单点接地和多点接地

单点接地和多点接地
单点接地和多点接地

有三种基本的信号接地方式:浮地、单点接地、多点接地。

1 浮地目的:使电路或设备与公共地线可能引起环流的公共导线隔离起来,浮地还使不同电位的电路之间配合变得容易。缺点:容易出现静电积累引起强烈的静电放电。折衷方案:接入泄放电阻。

2 单点接地方式:线路中只有一个物理点被定义为接地参考点,凡需要接地均接于此。缺点:不适宜用于高频场合。

3 多点接地方式:凡需要接地的点都直接连到距它最近的接地平面上,以便使接地线长度为最短。缺点:维护较麻烦。

4 混合接地按需要选用单点及多点接地。

PCB中的大面积敷铜接地其实就是多点接地所以单面Pcb也可以实现多点接地

多层PCB大多为高速电路地层的增加可以有效提高PCB的电磁兼容性是提高信号抗干扰的基本手段,同样由于电源层和底层和不同信号层的相互隔离减轻了PCB的布通率也增加了信号间的干扰。

在大功率和小功率电路混合的系统中,切忌使用串联单点接地,因为大功率电路中的地线电流会影响小功率电路的正常工作。另外,最敏感的电路要放在A 点,这点电位是最稳定的。解决这个问题的方法是并联单点接地。但是,并联单点接地需要较多的导线,实践中可以采用串联、并联混合接地。

将电路按照特性分组,相互之间不易发生干扰的电路放在同一组,相互之间容易发生干扰的电路放在不同的组。每个组内采用串联单点接地,获得最简单的地线结构,不同组的接地采用并联单点接地,避免相互之间干扰。

这个方法的关键:绝不要使功率相差很大的电路或噪声电平相差很大的电路共用一段地线。

这些不同的地仅能在通过一点连接起来。

为了减小地线电感,在高频电路和数字电路中经常使用多点接地。在多点接地系统中,每个电路就近接到低阻抗的地线面上,如机箱。电路的接地线要尽量短,以减小电感。在频率很高的系统中,通常接地线要控制在几毫米的范围内。

多点接地时容易产生公共阻抗耦合问题。在低频的场合,通过单点接地可以解决这个问题。但在高频时,只能通过减小地线阻抗(减小公共阻抗)来解决。由于趋肤效应,电流仅在导体表面流动,因此增加导体的厚度并不能减小导体的电阻。在导体表面镀银能够降低导体的电阻。

通常1MHz以下时,可以用单点接地;10MHz以上时,可以用多点接地,在1MHz和10MHz之间时,可如果最长的接地线不超过波长的1/20,可以用单点接地,否则用多点接地。

接地电容的容量一般在10nF以下,取决于需要接地的频率。

如果将设备的安全地断开,地环路就被切断,可以解决地环路电流干扰。但是出于安全的考虑,机箱必须接到安全地上。图中所示的接地系统解决了这个问题,对于频率较高的地环路电流,地线是断开的,而对于50Hz的交流电,机箱都是可靠接地的。

单点接地和多点接地

有三种基本的信号接地方式:浮地、单点接地、多点接地。 1 浮地目的:使电路或设备与公共地线可能引起环流的公共导线隔离起来,浮地还使不同电位的电路之间配合变得容易。缺点:容易出现静电积累引起强烈的静电放电。折衷方案:接入泄放电阻。 2 单点接地方式:线路中只有一个物理点被定义为接地参考点,凡需要接地均接于此。缺点:不适宜用于高频场合。 3 多点接地方式:凡需要接地的点都直接连到距它最近的接地平面上,以便使接地线长度为最短。缺点:维护较麻烦。 4 混合接地按需要选用单点及多点接地。 PCB中的大面积敷铜接地其实就是多点接地所以单面Pcb也可以实现多点接地 多层PCB大多为高速电路地层的增加可以有效提高PCB的电磁兼容性是提高信号抗干扰的基本手段,同样由于电源层和底层和不同信号层的相互隔离减轻了PCB的布通率也增加了信号间的干扰。 在大功率和小功率电路混合的系统中,切忌使用,因为大功率电路中的地线电流会影响小功率电路的正常工作。另外,最敏感的电路要放在A点,这点电位是最稳定的。解决这个问题的方法是并联单点接地。但是,并联单点接地需要较多的导线,实践中可以采用串联、并联混合接地。

将电路按照特性分组,相互之间不易发生干扰的电路放在同一组,相互之间容易发生干扰的电路放在不同的组。每个组内采用串联单点接地,获得最简单的地线结构,不同组的接地采用并联单点接地,避免相互之间干扰。 这个方法的关键:绝不要使功率相差很大的电路或噪声电平相差很大的电路共用一段地线。 这些不同的地仅能在通过一点连接起来。

为了减小地线电感,在高频电路和数字电路中经常使用多点接地。在多点接地系统中,每个电路就近接到低阻抗的地线面上,如机箱。电路的接地线要尽量短,以减小电感。在频率很高的系统中,通常接地线要控制在几毫米的范围内。 多点接地时容易产生公共阻抗耦合问题。在低频的场合,通过单点接地可以解决这个问题。但在高频时,只能通过减小地线阻抗(减小公共阻抗)来解决。由于趋肤效应,电流仅在导体表面流动,因此增加导体的厚度并不能减小导体的电阻。在导体表面镀银能够降低导体的电阻。 通常1MHz以下时,可以用单点接地;10MHz以上时,可以用多点接地,在1MHz和10MHz之间时,可如果最长的接地线不超过波长的1/20,可以用单点接地,否则用多点接地。

