高中数学第二章参数方程22直线和圆锥曲线的参数方程直线参数方程及其应用素材北师大版4-4!

合集下载

高中数学第二章参数方程22直线和圆锥曲线的参数方程直线参数方程及其应用素材北师大版4-4!

高中数学第二章参数方程22直线和圆锥曲线的参数方程直线参数方程及其应用素材北师大版4-4!

2.2 直线参数方程及其应用一、直线参数方程建立课本在P 55“向量与直线”阅读材料中,介绍了利用向量法建立直线方程的参数式:⎩⎨⎧ x =x 0+aty =y 0+bt(t 为参数) (*),其中(x 0,y 0)是直线上的一点,(a,b)是直线的一个方向向量,P(x,y)是直线上任意一点,实数t 是对应点P 的参数.这种直线的参数式方程可直线称为直线参数方程.事实上,我们还可以这样来建立直线的参数方程:因过定点P(x 0,y 0)且倾斜角为α的直线方程为:y -y 0=sin αcos α(x -x 0)(0<α<π,且α≠π2),则有:y -y 0sin α=x -x 0cos α.令其比值为t,于是得:y -y 0sin α=t,x -x 0cos α=t,即有⎩⎨⎧ x =x 0+tcos αy =y 0+tsin α(t 为参数) (**),这也是直线的参数方程.很显然其中参数t 还有很好的几何性质,即|t|=|-→P 0P |.为区别于其它形式的参数方程,参数方程(**)我们称为直线的标准参数方程.M 0(x 0,y 0)为定点点,而t 表示有向线段M 0P 的数量,我们规定:当P 在M 的上方时,t >0;而P在M 的下方时,t <0.通常,当我们将(*)代入二次曲线C 的方程能得到:at 2+bt +c =0(***)如果 a ≠0,且△=b 2-4ac >0时,则(**)所表示的直线 L 与C 相交于A 、B 两点,且有向线段→M 0A ,→M 0B 的数量是方程(***)的二根t 1,t 2,即t 1=M 0A ,t 2=M 0B. 下面的几个结论是经常用到的:(1)|AB |=| t 1-t 2|=(t 2+t 1)2-4t 2t 1; (2)AB 的中点P 对应的参数为 t =t 1+t 22;(3)设P 分有向线段AB 的比为 λ,则P 对应的参数为t 1+λt 21+λ.(4)当 t 1,t 2满足关系 t 1=λt 2时,则(t 1+t 2)2=λ+1λ+2·t 1t 2二﹑直线参数方程应用例1(1)已知直线过点A(-2,3),B(1,-5),求直线AB 的参数方程;(2)直线l 过点A(1,5),倾斜角为π3,求直线l 的参数方程.解:(1)直线AB 的方向向量为v =(1,-5)-(-2,3)=(3,-8),又因其过点A(-2,3),∴直线AB 的参数方程为⎩⎨⎧ x =-2+3ty =3-8t.(2)直线l 的参数方程为⎩⎪⎨⎪⎧ x =1+tcos π3y =5+tsin π3,即⎩⎪⎨⎪⎧ x =1+12t y =5+32t.例2若直线参数方程为⎩⎨⎧ x =1+tsin70︒y =2-tcos70︒(t 为参数),求直线的倾斜角.解:由参数方程得:x -1sin70︒=y -2-cos70︒,∴y-2=﹣cos70︒sin70︒(x -1),∴y-2=tan160︒(x -1),由此普通方程可知其倾斜角为160︒.例3(1)直线l 过点P(1,2),倾斜角为π4,求l 上与P 的距离为22的点;(2)求直线⎩⎨⎧x =-2-2t y =3+2t(t 为参数)上的点到P(-2,3)距离为2的点的坐标.解:(1)l 的参数方程为⎩⎪⎨⎪⎧ x =1+22t y =2+22t ,令|t|=22,∴t=±22,代加原参数方程得所求点为(3,4)或(-1,0).(2)可化成普通方程处理,现仍将参数方程整理成标准形式,利用参数的几何意义求解. 即有⎩⎪⎨⎪⎧ x =-2+(2t)(﹣22)y =3+(2t)·22,又直线过定点P 0(-2,3),且直线上任一点P 对应参数为2t,则有|-→P 0P |=|2t|=2,∴2t=±2,当2t =2时,所求点为(-3,4);当2t =-2时,所求点为(-1,2). 例4已知过点 P 0(-1,2)的直线ι的参数方程是⎩⎨⎧ x =-1+3ty =2-4t,求点P 0到另一直线2x -y +1=0 的交点P 的距离.解:因为a 2+b 2=32+42=5≠1,所以此直线的参数方程不是标准线, 令t =15t ',化为标准式,得⎩⎪⎨⎪⎧ x =-1+35t 'y =2-45t ',将其代入方程2x -y +1=0,解得交点P 对应的参数值 t 'P =32,故|P 0P |=|t 'P |=32.例5过点M(2,1)作直线l ,交x,y 轴的正半轴于A ,B 两点.(1)求|MA|·|MB|的最小值;(2)当(1)取最小值时,求直线l 的方程.解析:(1)设直线l 的倾斜角为θ(0<θ<π),则其方程为⎩⎨⎧ x=2+tcos θy=1+tsin θ(θ为参数,π2<θ<π)…①,x,y 轴方程为xy=0…②,①代入②整理得t 2sin θcos θ+t(2sin θ+cos θ)+2=0…③,MA=t 1,MB=t 2,即为③的两个根, ∴|MA|·|MB|=|t 1|·|t 2|=2|sin θcos θ|=4|sin2θ|,∴当θ=3π4时|MA|·|MB|的最小值为4.(2)∵A,B 为直线l 与x,y 轴正半轴的交点,∴θ=3π4,将θ=3π4代入①得⎩⎪⎨⎪⎧ x=2+tcos 3π4y=1+tsin 3π4,即⎩⎪⎨⎪⎧ x-2=﹣22t y-1=22t,消去t,得x+y-3=0即为所求的l 的直线方程.例6在已知圆x 2+y 2=4上有定点A (-1,-3)及动点P 、Q 且∠QAP =π3,求△APQ面积的最大值.解:设直线AP 的方程为⎩⎨⎧ x =-1+tcos αy =-3+tsin α(t 为参数),将其代入x 2+y 2=4,得t 2-2(cos a +3sin a )t =0, 由弦长公式|AP |=|2(cos a +3sin a )|=4|sin (α+π6)|,同理可得|AQ |=4|sin (β+π6)|,而β=2+π3,所以|AQ |=4|cos a |,故S △APQ =12|AP ||AQ |sin π3=43|sin (α+π6)|·|cos a |=43|sin αcos π6+cos αsin π6)|·|cos a |=43|(32sin αcos α+12cos 2α)|=23|32sin2α+12cos2α+12| =23|sin(2α+π6)+12|当a =π6时,S max =3 3.例7已知圆x 2+y 2=r 2及圆内一点A(a ,b)(a ,b 不同时为零),求被A 平分的弦所在直线方程.解:设所求直线的方程为⎩⎨⎧ x =a +tcos θy =b +tsin θ(t 为参数)①②,代入圆的方程x 2+y 2=r 2,整理得t 2+2(acos θ+bsin θ)t +a 2+b 2-r 2=0 设t 1,t 2为方程两根,∵A 是中点,∴t 1+t 2=0,即acos θ+bsin θ=0,①×a+②×b,得ax +by =a 2+b 2+t(acos θ+bsin θ)=a 2+b 2, 故所求直线方程是ax +by =a 2+b 2.。

