大物实验报告-光的等厚干涉
光的等厚干涉实训报告
一、实训目的1. 理解光的干涉现象,掌握等厚干涉的原理。
2. 通过实验观察光的等厚干涉现象,加深对干涉理论的理解。
3. 学会使用干涉仪进行实验,提高实验操作技能。
4. 培养严谨的科学态度和团队合作精神。
二、实训内容1. 光的干涉现象:光波在两束或多束光波相遇时,相互叠加形成干涉条纹。
2. 等厚干涉:光在两束或多束光波相遇时,由于光程差相等,形成的干涉条纹是等间隔的。
3. 实验仪器:干涉仪、激光光源、光屏、透镜等。
三、实训步骤1. 准备工作:将干涉仪、激光光源、光屏、透镜等实验器材安装好,确保仪器稳定。
2. 打开激光光源,调节光路,使激光束通过干涉仪的透镜。
3. 调节光屏,使光屏上的光斑清晰可见。
4. 调节干涉仪的反射镜,使光束反射到干涉仪的透镜上。
5. 调节透镜,使光束通过透镜后形成干涉条纹。
6. 观察干涉条纹,记录条纹间距和条纹形状。
7. 改变实验条件,观察干涉条纹的变化。
8. 分析实验数据,得出结论。
四、实验结果与分析1. 实验结果在实验过程中,我们观察到干涉条纹为明暗相间的等间隔条纹。
当改变实验条件时,干涉条纹的间距和形状发生变化。
2. 实验分析根据等厚干涉的原理,当光程差为λ/2时,干涉条纹为明纹;光程差为λ时,干涉条纹为暗纹。
因此,实验中观察到的明暗相间的等间隔条纹符合等厚干涉的原理。
通过改变实验条件,我们发现干涉条纹的间距和形状发生变化。
这是由于光程差的变化导致的。
当光程差增加时,干涉条纹间距变大;当光程差减小,干涉条纹间距变小。
五、结论1. 通过本次实训,我们掌握了光的干涉现象和等厚干涉的原理。
2. 我们学会了使用干涉仪进行实验,提高了实验操作技能。
3. 通过观察干涉条纹,我们加深了对干涉理论的理解。
4. 本次实训培养了我们的严谨科学态度和团队合作精神。
六、实训体会1. 在实验过程中,我们要严格按照实验步骤进行操作,确保实验数据的准确性。
2. 实验过程中遇到问题,要积极思考、互相讨论,共同解决问题。
等厚干涉实验报告
等厚干涉实验报告等厚干涉实验是一种重要的光学实验,根据Fizeau原理,通过将两束光束接近相同的光程、波长、偏振和方向,在干涉环境中观察它们的干涉现象。
实验可以用于研究材料的光学属性以及光学元件的设计和制造。
实验装置主要由凸面透镜、振幅分束器、反射镜、准直器、照明光源、读出光学元件等部件组成。
具体操作步骤如下:1. 配置实验装置。
定位照明光源、凸面透镜和反射镜的位置,使得光线可以被准确的引导到振幅分束器的两个入射端口上。
2. 调整振幅分束器。
调整振幅分束器使其分区比之间的光程差约为光波长的1/2,开启干涉仪件后调整读出光学元件的位置和旋转状态,使得读出干涉条纹后,当前光的路径长度相等。
3. 观察干涉现象。
根据读数元件显示的干涉图案,判断两个光束对应的光程是否相等。
若干涉条纹是等间距的,则表示光程相等;若干涉条纹不等距,则表示光程差。
通过等厚干涉实验,我们可以得到目标光学材料的折射率、厚度和表面形貌等参数。
其中,折射率可以通过测量材料的相对位移来计算得出,厚度则可以从空气中干涉带的数量和宽度并结合折射率公式进行计算。
此外,等厚干涉实验对于验证材料表面形貌的均匀性也具有重要的作用。
不同区域的折射率不一定相等,如果存在表面形貌的偏差,则会产生干涉条纹发生错位的情况,因而通过观察干涉条纹的位置和形态可以得知材料表面是否均匀。
需要注意的是,等厚干涉实验需要高精度的仪器配合操作,同时特别注意光学系统的稳定性和环境的温度变化等因素。
实验过程中要严格遵守操作规程,以免影响结果的准确性。
总之,等厚干涉实验是一种非常有用的光学实验,能够大大提高我们的认识和研究光学材料、元件及表面形貌等方面的工作。
在实验过程中,需要掌握合适的操作步骤,并积极对实验结果进行记录和分析,以获得准确的结果,并为光学实验提供更好的支持。
(完整版)光的等厚干涉实验报告
大连理工大学大 学 物 理 实 验 报 告院(系) 材料学院 专业 材料物理 班级 0705 姓 名 童凌炜 学号 200767025 实验台号 实验时间 2008 年 11 月 04 日,第11周,星期 二 第 5-6 节实验名称 光的等厚干涉教师评语实验目的与要求:1. 观察牛顿环现象及其特点, 加深对等厚干涉现象的认识和理解。
2. 学习用等厚干涉法测量平凸透镜曲率半径和薄膜厚度。
3. 掌握读数显微镜的使用方法。
实验原理和内容: 1. 牛顿环牛顿环器件由一块曲率半径很大的平凸透镜叠放在一块光学平板玻璃上构成, 结构如图所示。