变电站直流系统接地故障

电力系统中变电站直流系统接地故障的分析 摘要: 变电站直流系统发生接地故障可能会引起信号回路、控制回路、继电保护和自动装置回路误动作,导致电力系统不能安全正常运行。快速正确地对故障进行分析和处理,而且要及时对直流系统的故障产生原因进行排查并做好故障发生预防工作,是保证电力系统安全运行的关键。文章在直流系统接地分类的基础上,阐述了直流系统接地故障的类型和特点,研究了处理故障的方法,介绍了故障的危害。 关键词:变电站直流系统;接地故障;处理 1 引言 电力系统的一个重要组成部分就是变电站,变电站电力系统的安全稳定运行直接影响电网的供电质量,而且还关系到整个电网系统的安全稳定。然而,变电站的设备问题则是电网安全运行的关键,如果不能及时并有效地对设备问题进行分析和处理,会很可能造成大面积停电,对人们的生产、生活造成危害和损失。由于变电站直流系统几乎分布在变电站的任何角落,范围十分广泛,所以直流系统接地故障的发生几率很高,将直接威胁到电力系统的安全运行。综合而言,正确、快速地对接地故障进行分析和处理至关重要。 2 变电站的直流系统概述 变电站的直流系统,与人体的血管相似,遍布变电站的室内和场内,保证着电力系统的可靠安全运行。直流系统发生故障失灵时,断路器将因为失去跳闸的直流电源而不能跳闸切除故障,强大的短路电流将烧坏主变压器等等重要电器设备,造成灾难性的后果。直流系统为供给继电保护、控制、信号、事故照明、交流部间断电源、计算机监控等直流负荷,35kV及以上的变电站应装设由蓄电池供电的直流系统。直流系统的用电负荷极为重要,对供电的可靠性要求很高。直流系统的可靠性是保障变电站安全运行的决定性条件之一。 3 变电站直流系统接地分类 (1)按接地点分类。直流系统依接地点类别不同可分为多点接地和一点接地。多点接地是指发生两点以及两点以上接地,然而一点接地就是指单点接地发生在一组直流系统中。一般情况下,绝缘检测装置在多点接地与一点接地都可以发出正确的告警,但是多点接地可能会发生不正确选线情况,然而一点接地能避免这种情况从而正确选线。而且直流系统一点接地不会对保护装置的运行产生影响,但是现场工作人员需要对多点接地利用其它方法来分析查找故障回路。但一点接地时,若超过4 h内则构成障碍。为了防止两点接地的出现,要视接地点情况判断和分析,一般要求尽快查明故障点并加以排除直流系统多点接地对保护装置的影响。图1、图2 、图3为典型多点接地示意图。 图1 多点接触1 图2 多点接触2

PCB板的地线设计和正确选择单点接地与多点接地

PCB板的地线设计和正确选择单点接地与多点接地 类别:电源技术阅读:899 在电子设备中,接地是控制干扰的重要方法。将接地和屏蔽正确结合起来使用,可解决大部分干扰问题。电子设备中地线结构大致有系统地、机壳地(屏蔽地)、数字地(逻辑地)和以地等。 在PCB板的地线设计申,接地技术既应用于多层PCB,也应用于单层PCBo接地技术是为最小化接地阻抗,以减少从电路返回到电源之间的接地回路的电势。 (1)正确选择单点接地与多点接地 在低频电路中,信号的工作频率小于1 MHz,它对布线和器件间的电感影响较小,而接地电路形成的环流对干扰影响较大,因而应采用一点接地。当信号工作频率大于10 MHz时,地线阻抗变得很大,此时应尽量降低地线阻抗,应采用就近多点接地。当工作频率在1~ 10 MHz时,如果采用一点接地,其地线长度不应超过波长的1720,否则应采用多点接地法。高频电路宜采用多点串联接地,地线应短而粗,高频元件周围尽量布置栅格状大面积接地铜箔。 (2)数字电路与模拟电路分开 电路板上既有高速逻辑电路,又有线性电路,应使它们尽量分开,且两者的地线不要相混,分别与电源端地线相连。此外,还要尽量加大线性电路的接地面积。 (3)加粗接地线 若接地线很细,接地电位则随电流的变化而变化,致使电子设备的定时信号电平不稳,抗噪声性能变坏。因此应将接地线尽量加粗,使它能通过三倍于印制线路板的允许电流。如有可能,接地线的宽度应大于3 mm. (4)接地线构成闭环路 设计只由数字电路组成的印制线路板的地绒系统时,将接地线做成闭环路可以明显提高抗噪声能力。其原因在于:印制线路板上有很多集成电路元件,尤其有耗电多的元件时,因受接地线粗细的限制,会在地结上产生较大的电位差,引起抗噪声能力下降,若将接地结构成环路,则会缩小电位差值,提高电子设备的抗噪声能力。 (5)全平面地 当采用多层线路板设计时,可将其中一层作为“全地平面”,这样可减少接地阻抗,同时又起到屏蔽作用。我们常常在印制板周边布一圈宽的地线,也起同样的作用。

直流系统接地故障问题分析及排查方法

直流系统接地故障问题分析及排查方法在变电站直流系统为控制、信号、继电保护、自动装置、事故照明及操作等提供可靠的直流电源,其正常与否对变电站的安全运行至关重要。但实际运行中,由于气候环境影响、设备的维护不够恰当、直流回路中混入了交流电、寄生回路存在等原因都可能会引起直流系统接地。直流系统容易发生单点接地。虽然单点接地不引起危害,但若演变成两点接地将造成保护误动或拒动、信息指示不正确、熔断器熔断等严重事件。无论何种原因,直流接地事故都会影响其她电力设备的正常运行,严重者,会导致整个电网系统的瘫痪,造成无法挽回的重大损失保护好直流系统的正常运行就是变电站工作的重中之重,因此,对直流系统接地故障必须采取早发现、早消除、勤防范策略 一、直流系统接地的危害 直流系统一般用于变电所控制母线、合闸母线、UPS不间断电源,也用作其她电源与逻辑控制回路。直流系统就是一个绝缘系统,绝缘电阻达数十兆欧,在其正常工作时,直流系统正、负极对地绝缘电阻相等,对地电压也就是相对平衡的。当发生一点接地时,其正、负极对地电压发生变化,接地极对地电压降低,非接地极电压升高,控制回路与供电可靠性会大大降低,但一般不会引发电气控制系统的次生故障。可就是,当直流系统有两点或多点接地时,极易引起逻辑控制回路误动作、直流保险熔断,使保护及自动装置、控制回路失去电源,在复杂保护回路中同极两点接地,还可能将某些继电器短接,不能动作跳闸,致使越级跳

闸,造成事故扩大。规程严格规定:直流系统多点同极接地,应停止直流系统一切工作,也就是基于其故障性质的不确定因素。 1、直流系统正极接地的危害 当发生直流正极接地时,可能会引起保护及自动装置误动。因为一般断路器的跳合闸线圈以及继电器线圈就是与负极电源接通的,如果在这些回路上再发生另一点直流接地,就可能引起误动作。 如上图所示,A、B两点发生直流接地时,相当于将外部合闸条件全部短接,从而使合闸线圈得电误动作合闸。A、C两点接地时,则外部分闸条件被短接而误动作跳闸。A、D两点,A、F两点接地,同样都能造成开关误跳闸。

