2014年高考真题浙江理综试卷(高清+视频讲解)
2014年浙江省高考数学试卷(理科)(含解析版)
2014 年浙江省高考数学试卷(理科)一、选择题(每小题 5 分,共 50 分).(分)设全集U={ x∈N| x≥2},集合 A={ x∈ N| x 2≥5} ,则?U()1 5A=A.?B.{ 2}C.{ 5}D.{ 2,5} 2.(5分)已知 i 是虚数单位, a,b∈R,则“ a=b=1是”“( a+bi)2=2i ”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.(5 分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm24.(5 分)为了得到函数y=sin3x+cos3x 的图象,可以将函数y=cos3x 的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位.(分)在()6(1+y)4的展开式中,记 x m n项的系数为 f( m,n),则 f5 51+x y(3,0)+f( 2, 1) +f(1,2)+f(0,3)=()A.45B.60C.120D.210 6.(5 分)已知函数 f( x)=x3+ax2+bx+c.且 0<f(﹣ 1)=f(﹣ 2)=f(﹣ 3)≤3,则()A.c≤3B.3<c≤ 6C.6<c≤9D.c>9 7.(5 分)在同一直角坐标系中,函数f(x)=x a( x> 0),g(x)=log a x 的图象可1能是()A.B.C.D.8.(5 分)记 max{ x,y} =,min{ x,y} =,设,为平面向量,则()A.min{|+ |,|﹣ |}≤min{|| ,||}B.min{|+ |,|﹣ |}≥min{|| ,||}.+ |2,|﹣ |2}≤| |2+| |2C max{|.+ |2, |﹣ |2}≥| |2+| |2D max{|9.( 5 分)已知甲盒中仅有 1 个球且为红球,乙盒中有 m 个红球和 n 个蓝球( m ≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.( a)放入 i 个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入 i 个球后,从甲盒中取 1 个球是红球的概率记为 p i(i=1,2).则()A.p1> p2,E(ξ1)< E(ξ2)B.p1< p2,E(ξ1)> E(ξ2).1>p2,E(ξ1)> E(ξ2)D.p1<p2,E(ξ1)< E(ξ2)C p10.(5 分)设函数 f1(x)=x2,f2( x)=2( x﹣ x2),,,,,,,.记k=| f k(a1)﹣f k(a0)|+| f k(a2)﹣f k(a1)丨+ +| f ki=0 1 299I(a99)﹣ f k( a98)| ,k=1, 2, 3,则()A.I1<I2<I3.2<I1<I3.1<I3<I2.3<I2<I1B IC ID I2二、填空题11.( 4 分)在某程序框图如图所示,当输入50 时,则该程序运算后输出的结果是.12.( 4 分)随机变量ξ的取值为 0,1,2,若 P(ξ =0) = , E(ξ)=1,则 D(ξ)=.13.(4 分)当实数 x,y 满足时,1≤ax+y≤ 4恒成立,则实数a的取值范围是.14.( 4 分)在 8 张奖券中有一、二、三等奖各 1 张,其余 5 张无奖.将这 8 张奖券分配给 4 个人,每人 2 张,不同的获奖情况有种(用数字作答).15.( 4 分)设函数 f(x)=,若f(f(a))≤ 2,则实数a的取值范围是.16.( 4 分)设直线 x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点 P( m,0)满足 | PA| =| PB| ,则该双曲线的3离心率是.17.(4 分)如图,某人在垂直于水平地面ABC的墙面前的点 A 处进行射击训练.已知点 A 到墙面的距离为 AB,某目标点 P 沿墙面上的射线 CM 移动,此人为了准确瞄准目标点 P,需计算由点 A 观察点 P 的仰角θ的大小.若 AB=15m,AC=25m,∠ BCM=30°,则 tan θ的最大值是.(仰角θ为直线AP与平面 ABC所成角)三、解答题18.( 14 分)在△ ABC中,内角 A, B, C 所对的边分别为 a,b,c.已知 a≠b,c= ,cos2A﹣cos2 B= sinAcosA﹣sinBcosB(1)求角 C 的大小;(2)若 sinA= ,求△ ABC的面积.4.(分)已知数列{ a n } 和{ b } 满足 a a(n∈N*).若 { a } 为等19 14n1a2a3n=n比数列,且 a1=2, b3=6+b2.(Ⅰ)求 a n和 b n;(Ⅱ)设 c(∈N *).记数列 { c } 的前 n 项和为 S .n=n n n(i)求 S n;(i i)求正整数 k,使得对任意 n∈N*均有 S k≥ S n.20(.15 分)如图,在四棱锥 A﹣BCDE中,平面 ABC⊥平面 BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC= .(Ⅰ)证明: DE⊥平面 ACD;(Ⅱ)求二面角B﹣AD﹣ E 的大小.521.( 15 分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点 P,且点 P 在第一象限.(Ⅰ)已知直线l 的斜率为 k,用 a,b,k 表示点 P 的坐标;(Ⅱ)若过原点O 的直线 l1与 l 垂直,证明:点 P 到直线 l1的距离的最大值为 a ﹣b.22.( 14 分)已知函数 f (x)=x3+3| x﹣ a| (a∈R).(Ⅰ)若 f(x)在 [ ﹣ 1,1] 上的最大值和最小值分别记为M(a),m(a),求 M(a)﹣ m(a);(Ⅱ)设 b∈R,若 [ f(x)+b] 2≤4 对 x∈[ ﹣1,1] 恒成立,求 3a+b 的取值范围.62014 年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题(每小题 5 分,共 50 分)1.(5 分)设全集 U={ x∈N| x≥2} ,集合 A={ x∈ N| x2≥ 5} ,则 ?U A=()A.?B.{ 2}C.{ 5}D.{ 2,5}【考点】 1F:补集及其运算.【专题】 5J:集合.【分析】先化简集合 A,结合全集,求得 ?U A.【解答】解:∵全集 U={ x∈N| x≥2} ,集合 A={ x∈N| x2≥5} ={ x∈ N| x≥3} ,则 ?U A={ 2} ,故选: B.【点评】本题主要考查全集、补集的定义,求集合的补集,属于基础题.2.(5 分)已知 i 是虚数单位, a,b∈R,则“ a=b=1是”“( a+bi)2=2i ”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】 29:充分条件、必要条件、充要条件; A1:虚数单位 i、复数.【专题】 5L:简易逻辑.【分析】利用复数的运算性质,分别判断“a=b=1?”“( a+bi )2=2i ”与“”a=b=1?“(a+bi)2=2i ”的真假,进而根据充要条件的定义得到结论.【解答】解:当“a=b=1时”,“(a+bi)2=(1+i)2=2i ”成立,故“a=b=1是”“(a+bi)2=2i ”的充分条件;当“(a+bi)2 =a2﹣ b2+2abi=2i 时”,“a=b=1或”“a=b=﹣1”,故“a=b=1是”“(a+bi)2=2i ”的不必要条件;综上所述,“a=b=1是”“(a+bi)2=2i ”的充分不必要条件;7故选: A.【点评】本题考查的知识点是充要条件的定义,复数的运算,难度不大,属于基础题.3.(5 分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm2【考点】 L!:由三视图求面积、体积.【专题】 5Q:立体几何.【分析】几何体是直三棱柱与直四棱柱的组合体,根据三视图判断直三棱柱的侧棱长与底面的形状及相关几何量的数据,判断四棱柱的高与底面矩形的边长,把数据代入表面积公式计算.【解答】解:由三视图知:几何体是直三棱柱与直四棱柱的组合体,其中直三棱柱的侧棱长为 3,底面是直角边长分别为 3、4 的直角三角形,四棱柱的高为 6,底面为矩形,矩形的两相邻边长为 3 和 4,∴几何体的表面积S=2×4× 6+3×6+3×3+2×3×4+2××3×4+(4+5)×3=48+18+9+24+12+27=138( cm2).故选: D.【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.84.(5 分)为了得到函数y=sin3x+cos3x 的图象,可以将函数y=cos3x 的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位【考点】 HJ:函数 y=Asin(ωx+φ)的图象变换.【专题】 57:三角函数的图像与性质.【分析】利用两角和与差的三角函数化简已知函数为一个角的一个三角函数的形式,然后利用平移原则判断选项即可.【解答】解:函数 y=sin3x+cos3x=,故只需将函数y=cos3x 的图象向右平移个单位,得到 y==的图象.故选: C.【点评】本题考查两角和与差的三角函数以及三角函数的平移变换的应用,基本知识的考查.5.(5 分)在( 1+x)6(1+y)4的展开式中,记 x m y n项的系数为 f( m,n),则 f(3,0)+f( 2, 1) +f(1,2)+f(0,3)=()A.45B.60C.120D.210【考点】 DA:二项式定理.【专题】 5P:二项式定理.【分析】由题意依次求出 x3y0,x2y1, x1y2,x0y3,项的系数,求和即可.【解答】解:( 1+x)6( 1+y)4的展开式中,含 x3y0的系数是:=20.f(3,0)=20;含 x2y1的系数是=60, f(2,1)=60;含 x1y2的系数是=36, f(1,2)=36;含 x0y3的系数是=4,f( 0, 3) =4;9∴f(3,0)+f( 2, 1) +f (1,2)+f(0,3)=120.故选: C.【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.6.(5 分)已知函数 f( x)=x3+ax2+bx+c.且 0<f(﹣ 1)=f(﹣ 2)=f(﹣ 3)≤3,则()A.c≤3B.3<c≤ 6C.6<c≤9D.c>9【考点】 7E:其他不等式的解法.【专题】 11:计算题; 51:函数的性质及应用.【分析】由 f(﹣ 1)=f(﹣ 2)=f(﹣ 3)列出方程组求出a,b,代入 0<f(﹣ 1)≤3,即可求出 c 的范围.【解答】解:由 f(﹣ 1)=f(﹣ 2)=f(﹣ 3)得,解得,则 f( x)=x3+6x2+11x+c,由0<f(﹣1)≤3,得0<﹣1+6﹣11+c≤3,即 6<c≤ 9,故选: C.【点评】本题考查方程组的解法及不等式的解法,属于基础题.7.(5 分)在同一直角坐标系中,函数f(x)=x a( x> 0),g(x)=log a x 的图象可能是()A.B.10C.D.【考点】 3A:函数的图象与图象的变换.【专题】 51:函数的性质及应用.【分析】结合对数函数和幂函数的图象和性质,分当0< a< 1 时和当 a>1 时两种情况,讨论函数f(x)=x a(x≥0),g(x)=log a x 的图象,比照后可得答案.此时答案 D 满足要求,当 a>1 时,函数 f(x)=x a(x≥0),g(x)=log a x 的图象为:无满足要求的答案,11综上:故选 D,故选: D.【点评】本题考查的知识点是函数的图象,熟练掌握对数函数和幂函数的图象和性质,是解答的关键.8.(5 分)记 max{ x,y} =,min{ x,y} =,设,为平面向量,则()A.min{|+ |,|﹣ |} ≤min{| | ,||}B.min{| + | ,| ﹣ |} ≥min{|| ,||}.max{|+ |2,|﹣ |2}≤| |2+| |2.max{| + |2,| ﹣ |2} ≥C D| |2+|| 2【考点】 98:向量的加法; 99:向量的减法.【专题】 5A:平面向量及应用.【分析】将,平移到同一起点,根据向量加减法的几何意义可知,+ 和﹣分别表示以,为邻边所做平行四边形的两条对角线,再根据选项内容逐一判断.【解答】解:对于选项 A,取⊥,则由图形可知,根据勾股定理,结论不成立;对于选项 B,取,是非零的相等向量,则不等式左边min{|+ | ,|﹣|} =0,显然,不等式不成立;对于选项C,取,是非零的相等向量,则不等式左边max{| + | 2, |﹣| 2} =| + | 2=4,而不等式右边=|| 2+| | 2=2,故C不成立,D选项正确.故选: D.【点评】本题在处理时要结合着向量加减法的几何意义,将,,,放12在同一个平行四边形中进行比较判断,在具体解题时,本题采用了排除法,对错误选项进行举反例说明,这是高考中做选择题的常用方法,也不失为一种快速有效的方法,在高考选择题的处理上,未必每一题都要写出具体解答步骤,针对选择题的特点,有时“排除法”,“确定法”,“特殊值”代入法等也许是一种更快速,更有效的方法.9.( 5 分)已知甲盒中仅有 1 个球且为红球,乙盒中有 m 个红球和 n 个蓝球( m ≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.( a)放入 i 个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入 i 个球后,从甲盒中取 1 个球是红球的概率记为 p i(i=1,2).则()> p ,E(ξ)< E(ξ)A.p1 212 C.p1>p2,E(ξ1)> E(ξ2)B.p < p ,E(ξ)> E(ξ)1212 D.p1<p2,E(ξ1)< E(ξ2)【考点】 CH:离散型随机变量的期望与方差.【专题】 5I:概率与统计.【分析】首先,这两次先后从甲盒和乙盒中拿球是相互独立的,然后分两种情况:即当ξ=1时,有可能从乙盒中拿出一个红球放入甲盒,也可能是拿到一个蓝球放入甲盒;ξ=2时,则从乙盒中拿出放入甲盒的球可能是两蓝球、一红一蓝、或者两红;最后利用概率公式及分布列知识求出P1,P2和E(ξ1),E(ξ2)进行比较即可.【解答】解析:,,,所以 P1>P2;由已知ξ的取值为 1、2,ξ的取值为 1、2、 3,12所以,==,13)﹣ E(ξ)=.E(ξ12故选: A.【点评】正确理解ξi(i=1,2)的含义是解决本题的关键.此题也可以采用特殊值法,不妨令 m=n=3,也可以很快求解..(分)设函数1(x)=x2,f2(x)=2(x﹣x2),,,10 5fi=0, 1,2,, 99.记 I k=| f k(a1)﹣ f k(a0)|+| f k(a2)﹣ f k(a1)丨 + +| f k (a99)﹣ f k( a98)| ,k=1, 2, 3,则()A.I1<I2<I3B.I2<I1<I3C.I1<I3<I2D.I3<I2<I1【考点】 57:函数与方程的综合运用.【专题】 51:函数的性质及应用.