⎪ ⎪⎝⎭ 8分 对应于35λ=,由 (5)0A E x -= 得3111ξ⎛⎫ ⎪= ⎪ ⎪⎝⎭,单位化,得311131p ⎛⎫⎪= ⎪ ⎪⎝⎭. 10分 11162311162321063P ⎛⎫-- ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪⎝⎭,有1100010005TP AP P AP --⎛⎫⎪==Λ= ⎪ ⎪⎝⎭. 12分18. 设有4321,,,x x x x 使得044332211=+++b x b x b x b x即0)()()()(144433322211=+++++++a a x a a x a a x a a x 3分整理得 01100011000111001)(43214321=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛x x x x a a a a 4分而011000110001110014321=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛x x x x 有非零解,所以结论成立 6分。
线性代数2008A答案
上海财经大学成人高等教育线性代数试题参考 答案(2008A 卷)姓名 学号 专业 班级一、 单选题(每小题2分,共计10分)1. 设,A B 均为方阵,且0AB =, 则以下结论中正确的是 ( 4 ) .(1) 0AB = (2) 0,0A B == (3) 0A =或0B = (4) 0A =或0B =2. 以下矩阵中是对称矩阵的是 ( 2 ).(1) 123212025⎛⎫ ⎪-- ⎪ ⎪-⎝⎭ (2)123204341⎛⎫⎪ ⎪ ⎪-⎝⎭ (3) 123211301⎛⎫⎪ ⎪ ⎪⎝⎭ (4) 111011001⎛⎫⎪ ⎪ ⎪⎝⎭3. 以下矩阵中是初等矩阵的是 ( 2 ).(1) 100010000⎛⎫ ⎪- ⎪ ⎪⎝⎭ (2)100010001⎛⎫⎪ ⎪ ⎪-⎝⎭ (3) 101010001⎛⎫⎪ ⎪ ⎪-⎝⎭ (4) 101011001⎛⎫⎪ ⎪ ⎪⎝⎭4. 下列不是n 阶矩阵A 可逆的充分必要条件的为 ( 1 ) .(1) 0A ≠ (2) 0A ≠ (3) ()R A n = (4) A 与单位阵E 等价5. 下列矩阵中是分块矩阵00A B ⎛⎫⎪⎝⎭的逆矩阵为 ( 4 ). (1) 1100A B --⎛⎫⎪⎝⎭ (2) 1100B A --⎛⎫⎪⎝⎭(3) 1100A B--⎛⎫⎪⎝⎭(4) 1100B A --⎛⎫ ⎪⎝⎭二、 填选题(每小题3分,共计30分)6. 行列式 111253_____.4259= (- 6)7. 设4阶行列式的第三行元素为1,2,3,4,其对应的余子式为4,3,2,1,则该行列式的值等于______.( 0 )……………………………………………………………装订线…………………………………………………8. 设A 是3阶方阵,TA 是A 的转置矩阵且 2,A =则 3____.T A =; ( 54 )9. 设211123223,322141113A B ⎛⎫⎛⎫⎪⎪=-=- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭, 则 _____________AB =; (487731112514⎛⎫ ⎪- ⎪ ⎪-⎝⎭)10.设矩阵 120340002A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则1A -=__________. ; (312212210000--⎛⎫⎪ ⎪ ⎪⎝⎭) 11. 设矩阵 200030004A ⎛⎫⎪= ⎪ ⎪⎝⎭,则*A =__________.(*A 是A 的伴随矩阵); (12000800012⎛⎫⎪ ⎪ ⎪⎝⎭) 12. 设矩阵 123024003A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则*1()A -=__________; (12310246003⎛⎫⎪ ⎪ ⎪⎝⎭)13. 设矩阵 121211212112121,a a a a a A b b B b b b c c c c c -⎛⎫⎛⎫⎪ ⎪==- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,且AP B =,则初等阵P _____________;(1101-⎛⎫ ⎪⎝⎭) 14. 设 123(1,1,1),(2,3,4),(3,4,5)ααα===,则 123,,ααα的秩等于_______.;( 2 ) 15. 设123(1,1,1),(1,3,4),(3,4,5)ααα===,则 123,,ααα的极大无关组的个数为 _____.( 3 )三、 计算题(共计47分)16. 求解方程:2452450245x x x++=+ (本题满分10分)解:由于311113111132245(1)024500(1)47245(1)245047x r r x xx x x x x x c c x x a A x xx r r x x ++-+--+=-+-==-++-+++则原方程即2(11)0x x += 因而原方程的解为:120,11x x ==。
线性代数试卷
12008-2009-1年秋线性代数期末试卷(A)一、单项选择题(每小题3分,共15分)1.设A 中有2n n -个以上元素为零,则A 的值为( ) A.大于零; B. 等于零; C. 小于零; D. 不能确定.2.设n 阶方阵A 有一个特征值为零,则下列说法正确的是( )A. 0;A =B. ();R A n =;C.A 可逆;D. A 的列向量组线性无关. 3. 设A 为n 阶方阵,若A 与n 阶单位矩阵等价,则方程组Ax b =有( )A. 无解;B. 有唯一解;C. 有无穷多解;D. 解的情况不能确定。
4. 设,A B 为三阶方阵,若A 可逆,()2R B =,则()R AB =( ) A. 0; B. 1; C. 2; D. 3。
5. 同阶方阵A 与B 相似的充要条件是( )A. 存在两个可逆矩阵P 与Q ,使得PAQ B =;B. 存在可逆矩阵P ,使得1P AP B -=;C. 存在可逆矩阵P ,使得T P AP B =;D. ()()R A R B =。