0欧姆电阻用于单点接地(模拟地和数字地),我对你情有独钟~~~

0欧姆电阻用于单点接地(模拟地和数字地),我对你情有独钟~~~ 在布线排板的时候,只要是地,总是要接在一起的,听高手们说,如果数字地和模拟地不接在一起时,就会产生“浮地”,有了“浮地”就会产生压差,这样就会产生积累电荷,造成讨人厌的静电,所以地的标准要一致,因此各种地到最后还是要接在一起的,但是,如果把数字地和模拟地大面积的连接在一起的话,会导致互相干扰,不短接了有不妥,嘿嘿,到底该怎么办呢?嚯嚯,针对以上情况在此为大家提供4总办法: 1:用磁珠相连。 2:用电容相连。 3:用电感相连。 4::用0欧姆电阻相连。 1—4到底该选择什么方案呢?接下来就说说他们的利益关系吧~~~ 1:磁珠的等效电路相当于傣族限波器,只对某个频点的噪声有显著的抑制作用,使用时要预先估计噪声频率,以便选择适当的磁珠,对于频率不确定的情况,磁珠不合~~~ 2:电容是通交流阻直流的,会造成“浮地”…悲剧的电容呀 3:电感体积比较大,参数又多,不稳定,所以呢也不推荐使用 4:哈哈,0欧姆电阻来啦,他相当于很窄的电流通路,能够有效地限制环路电流,使噪声得到很好的抑制,而且电阻在所有频带上都有衰减作用,这点比磁珠强悍哦~~~~ 当分割电地平面后,造成信号最短回流路径断裂,此时,信号回路不得不绕道,形成强大的环路面积,电场和磁场的影响就变强啦,容易干扰或是被干扰,在分割区域上跨接一个0欧姆的电阻,可以提供较短的回流路径,减小干扰…还有还有,0欧姆电阻还有很多的可用之处呢~~~比如说用于布线时跨线,调试测试都可以用,还能临时的取代其他的贴片元器件,最后,还可以作为温度的补偿器件….嘿嘿,说了这么多0欧姆电阻的好话,0欧姆电阻~~~你要请客吃饭哈~~~

模拟地和数字地单点接地

模拟地和数字地单点接地 只要是地,最终都要接到一起,然后入大地。如果不接在一起就是"浮地",存在压差,容易积累电荷,造成静电。地是参考0电位,所有电压都是参考地得出的,地的标准要一致,故各种地应短接在一起。人们认为大地能够吸收所有电荷,始终维持稳定,是最终的地参考点。虽然有些板子没有接大地,但发电厂是接大地的,板子上的电源最终还是会返回发电厂入地。如果把模拟地和数字地大面积直接相连,会导致互相干扰。不短接又不妥,理由如上有四种方法解决此问题:1、用磁珠连接;2、用电容连接;3、用电感连接;4、用0欧姆电阻连接。 *磁珠的等效电路相当于带阻限波器,只对某个频点的噪声有显著抑制作用,使用时需要预先估计噪点频率,以便选用适当型号。对于频率不确定或无法预知的情况,磁珠不合。 *电容隔直通交,造成浮地。 *电感体积大,杂散参数多,不稳定。 *0欧电阻相当于很窄的电流通路,能够有效地限制环路电流,使噪声得到抑制。电阻在所有频带上都有衰减作用(0欧电阻也有阻抗),这点比磁珠强。 跨接时用于电流回路 当分割电地平面后,造成信号最短回流路径断裂,此时,信号回路不得不绕道,形成很大的环路面积,电场和磁场的影响就变强了,容易干扰/被干扰。在分割区上跨接0欧电阻,可以提供较短的回流路径,减小干扰。 配置电路 一般,产品上不要出现跳线和拨码开关。有时用户会乱动设置,易引起误会,为了减少维护费用,应用0欧电阻代替跳线等焊在板子上。 空置跳线在高频时相当于天线,用贴片电阻效果好。 其他用途 布线时跨线 调试/测试用 临时取代其他贴片器件 作为温度补偿器件

更多时候是出于EMC对策的需要。另外,0欧姆电阻比过孔的寄生电感小,而且过孔还会影响地平面(因为要挖孔)。 ;-------------------------------------------------------- 大尺寸的0欧电阻还可当跳线,中间可以走线 还有就是不同尺寸0欧电阻允许通过电流不同,一般0603的1A,0805的2A,所以不同电流会选用不同尺寸的还有就是为磁珠、电感等预留位置时,得根据磁珠、电感的大小还做封装,所以0603、0805等不同尺寸的都有了 ;----------------------------------------- 0欧姆电阻一般用在混合信号的电路中,在这种电路中为了减小数字部分和模拟部分的相互干扰,他们的电源地线都是分开布的,但在电源的入口点又需要连在一起,一般是通过0欧姆电阻连接的,这样既达到了数字地和模拟地间无电压差,又利用了0欧姆电阻的寄生电感滤除了数字部分对模拟部分的干扰.

单点接地线连接

单点接地线连接:为避免接地回路,系统必须提供一单点接地,电源输入模块为你提供了一个开关,来区别控制系统在哪儿接地。如果装了两个电源,那么两个开关需要调到同一位置。电源输入模块出厂时,开关调到关(CLOSED);接地系统通过末端(END)引到端子连接器上,如果系统在另一个地方接地,比如用外部安保器,需把开关调到(OPENED)。下图演示了如何把开关跳到(OPENED)位置。 1.从端子连接器上拆除导线保护罩; 2.拆下边上的十字槽螺钉,该螺钉用来 固定电源输入模块的金属罩片; 3.松开固定外壳地线夹子的两个螺钉,该螺 钉位于端子连接器下,拆下外壳的 地线夹子; 4.拆下金属罩片底部的薄金属片,端子 连接器滑过金属罩片。 5.把开关推向开(OPENED)位置; 6.把金属罩片和外壳地线夹子在电源输入模块上复位。 2、接地 上述各种注意事项中,特别强调一下接地的问题。 保证系统单端接地至关重要,要避免由于接地回路而导致干扰信号无处释放或因无处接地使设备无端损坏。下图1为前置器至3500机柜I/O模块之间正确的接地方式,在I/O模块处单点接地;而图2所示即为错误的接地方式,这就造成了信号线从端子排到信号输入端没有屏蔽层保护。就如同一个奔赴失火现场的消防对员全身都穿好了防火服,但却忘记戴头盔一样。像这样的联线如无干扰源则太平无事,一旦出现干扰信号则毫无防范能力,而且查找起来非常难。 本特利公司3500监测系统的3500/20框架接口模块和3500/92网关接口模块都是3500监测系统与上位机如3500组态/显示/采集计算机或各类DCS系统通讯的接口模块。 整个系统包括从传感器系统到3500监测系统到计算机/DCS系统在系统接地的处理上,直接影响到这两个模块的使用寿命。系统正确的接地连接会使这两个模块甚至整个系统的故障率减少到最低程度。