【分析】根据记 I k=| f k(a1)﹣ f k(a0)|+| f k(a2)﹣ f k(a1)丨 + +| f k( a99)﹣ f k (a98)| ,分别求出 I1, I2,I3与 1 的关系,继而得到答案【解答】解:由,故==1,由,故×= ×<1,+=,故 I2<I1<I3,故选: B.【点评】本题主要考查了函数的性质,关键是求出这三个数与1 的关系,属于难题.14二、填空题11.( 4 分)在某程序框图如图所示,当输入50 时,则该程序运算后输出的结果是 6 .【考点】 E7:循环结构; EF:程序框图.【专题】 5K:算法和程序框图.【分析】根据框图的流程模拟运行程序,直到满足条件S>50,跳出循环体,确定输出的 i 的值.【解答】解:由程序框图知:第一次循环 S=1,i=2;第二次循环 S=2×1+2=4,i=3;第三次循环S=2×4+3=11, i=4;第四次循环 S=2×11+4=26,i=5;第五次循环 S=2×26+5=57,i=6,满足条件 S> 50,跳出循环体,输出i=6.故答案为: 6.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.1512.( 4 分)随机变量ξ的取值为 0,1,2,若 P(ξ =0) = , E(ξ)=1,则 D(ξ)=.【考点】 CH:离散型随机变量的期望与方差.【专题】 5I:概率与统计.【分析】结合方差的计算公式可知,应先求出P(ξ=1),P(ξ=2),根据已知条件结合分布列的性质和期望的计算公式不难求得.【解答】解析:设 P(ξ=1)=p,P(ξ=2)=q,则由已知得 p+q=,,解得,,所以.故答案为:【点评】本题综合考查了分布列的性质以及期望、方差的计算公式.13.(4 分)当实数 x,y 满足时,1≤ax+y≤ 4恒成立,则实数a的取值范围是[].【考点】 7C:简单线性规划.【专题】 59:不等式的解法及应用.【分析】由约束条件作出可行域,再由1≤ax+y≤ 4 恒成立,结合可行域内特殊点 A, B, C 的坐标满足不等式列不等式组,求解不等式组得实数 a 的取值范围.【解答】解:由约束条件作可行域如图,联立,解得 C(1,).联立,解得 B(2,1).16在 x﹣y﹣ 1=0 中取 y=0 得 A(1,0).要使 1≤ax+y≤4 恒成立,则,解得: 1.∴实数 a 的取值范围是.解法二:令 z=ax+y,当 a>0 时, y=﹣ax+z,在 B 点取得最大值, A 点取得最小值,可得,即 1≤a≤;当 a<0 时, y=﹣ax+z,在 C 点取得最大值,① a<﹣ 1 时,在 B 点取得最小值,可得,解得0≤a≤(不符合条件,舍去)②﹣ 1<a< 0 时,在 A 点取得最小值,可得,解得1≤a≤(不符合条件,舍去)综上所述即: 1≤a≤;故答案为:.【点评】本题考查线性规划,考查了数形结合的解题思想方法,考查了数学转化17思想方法,训练了不等式组得解法,是中档题.14.( 4 分)在 8 张奖券中有一、二、三等奖各 1 张,其余 5 张无奖.将这 8 张奖券分配给 4 个人,每人 2 张,不同的获奖情况有60种(用数字作答).【考点】 D9:排列、组合及简单计数问题.【专题】 5O:排列组合.【分析】分类讨论,一、二、三等奖,三个人获得;一、二、三等奖,有 1 人获得2张,1人获得 1张.【解答】解:分类讨论,一、二、三等奖,三个人获得,共有=24 种;一、二、三等奖,有 1 人获得 2 张, 1 人获得 1 张,共有=36 种,共有 24+36=60 种.故答案为: 60.【点评】本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.15.( 4 分)设函数 f(x)=,若f(f(a))≤ 2,则实数a的取值范围是(﹣∞,].【考点】 5B:分段函数的应用.【专题】 59:不等式的解法及应用.【分析】画出函数 f (x)的图象,由f(f( a))≤ 2,可得 f( a)≥﹣ 2,数形结合求得实数 a 的取值范围.【解答】解:∵函数 f (x)=,它的图象如图所示:由 f(f( a))≤ 2,可得 f( a)≥﹣ 2.当 a<0 时, f (a)=a2+a=(a+)2﹣≥﹣2恒成立;18当 a≥0 时, f (a)=﹣a2≥﹣ 2,即 a2≤2,解得 0≤ a≤,则实数 a 的取值范围是a≤,故答案为:(﹣∞,] .【点评】本题主要考查分段函数的应用,其它不等式的解法,体现了数形结合的数学思想,属于中档题.16.( 4 分)设直线 x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点 P( m,0)满足 | PA| =| PB| ,则该双曲线的离心率是.【考点】 KC:双曲线的性质.【专题】 5D:圆锥曲线的定义、性质与方程.【分析】先求出 A,B 的坐标,可得AB 中点坐标为(,),利用点 P( m,0)满足 | PA| =| PB| ,可得=﹣3,从而可求双曲线的离心率.【解答】解:双曲线(a>0,b>0)的两条渐近线方程为y=±x,则19与直线 x﹣3y+m=0 联立,可得 A(,),B(﹣,),∴ AB中点坐标为(,),∵点 P(m, 0)满足 | PA| =| PB| ,∴=﹣3,∴ a=2b,∴= b,∴e= = .故答案为:.【点评】本题考查双曲线的离心率,考查直线的位置关系,考查学生的计算能力,属于中档题.17.(4 分)如图,某人在垂直于水平地面ABC的墙面前的点 A 处进行射击训练.已知点 A 到墙面的距离为 AB,某目标点 P 沿墙面上的射线 CM 移动,此人为了准确瞄准目标点 P,需计算由点 A 观察点 P 的仰角θ的大小.若 AB=15m,AC=25m,∠BCM=30°,则 tan θ的最大值是.(仰角θ为直线AP与平面 ABC所成角)【考点】 HO:三角函数模型的应用;HU:解三角形.【专题】 58:解三角形.20【分析】过 P 作 PP′⊥ BC,交 BC于 P′,连接 AP′,则 tan θ=,求出PP′,AP′,利用函数的性质,分类讨论,即可得出结论.【解答】解:∵ AB=15m,AC=25m,∠ ABC=90°,∴ BC=20m,过 P 作 PP′⊥ BC,交 BC于 P′,连接 AP′,则 tan θ=,设 BP′=x,则 CP′=20﹣ x,由∠ BCM=30°,得 PP′=CP′tan30 °=(20﹣ x),在直角△ ABP′中, AP′=,∴ tan θ= ?,令 y=,则函数在x∈[ 0,20]单调递减,∴ x=0 时,取得最大值为=.若 P′在 CB的延长线上, PP′=CP′tan30 °=(20+x),在直角△ ABP′中, AP′=,∴ tan θ= ?,令 y=,则y′=0可得x=时,函数取得最大值,故答案为:.【点评】本题考查利用数学知识解决实际问题,考查函数的单调性,考查学生分21析解决问题的能力,属于中档题.三、解答题18.( 14 分)在△ ABC中,内角 A, B, C 所对的边分别为 a,b,c.已知 a≠b,c= ,cos2A﹣cos2 B= sinAcosA﹣sinBcosB(1)求角 C 的大小;(2)若 sinA= ,求△ ABC的面积.【考点】 GL:三角函数中的恒等变换应用;HP:正弦定理.【专题】 58:解三角形.【分析】( 1)利用倍角公式、两角和差的正弦公式可得,由 a≠ b 得, A≠B,又 A+B∈( 0,π),可得,即可得出.(2)利用正弦定理可得 a,利用两角和差的正弦公式可得 sinB,再利用三角形的面积计算公式即可得出.【解答】解:(1)由题意得,,∴,化为,由 a≠b 得, A≠ B,又 A+B∈( 0,π),得,即,∴;( 2)由,利用正弦定理可得,得,由 a<c,得 A<C,从而,故,∴.【点评】本题考查了正弦定理、倍角公式、两角和差的正弦公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.22.(分)已知数列{ a n } 和{ b } 满足 a a(n∈N*).若 { a } 为等19 14n1a2a3n=n比数列,且 a1=2, b3=6+b2.(Ⅰ)求 a n和 b n;(Ⅱ)设 c(∈N *).记数列 { c } 的前 n 项和为 S .n=n n n(i)求 S n;(i i)求正整数 k,使得对任意 n∈N*均有 S k≥ S n.【考点】 8E:数列的求和; 8K:数列与不等式的综合.【专题】 54:等差数列与等比数列.【分析】(Ⅰ)先利用前n 项积与前( n﹣1)项积的关系,得到等比数列 { a n } 的第三项的值,结合首项的值,求出通项 a n,然后现利用条件求出通项 b n;(Ⅱ)(i)利用数列特征进行分组求和,一组用等比数列求和公式,另一组用裂项法求和,得出本小题结论;(ii)本小题可以采用猜想的方法,得到结论,再加以证明.【解答】解:(Ⅰ)∵ a1 23 a n(∈*)①,a a=n N当 n≥2,n∈N*时,②,由①②知:,令 n=3,则有.∵b3=6+b2,∴ a3=8.∵{ a n} 为等比数列,且 a1=2,∴ { a n} 的公比为 q,则=4,由题意知 a n>0,∴ q> 0,∴ q=2.∴( n∈ N*).又由 a a(∈N * )得:1a2a3n=n,23,∴b n=n(n+1)(n∈N*).(Ⅱ)(i)∵ c n ===.∴S n=c1+c2+c3+ +c n====;(ii)因为 c1=0,c2>0,c3> 0, c4>0;当 n≥5 时,,而=>0,得,所以,当 n≥5 时, c n< 0,综上,对任意 n∈ N*恒有 S4≥S n,故 k=4.【点评】本题考查了等比数列通项公式、求和公式,还考查了分组求和法、裂项求和法和猜想证明的思想,证明可以用二项式定理,还可以用数学归纳法.本题计算量较大,思维层次高,要求学生有较高的分析问题解决问题的能力.本题属于难题.20.(15 分)如图,在四棱锥 A﹣BCDE中,平面 ABC⊥平面 BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明: DE⊥平面 ACD;(Ⅱ)求二面角B﹣AD﹣ E 的大小.24【考点】 LW:直线与平面垂直; MJ:二面角的平面角及求法.【专题】 5F:空间位置关系与距离;5G:空间角; 5Q:立体几何.【分析】(Ⅰ)依题意,易证AC⊥平面 BCDE,于是可得 AC⊥ DE,又 DE⊥DC,从而 DE⊥平面 ACD;(Ⅱ)作 BF⊥AD,与 AD 交于点 F,过点 F 作 FG∥ DE,与 AE交于点 G,连接 BG,由(Ⅰ)知 DE⊥AD,则 FG⊥AD,所以∠ BFG就是二面角 B﹣AD﹣ E 的平面角,利用题中的数据,解三角形,可求得 BF=,AF= AD,从而 GF= ,cos∠BFG==,从而可求得答案.【解答】证明:(Ⅰ)在直角梯形 BCDE中,由 DE=BE=1,CD=2,得 BD=BC=,由 AC=222,AB=2得 AB=AC+BC ,即 AC⊥BC,又平面 ABC⊥平面 BCDE,从而 AC⊥平面 BCDE,所以 AC⊥DE,又 DE⊥DC,从而 DE⊥平面 ACD;(Ⅱ)作 BF⊥AD,与 AD 交于点 F,过点 F 作 FG∥ DE,与 AE交于点 G,连接 BG,由(Ⅰ)知 DE⊥AD,则 FG⊥AD,所以∠ BFG就是二面角 B﹣AD﹣ E 的平面角,222在直角梯形 BCDE中,由 CD =BC+BD ,得 BD⊥BC,又平面ABC⊥平面BCDE,得BD⊥平面ABC,从而BD⊥AB,由于 AC⊥平面 BCDE,得 AC⊥ CD.在 Rt△ACD中,由 DC=2,AC= ,得 AD= ;在Rt△AED中,由 ED=1,AD= 得 AE= ;在 Rt△ABD 中,由 BD=,AB=2,AD=得BF=,AF= AD,从而GF=,在△ ABE,△ ABG中,利用余弦定理分别可得 cos∠BAE=,BG=.在△ BFG中, cos∠BFG==,25所以,∠ BFG=,二面角B﹣AD﹣E的大小为.【点评】本题主要考查空间点、线、面位置关系,二面角等基础知识,同时考查空间想象能力,推理论证能力和运算求解能力.21.( 15 分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点 P,且点 P 在第一象限.(Ⅰ)已知直线l 的斜率为 k,用 a,b,k 表示点 P 的坐标;(Ⅱ)若过原点O 的直线 l1与 l 垂直,证明:点 P 到直线 l1的距离的最大值为 a ﹣b.【考点】 KH:直线与圆锥曲线的综合.【专题】 5D:圆锥曲线的定义、性质与方程;5E:圆锥曲线中的最值与范围问题.【分析】(Ⅰ)设直线 l 的方程为 y=kx+m( k< 0),由,消去y得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0,利用△ =0,可求得在第一象限中点P的坐标;(Ⅱ)由于直线 l1过原点 O 且与直线 l 垂直,设直线 l1的方程为 x+ky=0,利用点26到直线间的距离公式,可求得点P到直线l1的距离d=,整理即可证得点 P 到直线 l 1的距离的最大值为a﹣b..【解答】解:(Ⅰ)设直线 l 的方程为 y=kx+m(k<0),由,消去 y得(b2+a2k2) x2+2a2kmx+a2m2﹣a2b2=0.由于直线 l 与椭圆 C 只有一个公共点P,故△ =0,即 b2﹣ m2+a2 k2=0,此时点 P 的横坐标为﹣,代入y=kx+m得点 P 的纵坐标为﹣ k?+m=,∴点 P 的坐标为(﹣,),又点 P 在第一象限,故m>0,故 m=,故点 P 的坐标为 P(,).(Ⅱ)由于直线 l1过原点 O 且与直线 l 垂直,故直线 l1的方程为 x+ky=0,所以点P 到直线 l1的距离d=,整理得: d=,27因为a2k2 +≥ 2ab,所以≤=a﹣b,当且仅当k2=时等号成立.所以,点 P 到直线 l1的距离的最大值为a﹣b.【点评】本题主要考查椭圆的几何性质、点到直线间的距离、直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法、基本不等式应用等综合解题能力.22.( 14 分)已知函数 f (x)=x3+3| x﹣ a| (a∈R).(Ⅰ)若 f(x)在 [ ﹣ 1,1] 上的最大值和最小值分别记为M(a),m(a),求 M (a)﹣ m(a);(Ⅱ)设 b∈R,若 [ f(x)+b] 2≤4 对 x∈[ ﹣1,1] 恒成立,求 3a+b 的取值范围.【考点】 6E:利用导数研究函数的最值.【专题】 53:导数的综合应用.【分析】(Ⅰ)利用分段函数,结合 [ ﹣ 1,1] ,分类讨论,即可求 M( a)﹣ m( a);(Ⅱ)令 h(x)=f( x)+b,则 h( x)=,h′(x)=,则[ f( x)+b] 2≤4 对 x∈ [ ﹣ 1,1] 恒成立,转化为﹣ 2≤h(x)≤2 对 x∈[ ﹣1,1] 恒成立,分类讨论,即可求 3a+b 的取值范围.【解答】解:(Ⅰ)∵ f(x)=x3+3| x﹣a| =,28∴ f (′ x)=,①a≤﹣ 1 时,∵﹣ 1≤x≤1,∴ x≥a,f( x)在(﹣ 1, 1)上是增函数,∴ M(a)=f(1)=4﹣3a, m(a)=f(﹣ 1) =﹣4﹣3a,∴M(a)﹣ m( a) =8;②﹣ 1<a< 1 时, x∈( a, 1),f (x)=x3+3x﹣ 3a,在( a,1)上是增函数;x∈(﹣ 1, a),f(x) =x3﹣ 3x+3a,在(﹣ 1,a)上是减函数,∴M(a)=max{ f(1),f(﹣ 1)} ,m(a)=f(a)=a3,∵ f(1)﹣ f(﹣ 1) =﹣ 6a+2,∴﹣ 1<a≤时, M(a)﹣ m( a)=﹣a3﹣3a+4;<a< 1 时, M ( a)﹣ m(a)=﹣a3+3a+2;③a≥ 1 时,有 x≤ a, f(x)在(﹣ 1,1)上是减函数,∴ M(a)=f(﹣ 1) =2+3a,m( a)=f(1)=﹣2+3a,∴ M(a)﹣ m( a) =4;(Ⅱ)令 h(x)=f( x)+b,则 h( x)=,h′(x)=,∵[ f(x)+b] 2≤ 4 对 x∈[ ﹣1,1] 恒成立,∴﹣ 2≤h(x)≤ 2 对 x∈ [ ﹣ 1, 1] 恒成立,由(Ⅰ)知,① a≤﹣ 1 时, h( x)在(﹣ 1,1)上是增函数,最大值 h(1)=4﹣3a+b,最小值 h(﹣ 1)=﹣4﹣3a+b,则﹣ 4﹣3a+b≥﹣ 2 且 4﹣3a+b≤2 矛盾;②﹣ 1<a≤时,最小值h(a)=a3+b,最大值h(1)=4﹣ 3a+b,∴ a3+b≥﹣ 2且 4﹣ 3a+b≤ 2,令 t( a) =﹣ 2﹣ a3+3a,则 t ′( a)=3﹣3a2>0,t (a)在( 0,)上是增函数,∴t (a)> t (0)=﹣2,∴﹣ 2≤3a+b≤0;③<a<1时,最小值h(a)=a3+b,最大值 h(﹣ 1)=3a+b+2,则 a3+b≥﹣ 229且 3a+b+2≤2,∴﹣< 3a+b≤0;④a≥ 1 时,最大值 h(﹣ 1)=3a+b+2,最小值 h(1)=3a+b﹣2,则 3a+b﹣2≥﹣2 且 3a+b+2≤2,∴ 3a+b=0.综上, 3a+b 的取值范围是﹣ 2≤3a+b≤0.【点评】本题考查导数的综合运用,考查函数的最值,考查分类讨论、化归与转化的数学思想,难度大.30。