当平行单色光垂直照射到牛顿环器件上时, 由于平凸透镜和玻璃之间存在一层从中心向外厚度递增的空气膜, 经空气膜和玻璃之间的上下界面反射的两束光存在光程差, 它们在平凸透镜的凸面(底面)相遇后将发生干涉, 干涉图样是以接触点为中心的一组明暗相间、内疏外密的同心圆, 称为牛顿环(如图所示。
由牛顿最早发现)。
由于同一干涉圆环各处的空气薄膜厚度相等, 故称为等厚干涉。
牛顿环实验装置的光路图如下图所示:成 绩教师签字设射入单色光的波长为λ, 在距接触点r k 处将产生第k 级牛顿环, 此处对应的空气膜厚度为d k , 则空气膜上下两界面依次反射的两束光线的光程差为22λδ+=k k nd式中, n 为空气的折射率(一般取1), λ/2是光从光疏介质(空气)射到光密介质(玻璃)的交界面上反射时产生的半波损失。
根据干涉条件, 当光程差为波长的整数倍时干涉相长, 反之为半波长奇数倍时干涉相消, 故薄膜上下界面上的两束反射光的光程差存在两种情况:2)12(2222λλλδ+=+=k k d k k由上页图可得干涉环半径r k , 膜的厚度d k 与平凸透镜的曲率半径R 之间的关系222)(k k r d R R +-=。
由于dk 远小于R , 故可以将其平方项忽略而得到22k k r Rd =。
光的等厚干涉实验报告
光的等厚干涉实验报告光的等厚干涉实验是一项重要的光学实验,通过该实验可以观察到光的干涉现象,从而深入理解光的波动性质。
本次实验旨在通过等厚薄膜的干涉现象,验证光的波动性质,并通过实验数据分析得出结论。
实验仪器与原理。
实验中所使用的仪器包括,He-Ne激光器、准直器、半反射镜、等厚薄膜样品、平行玻璃板等。
实验原理是基于薄膜的反射和透射光程差引起的干涉现象。
当入射光线照射到薄膜表面时,一部分光被反射,另一部分光被透射。
在薄膜内部,反射光和透射光再次发生干涉,形成干涉条纹。
实验步骤。
1. 将He-Ne激光器与准直器对准,使激光垂直照射到半反射镜上。
2. 调整半反射镜,使激光分为两束,一束垂直照射到等厚薄膜样品上,另一束照射到平行玻璃板上。
3. 观察薄膜样品上的干涉条纹,记录下观察到的现象。
4. 改变薄膜样品的厚度,再次观察干涉条纹的变化。
5. 根据实验数据,分析得出结论。
实验结果与分析。
通过实验观察,我们发现在等厚薄膜样品上出现了清晰的干涉条纹。
随着薄膜厚度的改变,干涉条纹的间距也发生了相应的变化。
通过测量不同厚度下的干涉条纹间距,我们得出了一系列数据。
通过对数据的分析,我们发现干涉条纹的间距与薄膜厚度之间存在一定的关系,这与光的波动性质相吻合。
结论。
通过本次实验,我们验证了光的波动性质,并得出了光的等厚干涉条纹与薄膜厚度的关系。
实验结果表明,光在薄膜中的传播具有波动性质,能够产生干涉现象。
因此,光的波动理论能够很好地解释薄膜干涉现象。
总结。
光的等厚干涉实验是一项重要的光学实验,通过该实验可以深入理解光的波动性质。
通过本次实验,我们验证了光的波动性质,并得出了光的等厚干涉条纹与薄膜厚度的关系。
实验结果对于深入理解光的波动性质具有重要意义,也为光学理论的进一步研究提供了重要的实验依据。
通过本次实验,我们对光的波动性质有了更深入的了解,也为光学理论的研究提供了重要的实验数据。
希望本次实验结果能够对光学领域的研究和应用有所帮助。
物理实验报告 - 等厚干涉
1)
300 250 200 150 100 50 0 0 5 10 15 20 25 30 35 y = 7.157x R² = 0.867
r 4 = Rλk; Rλ = 7.1574; R = 1214559.647mm; 2)
左/mm 右/mm di/mm Δ R/mm 10 15 20 25 30.910 31.550 32.035 32.440 32.810 27.332 26.710 26.230 25.825 25.430 3.578 4.840 5.805 6.615 7.380 30.956 31.039 30.783 平均 87465.18 87550.6 87784.38 87060.57 标准差 301.6043 5 30 33.140 25.110 8.030
1
王皓平 6100411063 电 III112 班 S077 16 00 十一一 25T012 ������ 2 = { 采用第 n 级和第 m 级计算 R: R= 劈尖干涉: d= l ������ ∙ Δl 2 ������������ 2 −������������ 2 4������(������ − ������) 2������ − 1 ������������/2明环 ������ 2 = ������������������暗环
R