二、填空题(每小题3分,共15分)6.行列式1234003209156412a a a a 中4a 的代数余子式的值等于 。
7.若2λ=是可逆方阵A 的一个特征值,则方阵1212A -⎛⎫⎪⎝⎭必有一个特征值为 。
8.当t = 时,下列向量组()123(2,1,0),(3,2,5),10,6,a a a t ===线性相关。
9.设A 是三阶方阵,*A 是A 的伴随矩阵,已知12A =,则()1*32A A --= 。
10.二次型121323222f x x x x x x =++的秩等于 。
三、计算题(每小题10分,共50分)11. 若111121()11x x f x n x++=+,求(0)f 。
12.设矩阵111111111A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,矩阵X 满足*12A X A X -=+,求X 。
13. 问,a b 取何值时,向量()1,2,T b β=可由向量组()11,1,2T α=,()22,3,3Tα=,()33,6,Ta α=(1)唯一的线性表示, (2)无穷多的线性表示, (3)不能线性表示。
线性代数(A卷考题及答案)
( 2008 至 2009 学年 第一学期 )课程名称: 线性代数 考试时间: 110 分钟 课程代码: 7100500 试卷总分: 100 分 考试形式: 闭卷 学生自带普通计算器: 不允许1、 设A 是三阶方阵,且det(A )=-1,则det(-2A )=_______.2、设A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100120001,则A -1=_______3、等价的线性无关向量组所含向量的个数_______4、设实对称矩阵11211203132A -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦是二次型123(,,)f x x x 的矩阵,则二次型123(,,)f x x x 的一般表示式为_______.5、设A 为实对称矩阵,()11,1,3T α=与()23,2,Ta α=分别是属于A 的相异特征值1λ与2λ的特征向量,则a =_______.二、单项选择题(每小题3分,共15分)1.下列等式中正确的是( )A .()222A B A AB BA B +=+++B .()TT TAB A B =C .()()A B A B A B -+=-22D .()33A A A A -=-22.设12,ββ是非齐次线性方程组AX b =的两个解,则下列向量中仍为方程组解的是( )A .ββ12+B .12ββ-C .1222ββ+ D .12325ββ+ 3.设0λ是可逆矩阵A 的一个特征值,则21A -必有一个特征值是( )A .210λ B .21λ C .20λ D .2λ 4.二次型22221234123412(,,,)542f x x x x x x x x x x =++-+的秩为( )A .1B .2C .3D .45.设1ξ,2ξ是矩阵A 的属于特征值λ的特征向量,则以下结论正确的是( ) A .1ξ+2ξ是λ对应的特征向量 B .21ξ是λ对应的特征向量 C .1ξ,2ξ一定线性相关 D .1ξ,2ξ一定线性无关三、(8分)(本大题共两小题各4分) 计算行列式:(1)2100121001210012=D (2)1200012000122001D =. 四、(6分)101210325A ⎡⎤⎢⎥=⎢⎥⎢⎥--⎣⎦,求1()E A -- 五、(12分)(本大题共两小题各6分)(1)设矩阵121231041a A a b ⎛⎫⎪=- ⎪ ⎪⎝⎭的秩为2,求,a b(2)已知矩阵20000101x ⎛⎫ ⎪ ⎪ ⎪⎝⎭与矩阵20000001y⎛⎫⎪⎪ ⎪-⎝⎭相似,求 ,.x y 六、(10分)。
2007-2008第二学期线代试卷A及答案)
武汉理工大学教务处试题标准答案及评分标准用纸课程名称:线性代数 ( A 卷)一、填空题(每小题3分,共12分)1、 2;2、 1;3、 21t ≠;4、k >二、选择题(每小题3分,共12分)1、 A ;2、 C ;3、 B ;4、 D 三、解答题(每小题9分,共36分)1、11(2,,)(2,,)1100011111100100020012000200011i in i n i n r r r r n nn n n D n nn n nn n==+++---=-------…..…(4分)()(1)(2)(1)1122000001(1)1(1)(1)()(1)1222000n n n n n n n n n n n n n n nn n n n -------+++=⋅=⋅⋅-⋅-=⋅⋅---...….(9分)2、记 121624,1713A A ---⎛⎫⎛⎫==⎪ ⎪-⎝⎭⎝⎭,则121,1A A =-=;…..…………………………………..…..……...(4分)又1112767637,111112A A -----⎛⎫⎛⎫⎛⎫=-==⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭,所以1760011000037012A --⎛⎫ ⎪ ⎪= ⎪- ⎪-⎝⎭-。
………………………...(9分)3、由题意有010100001A B ⎛⎫⎪= ⎪ ⎪⎝⎭,100011001B C ⎛⎫⎪= ⎪ ⎪⎝⎭,……………..…………………………………………...(4分) 于是 010100100011001001A C ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以011100001X ⎛⎫⎪= ⎪ ⎪⎝⎭。
