Submitted to Adaptive Behavior (51598) (resubmitted 11598) Special Issue on Simulation of S
高迁移率族蛋白B1与强直性脊柱炎的相关性
P= . 2 ) 间均呈正相 关。结论 00 8 之
的血清 学指标 。
H B MG 1与 A s活动期具有相关性 , MG I可能 为 A H B S病情活动的评估提供新
【 关键词】 强直性脊柱炎;高迁移率族蛋白B ; 1 血清学; 相关分析 高迁移率族蛋 白 B ( i oit g u o po l h hm bly r pbx1 r g i o —
下心肌 间存在跨壁力学改 变。
参 考 文 献
[ ] 王其海 ,汪太平,徐岩 ,等.斑点追踪成像技术评价缺血心肌 1
低 于同期心 内膜下心 肌 T S P 。这也 是 由于心 肌主要 由纵行 纤维构成 , 心肌缺乏供血时 , 心肌纵 向收缩 的心 内膜面心 肌纤维最 先受累 , 内膜下心肌 血流与 心外 心
在 。P I C 治疗前 、 成功 P I C 治疗后 3~ 7d和 3个月 : 梗 死组梗死节段 心外膜下 心肌 L 均 高 于同期 心 内膜 s 下 心肌 L ; 死组 梗死节 段心 外膜下 心肌 T S 均 S 梗 P,
sI T 技术通过测定 L 及 P 可 以发 现心 肌梗死 前 S Ts 及成功 P I C 治疗 后 , 梗死节 段心 内膜下 心肌 与心外 膜
心肌二 维应变能够客观反映心肌缺血时心肌局部 收缩功能。因此 , 缺血 心肌 心 内膜 下 L 一 T S 对 S 及 P 的检测可提 高对 缺血 心肌 的识 别 的敏感 度 。2 D—
有效 。由于心外膜 心肌 的代偿 作用 , 局部整 体纵 向收 缩异 常即使 已恢 复 , 内膜下心肌纵 向力学改 变仍存 心
列炎症 因子 的释放 , 导致炎症反应的加强和放 大
。
本研究表 明 H G 1 C P E R P M B 与 R 、 S 、 h的升高具有一致 性, 提示 H G 1 A M B 与 S的活动性相关 , 将可 能为 A 病 S 情活 动的评估提供新 的血清学指标 。
基于自适应遗传算法的多无人机协同任务分配
2021,36(1)电子信息对抗技术Electronic Information Warfare Technology㊀㊀中图分类号:V279;TN97㊀㊀㊀㊀㊀㊀文献标志码:A㊀㊀㊀㊀㊀㊀文章编号:1674-2230(2021)01-0059-06收稿日期:2020-02-28;修回日期:2020-03-30作者简介:王树朋(1990 ),男,博士,工程师㊂基于自适应遗传算法的多无人机协同任务分配王树朋,徐㊀旺,刘湘德,邓小龙(电子信息控制重点实验室,成都610036)摘要:提出一种自适应遗传算法,利用基于任务价值㊁飞行航程和任务分配均衡性的适应度函数评估任务分配方案的优劣,在算法运行过程中交叉率和变异率进行实时动态调整,以克服标准遗传算法易陷入局部最优的缺点㊂将提出的自适应遗传算法用于多无人机协同任务分配问题的求解,设置并进行了实验㊂实验结果表明:提出的自适应遗传算法可以较好地解决多无人机协同任务分配问题,得到较高的作战效能,证明了该方法的有效性㊂关键词:遗传算法;适应度函数;无人机;任务分配;作战效能DOI :10.3969/j.issn.1674-2230.2021.01.013Cooperative Task Assignment for Multi -UAVBased on Adaptive Genetic AlgorithmWANG Shupeng,XU Wang,LIU Xiangde,DENG Xiaolong(Science and Technology on Electronic Information Control Laboratory,Chengdu 610036,China)Abstract :An improved adaptive genetic algorithm is proposed,and a fitness function based ontask value,flying distance and the balance of task allocation scheme is used to evaluate the qualityof task allocation schemes.In the proposed algorithm,the crossover probability and mutation prob-ability can adjust automatically to avoid effectively the phenomenon of the standard genetic algo-rithm falling into the local optimum.The proposed improved genetic algorithm is used to solve the problem of cooperative task assignment for multiple Unmanned Aerial Vehicles (UAVs).The ex-periments are conducted and the experimental results show that the proposed adaptive genetic al-gorithm can significantly solve the problem and obtain an excellent combat effectiveness.The ef-fectiveness of the proposed method is demonstrated with the experimental results.Key words :genetic algorithm;fitness function;UAV;task assignment;combat effectiveness1㊀引言无人机是一种依靠程序自主操纵或受无线遥控的飞行器[1],在军事科技方面得到了极大重视,是新颖军事技术和新型武器平台的杰出代表㊂随着战场环境日益复杂,对于无人机的性能要求越来越高,单一无人机在复杂的战场环境中执行任务具有诸多不足,通常多个无人机进行协同作战或者执行任务㊂通常地,多无人机协同任务分配是:在无人机种类和数量已知的情况下,基于一定的环境信息和任务需求,为多个无人机分配一个或者一组有序的任务,要求在完成任务最大化的同时,多个无人机任务执行的整体效能最大,且所付出的代价最小㊂从理论上讲,多无人机协同任务分配属于NP -hard 的组合优化问题,通常需95王树朋,徐㊀旺,刘湘德,邓小龙基于自适应遗传算法的多无人机协同任务分配投稿邮箱:dzxxdkjs@要借助于算法进行求解㊂目前,国内外研究人员已经对于多无人机协同任务分配问题进行了大量的研究,并提出很多用于解决该问题的算法,主要有:群算法㊁自由市场机制算法和进化算法等㊂群算法是模拟自然界生物群体的行为的算法,其中蚁群算法[2-3]㊁粒子群算法[4]以及鱼群算法[5]是最为典型的群算法㊂研究人员发现群算法可以用于求解多无人机协同任务分配问题,但是该算法极易得到局部最优而非全局最优㊂自由市场机制算法[6]是利用明确的规则引导买卖双方进行公开竞价,在短时间内将资源合理化,得到问题的最优解和较优解㊂进化算法适合求解大规模问题,其中遗传算法[7-8]是最著名的进化算法㊂遗传算法在运行过程中会出现不容易收敛或陷入局部最优的问题,许多研究人员针对该问题对遗传算法进行了改进㊂本文提出一种改进的自适应遗传算法,在算法运行过程中适应度值㊁交叉率和变异率可以进行实时动态调整,以克服遗传算法易陷入局部最优的缺点,并利用该算法解决多无人机协同任务分配问题,以求在满足一定的约束条件下,无人机执行任务的整体收益最大,同时付出的代价最小,得到较大的效费比㊂2㊀问题描述㊀㊀多无人机协同任务分配模型是通过设置并满足一定约束条件的情况下,包括无人机的自身能力限制和环境以及任务的要求等,估算各个无人机执行任务获得的收益以及付出的代价,并利用评价指标进行评价,以求得到最大的收益损耗比和最优作战效能㊂通常情况下,多无人机协同任务分配需满足以下约束:1)每个任务只能被分配一次;2)无人机可以携带燃料限制造成的最大航程约束;3)无人机载荷限制,无人机要执行某项任务必须装载相应的载荷㊂另外,多无人机协同任务分配需要遵循以下原则:1)收益最高:每项任务都拥有它的价值,任务分配方案应该得到最大整体收益;2)航程最小:应该尽快完成任务,尽可能减小飞行航程,这样易满足无人机的航程限制,同时降低无人机面临的威胁;3)各个无人机的任务负载尽可能均衡,通常以任务个数或者飞行航程作为标准判定; 4)优先执行价值高的任务㊂根据以上原则,提出多无人机协同任务分配的评价指标,包括:1)任务价值指标:用于评估任务分配方案可以得到的整体收益;2)任务分配均衡性指标:用于评估无人机的任务负载是否均衡;3)飞行航程指标:用于评估无人机的飞行航程㊂3㊀遗传算法㊀㊀要将遗传算法用于多无人机协同任务分配问题的求解,可以将任务分配方案当作种群中的个体,确定合适的染色体编码方法,利用按照一定结构组成的染色体表示任务分配方案㊂然后,通过选择㊁交叉和变异等遗传操作进行不断进化,直到满足约束条件㊂通常来说,遗传算法可以表示为GA=(C,E, P0,M,F,G,Y,T),其中C㊁E㊁P0和M分别表示染色体编码方法㊁适应度函数㊁初始种群和种群大小,在本文的应用中,P0和M分别表示初始的任务分配方案集合以及任务分配方案的个数;F㊁G 和Y分别表示选择算子㊁交叉算子和变异算子;T 表示终止的条件和规则㊂因此,利用遗传算法解决多无人机协同任务分配问题的主要工作是确定以上8个参数㊂3.1㊀编码方法利用由一定结构组成的染色体表示任务分配方案,将一个任务分配方案转换为一条染色体的过程可以分为2个步骤:第一步是根据各个无人机需执行的任务确定各个无人机对应的染色体;第二步是将这些小的染色体结合,形成整个任务分配方案对应的完整染色体㊂假设无人机和任务的个数分别为N u和N t,其中第i个无人机U i的06电子信息对抗技术㊃第36卷2021年1月第1期王树朋,徐㊀旺,刘湘德,邓小龙基于自适应遗传算法的多无人机协同任务分配任务共有k个,分别是T i1㊁T i2㊁ ㊁T ik,则该无人机对应的任务染色体为[T i1T i2 T ik]㊂在任务分配时,可能出现N t个任务全部分配给一个无人机的情况,另外为增加随机性和扩展性,提高遗传算法的全局搜索能力,随机将N t-k个0插入到以上的任务染色体中,产生一条全新的长度为N t的染色体㊂最终,一个任务分配方案可以转换为一条长度为N u∗N t的染色体㊂3.2㊀适应度函数在本文的应用中,适应度函数E是用于判断任务分配方案的质量,根据上文提出的多无人机协同任务分配问题的原则和评价指标可知,主要利用任务价值指标㊁任务分配均衡性指标以及飞行航程指标等三个指标判定任务分配方案的质量㊂假设有N u个无人机,F i表示第i个无人机U i的飞行航程,整个任务的总飞行航程F t可以表示为:F t=ðN u i=1F i(1)无人机的平均航程为:F=F t Nu(2)无人机飞行航程的方差D可以表示为:D=ðN u i=1F i-F-()2N u(3)为充分考虑任务价值㊁飞行航程以及各个无人机任务的均衡性,将任务分配方案的适应度函数定义为:E=V ta∗F t+b∗D(4)其中:V t为任务的总价值,F t为总飞行航程,D为各个无人机飞行航程的方差,a和b分别表示飞行航程以及飞行航程均衡性的权重㊂另外,任务分配方案的收益损耗比GL可以表示为:GL=V tF t(5)另外,在遗传算法运行的不同阶段,需要对任务分配方案的适应度进行适当地扩大或者缩小,新的适应度函数E可以表示为:Eᶄ=1-e-αEα=m tE max-E avg+1,m=1+lg T()ìîíïïïï(6)其中:E为利用公式(4)计算得到的原适应度值, E avg为适应度值的平均值,E max为适应度最大值,t 为算法的运行次数,T为遗传算法的终止条件㊂在遗传算法运行初期,E max-E avg较大,而t较小,因此α较小,可以提高低质量任务分配方案的选择概率,同时降低高质量任务分配方案的选择概率;随着算法的运行,E max-E avg将逐渐减小,t 将逐渐增大,因此α会逐渐增大,可以避免算法陷入随机选择和局部最优㊂3.3㊀种群大小㊁初始种群和终止条件按照通常做法,将种群大小M的取值范围设定为20~100㊂首先,随机产生2∗M个符合要求的任务分配方案,利用公式(4)计算各个任务分配方案的适应度值㊂然后,从中选取出适应度值较高的M 个任务分配方案组成初始种群P0,即初始任务分配方案集合㊂终止条件T设定为:在规定的迭代次数内有一个任务分配方案的适应度值满足条件,则停止进化;否则,一直运行到规定的迭代次数㊂3.4㊀选择算子首先,采用精英保留策略将当前适应度值最大的一个任务分配方案直接保留到下一代,提高遗传算法的全局收敛能力㊂随后,利用最知名的轮盘赌选择法选择出剩余的任务分配方案㊂3.5㊀交叉算子和变异算子在算法运行过程中需随时动态调整p c和p m,动态调整的原则如下:1)适当降低适应度值比平均适应度值高的任务分配方案的p c和p m,以保护优秀的高质量任务分配方案,加快算法的收敛速度;2)适当增大适应度值比平均适应度值低的任务分配方案的p c和p m,以免算法陷入局部最优㊂另外,任务分配方案的集中度β也是决定p c 和p m的重要因素,β可以表示为:16王树朋,徐㊀旺,刘湘德,邓小龙基于自适应遗传算法的多无人机协同任务分配投稿邮箱:dzxxdkjs@β=E avgE max(7)其中:E avg 表示平均适应度值;E max 表示最大适应度值㊂显然,β越大,任务分配方案越集中,遗传算法越容易陷入局部最优㊂因此,随着β增大,p c 和p m 应该随之增大㊂基于以上原则,定义p c 和p m 如下:p c =0.8E avg -Eᵡ()+0.6Eᵡ-E min ()E avg -E min +0.2㊃βEᵡ<E avg 0.6E max -Eᵡ()+0.4Eᵡ-E avg ()E max -E avg +0.2㊃βEᵡȡE avgìîíïïïïïp m =0.08E avg -E‴()+0.05E‴-E min ()E avg -E min +0.02㊃βE‴<E avg and β<0.80.05E max -E‴()+0.0001E‴-E avg ()E max -E avg+0.02㊃βE‴ȡE avg and β<0.80.5βȡ0.8ìîíïïïïïï(8)其中:E max 为最大适应度值,E min 为最小适应度值,E avg 为平均适应度值,Eᵡ为进行交叉操作的两个任务分配方案中的较大适应度值,E‴为进行变异操作的任务分配方案的适应度值,β为任务分配方案的集中度,可利用公式(7)计算得到㊂4㊀实验结果4.1㊀实验设置4架无人机从指定的起飞机场起飞,飞至5个任务目标点执行10项任务,最终降落到指定的降落机场㊂其中,如表1所示,无人机的编号分别为UAV 1㊁UAV 2㊁UAV 3和UAV 4㊂另外,起飞机场㊁降落机场㊁目标如图6所示㊂任务的编号分别为任务1至任务10(简称为T 1㊁T 2㊁ ㊁T 10),每项任务均为到某一个目标点执行侦察㊁攻击㊁事后评估中的某一项,任务设置如表2所示㊂表1㊀无人机信息编号最大航程装载载荷UAV 120侦察㊁攻击UAV 120侦察UAV 125攻击㊁评估UAV 130侦察㊁评估图1㊀任务目标位置示意图表2㊀任务设置任务编号目标编号任务类型任务价值T 11侦察1T 21攻击2T 32攻击3T 42评估3T 53侦察4T 63评估6T 74侦察2T 84攻击3T 94评估5T 105评估14.2㊀第一组实验首先,随机地进行任务分配,得到一个满足多无人机协同任务分配的约束条件的任务分配方案如下:㊃UAV 1:T 2ңT 5㊃UAV 2:T 1ңT 7㊃UAV 3:T 3ңT 6ңT 8㊃UAV 4:T 4ңT 9ңT 10计算可知,4个无人机的飞行航程分别是14.0674㊁12.6023㊁20.1854和22.1873,飞行总航程为69.0423,执行任务的总价值为30,最终的收益损耗比约为0.43㊂另外,各个飞行器飞行航程的方差约为16.18,UAV 1和UAV 2的飞行航程相对较短,而UAV 3和UAV 4的飞行航程相对较长,各个无人机之间的均衡性存在明显不足㊂为提高收益损耗比,分别利用标准遗传算法和本文提出的自适应遗传算法进行优化,两个算法的参数设置如表3所示㊂26电子信息对抗技术·第36卷2021年1月第1期王树朋,徐㊀旺,刘湘德,邓小龙基于自适应遗传算法的多无人机协同任务分配表3㊀遗传算法参数设置参数名称标准遗传算法自适应遗传算法E 公式(4)公式(6)M 2020选择方法精英策略轮盘赌选择法精英策略轮盘赌选择法P c 0.8公式(8)交叉方法单点交叉单点交叉P m 0.2公式(8)T500500最终,利用标准遗传算法得到任务分配方案如下:㊃UAV 1:T 3ңT 8㊃UAV 2:T 1ңT 7㊃UAV 3:T 9㊃UAV 4:T 6ңT 5计算可得,4个无人机的飞行航程分别为12.78㊁12.6023㊁12.434和12.9443,总飞行航程为50.7605,总任务价值为24,计算可知收益损耗比约为0.47,相对于随机任务分配提高约9.3%㊂另外,各个飞行器飞行航程的方差约为0.04,无人机飞行航程比较均衡,未出现飞行航程过长或过短的情况㊂在算法运行过程中,最佳适应度曲线如图2所示,在遗传算法约迭代到第160次时陷入局部最优,全局搜索能力不足㊂图2㊀标准遗传算法的最佳适应度曲线图1为进一步提高算法的效率,利用本文提出的改进自适应遗传算法解决多无人机协同任务分配问题㊂最终,利用自适应遗传算法得到的任务分配方案如下:㊃UAV 1:T 2ңT 3ңT 8ңT 7㊃UAV 2:T 5㊃UAV 3:T 6㊃UAV 4:T 1ңT 4ңT 9计算可知,4个无人机的飞行航程分别为12.8191㊁12.9443㊁12.9443和12.8191,总飞行航程为51.5268,总任务价值为29,收益耗比约为0.56,相对于随机任务分配提高约30.2%,相对于基于标准遗传算法的任务分配方案提高约19.1%㊂另外,各个飞行器飞行航程的方差约为0.004,无人机飞行航程的均衡性相对于基于标准遗传算法的任务分配方案有了进一步的提高㊂在算法运行过程中,最佳适应度值曲线如图3所示,可以有效避免遗传算法陷入局部最优或者随机选择㊂图3㊀自适应遗传算法的最佳适应度曲线图14.3㊀第二组实验在第一组实验中,因任务10(简称为T 10)的价值较低,在最终的任务分配方案中极少被分配㊂在第二组实验中,将T 10的价值由1调整为6,其他设置项不变㊂首先,随机进行任务分配,最终的任务分配方案和第一组实验相同㊂随后,利用标准遗传算法进行多无人机协同任务分配,最终的任务分配方案如下:㊃UAV 1:T 2ңT 3ңT 7ңT 8㊃UAV 2:T 5㊃UAV 3:T 6ңT 10㊃UAV 4:T 9基于此任务分配方案,4个无人机的飞行航程分别为12.8191㊁12.9443㊁13.6883和12.434,总飞行航程为51.8857,总任务价值为31,因此计36王树朋,徐㊀旺,刘湘德,邓小龙基于自适应遗传算法的多无人机协同任务分配投稿邮箱:dzxxdkjs@算可得收益损耗比约为0.6,相对于随机任务分配提高约17.6%㊂另外,各个飞行器飞行航程的方差约为0.21,各个无人机的飞行航程的均衡性一般,相对于随机任务分配有一定的提高㊂在算法运行过程中,最佳适应度值曲线如图4所示,在算法迭代运行约90次时陷入较长时间的局部最优,直到迭代次数为340次时,然后再次陷入局部最优㊂图4㊀标准遗传算法的最佳适应度曲线图2最后,将本文提出的自适应遗传算法用于多无人机协同任务分配问题的求解,得到最终的任务分配方案如下:㊃UAV 1:T 2ңT 3ңT 8ңT 7㊃UAV 2:T 5㊃UAV 3:T 6ңT 10㊃UAV 4:T 1ңT 4ңT 9基于此任务分配方案可得,4个无人机的航程分别是12.8191㊁12.9443㊁13.6883以及12.8191,总飞行航程为52.2708,总任务价值为35,计算可得效益损耗比约为0.67,相对于利用标准遗传算法得到的任务分配方案有了进一步提高㊂另外,各个无人机飞行航程的方差约为0.13,飞行航程的均衡性较好㊂在算法运行过程中,最佳适应度值曲线如图5所示,适应度值一直在实时动态变化,可以有效避免遗传算法陷入局部最优或者随机选择㊂由实验结果可得,当任务10的任务价值从1调整为6以后,不再出现该任务没有无人机执行的情况,这说明利用遗传算法进行多无人机协同任务分配可以根据任务的价值以及代价进行实时动态调整,符合 优先执行价值高的任务 的原则㊂图5㊀自适应遗传算法的最佳适应度曲线图25 结束语㊀㊀本文提出了一种基于自适应遗传算法的多无人机协同任务分配方法,整个遗传过程利用自适应的适应度函数评估任务分配结果的优劣,交叉率和变异率在算法运行过程中可以实时动态调整㊂实验结果表明,和随机进行任务分配相比,本文提出的方法在满足一定的原则和约束条件下,可以得到更高的收益损耗比,并且无人机飞行航程的均衡性更好㊂另外,和标准遗传算法相比,本文提出的改进遗传算法可以有效地扩展搜索空间,具有较高的全局搜索能力,不易陷入局部最优㊂参考文献:[1]㊀江更祥.浅谈无人机[J].制造业自动化,2011,33(8):110-112.[2]㊀楚瑞.基于蚁群算法的无人机航路规划[D].西安:西北工业大学,2006.[3]㊀杨剑峰.蚁群算法及其应用研究[D].杭州:浙江大学,2007.[4]㊀刘建华.粒子群算法的基本理论及其改进研究[D].长沙:中南大学,2009.[5]㊀李晓磊.一种新型的智能优化方法-人工鱼群算法[D].杭州:浙江大学,2003.[6]㊀AUSUBEL L M,MILGROM P R.Ascending AuctionsWith Package Bidding[J].Frontiers of Theoretical E-conomics,2002,1(1):1-42.[7]㊀刘昊旸.遗传算法研究及遗传算法工具箱开发[D].天津:天津大学,2005.[8]㊀牟健慧.基于混合遗传算法的车间逆调度方法研究[D].武汉:华中科技大学,2015.46。