reΒιβλιοθήκη ������ 2������ + = ������������ 明环 2 { ������ 2������ + 1 ������ 2������ + = 暗环 2 2 r 2 = ������ 2 − (������ − ������)2 = 2������������ − ������ 2 ; 又 R>>e,e2<<2Re,e2 可以忽略不计。 e = r 2 /2������
光的等厚干涉 实验报告
光的等厚干涉实验报告光的等厚干涉实验报告引言:光的干涉现象是光学中的重要现象之一。
光的等厚干涉实验是一种可以直观观察光的干涉现象的实验方法。
本文将介绍光的等厚干涉实验的原理、实验装置和实验结果,并进行一定的分析和讨论。
一、实验原理光的等厚干涉是指光线在等厚物体上发生干涉现象。
当光线垂直射入等厚物体表面时,经过反射和折射后,光线在物体内部形成一系列等厚线。
当两束光线相遇时,由于光的波动性质,会发生干涉现象。
光的等厚干涉实验利用这一现象,通过观察干涉条纹的变化来研究光的干涉特性。
二、实验装置本次实验所使用的实验装置如下:1. 光源:使用一束单色光源,如红光或绿光。
2. 平行平板:选择一块平行平板作为等厚物体,保证其两个表面平行。
3. 凸透镜:将凸透镜放置在平行平板的一侧,使光线通过凸透镜后再射入平行平板。
4. 探测器:使用光电探测器或人眼观察干涉现象。
三、实验步骤1. 将光源放置在适当位置,使光线垂直射入平行平板的一侧。
2. 调整平行平板的位置,使光线通过平行平板后射入凸透镜。
3. 观察凸透镜的另一侧,通过光电探测器或人眼观察干涉现象。
4. 改变平行平板的厚度或光源的位置,观察干涉条纹的变化。
四、实验结果在实验中,我们观察到了一系列干涉条纹。
当平行平板的厚度相等时,干涉条纹呈现出明暗相间的条纹,这是由于光的干涉所导致的。
当平行平板的厚度不等时,干涉条纹的间距和亮暗程度会发生变化。
通过改变光源的位置或平行平板的厚度,我们可以观察到不同的干涉现象。
五、实验分析通过对实验结果的观察和分析,我们可以得出以下结论:1. 光的等厚干涉是一种光的干涉现象,它是由光线在等厚物体上的反射和折射所导致的。
2. 干涉条纹的间距和亮暗程度与平行平板的厚度有关,厚度越大,干涉条纹间距越大。
3. 改变光源的位置或平行平板的厚度可以改变干涉条纹的形态,这可以用来研究光的干涉特性。
六、实验应用光的等厚干涉实验在科学研究和工程应用中具有重要的意义。
光的等厚干涉实验报告
光的等厚干涉实验报告
光的等厚干涉实验是一种用来研究光的干涉现象的实验。
在这个实验中,我们利用等厚薄膜产生的干涉条纹,来观察光的干涉现象。
本实验旨在通过观察干涉条纹的变化,来了解光的波动性质,以及干涉现象背后的物理原理。
在实验中,我们首先准备了一块平整的玻璃片,并在玻璃片表面涂上一层透明的薄膜。
然后,我们利用一束单色光照射到薄膜上,观察干涉条纹的产生和变化。
在观察的过程中,我们发现随着入射角的改变,干涉条纹的间距也会发生变化。
这说明干涉条纹的间距与入射角之间存在一定的关系。
通过对干涉条纹的观察和测量,我们可以得出一些重要的结论。
首先,干涉条纹的间距与薄膜的厚度有关,厚度越大,干涉条纹的间距也会越大。
其次,干涉条纹的间距与入射角有关,入射角越大,干涉条纹的间距也会越大。
最后,干涉条纹的间距与光的波长有关,波长越大,干涉条纹的间距也会越大。
通过这些结论,我们可以进一步了解光的波动性质。
光的等厚干涉实验为我们提供了一个直观的方式来观察光的干涉现象,同时也为我们提供了一种验证光的波动性质的方法。
通过这个实验,我们可以更深入地了解光的特性,为光学领域的研究提供了重要的实验基础。
总的来说,光的等厚干涉实验是一种重要的实验方法,通过这个实验,我们可以深入了解光的波动性质,以及干涉现象背后的物理原理。
这对于光学领域的研究具有重要的意义,也为我们提供了一个直观的方式来观察和理解光的干涉现象。
希望通过这个实验,我们可以更深入地了解光的特性,为光学领域的发展做出贡献。
等厚干涉现象实验报告
等厚干涉现象实验报告
《等厚干涉现象实验报告》
等厚干涉现象是光学实验中常见的一种现象,通过该实验可以观察到光的干涉
现象,从而进一步了解光的波动特性。
本文将介绍一次等厚干涉实验的过程和
结果。
实验过程:
1. 实验器材准备:准备一台光源、一块平行玻璃板、一块白纸和一块黑纸。
2. 实验设置:将光源放置在适当的位置,使其照射到平行玻璃板上,然后在平
行玻璃板的一侧放置白纸,在另一侧放置黑纸。
3. 观察现象:当光线穿过平行玻璃板时,会发生干涉现象,形成一系列明暗条纹。
观察这些条纹的分布和形状。
实验结果:
通过观察实验现象,我们可以得出以下结论:
1. 等厚干涉现象是由于光线穿过平行玻璃板时,不同光线的光程差导致的。
光
程差相等的地方会形成明纹,而光程差相差半个波长的地方会形成暗纹。
2. 干涉条纹的间距与光源的波长、平行玻璃板的厚度以及入射角度等因素有关。
通过调整这些因素,可以观察到不同的干涉条纹。
3. 等厚干涉现象是光的波动特性的重要表现,它揭示了光的波动性和干涉现象
的规律。
结论:
通过这次等厚干涉实验,我们深入了解了光的波动特性和干涉现象的规律。
这
些知识对于我们理解光学原理和应用光学技术具有重要意义。
希望通过不断地
实验和学习,我们能够更深入地理解光学现象,为光学领域的发展做出贡献。
光等厚干涉实验报告
光等厚干涉实验报告一、实验目的通过光等厚干涉实验观察干涉现象,并掌握使用光程差调节器进行干涉实验的方法。
二、实验原理1. 光程差在光线沿着不同的路径通过介质时,由于介质折射率不同,所以光线经过的路程也不同,这种差异就称为光程差。
若两束光线以一定角度斜入到同一介质内,它们的路程差Δl就可表示为Δl=2dcosθ,其中d为两条光线的间距。
2. 相位差当两波通过一个点时,由于它们可能是不同的路径到达这个点,所以它们压缩和扩张的时间不同,这样就导致它们之间的相位差。
如果ΔΦ表示两个波之间的相位差,则可以表示为:ΔΦ =2πΔl/λ其中λ指波长。
3. 干涉条纹当两束光线以一定的角度斜入到同一介质内,在其中一个面上反射后,再以不同角度折射出来,再次相遇,并在成像屏上表现出相干干涉现象,形成的亮暗交替的条纹就称为干涉条纹。
4. 光等厚干涉光等厚干涉是基于菲涅尔衍射原理,用一定的等厚薄膜作为衍射器,在反射和透射中同时产生相干光,观察此时产生的干涉条纹。
当两束光线在薄膜内反射和折射后再次相遇时,由于其经过的路程差与波长相等,相遇处得到的光线是相干的,从而发生干涉现象。
当薄膜的厚度一定,薄膜的表面形状不同或在射入薄膜之前或之后,可以观察到不同的干涉条纹。
三、实验仪器光源、反射镜、样品支架、分束镜、透明样品、菲涅尔望远镜。
四、实验步骤1. 首先开启光源,将分束镜和一面反射镜置于支架上,调节反射镜的位置,使分束镜和反射镜的光路重合。
将反射镜上已安装的厚度为薄的十字线样品固定在样品支架上,确保它平行于反射面。
2. 调节支架的高度,使反射的光线从分束镜上的表面反射回来,后再次经过反射镜,穿过分束镜在菲涅尔望远镜中组合成一个图像。
3. 轻轻转动支架,耐心地观察在菲涅尔望远镜中观察到的干涉条纹,调节样品支架的位置,重复操作得到更多的干涉条纹。
同时,注意到干涉条纹的明暗和条纹的宽度和间隔都与样品的厚度和材料性质有关。
4. 重复以上操作,同样大小和形状的样品不同,观察干涉条纹的变化。
光的等厚干涉 实验报告[参考]
光的等厚干涉实验报告[参考]一、实验原理等厚干涉是指,当平行的两个平板之间有垂直于平板的光线射入时,由于平板间距和介质折射率等厚,反射光和折射光在平板内部发生相对相位差,当它们合成时产生的干涉色彩称为等厚干涉色。
同时,由于介质厚度不同,能够产生不同波长干涉色的薄膜高低差,称为牛顿环。
二、实验器材1. 等厚干涉仪2. 钠灯3. 凸透镜4. 三角形支架5. 单色滤光片6. 直角三棱镜三、实验步骤1. 开启钠灯,并将光线通过凸透镜做成平行光线。
2. 将直线平板插入实验仪器内,并调节支架保证平板夹持稳定。
3. 调节支架,使得在平板上方观察到明暗交替的干涉带。
4. 插入单色滤光片,观察干涉带间的变化。
5. 在钠灯前端插入三角形支架,调整角度使得通过三角形支架的光线能够正好照射平板的一侧,而被照射侧面的反射光通过支架的反射角度射入另一侧的平板内部。
6. 在观察镜筒中可以看到由些微异色的干涉环组成的彩色交替带,它是等厚干涉产生的产物。
四、实验结果通过上述步骤,我们成功地观察到了等厚干涉产生的彩色干涉带。
在平板上方观察到了明暗交替的干涉带,过滤光以后,较为暗淡的干涉带变得更加清晰,而较明显的干涉带则逐渐变暗。
通过调整三角形支架的角度,还可以发现产生了不同颜色的干涉环,这是由于不同波长光在干涉产生的相位差不同而产生的干涉色彩。
本次实验中,我们通过等厚干涉仪观察到了平板间距以及折射率为常量时产生的干涉色彩。
在实验过程中,通过插入单色滤光片观察干涉带的变化,以及通过调整三角形支架的角度观察干涉色彩的变化,更加深入了解了光的等厚干涉现象的原理和特点。
(完整版)光的等厚干涉实验报告.docx
大连理工大学大学物理实验报告院(系)材料学院专业材料物理班级0705成绩姓名童凌炜学号200767025实验台号教师签字实验时间2008 年11 月 04日,第 11 周,星期二第5-6节实验名称光的等厚干涉教师评语实验目的与要求:1.观察牛顿环现象及其特点,加深对等厚干涉现象的认识和理解。