2014年浙江省高考地理试卷(附参考答案)
2014年浙江省普通高等学校招生统一考试地理试卷一、选择题:本大题共6小题,每小题0分,共44分.在每小题列出的四个选项中,只有一项是符合题目要求的.南水北调东线工程是把长江的水调往北方的调水工程,调水线路主要为大运河.读南水北调东线工程调水线路图,完成第1、2题.1.(4分)对南水北调东线工程及其可能带来的影响,叙述正确的是()①可以解决华北平原的盐碱化问题②有利于改善丙地大运河航运条件③丙至戊段可以自流引水④可缓解戊地的用水紧张.A.①②B.③④C.①③D.②④2.(4分)南水北调东线工程对长江可能带来的影响,叙述正确的是()A.可提高社会对长江水质的关注B.可促使长江的泥沙向海洋输送C.可降低甲地咸水入侵发生的问题D.可改变长江口外海洋潮汐的规律中亚位于“丝绸之路经济带”的中部,中亚国家与我国之间已形成由铁路、公路、航空和管道等多种交通运输方式构成的综合运输体系.读我国与中亚部分地区略图,完成第3、4题.3.(4分)我国与中亚国家之间大力发展铁路运输,体现其优势的是()①适宜长距离大宗货物运输②修建总成本低③运输快捷,灵活方便④受气象灾害影响相对较小.A.①③B.②③C.①④D.②④4.(4分)某贸易代表团7月从吐鲁番出发沿铁路前往中亚考察,有关沿线的自然环境描述正确的是()A.自咸海至阿拉木图呈现草原向荒漠的变化B.在乌鲁木齐看到坡上有植被、顶部有积雪的山峰C.锡尔河自上而下到河口水量不断增加D.从阿拉木图往北走看到山地针叶林分布的海拔高度不断上升区域人口对资源压力指数是全国某资源人均占有量与区域该资源人均占有量之比,此比值可作为判断区域人口规模适宜程度的指标之一.读表,完成第5、6题.5.(4分)四省比较,叙述正确的是()A.人均GDP水平越高,则人口对水资源压力越大B.城市化水平越低,则人口对耕地压力越小C.人均GDP水平越高,则城市化水平越高D.城市化水平越低,则人口对水资源压力越小6.(4分)四省比较关于产业发展条件叙述正确的是()A.青海大力发展高科技产业条件最佳B.河南发展耗水较多的产业条件最佳C.浙江发展用耕地多的产业条件最佳D.黑龙江发展商品农业耕地条件最佳如图为我国某地沿北纬38.5°所作的地质构造、地貌剖面图,图中一般地势越高地下水埋藏越深,读图完成7﹣8题.7.(4分)对图中四地地质构造成因、地貌外力作用方式叙述正确的是()A.①地断裂抬升、黄河干流流水侵蚀B.②地断裂下沉、黄河干流砂砾洪积C.③地断裂下沉、黄河干流泥沙冲积D.④地断裂抬升、黄河干流泥沙堆积8.(4分)图中城市历史上曾是某王朝的都城,该王朝一般会选择在土层深厚、地下水位较深的地方修建皇家陵墓.图中较为理想的地方是()A.①B.②C.③D.④水分盈亏量是降水量减去蒸发量的差值,反映气候的干湿状况.当水分盈亏量>0时,表示水分有盈余,气候湿润;当水分盈亏量<0时,表示水分有亏缺,气候干燥.如图为我国两地年内平均水分盈亏和湿度曲线图.读图,完成第9、10题.9.(4分)某农作物喜温好湿,能够正常生长和安全结实的气温要求是≥20℃,最短生长期为4个月。
2014年全国高考理综试题及答案-新课标2卷(解析版)
2014年普通高等学校招生全国统一考试(新课标Ⅱ卷)理科综合试卷第Ⅰ卷一、选择题(每小题6分,只有一个符合题意)1、关于细胞的叙述,错误的是A.植物细胞的胞间连丝具有物质运输的作用B.动物细胞间的粘着性与细胞膜上的糖蛋白有关C.ATP水解释放的能量可用于细胞内的吸能反应D.哺乳动物的细胞可以合成蔗糖,也可以合成乳糖【答案】D【解析】本题考查的是细胞结构和化学成份这两个知识点。
细胞膜的功能之一信息传递,其方式如通过胞间连丝,A项正确。
糖蛋白与细胞相互识别有关,又与细胞间的粘着性有关,癌变后的细胞由于糖蛋白减少所以易转移和扩散, B项正确。
ATP水解后有能量可用于各项生命活动,如电能、热能等其他细胞内的吸能反应,C项正确。
蔗糖是植物内的一种二糖,在哺乳动物的细胞不可以合成,故D项是错误的。
2.同一动物个体的神经细胞与肌肉细胞在功能上是不同的,造成这种差异的主要原因是A.两者所处的细胞周期不同B.两者合成的特定蛋白不同C.两者所含有的基因组不同D.两者核DNA复制的方式不同【答案】B【解析】本题考查的是细胞分化这个知识点。
同一生物个体的不同细胞,在形态结构与功能上是不同的,是基因的选择性表达的结果,其DNA分子或遗传物质并没有差异,A、C、D都不正确,基因的选择性表达之后,形成了不同的蛋白质,使各细胞中的蛋白质有所不同,故B项正确。
3.关于在正常情况下组织液的生成与回流的叙述,错误的是A.生成与回流的组织液中氧气的含量相等B.组织液不断生成与回流,并保持动态平衡C.血浆中的有些物质经毛细血管动脉端进入组织液D.组织液中的有些物质经毛细血管静脉端进入血液【答案】D【解析】本题考查的是内环境成份这一个知识点。
内环境中的各种成份是处于动态平衡之中,氧气在生成的组织液中会高于回流的组织液,因为组织细胞在不断消耗氧气,这样氧气就能以自由扩散形式从组织液进入组织细胞,故A不正确,B正确。
因为毛细血管壁有一定通透性,所以血浆中的小分子物质可以透过毛细血管动脉端进入组织液,同理,组织液中的有些物质经毛细血管静脉端进入血液,血浆与组织液可以发生物质相互渗透。
【高考真题】2014年全国统一高考物理试卷(新课标ⅰ)(含答案)
2014年全国统一高考物理试卷(新课标Ⅰ)一、选择题:本题共8小题,每小题6分,在每题给出的四个选项中,第14-18题只有一项符合题目要求,第19-21题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错的得0分。
14.(6分)在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是()A.将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化B.在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化C.将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化15.(6分)关于通电直导线在匀强磁场中所受的安培力,下列说法正确的是()A.安培力的方向可以不垂直于直导线B.安培力的方向总是垂直于磁场的方向C.安培力的大小与通电导线和磁场方向的夹角无关D.将直导线从中折成直角,安培力的大小一定变为原来的一半16.(6分)如图,MN为铝质薄平板,铝板上方和下方分别有垂直于图平面的匀强磁场(未画出),一带电粒子从紧贴铝板上表面的P点垂直于铝板向上射出,从Q点穿越铝板后到达PQ的中点O.已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变,不计重力,铝板上方和下方的磁感应强度大小之比为()A.2 B.C.1 D.17.(6分)如图所示,用橡皮筋将一小球悬挂在小车的架子上,系统处于平衡状态,现使小车从静止开始向左加速,加速度从零开始逐渐增大到某一值,然后保持此值,小球稳定时细线偏离竖直方向到某一角度(橡皮筋在弹性限度内)。
与稳定在竖直位置时相比,小球的高度()A.一定降低B.一定升高C.保持不变D.升高或降低由橡皮筋的劲度系数决定18.(6分)如图(a),线圈ab、cd绕在同一软铁芯上,在ab线圈中通以变化的电流,用示波器测得线圈cd间电压如图(b)所示,已知线圈内部的磁场与流经线圈的电流成正比,则下列描述线圈ab中电流随时间变化关系的图中,可能正确的是()A.B.C.D.19.(6分)太阳系各行星几乎在同一平面内沿同一方向绕太阳做圆周运动,当地球恰好运行到某地外行星和太阳之间,且三者几乎排成一条直线的现象,天文学家称为“行星冲日”,据报道,2014年各行星冲日时间分别为:1月6日木星冲日;4月9日火星冲日;5月11日土星冲日;8月29日海王星冲日;10月8日天王星冲日.已知地球及各地外行星绕太阳运动的轨道半径如下表所示,则下列判断正确的是( )A .各地外行星每年都会出现冲日现象B .在2015年内一定会出现木星冲日C .天王星相邻两次冲日的时间间隔为土星的一半D .地外行星中,海王星相邻两次冲日的时间间隔最短20.(6分)如图,两个质量均为m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO′的距离为L ,b 与转轴的距离为2L .木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是( )A .a 、b 所受的摩擦力始终相等 B.b 一定比a 先开始滑动 C .ω=是b 开始滑动的临界角速度D .当ω=时,a 所受摩擦力的大小为kmg21.(6分)如图,在正电荷Q 的电场中有M 、N 、P 、F 四点,M 、N 、P 为直角三角形的三个顶点,F 为MN 的中点,∠M=30°,M 、N 、P 、F 四点处的电势分别用φM 、φN 、φP 、φF 表示,已知φM =φN 、φP =φF ,点电荷Q 在M 、N 、P 三点所在平面内,则( )A .点电荷Q 一定在MP 的连线上B .连接PF 的线段一定在同一等势面上C.将正试探电荷从P点搬运到N点,电场力做负功D.φP>φM三、非选择题:包括必考题和选考题两部分(一)必考题(共129分)22.(6分)某同学利用图甲所示实验装置及数字化信息系统获得了小车加速度a与钩码的质量m的对应关系图,如图乙所示,实验中小车(含发射器)的质量为200g,实验时选择了不可伸长的轻质细绳和轻定滑轮,小车的加速度由位移传感器及与之相连的计算机得到.回答下列问题:(1)根据该同学的结果,小车的加速度与钩码的质量成(填“线性”或“非线性”)关系;(2)由图乙可知,a﹣m图线不经过原点,可能的原因是;(3)若利用本实验来验证“小车质量不变的情况下,小车的加速度与作用力成正比”的结论,并直接以钩码所受重力mg作为小车受到的合外力,则实验中应采取的改进措施是,钩码的质量应满足的条件是.23.(9分)利用如图(a)所示电路,可以测量电源的电动势和内阻,所用的实验器材有:待测电源,电阻箱R(最大阻值999.9Ω),电阻R0(阻值为3.0Ω),电阻R1(阻值为3.0Ω),电流表(量程为200mA,内阻为R A=6.0Ω),开关S.实验步骤如下:①将电阻箱阻值调到最大,闭合开关S;②多次调节电阻箱,记下电流表的示数I和电阻箱相应的阻值R;③以为纵坐标,R为横坐标,作出﹣R图线(用直线拟合);④求出直线的斜率k和在纵轴上的截距b回答下列问题:(1)分别用E和r表示电源的电动势和内阻,则和R的关系式为;(2)实验得到的部分数据如下表所示,其中电阻R=3.0Ω时电流表的示数如图(b)所示,读出数据,完成下表.答:①,②./A﹣1(3)在图(c)的坐标纸上将所缺数据点补充完整并作图,根据图线求得斜率k=A﹣1Ω﹣1,截距b=A﹣1;(4)根据图线求得电源电动势E=V,内阻r=Ω.24.(12分)公路上行驶的两辆汽车之间应保持一定的安全距离。
2024年高考真题理综(新课标卷)含解析
2024年普通高等学校招生全国统一考试(新课标卷)理科综合注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
可能用到的相对原子质量:H1C12N14O16S32Mn55Fe56Co59Ni59Zn65一、选择题:本题共13小题,每小题6分,共78分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.大豆是我国重要的粮食作物。
下列叙述错误的是()A.大豆油含有不饱和脂肪酸,熔点较低,室温时呈液态B.大豆的蛋白质、脂肪和淀粉可在人体内分解产生能量C.大豆中的蛋白质含有人体细胞不能合成的必需氨基酸D.大豆中的脂肪和磷脂均含有碳、氢、氧、磷4种元素【答案】D【解析】【分析】1、脂肪:是由三分子脂肪酸与一分子甘油发生反应而形成的。
2、磷脂:构成膜(细胞膜、核膜、细胞器膜)结构的重要成分。
3、固醇:维持新陈代谢和生殖起重要调节作用,分为胆固醇、性激素、维生素D等。
【详解】A、植物脂肪大多含有不饱和脂肪酸,在室温下呈液态,动物脂肪大多含有饱和脂肪酸,在室温下呈固态,A正确;B、蛋白质、脂肪和淀粉可在人体内分解产生能量,B正确;C、必需氨基酸是人体细胞不能合成必须从外界获取的氨基酸,因此大豆中的蛋白质含有人体细胞不能合成的必需氨基酸,C正确;D、脂肪的组成元素只有C、H、O,D错误。
故选D。
2.干旱缺水条件下,植物可通过减小气孔开度减少水分散失。
下列叙述错误的是()A.叶片萎蔫时叶片中脱落酸的含量会降低B.干旱缺水时进入叶肉细胞的会减少C.植物细胞失水时胞内结合水与自由水比值增大D.干旱缺水不利于植物对营养物质的吸收和运输【答案】A【解析】【分析】干旱缺水条件下气孔开度减小,植物吸收的二氧化碳会减少,植物的光合速率会降低,同时植物体内水分含量减少,各种需要水分参与的生理反应都会减弱,植物根细胞的吸水能力增强,植物缺水主要是自由水大量失去。
2014年浙江高考数学(理科)试卷(含答案)
=0,
6(mn)(mn1)
又∵P(11)mn,P(12)mn
∴E(1)1mn2mn
2mn mn
2
又P(21)n
mn
C1C1
n(n1)
(mn)(mn1)
2mn
P(2
P(
2)nm
mn
C2
3)m
(mn)(mn1)
m(m1)
22
mn
(mn)(mn1)
n(n1)2mnm(m1)
∴E(2)1(mn)(mn1)2(mn)(mn1)3(mn)(mn1)
(II)设bR,若fxb24对x1,1恒成立,求3ab的取值范围.