……….……………………………………...(9分)4、()123403481011,,,21043211αααα⎛⎫ ⎪- ⎪= ⎪ ⎪⎝⎭~1011034801220244-⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭~10110122002200-⎛⎫ ⎪⎪ ⎪- ⎪⎝⎭~10000104001100⎛⎫ ⎪ ⎪ ⎪- ⎪⎝⎭………...(4分) 则()1234,,,3R αααα=,且123,,ααα线性无关,所以123,,ααα即为1234,,,αααα的一个极大无关组,(7分) 且412304αααα=+-;…………………………………………………………………………………..………...(9分) 或者取124,,ααα,312404αααα=+-;还可以取134,,ααα,2341144ααα=+四、解()2111,1111tA b t t tt -⎛⎫⎪=-- ⎪ ⎪-⎝⎭~2223110110111t tt t t t t t t ⎛⎫- ⎪--+-- ⎪ ⎪+-++⎝⎭~ 22321101100(1)(2)1t tt t t t t t t t t ⎛⎫- ⎪--+-- ⎪ ⎪-+---+⎝⎭…………………………….…………..………...(4分) 所以当12t t ≠-≠且时,方程组有唯一解;…………………………………..…………………………….……...(6分) 当2t =时,(),A b ~112403360001-⎛⎫⎪-- ⎪ ⎪⎝⎭()(),32R A b R A =≠=,所以方程组无解。
模拟(1) 07-08线性代数A
模拟试卷一一、填空题 (共5 小题,每题 3 分,共计15 分)1. 设 1231231234a a a b b b c c c =,则 123312331233222a a a a b b b b c c c c -+-+-+= -8 2. n 元齐次线性方程AX=0,若R(A)=r<n, 则AX=0必有 解,基础解系含 有 个解向量,解空间的维数是3. 设 1403,2112A B ⎛⎫⎛⎫== ⎪ ⎪---⎝⎭⎝⎭,则TAB =() -4 1 11 -8 4. 向量组1(1,0,0)Tα→=, 2(1,3,0)Tα→=-, 3(1,2,1)T α→=-的秩为 . 5. 设 12,,βαα 线性相关,23,,βαα线性无关,则123,,,βααα线性 二、选择题 (共 5 小题,每题 3 分,共计15 分)1. 设,A B 为n 阶方阵,且0,0A AB ≠=,下列结论必然正确的是( ) (A) 0B =; (B) ()222A B A B +=+; (C) ()222A B A BA B -=-+; (D) ()()22A B A B A B -+=-. 2. 设A 为三阶方阵,且det 2A =,则det(3)A -=( ) (A) -54; (B) 18;(C) 27; (D) -6.3. 设A 是m n ⨯阶矩阵,()()min ,R A r m n =<,则A 中( ) (A )至少有一个r 阶子式不等于零,没有等于零的r 阶子式; (B) 有不等于零的r 阶子式,没有不等于零的r +1阶子式; (C ) 有等于零的r 阶子式,没有不等于零的r +1阶子式; (D) 任何r 阶子式等于零,任何r +1阶子式都等于零。
4.下列向量中与121α⎛⎫ ⎪= ⎪ ⎪-⎝⎭正交的是( )(A) 011⎛⎫ ⎪⎪ ⎪⎝⎭; (B)201⎛⎫ ⎪⎪ ⎪⎝⎭; (C) 311⎛⎫ ⎪⎪ ⎪⎝⎭; (D) 101⎛⎫ ⎪ ⎪ ⎪⎝⎭. 5. 若A 是m n ⨯矩阵,B 是n p ⨯矩阵,C 是p m ⨯矩阵,则下列运算不可行的是( )(A) ()TC AB + ; (B) ABC ; (C) ()TBC A - ; (D) T AC . 三、证明行列式(共计 10分)0111111111111111144342414433323134232221241312111=++++++++++++++++y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x四.(10) 解矩阵方程⎪⎪⎪⎭⎫⎝⎛--=+⎪⎪⎪⎭⎫ ⎝⎛101010101000200320X X 五. (10)求下列非齐次线性方程组的通解⎪⎩⎪⎨⎧-=+-=++-=+-694432542321321321x x x x x x x x x 六、(共2 小题,每题 8 分,共计16 分)(1)求向量组123411204012,,,13160133αααα⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭的一个最大无关组。
《2008线性代数》试卷参考答案(不完整版)
2 3 10
0
3
C1 证明:β = AZ 有解,Z0 = ⋮ ,则β = C1α1 + ⋯ + Cnαn,故(A,β)的列向 Cn 量组与 A 的列向量组等价,从而秩相等 反过来, (A,β)的列向量组与 A 的列向量组等价 故β可用α1, ⋯ ,αn线性表示 令β = C1α1 + ⋯ + Cnαn,则 Z0= C1 ⋮ 为 AZ=β的解 Cn
1 1 = (a + 2)(a − 1)2 a
当 a≠ −2, a ≠ 1 时,有唯一解; 当 a= 1时,无解; 当 a=-2 时,有无数解。 方程为-2x1+x2+x3=2,,x1+x2-2x3=4 对应齐次方程组基础解为 −1, − 1,1
T
求一特解为 x1=3,x2= 3 ,x3=0
2
10
−1 故通解为 a −1 + −1 六、证明题
n −2 n −1
n
=nn −1
1 + n +n + ⋯+ 0 0 ⋮ 0 0
n+1 2
n −1
0 0 0 0 ⋮ ⋮ 0 −1 −1 0
n+1 2
0 −1 ⋮ 0 0
n
−1 0 ⋮ 0 0
n
=nn −1 五、 a 1 解: A = 1 a 1 1
(−1)n+
n (n +1) 2
= nn −1
(−1)n(n+1)
1 1 1 3、解: A = ⋮ 1 1
2 1 1 ⋮ 1 1−n
3 1 1 ⋮ 1−n 1 ⋯ ⋯ ⋯ ⋱ ⋯ ⋯
2 n
⋯ n−2 n−1 ⋯ 1 1 ⋯ 1 1−n ⋱ ⋮ ⋮ ⋯ 1 1 ⋯ 1 1
沈阳建筑大学08秋-线性代数试卷A答案