2.学习用等厚干涉法测量平凸透镜曲率半径和薄膜厚度。
3.掌握读数显微镜的使用方法。
实验原理和内容:1.牛顿环牛顿环器件由一块曲率半径很大的平凸透镜叠放在一块光学平板玻璃上构成,结构如图所示。
当平行单色光垂直照射到牛顿环器件上时,由于平凸透镜和玻璃之间存在一层从中心向外厚度递增的空气膜,经空气膜和玻璃之间的上下界面反射的两束光存在光程差,它们在平凸透镜的凸面(底面)相遇后将发生干涉,干涉图样是以接触点为中心的一组明暗相间、内疏外密的同心圆,称为牛顿环(如图所示。
由牛顿最早发现)。
由于同一干涉圆环各处的空气薄膜厚度相等,故称为等厚干涉。
牛顿环实验装置的光路图如下图所示:射入色光的波λ,在距接触点r k将生第k 牛,此的空气膜厚度d k,空气膜上下两界面依次反射的两束光的光程差k 2nd k2式中,n 空气的折射率(一般取1),λ/2是光从光疏介(空气)射到光密介(玻璃)的交界面上反射生的半波失。
根据干涉条件,当光程差波的整数倍干涉相,反之半波奇数倍干涉相消,故薄膜上下界面上的两束反射光的光程差存在两种情况:2kk2d k22(2k 1)2K=1,2,3, ⋯., 明K=0,1,2, ⋯., 暗由上可得干涉半径r k,膜的厚度d k与平凸透的曲率半径R之的关系R2( R d k ) 2r k2。
由于 dk 小于 R,故可以将其平方忽略而得到2Rd k r k2。
合以上的两种情况公式,得到:r k22Rd k kR ,k 0,1,2..., 暗环由以上公式件,r k与 d k成二次的关系,故牛之并不是等距的,且了避免背光因素干,一般取暗作象。
(精编资料推荐)大物实验报告-光的等厚干涉
(精编资料推荐)大物实验报告-光的等厚干涉光的等厚干涉实验
概述:本实验的主要目的是研究光的等厚干涉现象,即通过分析光的波长差及其产生
的干涉现象能否找出由光造成的分离效应。
实验步骤:
1. 根据实验要求准备好所需要的实验仪器以及材料,包括等厚干涉仪、干涉片组、
传感器、电脑等。
2. 使用等厚干涉仪安装干涉片组,并确保其安装准确,置于光栅照射路径中。
3. 调整光源,令其照射在光栅上,通过勾调照明强度,使其满足实验要求,并确保
光源能够按时及足够长的时间充分照射光栅。
4. 调整传感器,令其按照实验要求安装,尽可能调整传感器令其处在最佳干涉位置,用于接收光信号。
5. 调整电脑,将其联网,下载实验软件,以便进行实验测量数据处理。
6. 使用实验软件连接传感器,进行数据采集,测量并处理干涉条纹幅度、位置等信息,在电脑上绘制出干涉图谱,记录实验数据。
7. 将该实验数据与理论计算结果进行比较,令其最大值差不多相等,根据结果可以
进一步了解光的等厚干涉原理。
实验结果:实验得到的数据表明,实验结果与理论数据相一致,表明光通过干涉片组
形成干涉条纹,并按照等厚干涉原理形成干涉条纹,光的分离效果得到了明显改善。
总结:本实验通过研究光的等厚干涉现象,获得了相应的实验数据,实验结果也表明,光通过等厚干涉片组可以形成干涉条纹,由于其厚度的差异,可以改善光的分离效果。
通
过实验可以看出,光的分离效果受光波长等因素的影响,因此,在未来可以根据此实验结
果加以改进,以便进一步优化干涉效果,达到更好的效果。
光的等厚干涉牛顿环实验报告
光的等厚干涉牛顿环实验报告
光的等厚干涉牛顿环实验是一种经典的干涉实验,用于研究光的相位和波长等性质。
下面详细介绍该实验的内容及步骤。
一、实验原理
光的等厚干涉是指在等厚介质中,由于光线的反射和折射产生相位差,形成干涉条纹的现象。
在牛顿环实验中,将一凸透镜和一个平凸透镜组成一个空气倾斜度限制器,然后在两个透镜之间加入一块平行的玻璃片,使得入射光线在透镜上反射和折射后,在玻璃片和透镜之间产生干涉现象,从而呈现出一系列的等厚干涉条纹。
二、实验步骤
1. 调节实验装置:首先将凸透镜和平凸透镜组成空气倾斜度限制器,通过调节空气钳来使两个透镜之间的距离精确到0.1mm左右,并使得两个透镜中心轴线重合并且水平。
2. 调节光源:使用一束单色光源,如He-Ne激光,通过调节反射镜和衍射屏的位置,以确保光线垂直于光轴并使其成为平行光。
3. 加入样品:将准备好的玻璃片放置在两个透镜中间,用空气压力调节器逐渐加压,直到玻璃片与两个透镜之间的距离达到预定值。
4. 观察干涉条纹:依次观察光源、反射镜、凸透镜、玻璃片和平凸透镜的位置,可以看到一系列环形干涉条纹。
此时应记录下每个环的半径和颜色,可用读数显微镜或CCD 等检测设备精确测量。
三、实验结果
通过对干涉条纹的实际观察和相关计算,可以得到一系列参数,包括玻璃片的厚度变化、干涉条纹的半径和角度等。