2014
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 【解析】A{xN|x25}={xN|x
【答案】B
5},CUA{xN|2x
5}
2.【解析】当ab1时,(abi)2(1i)22i,反之,(abi)22i
2||
9999
1
故I22992
2
I1(|sin(2
33
=1[2sin(2
3
故I2I1I3
【答案】B
,故选B
【解析2】估算法:Ik
的几何意义为将区间[0,1]等分为99个小区间,每个小区间的端
点的函数值之差的绝对值之和.如图为将函数f(x)x2
的区间[0,1]等分为4个小区间
的情形,因
f1(x)
在[0,1]上递增,此时
即a2b22abi2i
【答案】A
a2b20
,则2ab2
a1
解得b1
a1
或b1
2014年全国统一高考真题数学试卷(理科)(新课标ⅱ)(含答案及解析)
2014年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2} 2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5B.5C.﹣4+i D.﹣4﹣i3.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.54.(5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5B.C.2D.15.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.456.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.7.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.78.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.39.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为()A.10B.8C.3D.210.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A.B.C.D.11.(5分)直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A.B.C.D.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13.(5分)(x+a)10的展开式中,x7的系数为15,则a=.14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为.15.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是.16.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是.三、解答题:解答应写出文字说明,证明过程或验算步骤.17.(12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:年份2007200820092010201120122013年份代号t1234567人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.21.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.六、解答题(共1小题,满分0分)24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.2014年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】求出集合N的元素,利用集合的基本运算即可得到结论.【解答】解:∵N={x|x2﹣3x+2≤0}={x|(x﹣1)(x﹣2)≤0}={x|1≤x≤2},∴M∩N={1,2},故选:D.【点评】本题主要考查集合的基本运算,比较基础.2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5B.5C.﹣4+i D.﹣4﹣i【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】根据复数的几何意义求出z2,即可得到结论.【解答】解:z1=2+i对应的点的坐标为(2,1),∵复数z1,z2在复平面内的对应点关于虚轴对称,∴(2,1)关于虚轴对称的点的坐标为(﹣2,1),则对应的复数,z2=﹣2+i,则z1z2=(2+i)(﹣2+i)=i2﹣4=﹣1﹣4=﹣5,故选:A.【点评】本题主要考查复数的基本运算,利用复数的几何意义是解决本题的关键,比较基础.3.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.5【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】将等式进行平方,相加即可得到结论.【解答】解:∵|+|=,|﹣|=,∴分别平方得+2•+=10,﹣2•+=6,两式相减得4•=10﹣6=4,即•=1,故选:A.【点评】本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.4.(5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5B.C.2D.1【考点】HR:余弦定理.【专题】56:三角函数的求值.【分析】利用三角形面积公式列出关系式,将已知面积,AB,BC的值代入求出sinB的值,分两种情况考虑:当B为钝角时;当B为锐角时,利用同角三角函数间的基本关系求出cosB的值,利用余弦定理求出AC的值即可.【解答】解:∵钝角三角形ABC的面积是,AB=c=1,BC=a=,∴S=acsinB=,即sinB=,当B为钝角时,cosB=﹣=﹣,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2+2=5,即AC=,当B为锐角时,cosB==,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2﹣2=1,即AC=1,此时AB2+AC2=BC2,即△ABC为直角三角形,不合题意,舍去,则AC=.故选:B.【点评】此题考查了余弦定理,三角形面积公式,以及同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键.5.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,由此解得p的值.【解答】解:设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,解得p=0.8,故选:A.【点评】本题主要考查相互独立事件的概率乘法公式的应用,属于基础题.6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】5F:空间位置关系与距离.【分析】由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.【解答】解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π.底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π切削掉部分的体积与原来毛坯体积的比值为:=.故选:C.【点评】本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.7.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.7【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】根据条件,依次运行程序,即可得到结论.【解答】解:若x=t=2,则第一次循环,1≤2成立,则M=,S=2+3=5,k=2,第二次循环,2≤2成立,则M=,S=2+5=7,k=3,此时3≤2不成立,输出S=7,故选:D.【点评】本题主要考查程序框图的识别和判断,比较基础.8.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.3【考点】6H:利用导数研究曲线上某点切线方程.【专题】52:导数的概念及应用.【分析】根据导数的几何意义,即f′(x0)表示曲线f(x)在x=x0处的切线斜率,再代入计算.【解答】解:,∴y′(0)=a﹣1=2,∴a=3.故选:D.【点评】本题是基础题,考查的是导数的几何意义,这个知识点在高考中是经常考查的内容,一般只要求导正确,就能够求解该题.在高考中,导数作为一个非常好的研究工具,经常会被考查到,特别是用导数研究最值,证明不等式,研究零点问题等等经常以大题的形式出现,学生在复习时要引起重视.9.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为()A.10B.8C.3D.2【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x﹣y得y=2x﹣z,平移直线y=2x﹣z,由图象可知当直线y=2x﹣z经过点C时,直线y=2x﹣z的截距最小,此时z最大.由,解得,即C(5,2)代入目标函数z=2x﹣y,得z=2×5﹣2=8.故选:B.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.10.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A.B.C.D.【考点】K8:抛物线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由抛物线方程求出焦点坐标,由直线的倾斜角求出斜率,写出过A,B 两点的直线方程,和抛物线方程联立后化为关于y的一元二次方程,由根与系数关系得到A,B两点纵坐标的和与积,把△OAB的面积表示为两个小三角形AOF与BOF的面积和得答案.【解答】解:由y2=2px,得2p=3,p=,则F(,0).∴过A,B的直线方程为y=(x﹣),即x=y+.联立,得4y2﹣12y﹣9=0.设A(x1,y1),B(x2,y2),则y 1+y 2=3,y 1y 2=﹣.∴S△OAB =S △OAF +S△OFB =×|y 1﹣y 2|==×=.故选:D .【点评】本题考查直线与抛物线的位置关系,考查数学转化思想方法,涉及直线和圆锥曲线关系问题,常采用联立直线和圆锥曲线,然后利用一元二次方程的根与系数关系解题,是中档题.11.(5分)直三棱柱ABC ﹣A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN 所成角的余弦值为( ) A .B .C .D .【考点】LM :异面直线及其所成的角.【专题】5F :空间位置关系与距离.【分析】画出图形,找出BM 与AN 所成角的平面角,利用解三角形求出BM 与AN 所成角的余弦值.【解答】解:直三棱柱ABC ﹣A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,如图:BC 的中点为O ,连结ON ,,则MN0B 是平行四边形,BM 与AN 所成角就是∠ANO ,∵BC=CA=CC 1,设BC=CA=CC 1=2,∴CO=1,AO=,AN=,MB===, 在△ANO 中,由余弦定理可得:cos ∠ANO===.故选:C .【点评】本题考查异面直线对称角的求法,作出异面直线所成角的平面角是解题的关键,同时考查余弦定理的应用.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)【考点】H4:正弦函数的定义域和值域.【专题】57:三角函数的图像与性质.【分析】由题意可得,f(x0)=±,且=kπ+,k∈Z,再由题意可得当m2最小时,|x0|最小,而|x0|最小为|m|,可得m2 >m2+3,由此求得m的取值范围.【解答】解:由题意可得,f(x0)=±,即=kπ+,k∈z,即x0=m.再由x02+[f(x0)]2<m2,即x02+3<m2,可得当m2最小时,|x0|最小,而|x0|最小为|m|,∴m2 >m2+3,∴m2>4.求得m>2,或m<﹣2,故选:C.【点评】本题主要正弦函数的图象和性质,函数的零点的定义,体现了转化的数学思想,属于中档题.二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13.(5分)(x+a)10的展开式中,x7的系数为15,则a=.【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】在二项展开式的通项公式中,令x的幂指数等于3,求出r的值,即可求得x7的系数,再根据x7的系数为15,求得a的值.【解答】解:(x+a)10的展开式的通项公式为T r=•x10﹣r•a r,+1令10﹣r=7,求得r=3,可得x7的系数为a3•=120a3=15,∴a=,故答案为:.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为1.【考点】GP:两角和与差的三角函数;HW:三角函数的最值.【专题】56:三角函数的求值.【分析】由条件利用两角和差的正弦公式、余弦公式化简函数的解析式为f(x)=sinx,从而求得函数的最大值.【解答】解:函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)=sin[(x+φ)+φ]﹣2sinφcos (x+φ)=sin(x+φ)cosφ+cos(x+φ)sinφ﹣2sinφcos(x+φ)=sin(x+φ)cosφ﹣cos(x+φ)sinφ=sin[(x+φ)﹣φ]=sinx,故函数f(x)的最大值为1,故答案为:1.【点评】本题主要考查两角和差的正弦公式、余弦公式的应用,正弦函数的最值,属于中档题.15.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是(﹣1,3).【考点】3N:奇偶性与单调性的综合.【专题】51:函数的性质及应用.【分析】根据函数奇偶性和单调性之间的关系将不等式等价转化为f(|x﹣1|)>f(2),即可得到结论.【解答】解:∵偶函数f(x)在[0,+∞)单调递减,f(2)=0,∴不等式f(x﹣1)>0等价为f(x﹣1)>f(2),即f(|x﹣1|)>f(2),∴|x﹣1|<2,解得﹣1<x<3,故答案为:(﹣1,3)【点评】本题主要考查函数奇偶性和单调性之间的关系的应用,将不等式等价转化为f(|x﹣1|)>f(2)是解决本题的关键.16.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是[﹣1,1] .【考点】J9:直线与圆的位置关系.【专题】5B:直线与圆.【分析】根据直线和圆的位置关系,画出图形,利用数形结合即可得到结论.【解答】解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN≤1,∴x0的取值范围是[﹣1,1].【点评】本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.三、解答题:解答应写出文字说明,证明过程或验算步骤.17.(12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.【考点】87:等比数列的性质;8E:数列的求和.【专题】14:证明题;54:等差数列与等比数列.【分析】(Ⅰ)根据等比数列的定义,后一项与前一项的比是常数,即=常数,又首项不为0,所以为等比数列;再根据等比数列的通项化式,求出{a n}的通项公式;(Ⅱ)将进行放大,即将分母缩小,使得构成一个等比数列,从而求和,证明不等式.【解答】证明(Ⅰ)==3,∵≠0,∴数列{a n+}是以首项为,公比为3的等比数列;∴a n+==,即;(Ⅱ)由(Ⅰ)知,当n≥2时,∵3n﹣1>3n﹣3n﹣1,∴<=,∴当n=1时,成立,当n≥2时,++…+<1+…+==<.时,++…+<.∴对n∈N+【点评】本题考查的是等比数列,用放缩法证明不等式,证明数列为等比数列,只需要根据等比数列的定义就行;数列与不等式常结合在一起考,放缩法是常用的方法之一,通过放大或缩小,使原数列变成一个等比数列,或可以用裂项相消法求和的新数列.属于中档题.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.【考点】LF:棱柱、棱锥、棱台的体积;LS:直线与平面平行;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(Ⅰ)连接BD交AC于O点,连接EO,只要证明EO∥PB,即可证明PB∥平面AEC;(Ⅱ)延长AE至M连结DM,使得AM⊥DM,说明∠CMD=60°,是二面角的平面角,求出CD,即可三棱锥E﹣ACD的体积.【解答】(Ⅰ)证明:连接BD交AC于O点,连接EO,∵O为BD中点,E为PD中点,∴EO∥PB,(2分)EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC;(6分)(Ⅱ)解:延长AE至M连结DM,使得AM⊥DM,∵四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,∴CD⊥平面AMD,∴CD⊥MD.∵二面角D﹣AE﹣C为60°,∴∠CMD=60°,∵AP=1,AD=,∠ADP=30°,∴PD=2,E为PD的中点.AE=1,∴DM=,CD==.三棱锥E﹣ACD的体积为:==.【点评】本题考查直线与平面平行的判定,几何体的体积的求法,二面角等指数的应用,考查逻辑思维能力,是中档题.19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:年份2007200820092010201120122013年份代号t1234567人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.【考点】BK:线性回归方程.【专题】11:计算题;5I:概率与统计.【分析】(Ⅰ)根据所给的数据,利用最小二乘法可得横标和纵标的平均数,横标和纵标的积的和,与横标的平方和,代入公式求出b的值,再求出a的值,写出线性回归方程.(Ⅱ)根据上一问做出的线性回归方程,代入所给的t的值,预测该地区2015年农村居民家庭人均纯收入,这是一个估计值.【解答】解:(Ⅰ)由题意,=×(1+2+3+4+5+6+7)=4,=×(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,∴== =0.5,=﹣=4.3﹣0.5×4=2.3.∴y关于t的线性回归方程为=0.5t+2.3;(Ⅱ)由(Ⅰ)知,b=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t=9代入=0.5t+2.3,得:=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.【点评】本题考查线性回归分析的应用,本题解题的关键是利用最小二乘法认真做出线性回归方程的系数,这是整个题目做对的必备条件,本题是一个基础题.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.【考点】K4:椭圆的性质.【专题】5E:圆锥曲线中的最值与范围问题.【分析】(1)根据条件求出M的坐标,利用直线MN的斜率为,建立关于a,c的方程即可求C的离心率;(2)根据直线MN在y轴上的截距为2,以及|MN|=5|F1N|,建立方程组关系,求出N的坐标,代入椭圆方程即可得到结论.【解答】解:(1)∵M是C上一点且MF2与x轴垂直,∴M的横坐标为c,当x=c时,y=,即M(c,),若直线MN的斜率为,即tan∠MF1F2=,即b2==a2﹣c2,即c2+﹣a2=0,则,即2e2+3e﹣2=0解得e=或e=﹣2(舍去),即e=.(Ⅱ)由题意,原点O是F1F2的中点,则直线MF1与y轴的交点D(0,2)是线段MF1的中点,设M(c,y),(y>0),则,即,解得y=,∵OD是△MF1F2的中位线,∴=4,即b2=4a,由|MN|=5|F1N|,则|MF1|=4|F1N|,解得|DF1|=2|F1N|,即设N(x1,y1),由题意知y1<0,则(﹣c,﹣2)=2(x1+c,y1).