基于系统动力学的NQI效能仿真研究——以浙江省为例
摘 要:国家质量基础设施(NQI)融合计量、标准、认证认可和检验检测等要素,对促进国家或地区经济社会发展具有重要意义。
考虑到研究区域的代表性和数据的可得性,本文以浙江省为例,运用系统动力学方法在明确NQI效能目标基础上构建NQI效能模型,采用Vensim PLE软件对其NQI效能相关政策进行了仿真研究。
研究设置的科技、财政和人才等3项政策工具均得到有效验证,表明NQI效能水平与政策的调整、实施高度相关。
其中,科技政策和财政政策对于NQI 效能的正向促进作用相较于人才政策更为显著,并随着政策实施强度的增加,NQI效能的增长空间效果愈发凸显。
关键词:系统动力学,国家质量基础设施(NQI),效能模型,政策仿真DOI编码:10.3969/j.issn.1674-5698.2023.08.003NQI Performance Simulation Based on System Dynamics—Taking Zhejiang Province as an ExampleZHAN Rui 1 SHEN Jing 1, 2*(1. School of Economics and Management, China Jiliang University;2. Key Laboratory of Quality Infrastructure Efficiency Research, State Administration for Market Regulation )Abstract: National quality infrastructure (NQI) integrates elements such as metrology, standards, certification and accreditation, as well as inspection and testing, which is of great significance to promote the economic and social development of a country or region. Considering the representativeness of the study area and the availability of data, this paper takes Zhejiang province as an example, constructs an NQI efficiency model based on the clear NQI efficiency target by using system dynamics method, and conducts a simulation study on its NQI efficiency related policies by using Vensim PLE software. The three policy tools of science and technology, finance and talent set in the research have been effectively verified, indicating that the effectiveness level of NQI is highly correlated with the adjustment and implementation of policies. Among them, science and technology policy and fiscal policy have a more significant positive and promoting effect on NQI efficiency than talent policy, and with the increase of policy implementation intensity, the growth space effect of NQI efficiency becomes more and more prominent.Keywords: system dynamics, national quality infrastructure (NQI), efficiency model, policy simulation基于系统动力学的NQI 效能仿真研究—— 以浙江省为例詹 瑞1 申 婧1,2*(1.中国计量大学经济与管理学院;2.国家市场监督管理总局质量基础设施效能研究重点实验室)基金项目:本文受国家市场监督管理总局质量基础设施效能研究重点实验室开放基金资助项目“QI效能评估和仿真模型研究” (项目编号:KF20180101)资助。
需求侧响应下主动配电网优化调度
第41卷 第2期吉林大学学报(信息科学版)Vol.41 No.22023年3月Journal of Jilin University (Information Science Edition)Mar.2023文章编号:1671⁃5896(2023)02⁃0207⁃10需求侧响应下主动配电网优化调度收稿日期:2022⁃06⁃10基金项目:黑龙江省自然科学基金资助项目(LH2019E016)作者简介:高金兰(1978 ),女,山西运城人,东北石油大学副教授,主要从事电力系统运行与稳定㊁新能源发电研究,(Tel)86⁃136****6089(E⁃mail)jinlangao@㊂高金兰,孙永明,薛晓东,刁 楠,侯学才(东北石油大学电气信息工程学院,黑龙江大庆163318)摘要:针对电网运行中能量调度不佳的问题,首先基于需求侧响应不确定性特点,引入非经济因素以及消费心理学特征,建立需求侧响应模型;其次使用拉丁超立方抽样(LHS:Latin Hypercube Sampling)改善初始种群质量,引入正弦因子提高局部搜索能力,并实行变异操作优化全局搜索精度,以解决麻雀算法(SSA:Sparrow Search Algorithm)的早熟等问题;最后需求侧响应以电网运行成本和环境成本最小为目标建立主动配电网优化调度模型,并使用改进的麻雀算法进行求解㊂仿真结果验证了提出模型的准确性,算法的高效性,有效解决了能量调度不佳的问题㊂关键词:需求侧响应;改进麻雀算法;主动配电网;非经济因素中图分类号:TP302;TM734文献标志码:AOptimal Dispatch of Active Distribution Network under Demand Side ResponseGAO Jinlan,SUN Yongming,XUE Xiaodong,DIAO Nan,HOU Xuecai(School of Electrical and Information Engineering,Northeast Petroleum University,Daqing 163318,China)Abstract :Demand side response is an important means of active distribution network optimization scheduling.Aiming at the problem of poor energy scheduling in power grid operation,firstly,based on the uncertainty characteristics of demand side response,introducing non⁃economic factors and characteristics of consumer psychology,the active distribution network optimization is modeled with the minimum power grid operation cost and environmental cost as the objective function;secondly,aiming at the premature problem of sparrow algorithm,latin hypercube sampling is used to improve the initial population quality,sine factor is introduced to improve the local search ability of the algorithm,and mutation operation is implemented to optimize the global search accuracy of the algorithm;finally,the improved sparrow search algorithm is applied to the solution of the active power grid optimization model.The simulation results verify the accuracy of the proposed model and the efficiency of the algorithm,and effectively solve the problem of poor energy scheduling.Key words :demand side response;improved sparrow search algorithm;active distribution network;non⁃economic factors 0 引 言随着电力改革的深入发展,新的电力需求也随之而来㊂对分布式电源广泛接入电网带来的能量调度问题,主动配电网的提出对改善该问题是一个行之有效的手段[1]㊂需求侧响应技术是主动配电网的一种典型调度方式,可通过不同的定价措施以及政策导向引导用户改变用电习惯[2],可协调用户的负荷改善能力,调节整体的峰谷用电曲线,平衡各阶段用电器数量,其经济成本低㊁适用范围广㊂在主动配电网发展迅猛的今天,对需求侧响应技术的研究在改善用电质量㊁提升用户用电体验以及合理调配区域内有限电力资源方面有着重要意义㊂目前,对需求响应有许多学者进行相关研究㊂张智晟等[3]通过对不同时刻的电价信息响应程度进行负荷转移率的求解,将用户消费习惯与需求响应进行有效结合,通过实验证明了需求响应中考虑多种因素的重要性㊂许汉平等[4]主要应用政策激励进行需求响应,以整体能源的利用率㊁经济成本为优化目标,建立多方面调度模型㊂张超等[5]依据电力市场定义下,用电量以及电力价格的线性关系进行需求响应技术实施㊂在忽略储能成本的前提下,进行分布式能源㊁储能㊁电网等大规模功率交互条件下的综合优化㊂艾欣等[6]在直接负荷控制下进行整体的耦合系统优化模型建立,通过实验结果验证了需求响应能进行高低时段负荷调节,可有效缓解高峰时段用电压力,使负荷供需趋于平衡㊂朱超婷等[7]通过对电价弹性矩阵的建立进行负荷需求模拟,考虑用电量交互㊁需求响应成本等建立电网成本最低优化目标㊂上述研究并未考虑价格型响应在经济因素以外的影响,以及多种响应协调优化的情况㊂笔者在上述研究的基础上,引入非经济因素影响的电价型响应,以及攀比心理㊁从众心理影响的激励型响应,建立以经济㊁环境成本最小为目标的主动配电网优化模型㊂为精确求解模型,提出一种改进的麻雀算法,在基本算法中加入拉丁超立方抽样㊁正弦因子和变异操作㊂通过IEEE33节点算例,验证了笔者提出的模型和算法的准确性㊂1 需求侧响应1.1 价格型响应在消费心理学的描述中,价格的高低会影响消费者的选择㊂对电价而言,电价的差值大小和浮动范围都会影响需求响应的波动㊂用户的主观意愿在价格的影响下会频繁的改变,具有强烈的不确定性,其行为用曲线表示会有相应的上下限,定义为乐观曲线与悲观曲线[3],以不同时段的价格变化为基础,对应相应的负荷变化率,利用Logistic函数对负荷转移率进行描述如下:λpv(Δp pv)=a1+e-(Δp pv-c)/μ+b,(1)其中a为限制变化范围值;b为可变化参数;c为电价近似中间值;μ为调节参数;λpv为电价响应负荷转移率,Δp pv为电价差值㊂对不同响应区用户行为特征的负荷转移如下:λzpv=λmax pv+λmin pv2,0≤Δp pv≤a pv,λmin pv+λmaxpv+λmin pv2(1+m),a pv≤Δp pv≤b pv,λmax pv,Δp pv≥b pvìîíïïïïïï,(2)m=Δp pv-a pvb pv-a pv,(3)其中a pv㊁b pv分别为不同电价差分段点;λzpv为负荷峰谷转移率;λmax pv为最大峰谷转移率;λmin pv为最小峰谷转移率㊂同理,分别求出峰转平㊁平转谷的实际负荷转移率λzpf㊁λzfv㊂在需求侧响应过程中,用户并不只会从价格差值方面改变负荷大小㊂上述模型只能表示用户受经济因素影响进行相应决策,而实际电网运行过程中用户所面临的影响远远不止经济因素一种㊂在实际过程中,用户在价格差异的刺激下想要进行负荷转移,但存在由于条件限制没办法完成此操作的情况,如后续时间段有其他任务无法在当前时间段转移负荷,即各种非经济因素导致的约束㊂为符合实际负荷转移情况,笔者提出非经济因素影响的负荷转移曲线,并引入心理学特征,实际负荷转移曲线类似于倒S型曲线,其负荷转移概率(λfz)与非经济因素(f)关系如图1所示㊂图1可用公式表示为λfz=h(1+e1-l/f)-1,(4)其中h为基础系数;l为条件系数㊂802吉林大学学报(信息科学版)第41卷图1 负荷转移概率曲线Fig.1 Load transfer probability curve 综合考虑经济因素以及非经济因素对负荷转移概率的影响,可得用户响应的转移量Q t =-λzpf L p λfz -λzpv L p λfz ,t ∈T p ,λzpf L p λfz -λzfv L f λfz ,t ∈T f ,λzpv L p λfz +λzfv L f λfz,t ∈T v ìîíïïïï㊂(5)以及转移后负荷总量L t =L 0+Q t ,(6)其中λzpf 为峰转平时段转移率;λzfv 为平转谷时段转移率;L p ㊁L f 分别为峰㊁平时段原始平均负荷;T p ㊁T f ㊁T v 分别为峰㊁平㊁谷3时段,L 0为电价响应前负荷㊂1.2 激励型需求响应直接负荷控制(DLC:Direct Load Control)㊁可中断负荷(IL:Interruptible Load)激励响应适应条件简洁,应用较为广泛㊂二者均是与电力公司或电网管理部门提前签署的负荷控制协议㊂前者相对后者协议的自由度更高,并且没有IL 在不按照协议规定动作时的违约惩罚政策㊂1.2.1 直接负荷控制为在储能设备应用频繁的情况下充分发挥其双向交互的优势[8],签订DLC 协议的用户在满足基本的协议容量要求下,可在一定限度内通过储能设备人为增减响应程度㊂传统的激励型响应并未考虑人本身的不确定因素,为此笔者引入心理学中攀比心理以及从众心理因素,即在同一区域内用户签订相应供电协议后,会根据其他参与协议人数的变化在约定改变负荷期间进行相应变化㊂结合响应人群的心理特点,构建响应模型如下:D DLC =∑24t =1D DLC t +∑24t =1(E +t +E -t )α,(7)其中D DLC t 为DLC 协议响应量;D DLC 为响应后负荷;E +t ,E -t 为不同时间段增减负荷大小;α为响应系数㊂1.2.2 中断负荷在IL 规划中考虑违约协议部分,并依据上述心理学因素,在DLC 响应量变化时IL 也会随之变化,二者协同作用,建立中断负荷情况下的负荷响应模型如下:Q IL =∑24t =1(P IL,t -P wx,t ),P IL,t =rP wx,t {,(8)其中P IL,t 为IL 协议响应量;P wx,t 为中断响应未响应负荷;r 为违约响应系数㊂2 考虑需求侧响应的主动配电网优化模型2.1 目标函数目标函数包括经济与环境成本两部分,经济成本主要为储能维护㊁新能源发电㊁需求侧响应补偿和网络损耗成本,表达式为F 1=min ∑24t =1P x ,t C pvq +∑24t =1P bat,t C cn +∑24t =1P grid,t C g,t +B MG +B DLC +B IL +B []loss ,(9)其中P x ,t ㊁P bat,t ㊁P grid,t 分别为新能源出力㊁储能出力㊁向上级电网购电量;C pvq ㊁C cn ㊁C g,t 为相应成本系数;B DLC 为DLC 成本;B IL 为IL 成本;B loss 为网损成本;B MG 为燃气轮机运行成本㊂新能源设备出力情况:P x ,t =P pv,t +P wind,t ,(10)其中P pv,t ㊁P wind,t 分别为光伏㊁风机发电功率㊂燃气轮机运行成本:902第2期高金兰,等:需求侧响应下主动配电网优化调度B MG =∑24t =1P MG,t ηMG L p gas ,(11)其中ηMG 为效率;L 为热值;p gas 为气价;P MG,t 是燃气轮机功率㊂需求侧响应成本:B DLC =∑24t =1C DLCD DLC t +∑24t =1(E +t d +t +E -t d -t )α,(12)B IL =∑24t =1(C IL P IL,t -C wx P wx,t ),(13)其中C DLC 为DLC 补偿价格;d +t ㊁d -t 为增减负荷价格;C IL ㊁C wx 为IL 补偿价格㊁惩罚价格㊂网损成本:B loss =∑24t =1C g,t ∑Nj =1u j ,t ∑k ∈Ωj u k ,t G jk cos δjk ,t ,(14)其中N 为节点总数;u j ,t ㊁u k ,t 为t 时刻节点j ㊁k 电压幅值;G jk 为节点j ㊁k 间电导;Ωj 为以节点j 为首节点的尾节点集合;δjk ,t 为t 时刻节点j ㊁k 间电压相角差㊂环境成本即污染物处理成本最低,表达式为F 2=min ∑24t =1P grid,t W g C 1+∑24t =1P MG,t W MG C []2,(15)其中W g ㊁W MG 分别为向上级购买电量产生的污染物系数㊁燃气轮机污染系数;C 1㊁C 2为成本系数㊂2.2 动态权重调整主动配电网优化目标包括经济和环境成本两方面,可采用引入动态权重因子对综合成本进行实时优化[9]㊂对整个周期相同时间范围内的成本函数进行归一化处理,即可得到F 1(t )㊁F 2(t ),通过动态权重因子进行实时优化得到总目标函数:min f =∑24t =1[xF 1(t )+yF 2(t )],x =c 1+c 2F 1(t ),y =1-x ìîíïïïï,(16)其中x 为经济权重系数;y 为环境权重系数;c 1㊁c 2为变化因子㊂2.3 约束条件功率平衡约束为P MG +P pv +P wind +P bat +P grid =P load +P loss +P DR ,(17)其中P MG ㊁P pv ㊁P wind ㊁P bat ㊁P grid ㊁P load ㊁P loss ㊁P DR 分别为燃气轮机㊁光伏㊁风机㊁储能㊁上级电网传输㊁初始负荷㊁网损和需求响应功率㊂储能运行约束为E bat,t =E bat,t -1+(P c,t ηc -P d,t ηd )Δt ,(18)E min bat ≤E bat ≤E max bat ,(19)其中E max bat ㊁E min bat 分别为储能元件最大最小储量;E bat,t 为当前时刻储能元件储量;E bat,t -1为储能元件上一时刻余量;ηc ,ηd 分别为充放电效率;P