这些数据可以用来计算出光的相位差和波长等参数,从而更深入地了解光的性质和行为。
综上所述,光的等厚干涉牛顿环实验是一种重要的干涉实验,可以用于研究光的相位和波长等性质。
该实验需要仔细调节和观察,才能获得准确的实验数据。
光的等厚干涉实验报告数据
光的等厚干涉实验报告数据摘要:
在本实验中,我们使用光的等厚干涉实验验证了杨氏干涉的原理。
通过调节反射镜间距,我们观察到了不同干涉条纹和垂直条纹,最终测量出空气中波长为680纳米的单色光的折射率为
1.00028。
实验原理:
等厚干涉实验是一种利用光程差干涉的方法,通过调节反射镜间距,使得经过反射和折射后的光程差为偶数或奇数个波长,从而形成干涉条纹。
干涉条纹的形态和间距能够提供有关介质的折射率和厚度的信息。
实验内容:
1.将白光通过透镜聚焦到劈尖上;
2.调节劈尖和反射镜之间的间距,观察干涉条纹和垂直条纹;
3.测量反射镜间距并计算出各种条纹的间距;
4.通过一系列测量,计算出单色光在空气中的折射率。
实验数据与分析:
反射镜间距 = 32.0cm
折射率 = (反射镜间距/2)/(距劈尖距离/2)
= 0.16/0.000059
= 2.71
通过以上计算,我们得出空气中的波长为680纳米的单色光的折射率为1.00028,与理论值1.00029相近。
结论:
通过光的等厚干涉实验,我们验证了杨氏干涉的原理,并成功测量出空气中波长为680纳米的单色光的折射率为1.00028。
实验结果与理论值相近,说明实验操作正确,结果可靠。
大学物理实验光的等厚干涉现象与应用
4 .读数显微镜的读数方法
主尺的分度值为1mm,测微鼓轮共有100个刻度,其份度值为 0.01mm,可估读到0.001mm。
主尺 15mm
最后读数为:15.506mm
测微鼓轮 0.506mm
2.把牛顿环仪置于显微镜的正下方,使单色光源与读 数显微镜上45角的反射透明玻璃片等高。旋转反射透 明玻璃 ,直至从目镜中能看到明亮均匀的光照。
3.调节读数显微镜的目镜,使十字叉丝清晰;自下而上 调节物镜直至观察到清晰的干涉图样。移动牛顿环仪, 使中心暗斑(或亮斑)位于视域中心,调节目镜系统, 使叉丝横丝与读数显微镜的标尺平行,消除视差。平 移读数显微镜,观察待测的各环左右是否都在读数显 微镜的读数范围之内。
数,而且由于分子是 Dm2 Dn2 ,通过几何分析可知,即使 牛顿环中心无法定准,也不会影响R的准确度。
实验内容
用牛顿环测定透镜的曲率半径
1.熟悉读数显微镜的使用方法
目镜 调焦手轮
标尺 测微鼓轮
锁紧手轮
450可调式半反镜
2 .调整测量装置。
1.调整牛顿环仪的三个调节螺丝,在自然光照射下能 观察到牛顿环的干涉图样,并将干涉条纹的中心移到 牛顿环仪的中心附近。调节螺丝不能太紧,以免中心 暗斑太大,甚至损坏牛顿环仪。
m
①实际观察牛顿环时发现,牛顿环的中心不是一个 点,而是一个不甚清晰的暗或亮的圆斑。其原因是 透镜与平板玻璃接触时,由于接触压力引起形变, 使接触处为一圆面,而圆面的中心很难定准,因此rk 不易测准;
②镜面上可能有灰尘等存在而引起一个附加厚度, 从而形成附加的光程差,这样,绝对级数也不易定 准。
为了克服这些困难, 对 R rm2 进行处理,首先取暗环
大物实验报告-光的等厚干涉
大物实验报告-光的等厚干涉一、实验目的1.加深对光的波动性,尤其是对干涉现象的认识。
2.了解读数显微镜的使用方法。
3.掌握逐差法处理实验数据。
4.提高误差分析和合理分配的能力。
二、实验原理两列或几列光波在空间相遇时相互叠加,在某些区域始终加强,在另一些区域则始终削弱,形成稳定的强弱分布的现象就是光的干涉现象。
形成稳定干涉的条件是:光波的频率相同、相位差恒定、振动方向一致的相干光源。
光的干涉现象是光的波动性的最直接、最有力的实验证据。
在各种干涉条纹中,等倾干涉条纹和等厚干涉条纹是比较典型的两种。
1.等厚干涉原理:当一束平行光a、b入射到厚度不均匀的透明介质薄膜上时,在薄膜的表面会产生干涉现象。
从上表面反射的光线b1和从下表面反射出上表面的光线a1在B点相遇,由于a1、b1有恒定的光程差,因而将在B点产生干涉。
该式中,λ/2是由于光线从光疏介质照射到光密介质,在界面发射时有一位相突变,即所谓的“半波损失”而附加的光程差,因此明暗纹出现的条件是:同一种条纹所对应的空气厚度是一样的,所以称之为等厚干涉条纹。
要想在实验中观察到并测量这些条纹,还必须满足以下条件:①薄膜上下两平面的夹角足够小,否则将由于条纹太密而无法分辨②显微镜必须聚焦在B点附近,方能看到干涉条纹,也就是说,这样的条纹是有定域问题的。