沈阳建筑大学考试评分标准专用纸2008年 秋季学期 科目: 线性代数1(A 卷) 适用年级、专业:07级土木、环境、交通机械、管理、信息(除计算机)学院 ————————————————————————————————一、填空(每小题4分,共20分) 1.0; 2.AA; 3.-4; 4.!n ; 5.22t -<< 二、选择题(每小题4分,共20分) 1. D ; 2.D ; 3.B ; 4.C ;5.C 三、(6分) 原式=222222()(()())16x y x yx y x y x y x y x y x y-+-=--+=+- ..................6' 四、(6分)证明:设存在121,,,s l l l - 满足 1122110s s l l l βββ--+++=...................2' 则有111222111()()()s s s s s s l k l k l k αααααα---++++++112211112211()0s s s s s l l l l k l k l k αααα----=+++++++=因为 12,,,s ααα无关, ...................2' 所以 1211122110s s s l l l l k l k l k ---====+++=故 121,,,s βββ-无关. ...................2'五、(6分)解:32213211111111122200()3203200r r r r A a b aba b a a b aa ba ab a b+----=+--=-=-=--+-+-..2'当()0a a b -=时,即0a =或a b =时,()3R A < (1)若0a b ==,则111100010000A -⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,()1()2R A R =<=,无解. .............2' (2)若0,0a b =≠,则2132221 1 1 1111 1222300100 23002311 1100100 01r r r r A b b b b b -+--⎡⎤⎡⎤⎢⎥⎢⎥=---⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦-⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦()2()3R A R A =<=,无解. .............2' 六、(6分)解:()12341525100236330101,,,2215001110110000a a a a --⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦..............3' 秩为3,123,,a a a 为一个最大无关组,41232a a a a =-+. ...............3' 七、(6分)解:1122r n n n D D D --=-按展...............3'232232(2)32n n n n n D D D D D -----=--=-34334213(2)243(1)(2)n n n n n D D D D D n D n D -----=--=-==---21(1)(2)2(1)32(2) 1.12n n n n n =---=---=+ ...............3' 八、(6分)解:由2AX E A X +=+,得到2()A E X A E -=- ...............2' 由于001010,0100A E A E ⎡⎤⎢⎥-=-≠⎢⎥⎢⎥⎣⎦201030102X A E ⎡⎤⎢⎥=+=⎢⎥⎢⎥⎣⎦. ...............4' (或者)由2AX E A X +=+,得到2()A E X A E -=- ...............2'11001001001010,()010010100100100A E A E --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=-==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦...............2'12()()X A E A E -=--001102201010030030100201102⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. ...............2' 九、(6分)解:222222A B αααηζηζβββ+=+=+4444A B ααηζββ=+=+ ..............4' 454(2)12.=⨯+⨯-= ...............2'十、(8分)解:100023032A ⎛⎫⎪= ⎪ ⎪⎝⎭, (5)(1)(1)E A λλλλ-=--+ ...............1' 5λ=的特征向量1011ξ⎛⎫⎪= ⎪ ⎪⎝⎭1λ=特征向量2100ξ⎛⎫ ⎪= ⎪ ⎪⎝⎭1λ=-特征向量3011ξ⎛⎫⎪= ⎪ ⎪-⎝⎭单位化11011q β⎛⎫⎪==⎪⎪⎭ ,222q βξ==,333011q βξ⎛⎫⎪===⎪⎪-⎭...............4'正交变换01000X Y ⎛⎫⎪⎪⎪=⎪⎪...............1'2221235f y y y =+-. ...............1' 由顺序主子式不全大于等于0或标准形中有负项,得不是正定的.............1' 十一、(6分)解:由 ,P PA Λ=故11,k k A P P A P P --=Λ=Λ所以 175()(62)A P E P ϕ-=Λ-Λ+又10,11P -⎡⎤=⎢⎥⎣⎦ 所以110,11P --⎡⎤=⎢⎥⎣⎦..............3' 75175101010()62010(1)0(1)103010110711A P P ϕ-⎛⎫⎡⎤⎡⎤⎡⎤=-+ ⎪⎢⎥⎢⎥⎢⎥ ⎪--⎣⎦⎣⎦⎣⎦⎝⎭---⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦30.107-⎡⎤=⎢⎥⎣⎦..............3' 十二、(4分)解:由1234b αααα=+++得线性方程组Ax b = 的特解*T (1,1,1,1)η= . 由234,,ααα 线性无关,1232ααα=-知()3R A =,线性方程组0Ax = 的基础解系含有431-=个解向量。
线性代数期末考试试卷A答案
…………(2分)
它的特征多项式为
,
…………(4分)
由于其有一特征值,故,所以A的特征值为
,。
…………(6分)
当时,解方程。
,
得基础解系,,
…………(8分)
单位化即得,;
…………(10分)
当时,解方程。
,
得基础解系,单位化即得; …………(12分)
于是正交变换为 ,
且其标准型为.