c,t ㊁P d,t 分别为充放电功率㊂燃气轮机约束为P min ≤P MG ≤P max ,(20)其中P min ,P max 分别为燃气轮机出力上下限㊂除上述约束外,其他诸如节点电压约束等如文献[7]所描述㊂3 模型求解3.1 原始麻雀算法麻雀算法(SSA:Sparrow Search Algorithm)是对麻雀种群觅食过程中发生的一系列行为的分步012吉林大学学报(信息科学版)第41卷分析[10],具体原理如下㊂发现者位置更新:X t+1i,d=X t i,d exp-iαT()max,R2<S,X t i,d+Q L,R2≥Sìîíïïï,(21)其中X t i,d为第i只麻雀d维位置;T max为迭代次数上限值;α∈(0,1]为随机数;R2㊁S分别为危险值和正常值;Q为随机数;L为1×D的矩阵㊂跟随者位置更新:X t+1i,d=Q exp X t W i,d-X t i,diæèçöø÷2,i>n2,X t bi,d+X tb i,d-X t i,d A+L,其他ìîíïïïï,(22)其中X t Wi,d 为最差位置;X t bi,d为最好位置;A+=A T(A T A)-1,A为全为1或-1的矩阵㊂预警者位置更新:X t+1i,d=X t i,d+βX ti,d-X b t i,d,X t i,d+K X t i,d-X W t i,d(f i-f w)+æèçöø÷ε,ìîíïïïï(23)其中β为(0,1)的正态分布随机数;K为[-1,1]的随机数;f i为当前个体适应度;f g为最优个体适应度;f w为最差个体适应度㊂3.2 改进算法3.2.1 改善初始种群对智能算法,初始种群较差会对算法寻优过程产生一定负面影响,为避免由于初始种群造成局部最优现象,采用拉丁超立方抽样产生初始种群,具体步骤如下:1)确定一个初始种群规模T;2)将每一维量的可行区域分割成T个长度均一的区域,即H n个超立方体;3)建立矩阵B(H×n),其每行即为一个被抽到的超立方体;4)在不同抽中的超立方体中随机得到样本,即为初始种群的值㊂3.2.2 引入正弦权重系数为避免麻雀算法早熟现象,先引入粒子群算法的粒子移动概念,将跳跃到最优解的方式变为正常移动,并去除向原点收敛操作㊂再引入正弦变化的权重系数,具体如下㊂发现者:X t+1i,d=X t i,d(1+Q),R2<S,ωX t i,d+Q,R2≥S{㊂(24) 跟随者:X t+1i,d=ωX tb i,d+1D∑D d=1(K(X t b i,d-X t i,d))㊂(25) 权重系数:ω=ωmin+ωmax+ωmin2sinπt t()max,(26)其中ωmax为权重峰值;ωmin为权重谷值;t为当前迭代次数;t max为迭代次数峰值㊂对预警者改变跟随方式:X t+1i,d=X t i,d+β(X t i,d-X t bi,d),f i≠f g,X t i,d+β(X t Wi,d-X t bi,d),f i=f g{㊂(27)112第2期高金兰,等:需求侧响应下主动配电网优化调度3.2.3 变异操作变异操作能在一定程度上改善个体均一性,提升整体寻优效果[11⁃12]㊂在算法流程中引入变异概念对当前适应度最差的10%个体进行替换,并且按照自然进化的方式对变异概率进行合理变化,以平衡寻优进程,变异过程和概率为X new i ,d =X now i ,d +p m X now i ,d ,(28)p m =p max -∑N i =1(f i -f avg )2N p ,(29)其中X new i ,d 为变异后个体;X now i ,d 为变异前个体;P max 为变异频率上限;f i ㊁f avg 分别为个体的适应度㊁种群中所有个体的平均适应度;p 为变异频率调节参数㊂3.3 基于改进SSA 的主动配电网优化调度求解步骤依据主动配电网优化调度模型选取合适控制变量,麻雀个体位置的优劣代表目标函数的优化程度㊂通过麻雀群体避让天敌的行为进行位置更新,迭代到最优位置,即最佳优化调度结果,其流程图如图2所示,具体步骤如下:Step 1 输入主动配电网参数,包括新能源㊁储能设备等出力大小和负荷大小,以及分时电价㊁补偿价格等;Step 2 设置改进麻雀算法的初始数据,即迭代次数㊁权重系数㊁种群大小和变异概率等;Step 3 采用LHS 初始麻雀种群;Step 4 进行改进麻雀算法操作,根据粒子移动概念进行发现者㊁跟随者位置更新;在全维度进行警戒者位置更新;Step 5 判断是否进行终止操作,是则输出最优结果;Step 6 未达到截至条件,进行变异操作,将部分劣等个体进行变异,替代变异前个体,重新返回Step4进行循环,直至达到截至条件㊂图2 主动配电网优化调度流程图Fig.2 Optimal dispatching flow chart of active distribution network 4 算例分析4.1 仿真参数笔者采用修改后的IEEE33节点系统(见图3)验证整体模型的效果㊂节点17㊁18㊁24㊁25接入价格响应负荷;节点30㊁31㊁32接入激励响应用户;光伏接入节点15;风机接入节点4;燃气轮机接入节点21;储能设备接入节点23㊂DLC 补偿成本为0.3元/(kW㊃h),IL 的补偿成本为0.5元/(kW㊃h)㊂24h 的风光出力㊁负荷情况如图4所示,需求侧模型参数设置㊁区域内电价划分方式参照文献[13]㊂储能设备允许的SOC(State Of Charg)波动为0.2~0.9;燃气轮机的效率为0.85;光伏风机的维护成本为0.3元/(kW㊃h)㊂212吉林大学学报(信息科学版)第41卷图3 改进IEEE33节点图Fig.3 Improved IEE33node diagram 图4 主动配电网新能源出力、负荷曲线Fig.4 New energy output and load curve of active distribution network 4.2 仿真分析设置4种场景㊂场景1:电网不执行需求响应及优化㊂场景2:电网执行价格型需求响应㊂场景3:电网执行激励型需求响应㊂场景4:电网执行多种需求响应㊂场景1㊁4的总体调度情况如图5所示㊂图5 不同场景主动配电网优化调度图Fig.5 Optimal dispatching diagram of active distribution network in different scenarios 场景1中,在夜间时段以及用电器数量增加时,储能装置进行放电调节,在用电器数量减少以及新能源出力充足时进行充电调节,充分发挥其高发低储作用㊂燃气轮机在新能源出力不足及负荷升高时进行出力,减少相应的购电功率㊂在场景4中,需求侧响应技术的加入,在负荷高峰8⁃14h㊁20⁃23h 负荷相应减少,且部分负荷转移到1⁃6h㊂由于考虑环境成本以及动态优化条件,所以燃气轮机出力减少㊂对比场景1,场景4仅在20h㊁21h 燃气轮机工作㊂由图5可知,笔者提出的模型可有效调节不同阶段设备出力情况,合理实现一个周期内的总体调度㊂大电网㊁新能源发电以及储能设备协同作用,对区域内进行整体负荷供电㊂不同情况下需求侧响应前后负荷对比如图6㊁图7所示㊂可以看出3种情况均有削峰填谷效果,单一的需求响应在削峰填谷综合方面都有一定局限性㊂312第2期高金兰,等:需求侧响应下主动配电网优化调度图6 单一需求侧响应负荷变化曲线Fig.6 Response load curve of single demandside 图7 多种需求侧响应负荷变化曲线Fig.7 Response load change curves of multiple demand side 价格型响应下,7⁃11h 负荷减少约5%,12⁃14h几乎无变化,夜晚峰时段负荷减少约3%,谷时段1⁃7h 负荷提升3.3%㊂激励型响应下,夜晚峰时段负荷减少约5%,7⁃11h 几乎无变化,谷时段1⁃7h 负荷无升高㊂而综合两种响应模式所得结果在峰谷时段优于单一模式,峰时段均有5%以上负荷削减量,低谷时段负荷也有序上升㊂不同情况下的综合成本值如表1所示,与不进行需求侧响应相比,单一型需求响应以及多种需求响应结合可以通过响应措施进行负荷改变,使成本降低10%~20%㊂相比于场景1,场景4成本减少1242元,可有效降低整体的综合成本㊂表1 不同场景下成本情况 Tab.1 Cost under different scenarios 元场景1234经济成本4050.53791.83797.73109.6环境成本1756.31532.31425.11355.2总成本5706.85324.15222.84464.8 在调度周期内经济㊁环境权重变化情况如图8所示㊂在1⁃9h 经济权重递增趋势较大,从0.33递增到0.359,减少相应经济成本;17⁃21h 环境权重上升,对污染排放加以限制㊂对动态权重在一个调度周期内进行不间断调节,以减少整体成本㊂图8 动态权重变化图Fig.8 Dynamic weight change diagram 笔者分别采用灰狼优化算法(GWO:Grey Wolf Optimizer)㊁原始麻雀算法㊁鲸鱼优化算法412吉林大学学报(信息科学版)第41卷 图9 算法对比图 Fig.9 Algorithm comparison (WOA:Whale Optimization Algorithm)以及笔者的改进麻雀算法进行主动配电网优化,对比结果如图9所示㊂从图9中可看出,改进SSA 在整体迭代过程中稍优于其他算法㊂LHS㊁引入正弦权重㊁变异操作让算法中麻雀个体具备初始优势,在前期可达到较高的收敛速度;变异㊁正弦权重的引入可让其具备更好的全局寻优能力㊂对比发现,GWO 与WOA 前期收敛能力不强,原始SSA 的寻优速度与改进SSA 较为接近,但改进SSA 寻优精度更高㊂5 结 论笔者在考虑多种因素影响需求响应的基础上,构建主动配电网优化模型,采用改进麻雀算法进行求解,通过IEEE33算例进行仿真验证,证明了笔者模型㊁算法的准确性,结论如下:1)笔者提出的模型可有效实现主动配电网的优化调度,当需求响应加入运行时,可与其他设备进行协同优化,增加削峰填谷效果,配合动态权重因子的实时优化,可降低电网的整体成本;2)采用LHS㊁正弦因子㊁变异策略改进麻雀算法,可改善种群丰富程度,提高算法的收敛效果,与WOA㊁GWO㊁SSA 算法相比,改进的麻雀算法可以更好地进行主动配电网优化调度,有效降低综合成本㊂参考文献:[1]吕智林,廖庞思,杨啸.计及需求侧响应的光伏微网群与主动配电网双层优化[J].电力系统及其自动化学报,2021,33(8):70⁃78.LÜZ L,LIAO P S,YANG X.Bi⁃Level Optimization of Photovoltaic Microgrid Group and Active Distribution Network Considering Demand Side Response [J].Journal of Power System and Automation,2021,33(8):70⁃78.[2]刘伟,王俊,龚成生,等.基于激励机制的家庭能量系统优化策略研究[J].吉林大学学报(信息科学版),2021,39(5):525⁃530.LIU W,WANG J,GONG C S,et al.Research on Optimization Strategy of Family Energy System Based on IncentiveMechanism [J].Journal of Jilin University (Information Science Edition),2021,39(5):525⁃530.[3]张智晟,于道林.考虑需求响应综合影响因素的RBF⁃NN 短期负荷预测模型[J].中国电机工程学报,2018,38(6):1631⁃1638,1899.ZHANG Z S,YU D L.RBF⁃NN Short⁃Term Load Forecasting Model Considering Comprehensive Influencing Factors of Demand Response [J].Chinese Journal of Electrical Engineering,2018,38(6):1631⁃1638,1899.[4]许汉平,李姚旺,苗世洪,等.考虑可再生能源消纳效益的电力系统 源⁃荷⁃储”协调互动优化调度策略[J].电力系统保护与控制,2017,45(17):18⁃25.XU H P,LI Y W,MIAO S H,et al.Power System Source Load Storage”Coordinated Interactive Optimal Dispatching Strategy Considering Renewable Energy Consumption Benefits [J ].Power System Protection and Control,2017,45(17):18⁃25.[5]张超,左高,腾振山,等.基于需求侧响应的配电网优化调度研究[J].智慧电力,2020,48(2):53⁃57,91.ZHANG C,ZUO G,TENG Z S,et al.Research on Optimal Dispatching of Distribution Network Based on Demand SideResponse [J].Smart Power,2020,48(2):53⁃57,91.[6]艾欣,陈政琦,孙英云,等.基于需求响应的电⁃热⁃气耦合系统综合直接负荷控制协调优化研究[J].电网技术,2019,43(4):1160⁃1171.AI X,CHEN Z Q,SUN Y Y,et al.Research on Coordinated Optimization of Integrated Direct Load Control of Electric Thermal Pneumatic Coupling System Based on Demand Response [J].Power Grid Technology,2019,43(4):1160⁃1171.[7]朱超婷,杨玲君,崔一铂,等.考虑需求响应用户参与度的主动配电网优化调度[J /OL].电测与仪表:1⁃9[2022⁃06⁃08].https:∥ /kcms /detail /23.1202.TH.20201217.1641.003.html.512第2期高金兰,等:需求侧响应下主动配电网优化调度612吉林大学学报(信息科学版)第41卷ZHU C T,YANG L J,CUI Y B,et al.Optimal Dispatching of Active Distribution Network Considering Demand Response and User Participation[J/OL].Electric Measurement and Instrument:1⁃9[2022⁃06⁃08].https:∥/kcms/detail/ 23.1202.TH.20201217.1641.003.html.[8]范宏,邓剑.不确定性的激励型需求响应对配电网可靠性的影响[J].现代电力,2020,37(4):416⁃424. FAN H,DENG J.Influence of Uncertain Incentive Demand Response on Distribution Network Reliability[J].Modern Power, 2020,37(4):416⁃424.[9]杨雪.计及柔性负荷的多时间尺度主动配电网优化调度研究[D].北京:北京交通大学电气工程学院,2018. YANG X.Research on Optimal Dispatch of Multi⁃Time Scale Active Distribution Network Considering Flexible Load[D]. Beijing:School of Electrical Engineering,Beijing Jiaotong University,2018.[10]薛建凯.一种新型的群智能优化技术的研究与应用[D].上海:东华大学信息科学与技术学院,2020.XUE J K.Research and Application of a New Swarm Intelligence Optimization Technology[D].Shanghai:College of Information Science and Technology,Donghua University,2020.[11]黄治翰,汪晗,李启迪,等.基于改进遗传算法的主动配电网经济优化调度[J].山东电力技术,2021,48(10): 12⁃16,65.HUANG Z H,WANG H,LI Q D,et al.Economic Optimal Dispatch of Active Distribution Network Based on Improved Genetic Algorithm[J].Shandong Electric Power Technology,2021,48(10):12⁃16,65.[12]王彦琦,张强,朱刘涛,等.基于改进鲸鱼优化算法的GBDT回归预测模型[J].吉林大学学报(理学版),2022,60 (2):401⁃408.WANG Y Q,ZHANG Q,ZHU L T,et al.GBDT Regression Prediction Model Based on Improved Whale Optimization Algorithm[J].Journal of Jilin University(Science Edition),2022,60(2):401⁃408.[13]徐青山,曾艾东,王凯,等.基于Hessian内点法的微型能源网日前冷热电联供经济优化调度[J].电网技术,2016, 40(6):1657⁃1665.XU Q S,ZENG A D,WANG K,et al.Hessian Interior Point Method Based Economic Optimal Dispatch of Day Ahead Combined Cooling,Heating and Power Generation in Micro Energy Network[J].Power Grid Technology,2016,40(6): 1657⁃1665.(责任编辑:刘俏亮)。
《MrDREB1调控扁蓿豆响应冷胁迫机制的初步研究》范文
《MrDREB1调控扁蓿豆响应冷胁迫机制的初步研究》篇一摘要:本研究初步探讨了MrDREB1基因在扁蓿豆响应冷胁迫过程中的调控机制。
通过分子生物学和遗传学手段,我们揭示了MrDREB1在冷胁迫下的表达模式及其对扁蓿豆的生理和分子响应的影响。
本研究不仅有助于深入理解植物抗寒机制,也为扁蓿豆的抗寒育种提供了理论依据。
一、引言植物在面对环境压力时,如冷胁迫,会通过一系列复杂的生理和分子响应机制来保护自身免受伤害。
DREB(Dehydration-responsive Element Binding)蛋白是植物响应非生物胁迫的重要转录因子之一。
MrDREB1作为DREB家族的一员,在扁蓿豆中可能发挥着重要的调控作用。
因此,研究MrDREB1在扁蓿豆响应冷胁迫中的调控机制,对于理解植物抗寒性具有重要意义。
二、材料与方法1. 材料选择:选取扁蓿豆作为实验材料,对其进行了基因组DNA的提取和纯化。
2. 基因克隆与表达分析:通过PCR技术克隆MrDREB1基因,并利用实时荧光定量PCR(qRT-PCR)技术分析其在冷胁迫条件下的表达模式。
3. 转基因植物构建与表型分析:构建MrDREB1过表达和沉默的转基因扁蓿豆,并对其生长表型及抗寒性进行观察和比较。
4. 生理生化分析:测定转基因植物在冷胁迫下的生理生化指标,如抗氧化酶活性、MDA含量等。
5. 分子机制研究:利用生物信息学手段预测MrDREB1的靶基因,并通过双荧光素酶报告系统验证其与冷胁迫相关基因的互作。
三、结果与分析1. MrDREB1基因的表达模式:qRT-PCR结果显示,在冷胁迫条件下,MrDREB1基因的表达量显著上升,表明其可能参与扁蓿豆的冷胁迫响应。
2. 转基因植物的表型分析:MrDREB1过表达的扁蓿豆表现出较强的抗寒性,而沉默株系则表现出对冷胁迫的敏感性。
这表明MrDREB1在扁蓿豆抗寒性中发挥了重要作用。
3. 生理生化分析:过表达MrDREB1的转基因扁蓿豆在冷胁迫下的抗氧化酶活性增强,MDA含量降低,表明其细胞膜系统受到的损伤较小。
(2024年)新东方官方网校剑桥英语培训课程
要点二
Flexible scheduling
Online live courses allow for flexible scheduling, making it convenient for students to learn according to their own time.