浅谈直流系统接地故障问题

浅谈直流系统接地故障问题 发表时间:2012-01-19T13:25:12.653Z 来源:《时代报告(学术版)》2011年11月供稿作者:程瑞红刘同和 [导读] 对于发电厂、变电站,直流系统是很重要的电源系统,它是一个独立的电源 程瑞红刘同和(濮阳龙丰热电公司河南濮阳 457000) 中图分类号:TM6 文献标识码:A 文章编号:41-1413(2011)11-0000-01 摘要:针对直流系统发生接地的可能性比较大以及在整个系统中特别是二次系统中所处的重要地位,结合实际,提出直流接地的概念及查找的方法。 关键词:直流系统接地;接地原因;接地形式;查找方法;处理 对于发电厂、变电站,直流系统是很重要的电源系统,它是一个独立的电源。为电力系统的控制回路、信号回路、继电保护及自动化装置提供可靠稳定的电源。直流系统的可靠及安全直接影响到整个系统的安全,在线路的二次回路中特别是控制回路和保护回路的应用。但直流系统接地存在着很多的隐患,由于断路器跳闸线圈峻接负极电源,当正接地是可能导致断路器跳闸,负极接地可能是断路器拒跳使事故越级扩大。 一、直流系统接地 (一)什么是直流系统接地? 由于直流电源是带极性的电源,即电源正极和电源负极。交流电源是无极性电源,电力系统交流电源有一个真正的“地”。这个“地”直接关系到电力系统的安全。为了安全设备的外壳都必须牢牢地可靠的接“地”。如果直流电源系统正极或负极对地间的绝缘电阻值降至某一整定值或规定值,这时我们称该直流系统有正接地故障或负接地故障。 (二)直流系统接地原因 对于发电厂、变电站直流系统设备多回路复杂,在运行中由于环境的影响、气候的变化,电缆使用年限过长存在接头绝缘老化以及设备自身的问题,直流系统发生接地的概率比较大。 (三)直流接地的形式 按接地的极性分为正接地和负接地;按接地的种类分为直接接地(金属接地或全接地)间接接地(非金属接地或半接地);按接地情况分为单点接地、多点接地、环路接地和绝缘地接地;按接地地点所处位置的不同分为室内和室外;按接地原因又分为以下几种形式:(1)有恶劣天气引起的接地。特别是阴雨、雾、雪天。在大雨天气雨水会流入露天的密封不严的接线盒及按钮引起接地。对于不装防雨罩的继电器,雨水进去也会直接接地和误动作。在梅雨季节或者大雾天气空气比较潮湿,电缆的绝缘降低,引发直流系统接地。 (2)小动物的破坏引起的接地。老鼠进入电缆洞会咬坏电缆皮引起直流接地。小飞虫、飞蛾钻进密封不严的接线盒有可能引起接地。(3)接线松动脱落引起接地。若接线头松动脱落搭在其他金属器件上也可能引起接地。在拆除电缆头的过程中如果不做包扎一旦接触导电器件也会引发接地。 (4)内部元件损坏引起的接地。在电路的设计中为了抗干扰在正负极和地之间并联抗干扰电容,若电容击穿也可能引起直流接地。 二、直流系统接地的查找方法 (一)拉回路法 这是电力系统中查直流接地故障一直沿用的比较简单传统的方法。即分别对各路空气开关或熔断器拉闸停电进行查找。若停电后直流接地现象消失,说明接地点位于本开关控制的下级回路中;若现象继续存在,说明下级回路没有接地。通过拉路寻找,可将接地点限定在某个空气开关控制的直流回路中,再通过解开电缆芯,将接地点限定在室内或室外,再通过拔出插的元器件,将接地点限定在插件内或插件外,最终将接地点限定在某个回路中,再用摇表对回路中的每跟线摇测其绝缘从而确定接地点。 (二)直流接地选线装置监测法 这是一种在线监测直流系统对地绝缘情况的装置。该装置能在线监测,随时报告直流系统接地故障情况。但对具体的接地点无法定位,技术上受监测点安装数量的限制,很难将接地点缩小到一定范围,所以它的局限性较大。 (三)便携式直流接地故障定位 该装置在电力系统中广泛应用,无需断开直流回路,可带电查找。极大的提高了查找的安全性。 三、直流接地的处理 (一)试拉检修人员所接之临时电源; (二)联系机、炉、燃油、化学等直流用户,询问有无设备启、停及异常情况,以便进行查找; (三)进行动力直流负荷的选择,采用“瞬停法”,按照先室外后室内的顺序进行。对于直流油泵等动力负荷,必须通过值长通知机方采取必要的措施并得到明确许可、检查电动机确未运行后方可进行,拉开后迅速恢复,并汇报值长通知机方; (四)进行操作直流负荷的选择,采用“转移法”,即先调整直流系统两组母线电压一致,推上母联刀闸,再切换直流母线上的某一路负荷至非接地母线上(推上该供电环状的解列点刀闸,然后拉开该供电环状接于接地母线的电源刀闸);此后拉开母联刀闸,看接地是否转移到另一母线,若已转移,再用“瞬停法”对该供电环状负荷的各分支逐一瞬停,直至找到故障点。 (五)在进行操作直流负荷的选择时,主控楼操作直流电源一般应放在最后选择,且不得将环状供电的控制、信号电源长时间放在不同母线上运行。 (六)在瞬停设备的直流操作电源前,应先与有关值班人员进行联系,以免设备误动作。在择过程中,遇有故障发生时,应及时恢复供电。 (七)当全部直流负荷选择完毕仍未找到接地点时,则应检查蓄电池、浮充硅、闪光装置、电压绝缘综合监测装置以及直流母线本身。此时可以采取瞬间拉开设备出口刀闸及取下直流保险的方法进行选择。若接地仍然不能消除,则为直流母线本身接地,经确证无疑后,应采取必要的安全措施和技术措施,将故障母线停电,由检修班进行处理。 (八)发生直流接地后必须尽快查找接地点,并予消除,不允许发生一点接地后长期运行,以免再发生第二点接地后造成保护装置的