…………(13分) …………(15分)
八、证明(本题13分)
1、设A、B都是n阶矩阵,且A为对称阵,证明也是对称阵。
得分
(本小题7分)
证明:由于,
A是n次对称阵,故有。
…………(3分)
于是
即是对称阵,故也是对称阵。 …………(7分)
2、设,证明:A的特征值只能取1或2。
(本题6分)
得分
证明:设是A的特征值,是A的属于的特征向量,则
…………(2分)
A) ACB B)ABC C)BAC D)CBA
3、设矩阵A =,则 D 。
A)8 B) -8 C)-16 D)16
4、设三元非齐次程组AX=B的两个解分别为,且系数矩阵A的秩为2,
则对任意常数方程组的通解可表为 C 。
A)
B)
C) D)
5、矩阵A=非零特征值是 B 。
A)4 B)3 C)2
D)1
二、填空题:(每题2分共10分)
…………(6分)
当时,解方程。 ,
得基础解系,故的全部特征向量为…………(8分) 当时,解方程。 ,
得基础解系,故的全部特征向量为…………(10分) 当时,解方程。 ,
得基础解系,故的全部特征向量为………(12分)
(答案)-08级《线性代数与概率论》(A)期末考试试题
08级《线性代数与概率统计》期末考试试题(A 卷)2009学年(1)学期《中山大学授予学士学位工作细则》第六条:“考试作弊不授予学士学位。
”姓名:___________________学号:____________________分数:____________________(答案一律写在答题纸上)一、是非题(下列叙述正确的打“√”,错误的打“×”)(共10分)1、设A 是m ×n 矩阵,若m <n ,则A X=0有无穷多个解。
( √ )2、对于随机变量X 、Y ,若ρXY ≠0,则X 与Y 必定不相互独立。
( √ )3、基础解系中的解向量一定线性无关。
( √ )4、已知()(),A B A B A B A B C ++++++=则C =B 。
( √ )5、交换行列式的某两行,行列式的值变为相反数。
( √ )6、将一枚硬币抛掷10000次,出现正面5800次,认为这枚硬币均匀是合理。
( × )7、包含有θ向量的任意一个向量组一定线性相关。
( √ ) 8、对于事件A 、B 、C ,必定有A +(B -C )=A +B -C 成立。
( × ) 9、[1]是单位矩阵,但不是初等矩阵。
( × )10、在样本空间S 中存在两个事件A 、B 满足()()()A B P AB P A P B φ⋂==且( √ )二、选择题(20分)1、已知A 、B 、C 为某随机试验中的事件,则下列各式一定正确的是( D ) (A )();A B B A -+= (B )()();A B C A B C +-=+- (C );A C B C A B +=+⇒= (D )以上答案都不一定正确2、设ξ~f (x ),如果恒有0≤f (x )≤1,则( D ) (A )1N(,);25ξμ(B )2N(1,);ξσ(C )21N(,);25ξσ(D )N(,2)ξμ3、设向量组123,,ααα线性无关,向量β1可由123,,ααα线性表出,而向量β2不能由123,,ααα线性表出,则对于任意常k ,必有( A )。
线性代数2007-2008第二学期试卷A答案
n 4, 有唯一解 III)a 2且a 1时,r r
综上,a 2且b 1时,方程组无解。
1 0 (2)a 2, b 1时,A 0 0
1 0 a 1时,A 0 0 0 0 1 1 0 0 1 0 0 2 0 0
3、 设 A, B 均为 3 阶方阵, 且满足 A 2, B 3 , 则 ( AB ) 6 ; ( AB ) = 36 。
1 1 1 1 1 1 2 3 的秩为 4、矩阵 3 1 5 1 1 3 4 2
4
1 0 ,它的行最简形是 0 0
1
1 3 6 0 0 1 和 2 。 3 6 1 1 3 6
6,3,2
8、 设三阶方阵 A 、B 相似,A 的特征值为 1、 2、 3, 则 B* 的特征值为
。
二、单项选择题(每小题 2 分,共 12 分) 得 分
1 3 0
2 3 2 ( 1) 3
3 1 2 1 0 1 1 0 1 A E 5 2 3 0 1 1 0 1 1 1 0 1 0 2 2 0 0 0 1 ( A E ) x 0的基础解系为 1 , 1 A只有一个线性无关的特征向量,因此A不能对角化。
3310分分设为一向量组12341131151?21893??????317?????????????????????????????????????????????????????????????????1
浙 江 工 业 大 学
《线 性 代 数》试 卷 (A)
线性代数考试样卷及解答
2007 — 2008学年第 一 学期 《线性代数Ⅰ》课程考试A 卷试题解答一、单项选择题(每小题2分,共20分)1、设行列式1112132122233132333 , =a a a a a a a a a 则111213313233212223333333333 等于 a a a a a a a a a 【 A 】 (A )–81 ;(B )–9 ; (C ) 9;(D )81 .2、设A 为3阶方阵,且行列式A =21,则A -2的值为【 A 】 (A )-4; (B )4; (C )-1; (D )1。
3、设n 阶方阵A 满足20A E -=,其中E 是n 阶单位矩阵,则必有【 C 】(A )A E =; (B )A E =-; (C )1A A -=; (D )1A =。
4、若向量组123a a a ,,线性无关,向量组234a a a ,,线性相关,则【 D 】 (A) 1a 必可由234a a a ,,线性表示; (B)2a 必可由134a a a ,,线性表示; (C) 3a 必可由124a a a ,,线性表示;(D)4a 必可由123a a a ,,线性表示。
5、设矩阵A =⎪⎪⎪⎭⎫ ⎝⎛+λ132121111的秩为2,则λ=【 B 】 (A ) 2; (B ) 1; (C ) 0; (D ) -1。
6、设A 是实对称矩阵,则【 A 】(A )A 一定有n 个线性无关的特征向量; (C )A 的特征值一定是非零的; (B )A 的任意两个不同的特征向量一定是正交的;(D )A 一定有n 个不同的特征值。
7、设n 阶可逆矩阵A 有一个特征值为2,对应的特征向量为x ,则下列不正确...的是【 C 】 (A )Ax =2x ; (B )A -1x =21x ; (C )A -1x =2x ; (D ) A 2x =4x 。
8、设A 是3阶方阵,A *为A 的伴随矩阵,|A |=21,则()132A A -*-等于【 C 】 (A )-12; (B )43-; (C )1627-; (D )432-。