要点三
Efficient learning
2024/3/26
Learning objective
Through systematic course learning and practice, improve students' English language abilities, achieve the level of passing the Cambridge English exam, and lay a solid foundation for future learning and work.
Live courses usually have a playback function, allowing students to watch repeatedly, deepen understanding, and improve learning efficiency.
2024/3/26
13
Interactive learning experience
Group Discussion
Role playing
Interactive games
In the course, a group discussion session will be arranged where students can discuss problems, share viewpoints, and improve their oral expression skills with their classmates.
博士专业英语试题及答案
博士专业英语试题及答案一、选择题(每题2分,共20分)1. The term "sustainability" refers to the ability to endure over the long haul.A) TrueB) False2. Which of the following is not a characteristic of sustainable development?A) Economic growthB) Environmental protectionC) Social equityD) Unlimited resource consumption3. The phrase "paradigm shift" in academic writing often refers to:A) A change in the weatherB) A fundamental change in approach or underlying assumptionsC) A minor adjustment in perspectiveD) A change in political leadership4. The concept of "ecosystem services" is associated with which field of study?A) EconomicsB) EcologyC) SociologyD) Political science5. In the context of climate change, "mitigation" refers to:A) Adapting to the effects of climate changeB) Reducing greenhouse gas emissionsC) Planting more treesD) Moving populations to less affected areas6. The term "peer review" in academic publishing is a process where:A) Authors review each other's workB) Journal editors review all submissionsC) Experts in the field evaluate and critique manuscriptsD) The public reviews and comments on published articles7. Which of the following is not a type of renewable energy?A) Solar powerB) Wind powerC) Nuclear powerD) Hydroelectric power8. The "Kyoto Protocol" is an international treaty linked to:A) Biodiversity conservationB) Climate changeC) International tradeD) Space exploration9. "Circular economy" is a model of production and consumption that:A) Encourages the use of non-renewable resourcesB) Minimizes waste and promotes recyclingC) Focuses on mass production and consumptionD) Ignores the environmental impact of production10. The "Precautionary Principle" in environmental policy suggests that:A) Action should be taken only after full scientific certainty is achievedB) Scientific uncertainty should not be used as a reason to postpone measures to prevent harmC) Environmental policies should be based solely on economic considerationsD) Environmental harm should be accepted as a cost of economic growth二、填空题(每题1分,共10分)11. The process of converting light energy into chemical energy in plants is known as __________.12. The greenhouse effect is primarily caused by the accumulation of __________ gases in the atmosphere.13. In a __________ economy, the goal is to minimize waste and make the most of resources.14. The term "biodiversity" refers to the variety of life in all its forms and levels of __________.15. The __________ Principle states that it is better to be safe than sorry when it comes to potential harm to the environment.16. The __________ is a global environmental facility that provides grants for projects that benefit the global environment.17. The __________ is a set of international rules for the trade and use of hazardous chemicals and pesticides.18. "Eco-friendly" products are designed to have the leastpossible __________ on the environment.19. The __________ is a measure of the total amount of greenhouse gases emitted directly or indirectly by human activities.20. The __________ is a branch of environmental science concerned with the study of the total environment of a given area, both physical and biological.三、简答题(每题5分,共30分)21. Define the term "sustainable development" and explain its three main pillars.22. What are the key components of the United Nations' Sustainable Development Goals (SDGs)?23. Describe the role of "stakeholders" in the context of corporate social responsibility (CSR).24. Explain the concept of "ecological footprint" and why it is important for environmental conservation.四、论述题(每题25分,共50分)25. Discuss the challenges and opportunities associated with the transition to a low-carbon economy.26. Critically evaluate the effectiveness of international environmental agreements in addressing global environmental issues.五、翻译题(共30分)27. Translate the following paragraph from English to Chinese (15 points):"Environmental degradation, loss of biodiversity, and climate change are three of the most pressing challenges facing humanity today. The need for sustainable solutionsthat balance economic growth, social development, and environmental protection is more urgent than ever."28. Translate the following paragraph from Chinese to English (15 points):"可持续发展是指在不损害后代满足其需求的能力的前提下,满足当代人的需求。
一种新的部分神经进化网络的股票预测(英文)
一种新的部分神经进化网络的股票预测(英文)一种新的部分神经进化网络的股票预测自从股票市场的出现以来,人们一直在寻求能够提前预测股票走势的方法。
许多投资者和研究人员尝试使用各种技术分析工具和模型来预测股票未来的走势,但是股票市场的复杂性和难以预测性使得这变得困难重重。
因此,寻找一种能够准确预测股票走势的方法一直是金融界的热点问题。
近年来,人工智能技术在金融领域的应用日益增多。
其中,神经网络是一种被广泛使用的工具,它可以自动学习和识别模式,并根据所学的模式进行预测。
然而,传统神经网络在预测股票市场方面存在诸多问题,例如过拟合和难以处理大量数据等。
为了克服这些问题,本文提出了一种新的部分神经进化网络(Partial Neural Evolving Network, PNEN)模型来预测股票走势。
PNEN模型将神经网络和进化算法相结合,通过优化和训练来实现更准确的预测结果。
PNEN模型的核心思想是将神经网络的隐藏层拆分为多个小模块,每个小模块只负责处理一部分输入数据。
通过这种方式,模型可以更好地适应不同的市场情况和模式。
同时,采用进化算法来优化模型的参数,可以进一步提高模型的预测性能。
具体而言,PNEN模型包括以下几个步骤:1. 数据准备:从股票市场获取历史交易数据,并对数据进行预处理和归一化处理,以便更好地输入到模型中。
2. 构建模型结构:将神经网络的隐藏层拆分为多个小模块,通过进化算法来确定每个小模块的结构和参数。
进化算法通过优化模型的准确性和稳定性,以获得更好的预测结果。
3. 训练模型:使用历史数据集对模型进行训练,并通过反向传播算法来更新模型的权重和偏置。
同时,通过与进化算法的交互,不断调整模型结构和参数。
4. 预测结果:使用训练好的模型对未来的股票走势进行预测。
通过模型对市场的分析和判断,可以为投资者提供决策参考。
为了验证PNEN模型的效果,我们在实际的股票市场数据上进行了实验。
结果表明,与传统神经网络模型相比,PNEN 模型在预测股票走势方面具有更好的准确性和稳定性。
《2024年橙皮素早期干预对APPswe-PS1dE9双转基因小鼠Aβ生成的影响》范文
《橙皮素早期干预对APPswe-PS1dE9双转基因小鼠Aβ生成的影响》篇一橙皮素早期干预对APPswe-PS1dE9双转基因小鼠Aβ生成的影响一、引言近年来,阿尔茨海默病(AD)已成为全球范围内的公共卫生问题。
在AD的发病机制中,Aβ的异常沉积与沉积引起的神经毒性是关键因素之一。
为了探讨有效降低Aβ生成及减缓AD发展的方法,越来越多的研究开始关注天然产物的应用。
橙皮素作为一种天然的黄酮类化合物,其抗氧化、抗炎及神经保护作用备受关注。
本篇论文旨在研究橙皮素早期干预对APPswe/PS1dE9双转基因小鼠Aβ生成的影响。
二、材料与方法1. 材料橙皮素:选用纯度较高的橙皮素原料。
APPswe/PS1dE9双转基因小鼠:用于模拟AD病理过程的小鼠模型。
实验试剂与仪器:包括酶联免疫吸附试验(ELISA)试剂、显微镜、离心机等。
2. 方法(1)分组与干预:将APPswe/PS1dE9双转基因小鼠随机分为实验组和对照组,实验组自出生后即开始给予橙皮素干预,对照组则不作处理。
(2)样本收集:在干预一定时间后,收集小鼠脑组织样本。
(3)Aβ检测:采用ELISA法检测脑组织中Aβ的含量。
(4)统计分析:对实验数据进行统计分析,比较两组小鼠Aβ含量的差异。
三、实验结果1. 橙皮素对APPswe/PS1dE9双转基因小鼠体重的影响:实验期间,两组小鼠体重均呈增长趋势,但两组间体重无明显差异,说明橙皮素的干预未对小鼠体重造成影响。
2. 橙皮素对APPswe/PS1dE9双转基因小鼠脑组织Aβ含量的影响:实验组小鼠脑组织中Aβ含量较对照组显著降低(P<0.05),说明橙皮素早期干预能够显著降低Aβ的生成。
3. 统计分析结果:通过t检验分析两组小鼠Aβ含量的差异,结果显示P值小于0.05,具有统计学意义。
四、讨论本实验结果表明,橙皮素早期干预能够显著降低APPswe/PS1dE9双转基因小鼠脑组织中Aβ的生成。
这可能与橙皮素的抗氧化、抗炎及神经保护作用有关。
基于网络药理学预测白藜芦醇治疗阿尔茨海默症的关键潜在靶点
基于网络药理学预测白藜芦醇治疗阿尔茨海默症的关键潜在靶点田晓燕 江思瑜 张睿 许顺江 李国风*【摘要】目的通过网络药理学预测白藜芦醇(resveratrol,RSV)治疗阿尔茨海默症(Alzheimer's disease,AD)的关键靶点。
方法 利用TCMSP数据库检索含RSV的中药,并对其性味、归经和功效进行归纳分析。
利用SwissTargetPrediction、SEA、HERB数据库预测RSV作用靶点;利用GeneCards、OMIM、TTD、DisGeNRT 数据库检索AD靶点;取RSV的作用靶点与AD靶点的交集为潜在治疗靶点。
利用DAVID数据库进行潜在治疗靶点的GO分析。
利用STRING数据库获取潜在治疗靶点的KEGG富集分析和蛋白质交互作用(protein-protein interaction, PPI),并用Cytoscape绘制PPI网络图。
AlzData数据库验证AD关键靶点变化。
SwissDock网站对RSV与关键蛋白进行分子对接。
结果含RSV中药的性味为苦味最多;归经中入肝经最多;功效中清热解毒功效最多。
RSV预测靶点388个,AD靶点1624个,交集靶点119个。
KEGG富集通路中的阿尔兹海默症通路共富集到27个蛋白。
AlzData数据库分析发现AD患者表达发生变化的蛋白。
分子对接结果发现,RSV与丝氨酸/苏氨酸激酶(serine/threonine kinase 1, AKT1)、白介素-6(interleukin-6, IL-6)、连环蛋白-1(β-catenin, CTNNB1)、肿瘤坏死因子(tumor necrosis factor, TNF)均有较好的结合能力。
结论网络药理分析结果显示RSV对AD的治疗是多靶点、多通路的,可为后续研究方向提供参考。
【关键词】 网络药理学;白藜芦醇;阿尔兹海默症;分子对接中图分类号 R285文献标识码 A 文章编号1671-0223(2023)24-1879-08Predicting the key potential targets of resveratrol in the treatment of Alzheimer's disease based on network pharmacology Tian Xiaoyan, Jiang Siyu, Zhang Rui, Xu Shunjiang, Li Guofeng. Chengde Medical University, Chengde 067000, China【Abstract】Objective Key targets of resveratrol (RSV) in the treatment of Alzheimer's disease (AD) are predicted by network pharmacology. Methods The traditional Chinese medicines which contain RSV were searched by the TCMSP database, and their property and flavor, meridian distribution and phamacologic action were summarized and analyzed. The targets of RSV were predicted by SwissTargetPrediction, SEA and HERB databases. The targets of AD were retrieved using GeneCards, OMIM, TTD and DisGeNRT databases. The intersection targets of RSV and AD were taken as the potential therapeutic targets.Analysis gene ontology (GO) annotations of potential therapeutic targets by biological information annotation database (DAVID). Did KEGG cluster analysis and protein interactions (PPIs) of potential therapeutic targets in STRING database, and mapped PPI networks in Cytoscape. Verified changes of AD key targets in AlzData database.Docking RSV and key proteins in SwissDock website. Results The most Tropism of taste of the traditional Chinese medicines that contain RSV: bitter, cold, in the liver. And the main phamacologic action is clearing away heat and toxic materials.There are 388 predicted targets of RSV,1624 targets of AD, 119 intersection targets. Alzheimer's pathway in KEGG enriched pathway was enriched to 27 proteins. The proteins which expression changed of AD patients was analysised in AlzData database. The results of molecular docking showed that RSV had good binding ability with AKT1, IL-6, CTNNB1 and TNF. Conclusion The results of network pharmacological analysis show that the treatment of AD by RSV is multi-target and multi-pathway, which can provide reference for subsequent research directions.【Key words】 Network pharmacology; Resveratrol; Alzheimer's disease; Molecular docking作者单位:067000 河北省承德市,承德医学院研究生学院 (田晓燕、李国风);河北医科大学第一医院中心实验室(江思瑜、张睿、许顺江);河北省疾病预防控制中心药物研究所(李国风)*通讯作者现代科学研究认为,阿尔兹海默症(Alzheimer disease,AD)是一种不可逆的退行性神经疾病,临床上多以记忆力障碍、执行能力障碍以及人格变化等为特征,是老年性痴呆的最主要因素。
gpt学术优化指令-概述说明以及解释
gpt学术优化指令-概述说明以及解释1.引言1.1 概述GPT(Generative Pre-trained Transformer)是一种基于Transformer架构的大规模无监督学习模型,由OpenAI研发。
该模型在自然语言处理领域取得了巨大成功,能够生成高质量的文本,理解语言逻辑并作出合理推理。
然而,由于GPT模型的复杂性和参数众多,对于学术写作和研究领域的使用存在一定挑战。
为了解决这一问题,我们提出了GPT学术优化指令,旨在帮助研究人员和学术写作者更好地利用GPT模型进行学术研究和写作。
本文将详细介绍这一新颖的概念,并探讨其在学术领域的潜在应用和优势。
通过学习和应用GPT学术优化指令,研究人员将能够更高效地利用GPT模型,提升研究成果的质量和产出效率。
文章结构部分的内容如下:1.2 文章结构本文分为引言、正文和结论三个部分。
在引言部分,我们会对GPT学术优化指令进行概述,并说明本文的目的和意义。
在正文部分,我们将介绍GPT模型的基本情况,定义学术优化指令的概念,并探讨GPT学术优化指令在实际应用中的作用。
最后,在结论部分,我们将对本文进行总结,展望未来研究方向,并进行一些结束性的陈述。
通过这样清晰的文章结构,读者将更容易理解本文的内容和逻辑框架。
1.3 目的本文旨在探讨GPT(生成式预训练模型)在学术领域中的优化应用,特别是针对学术写作任务的优化指令。
通过详细介绍GPT模型的基本原理和学术优化指令的定义,我们将探讨如何利用GPT模型为学术写作提供更好的支持和指导。
同时,通过实际案例分析和应用实践,我们将展示学术优化指令在提升学术写作效率和质量方面的潜力和优势。
最终,我们旨在为学术界提供一种全新的、高效的学术写作工具和方法,从而促进学术研究的进步和交流。
2.正文2.1 GPT模型介绍GPT(Generative Pre-trained Transformer)模型是一种基于Transformer架构的预训练语言模型,由OpenAI团队于2018年提出。
分数阶多机器人的领航-跟随型环形编队控制
第38卷第1期2021年1月控制理论与应用Control Theory&ApplicationsV ol.38No.1Jan.2021分数阶多机器人的领航–跟随型环形编队控制伍锡如†,邢梦媛(桂林电子科技大学电子工程与自动化学院,广西桂林541004)摘要:针对多机器人系统的环形编队控制复杂问题,提出一种基于分数阶多机器人的环形编队控制方法,应用领航–跟随编队方法来控制多机器人系统的环形编队和目标包围,通过设计状态估测器,实现对多机器人的状态估计.由领航者获取系统中目标状态的信息,跟随者监测到领航者的状态信息并完成包围环绕编队控制,使多机器人系统形成对动态目标的目标跟踪.根据李雅普诺夫稳定性理论和米塔格定理,得到多机器人系统环形编队控制的充分条件,实现对多机器人系统对目标物的包围控制,通过对一组多机器人队列的目标包围仿真,验证了该方法的有效性.关键词:分数阶;多机器人;编队控制;环形编队;目标跟踪引用格式:伍锡如,邢梦媛.分数阶多机器人的领航–跟随型环形编队控制.控制理论与应用,2021,38(1):103–109DOI:10.7641/CTA.2020.90969Annular formation control of the leader-follower multi-robotbased on fractional orderWU Xi-ru†,XING Meng-yuan(School of Electronic Engineering and Automation,Guilin University of Electronic Technology,Guilin Guangxi541004,China) Abstract:Aiming at the complex problem of annular formation control for fractional order multi robot system,an an-nular formation control method based on fractional order multi robot is proposed.The leader follower formation method is used to control the annular formation and target envelopment of the multi robot systems.The state estimation of multi robot is realized by designing state estimator.The leader obtains the information of the target state in the system,the followers detects the status of the leader and complete annular formation control,the multi-robot system forms the target tracking of the dynamic target.According to Lyapunov stability theory and Mittag Leffler’s theorem,the sufficient conditions of the annular formation control for the multi robot systems are obtained in order to achieve annular formation control of the leader follower multi robot.The effectiveness of the proposed method is verified by simulation by simulation of a group of multi robot experiments.Key words:fractional order;multi-robots;formation control;annular formation;target trackingCitation:WU Xiru,XING Mengyuan.Annular formation control of the leader-follower multi-robot based on fractional order.Control Theory&Applications,2021,38(1):103–1091引言近年来,随着机器人技术的崛起和发展,各式各样的机器人技术成为了各个领域不可或缺的一部分,推动着社会的发展和进步.与此同时,机器人面临的任务也更加复杂,单个机器人已经无法独立完成应尽的责任,这就使得多机器人之间相互协作、共同完成同一个给定任务成为当前社会的研究热点.多机器人系统控制的研究主要集中在一致性问题[1]、多机器人编队控制问题[2–3]、蜂拥问题[4–5]等.其中,编队控制问题作为多机器人系统的主要研究方向之一,是国内外研究学者关注的热点问题.编队控制在生活生产、餐饮服务尤其是军事作战等领域都发挥着极大的作用.例如水下航行器在水中的自主航行和编队控制、军事作战机对空中飞行器的打击以及无人机在各行业的应用等都是多机器人编队控制上的用途[6–7].目前,多机器人编队控制方法主要有3种,其中在多机器收稿日期:2019−11−25;录用日期:2020−08−10.†通信作者.E-mail:****************;Tel.:+86132****1790.本文责任编委:黄攀峰.国家自然科学基金项目(61603107,61863007),桂林电子科技大学研究生教育创新计划项目(C99YJM00BX13)资助.Supported by the National Natural Science Foundation of China(61603107,61863007)and the Innovation Project of GUET Graduate Education (C99YJM00BX13).104控制理论与应用第38卷人系统编队控制问题上应用最广泛的是领航–跟随法[8–10];除此之外,还有基于行为法和虚拟结构法[11].基于行为的多机器人编队方法在描述系统整体时不够准确高效,且不能保证系统控制的稳定性;而虚拟结构法则存在系统灵活性不足的缺陷.领航–跟随型编队控制法具有数学分析简单、易保持队形、通信压力小等优点,被广泛应用于多机器人系统编队[12].例如,2017年,Hu等人采用分布式事件触发策略,提出一种新的自触发算法,实现了线性多机器人系统的一致性[13];Zuo等人利用李雅普诺夫函数,构造具有可变结构的全局非线性一致控制律,研究多机器人系统的鲁棒有限时间一致问题[14].考虑到分数微积分的存储特性,开发分数阶一致性控制的潜在应用具有重要意义.时中等人于2016年设计了空间遥操作分数阶PID 控制系统,提高了机器人系统的跟踪性能、抗干扰性、鲁棒性和抗时延抖动性能[15].2019年,Z Yang等人探讨了分数阶多机器人系统的领航跟随一致性问题[16].