即,即代入椭圆方程得,将b2=4a代入得,解得a=7,b=.【点评】本题主要考查椭圆的性质,利用条件建立方程组,利用待定系数法是解决本题的关键,综合性较强,运算量较大,有一定的难度.21.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).【考点】6B:利用导数研究函数的单调性.【专题】16:压轴题;53:导数的综合应用.【分析】对第(Ⅰ)问,直接求导后,利用基本不等式可达到目的;对第(Ⅱ)问,先验证g(0)=0,只需说明g(x)在[0+∞)上为增函数即可,从而问题转化为“判断g′(x)>0是否成立”的问题;对第(Ⅲ)问,根据第(Ⅱ)问的结论,设法利用的近似值,并寻求ln2,于是在b=2及b>2的情况下分别计算,最后可估计ln2的近似值.【解答】解:(Ⅰ)由f(x)得f′(x)=e x+e﹣x﹣2,即f′(x)≥0,当且仅当e x=e﹣x即x=0时,f′(x)=0,∴函数f(x)在R上为增函数.(Ⅱ)g(x)=f(2x)﹣4bf(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,则g′(x)=2[e2x+e﹣2x﹣2b(e x+e﹣x)+(4b﹣2)]=2[(e x+e﹣x)2﹣2b(e x+e﹣x)+(4b﹣4)]=2(e x+e﹣x﹣2)(e x+e﹣x+2﹣2b).①∵e x+e﹣x>2,e x+e﹣x+2>4,∴当2b≤4,即b≤2时,g′(x)≥0,当且仅当x=0时取等号,从而g(x)在R上为增函数,而g(0)=0,∴x>0时,g(x)>0,符合题意.②当b>2时,若x满足2<e x+e﹣x<2b﹣2即,得,此时,g′(x)<0,又由g(0)=0知,当时,g(x)<0,不符合题意.综合①、②知,b≤2,得b的最大值为2.(Ⅲ)∵1.4142<<1.4143,根据(Ⅱ)中g(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,为了凑配ln2,并利用的近似值,故将ln即代入g(x)的解析式中,得.当b=2时,由g(x)>0,得,从而;令,得>2,当时,由g(x)<0,得,得.所以ln2的近似值为0.693.【点评】1.本题三个小题的难度逐步增大,考查了学生对函数单调性深层次的把握能力,对思维的要求较高,属压轴题.2.从求解过程来看,对导函数解析式的合理变形至关重要,因为这直接影响到对导数符号的判断,是解决本题的一个重要突破口.3.本题的难点在于如何寻求ln2,关键是根据第(2)问中g(x)的解析式探究b的值,从而获得不等式,这样自然地将不等式放缩为的范围的端点值,达到了估值的目的.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【考点】N4:相似三角形的判定;NC:与圆有关的比例线段.【专题】17:选作题;5Q:立体几何.【分析】(Ⅰ)连接OE,OA,证明OE⊥BC,可得E是的中点,从而BE=EC;(Ⅱ)利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得AD•DE=2PB2.【解答】证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90°,∵PC=2PA,D为PC的中点,∴PA=PD,∴∠PAD=∠PDA,∵∠PDA=∠CDE,∴∠OEA+∠CDE=∠OAE+∠PAD=90°,∴OE⊥BC,∴E是的中点,∴BE=EC;(Ⅱ)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,∴PA2=PB•PC,∵PC=2PA,∴PA=2PB,∴PD=2PB,∴PB=BD,∴BD•DC=PB•2PB,∵AD•DE=BD•DC,∴AD•DE=2PB2.【点评】本题考查与圆有关的比例线段,考查切割线定理、相交弦定理,考查学生分析解决问题的能力,属于中档题.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.【考点】QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(1)利用即可得出直角坐标方程,利用cos2t+sin2t=1进而得出参数方程.(2)利用半圆C在D处的切线与直线l:y=x+2垂直,则直线CD的斜率与直线l的斜率相等,即可得出直线CD的倾斜角及D的坐标.【解答】解:(1)由半圆C的极坐标方程为ρ=2cosθ,θ∈[0,],即ρ2=2ρcosθ,可得C的普通方程为(x﹣1)2+y2=1(0≤y≤1).可得C的参数方程为(t为参数,0≤t≤π).(2)设D(1+cos t,sin t),由(1)知C是以C(1,0)为圆心,1为半径的上半圆,∵直线CD的斜率与直线l的斜率相等,∴tant=,t=.故D的直角坐标为,即(,).【点评】本题考查了把极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.六、解答题(共1小题,满分0分)24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】59:不等式的解法及应用.【分析】(Ⅰ)由a>0,f(x)=|x+|+|x﹣a|,利用绝对值三角不等式、基本不等式证得f(x)≥2成立.(Ⅱ)由f(3)=|3+|+|3﹣a|<5,分当a>3时和当0<a≤3时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求.【解答】解:(Ⅰ)证明:∵a>0,f(x)=|x+|+|x﹣a|≥|(x+)﹣(x﹣a)|=|a+|=a+≥2=2,故不等式f(x)≥2成立.(Ⅱ)∵f(3)=|3+|+|3﹣a|<5,∴当a>3时,不等式即a+<5,即a2﹣5a+1<0,解得3<a<.当0<a≤3时,不等式即6﹣a+<5,即a2﹣a﹣1>0,求得<a≤3.综上可得,a的取值范围(,).【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。
2014年浙江省高考语文试卷(含解析版)
2014年浙江省高考语文试卷一、语言文字运用(共24分,其中选择题每小题3分)1.(3分)下列词语中,加横线字的注音全都正确的一项是()A.摭(zhí)拾哄(hōng)笑擎(qín)天柱钻(zuān)木取火B.屏(bǐng)息包扎(zhā)夹(jiā)克衫言之凿凿(záo)C.孱(càn)弱牌坊(fāng)干(gàn)细胞铩(shā)羽而归D.吟哦(é)皲(jūn)裂胳(gā)肢窝蜚(fēi)声中外2.(3分)下列各句中,没有错别字的一项是()A.这个节目融合了京剧、粤剧、秦腔等中国戏曲的精萃,舞者多变的动作和戏剧化的表情,淋漓尽致地表达了喜怒哀乐的情绪B.城郊的这座园林,亭台楼阁错落有致,溪流小径曲折萦纡,到了春天,杂花生树,草长莺飞,真是一处世外桃源C.在全球一体化进程中,有些备受国人青睐的外国名品,其实是用中国的原料,在中国的流水线上生产出来的,已不是地道的泊来品D.该公司在把握市场脉搏的基础上,另辟蹊径,依靠独树一帜的管理理念以及出奇不意的营销策略赢得了商机,获得了发展3.(3分)下列各句中,加横线的词语运用正确的一项是()A.从小到大,母亲一直是你的守护天使,当母亲需要你的时候,不要推托工作繁忙,久不回家,哪怕是一句问候,也是给母亲最好的安慰B.社会需要个体的行动,每个人都应该从身边做起,从实事做起,不需要太多的空话,赞同这种观点的,远不只一个人C.相比于持续火爆的住宅市场,多年来,写字楼市场一直处于不瘟不火的状态,与同地段的住宅楼相比,写字楼的销量要小得多D.解决问题一般有两种思路:一种是将问题变小,小意味着成本低,好办事;另一种是把问题变大,大而化之,放大了才能解决4.(3分)下列各句中,没有语病的一项是()A.一项好的政策照理会带来好的效果,但在现阶段,必须强化阳光操作、民主监督等制约措施,因为好经也要提防不被念歪.B.我国的改革在不断深化,那种什么事情都由政府包揽的现象正在改变,各种社会组织纷纷成立,这有利于社会矛盾和社会责任的分担.C.一个孩子学习绘画,即使基础不太好,但是如果老师能夸奖夸奖,哪怕给一个鼓励的微笑,他也会感到非常高兴,越画越有信心.D.执法部门对向未成年人出售、出租或以其他方式传播反动、淫秽、暴力、凶杀、封建迷信的图书报刊、音像制品,应依法从重处罚.5.(4分)根据下面的情境,补写答话。
2014年浙江省高考数学试卷(理科)(附参考答案+详细解析Word打印版)
2014年浙江省普通高等学校招生统一考试数学试卷(理科)一、选择题(每小题5分,共50分)1.(5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=()A.∅B.{2}C.{5}D.{2,5}2.(5分)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.(5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm24.(5分)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位5.(5分)在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n),则f (3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45 B.60 C.120 D.2106.(5分)已知函数f(x)=x3+ax2+bx+c.且0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3 B.3<c≤6 C.6<c≤9 D.c>97.(5分)在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是()A.B.C.D.8.(5分)记max{x,y}=,min{x,y}=,设,为平面向量,则()A.min{|+|,|﹣|}≤min{||,||} B.min{|+|,|﹣|}≥min{||,||}C.max{|+|2,|﹣|2}≤||2+||2 D.max{|+|2,|﹣|2}≥||2+||2 9.(5分)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m ≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为p i(i=1,2).则()A.p1>p2,E(ξ1)<E(ξ2)B.p1<p2,E(ξ1)>E(ξ2)C.p1>p2,E(ξ1)>E(ξ2)D.p1<p2,E(ξ1)<E(ξ2)10.(5分)设函数f1(x)=x2,f2(x)=2(x﹣x2),,,i=0,1,2,…,99.记I k=|f k(a1)﹣f k(a0)|+|f k(a2)﹣f k(a1)丨+…+|f k(a99)﹣f k(a98)|,k=1,2,3,则()A.I1<I2<I3B.I2<I1<I3C.I1<I3<I2D.I3<I2<I1二、填空题11.(4分)在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是.12.(4分)随机变量ξ的取值为0,1,2,若P(ξ=0)=,E(ξ)=1,则D(ξ)=.13.(4分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是.14.(4分)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有种(用数字作答).15.(4分)设函数f(x)=,若f(f(a))≤2,则实数a的取值范围是.16.(4分)设直线x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.17.(4分)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是.(仰角θ为直线AP与平面ABC所成角)三、解答题18.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A﹣cos2B=sinAcosA﹣sinBcosB(1)求角C的大小;(2)若sinA=,求△ABC的面积.19.(14分)已知数列{a n}和{b n}满足a1a2a3…a n=(n∈N*).若{a n}为等比数列,且a1=2,b3=6+b2.(Ⅰ)求a n和b n;(Ⅱ)设c n=(n∈N*).记数列{c n}的前n项和为S n.(i)求S n;(ii)求正整数k,使得对任意n∈N*均有S k≥S n.20.(15分)如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B﹣AD﹣E的大小.21.(15分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a ﹣b.22.(14分)已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M (a)﹣m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.2014年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共50分)1.(5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=()A.∅B.{2}C.{5}D.{2,5}【分析】先化简集合A,结合全集,求得∁U A.【解答】解:∵全集U={x∈N|x≥2},集合A={x∈N|x2≥5}={x∈N|x≥3},则∁U A={2},故选:B.【点评】本题主要考查全集、补集的定义,求集合的补集,属于基础题.2.(5分)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】利用复数的运算性质,分别判断“a=b=1”⇒“(a+bi)2=2i”与“a=b=1”⇐“(a+bi)2=2i”的真假,进而根据充要条件的定义得到结论.【解答】解:当“a=b=1”时,“(a+bi)2=(1+i)2=2i”成立,故“a=b=1”是“(a+bi)2=2i”的充分条件;当“(a+bi)2=a2﹣b2+2abi=2i”时,“a=b=1”或“a=b=﹣1”,故“a=b=1”是“(a+bi)2=2i”的不必要条件;综上所述,“a=b=1”是“(a+bi)2=2i”的充分不必要条件;故选:A.【点评】本题考查的知识点是充要条件的定义,复数的运算,难度不大,属于基础题.3.(5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm2【分析】几何体是直三棱柱与直四棱柱的组合体,根据三视图判断直三棱柱的侧棱长与底面的形状及相关几何量的数据,判断四棱柱的高与底面矩形的边长,把数据代入表面积公式计算.【解答】解:由三视图知:几何体是直三棱柱与直四棱柱的组合体,其中直三棱柱的侧棱长为3,底面是直角边长分别为3、4的直角三角形,四棱柱的高为6,底面为矩形,矩形的两相邻边长为3和4,∴几何体的表面积S=2×4×6+3×6+3×3+2×3×4+2××3×4+(4+5)×3=48+18+9+24+12+27=138(cm2).故选:D.【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.4.(5分)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位【分析】利用两角和与差的三角函数化简已知函数为一个角的一个三角函数的形式,然后利用平移原则判断选项即可.【解答】解:函数y=sin3x+cos3x=,故只需将函数y=cos3x的图象向右平移个单位,得到y==的图象.【点评】本题考查两角和与差的三角函数以及三角函数的平移变换的应用,基本知识的考查.5.(5分)在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n),则f (3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45 B.60 C.120 D.210【分析】由题意依次求出x3y0,x2y1,x1y2,x0y3,项的系数,求和即可.【解答】解:(1+x)6(1+y)4的展开式中,含x3y0的系数是:=20.f(3,0)=20;含x2y1的系数是=60,f(2,1)=60;含x1y2的系数是=36,f(1,2)=36;含x0y3的系数是=4,f(0,3)=4;∴f(3,0)+f(2,1)+f(1,2)+f(0,3)=120.故选:C.【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.6.(5分)已知函数f(x)=x3+ax2+bx+c.且0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3 B.3<c≤6 C.6<c≤9 D.c>9【分析】由f(﹣1)=f(﹣2)=f(﹣3)列出方程组求出a,b,代入0<f(﹣1)≤3,即可求出c的范围.【解答】解:由f(﹣1)=f(﹣2)=f(﹣3)得,解得,则f(x)=x3+6x2+11x+c,由0<f(﹣1)≤3,得0<﹣1+6﹣11+c≤3,故选:C.【点评】本题考查方程组的解法及不等式的解法,属于基础题.7.(5分)在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是()A.B.C.D.【分析】结合对数函数和幂函数的图象和性质,分当0<a<1时和当a>1时两种情况,讨论函数f(x)=x a(x≥0),g(x)=log a x的图象,比照后可得答案.【解答】解:当0<a<1时,函数f(x)=x a(x≥0),g(x)=log a x的图象为:此时答案D满足要求,当a>1时,函数f(x)=x a(x≥0),g(x)=log a x的图象为:无满足要求的答案,综上:故选D,故选:D.【点评】本题考查的知识点是函数的图象,熟练掌握对数函数和幂函数的图象和性质,是解答的关键.8.(5分)记max{x,y}=,min{x,y}=,设,为平面向量,则()A.min{|+|,|﹣|}≤min{||,||} B.min{|+|,|﹣|}≥min{||,||}C.max{|+|2,|﹣|2}≤||2+||2 D.max{|+|2,|﹣|2}≥||2+||2【分析】将,平移到同一起点,根据向量加减法的几何意义可知,+和﹣分别表示以,为邻边所做平行四边形的两条对角线,再根据选项内容逐一判断.【解答】解:对于选项A,取⊥,则由图形可知,根据勾股定理,结论不成立;对于选项B,取,是非零的相等向量,则不等式左边min{|+|,|﹣|}=0,显然,不等式不成立;对于选项C,取,是非零的相等向量,则不等式左边max{|+|2,|﹣|2}=|+|2=4,而不等式右边=||2+||2=2,故C不成立,D选项正确.故选:D.【点评】本题在处理时要结合着向量加减法的几何意义,将,,,放在同一个平行四边形中进行比较判断,在具体解题时,本题采用了排除法,对错误选项进行举反例说明,这是高考中做选择题的常用方法,也不失为一种快速有效的方法,在高考选择题的处理上,未必每一题都要写出具体解答步骤,针对选择题的特点,有时“排除法”,“确定法”,“特殊值”代入法等也许是一种更快速,更有效的方法.9.(5分)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m ≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为p i(i=1,2).则()A.p1>p2,E(ξ1)<E(ξ2)B.p1<p2,E(ξ1)>E(ξ2)C.p1>p2,E(ξ1)>E(ξ2)D.p1<p2,E(ξ1)<E(ξ2)【分析】首先,这两次先后从甲盒和乙盒中拿球是相互独立的,然后分两种情况:即当ξ=1时,有可能从乙盒中拿出一个红球放入甲盒,也可能是拿到一个蓝球放入甲盒;ξ=2时,则从乙盒中拿出放入甲盒的球可能是两蓝球、一红一蓝、或者两红;最后利用概率公式及分布列知识求出P1,P2和E(ξ1),E(ξ2)进行比较即可.【解答】解析:,,,所以P1>P2;由已知ξ1的取值为1、2,ξ2的取值为1、2、3,所以,==,E(ξ1)﹣E(ξ2)=.故选:A.【点评】正确理解ξi(i=1,2)的含义是解决本题的关键.此题也可以采用特殊值法,不妨令m=n=3,也可以很快求解.10.(5分)设函数f1(x)=x2,f2(x)=2(x﹣x2),,,i=0,1,2,…,99.