直流接地故障判断及处理方法

直流接地故障判断及处理方法 1 直流系统接地故障类型及特点分析 1.1 无源型电阻性接地 1.1.1 电阻单点接地。电阻性单点接地无论是金属性接地还是经过高电阻接地均会引起接地电阻的降低,当低于25 kΩ时直流系统绝缘监察装置即会发出接地报警,并进行选择查找接地点,防止造成由于直流系统接地引起的误动、拒动。 1.1.2 多点经高阻接地。当发生直流系统多点经高阻接地后,直流系统的总接地电阻逐步下降,当低于整定值时,才发生接地告警,从而出现多点接地现象。如第一点80kΩ接地,一般不会有告警,电压偏移也不多,第二点80kΩ接地,并联后为40kΩ,高于绝缘监察设定的25kΩ报警限值,一般也不会报警,但电压偏移会较大,在巡视、运行过程中要引起足够的重视,当第三点高阻接地发生后,如40kΩ,则第三点并联后直流接地电阻为20kΩ,这时必然会引起接地告警。 多点经高阻接地引起的接地告警,由于每条接地支路电阻均较高,直流拉路选择变化不明显,可能漏掉真正的接地支路,此时最好能检测出支路的接地电阻值,而不是接地电流的相对值或百分比,可判断接地状况。 1.1.3 多分支接地。有关设备经过多次改造或施工不小心及图纸设计不合理等,都将导致经多个电源点引来正电源或负电源去某个设备,

当该设备发生接地时,即为多分支接地,比多点更麻烦,通过拉闸几乎不可能找出接地支路,因为断开任何一条支路,接地点还存在,对地电压也不会发生变化或变化较小,此时应在保证安全的基础上断开所有支路再逐条支路送出,来查找接地电阻,但风险较大。 1.2 有源接地 通过交流(如电压互感器或交流220V,其一端是接地的)电源引起的接地引起的接地称为有源接地,交流220V串入直流系统将引起接地故障,由于其电压较高,接地母线对地电压为30 0V左右,非接地母线对地电压高达约500V,而且功率很大,常常会烧损保护和控制设备,并引起保护误动。 交-直流串电接地,只需再有一点接地即可引起保护误动或拒动,这是最严重的故障现象,应引起特别关注,发生此类情况后立即进行查找。 1.3 非线性电阻接地 通过二次回路中半导体材料如二极管等发生的接地故障,其电阻值随施加电压大小、方向而发生变化,其电阻值呈非线性特征,但只要发生了接地告警一般可相当于金属性单点接地较易查找。 1.4 受负荷电流干扰的接地 主要为蓄电池接地,主要由于电池电解液渗漏到地面引起的,要查找直流接地时应注意观察蓄电池的状况,防止发生由于蓄电池接地引起的接地。 2 直流系统接地故障的原因分析

直流系统两点接地可能带来的危害!

直流系统两点接地可能带来的危害 发电厂、变电站的直流系统为控制、保护、信号和自动装置提供电源,直流系统的安全连续运行对保证发供电有着极大的重要性。由于直流系统为浮空制的不接地系统,如果发生两点接地,就可能引起上述装置误动、拒动,从而造成重大事故。因此当发生一点接地时,就应在保证直流系统正常供电的同时准确迅速地探测出接地点,排除接地故障,从而避免两点接地可能带来的危害。 (1)正接地可能导致断路器误跳闸由于断路器跳闸线圈均接负极电源,故当发生正接地时可能导致断路的跳闸,如图所示,当图中的A 点和B点同时接地,相当时A、B两点通过大地连起来,中间继电器KM必然动作造成断路器的跳闸。同理,当图中的A点和C点同时接地,和图中的A点、D点同时接地均可能造成断路的跳闸。 (2)负接地可能导致断路器的拒跳闸:如图所示,当图中的B点、E 点同时接地,这B、E点通过地连通后,将中间继电器KM短接,此时如果系统发生事故,保护动作,由于中间继电器KM被短接,KM 不动作,断路器不会跳开,产生拒动,使事故越级扩大。从以上分析看出,直流系统如果仅仅是一点接地,对二次回路不会造成事故,如果有两点接地,就可能发生断路器误动或拒动。就动作的实际情况看,当直流系统监测回路发出预告信号报警,显示该系统接地,可以断定,直流系统的接地故障已经造成了断路器可能发生误跳或拒跳的事故隐患,应立即排除。

(3)接地分类:由于直流系统网络连接比较复杂,其接地情况归纳起来有以下种种:按接地极性分为正接地和负接地;按接地种类可分为直接接地,亦称金属接地或全接地和间接接地,亦称非金属接地或半接地;按接地的情况可分为单点接地、多点接地、环路接地和绝缘降低或称片接地。 得福电气

接地的几种方法

接地的几种方法 接地从字面来看上十分简单事情,但是对于经历过电磁干扰挫折的人来说 可能是一个最难掌握的技术。实际上在电磁兼容设计中,接地是最难的技术。面对一个系统,没有一个人能够提出一个绝对正确的接地方案,多少会遗留一些问题。造成这种情况的原因是接地没有一个很系统的理论或模型,人们在考虑接地时只能依靠他过去的经验或从书上看到的经验。但接地是一个十分复杂的问题,在其它场合很好的方案在这里不一定最好。关于接地设计在很大程度上依赖设计师的直觉,也就是他对“接地”这个概念的理解程度和经验。因此,我们将不断地为大家有关接地方面的文章,使大家循序渐进地形成对接地的直觉。 1、接地的方法 接地的方法很多,具体使用那一种方法取决于系统的结构和功能。“接地”的概念首次应用在电话的设计开发中。从1881 年初开始采用单根电缆为信号通道,大地为公共回路。这就是第一个接地问题。但是用大地作为信号回路会导致地回路中的过量噪声和大气干扰。为了解决这个问题,增加了信号回路线。现在存在的许多接地方法都是来源于过去成功的经验,这些方法包括: 1) 单点接地:如图1 所示,单点接地是为许多在一起的电路提供公共电位 参考点的方法,这样信号就可以在不同的电路之间传输。若没有公共参考点,就会出现错误信号传输。单点接地要求每个电路只接地一次,并且接在同一点。该点常常一地球为参考。由于只存在一个参考点,因此可以相信没有地回路存在,因而也就没有干扰问题。 图1 单点和星形接地 2) 多点接地:如图2 所示,从图中可以看出,设备内电路都以机壳为参考 点,而各个设备的机壳又都以地为参考点。这种接地结构能够提供较低的接地阻抗,这是因为多点接地时,每条地线可以很短;并且多根导线并联能够降低接地导体的总电感。在高频电路中必须使用多点接地,并且要求每根接地线的长度小于信号波长的1/20。 图2 多点接地