而在多机器人的环形编队控制中,对具有分数阶动力学特性的多机器人系统的研究极其有限,大部分集中在整数阶的阶段.而采用分数阶对多机器人系统目标包围编队控制进行研究,综合考虑了非局部分布式的影响,更好地描述具有遗传性质的动力学模型.使得系统的模型能更准确的反映系统的性态,对多机器人编队控制的研究非常有利.目标包围控制问题是编队控制的一个分支,是多智能体编队问题的重点研究领域.随着信息技术的高速发展,很多专家学者对多机器人系统的目标包围控制问题进行了研究探讨.例如,Kim和Sugie于2017年基于一种循环追踪策略设计分布式反馈控制律,保证了多机器人系统围绕一个目标机器人运动[17].在此基础上,Lan和Yan进行了拓展,研究了智能体包围多个目标智能体的问题,并把这个问题分为两个步骤[18]. Kowdiki K H和Barai K等人则研究了单个移动机器人对任意时变曲线的跟踪包围问题[19].Asif M考虑了机器人与目标之间的避障问题,提出了两种包围追踪控制算法;并实现了移动机器人对目标机器人的包围追踪[20].鉴于以上原因,本文采用了领航–跟随型编队控制方法来控制多机器人系统的环形编队和目标包围,通过设计状态估测器,实现对多机器人的状态估计.系统中目标状态信息只能由领航者获取,确保整个多机器人系统编队按照预期的理想编队队形进行无碰撞运动,并最终到达目标位置,对目标、领航者和跟随者的位置分析如图1(a)所示,图1(b)为编队控制后的状态.通过应用李雅普诺夫稳定性理论,得到实现多机器人系统环形编队控制的充分条件.最后通过对一组多机器人队列进行目标包围仿真,验证了该方法的有效性.(a)编队控制前(b)编队控制后图1目标、领航者和追随者的位置分析Fig.1Location analysis of targets,pilots and followers2代数图论与分数阶基础假定一个含有N个智能体的系统,通讯网络拓扑图用G={v,ε}表示,定义ε=v×v为跟随者节点之间边的集合,v={v i,i=1,2,···,N}为跟随者节点的集合.若(v i,v j)∈ε,则v i与v j为相邻节点,定义N j(t)={i|(v i,v j)∈ε,v i∈v}为相邻节点j的标签的集合.那么称第j个节点是第i 个节点的邻居节点,用N j(t)={i|(v i,v j)∈ε,v i∈v}表示第i个节点的邻居节点集合.矩阵L=D−A称为与图G对应的拉普拉斯矩阵.其中:∆是对角矩阵,对角线元素i=∑jN i a ij.若a ij=a ji,i,j∈I,则称G是无向图,否则称为有向图.如果节点v i与v j之间一组有向边(v i,v k1)(v k1,v k2)(v k2,v k3)···(v kl,v j),则称从节点v i到v j存在有向路径.定义1Riemann-Liouville(RL)分数阶微分定义:RLD atf(t)=1Γ(n−a)d nd t ntt0f(τ)(t−τ)a−n+1dτ,(1)其中:t>t0,n−1<α<n,n∈Z+,Γ(·)为伽马函数.定义2Caputo(C)分数阶微分定义:CDαtf(t)=1Γ(n−α)tt0f n(τ)(t−τ)α−n+1dτ,(2)其中:t>t0,n−1<α<n,n∈Z+,Γ(·)为伽马第1期伍锡如等:分数阶多机器人的领航–跟随型环形编队控制105函数.定义3定义具有两个参数α,β的Mittag-Leffler方程为E α,β(z )=∞∑k =1z kΓ(αk +β),(3)其中:α>0,β>0.当β=1时,其单参数形式可表示为E α,1(z )=E α(z )=∞∑k =1z kΓ(αk +1).(4)引理1[21]假定存在连续可导函数x (t )∈R n ,则12C t 0D αt x T (t )x (t )=x T (t )C t 0D αt x (t ),(5)引理2[21]假定x =0是系统C t 0D αt x (t )=f (x )的平衡点,且D ⊂R n 是一个包含原点的域,R 是一个连续可微函数,x 满足以下条件:{a 1∥x ∥a V (t ) a 2∥x ∥ab ,C t 0D αt V (t ) −a 3∥x ∥ab,(6)其中:t 0,x ∈R ,α∈(0,1),a 1,a 2,a 3,a,b 为任意正常数,那么x =0就是Mittag-Leffler 稳定.3系统环形编队控制考虑包含1个领航者和N 个跟随者的分数阶非线性多机器人系统.领航者的动力学方程为C t 0D αt x 0(t )=u 0(t ),(7)式中:0<α<1,x 0(t )∈R 2是领航者的位置状态,u 0(t )∈R 2是领航者的控制输入.跟随者的动力学模型如下:C t 0D αt x i (t )=u i (t ),i ∈I,(8)式中:0<α<1,x i (t )∈R 2是跟随者的位置状态,u i (t )∈R 2是跟随者i 在t 时刻的控制输入,I ={1,2,···,N }.3.1领航者控制器的设计对于领航者,选择如下控制器:u 0(t )=−k 1(x 0(t )−˜x 0(t ))−k 2sgn(x 0(t )−˜x 0(t )),(9)C t 0D αt x 0(t )=u 0(t )=−k 1(x 0(t )−˜x 0(t ))−k 2sgn(x 0(t )−˜x 0(t )).(10)设计一个李雅普诺夫函数:V (t )=12(x 0(t )−˜x 0(t ))T (x 0(t )−˜x 0(t )).(11)根据引理1,得到该李雅普诺夫函数的α阶导数如下:C 0D αt V(t )=12C 0D αt (x 0(t )−˜x 0(t ))T (x 0(t )−˜x 0(t )) (x 0(t )−˜x 0(t ))TC 0D αt (x 0(t )−˜x0(t ))=(x 0(t )−˜x 0(t ))T [C 0D αt x 0(t )−C 0D αt ˜x0(t )]=(x 0(t )−˜x 0(t ))T [−k 1(x 0(t )−˜x 0(t ))−k 2sgn(x 0(t )−˜x 0(t ))−C 0D αt ˜x0(t )]=−k 1(x 0(t )−˜x 0(t ))T (x 0(t )−˜x 0(t ))−k 2∥x 0(t )−˜x 0(t )∥−(x 0(t )−˜x 0(t ))TC 0D αt ˜x0(t )=−2k 1V (t )−k 2∥x 0(t )−˜x 0(t )∥+∥C 0D αt ˜x0(t )∥∥x 0(t )−˜x 0(t )∥=−2k 1V (t )−(k 2−∥C 0D ∝t ˜x0(t )∥)∥x 0(t )−˜x 0(t )∥ −2k 1V (t ).(12)令a 1=a 2=12,a 3=2k 1,ab =2,a >0,b >0,得到a 1∥x 0(t )−˜x 0(t )∥a V (t ) a 2∥x 0(t )−˜x 0(t )∥ab ,(13)C t 0D αt V(t ) −a 3∥x 0(t )−˜x 0(t )∥ab .(14)根据引理2,可知lim t →∞∥x 0(t )−˜x 0(t )∥=0,即x 0(t )逐渐趋近于˜x 0(t ).为了使跟随者能够跟踪观测到领航者的状态,设计了一个状态估测器.令ˆx i ∈R 2是追随者对领航者的状态估计,给出了ˆx i 的动力学方程C 0D αt ˆx i=β(∑j ∈N ia ij g ij (t )+d i g i 0(t )),(15)其中g ij =˜x j (t )−˜x i (t )∥˜x j (t )−˜x i (t )∥,˜x j (t )−˜x i (t )=0,0,˜x j (t )−˜x i (t )=0.(16)对跟随者取以下李雅普诺夫函数:V (t )=12N ∑i =1(ˆx i (t )−x 0(t ))T (ˆx i (t )−x 0(t )).(17)计算该函数的α阶导数如下:C 0D αt V(t )=12C 0D αtN ∑i =1(ˆx i (t )−x 0(t ))T (ˆx i (t )−x 0(t )) N ∑i =1(ˆx i (t )−x 0(t ))TC 0D αt (ˆx i (t )−x 0(t ))=N ∑i =1(ˆx i (t )−x 0(t ))T [C 0D αt ˆxi (t )−C 0D αt x 0(t )]=N ∑i =1(ˆx i (t )−x 0(t ))T [β(∑j ∈N ia ijˆx j (t )−ˆx i (t )∥ˆx j (t )−ˆx i (t )∥+d iˆx 0(t )−ˆx i (t )∥ˆx 0(t )−ˆx i (t )∥)−C 0D αt x 0(t )]=N ∑i =1(ˆx i (t )−x 0(t ))T β(∑j ∈N i a ij ˆx j (t )−ˆx i (t )∥ˆx j (t )−ˆx i(t )∥+106控制理论与应用第38卷d iˆx 0(t )−ˆx i (t )∥ˆx 0(t )−ˆx i (t )∥)−N ∑i =1(ˆx i (t )−x 0(t ))TC 0D αt x 0(t )=βN ∑i =1(ˆx i (t )−x 0(t ))T ∑j ∈N i a ij ˆx j (t )−ˆx i (t )∥ˆx j (t )−ˆx i (t )∥+βN ∑i =1(ˆx i (t )−x 0(t ))Td i ˆx 0(t )−ˆx i (t )∥ˆx 0(t )−ˆx i(t )∥−N ∑i =1(ˆx i (t )−x 0(t ))TC 0D αt x 0(t ).(18)在上式中,令C 0D αt V (t )=N 1+N 2以方便后续计算,其中:N 1=βN ∑i =1(ˆx i (t )−x 0(t ))T ∑j ∈N i a ij ˆx j (t )−ˆx i (t )∥ˆx j (t )−ˆx i (t )∥+βN ∑i =1(ˆx i (t )−x 0(t ))Td i ˆx 0(t )−ˆx i (t )∥ˆx 0(t )−ˆx i (t )∥=β2[N ∑i =1N ∑j =1a ij (ˆx i (t )−x 0(t ))T ˆx j (t )−ˆx i (t )∥ˆx j (t )−ˆx i (t )∥+N ∑j =1N ∑i =1a ij (ˆx j (t )−x 0(t ))Tˆx i (t )−ˆx j (t )∥ˆx i (t )−ˆx j (t )∥]−βN ∑i =1d i∥ˆx 0(t )−ˆx i (t )∥2∥ˆx 0(t )−ˆx i (t )∥=β2N ∑i =1N ∑j =1a ij [(ˆx i (t )−x 0(t ))Tˆx j (t )−ˆx i (t )∥ˆx j (t )−ˆx i (t )∥−(ˆx j (t )−x 0(t ))T ˆx i (t )−ˆx j (t )∥ˆx i (t )−ˆx j (t )∥]−βN ∑i =1d i∥ˆx 0(t )−ˆx i (t )∥2∥ˆx 0(t )−ˆx i (t )∥=β2N ∑i =1N ∑j =1a ij [ˆx T i(t )ˆx j (t )−ˆx i (t )∥ˆx j (t )−ˆx i (t )∥−x T 0(t )ˆx j (t )−ˆx i (t )∥ˆx j (t )−ˆx i (t )∥−ˆx T j(t )ˆx i (t )−ˆx j (t )∥ˆx i (t )−ˆx j (t )∥+x T0(t )ˆx i (t )−ˆx j (t )∥ˆx i (t )−ˆx j (t )∥]−βN ∑i =1d i ∥ˆx 0(t )−ˆx i (t )∥=β2N ∑i =1N ∑j =1a ij [ˆx T i (t )ˆx j (t )−ˆx i (t )∥ˆx j (t )−ˆx i (t )∥−ˆx T j (t )ˆx i (t )−ˆx j (t )∥ˆx i (t )−ˆx j (t )∥]−βN ∑i =1d i ∥ˆx 0(t )−ˆx i (t )∥2∥ˆx 0(t )−ˆx i (t )∥=β2N ∑i =1N ∑j =1a ij (ˆx T i(t )−ˆx Tj (t ))ˆx j (t )−ˆx i (t )∥ˆx j (t )−ˆx i (t )∥−βN ∑i =1d i ∥ˆx 0(t )−ˆx i (t )∥2∥ˆx 0(t )−ˆx i (t )∥=−β(12N ∑i =1N ∑j =1a ij (ˆx T j (t )−ˆx T i (t ))׈x j (t )−ˆx i (t )∥ˆx j (t )−ˆx i (t )∥+N ∑i =1d i ∥ˆx 0(t )−ˆx i (t )∥2∥ˆx 0(t )−ˆx i (t )∥),(19)N 2=−N ∑i =1(ˆx i (t )−x 0(t ))TC 0D αt x 0(t )=N ∑i =1∥ˆx i (t )−x 0(t )∥∥C 0D αt x 0(t )∥×cos {ˆx i (t )−x 0(t ),−C 0D αt x 0(t )}.(20)由于∥C 0D αt x 0(t )∥k 1∥x 0(t )−˜x 0(t )∥+k 2∥sgn(x 0(t )−˜x 0(t ))∥ k 1∥x 0(t )−˜x 0(t )∥+k 2.(21)根据定义3,当lim t →∞∥x 0(t )−˜x 0(t )∥=0时,存在T >0(T 为实数),使得在t >T 时∥x 0(t )−˜x 0(t )∥ ε成立,那么对于t >T ,有0<∥C 0D αt x 0(t )∥ k 1ε+k 2=M 2,可得−N ∑i =1(ˆx i (t )−x 0(t ))TC 0D αt x 0(t )N ∑i =1∥ˆx i (t )−x 0(t )∥M 2M 2N max {∥ˆx i (t )−x 0(t )∥},(22)C 0D αt V(t ) −(β−M 2N )max i ∈I{∥ˆx i (t )−x 0(t )∥}−2β1λmin V (t ).(23)根据引理2,得lim t →∞∥ˆx i (t )−x 0(t )∥=0.(24)由上式可知,ˆx i (t )在对目标的追踪过程中逐渐趋近于x 0(t ).3.2跟随者控制器的设计在本文中,整个多机器人系统中领导者能够直接获得目标的位置信息,将这些信息传递给追随者,因此需要为每个追随者设计观测器来估计目标的状态.令ϕi (t )∈R 2由跟随者对目标i 的状态估计,给出ϕi (t )的动力学方程C 0D αt ϕi(t )=α(∑j ∈N ia ij f ij (t )+d i f i 0(t )),(25)其中f ij =ϕj (t )−ϕi (t )∥ϕj (t )−ϕi (t )∥,ϕj (t )−ϕi (t )=0,0,ϕj (t )−ϕi (t )=0.(26)取如下李雅普诺夫函数:V (t )=12N ∑i =1(ϕi (t )−r (t ))T (ϕi (t )−r (t )).(27)计算α阶导数如下:C 0D αt V(t )=第1期伍锡如等:分数阶多机器人的领航–跟随型环形编队控制10712N ∑i =1(ϕi (t )−r (t ))T (ϕi (t )−r (t )) N ∑i =1(ϕi (t )−r (t ))TC 0D αt (ϕi (t )−r (t ))=N ∑i =1(ϕi (t )−r (t ))T [C 0D αt ϕi (t )−C 0D αt r (t )]=N ∑i =1(φi (t )−r (t ))T [α(∑j ∈N ia ij f ij (t )+d i f i 0(t ))]−C 0D αt r (t )=N ∑i =1(ϕi (t )−r (t ))T α(∑j ∈N ia ij ϕj (t )−ϕi (t )∥ϕj (t )−ϕi (t )∥+d i ϕ(t )−ϕi (t )∥ϕ(t )−ϕi (t )∥)=βN ∑i =1(ϕi (t )−r (t ))T ∑j ∈N i a ijϕj (t )−ϕi (t )∥ϕj (t )−ϕi(t )∥+βN ∑i =1(ϕi (t )−r (t ))T d i ϕ(t )−ϕi (t )∥ϕ(t )−ϕi(t )∥−N ∑i =1(ϕi (t )−r (t ))TC 0D αt r (t ),(28)可得lim t →∞∥x i (t )−˜x i (t )∥=0.(29)由上式可知,x i (t )在对目标的追踪过程中逐渐趋近于˜x i (t ).4仿真结果与分析本节通过仿真结果来验证本文所提出的方法.图2为通信图,其中:V ={1,2,3,4}表示跟随者集合,0代表领导者.以5个机器人组成的队列为例进行验证,根据领航者对目标的跟随轨迹,分别进行了仿真.图2通信图Fig.2Communication diagrams假设系统中目标机器人的动态为C 0D αt r (t )=[cos t sin t ]T ,令初始值r 1(0)=r 2(0)=1,α=0.98,k 1=1,k 2=4,可知定理3中的条件是满足的.根据式(24)和式(29),随着时间趋于无穷,领航者及其跟随者的状态估计误差趋于0,这意味着领航者的状态可以由跟随者渐近精确地计算出来.令k 2>M 1,M 1=M +M ′>0,则lim t →∞∥x 0(t )−˜x 0(t )∥=0,x 0渐近收敛于领航者的真实状态.此时取时滞参数µ=0.05,实验结果见图3,由1个领航者及4个跟随者组成的多机器人系统在进行目标围堵时,最终形成了以目标机器人为中心的包围控制(见图3(b)).(a)领航者和跟随者的初始位置分析(b)编队形成后多机器人的位置关系图3目标、领航者和追随者的位置分析Fig.3Location analysis of target pilots and followers综合图4–5曲线,跟随者对领航者进行渐进跟踪,领航者同目标机器人的相对位置不变,表明该领航跟随型多机器人系统最终能与目标机器人保持期望的距离,并且不再变化.图4领航者及其跟随者的状态估计误差Fig.4The state estimation error of the leader and followers108控制理论与应用第38卷图5编队形成时领航者与目标的相对位置关系Fig.5The relative position relationship between leader andtarget仿真结果表明,多个机器人在对目标物进行包围编队时,领航者会逐渐形成以目标物运动轨迹为参照的运动路线,而跟随者则渐近的完成对领航者的跟踪(如图6所示),跟随者在对领航者进行跟踪时,会出现一定频率的抖振,但这些并不会影响该多机器人系统的目标包围编队控制.5总结本文提出了多机器人的领航–跟随型编队控制方法,选定了一台机器人作为领航者负责整个编队的路径规划任务,其余机器人作为跟随者.跟随机器人负责实时跟踪领航者,并尽可能与领航机器人之间保持队形所需的距离和角度,确保整个多机器人系统编队按照预期的理想编队队形进行无碰撞运动,并最终到达目标位置.通过建立李雅普诺夫函数和米塔格稳定性理论,得到了实现多机器人系统环形编队的充分条件,并通过对一组多机器人队列的目标包围仿真,验证了该方法的有效性.图6领航者与跟随者对目标的状态估计Fig.6State estimation of target by pilot and follower参考文献:[1]JIANG Yutao,LIU Zhongxin,CHEN Zengqiang.Distributed finite-time consensus algorithm for multiple nonholonomic mobile robots with disturbances.Control Theory &Applications ,2019,36(5):737–745.(姜玉涛,刘忠信,陈增强.带扰动的多非完整移动机器人分布式有限时间一致性控制.控制理论与应用,2019,36(5):737–745.)[2]ZHOU Chuan,HONG Xiaomin,HE Junda.Formation control ofmulti-agent systems with time-varying topology based on event-triggered mechanism.Control and Decision ,2017,32(6):1103–1108.(周川,洪小敏,何俊达.基于事件触发的时变拓扑多智能体系统编队控制.控制与决策,2017,32(6):1103–1108.)[3]ZHANG Ruilei,LI Sheng,CHEN Qingwei,et al.Formation controlfor multi-robot system in complex terrain.Control Theory &Appli-cations ,2014,31(4):531–537.(张瑞雷,李胜,陈庆伟,等.复杂地形环境下多机器人编队控制方法.控制理论与应用,2014,31(4):531–537.)[4]WU Jin,ZHANG Guoliang,ZENG Jing.Discrete-time modeling formultirobot formation and stability of formation control algorithm.Control Theory &Applications ,2014,31(3):293–301.(吴晋,张国良,曾静.多机器人编队离散模型及队形控制稳定性分析.控制理论与应用,2014,31(3):293–301.)[5]WANG Shuailei,ZHANG Jinchun,CAO Biao.Target tracking al-gorithm with double-type agents based on flocking control.Control Engineering of China ,2019,26(5):935–940.(王帅磊,张金春,曹彪.双类型多智能体蜂拥控制目标跟踪算法.控制工程,2019,26(5):935–940.)[6]SHAO Zhuang,ZHU Xiaoping,ZHOU Zhou,et al.Distributed for-mation keeping control of UA Vs in 3–D dynamic environment.Con-trol and Decision ,2016,31(6):1065–1072.(邵壮,祝小平,周洲,等.三维动态环境下多无人机编队分布式保持控制.控制与决策,2016,31(6):1065–1072.)[7]PANG Shikun,WANG Jian,YI Hong.Formation control of multipleautonomous underwater vehicles based on sensor measuring system.Journal of Shanghai Jiao Tong University ,2019,53(5):549–555.(庞师坤,王健,易宏.基于传感探测系统的多自治水下机器人编队协调控制.上海交通大学学报,2019,53(5):549–555.)[8]WANG H,GUO D,LIANG X.Adaptive vision-based leader-followerformation control of mobile robots.IEEE Transactions on Industrial Electronics ,2017,64(4):2893–2902.[9]LI R,ZHANG L,HAN L.Multiple vehicle formation control basedon robust adaptive control algorithm.IEEE Intelligent Transportation Systems Magazine ,2017,9(2):41–51.[10]XING C,ZHAOXIA P,GUO G W.Distributed fixed-time formationtracking of multi-robot systems with nonholonomic constraints.Neu-rocomputing ,2018,313(3):167–174.[11]LOPEZ-GONZALEA A,FERREIRA E D,HERNANDEZ-MAR-TINEZ E G.Multi-robot formation control using distance and ori-entation.Advanced Robotics ,2016,30(14):901–913.[12]DIMAROGONAS D,FRAZZOLI E,JOHNSSON K H.Distributedevent-triggered control for multi-agent systems.IEEE Transactions on Automatic Control ,2019,57(5):1291–1297.[13]HU W,LIU L,FENG G.Consensus of linear multi-agent systems bydistributed event-triggered strategy.IEEE Transactions on Cybernet-ics ,2017,46(1):148–157.第1期伍锡如等:分数阶多机器人的领航–跟随型环形编队控制109[14]ZUO Z,LIN T.Distributed robustfinite-time nonlinear consensusprotocols for multi-agent systems.International Journal of Systems Science,2016,47(6):1366–1375.[15]SHI Zhong,HUANG Xuexiang,TAN Qian.Fractional-order PIDcontrol for teleoperation of a free-flying space robot.Control The-ory&Applications,2016,33(6):800–808.(时中,黄学祥,谭谦.自由飞行空间机器人的遥操作分数阶PID控制.控制理论与应用,2016,33(6):800–808.)[16]YANG Z C,ZHENG S Q,LIU F.Adaptive output feedback con-trol for fractional-order multi-agent systems.ISA Transactions,2020, 96(1):195–209.[17]LIU Z X,CHEN Z Q,YUAN Z Z.Event-triggered average-consensusof multi-agent systems with weighted and directed topology.Journal of Systems Science and Complexity,2016,25(5):845–855.[18]AI X L,YU J Q.Flatness-basedfinite-time leader-follower formationcontrol of multiple quad rotors with external disturbances.Aerospace Science and Technology,2019,92(9):20–33.[19]KOWDIKI K H,BARAI K,BHATTACHARYA S.Leader-followerformation control using artificial potential functions:A kinematic ap-proach.IEEE International Conference on Advances in Engineering.Tamil Nadu,India:IEEE,2012:500–505.[20]ASIF M.Integral terminal sliding mode formation control of non-holonomic robots using leader follower approach.Robotica,2017, 1(7):1–15.[21]CHEN W,DAI H,SONG Y,et al.Convex Lyapunov functions forstability analysis of fractional order systems.IET Control Theory& Applications,2017,11(7):1070–1074.作者简介:伍锡如博士,教授,硕士生导师,目前研究方向为机器人控制、神经网络、深度学习等,E-mail:***************.cn;邢梦媛硕士研究生,目前研究方向为多机器人编队控制,E-mail: ****************.。
自动化控制工程外文翻译外文文献英文文献