2.利用牛顿环测一个球面镜的曲率半径:设单色平行光的波长为λ,第k级暗纹对应的薄膜厚度为d,考虑到下届反射时有半波损失λ/2,当光线垂直入射时总光程差由薄膜干涉公式可求,该式中,n为空气的折射率,n=1,根据干涉条件。
原则上,若已知λ,用读数显微镜测出环的半径r,就可以利用上面两个公式求出曲率半径R。
但在实际测量中,由于牛顿环的级数k及环的中心都无法确定,为满足实际需求,精确地测量数据,基本思路有如下两条:(1)虽然不能确定具体某个环的级数k,但求级数之差(m-n)是毫无困难的。
(2)虽然不能确定环心的位置,即无法准确测得半径(或直径),但是测弦长是比较容易的。
(完整版)光的等厚干涉实验报告
大连理工大学大 学 物 理 实 验 报 告院(系) 材料学院 专业 材料物理 班级 0705 姓 名 童凌炜 学号 200767025 实验台号 实验时间 2008 年 11 月 04 日,第11周,星期 二 第 5-6 节实验名称 光的等厚干涉教师评语实验目的与要求:1. 观察牛顿环现象及其特点, 加深对等厚干涉现象的认识和理解。
2. 学习用等厚干涉法测量平凸透镜曲率半径和薄膜厚度。
3. 掌握读数显微镜的使用方法。
实验原理和内容: 1. 牛顿环牛顿环器件由一块曲率半径很大的平凸透镜叠放在一块光学平板玻璃上构成, 结构如图所示。
当平行单色光垂直照射到牛顿环器件上时, 由于平凸透镜和玻璃之间存在一层从中心向外厚度递增的空气膜, 经空气膜和玻璃之间的上下界面反射的两束光存在光程差, 它们在平凸透镜的凸面(底面)相遇后将发生干涉, 干涉图样是以接触点为中心的一组明暗相间、内疏外密的同心圆, 称为牛顿环(如图所示。
由牛顿最早发现)。
由于同一干涉圆环各处的空气薄膜厚度相等, 故称为等厚干涉。
牛顿环实验装置的光路图如下图所示:成 绩教师签字设射入单色光的波长为λ, 在距接触点r k 处将产生第k 级牛顿环, 此处对应的空气膜厚度为d k , 则空气膜上下两界面依次反射的两束光线的光程差为22λδ+=k k nd式中, n 为空气的折射率(一般取1), λ/2是光从光疏介质(空气)射到光密介质(玻璃)的交界面上反射时产生的半波损失。
根据干涉条件, 当光程差为波长的整数倍时干涉相长, 反之为半波长奇数倍时干涉相消, 故薄膜上下界面上的两束反射光的光程差存在两种情况:2)12(2222λλλδ+=+=k k d k k由上页图可得干涉环半径r k , 膜的厚度d k 与平凸透镜的曲率半径R 之间的关系222)(k k r d R R +-=。
由于dk 远小于R , 故可以将其平方项忽略而得到22k k r Rd =。
光的等厚干涉费曼环实验报告
光的等厚干涉费曼环实验报告
1. 引言
本实验旨在通过费曼环实验来观察和研究光的等厚干涉现象。
光的等厚干涉是指由于介质中的折射率不均匀而导致光波前面的相位差而产生的干涉现象。
费曼环实验是一种简单且直观的方法来观察等厚干涉现象。
2. 实验装置与方法
实验装置主要包括光源、准直系统、反射镜和带微调螺旋组的平面玻璃样品。
实验方法如下:
1. 调整光源和准直系统,使得光线通过反射镜垂直射入平面玻璃样品。
2. 通过微调螺旋组,调整平面玻璃样品的倾斜角度,直到观察到明暗交替的干涉环。
3. 测量不同位置处的干涉环半径和明暗交替带的数目。
3. 实验结果与讨论
实验结果如下图所示:
从实验结果可以观察到明暗交替的干涉环,并且干涉环的半径随着位置的改变而变化。
通过实验测量得到的干涉环半径和明暗交替带的数目与理论预期相符。
根据理论分析,光的等厚干涉现象是由于平面玻璃样品中存在折射率不均匀性导致的。
当光通过样品时,由于折射率的变化,不同位置处的光波前面会产生相位差,从而形成干涉环。
4. 结论
通过费曼环实验,我们成功观察到了光的等厚干涉现象,并验证了理论预期。
光的等厚干涉现象在光学研究和应用中具有重要意义,对于深入理解光的波动性和折射现象有着重要的指导意义。
光的等厚干涉实验报告
光的等厚干涉实验报告光的等厚干涉实验报告引言:光的等厚干涉实验是一种常见的实验方法,通过观察光的干涉现象,可以深入理解光的波动性质。
本实验旨在通过实际操作,观察和分析光的等厚干涉现象,并探究其原理和应用。
实验器材和原理:实验所需器材包括光源、透明平板、反射镜、干涉条纹观察装置等。
光源发出的光经透明平板后会发生折射和反射,形成两束光线。
当两束光线相遇时,由于光的波动性质,会出现干涉现象。
干涉现象的产生是由于光的波长相同,相位差满足一定条件时,会出现干涉条纹。
实验步骤:1. 将光源放置在适当位置,保证光线能够通过透明平板。
2. 调整透明平板的位置和角度,使得透明平板能够将光线分为两束。
3. 将反射镜放置在适当位置,使得反射镜能够将两束光线引导到同一位置。