2007-2008第一学期线代试卷A及标答
武汉理工大学教务处试题标准答案及评分标准用纸课程名称:线性代数 ( A 卷)一、填空题(每小题3分,共15分)1、23-; 2、E ; 3、-15; 4、5t ≠; 5、 2 二、选择题(每小题3分,共15分)1、C2、A3、B4、C 5 、D 三、解答题(每小题8分,共32分)1、 121000121000(1)2121000121121n n n x xn x n xn n D x x n n x x n nn n-+-++⎡⎤==+⎢⎥⎣⎦+-+--………………(4分) (1)12(1)(1)2n n n n n x x --+⎡⎤=-+⎢⎥⎣⎦………………………………………………………………(8分) 2、 由题意(1,2)B AE = ……………………………………………………………………………………(4分)又BX A =,即(1,2)A E X A =,所以1(1,2)X E -=(1,2)E =……………………………………………(8分) 3、 记1200A A A ⎛⎫=⎪⎝⎭,则1111200A A A ---⎛⎫= ⎪⎝⎭, ……………………………………………………………(2分) 又*11211,10A A ⎛⎫== ⎪-⎝⎭,故112110A -⎛⎫= ⎪-⎝⎭ …………………………………………………………(4分)*21211,31A A -⎛⎫=-= ⎪-⎝⎭,故122131A --⎛⎫= ⎪-⎝⎭………………………………………………………(6分)所以12100100000210031A -⎛⎫⎪-⎪= ⎪- ⎪-⎝⎭。
…………………………………………………………………(8分) 4、记()1234,,,A αααα=,对A 进行行初等变换,将其化为行最简形:1211241012213631A -⎛⎫ ⎪-⎪= ⎪--- ⎪-⎝⎭~1211003200320064-⎛⎫ ⎪- ⎪ ⎪- ⎪-⎝⎭~121100320000000-⎛⎫⎪- ⎪ ⎪⎪⎝⎭~11203201300000000⎛⎫-⎪⎪⎪-⎪ ⎪⎪ ⎪⎝⎭…………………(4分)()2R A =,又显然13,αα线性无关,所以13,αα即为原向量组的一个最大无关组;………………………(6分)且212αα=,4131233ααα=--。
2008级线性代数试题和答案 A卷
经济学院本科生09-10学年第一学期线性代数期末考试试卷 (A 卷)答案及评分标准一、填空题(每小题4分、本题共28分)1. 设A 为n 阶方阵, *A 为其伴随矩阵, 31det =A , 则=⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛*-A A 1541det 1_____ 2. 已知12,αα均为2维列向量, 矩阵),2(2121αααα-+=A , ),(21αα=B . 若行列式6A =, 则B = _____3.若,),,,(),,,,(2121k r r s s ==αααβααα,1),,,,(21+=k r s γααα 则),,,,,(21γβαααs r = _____4. 设A 为5阶方阵, 且4)(=A r , 则齐次线性方程组0*=x A (*A 是A 的伴随矩阵)的基础解系所包含的线性无关解向量的个数为 _____5. 设33()ij A a ⨯=是实正交矩阵, 且,a b T11=1,=(1,0,0)则线性方程组Ax b =的解是_____6. 若使二次型31212322213212242),,(x tx x x x x x x x x f ++++=为正定的, 则 t 的取值范围是 _____7. 设3阶方阵A 满足0322=--E A A , 且0<A <5, 则=A _____ 答案:(1) 3)1(n - (2)-2 (3) k +1 (4) 4(5) T)0,0,1( (6) 2<t (7)3二、单项选择题(每小题4分、本题共28分)1. 设A 为n 阶方阵, B 是A 经过若干次矩阵的初等变换后所得到的矩阵, 则有( ) (A) B A = (B) B A ≠(C) 若0=A , 则一定有0=B (D) 若0>A , 则一定有0>B 2. 设行列式3040222207005322D =--, 则第四行各元素代数余子式之和的值为 ( ) (A) 28 (B) -28 (C) 0 (D) 336 3. 设A 为m 阶方阵, B 为n 阶方阵, ⎪⎪⎭⎫ ⎝⎛=00BA C , 则 C 等于 ( )(A) B A (B) B A - (C) B A m n )1(- (D) B A n m +-)1( 4. 设n 维列向量组)(,,21n m m <ααα 线性无关, 则n 维列向量组m βββ ,,21线性无关的充分必要条件是 ( )(A) 向量组m ααα ,,21可由向量组m βββ ,,21线性表示 (B) 向量组m βββ ,,21可由向量组m ααα ,,21线性表示 (C) 矩阵),,(21m ααα 与矩阵),,(21m βββ 等价 (D) 向量组m ααα ,,21与向量组m βββ ,,21等价 5.设A 、B 为n 阶方阵, 且)()(B r A r =, 则( )(A) 0)(=-B A r (B) )(2)(A r B A r =+ (C) )()()(B r A r B A r +≤ (D) )(2)(A r AB r =6. 设矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=0000000000000004,1111111111111111B A , 则A 与B ( ) (A )合同且相似 (B )合同但不相似( C ) 不合同但相似 (D) 不合同且不相似7.设21,λλ是矩阵A 的两个不同的特征值, 对应的特征向量分别为21,αα, 则221),(ααα+A 线 性无关的充分必要条件是 ( )(A )01≠λ (B )02≠λ ( C )01=λ (D) 02=λ 答案:CCC CCA A三、计算题(每小题8分、本题共32分)1.计算n +1阶行列式 nn n n d b d b d b a a a a D 00000022112101=+.