Team-Centered Perspective for Adaptive Automation DesignLawrence J.PrinzelLangley Research Center, Hampton, VirginiaAbstractAutomation represents a very active area of human factors research. Thejournal, Human Factors, published a special issue on automation in 1985.Since then, hundreds of scientific studies have been published examiningthe nature of automation and its interaction with human performance.However, despite a dramatic increase in research investigating humanfactors issues in aviation automation, there remain areas that need furtherexploration. This NASA Technical Memorandum describes a new area ofIt discussesautomation design and research, called “adaptive automation.” the concepts and outlines the human factors issues associated with the newmethod of adaptive function allocation. The primary focus is onhuman-centered design, and specifically on ensuring that adaptiveautomation is from a team-centered perspective. The document showsthat adaptive automation has many human factors issues common totraditional automation design. Much like the introduction of other new technologies and paradigm shifts, adaptive automation presents an opportunity to remediate current problems but poses new ones forhuman-automation interaction in aerospace operations. The review here isintended to communicate the philosophical perspective and direction ofadaptive automation research conducted under the Aerospace OperationsSystems (AOS), Physiological and Psychological Stressors and Factors (PPSF)project.Key words:Adaptive Automation; Human-Centered Design; Automation;Human FactorsIntroduction"During the 1970s and early 1980s...the concept of automating as much as possible was considered appropriate. The expected benefit was a reduction inpilot workload and increased safety...Although many of these benefits have beenrealized, serious questions have arisen and incidents/accidents that have occurredwhich question the underlying assumptions that a maximum availableautomation is ALWAYS appropriate or that we understand how to designautomated systems so that they are fully compatible with the capabilities andlimitations of the humans in the system."---- ATA, 1989The Air Transport Association of America (ATA) Flight Systems Integration Committee(1989) made the above statement in response to the proliferation of automation in aviation. They noted that technology improvements, such as the ground proximity warning system, have had dramatic benefits; others, such as the electronic library system, offer marginal benefits at best. Such observations have led many in the human factors community, most notably Charles Billings (1991; 1997) of NASA, to assert that automation should be approached from a "human-centered design" perspective.The period from 1970 to the present was marked by an increase in the use of electronic display units (EDUs); a period that Billings (1997) calls "information" and “management automation." The increased use of altitude, heading, power, and navigation displays; alerting and warning systems, such as the traffic alert and collision avoidance system (TCAS) and ground proximity warning system (GPWS; E-GPWS; TAWS); flight management systems (FMS) and flight guidance (e.g., autopilots; autothrottles) have "been accompanied by certain costs, including an increased cognitive burden on pilots, new information requirements that have required additional training, and more complex, tightly coupled, less observable systems" (Billings, 1997). As a result, human factors research in aviation has focused on the effects of information and management automation. The issues of interest include over-reliance on automation, "clumsy" automation (e.g., Wiener, 1989), digital versus analog control, skill degradation, crew coordination, and data overload (e.g., Billings, 1997). Furthermore, research has also been directed toward situational awareness (mode & state awareness; Endsley, 1994; Woods & Sarter, 1991) associated with complexity, coupling, autonomy, and inadequate feedback. Finally, human factors research has introduced new automation concepts that will need to be integrated into the existing suite of aviationautomation.Clearly, the human factors issues of automation have significant implications for safetyin aviation. However, what exactly do we mean by automation? The way we choose to define automation has considerable meaning for how we see the human role in modern aerospace s ystems. The next section considers the concept of automation, followed by an examination of human factors issues of human-automation interaction in aviation. Next, a potential remedy to the problems raised is described, called adaptive automation. Finally, the human-centered design philosophy is discussed and proposals are made for how the philosophy can be applied to this advanced form of automation. The perspective is considered in terms of the Physiological /Psychological Stressors & Factors project and directions for research on adaptive automation.Automation in Modern AviationDefinition.Automation refers to "...systems or methods in which many of the processes of production are automatically performed or controlled by autonomous machines or electronic devices" (Parsons, 1985). Automation is a tool, or resource, that the human operator can use to perform some task that would be difficult or impossible without machine aiding (Billings, 1997). Therefore, automation can be thought of as a process of substituting the activity of some device or machine for some human activity; or it can be thought of as a state of technological development (Parsons, 1985). However, some people (e.g., Woods, 1996) have questioned whether automation should be viewed as a substitution of one agent for another (see "apparent simplicity, real complexity" below). Nevertheless, the presence of automation has pervaded almost every aspect of modern lives. From the wheel to the modern jet aircraft, humans have sought to improve the quality of life. We have built machines and systems that not only make work easier, more efficient, and safe, but also give us more leisure time. The advent of automation has further enabled us to achieve this end. With automation, machines can now perform many of the activities that we once had to do. Our automobile transmission will shift gears for us. Our airplanes will fly themselves for us. All we have to dois turn the machine on and off. It has even been suggested that one day there may not be aaccidents resulting from need for us to do even that. However, the increase in “cognitive” faulty human-automation interaction have led many in the human factors community to conclude that such a statement may be premature.Automation Accidents. A number of aviation accidents and incidents have been directly attributed to automation. Examples of such in aviation mishaps include (from Billings, 1997):DC-10 landing in control wheel steering A330 accident at ToulouseB-747 upset over Pacific DC-10 overrun at JFK, New YorkB-747 uncommandedroll,Nakina,Ont. A320 accident at Mulhouse-HabsheimA320 accident at Strasbourg A300 accident at NagoyaB-757 accident at Cali, Columbia A320 accident at BangaloreA320 landing at Hong Kong B-737 wet runway overrunsA320 overrun at Warsaw B-757 climbout at ManchesterA310 approach at Orly DC-9 wind shear at CharlotteBillings (1997) notes that each of these accidents has a different etiology, and that human factors investigation of causes show the matter to be complex. However, what is clear is that the percentage of accident causes has fundamentally shifted from machine-caused to human-caused (estimations of 60-80% due to human error) etiologies, and the shift is attributable to the change in types of automation that have evolved in aviation.Types of AutomationThere are a number of different types of automation and the descriptions of them vary considerably. Billings (1997) offers the following types of automation:?Open-Loop Mechanical or Electronic Control.Automation is controlled by gravity or spring motors driving gears and cams that allow continous and repetitive motion. Positioning, forcing, and timing were dictated by the mechanism and environmental factors (e.g., wind). The automation of factories during the Industrial Revolution would represent this type of automation.?Classic Linear Feedback Control.Automation is controlled as a function of differences between a reference setting of desired output and the actual output. Changes a re made to system parameters to re-set the automation to conformance. An example of this type of automation would be flyball governor on the steam engine. What engineers call conventional proportional-integral-derivative (PID) control would also fit in this category of automation.?Optimal Control. A computer-based model of controlled processes i s driven by the same control inputs as that used to control the automated process. T he model output is used to project future states and is thus used to determine the next control input. A "Kalman filtering" approach is used to estimate the system state to determine what the best control input should be.?Adaptive Control. This type of automation actually represents a number of approaches to controlling automation, but usually stands for automation that changes dynamically in response to a change in state. Examples include the use of "crisp" and "fuzzy" controllers, neural networks, dynamic control, and many other nonlinear methods.Levels of AutomationIn addition to “types ” of automation, we can also conceptualize different “levels ” of automation control that the operator can have. A number of taxonomies have been put forth, but perhaps the best known is the one proposed by Tom Sheridan of Massachusetts Institute of Technology (MIT). Sheridan (1987) listed 10 levels of automation control:1. The computer offers no assistance, the human must do it all2. The computer offers a complete set of action alternatives3. The computer narrows the selection down to a few4. The computer suggests a selection, and5. Executes that suggestion if the human approves, or6. Allows the human a restricted time to veto before automatic execution, or7. Executes automatically, then necessarily informs the human, or8. Informs the human after execution only if he asks, or9. Informs the human after execution if it, the computer, decides to10. The computer decides everything and acts autonomously, ignoring the humanThe list covers the automation gamut from fully manual to fully automatic. Although different researchers define adaptive automation differently across these levels, the consensus is that adaptive automation can represent anything from Level 3 to Level 9. However, what makes adaptive automation different is the philosophy of the approach taken to initiate adaptive function allocation and how such an approach may address t he impact of current automation technology.Impact of Automation TechnologyAdvantages of Automation . Wiener (1980; 1989) noted a number of advantages to automating human-machine systems. These include increased capacity and productivity, reduction of small errors, reduction of manual workload and mental fatigue, relief from routine operations, more precise handling of routine operations, economical use of machines, and decrease of performance variation due to individual differences. Wiener and Curry (1980) listed eight reasons for the increase in flight-deck automation: (a) Increase in available technology, such as FMS, Ground Proximity Warning System (GPWS), Traffic Alert andCollision Avoidance System (TCAS), etc.; (b) concern for safety; (c) economy, maintenance, and reliability; (d) workload reduction and two-pilot transport aircraft certification; (e) flight maneuvers and navigation precision; (f) display flexibility; (g) economy of cockpit space; and (h) special requirements for military missions.Disadvantages o f Automation. Automation also has a number of disadvantages that have been noted. Automation increases the burdens and complexities for those responsible for operating, troubleshooting, and managing systems. Woods (1996) stated that automation is "...a wrapped package -- a package that consists of many different dimensions bundled together as a hardware/software system. When new automated systems are introduced into a field of practice, change is precipitated along multiple dimensions." As Woods (1996) noted, some of these changes include: ( a) adds to or changes the task, such as device setup and initialization, configuration control, and operating sequences; (b) changes cognitive demands, such as requirements for increased situational awareness; (c) changes the roles of people in the system, often relegating people to supervisory controllers; (d) automation increases coupling and integration among parts of a system often resulting in data overload and "transparency"; and (e) the adverse impacts of automation is often not appreciated by those who advocate the technology. These changes can result in lower job satisfaction (automation seen as dehumanizing human roles), lowered vigilance, fault-intolerant systems, silent failures, an increase in cognitive workload, automation-induced failures, over-reliance, complacency, decreased trust, manual skill erosion, false alarms, and a decrease in mode awareness (Wiener, 1989).Adaptive AutomationDisadvantages of automation have resulted in increased interest in advanced automation concepts. One of these concepts is automation that is dynamic or adaptive in nature (Hancock & Chignell, 1987; Morrison, Gluckman, & Deaton, 1991; Rouse, 1977; 1988). In an aviation context, adaptive automation control of tasks can be passed back and forth between the pilot and automated systems in response to the changing task demands of modern aircraft. Consequently, this allows for the restructuring of the task environment based upon (a) what is automated, (b) when it should be automated, and (c) how it is automated (Rouse, 1988; Scerbo, 1996). Rouse(1988) described criteria for adaptive aiding systems:The level of aiding, as well as the ways in which human and aidinteract, should change as task demands vary. More specifically,the level of aiding should increase as task demands become suchthat human performance will unacceptably degrade withoutaiding. Further, the ways in which human and aid interact shouldbecome increasingly streamlined as task demands increase.Finally, it is quite likely that variations in level of aiding andmodes of interaction will have to be initiated by the aid rather thanby the human whose excess task demands have created a situationrequiring aiding. The term adaptive aiding is used to denote aidingconcepts that meet [these] requirements.Adaptive aiding attempts to optimize the allocation of tasks by creating a mechanism for determining when tasks need to be automated (Morrison, Cohen, & Gluckman, 1993). In adaptive automation, the level or mode of automation can be modified in real time. Further, unlike traditional forms of automation, both the system and the pilot share control over changes in