4. 在观察装置上观察干涉条纹,并调整透明平板的位置和角度,观察条纹的变化。
实验结果和分析:通过实验观察,我们可以看到在观察装置上出现了一系列明暗相间的干涉条纹。
这些条纹呈现出一定的规律性,通过观察条纹的变化,我们可以得出以下结论:1. 条纹的间距与波长相关:在实验中,我们可以通过调整透明平板的位置和角度,观察到干涉条纹的间距发生变化。
根据干涉条纹的间距变化,我们可以推断出光的波长。
通过实验计算,我们可以得到光的波长。
2. 条纹的明暗变化与相位差相关:条纹的明暗变化是由于两束光线的相位差引起的。
当相位差为奇数倍的半波长时,两束光线相消干涉,形成暗纹;当相位差为偶数倍的半波长时,两束光线相长干涉,形成亮纹。
通过观察条纹的明暗变化,我们可以计算出两束光线的相位差。
应用:光的等厚干涉实验在实际应用中有着广泛的应用价值。
以下是几个常见的应用领域:1. 光学薄膜的制备:在光学薄膜的制备过程中,光的等厚干涉实验可以用于控制薄膜的厚度和质量。
通过观察干涉条纹的变化,可以对薄膜的厚度进行精确控制,从而得到所需的光学性能。
2. 光学测量:在光学测量领域中,光的等厚干涉实验可以用于测量物体的形状和表面粗糙度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理实验报告实验名称:光的等厚干涉
学院:机电工程学院
班级:车辆151班
姓名:吴倩萍
学号:5902415034
时间:第8周周三下午3:45开始
地点:基础实验大楼313
一、实验目的:
1.观察牛顿环和劈尖的干涉现象。
2.了解形成等厚干涉现象的条件及特点。
3.用干涉法测量透镜的曲率半径以及测量物体的微小直径或厚度。
二、实验仪器:
牛顿环装置、钠光灯、读数显微镜、劈尖等。
三、实验原理:
在平面玻璃板BB上放置一曲率半径为R的平凸透镜AOA,两者之间便形成一层空气薄层。
当用单色光垂直照射下来时,从空气上下两个表面反射的光束1和光束2在空气表面层附近相遇产生干涉,空气层厚度相等处形成同一级的干涉条纹,这种干涉现象称为等厚干涉。
1.用牛顿环测量平凸透镜表面的曲率半径
(1)安放实验仪器。
(2)调节牛顿环仪边框上三个螺旋,使在牛顿环仪中心出现一组同心干涉环。
将牛顿环仪放在显微镜的平台上,调节45°玻璃板,以便获得最大的照度。
(3)调节读数显微镜调焦手轮,直至在显微镜内能看到清晰的干涉条纹的像。
适当移动牛顿环位置,使干涉条纹的中央暗区在显微镜叉丝的正下方,观察干涉条纹是否在显微镜的读数范围内,以便测量。
(4)转动测微鼓轮,先使镜筒由牛顿环中心向左移动,顺序数到第24暗环,再反向至第22暗环并使竖直叉丝对准暗环中间,开始记录。
在整个测量过程中,鼓轮只能沿同一个方向依次测完全部数据。
将数据填入表中,显然,某环左右位置读数之差即为该环的直径。
用逐差法求出R,并计算误差。
2.用劈尖干涉法则细丝直径
(1)将被测细丝夹在两块平板玻璃的一端,另一端直接接触,形成劈尖,然后置于读数显微镜载物台上。
(2)调节叉丝方位和劈尖放置方位,使镜筒移动方向与干涉条纹相垂直,以便准确测出条纹间距。
(3)用读数显微镜测出20条暗条纹间的垂直距离l,再测出棱边到细丝所在处的总长度L,求出细丝直径d。
(4)重复步骤3,各测三次,将数据填入自拟表格中。
求其平均值。
四、实验内容:
观察牛顿环
(1)接通钠光灯电源使灯管预热。
(2)将牛顿环装置放置在读数显微镜镜筒下,并将下面的反射镜置于背光位置。
(3)待钠光灯正常发光后,调节光源的位置,使450半反射镜正对钠灯窗口,并且同高。
(4)在目镜中观察从空气层反射回来的光,整个视场应较亮,颜色呈钠光的黄色,如果看不到光斑,可适当调节45度半反射镜的角度及钠灯的高度和位置,直至看到反射光斑,并均匀照亮视场。
(5)调节目镜,在目镜中看到清晰的十字叉丝线的像。
(6)放松目镜紧固螺丝,转动目镜使十字叉丝线中的一条线与标尺平行,即与镜筒移动方向平行。
(7)转动物镜调节手轮(注意:要两个手轮一起转动)调节显微镜镜筒与牛顿环装置之间的距离。
先将镜筒下降,使45度半反射镜接近牛顿环装置但不能碰上,然后缓慢上升,直至在目镜中看到清晰的牛顿环像。
五、实验数据处理与分析:
六、思考题:
1.牛顿环干涉条纹一定会成为圆环形。
答:不一定。
若不是等厚干涉,就不一定成圆环形。
2、实验中为什么要测牛顿环直径,而不测其半径?
答:因为无法确定牛顿环的圆心在哪里,难以测出其半径。
3、实验中为什么要测量多组数据且采用逐差法处理数据,答减少实验的偶然误差。
七、附上原始数据:
Welcome To Download !!!
欢迎您的下载,资料仅供参考!。