解 分三种情况讨论:(1)当n d d d ,,,21 全不为0时,D 为箭型行列式且∑∑==--=-=====nk n kkk nn nk k k k c c d d d d b a a d d d a a a d b a a D jjd jb 1210212110;)(0000001(2)当n d d d ,,,21 中只有一个为0时,不妨假设0=i d ,则ni i i i ni i i inni i i i ni i ic cd d d d b a d d b d d a d b d b b d b d a a a a a a D i111111111111011000011+-+-+--+-↔-=-=-====+(3)当n d d d ,,,21 中有两个以上为0时,显然0=D .综合以上三种情况,我们有⎪⎩⎪⎨⎧=∃-=≠-=+-=∑0,;...),...,2,1(0;)(11211210i n i i i i k nk n kk k d i d d d d d b a n k d d d d d b a a D 2. 设矩阵A 满足关系式11)2(--=-C A B C E T , 其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=1000210002101021,1000210032102321C B , 求A ? 解 在等式11)2(--=-C A B C E T 等号两边同时乘以C , 得[]TB C A 1)2(--=,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=--100021********21)2(,100021003210432121B C B C ,[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-=-1210012100120001)2(1TB C A . 3.设线性方程组 ⎪⎪⎩⎪⎪⎨⎧=+++=+++-=+--=+--bx x x x x ax x x x x x x x x x x 43214321432143217107141253032(1)问:a , b 取何值时, 线性方程组无解、有解?(2)当线性方程组有解时, 试用基础解系表示通解.解 设题中线性方程组为.Ax b =用消元法, 对线性方程组Ax b =的增广矩阵A 施以行初等变换,化为阶梯形矩阵:⎪⎪⎪⎪⎪⎭⎫⎝⎛--−−−→−⎪⎪⎪⎪⎪⎭⎫⎝⎛----=b-401000000-1001320b1-10初等行变换a a A 32117107141125313211 由此可知:当b ≠4时,)()(A r A r ≠ 线性方程组Ax b =无解; 当b =4时, 恒有)()(A r A r = 线性方程组Ax b =有解.若,3)()(,1==≠A r A r a 方程组有无穷多个解,通解为:T T )1,0,21,27()0,0,21,21(--+k k 为任意实数 若,2)()(,1===A r A r a 方程组有无穷多个解,通解为:T 2T 1T )1,0,21,27()0,1,23,21()0,0,21,21(--+-+k k 21k k 、为任意实数 4.设矩阵,,321101210,324202423*1Q A Q B Q A -=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛= 求E B 2010+的特征值和特征向量. 其中*A 是A 的伴随矩阵, E 为3阶单位矩阵. 解 计算A 的特征多项式32422423--------=-λλλλA E .)1()8(2+-=λλ故A 的特征值为1,8321-===λλλ. 因为.,,8*X AX A X AX A i λλλ====∏则若所以*A 的特征值为1,-8,-8.由于Q A Q B *1-=与*A 相似, 相似矩阵有相同的特征值,所以E B 2010+的特征值为:2011,2002,2002.下面求特征向量, 因为X Q A X A Q X Q Q A Q X Q B 1*11*11||))(()(-----===λ,我们有矩阵B 的属于λA的特征向量为X Q 1-, 因此矩阵E B 2010+的属于2010+λA的特征向量为X Q 1-第三步 求出A 的全部特征向量对于81=λ,求解线性方程组0)8(=-x A E 得特征向量 .2121⎪⎪⎪⎭⎫ ⎝⎛=α 对于132-==λλ,求解线性方程组0)(=--x A E 得特征向量.021,10132⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=αα第四步 求出E B 2010+ 的全部特征向量,即计算312111,,ααα---Q Q Q .,012,23223,23121,21211111212113121111⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=----αααQ Q Q Q综合以上分析我们有:矩阵E B 2010+属于特征值2011的特征向量为k ⎪⎪⎪⎪⎪⎭⎫⎝⎛--27121, k 为任意实数属于特征值2002的特征向量为 ,0122322321⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫⎝⎛--k k 21k k 、为任意实数四、证明题(每题6分,共12分)1. 已知向量组)1(,,,121>+s s s αααα 线性无关, 向量组s βββ,,21 可表示为),,2,1(1s i t i i i i =+=+ααβ, 其中i t 是实数. 证明s βββ,,21 线性无关.证明 用定义. 假设存在 s 个数s k k k ,,21 , 使 02211=+++s s k k k βββ , 即 0)()()(132222111=+++++++s s s s t k t k t k αααααα , 也就是0)()()(11133212221111=++++++++++--s s s s s s s t k k t k k t k k t k k ααααα .又因为)1(,,,121>+s s s αααα 线性无关, 所以上式中系数部分都为0, 即⎪⎪⎪⎩⎪⎪⎪⎨⎧==+=+=--0000112111s s s s s t k k t k k t k k 解得 021====s k k k , 故s βββ,,21 线性无关. 2. 设n 阶矩阵 A 满足022=-+E A A 且E A ≠. 证明A 相似于对角矩阵.证 由022=-+E A A 可得 ))(2(0)2)((E A A E A E A E ---==+- (1)可得A 的特征值为 1或 -2,要证明A 相似于对角矩阵,也就是A 可以对角化,即要证明A 有n 个线性无关的特征向量。
线性代数2007-2008第一学期试卷A