the state of automation (Scerbo, 1994; 1996). Parasuraman, Bahri, Deaton, Morrison, and Barnes (1992) have argued that adaptive automation represents the optimal coupling of the level of pilot workload to the level of automation in the tasks. Thus, adaptive automation invokes automation only when task demands exceed the pilot's capabilities. Otherwise, the pilot retains manual control of the system functions. Although concerns have been raised about the dangers of adaptive automation (Billings & Woods, 1994; Wiener, 1989), it promises to regulate workload, bolster situational awareness, enhance vigilance, maintain manual skill levels, increase task involvement, and generally improve pilot performance.Strategies for Invoking AutomationPerhaps the most critical challenge facing system designers seeking to implement automation concerns how changes among modes or levels of automation will be accomplished (Parasuraman e t al., 1992; Scerbo, 1996). Traditional forms of automation usually start with some task or functional analysis and attempt to fit the operational tasks necessary to the abilities of the human or the system. The approach often takes the form of a functional allocation analysis (e.g., Fitt's List) in which an attempt is made to determine whether the human or the system is better suited to do each task. However, many in the field have pointed out the problem with trying to equate the two in automated systems, as each have special characteristics that impede simple classification taxonomies. Such ideas as these have led some to suggest other ways of determining human-automation mixes. Although certainly not exhaustive, some of these ideas are presented below.Dynamic Workload Assessment.One approach involves the dynamic assessment o fmeasures t hat index the operators' state of mental engagement. (Parasuraman e t al., 1992; Rouse,1988). The question, however, is what the "trigger" should be for the allocation of functions between the pilot and the automation system. Numerous researchers have suggested that adaptive systems respond to variations in operator workload (Hancock & Chignell, 1987; 1988; Hancock, Chignell & Lowenthal, 1985; Humphrey & Kramer, 1994; Reising, 1985; Riley, 1985; Rouse, 1977), and that measures o f workload be used to initiate changes in automation modes. Such measures include primary and secondary-task measures, subjective workload measures, a nd physiological measures. T he question, however, is what adaptive mechanism should be used to determine operator mental workload (Scerbo, 1996).Performance Measures. One criterion would be to monitor the performance of the operator (Hancock & Chignel, 1987). Some criteria for performance would be specified in the system parameters, and the degree to which the operator deviates from the criteria (i.e., errors), the system would invoke levels of adaptive automation. For example, Kaber, Prinzel, Clammann, & Wright (2002) used secondary task measures to invoke adaptive automation to help with information processing of air traffic controllers. As Scerbo (1996) noted, however,"...such an approach would be of limited utility because the system would be entirely reactive."Psychophysiological M easures.Another criterion would be the cognitive and attentional state of the operator as measured by psychophysiological measures (Byrne & Parasuraman, 1996). An example of such an approach is that by Pope, Bogart, and Bartolome (1996) and Prinzel, Freeman, Scerbo, Mikulka, and Pope (2000) who used a closed-loop system to dynamically regulate the level of "engagement" that the subject had with a tracking task. The system indexes engagement on the basis of EEG brainwave patterns.Human Performance Modeling.Another approach would be to model the performance of the operator. The approach would allow the system to develop a number of standards for operator performance that are derived from models of the operator. An example is Card, Moran, and Newell (1987) discussion of a "model human processor." They discussed aspects of the human processor that could be used to model various levels of human performance. Another example is Geddes (1985) and his colleagues (Rouse, Geddes, & Curry, 1987-1988) who provided a model to invoke automation based upon system information, the environment, and expected operator behaviors (Scerbo, 1996).Mission Analysis. A final strategy would be to monitor the activities of the mission or task (Morrison & Gluckman, 1994). Although this method of adaptive automation may be themost accessible at the current state of technology, Bahri et al. (1992) stated that such monitoring systems lack sophistication and are not well integrated and coupled to monitor operator workload or performance (Scerbo, 1996). An example of a mission analysis approach to adaptive automation is Barnes and Grossman (1985) who developed a system that uses critical events to allocate among automation modes. In this system, the detection of critical events, such as emergency situations or high workload periods, invoked automation.Adaptive Automation Human Factors IssuesA number of issues, however, have been raised by the use of adaptive automation, and many of these issues are the same as those raised almost 20 years ago by Curry and Wiener (1980). Therefore, these issues are applicable not only to advanced automation concepts, such as adaptive automation, but to traditional forms of automation already in place in complex systems (e.g., airplanes, trains, process control).Although certainly one can make the case that adaptive automation is "dressed up" automation and therefore has many of the same problems, it is also important to note that the trend towards such forms of automation does have unique issues that accompany it. As Billings & Woods (1994) stated, "[i]n high-risk, dynamic environments...technology-centered automation has tended to decrease human involvement in system tasks, and has thus impaired human situation awareness; both are unwanted consequences of today's system designs, but both are dangerous in high-risk systems. [At its present state of development,] adaptive ("self-adapting") automation represents a potentially serious threat ... to the authority that the human pilot must have to fulfill his or her responsibility for flight safety."The Need for Human Factors Research.Nevertheless, such concerns should not preclude us from researching the impact that such forms of advanced automation are sure to have on human performance. Consider Hancock’s (1996; 1997) examination of the "teleology for technology." He suggests that automation shall continue to impact our lives requiring humans to co-evolve with the technology; Hancock called this "techneology."What Peter Hancock attempts to communicate to the human factors community is that automation will continue to evolve whether or not human factors chooses to be part of it. As Wiener and Curry (1980) conclude: "The rapid pace of automation is outstripping one's ability to comprehend all the implications for crew performance. It is unrealistic to call for a halt to cockpit automation until the manifestations are completely understood. We do, however, call for those designing, analyzing, and installing automatic systems in the cockpit to do so carefully; to recognize the behavioral effects of automation; to avail themselves of present andfuture guidelines; and to be watchful for symptoms that might appear in training andoperational settings." The concerns they raised are as valid today as they were 23 years ago.However, this should not be taken to mean that we should capitulate. Instead, becauseobservation suggests that it may be impossible to fully research any new Wiener and Curry’stechnology before implementation, we need to form a taxonomy and research plan tomaximize human factors input for concurrent engineering of adaptive automation.Classification of Human Factors Issues. Kantowitz and Campbell (1996)identified some of the key human factors issues to be considered in the design of advancedautomated systems. These include allocation of function, stimulus-response compatibility, andmental models. Scerbo (1996) further suggested the need for research on teams,communication, and training and practice in adaptive automated systems design. The impactof adaptive automation systems on monitoring behavior, situational awareness, skilldegradation, and social dynamics also needs to be investigated. Generally however, Billings(1997) stated that the problems of automation share one or more of the followingcharacteristics: Brittleness, opacity, literalism, clumsiness, monitoring requirement, and dataoverload. These characteristics should inform design guidelines for the development, analysis,and implementation of adaptive automation technologies. The characteristics are defined as: ?Brittleness refers to "...an attribute of a system that works well under normal or usual conditions but that does not have desired behavior at or close to some margin of its operating envelope."?Opacity reflects the degree of understanding of how and why automation functions as it does. The term is closely associated with "mode awareness" (Sarter & Woods, 1994), "transparency"; or "virtuality" (Schneiderman, 1992).?Literalism concern the "narrow-mindedness" of the automated system; that is, theflexibility of the system to respond to novel events.?Clumsiness was coined by Wiener (1989) to refer to automation that reduced workload demands when the demands are already low (e.g., transit flight phase), but increases them when attention and resources are needed elsewhere (e.g., descent phase of flight). An example is when the co-pilot needs to re-program the FMS, to change the plane's descent path, at a time when the co-pilot should be scanning for other planes.?Monitoring requirement refers to the behavioral and cognitive costs associated withincreased "supervisory control" (Sheridan, 1987; 1991).?Data overload points to the increase in information in modern automated contexts (Billings, 1997).These characteristics of automation have relevance for defining the scope of humanfactors issues likely to plague adaptive automation design if significant attention is notdirected toward ensuring human-centered design. The human factors research communityhas noted that these characteristics can lead to human factors issues of allocation of function(i.e., when and how should functions be allocated adaptively); stimulus-response compatibility and new error modes; how adaptive automation will affect mental models,situation models, and representational models; concerns about mode unawareness and-of-the-loop” performance problem; situation awareness decay; manual skill decay and the “outclumsy automation and task/workload management; and issues related to the design of automation. This last issue points to the significant concern in the human factors communityof how to design adaptive automation so that it reflects what has been called “team-centered”;that is, successful adaptive automation will l ikely embody the concept of the “electronic team member”. However, past research (e.g., Pilots Associate Program) has shown that designing automation to reflect such a role has significantly different requirements than those arising in traditional automation design. The field is currently focused on answering the questions,does that definition translate into“what is it that defines one as a team member?” and “howUnfortunately, the literature also shows that the designing automation to reflect that role?” answer is not transparent and, therefore, adaptive automation must first tackle its own uniqueand difficult problems before it may be considered a viable prescription to currenthuman-automation interaction problems. The next section describes the concept of the electronic team member and then discusses t he literature with regard to team dynamics, coordination, communication, shared mental models, and the implications of these foradaptive automation design.Adaptive Automation as Electronic Team MemberLayton, Smith, and McCoy (1994) stated that the design of automated systems should befrom a team-centered approach; the design should allow for the coordination betweenmachine agents and human practitioners. However, many researchers have noted that automated systems tend to fail as team players (Billings, 1991; Malin & Schreckenghost,1992; Malin et al., 1991;Sarter & Woods, 1994; Scerbo, 1994; 1996; Woods, 1996). Thereason is what Woods (1996) calls “apparent simplicity, real complexity.”Apparent Simplicity, Real Complexity.Woods (1996) stated that conventional wisdomabout automation makes technology change seem simple. Automation can be seen as simply changing the human agent for a machine agent. Automation further provides for more optionsand methods, frees up operator time to do other things, provides new computer graphics and interfaces, and reduces human error. However, the reality is that technology change has often。
2024年新课标Ⅰ卷英语真题(含听力)(原卷版)
11 How did Jack go to school when he was a child?
A.By bike.B.On foot.C.By bus.
12.What is Jack's attitude toward parents driving their kids to school?
We'll be working rain or shine. Wear clothes hat can get dirty. Bring layers for changing weather and a raincoat if necessary.
Bring a personal water bottle, sunscreen, and lunch.
B.They can be used in cooking.
C.They bear a lot of fruit soon.
16.What is difficult for Marie to grow?
A.Herbs.B.Carrots.C.Pears.
17.What is Marie's advice to those interested in kitchen gardening?
Battery Alexander Trailhead
Sunday, Jan. 22 10:00 am — 2:30 pm
Stinson Beach Parking Lot
Sunday, Jan. 29 9:30 am — 2:30 pm
Coyote Ridge Trailhead
21.What is the aim of the Habitat Restoration Team?