单点接地

单点接地 这是一个线性稳压,GND_A,供音频处理芯片,以及音频功放使用。 解疑: 1、像这样后面有大功率功放的音频电源接地,要怎样处理?用宽铜箔连接?用大磁珠连接?用0ohm电阻连接? 2、那个“单点接地”应该话在什么地方?稳压前?还是稳压后面? 解疑: 稳压前后的两个电解电容负极最好靠近连接,铜箔尽量宽,后面负载的一点接地应该选在输出电解电容的负极。 稳压前后两个电解负极靠近,且铜箔要宽,这个同意. “一点接地放在输出电容的负极”对此有所疑问,但这个是线性稳压电源,不会对负载端产生干扰,而且单点接地(相当于串联了电阻),瞬间负载很大时,会使负载上的电压波动很大。 一般稳压电源的稳压输出标准电压输出点就是在输出滤波电容两级上面,负载一点对电源本身没什么影响,只是为了负载尽量较少干扰,负载分多路,某些路有大电流通过,这会使这一路的一段接地线上产生压降,如果其它路(对弱信号比较敏感)和这一路公用一路地线,那么地线上由于大电流产生的压降就会窜入另外一路,这样就引入干扰了。

白沙: 单点接地问题的提出首先是因为覆铜板的铜箔不是理想导体,在实际工作中会呈现等效的电阻和电感(还有电容),而这些分布参数在小电流、缓慢变换的情况下_体现不明显,但随着电流的增大和信号频率的提高会变得影响越来越大,其中一种影响就是参考点--“地”在不同位置呈现不同的电位,这会影响信号处理的效果。 为了解决这个问题,提出了“单点接地”,其目的在于使得各个电流路径相互分离,避免其他电流路径流过的电流在导线上形成压降而干扰本电流回路的参考点。 因此,单点接地的接地点,应该选择的是使各个功能区域的电流互相不重叠,且使最大电流回路路径最短的点。 由于覆铜板的等效电阻和等效电感和线路宽度呈反比关系,因此在布线时应采用尽量宽的线条。有些电路设计者习惯使用大面积的铺地代替规划良好的地回路走线,这是不可取的,这可能在大电流存在的情况下使电路的参考点非常不稳定(在高速应用中采用的多层板的地平面是另外的概念)。因此即便最后你打算大面积铺地也至少应当在铺地前把主要的电流回路规划好。 然后是磁珠、0欧电阻的问题,这些物件都增加了实际的等效电阻和电感,不适用于这种场合。 最后是实践的问题,建议在电脑前看着你画好的电路,用思维模拟其中电源电流的走向,以检查电源尤其是地回路的设计是否合适,如果你发现在一段回路上,负责功率输出和负责信号处理的电流在同一段铜箔上同时流动,那么就应该把这段铜箔分成两份。 磁珠最主要的特性是对于高频信号会呈现很高的阻抗而对直流、低频则基本没有影响,这就决定了磁珠的应用场合---对高频干扰进行滤除。最常见的用法是在ADC/DAC的模拟电源到其他的数字部分电源之间,用以滤除数字部分高速变换的电流对模拟部分的影响,另一个用法是用于电源、信号的输入部分滤除外界的干扰。 亲身经过的例子:97年的时候开发数字式电能表,需要通过快瞬变脉冲群的干扰试验,第一次去做时没有经验,上去几下就把单片机打死了,后来采取了若干措施,其中很得力的一项是对所有的引入线加了额外的磁珠,第二次顺利地通过试验。

直流系统接地故障问题分析及排查方法

直流系统接地故障问题分析及排查方法 在变电站直流系统为控制、信号、继电保护、自动装置、事故照明及操作等提供可靠的直流电源,其正常与否对变电站的安全运行至关重要。但实际运行中,由于气候环境影响、设备的维护不够恰当、直流回路中混入了交流电、寄生回路存在等原因都可能会引起直流系统接地。直流系统容易发生单点接地。虽然单点接地不引起危害,但若演变成两点接地将造成保护误动或拒动、信息指示不正确、熔断器熔断等严重事件。无论何种原因,直流接地事故都会影响其他电力设备的正常运行,严重者,会导致整个电网系统的瘫痪,造成无法挽回的重大损失保护好直流系统的正常运行是变电站工作的重中之重,因此,对直流系统接地故障必须采取早发现、早消除、勤防策略 一、直流系统接地的危害 直流系统一般用于变电所控制母线、合闸母线、UPS不间断电源,也用作其他电源和逻辑控制回路。直流系统是一个绝缘系统,绝缘电阻达数十兆欧,在其正常工作时,直流系统正、负极对地绝缘电阻相等,对地电压也是相对平衡的。当发生一点接地时,其正、负极对地电压发生变化,接地极对地电压降低,非接地极电压升高,控制回路和供电可靠性会大大降低,但一般不会引发电气控制系统的次生故障。可是,当直流系统有两点或多点接地时,极易引起逻辑控制回路误动作、直流保险熔断,使保护及自动装置、控制回路失去电源,在复杂

保护回路中同极两点接地,还可能将某些继电器短接,不能动作跳闸,致使越级跳闸,造成事故扩大。规程严格规定:直流系统多点同极接地,应停止直流系统一切工作,也是基于其故障性质的不确定因素。 1、直流系统正极接地的危害 当发生直流正极接地时,可能会引起保护及自动装置误动。因为一般断路器的跳合闸线圈以及继电器线圈是与负极电源接通的,如果在这些回路上再发生另一点直流接地,就可能引起误动作。 如上图所示,A、B两点发生直流接地时,相当于将外部合闸条件全部短接,从而使合闸线圈得电误动作合闸。A、C两点接地时,则外

信号接地的方式盘点(浮地-单点接地-多点接地)

信号接地的方式盘点(浮地/单点接地/多点接地) 1.地的接法 对于一个信号来说,它需要寻找一条最低阻抗的电流回流到地的途径,所以如何处理这个信号回流就变得非常的关键。第一,根据公式可以知道,辐射强度是和回路面积成正比的,就是说回流需要走的路径越长,形成的环越大,它对外辐射的干扰也越大,所以,PCB布板的时候要尽可能减小电源回路和信号回路面积。第二,对于一个高速信号来说,提供有好的信号回流可以保证它的信号质量,这是因为PCB上传输线的特性阻抗一般是以地层(或电源层)为参考来计算的,如果高速线附近有连续的地平面,这样这条线的阻抗就能保持连续,如果有段线附近没有了地参考,这样阻抗就会发生变化,不连续的阻抗从而会影响到信号的完整性。所以,布线的时候要把高速线分配到靠近地平面的层,或者高速线旁边并行走一两条地线,起到屏蔽和就近提供回流的功能。第三,为什么说布线的时候尽量不要跨电源分割,这也是因为信号跨越了不同电源层后,它的回流途径就会很长了,容易受到干扰。当然,不是严格要求不能跨越电源分割,对于低速的信号是可以的,因为产生的干扰相比信号可以不予关心。对于高速信号就要认真检查,尽量不要跨越,可以通过调整电源部分的走线。 许多电磁干扰问题是由地线产生的,因为地线电位是整个电路工作的基准电位,如果地线设计不当,地线电位就不稳,就会导致电路故障。地线设计的目的是要保证地线电位尽量稳定,从而消除干扰现象。信号接地方式一般有三种:浮地、单点接地、多点接地。 1.1 浮地 目的:使电路或设备与公共地线可能引起环流的公共导线隔离起来,浮地还使不同电位的电路之间配合变得容易。缺点:容易出现静电积累引起强烈的静电放电。折衷方案:接入泄放电阻。 1.2 单点接地 单点接地:所有电路的地线接到公共地线的同一点,进一步可分为串联单点接地和并联单点接地。在大功率和小功率电路混合的系统中,切忌使用,因为大功率电路中的地线电流