记I k=|f k(a1)﹣f k(a0)|+|f k(a2)﹣f k(a1)丨+…+|f k(a99)﹣f k(a98)|,k=1,2,3,则()A.I1<I2<I3B.I2<I1<I3C.I1<I3<I2D.I3<I2<I1【分析】根据记I k=|f k(a1)﹣f k(a0)|+|f k(a2)﹣f k(a1)丨+…+|f k(a99)﹣f k (a98)|,分别求出I1,I2,I3与1的关系,继而得到答案【解答】解:由,故==1,由,故×=×<1,+=,故I2<I1<I3,故选:B.【点评】本题主要考查了函数的性质,关键是求出这三个数与1的关系,属于难题.二、填空题11.(4分)在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是6.【分析】根据框图的流程模拟运行程序,直到满足条件S>50,跳出循环体,确定输出的i的值.【解答】解:由程序框图知:第一次循环S=1,i=2;第二次循环S=2×1+2=4,i=3;第三次循环S=2×4+3=11,i=4;第四次循环S=2×11+4=26,i=5;第五次循环S=2×26+5=57,i=6,满足条件S>50,跳出循环体,输出i=6.故答案为:6.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.12.(4分)随机变量ξ的取值为0,1,2,若P(ξ=0)=,E(ξ)=1,则D(ξ)=.【分析】结合方差的计算公式可知,应先求出P(ξ=1),P(ξ=2),根据已知条件结合分布列的性质和期望的计算公式不难求得.【解答】解析:设P(ξ=1)=p,P(ξ=2)=q,则由已知得p+q=,,解得,,所以.故答案为:【点评】本题综合考查了分布列的性质以及期望、方差的计算公式.13.(4分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是[] .【分析】由约束条件作出可行域,再由1≤ax+y≤4恒成立,结合可行域内特殊点A,B,C的坐标满足不等式列不等式组,求解不等式组得实数a的取值范围.【解答】解:由约束条件作可行域如图,联立,解得C(1,).联立,解得B(2,1).在x﹣y﹣1=0中取y=0得A(1,0).要使1≤ax+y≤4恒成立,则,解得:1.∴实数a的取值范围是.解法二:令z=ax+y,当a>0时,y=﹣ax+z,在B点取得最大值,A点取得最小值,可得,即1≤a≤;当a<0时,y=﹣ax+z,在C点取得最大值,①a<﹣1时,在B点取得最小值,可得,解得0≤a≤(不符合条件,舍去)②﹣1<a<0时,在A点取得最小值,可得,解得1≤a≤(不符合条件,舍去)综上所述即:1≤a≤;故答案为:.【点评】本题考查线性规划,考查了数形结合的解题思想方法,考查了数学转化思想方法,训练了不等式组得解法,是中档题.14.(4分)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有60种(用数字作答).【分析】分类讨论,一、二、三等奖,三个人获得;一、二、三等奖,有1人获得2张,1人获得1张.【解答】解:分类讨论,一、二、三等奖,三个人获得,共有=24种;一、二、三等奖,有1人获得2张,1人获得1张,共有=36种,共有24+36=60种.故答案为:60.【点评】本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.15.(4分)设函数f(x)=,若f(f(a))≤2,则实数a的取值范围是(﹣∞,] .【分析】画出函数f(x)的图象,由f(f(a))≤2,可得f(a)≥﹣2,数形结合求得实数a的取值范围.【解答】解:∵函数f(x)=,它的图象如图所示:由f(f(a))≤2,可得f(a)≥﹣2.当a<0时,f(a)=a2+a=(a+)2﹣≥﹣2恒成立;当a≥0时,f(a)=﹣a2≥﹣2,即a2≤2,解得0≤a≤,则实数a的取值范围是a≤,故答案为:(﹣∞,].【点评】本题主要考查分段函数的应用,其它不等式的解法,体现了数形结合的数学思想,属于中档题.16.(4分)设直线x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.【分析】先求出A,B的坐标,可得AB中点坐标为(,),利用点P(m,0)满足|PA|=|PB|,可得=﹣3,从而可求双曲线的离心率.【解答】解:双曲线(a>0,b>0)的两条渐近线方程为y=±x,则与直线x﹣3y+m=0联立,可得A(,),B(﹣,),∴AB中点坐标为(,),∵点P(m,0)满足|PA|=|PB|,∴=﹣3,∴a=2b,∴=b,∴e==.故答案为:.【点评】本题考查双曲线的离心率,考查直线的位置关系,考查学生的计算能力,属于中档题.17.(4分)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是.(仰角θ为直线AP与平面ABC所成角)【分析】过P作PP′⊥BC,交BC于P′,连接AP′,则tanθ=,求出PP′,AP′,利用函数的性质,分类讨论,即可得出结论.【解答】解:∵AB=15m,AC=25m,∠ABC=90°,∴BC=20m,过P作PP′⊥BC,交BC于P′,连接AP′,则tanθ=,设B P′=x,则CP′=20﹣x,由∠BCM=30°,得PP′=CP′tan30°=(20﹣x),在直角△ABP′中,AP′=,∴tanθ=•,令y=,则函数在x∈[0,20]单调递减,∴x=0时,取得最大值为=.若P′在CB的延长线上,PP′=CP′tan30°=(20+x),在直角△ABP′中,AP′=,∴tanθ=•,令y=,则y′=0可得x=时,函数取得最大值,故答案为:.【点评】本题考查利用数学知识解决实际问题,考查函数的单调性,考查学生分析解决问题的能力,属于中档题.三、解答题18.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A﹣cos2B=sinAcosA﹣sinBcosB(1)求角C的大小;(2)若sinA=,求△ABC的面积.【分析】(1)利用倍角公式、两角和差的正弦公式可得,由a≠b得,A≠B,又A+B∈(0,π),可得,即可得出.(2)利用正弦定理可得a,利用两角和差的正弦公式可得sinB,再利用三角形的面积计算公式即可得出.【解答】解:(1)由题意得,,∴,化为,由a≠b得,A≠B,又A+B∈(0,π),得,即,∴;(2)由,利用正弦定理可得,得,由a<c,得A<C,从而,故,∴.【点评】本题考查了正弦定理、倍角公式、两角和差的正弦公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.19.(14分)已知数列{a n}和{b n}满足a1a2a3…a n=(n∈N*).若{a n}为等比数列,且a1=2,b3=6+b2.(Ⅰ)求a n和b n;(Ⅱ)设c n=(n∈N*).记数列{c n}的前n项和为S n.(i)求S n;(ii)求正整数k,使得对任意n∈N*均有S k≥S n.【分析】(Ⅰ)先利用前n项积与前(n﹣1)项积的关系,得到等比数列{a n}的第三项的值,结合首项的值,求出通项a n,然后现利用条件求出通项b n;(Ⅱ)(i)利用数列特征进行分组求和,一组用等比数列求和公式,另一组用裂项法求和,得出本小题结论;(ii)本小题可以采用猜想的方法,得到结论,再加以证明.【解答】解:(Ⅰ)∵a1a2a3…a n=(n∈N*)①,当n≥2,n∈N*时,②,由①②知:,令n=3,则有.∵b3=6+b2,∴a3=8.∵{a n}为等比数列,且a1=2,∴{a n}的公比为q,则=4,,∴q>0,∴q=2.由题意知a n>0∴(n∈N*).又由a1a2a3…a n=(n∈N*)得:,,∴b n=n(n+1)(n∈N*).(Ⅱ)(i)∵c n===.∴S n=c1+c2+c3+…+c n====;(ii)因为c1=0,c2>0,c3>0,c4>0;当n≥5时,,而=>0,得,所以,当n≥5时,c n<0,综上,对任意n∈N*恒有S4≥S n,故k=4.【点评】本题考查了等比数列通项公式、求和公式,还考查了分组求和法、裂项求和法和猜想证明的思想,证明可以用二项式定理,还可以用数学归纳法.本题计算量较大,思维层次高,要求学生有较高的分析问题解决问题的能力.本题属于难题.20.(15分)如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B﹣AD﹣E的大小.【分析】(Ⅰ)依题意,易证AC⊥平面BCDE,于是可得AC⊥DE,又DE⊥DC,从而DE⊥平面ACD;(Ⅱ)作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AE交于点G,连接BG,由(Ⅰ)知DE⊥AD,则FG⊥AD,所以∠BFG就是二面角B﹣AD﹣E的平面角,利用题中的数据,解三角形,可求得BF=,AF=AD,从而GF=,cos∠BFG==,从而可求得答案.【解答】证明:(Ⅰ)在直角梯形BCDE中,由DE=BE=1,CD=2,得BD=BC=,由AC=,AB=2得AB2=AC2+BC2,即AC⊥BC,又平面ABC⊥平面BCDE,从而AC⊥平面BCDE,所以AC⊥DE,又DE⊥DC,从而DE⊥平面ACD;(Ⅱ)作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AE交于点G,连接BG,由(Ⅰ)知DE⊥AD,则FG⊥AD,所以∠BFG就是二面角B﹣AD﹣E的平面角,在直角梯形BCDE中,由CD2=BC2+BD2,得BD⊥BC,又平面ABC⊥平面BCDE,得BD⊥平面ABC,从而BD⊥AB,由于AC⊥平面BCDE,得AC⊥CD.在Rt△ACD中,由DC=2,AC=,得AD=;在Rt△AED中,由ED=1,AD=得AE=;在Rt△ABD中,由BD=,AB=2,AD=得BF=,AF=AD,从而GF=,在△ABE,△ABG中,利用余弦定理分别可得cos∠BAE=,BG=.在△BFG中,cos∠BFG==,所以,∠BFG=,二面角B﹣AD﹣E的大小为.【点评】本题主要考查空间点、线、面位置关系,二面角等基础知识,同时考查空间想象能力,推理论证能力和运算求解能力.21.(15分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a ﹣b.【分析】(Ⅰ)设直线l的方程为y=kx+m(k<0),由,消去y得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0,利用△=0,可求得在第一象限中点P的坐标;(Ⅱ)由于直线l1过原点O且与直线l垂直,设直线l1的方程为x+ky=0,利用点到直线间的距离公式,可求得点P到直线l1的距离d=,整理即可证得点P到直线l1的距离的最大值为a﹣b..【解答】解:(Ⅰ)设直线l的方程为y=kx+m(k<0),由,消去y得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0.由于直线l与椭圆C只有一个公共点P,故△=0,即b2﹣m2+a2k2=0,此时点P的横坐标为﹣,代入y=kx+m得点P的纵坐标为﹣k•+m=,∴点P的坐标为(﹣,),又点P在第一象限,故m>0,故m=,故点P的坐标为P(,).(Ⅱ)由于直线l1过原点O且与直线l垂直,故直线l1的方程为x+ky=0,所以点P到直线l1的距离d=,整理得:d=,因为a2k2+≥2ab,所以≤=a﹣b,当且仅当k2=时等号成立.所以,点P到直线l1的距离的最大值为a﹣b.【点评】本题主要考查椭圆的几何性质、点到直线间的距离、直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法、基本不等式应用等综合解题能力.22.(14分)已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M (a)﹣m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.【分析】(Ⅰ)利用分段函数,结合[﹣1,1],分类讨论,即可求M(a)﹣m(a);(Ⅱ)令h(x)=f(x)+b,则h(x)=,h′(x)=,则[f(x)+b]2≤4对x∈[﹣1,1]恒成立,转化为﹣2≤h(x)≤2对x∈[﹣1,1]恒成立,分类讨论,即可求3a+b的取值范围.【解答】解:(Ⅰ)∵f(x)=x3+3|x﹣a|=,∴f′(x)=,①a≤﹣1时,∵﹣1≤x≤1,∴x≥a,f(x)在(﹣1,1)上是增函数,∴M(a)=f(1)=4﹣3a,m(a)=f(﹣1)=﹣4﹣3a,∴M(a)﹣m(a)=8;②﹣1<a<1时,x∈(a,1),f(x)=x3+3x﹣3a,在(a,1)上是增函数;x∈(﹣1,a),f(x)=x3﹣3x+3a,在(﹣1,a)上是减函数,∴M(a)=max{f(1),f(﹣1)},m(a)=f(a)=a3,∵f(1)﹣f(﹣1)=﹣6a+2,∴﹣1<a≤时,M(a)﹣m(a)=﹣a3﹣3a+4;<a<1时,M(a)﹣m(a)=﹣a3+3a+2;③a≥1时,有x≤a,f(x)在(﹣1,1)上是减函数,∴M(a)=f(﹣1)=2+3a,m(a)=f(1)=﹣2+3a,∴M(a)﹣m(a)=4;(Ⅱ)令h(x)=f(x)+b,则h(x)=,h′(x)=,∵[f(x)+b]2≤4对x∈[﹣1,1]恒成立,∴﹣2≤h(x)≤2对x∈[﹣1,1]恒成立,由(Ⅰ)知,①a≤﹣1时,h(x)在(﹣1,1)上是增函数,最大值h(1)=4﹣3a+b,最小值h(﹣1)=﹣4﹣3a+b,则﹣4﹣3a+b≥﹣2且4﹣3a+b≤2矛盾;②﹣1<a≤时,最小值h(a)=a3+b,最大值h(1)=4﹣3a+b,∴a3+b≥﹣2且4﹣3a+b≤2,令t(a)=﹣2﹣a3+3a,则t′(a)=3﹣3a2>0,t(a)在(0,)上是增函数,∴t(a)>t(0)=﹣2,∴﹣2≤3a+b≤0;③<a<1时,最小值h(a)=a3+b,最大值h(﹣1)=3a+b+2,则a3+b≥﹣2且3a+b+2≤2,∴﹣<3a+b≤0;④a≥1时,最大值h(﹣1)=3a+b+2,最小值h(1)=3a+b﹣2,则3a+b﹣2≥﹣2且3a+b+2≤2,∴3a+b=0.综上,3a+b的取值范围是﹣2≤3a+b≤0.【点评】本题考查导数的综合运用,考查函数的最值,考查分类讨论、化归与转化的数学思想,难度大.。
2014年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)
2014年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题(共12小题,每小题5分)1.(5分)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[1,2)B.[﹣1,1]C.[﹣1,2)D.[﹣2,﹣1] 2.(5分)=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i3.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数4.(5分)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3C.m D.3m5.(5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.6.(5分)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.7.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.8.(5分)设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β= 9.(5分)不等式组的解集记为D,有下列四个命题:p1:∀(x,y)∈D,x+2y≥﹣2 p2:∃(x,y)∈D,x+2y≥2p3:∀(x,y)∈D,x+2y≤3p4:∃(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p3 10.(5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3C.D.211.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)12.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6C.4D.4二、填空题(共4小题,每小题5分)13.(5分)(x﹣y)(x+y)8的展开式中x2y7的系数为.(用数字填写答案)14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)已知A,B,C为圆O上的三点,若=(+),则与的夹角为.16.(5分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为.三、解答题17.(12分)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n﹣1,其中λ为常数.﹣a n=λ(Ⅰ)证明:a n+2(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.18.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z~N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.20.(12分)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l 的方程.21.(12分)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.选修4-1:几何证明选讲22.(10分)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.选修4-4:坐标系与参数方程23.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.选修4-5:不等式选讲24.若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.2014年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分)1.(5分)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[1,2)B.[﹣1,1]C.[﹣1,2)D.[﹣2,﹣1]【考点】1E:交集及其运算.【专题】5J:集合.【分析】求出A中不等式的解集确定出A,找出A与B的交集即可.【解答】解:由A中不等式变形得:(x﹣3)(x+1)≥0,解得:x≥3或x≤﹣1,即A=(﹣∞,﹣1]∪[3,+∞),∵B=[﹣2,2),∴A∩B=[﹣2,﹣1].故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】由条件利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得结果.【解答】解:==﹣(1+i)=﹣1﹣i,故选:D.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.3.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数【考点】3K:函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】根据函数奇偶性的性质即可得到结论.【解答】解:∵f(x)是奇函数,g(x)是偶函数,∴f(﹣x)=﹣f(x),g(﹣x)=g(x),f(﹣x)•g(﹣x)=﹣f(x)•g(x),故函数是奇函数,故A错误,|f(﹣x)|•g(﹣x)=|f(x)|•g(x)为偶函数,故B错误,f(﹣x)•|g(﹣x)|=﹣f(x)•|g(x)|是奇函数,故C正确.|f(﹣x)•g(﹣x)|=|f(x)•g(x)|为偶函数,故D错误,故选:C.【点评】本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.4.(5分)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3C.m D.3m【考点】KC:双曲线的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】双曲线方程化为标准方程,求出焦点坐标,一条渐近线方程,利用点到直线的距离公式,可得结论.