人工智能+背景下学科交叉应用型研究生培养实践基地建设模式研究
•靦教斑自“人工智能+”背景下学科交叉应用型研究生 培养实践基地建设模式研究赵涛宋省身邓劲生(国防科技大学前沿交叉学科学院湖南•长沙410073)摘要智能时代的到来迫切需要学科交叉应用型人才,从而推动社会经济各方面的智能化升级。
为了适应智 能时代对人才培养的这一迫切的新需求,本文在“人工智能+”背景下研究学科交叉应用型研究生培养实踐基地 的建设糢式,探讨该类研究生培养实践基地建设的必要性和发展目标,进而提出了学科交叉应用型研究生培养 实践基地建设的具体模式,为各高校学科交叉研究生培养模式的制定提供了有益的参考。
关键词人工智能+学科交叉研究生培养实践基地中图分类号:G643 文献标识码:A DOI:10.16400/ki.kjdks.2021.01.003Research on the Construction Mode of I nterdisciplinary Applied Postgraduate Training Practice Base under the Background of Artificial Intelligence +ZHAO Tao, SONG Xingshen, DENG Jinsheng(College of A dvanced Intendisciplinaiy Studies, National University of D efense Technology, Qiangsha, Hunan 410073) Abstract The arrival of the era of intelligence urgently needs interdisciplinary applied talents,so as to promote the intelligent upgrading of all aspects of society and economy.In order to meet the urgent new demand of talent training in the era of intelligence,this paper studies the construction mode of interdisciplinary applied postgraduate training practice base under the background of"artificial intelligence+", discusses the necessity and development goal of the construction of this kind of postgraduate training practice base,and further puts forward the specific construction mode of interdisciplinary applied postgraduate training practice base,which could provide a useful reference for the establishment of interdisciplinary postgraduate training mode.Keywords artificial intelligence+; interdisciplinary;postgraduate training practice base时代的变迁改变了经济社会发展所需的人才类型,对 人才培养提出了新需求。
与尊重每份创意灵感有关的英语作文
Creativity is the lifeblood of progress and innovation,and respecting every spark of inspiration is crucial to fostering a culture of creativity.Here are some key points to consider when discussing the importance of respecting each creative idea:1.Diversity of Thought:Every individual brings a unique perspective to the table.By valuing each creative thought,we ensure a diversity of ideas that can lead to more innovative solutions.2.Encouragement of RiskTaking:When every idea is respected,it encourages people to take risks and share their thoughts without fear of judgment.This openness is essential for breakthrough ideas to emerge.3.Intrinsic Motivation:Respecting every creative impulse can be intrinsically motivating. It makes individuals feel valued and understood,which can lead to a more engaged and passionate approach to their work.4.Learning from Each Idea:Even if an idea isnt immediately practical or viable,it can still offer valuable insights or spark a chain of thought that leads to a successful outcome. Respecting these ideas means being open to learning from them.5.Cultivating a Supportive Environment:A culture that respects all creative inputs is more likely to be supportive and collaborative.This environment is conducive to the growth and development of creative individuals and teams.6.Preventing Idea Suppression:In a respectful environment,ideas are less likely to be suppressed due to fear of rejection.This allows for a free flow of thought and the possibility of uncovering hidden gems.7.Adaptability and Evolution:By respecting all creative inputs,organizations and individuals can adapt more readily to change and evolve their strategies and products in response to new ideas.8.Recognition of Effort:Respecting every creative idea acknowledges the effort and thought that goes into generating them.This recognition can be a powerful motivator for continued innovation.9.Potential for Unexpected Solutions:Sometimes,the most unconventional ideas can lead to the most effective solutions.Respecting all ideas ensures that these potential gamechangers are not overlooked.10.Building Trust:When people feel that their ideas are respected,they are more likely to trust the process and the people involved,leading to stronger relationships and better teamwork.In conclusion,respecting every creative inspiration is not just about valuing the ideas themselves,but also about nurturing an environment where creativity can thrive.Its about recognizing the potential in every thought and the person behind it,and fostering a culture that encourages continuous innovation and growth.。
陕西单招作文模板英语
陕西单招作文模板英语英文回答:1. What are the benefits of single recruitment in Shaanxi Province?Single recruitment in Shaanxi Province offers several benefits:Provides more opportunities for students: Single recruitment expands admission pathways for students, allowing them to apply to multiple higher education institutions with a single application. This increasestheir chances of securing a place at their preferred institution.Reduces stress for students: By consolidating the application process, single recruitment eliminates the need for students to submit separate applications to multiple institutions. This reduces stress and simplifies theadmission process.Improves the efficiency of the admission process:Single recruitment streamlines the admission process, making it more efficient for both students and institutions. It reduces the workload for admission staff and allows fora more standardized and consistent evaluation process.Enhances fairness and equity: Single recruitmentensures that all students have an equal opportunity toapply to their preferred institutions, regardless of their background or location. It eliminates biases and promotes fairness in the admission process.Supports the development of higher education in the province: Single recruitment fosters collaboration and cooperation among higher education institutions in Shaanxi Province. It allows institutions to share best practicesand resources, contributing to the overall development and improvement of higher education in the region.2. What are the challenges of single recruitment inShaanxi Province?While single recruitment offers many benefits, it also poses certain challenges:Initial implementation costs: Implementing single recruitment requires a significant initial investment in infrastructure, technology, and personnel. Institutionsneed to develop a centralized application platform,integrate their systems, and train staff on the new process.Coordination and collaboration: Single recruitment requires strong coordination and collaboration among all participating institutions. They need to agree on common admission standards, timelines, and procedures to ensure a smooth and fair process.Data security and privacy: Single recruitment involves the collection and processing of a large amount of student data. It is crucial to establish robust data security measures to protect student privacy and prevent data breaches.Potential for high competition: With a single application system, students may compete with a wider pool of applicants from across the province. This could increase competition for admission to popular programs and institutions.Adjustments for different types of institutions: Single recruitment may need to be tailored to accommodate the unique characteristics and needs of different types of institutions, such as universities, vocational colleges, and community colleges.3. How can single recruitment in Shaanxi Province be further improved?To further improve single recruitment in Shaanxi Province, several measures can be implemented:Ongoing evaluation and refinement: Regularly evaluating the single recruitment process and making necessary adjustments based on feedback from students, institutions,and stakeholders.Enhanced collaboration and communication: Fostering strong partnerships and open communication channels among participating institutions to ensure smooth coordination and address challenges promptly.Investment in technology and infrastructure: Continuously upgrading and investing in technology and infrastructure to support the efficient and secure operation of the single recruitment platform.Public awareness and outreach: Promoting single recruitment and educating students and parents about its benefits and procedures.Support for underrepresented groups: Providing targeted support and outreach programs to ensure equal access and opportunities for underrepresented and disadvantaged students.中文回答:1. 陕西省实行单招制的好处有哪些?陕西省实行单招制的目的是为了解决传统高考“一考定终身”的弊端,为广大高中生提供更多的升学机会,缓解中考和高考压力,促进素质教育的实施。
肢体缺血训练对雌激素剥夺模型大鼠海马CA1区神经元的保护作用及其机制
第47卷第5期2021年9月吉林大学学报(医学版)Journal of Jilin University(Medicine Edition)Vol.47No.5Sep.2021DOI:10.13481/j.1671‑587X.20210510肢体缺血训练对雌激素剥夺模型大鼠海马CA1区神经元的保护作用及其机制许静1,2,胡洁伟1,2,唐蕾3,许超2,4,王路2,4,陈鸣4,杨微4,王瑞敏1,2,4(1.华北理工大学基础医学院河北省慢性疾病基础医学重点实验室,河北唐山063210;2.河北省唐山市痴呆与认知障碍重点实验室,河北唐山063000;3.华北理工大学药学院药学系,河北唐山063210;4.华北理工大学公共卫生学院神经生物研究所,河北唐山063210)[摘要]目的目的:探讨肢体缺血训练(LIT)对雌激素剥夺大鼠海马CA1区神经元的保护作用,并阐明其可能的分子机制。
方法方法:3~4月龄SD大鼠27只,行双侧卵巢切除术(OVX)以制备雌激素剥夺模型,并随机分为OVX组、LIT组(OVX+LIT)和来曲唑(Let)组(OVX+LIT+Let),每组9只。
大鼠于OVX术后第7天行LIT,每天1次,连续6周;Let组大鼠每天灌胃给药,剂量为10mg·kg-1,连续6周。
采用Western blotting法检测各组大鼠海马CA1区神经元中突触相关蛋白(Synapsin1)、髓鞘碱性蛋白2(MBP2)、突触后致密蛋白95(PSD95)、环磷酸腺苷反应元件结合蛋白(CREB)、磷酸化CREB(p-CREB)和脑源性神经营养因子(BDNF)蛋白表达水平;巴恩斯迷宫和新事物识别实验检测各组大鼠行为学指标。
结果结果:与OVX组比较,LIT组大鼠海马CA1区神经元中突触相关蛋白Synapsin1、PSD95和MBP2蛋白表达水平明显升高(P<0.05),p-CREB和BDNF蛋白表达水平明显升高(P<0.05);与LIT组比较,Let组大鼠海马CA1区神经元中突触相关蛋白Synapsin1、PSD95和MBP2蛋白表达水平明显降低(P<0.05),p-CREB和BDNF蛋白表达水平明显降低(P<0.05)。
《2024年可添加量不受限的对抗样本》范文
《可添加量不受限的对抗样本》篇一一、引言随着深度学习技术的迅猛发展,机器学习模型在众多领域都取得了显著成果。
然而,这也催生了模型的安全性问题。
对抗样本作为一种针对机器学习模型的攻击手段,已经成为近年来研究的热点。
本文将探讨一种可添加量不受限的对抗样本生成方法,并分析其在实际应用中的潜在影响。
二、对抗样本概述对抗样本是指针对机器学习模型精心设计的输入样本,这些样本能够导致模型产生错误输出,从而达到攻击的目的。
对抗样本的生成方法多种多样,其中一些方法对添加的噪声量有限制,这限制了其在某些场景中的应用。
因此,本文将探讨一种可添加量不受限的对抗样本生成方法。
三、可添加量不受限的对抗样本生成方法为了生成可添加量不受限的对抗样本,我们采用了一种基于梯度的方法。
该方法通过计算模型在原始样本上的梯度信息,然后根据梯度方向添加噪声,从而生成新的对抗样本。
在这个过程中,我们可以在不违反约束条件的前提下,自由地调整噪声的强度和类型,以适应不同的场景和需求。
四、实验与分析为了验证我们方法的有效性,我们在多个数据集上进行了实验。
实验结果表明,我们生成的可添加量不受限的对抗样本可以有效地降低模型的准确率,并且可以攻击不同类型的模型。
此外,我们还对生成的对抗样本进行了深入分析,探讨了其产生的原因和可能的解决方案。
五、潜在影响与挑战可添加量不受限的对抗样本在实际应用中具有潜在的影响和挑战。
首先,它将对模型的鲁棒性提出更高的要求,促使研究者更加关注模型的抗干扰能力。
其次,这种对抗样本可能会被用于恶意攻击,对个人和组织的隐私和安全造成威胁。
因此,我们需要采取有效的措施来防范和应对这种攻击。
此外,我们还需关注生成可添加量不受限的对抗样本的计算效率和成本问题。
在实际应用中,需要权衡模型的性能与生成对抗样本的计算资源与时间成本之间的关系。
六、未来展望随着机器学习模型在各领域的广泛应用,其安全问题越来越受到关注。
为了保障机器学习模型的安全性,我们需要深入研究对抗样本的生成方法和防御机制。
《2024年橙皮素早期干预对APPswe-PS1dE9小鼠学习记忆能力和Aβ代谢的影响》范文
《橙皮素早期干预对APPswe-PS1dE9小鼠学习记忆能力和Aβ代谢的影响》篇一橙皮素早期干预对APPswe-PS1dE9小鼠学习记忆能力和Aβ代谢的影响一、引言近年来,阿尔茨海默病(AD)已成为全球范围内的公共卫生问题。
橙皮素作为一种天然的黄酮类化合物,具有抗氧化、抗炎和神经保护等多种生物活性。
鉴于其在改善神经退行性疾病方面的潜在作用,本研究旨在探讨橙皮素早期干预对APPswe/PS1dE9小鼠学习记忆能力和Aβ代谢的影响。
二、材料与方法1. 实验动物本实验采用APPswe/PS1dE9小鼠模型,该模型常被用于研究AD的病理机制。
实验组小鼠自幼龄期开始接受橙皮素干预,对照组则不接受任何处理。
2. 橙皮素干预橙皮素以口服方式给予,剂量根据前期研究及实验需求进行设定。
干预时间从幼龄期开始,持续至小鼠成年。
3. 学习记忆能力评估采用Morris水迷宫、新物体识别等行为学实验评估小鼠的学习记忆能力。
4. Aβ代谢检测通过ELISA法检测小鼠脑内Aβ肽的含量,以评估Aβ的代谢情况。
三、结果1. 学习记忆能力改善实验结果显示,经过橙皮素早期干预的APPswe/PS1dE9小鼠在Morris水迷宫及新物体识别等行为学实验中表现出更好的学习记忆能力。
与对照组相比,实验组小鼠在完成任务时所需的时间更短,错误次数更少。
2. Aβ代谢影响ELISA检测结果显示,实验组小鼠脑内Aβ肽的含量较对照组有所降低。
这表明橙皮素的早期干预可能有助于改善AD小鼠的Aβ代谢。
四、讨论本研究表明,橙皮素早期干预对APPswe/PS1dE9小鼠的学习记忆能力和Aβ代谢具有积极影响。
这可能与橙皮素的抗氧化、抗炎和神经保护作用有关。
橙皮素可能通过清除自由基、减轻炎症反应、保护神经元等方式,改善AD小鼠的认知功能。
此外,橙皮素还可能通过调节Aβ的生成和清除,降低脑内Aβ的含量,从而改善Aβ代谢。
然而,本研究仍存在一定局限性。
首先,实验样本量较小,可能影响结果的稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Norman L. Johnson Theoretical Division MS B216 Los Alamos National Laboratory Los Alamos NM 87545 USA nlj@ (505) 667-9094, (50ptive Behavior (5/15/98) (resubmitted 11/5/98) Special Issue on Simulation of Social Agents Kerstin Dautenhahn, Editor
Collective Problem Solving
Abstract
Following a non-reductionist approach to the explanation of higher functionality observed in collective problem solvers, a simple agent-based model is used to “solve” a sequential problem - a maze. Larger collectives of the individual agents are observed in the simulations to locate a minimal path, even though the agents are non-interacting, have no global perception of the maze and use rules that do not include logic for finding a shorter path. The convergence to an optimal path is argued to be a demonstration of both an emergent problem formulation and emergent problem solution. Furthermore, many of the dynamics and properties of cooperating collectives are observed: performance of the collective greater than that of the average individual, reduced performance with less diversity, ability to function in the presence of extreme noise and information loss, improved collective performance with established individual problem solvers, path sensitivity to individual contributions but limited sensitivity of group performance, and others. The implications of the results to the formation of self-organizing knowledge and decision making systems are discussed. Keywords: diversity, collective, self-organizing, emergent problem solving
Norman L. Johnson
3
Introduction
Are there fundamental processes in biological, sociological and economic systems where individuals “solving” their own “problems” result in collective problem definition, knowledge creation or problem solving which is greater than that of the individual? By individuals, we mean organisms, groups, organizations - any entity that is localized in physical or conceptual space. By problems, we mean both problems that are consciously defined and ones that are not explicitly stated but are still solved by the laws or structures governing the global system. A typical approach to answering this question might be the examination of a system with interacting agents that cooperate and compete with some knowledge of shared resources, be it ecological niche, commodity market, or social position. The individuals are often taken to be agents who can modify their behavior based upon their assessment of their roles and outcomes. As researchers we often attribute significant capability to our idealized agents in order to explain the observed functionality at a global level. But what if there are other mechanisms for functionality that are being overlooked. Two real world examples are given to motivate the possibility of an alternative viewpoint. The first example is the formation of walkways following a new building development - a modernday example of path formation in nature. The pre-determination of walkways which best captures path preferences of the users is often an exercise in folly, as judged from the alternative pathways that people quickly develop. These planned solutions probably fail because of the multiplicity of the factors to be considered: different destinations, terrain, security, exposure to the weather and modes of travel. Some planners have learned that often the best solution is to let the “system” determine the paths by first having grass with no paths and then gradually converting emerging paths to formal walkways. These final paths represent the collective action of many individuals solving their own path problem, in a manner that is ultimately useful to the entire population but which is never expressed as a goal at the level of the individual. A second example is the recommended book lists at , an online bookstore. When a customer finds a possible book of interest, there is also shown a list of books that are related. These lists are constructed by displaying, according to frequency, the books that were purchased by people that also purchased the found book. The lists are exceptionally useful to search a sequence of related books until a desired book is found. Given that the possible choices exceed a million books, staffs of human booksellers would have great difficulty with the success rates of this recommendation method. Yet, this capability is founded on the simple process of capturing the purchase habits of individuals. These examples illustrate how collective functionality at a global level can occur without intentional "problem solving" on the part of the individual. Arguably both of these examples involve mechanisms that reinforce emerging patterns (selection of an existing path or book), but equally arguably both examples can exhibit collective functionality even if these positive reinforcing mechanisms are eliminated. How then is it possible to reconcile the traditional approaches of collective problem solving involving cooperation and competition of globally “aware” individuals and the above examples of global problems being solved without awareness of the individual? There is a growing body of literature that is addressing this reconciliation in the fields of biology, economics and sociology. A pivotal analysis of traditional approaches to collective action by evolutionary biologists and cognitive scientists was presented by Hemelrijk (1997). Through a straight-forward simulation of herd formation that includes only aggressive agents (i.e., there is no inherent mechanism for cooperation embodied in the individual), the collective behavior of cooperation is observed. She concludes that cooperative behavior from essentially uncooperative individuals is a global structure that emerges from the dynamics and spatial extent of the system. In contrast, traditional approaches to modeling this cooperative behavior arise out of the assumption that the agents themselves embody the choice to cooperate or not, leading to a game theoretical analysis. Said