直流完整系统接地故障分析及查找方法

直流系统接地故障分析及查找方法 在电力系统中直流系统是变电站、发电厂一个重要的组成部分,它是由蓄电池、充电机及其附属设备、馈线、事故照明等组成。是供给继电保护、自动装置、控制回路、事故照明等设备的电源。一旦直流系统发生故障,将会严重地危及到变电站、发电站的安全和经济运行。而继电保护设备的安全稳定运行是保障电力设备安全和防止及限制电力系统长时间大面积停电的最基本也是最重要的技术手段。没有直流系统的可靠运行,保护设备的正常运行就成了问题。 由于直流系统的分支较多,涉及面广,绝缘水平很难保持很高,因而发生接地的机会较多,若不及时处理,后果十分严重。直流系统发生一点接地时,要及时对其进行查找,防止两点接地情况的发生。当正极接地时,有造成保护误动的可能,因为跳闸线圈接于负极,若回路中再发生接地或绝缘不良均会引起保护误动作,当保护回路有寄生回路时,保护误动的可能性更大;当负极接地时,若回路中再有一点接地,就可能造成直流回路发生短路,熔断器熔断或空气开关跳闸,使保护装置和跳闸回路失电后拒动,造成恶劣后果。结合实际工作的一些经验现对直流系统接地故障类型、特点及原因进行分析,并介绍 查找故障方法及注意事项,供大家参考。 直流系统接地故障类型及特点分析 一、无源型电阻性接地 1、电阻单点接地。

电阻性单点接地无论是金属性接地还是经过高电阻接地均会引 起接地电阻的降低,当低于25 kΩ时直流系统绝缘监察装置即会发出接地报警,并进行选择查找接地点,防止造成由于直流系统接地引起的误动、拒动。 2、多点经高阻接地。 当发生直流系统多点经高阻接地后,直流系统的总接地电阻逐步下降,当低于整定值时,才发生接地告警,从而出现多点接地现象。如第一点80kΩ接地,一般不会有告警,电压偏移也不多,第二点80kΩ接地,并联后为40kΩ,高于绝缘监察设定的25kΩ报警限值,一般也不会报警,但电压偏移会较大,在巡视、运行过程中要引起足够的重视,当第三点高阻接地发生后,如40kΩ,则第三点并联后直 流接地电阻为20kΩ,这时必然会引起接地告警。 多点经高阻接地引起的接地告警,由于每条接地支路电阻均较高,直流拉路选择变化不明显,可能漏掉真正的接地支路,此时最好能检测出支路的接地电阻值,而不是接地电流的相对值或百分比,可判断接地状况。 3、多分支接地。 有关设备经过多次改造或施工不小心及图纸设计不合理等,都将导致经多个电源点引来正电源或负电源去某个设备,当该设备发生接地时,即为多分支接地,比多点更麻烦,通过拉闸几乎不可能找出接地支路,因为断开任何一条支路,接地点还存在,对地电压也不会发生变化或变化较小,此时应在保证安全的基础上断开所有支路再逐

一点接地和多点接地

单点接地多点接地 转载至https://www.360docs.net/doc/0113446946.html,/myrokey/244396/Message.aspx 单点地要解决的问题就是针对“公共地阻抗耦合”和“低频地环路”, 多点地是针对“高频所容易通过长地走线产生的共模干扰”. 低频电路中,信号的工作频率小于1MHz,它的布线和器件间的电感影响较小,而接地电路形成的环流对干扰影响较大,因而应采用一点接地。 当信号工作频率大于10MHz时,地线阻抗变得很大,此时应尽量降低地线阻抗,应采用就近多点接地。 当工作频率在1~10MH z时,如果采用一点接地,其地线长度不应超过波长的1/20,否则应采用多点接地法。 数字地与模拟地之间单点接地,数字地之内多点接。 地线干扰与地线设计 地线设计是电磁兼容设计中大家都很注意,却又不知道应该怎样去做的一个问题。了解了地线造成干扰问题的机理之后,在设计和实施地线时就有了一个明确的思路。本期从介绍地线造成干扰的原理入手,使读者了解设计地线的关键和原则。1 什么是地线? 地线有安全地和信号地两种。前者是为了保证人身安全、设备安全而设置的地线,后者是为了保证电路正确工作所设置的地线。造成电路干扰现象的主要是信号地,因此这里仅讨论信号地的问题。 信号地的一般定义是:电路的电位参考点。 更恰当地说,这个定义是我们设计电路时的一个假设。从这个定义是无法分析和理解一些地线干扰问题的。从现在开始,我们在分析电磁兼容问题时,使用下面的定义。 地线是信号电流流回信号源的地阻抗路径。 既然地线是电流的一个路径,那么根据欧姆定律,地线上是有电压的;既然地线上有电压,说明地线不是一个等电位体。这样,我们在设计电路时,关于地线电位一定的假设就不再成立,因此电路会出现各种错误。这就是地线干扰的实质。 2 地线的阻抗有多大? 一个难以理解的问题是,我们在设计地线时,都使地线的电阻很小,那么地线上的电位差怎么会大到导致电路出错的程度。理解这个问题,要理解地线阻抗的组成。 地线的阻抗Z由电阻部分和感抗部分两部分组成,即:Z = RAC + jωL。 电阻成分:导体的电阻分为直流电阻RDC和交流电阻RAC。对于交流电流,由于趋肤效应,电流集中在导体的表面,导致实际电流截面减小,电阻增加,直流电阻和交流电阻的关系如下: RAC= 0.076rf1/2RDC 式中:r=导线的半径,单位cm,f=流过导线的电流频率,单位Hz,RDC= 导线的直流电阻,单位Ω。 电感成分:任何导体都有内电感(这区别于通常讲的外电感,外电感是导体所包围的面积的函数),内电感与导体所包围的面积无关。对于圆截面导体如下: L=0.2S[ln(4.5/d) -1] (μH) 式中S=导体长度(m),d=导体直径(m) 表1说明了直流电阻与交流阻抗的巨大差异。频率很低时的阻抗可以认为是导体的电阻,从表中可以看出,随着频率升高,阻抗增加很快,当频率达到100MH z以上时,直径6.5mm长度仅为10cm的导线也有数十欧姆的阻抗。 3 地环路干扰及对策 地环路干扰是一种较常见的干扰现象,常常发生在通过较长电缆连接的相距较远的设备之间。其产生的内在原因是设备之间的地线电位差。地线电压导致了地环路电流,由于电路的非平衡性,地环路电流导致对电路造成影响的差模干扰电压(图1)。 由于地环路干扰是由地环路电流导致的,因此在实践中,有时会发现,当将一个设备的地线断开时,干扰现象消失,这是因为地线断开时,切断了地环路。这种现象往往发生在干扰频率较低的场合,当干扰频率高时,短开地线与否关系不大。