【解答】解:双曲线C:x2﹣my2=3m(m>0)可化为,∴一个焦点为(,0),一条渐近线方程为=0,∴点F到C的一条渐近线的距离为=.故选:A.【点评】本题考查双曲线的方程与性质,考查点到直线的距离公式,属于基础题.5.(5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.【考点】C6:等可能事件和等可能事件的概率.【专题】11:计算题;5I:概率与统计.【分析】求得4位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可.【解答】解:4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况,周六、周日都有同学参加公益活动,共有24﹣2=16﹣2=14种情况,∴所求概率为=.故选:D.【点评】本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.6.(5分)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.【考点】3P:抽象函数及其应用.【专题】57:三角函数的图像与性质.【分析】在直角三角形OMP中,求出OM,注意长度、距离为正,再根据直角三角形的锐角三角函数的定义即可得到f(x)的表达式,然后化简,分析周期和最值,结合图象正确选择.【解答】解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cosx|,∴点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx|•|sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选:C.【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用.7.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.【考点】EF:程序框图.【专题】5I:概率与统计.【分析】根据框图的流程模拟运行程序,直到不满足条件,计算输出M的值.【解答】解:由程序框图知:第一次循环M=1+=,a=2,b=,n=2;第二次循环M=2+=,a=,b=,n=3;第三次循环M=+=,a=,b=,n=4.不满足条件n≤3,跳出循环体,输出M=.故选:D.【点评】本题考查了当型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.8.(5分)设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β=【考点】GF:三角函数的恒等变换及化简求值.【专题】56:三角函数的求值.【分析】化切为弦,整理后得到sin(α﹣β)=cosα,由该等式左右两边角的关系可排除选项A,B,然后验证C满足等式sin(α﹣β)=cosα,则答案可求.【解答】解:由tanα=,得:,即sinαcosβ=cosαsinβ+cosα,sin(α﹣β)=cosα=sin(),∵α∈(0,),β∈(0,),∴当时,sin(α﹣β)=sin()=cosα成立.故选:C.【点评】本题考查三角函数的化简求值,训练了利用排除法及验证法求解选择题,是基础题.9.(5分)不等式组的解集记为D,有下列四个命题:p1:∀(x,y)∈D,x+2y≥﹣2 p2:∃(x,y)∈D,x+2y≥2p3:∀(x,y)∈D,x+2y≤3p4:∃(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p3【考点】2K:命题的真假判断与应用;7A:二元一次不等式的几何意义.【专题】59:不等式的解法及应用;5L:简易逻辑.【分析】作出不等式组的表示的区域D,对四个选项逐一分析即可.【解答】解:作出图形如下:由图知,区域D为直线x+y=1与x﹣2y=4相交的上部角型区域,p1:区域D在x+2y≥﹣2 区域的上方,故:∀(x,y)∈D,x+2y≥﹣2成立;p2:在直线x+2y=2的右上方和区域D重叠的区域内,∃(x,y)∈D,x+2y≥2,故p2:∃(x,y)∈D,x+2y≥2正确;p3:由图知,区域D有部分在直线x+2y=3的上方,因此p3:∀(x,y)∈D,x+2y ≤3错误;p4:x+2y≤﹣1的区域(左下方的虚线区域)恒在区域D下方,故p4:∃(x,y)∈D,x+2y≤﹣1错误;综上所述,p1、p2正确;故选:C.【点评】本题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于难题.10.(5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3C.D.2【考点】K8:抛物线的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】求得直线PF的方程,与y2=8x联立可得x=1,利用|QF|=d可求.【解答】解:设Q到l的距离为d,则|QF|=d,∵=4,∴|PQ|=3d,∴不妨设直线PF的斜率为﹣=﹣2,∵F(2,0),∴直线PF的方程为y=﹣2(x﹣2),与y2=8x联立可得x=1,∴|QF|=d=1+2=3,故选:B.【点评】本题考查抛物线的简单性质,考查直线与抛物线的位置关系,属于基础题.11.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)【考点】53:函数的零点与方程根的关系.【专题】11:计算题;51:函数的性质及应用;53:导数的综合应用.【分析】由题意可得f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;分类讨论确定函数的零点的个数及位置即可.【解答】解:∵f(x)=ax3﹣3x2+1,∴f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;①当a=0时,f(x)=﹣3x2+1有两个零点,不成立;②当a>0时,f(x)=ax3﹣3x2+1在(﹣∞,0)上有零点,故不成立;③当a<0时,f(x)=ax3﹣3x2+1在(0,+∞)上有且只有一个零点;故f(x)=ax3﹣3x2+1在(﹣∞,0)上没有零点;而当x=时,f(x)=ax3﹣3x2+1在(﹣∞,0)上取得最小值;故f()=﹣3•+1>0;故a<﹣2;综上所述,实数a的取值范围是(﹣∞,﹣2);故选:D.【点评】本题考查了导数的综合应用及分类讨论的思想应用,同时考查了函数的零点的判定的应用,属于基础题.12.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6C.4D.4【考点】L!:由三视图求面积、体积.【专题】5F:空间位置关系与距离.【分析】画出图形,结合三视图的数据求出棱长,推出结果即可.【解答】解:几何体的直观图如图:AB=4,BD=4,C到BD的中点的距离为:4,∴.AC==6,AD=4,显然AC最长.长为6.故选:B.【点评】本题考查三视图求解几何体的棱长,考查计算能力.二、填空题(共4小题,每小题5分)13.(5分)(x﹣y)(x+y)8的展开式中x2y7的系数为﹣20.(用数字填写答案)【考点】DA:二项式定理.【专题】11:计算题;5P:二项式定理.【分析】由题意依次求出(x+y)8中xy7,x2y6,项的系数,求和即可.【解答】解:(x+y)8的展开式中,含xy7的系数是:8.含x2y6的系数是28,∴(x﹣y)(x+y)8的展开式中x2y7的系数为:8﹣28=﹣20.故答案为:﹣20【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为A.【考点】F4:进行简单的合情推理.【专题】5M:推理和证明.【分析】可先由乙推出,可能去过A城市或B城市,再由甲推出只能是A,B中的一个,再由丙即可推出结论.【解答】解:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A.故答案为:A.【点评】本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.15.(5分)已知A,B,C为圆O上的三点,若=(+),则与的夹角为90°.【考点】9S:数量积表示两个向量的夹角.【专题】5A:平面向量及应用.【分析】根据向量之间的关系,利用圆直径的性质,即可得到结论.【解答】解:在圆中若=(+),即2=+,即+的和向量是过A,O的直径,则以AB,AC为邻边的四边形是矩形,则⊥,即与的夹角为90°,故答案为:90°【点评】本题主要考查平面向量的夹角的计算,利用圆直径的性质是解决本题的关键,比较基础.16.(5分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为.【考点】HP:正弦定理;HR:余弦定理.【专题】11:计算题;35:转化思想;48:分析法;58:解三角形.【分析】由正弦定理化简已知可得2a﹣b2=c2﹣bc,结合余弦定理可求A的值,由基本不等式可求bc≤4,再利用三角形面积公式即可计算得解.【解答】解:因为:(2+b)(sinA﹣sinB)=(c﹣b)sinC⇒(2+b)(a﹣b)=(c﹣b)c⇒2a﹣2b+ab﹣b2=c2﹣bc,又因为:a=2,所以:,△ABC面积,而b2+c2﹣a2=bc⇒b2+c2﹣bc=a2⇒b2+c2﹣bc=4⇒bc≤4所以:,即△ABC面积的最大值为.故答案为:.【点评】本题主要考查了正弦定理,余弦定理,基本不等式,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.三、解答题17.(12分)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n﹣1,其中λ为常数.(Ⅰ)证明:a n﹣a n=λ+2(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.【考点】83:等差数列的性质;8H:数列递推式.【专题】54:等差数列与等比数列.【分析】(Ⅰ)利用a n a n+1=λS n﹣1,a n+1a n+2=λS n+1﹣1,相减即可得出;(Ⅱ)假设存在λ,使得{a n}为等差数列,设公差为d.可得λ=a n+2﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,.得到λS n=,根据{a n}为等差数列的充要条件是,解得λ即可.【解答】(Ⅰ)证明:∵a n a n+1=λS n﹣1,a n+1a n+2=λS n+1﹣1,∴a n(a n+2﹣a n)=λa n+1+1≠0,∵a n+1∴a n﹣a n=λ.+2(Ⅱ)解:假设存在λ,使得{a n}为等差数列,设公差为d.﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,则λ=a n+2∴.∴,,∴λS n=1+=,根据{a n}为等差数列的充要条件是,解得λ=4.此时可得,a n=2n﹣1.因此存在λ=4,使得{a n}为等差数列.【点评】本题考查了递推式的意义、等差数列的通项公式及其前n项和公式、等差数列的充要条件等基础知识与基本技能方法,考查了推理能力和计算能力、分类讨论的思想方法,属于难题.18.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z~N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.【考点】CH:离散型随机变量的期望与方差;CP:正态分布曲线的特点及曲线所表示的意义.【专题】11:计算题;5I:概率与统计.【分析】(Ⅰ)运用离散型随机变量的期望和方差公式,即可求出;(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而求出P(187.8<Z<212.2),注意运用所给数据;(ii)由(i)知X~B(100,0.6826),运用EX=np即可求得.【解答】解:(Ⅰ)抽取产品的质量指标值的样本平均数和样本方差s2分别为:=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(﹣30)2×0.02+(﹣20)2×0.09+(﹣10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而P(187.8<Z<212.2)=P(200﹣12.2<Z<200+12.2)=0.6826;(ii)由(i)知一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826,依题意知X~B(100,0.6826),所以EX=100×0.6826=68.26.【点评】本题主要考查离散型随机变量的期望和方差,以及正态分布的特点及概率求解,考查运算能力.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.【考点】M7:空间向量的夹角与距离求解公式;MJ:二面角的平面角及求法.【专题】5H:空间向量及应用.【分析】(1)连结BC1,交B1C于点O,连结AO,可证B1C⊥平面ABO,可得B1C ⊥AO,B10=CO,进而可得AC=AB1;(2)以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,分别可得两平面的法向量,可得所求余弦值.【解答】解:(1)连结BC1,交B1C于点O,连结AO,∵侧面BB1C1C为菱形,∴BC1⊥B1C,且O为BC1和B1C的中点,又∵AB⊥B1C,∴B1C⊥平面ABO,∵AO⊂平面ABO,∴B1C⊥AO,又B10=CO,∴AC=AB1,(2)∵AC⊥AB1,且O为B1C的中点,∴AO=CO,又∵AB=BC,∴△BOA≌△BOC,∴OA⊥OB,∴OA,OB,OB1两两垂直,以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,∵∠CBB1=60°,∴△CBB1为正三角形,又AB=BC,∴A(0,0,),B(1,0,0,),B1(0,,0),C(0,,0)∴=(0,,),==(1,0,),==(﹣1,,0),设向量=(x,y,z)是平面AA1B1的法向量,则,可取=(1,,),同理可得平面A1B1C1的一个法向量=(1,﹣,),∴cos<,>==,∴二面角A﹣A1B1﹣C1的余弦值为【点评】本题考查空间向量法解决立体几何问题,建立坐标系是解决问题的关键,属中档题.20.(12分)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l 的方程.【考点】K4:椭圆的性质;KH:直线与圆锥曲线的综合.【专题】5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)通过离心率得到a、c关系,通过A求出a,即可求E的方程;(Ⅱ)设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,利用△>0,求出k的范围,利用弦长公式求出|PQ|,然后求出△OPQ的面积表达式,利用换元法以及基本不等式求出最值,然后求解直线方程.【解答】解:(Ⅰ)设F(c,0),由条件知,得又,所以a=2,b2=a2﹣c2=1,故E的方程.….(5分)(Ⅱ)依题意当l⊥x轴不合题意,故设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,得(1+4k2)x2﹣16kx+12=0,当△=16(4k2﹣3)>0,即时,从而又点O到直线PQ的距离,所以△OPQ的面积=,设,则t>0,,当且仅当t=2,k=±等号成立,且满足△>0,所以当△OPQ的面积最大时,l的方程为:y=x﹣2或y=﹣x﹣2.…(12分)【点评】本题考查直线与椭圆的位置关系的应用,椭圆的求法,基本不等式的应用,考查转化思想以及计算能力.21.(12分)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.【考点】6E:利用导数研究函数的最值;6H:利用导数研究曲线上某点切线方程.【专题】15:综合题;53:导数的综合应用.【分析】(Ⅰ)求出定义域,导数f′(x),根据题意有f(1)=2,f′(1)=e,解出即可;(Ⅱ)由(Ⅰ)知,f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,函数h(x)=,只需证明g(x)min>h(x)max,利用导数可分别求得g (x)min,h(x)max;【解答】解:(Ⅰ)函数f(x)的定义域为(0,+∞),f′(x)=+,由题意可得f(1)=2,f′(1)=e,故a=1,b=2;(Ⅱ)由(Ⅰ)知,f(x)=e x lnx+,∵f(x)>1,∴e x lnx+>1,∴lnx>﹣,∴f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,则g′(x)=1+lnx,∴当x∈(0,)时,g′(x)<0;当x∈(,+∞)时,g′(x)>0.故g(x)在(0,)上单调递减,在(,+∞)上单调递增,从而g(x)在(0,+∞)上的最小值为g()=﹣.设函数h(x)=xe﹣x﹣,则h′(x)=e﹣x(1﹣x).∴当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0,故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1)=﹣.综上,当x>0时,g(x)>h(x),即f(x)>1.【点评】本题考查导数的几何意义、利用导数求函数的最值、证明不等式等,考查转化思想,考查学生分析解决问题的能力.选修4-1:几何证明选讲22.(10分)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.【考点】NB:弦切角;NC:与圆有关的比例线段.【专题】15:综合题;5M:推理和证明.【分析】(Ⅰ)利用四边形ABCD是⊙O的内接四边形,可得∠D=∠CBE,由CB=CE,可得∠E=∠CBE,即可证明:∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,证明AD∥BC,可得∠A=∠CBE,进而可得∠A=∠E,即可证明△ADE为等边三角形.【解答】证明:(Ⅰ)∵四边形ABCD是⊙O的内接四边形,∴∠D=∠CBE,∵CB=CE,∴∠E=∠CBE,∴∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,∴O在直线MN上,∵AD不是⊙O的直径,AD的中点为M,∴OM⊥AD,∴AD∥BC,∴∠A=∠CBE,∵∠CBE=∠E,∴∠A=∠E,由(Ⅰ)知,∠D=∠E,∴△ADE为等边三角形.【点评】本题考查圆的内接四边形性质,考查学生分析解决问题的能力,属于中档题.选修4-4:坐标系与参数方程23.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.【考点】KH:直线与圆锥曲线的综合;QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(Ⅰ)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P到直线l的距离,除以sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值.【解答】解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.【点评】本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题.选修4-5:不等式选讲24.若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.【考点】RI:平均值不等式.【专题】59:不等式的解法及应用.【分析】(Ⅰ)由条件利用基本不等式求得ab≥2,再利用基本不等式求得a3+b3的最小值.(Ⅱ)根据ab≥2及基本不等式求的2a+3b>8,从而可得不存在a,b,使得2a+3b=6.【解答】解:(Ⅰ)∵a>0,b>0,且+=,∴=+≥2,∴ab≥2,当且仅当a=b=时取等号.∵a3+b3 ≥2≥2=4,当且仅当a=b=时取等号,∴a3+b3的最小值为4.(Ⅱ)∵2a+3b≥2=2,当且仅当2a=3b时,取等号.而由(1)可知,2≥2=4>6,故不存在a,b,使得2a+3b=6成立.【点评】本题主要考查基本不等式在最值中的应用,要注意检验等号成立条件是否具备,属于基础题.。