浙 江 工 业 大 学《线 性 代 数》试 卷 (A)(2007—2008学年第一学期) 2008.6一、填空(每空2分,共24分)1、在四阶行列式中,乘积项43213412a a a a 的符号为 号。
2、设,B C 为n 阶可逆方阵,00B A C⎛⎫=⎪⎝⎭,则T A = ;1A -= 。
3、设,A B 均为n 阶方阵,且满足2,3A B ==,则()AB *= 。
4、设 100010b A ac ⎛⎫⎪= ⎪ ⎪⎝⎭,当,,a b c 分别为 时,A 为对称阵;A 的伴随阵为 ;当,,a b c 满足条件 时,A 为正交阵。
5、向量组⎛⎫ ⎪ ⎪ ⎪⎝⎭141、k ⎛⎫ ⎪ ⎪ ⎪⎝⎭14、⎛⎫ ⎪ ⎪⎪⎝⎭120为3R 的一组基, 则k 必须满足的条件是 。
6、线性方程组AX β=有无穷多解的充要条件是 。
7向量TT)0,1,0,1,0(,)1,0,1,0,1(==βα8、设二阶方阵A 、B 相似,A 的特征值为2、3,则1-B 的特征值为 ,而*B 的特征值为 。
二、单项选择题(每小题2分,共12分)1、以下结论正确的是( )。
A 、若2=A 0,则A =0;B 、若方阵A 的行列式0=A ,则A =0;C 、若=A B 0,则A =0或B =0;D 、若方阵A 对称,则2A 也对称。
2、下列四项中,向量组T 线性相关的充分必要条件是( )。
A 、向量组T 中至少有一个是零向量;B 、向量组T 中至少有两个向量的分量成比例;C 、向量组T 中至少有一个向量能由其余向量线性表示;D 、向量组T 中至少有一个部分向量组线性相关。
3、下列矩阵中,( )不是初等矩阵。
A 、100001010⎛⎫ ⎪ ⎪ ⎪⎝⎭ ; B 、001010101⎛⎫ ⎪ ⎪ ⎪⎝⎭; C 、100015001⎛⎫ ⎪ ⎪ ⎪⎝⎭; D 、001010100⎛⎫⎪ ⎪ ⎪⎝⎭。
4、若n 阶方阵A 可逆,则下列各项中不是A 可逆的充分必要条件的是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 共 3 页
班 级(学生填写)
: 姓名: 学号: 命题: 审题: 审批: ------------------------------------------------------------------- 密 ---------------------------- 封 --------------------------- 线 -----------------------------------------------------------
(答题不能超出密封装订线)
2008~2009学年第 二 学期 《线性代数》 科目考查试题A 卷
使用班级(教师填写):电信08-1,2班,电子08-1,2班,测控08-1班
(本大题共6 小题,每小题3分,总计 18 分 )
1.设(.....)τ 表示排列的逆序数, 则 (134782695)τ= ( ) (A )1 (B ) 10 (C )3 (D) 2
2. 矩阵方程 组A X B m n ⨯= 有解的充分必要条件是( )
3. (A ) 0B = (B ) m n < (C) m n = (D) ()(,)R A R A B = 3. 已知向量组 αα1,, m 线性相关, 则( ) (A )该向量组的任何部分组必线性相关 . (B ) 该向量组的任何部分组必线性无关 .
(C ) 该向量组的秩小于m . (D) 该向量组的最大线性无关组是唯一的.
4.设A 是4阶方阵, 且行列式A B A ==-81
2
,, 则B = ( )
(A) 12 (B) 1
2- (C) 4 (D) 4-
5.设 1,
,m a a , ()1,
,m b b m n < 均为非零实数 ,
A =1112121
2221
2
n n m m m n a b a b a b a b a b a b a b a b a b ⎛⎫
⎪ ⎪
⎪ ⎪⎝⎭
, 则矩阵A 的秩()R A 等于 ( ) (A ) n (B ) m (C) 1 (D) 大于1而小于n 的某一整数
6.121212340A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭, 212314205B ⎛⎫ ⎪=- ⎪ ⎪⎝⎭
,()ij C
c ==AB ,则23c =( )
第 2 页 (共
3 页) 2 (A )10 (B ) 22 (C ) 3 (D)1-
二. 填空(本大题共 5 小题,每小题3分,总计 15 分 )
1.设A =3100⎛⎫ ⎪
⎪ ⎪ ⎪⎝⎭
,B =()231,若使AB C +可以运算,则C 的行数必是 ,
列数必是 。
2.在n 元齐次线性方程组0AX =中,若秩(),R A k = 且ηηη12,,
, r 是它的一个基础解系,则r = ___ 。
3. 设向量组αα1,
, s 的秩为p ,向量组 ββ1,, t 的秩为q ,向量组ααββ11,,,,, s t 的秩为r , 则r 与p q +的大小关系是 。
4. 设A B ==αγγβγγ,,,,,1212b g b g
均是3阶方阵,αβγγ,,,12 是三维列向量,若
2A = ,3B =,则 2A B +=_________。
5.设向量组αλ111=,
,b g ,αλ211=,,b g ,αλ311=,,b g
线性相关,则λ的值为 。
三. 计算题(本大题共3小题,每小题8分,总计24分 )
1.设3122A ⎛⎫= ⎪⎝⎭,2132B -⎛⎫
= ⎪-⎝⎭
, 求AB BA -。
2. 计算五阶行列式 1
1110980
1
07106
05413
02001
5=D
第 3 页 共 3 页
3.求矩阵A=⎪⎪
⎪⎪⎪
⎭
⎫
⎝
⎛-10002
10032107531的逆矩阵1
-A .
四. (15分)试求向量组1α=(1,1,2,2)T ,2α=(0,2,1,5)T ,3α=(2,0,3,-1)T ,4α=(1,1,0,4)T 的秩和该向量组的一个最大无关组,并将其他向量用此最大无关组表示。
五. (15分)求非齐次线性方程组⎪⎩⎪
⎨⎧-=+--=+--=-+-2
1
4321432143212201x x x x x x x x x x x x 的通解,并求其对应
的齐次线性方程组的基础解系。
六.证明题。
(共13分,第一题9分,第二题4分)
1.(9分)已知向量组A : 1(0,1,1)T a =,2(1,1,0)T a =,向量组B : 1(1,0,1)T b =-,
2(1,2,1)T b =,3(3,2,1)T b =-, 证明:向量组A 与向量组B 等价.
2.(4分)设A 是n 阶矩阵,对任意n 阶矩阵B 均有 AB B =, 证明: A E =。