直流系统接地

关于直流系统接地 发电厂、变电站直流系统是十分重要的电源系统,它是一个独立的电源,不受发电机、厂用电、站用变以及系统运行方式改变的影响,为电力系统的控制回路、信号回路、继电保护、自动装置及事照明等提供可靠稳定的不间断电源,它还为断路器的分、合闸提供操作电源。 由于直流电源在二次系统所处的重要地位,直流系统自身的可靠及安全直接影响到整个系统的安全,尽管直流电源十分稳定可靠,但实际应用中,由于电力系统应用直流电源的特殊性,特别是控制回路和保护回路的应用,使直流系统的故障成为电力系统更大故障的事故隐患,这就是我们常说的直流系统接地故障危害。 一、关于直流系统接地 1、什么叫直流系统接地? 由于直流电源为带极性的电源,即电源正极和电源负极。交流电源是无极性电源,电力系统交流电源有一个真正的“地”,这个地也是电力系统安全的一个重要概念。为了系统安全,变电站、发电厂所有设备的外壳都会牢牢的接在这个“地”,而且希望其阻抗越低越好。直流电源的“地”对直流电路来讲仅仅是个中性点的概念,这个地与交流的“大地”是截然不同的。如果直流电源系统正极或负极对地间的绝缘电阻值降低至某一整定值,或者低于某一规定值,这时我们

称该直流系统有正接地故障或负接地故障。 2、直流系统为什么会接地? 发电厂、变电站直流系统所接设备多、回路复杂,在长期运行过程中会由于环境的改变、气候的变化、电缆以及接头的老化,设备本身的问题等等,而不可避免的发生直流系统接地。特别在发电厂、变电站建设施工中或扩建过程中,由于施工及安装的种种问题,难以避免的会遗留电力系统故障的隐患,直流系统更是一个薄弱环节。投运时间越长的系统接地故障的概率越大。 3、直流系统接地的危害 (1)接地分类:由于直流系统网络连接比较复杂,其接地情况归纳起来有以下种种:按接地极性分为正接地和负接地;按接地种类可分为直接接地,亦称金属接地或全接地和间接接地,亦称非金属接地或半接地;按接地的情况可分为单点接地、多点接地、环路接地和绝缘降低或称片接地。 (2)、正接地可能导致断路器误跳闸 由于断路器跳闸线圈均接负极电源,故当发生正接地时可能导致断路的跳闸,如图所示,当图中的A点和B点同时接地,

各种电路接地方法

各种电路接地方法:数字地、模拟地、信号地等 关于接地:数字地、模拟地、信号地、交流地、直流地、屏蔽地、浮地 除了正确进行接地设计、安装,还要正确进行各种不同信号的接地处理。控制系统中,大致有以下几种地线: (1)数字地:也叫逻辑地,是各种开关量(数字量)信号的零电位。 (2)模拟地:是各种模拟量信号的零电位。 (3)信号地:通常为传感器的地。 (4)交流地:交流供电电源的地线,这种地通常是产生噪声的地。 (5)直流地:直流供电电源的地。 (6)屏蔽地:也叫机壳地,为防止静电感应和磁场感应而设。 以上这些地线处理是系统设计、安装、调试中的一个重要问题。 下面就接地问题提出一些看法: (1)控制系统宜采用一点接地。一般情况下,高频电路应就近多点接地,低频电路应一点接地。在低频电路中,布线和元件间的电感并不是什么大问题,然而接地形成的环路的干扰影响很大,因此,常以一点作为接地点;但一点接地不适用于高频,因为高频时,地线上具有电感因而增加了地线阻抗,同时各地线之间又产生电感耦合。一般来说,频率在1MHz以下,可用一点接地;高于10MHz时,采用多点接地;在1~10MHz之间可用一点接地,也可用多点接地。

(2)交流地与信号地不能共用。由于在一段电源地线的两点间会有数mV甚至几V电压,对低电平信号电路来说,这是一个非常重要的干扰,因此必须加以隔离和防止。 (3)浮地与接地的比较。全机浮空即系统各个部分与大地浮置起来,这种方法简单,但整个系统与大地绝缘电阻不能小于50MΩ。这种方法具有一定的抗干扰能力,但一旦绝缘下降就会带来干扰。还有一种方法,就是将机壳接地,其余部分浮空。这种方法抗干扰能力强,安全可靠,但实现起来比较复杂。 (4)模拟地。模拟地的接法十分重要。为了提高抗共模干扰能力,对于模拟信号可采用屏蔽浮技术。对于具体模拟量信号的接地处理要严格按照操作手册上的要求设计。 (5)屏蔽地。在控制系统中为了减少信号中电容耦合噪声、准确检测和控制,对信号采用屏蔽措施是十分必要的。根据屏蔽目的不同,屏蔽地的接法也不一样。电场屏蔽解决分布电容问题,一般接大地;电磁场屏蔽主要避免雷达、电台等高频电磁场辐射干扰。利用低阻金属材料高导流而制成,可接大地。磁场屏蔽用以防磁铁、电机、变压器、线圈等磁感应,其屏蔽方法是用高导磁材料使磁路闭合,一般接大地为好。当信号电路是一点接地时,低频电缆的屏蔽层也应一点接地。如果电缆的屏蔽层地点有一个以上时,将产生噪声电流,形成噪声干扰源。当一个电路有一个不接地的信号源与系统中接地的放大器相连时,输入端的屏蔽应接至放大器的公共端;相反,当接地的信号源与系统中不接地的放大器相连时,放大器的输入端也应接到信号源的公共端。 对于电气系统的接地,要按接地的要求和目的分类,不能将不同类接地简单地、任意地连接

相关文档
最新文档