2014年高考理综全国卷1(含详细答案)
8.化学与社会、生活密切相关。对下列现象或事实的解释正确的是()
选项
现象或事实
解释
A
用热的烧碱溶液洗去油污
可直接与油污反应
B
漂白粉在空气中久置变质
漂白粉中的 与空气中的 反应生成
C
施肥时,草木灰(有效成分为 )不能与 混合使用
与 反应生成氨气会降低肥效
D
溶液可用于铜质印刷线路板制作
A.点电荷 一定在MP的连线上
B.连接PF的线段一定在同一等势面上
C.将正试探电荷从 点搬运到N点,电场力做负功 NhomakorabeaD. 大于
第Ⅱ卷(非选择题 共174分)
三、非选择题(包括必考题和选考题两部分,第22~第32题为必考题,每个试题考生都必须做答。第33~第40题为选考题,考生根据要求做答)
(一)必考题(共129分)
A.原子最外层电子数:X>Y>Z
B.单质沸点:X>Y>Z
C.离子半径:
D.原子序数:X>Y>Z
11.溴酸银( )溶解度随温度变化曲线如图所示,下列说法错误的是()
A.溴酸银的溶解是放热过程
B.温度升高时溴酸银溶解速度加快
C. 60 时溴酸银的 约等于
D.若硝酸钾中含有少量溴酸银,可用重结晶方法提纯
12.下列有关仪器使用方法或实验操作正确的是()
R/Ω
1.0
2.0
3.0
4.0
5.0
6.0
7.0
I/A
0.143
0.125
①
0.100
0.091
0.084
0.077
6.99
8.00
②
10.0
11.0
2014年浙江省高考物理试卷(附参考答案+详细解析Word打印版)
2014年浙江省2014年山东省普通高等学校招生统一考试物理试卷一、选择题(共13小题,每小题5分,共65分,每小题只有一个选项符合题意)二、选择题(共7小题,每小题6分,共42分,每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得6分,选对但不全的得3分,有选错的得0分)14.(6分)如图,用两根等长轻绳将木板悬挂在竖直木桩上等高的两点,制成一简易秋千,某次维修时将两轻绳各剪去一小段,但仍能保持等长且悬挂点不变,木板静止时,F1表示木板所受合力的大小,F2表示单根轻绳对木板拉力的大小,则维修后()A.F1不变,F2变大B.F1变大,F2变小C.F1变大,F2变大D.F1变小,F2变小15.(6分)一质点在外力作用下做直线运动,其速度v随时间t变化的图象如图所示,在图中标出的时刻中,质点所受合外力的方向与速度方向相同的有()A.t1B.t2C.t3D.t416.(6分)如图,一端接有定值电阻的轨道固定在水平面内,通有恒定电流的长直绝缘导体棒垂直并紧靠轨道固定,导体棒与轨道垂直且接触良好,在向右匀速通过M、N两区的过程中,导体棒所受安培力分别用F M、F N表示,不计轨道电阻,以下叙述正确的是()A.F M向右 B.F N向左C.F M逐渐增大D.F N逐渐减小17.(6分)如图,将额定电压为60V的用电器,通过一理想变压器接在正弦交变电源上,闭合开关S后,用电器正常工作,交流电压表和交流电流表(均为理想电表)的示数分别为220V和2.2A,以下判断正确的是()A.变压器输入功率为484WB.通过原线圈的电流的有效值为0.6AC.通过副线圈的电流的最大值为2.2AD.变压器原、副线圈匝数比n1:n2=11:318.(6分)如图,场强大小为E、方向竖直向下的匀强电场中有一矩形区域abcd,水平边ab长为s,竖直边ad长为h,质量均为m、带电量分别为+q和﹣q的两粒子,由a、c两点先后沿ab和cd方向以速率v0进入矩形区(两粒子不同时出现在电场中),不计重力,若两粒子轨迹恰好相切,则v0等于()A. B.C. D.19.(6分)如图,半径为R的均匀带正电薄球壳,其上有一小孔A,已知壳内的场强处处为零,壳外空间的电场与将球壳上的全部电荷集中于球心O时在壳外产生的电场一样,一带正电的试探电荷(不计重力)从球心以初动能E k0沿OA方向射出,下列关于试探电荷的动能E k与离开球心的距离r的关系图线,可能正确的是()A.B.C.D.20.(6分)2013年我国相继完成“神十”与“天宫”对接,“嫦娥”携“玉兔”落月两大航天工程,某航天爱好者提出“玉兔”回家的设想:如图,将携带“玉兔”的返回系统由月球表面发射到h高度的轨道上,与在该轨道绕月球做圆周运动的飞船对接,然后由飞船送“玉兔”返回地球,设“玉兔”质量为m,月球半径为R,月面的.以月面为零势能面,“玉兔”在h高度的引力势能可表示为重力加速度为g月E p=,其中G为引力常量,M为月球质量,若忽略月球的自转,从开始发射到对接完成需要对“玉兔”做的功为()A.(h+2R)B.(h+R)C.(h+R)D.(h+R)三、解答题21.(8分)某实验小组利用弹簧秤和刻度尺,测量滑块在木板上运动的最大速度。
2014年高考理综浙江卷(含详细答案)
理科综合能力测试试卷 第1页(共44页)理科综合能力测试试卷 第2页(共44页)绝密★启用前 2014年普通高等学校招生全国统一考试(浙江卷)理科综合能力测试本试卷分选择题和非选择题两部分。
满分300分,考试时间150分钟。
考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考试本人准考证号、姓名是否一致。
2. 选择题部分每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
非选择题部分用黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效。
3. 考试结束,将本试卷和答题卡一并交回。
可能用到的相对原子质量:H —1 C —12 N —14 O —16 Na —23 Al —27 S —32Cl —35. 5 K —39 Ca —64 Fe —56 Cu —64 Ba —137选择题部分(共120分)1. 下列关于物质出入细胞方式的叙述,正确的是( )A. 被细胞胞吞的一定是固体物质B. 突触前膜释放乙酰胆碱属于易化扩散C. 通过载体蛋白的物质转运属于主动转运D. 胞吐过程一定会产生分泌泡与质膜的融合2. 下图表示施用IAA (吲哚乙酸)对某种植物主根长度及侧根数的影响。
下列叙述错误的是( )A. 促进侧根数量增加的IAA 溶液,会抑制主根的伸长B. 施用IAA 对诱导侧根的作用表现为低浓度促进、高浓度抑制C. 将为施用IAA 的植株除去部分芽和幼叶,会导致侧根数量增加D. 与施用4110 mol L --的IAA 相比,未施用的植株主根长而侧根数量少 3. 下列关于动物细胞培养的叙述,正确的是( )A. 连续细胞系的细胞大多具有二倍体核型B. 某些癌细胞在合适条件下能逆转为正常细胞C. 由多个祖细胞培养形成的细胞群为一个克隆D. 未经克隆化培养的细胞系细胞具有相同的性状 4. 下列关于环境容纳量的叙述,正确的是( )A. 环境容纳量是指种群的最大数量B. 种群的内源性调节因素不会改变环境容纳量的大小C. 在理想条件下,影响种群数量增长的因素主要是环境容纳量D. 植食动物在自然环境条件下,一年四季的环境容纳量以冬季最大5. 某哺乳动物体细胞在培养中能够分裂,在培养过程中将适量的3H - TdR (3H 标记的胸腺嘧啶脱氧核苷)和某促进细胞分裂的药物加入到培养液中,培养一段时间,可观察和测量到( )A. 1G 期变短,该期有大量3H - TdR 进入细胞核B. S 期变长,该期有DNA 复制和核糖体的增生C. 2G 期变短,该期细胞核中有组蛋白D. M 期相对较短,该期细胞的核膜始终完整6. 除草剂敏感型的大豆经辐射获得抗性突变体,且敏感基因与抗性基因是一对等位基因。
2014年高考真题——地理(浙江卷)(含答案和解析)
2014年普通高等学校招生全国统一考试(浙江卷)文科综合地理本试卷分选择题和非选择题两部分。
满分300分,考试时间150分钟。
第Ⅰ卷选择题,共140分本卷共35小题,每小题4分,共140分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
南水北调东线工程是把长江的水调往北方的调水工程,调水线路主要为大运河。
读南水北调东线工程调水线路图,完成1~2题。
1.对南水北调东线工程及其可能带来的影响,叙述正确的是()①可以解决华北平原的盐碱化问题②有利于改善丙地大运河航运条件③丙至戊段可以自流引水④可缓解戊地的用水紧张A.①②B.③④C.①③D.②④2.南水北调东线工程对长江可能带来的影响,叙述正确的是()A.可提高社会对长江水质的关注B.可促使长江的泥沙向海洋输送C.可降低甲地咸水入侵发生的可能D.可改变长江口外海洋潮汐的规律中亚位于“丝绸之路经济带”的中部,中亚国家与我国之间已形成由铁路、公路、航空和管道等多种交通运输方式构成的综合运输体系。
读我国与中亚部分地区略图,完成3~4题。
3.我国与中亚国家之间大力发展铁路运输,体现其优势的是()①适宜长距离大宗货物运输②修建总成本低③运输快捷,灵活方便④受气象灾害影响相对较小A.①③B.②③C.①④D.②④4.某贸易代表团7月从吐鲁番出发沿铁路前往中亚考察,有关沿线的自然环境描述正确的是()A.自咸海至阿拉木图呈现草原向荒漠的变化B.在乌鲁木齐看到坡上有植被、顶部有积雪的山峰C.锡尔河自上而下到河口水量不断增加D.从阿拉木图往北走看到山地针叶林分布海拔高度不断上升区域人口对资源压力指数是全国某资源人均占有量与区域该资源人均占有量之比,此比值可作为判断区域人口规模适宜程度的指标之一。
读表,完成5~6题。
人均GDP与全国平均值之比城市化水平/%人口对水资源压力指数人口对耕地压力指数全国1.00 52.57 1.00 1.00青海0.86 47.44 0.14 0.95河南0.82 42.43 7.74 1.07黑龙江0.93 56.90 1.00 0.29浙江1.65 63.20 0.832.565.四省比较,叙述正确的是()A.人均GDP水平越高,则人口对水资源压力越大B.城市化水平越低,则人口对耕地压力越小C.人均GDP水平越高,则城市化水平越高D.城市化水平越低,则人口对水资源压力越小6.四省比较,关于产业发展条件叙述正确的是()A.青海大力发展高科技产业条件最佳B.河南发展耗水较多的产业条件最佳C.浙江发展用耕地多的产业条件最佳D.黑龙江发展商品农业耕地条件最佳下图为我国某地沿北纬38.5°所作的地质构造、地貌剖面图。
2024年高考真题——物理(浙江卷)含解析
2024年6月浙江省物理选考真题试卷(答案在最后)可能用到的相关参数∶重力加速度g取10m/s2。
选择题部分一、选择题I(本题共13小题,每小题3分,共39分。
每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)1.下列物理量中,属于矢量的是()A.位移B.时间C.电流D.热量【答案】A【解析】【详解】A.位移既有大小又有方向,且运算法则为平行四边形法则,是矢量,故A正确;BD.时间和热量均只有大小没有方向,是标量,故BD错误;C.电流运算法则是算术法则,是标量,故C错误。
故选A。
2.如图为小猫蹬地跃起腾空追蝶的情景,则()A.飞行的蝴蝶只受重力的作用B.蝴蝶转弯时所受合力沿运动方向C.小猫在空中受重力和弹力的作用D.小猫蹬地时弹力大于所受重力【答案】D【解析】【详解】A.飞行的蝴蝶除了受到重力的作用还受到空气的作用力,故A错误;B.蝴蝶转弯时做曲线运动,所受合力与速度方向不在一条直线上,故B错误;C.小猫在空中与其他物体间没有接触,不受弹力的作用,故C错误;D.小猫蹬地时有向上的加速过程,故弹力大于所受重力,故D正确。
故选D。
3.如图为水流导光实验,出水口受激光照射,下面桶中的水被照亮,则()A.激光在水和空气中速度相同B.激光在水流中有全反射现象C.水在空中做匀速率曲线运动D.水在水平方向做匀加速运动【答案】B【解析】【详解】A .光在介质中的速度为c v n=,故激光在水中的传播速度小于在空气中的传播速度,故A 错误;B .水流导光的原理为光在水中射到水与空气分界面时入射角大于临界角,发生了全反射,故B 正确;C .水在空中只受到重力作用,做匀变速曲线运动,速度在增大,故C 错误;D .水在水平方向做匀速直线运动,故D 错误。
故选B 。
4.发现中子的核反应方程为491240He+Be X n →+,“玉兔二号”巡视器的核电池中钚238的衰变方程为型2349238942Pu U+Y →,下列正确的是()A.核反应方程中的X 为126CB.衰变方程中的Y 为32He C.中子10n 的质量数为零D.钚238的衰变吸收能量【答案】A【解析】【详解】AB .根据质量数和电荷数守恒可知X 为126C ,Y 为42He ,故A 正确,B 错误;C .中子的质量数为1,故C 错误;D .衰变过程中质量亏损,释放能量,故D 错误。
2014年高考真题
2014年普通高等学校招生全国统一考试(新课标I)英语注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1页至10页,第Ⅱ卷11页至13页。
2. 答题前,考生务必将自己的姓名,准考证号填写在本试卷相应的位置。
3. 全部答案在答题卡上完成,搭载本试卷上无效。
4. 第Ⅰ卷听力部分满分30分,不计入总分,考试成绩录取时提供给高校作参考。
5. 考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷第一部分听力(共两节,满分30分)做题时,现将答案标在试卷上,录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话,每段对话后有一个小题。
从题中所给的A,B,C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
例:How much is the shirt?A.£ 19.15B.£ 9.18C.£ 9.15答案是C。
1.What does the woman want to do ?A. Find a placeB. Buy a mapC.Get an address2. What will the man do for the woman?A. Repair her carB.Give her a rideC.Pick up a aunt3. Who might Mr Peterson be?A. new professorB.A department headC.A company director4. What does the man think of the book?A.Quite differentB.Very interestingC.Too simple5.What are the speakers talking about?A.WeatherB.Clothes.C.News.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话。
2014年浙江省高考数学试卷及答案(理科)
第 1 页 共 11 页绝密★考试结束前2014年普通高等学校招生全国统一考试〔浙江卷〕数学〔理科〕本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至3页,非选择题部分4至5页。
总分值150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分〔共50分〕注意事项:1.答题前,考生务必将自己的、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。
2.每题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
参考公式如果事件,A B 互斥 ,那么()()()P A B P A P B +=+如果事件,A B 相互独立,那么()()()P A B P A P B •=•如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中事件A 恰好发生k 次的概率()(1)(0,1,2,...,)k kn k n n P k C p p k n -=-=台体的体积公式121()3V h S S =其中1S ,2S 分别表示台体的上、下面积,h 表示台体的高柱体体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高球的外表积公式24S R π=球的体积公式343V R π=其中R 表示球的半径一.选择题:本大题共10小题,每题5分,共50分. 在每题给出的四个选项中,只有一项是符合题目要求的.1.设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U 〔 〕A. ∅B. }2{C. }5{D. }5,2{2.已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的〔 〕 A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件3.某几何体的三视图〔单位:cm 〕如下图,则此几何体的外表积是〔 〕 A. 902cm B. 1292cm C. 1322cm D. 1382cm 4.为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像〔 〕A.向右平移4π4π个单位 12π12π个单位 46)1()1(y x ++的展开式中,记n m y x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f )〔 〕A.45B.60C.120D. 210则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f 〔 〕A.3≤cB.63≤<cC.96≤<cD. 9>c7.在同一直角坐标系中,函数x x g x x x f a alog )(),0()(=≥=的图像可能是〔 〕A. B. C. D.,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x yx y x x y ≥⎧=⎨<⎩,设a,b 为平面向量,则〔 〕A.min{||,||}min{||,||}a b a b a b +-≤B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+ D.2222min{||,||}||||a b a b a b +-≤+9.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中.〔a 〕放入i 个球后,甲盒中含有红球的个数记为()1,2ii ξ=;〔b 〕放入i 个球后,从甲盒中取1个球是红球的概率记为()1,2i p i =. 则A.()()1212,p p E E ξξ><B.()()1212,p p E E ξξ<>C.()()1212,p p E E ξξ>>D.()()1212,p p E E ξξ<< 10.设函数21)(xx f =,),(2)(22x x x f -=|2sin |31)(3x x f π=,99,,2,1,0,99==i ia i ,记|)()(||)()(||)()(|98991201a f a f a f a f a f a f I k k k k k k k -++-+-= ,.3,2,1=k 则( )A.321I I I <<B. 312I I I <<C. 231I I I <<D. 123I I I << 二、填空题:本大题共7小题,每题4分,共28分.11.假设某程序框图如下图,当输入50时,则该程序运算后输出的结果是________.12.随机变量ξ的取值为0,1,2,假设()105P ξ==,()1E ξ=,则()D ξ=________. 13.当实数x ,y 满足240,10,1,x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a 的取值范围是________.14.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人, 每人2张,不 同的获奖情况有_____种〔用数字作答〕.()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 假设()()2≤a f f ,则实数a 的取值范围是______15.设直线)0(03≠=+-m m y x 与双曲线12222=-by a x 〔0a b >>〕两条渐近线分别交于点B A ,,假设点)0,(m P 满足PB PA =,则该双曲线的离心率是__________ 17、如图,某人在垂直于水平地面的墙面前的点到墙面的距离为,某目标点沿墙面的射击线移动,此人为了准确瞄准目标点,需计算由点观察点的仰角则的最大值 。