高中数学参数方程知识点大全

高中数学参数方程知识点大全

高考复习之参数方程一、考纲要求1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程.2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数方程或极坐标方程求两条曲线的交点.二、知识结构1.直线的参数方程(1)标准式过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是⎩⎨⎧+=+=at y y a t x x sin cos 00(t 为参数)(2)一般式过定点P 0(x 0,y 0)斜率k=tgα=ab的直线的参数方程是⎩⎨⎧+=+=bt y y atx x 00(t 不参数)②在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2+b 2=1,②即为标准式,此时,|t|表示直线上动点P 到定点P 0的距离;若a 2+b 2≠1,则动点P 到定点P 0的距离是22b a +|t|.直线参数方程的应用设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是⎩⎨⎧+=+=at y y a t x x sin cos 00(t 为参数)若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则(1)P 1、P 2两点的坐标分别是(x 0+t 1cosα,y 0+t 1sinα)(x 0+t 2cosα,y 0+t 2sinα);(2)|P 1P 2|=|t 1-t 2|;(3)线段P 1P 2的中点P 所对应的参数为t,则t=221t t +中点P 到定点P 0的距离|PP 0|=|t|=|221t t +|(4)若P 0为线段P 1P 2的中点,则t 1+t 2=0.2.圆锥曲线的参数方程(1)圆圆心在(a,b),半径为r 的圆的参数方程是⎩⎨⎧+=+=ϕϕsin cos r b y r a x (φ是参数)φ是动半径所在的直线与x 轴正向的夹角,φ∈[0,2π](见图)(2)椭圆椭圆12222=+b y a x (a>b>0)的参数方程是⎩⎨⎧==ϕϕsin cos b y a x (φ为参数)椭圆12222=+by a y (a>b>0)的参数方程是⎩⎨⎧==ϕϕsin cos a y b x (φ为参数)3.极坐标极坐标系在平面内取一个定点O,从O 引一条射线Ox,选定一个单位长度以及计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O 点叫做极点,射线Ox 叫做极轴.①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可.点的极坐标设M 点是平面内任意一点,用ρ表示线段OM 的长度,θ表示射线Ox 到OM 的角度,那么ρ叫做M 点的极径,θ叫做M 点的极角,有序数对(ρ,θ)叫做M 点的极坐标.(见图)极坐标和直角坐标的互化(1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合;②极轴与x 轴的正半轴重合③两种坐标系中取相同的长度单位.(2)互化公式⎩⎨⎧=='sin cos θρθρy x ⎪⎩⎪⎨⎧≠=+=)0(222x x y tg y x θρ三、知识点、能力点提示(一)曲线的参数方程,参数方程与普通方程的互化例1在圆x 2+y 2-4x-2y-20=0上求两点A 和B,使它们到直线4x+3y+19=0的距离分别最短和最长.解:将圆的方程化为参数方程:⎩⎨⎧+=+=θθsin 51cos 52y x (θ为参数)则圆上点P 坐标为(2+5cos θ,1+5sin θ),它到所给直线之距离d=223430sin 15cos 120+++θθ故当cos(φ-θ)=1,即φ=θ时,d 最长,这时,点A 坐标为(6,4);当cos(φ-θ)=-1,即θ=φ-π时,d 最短,这时,点B 坐标为(-2,2).(二)极坐标系,曲线的极坐标方程,极坐标和直角坐标的互化说明这部分内容自1986年以来每年都有一个小题,而且都以选择填空题出现.例2极坐标方程ρ=θθcos sin 321++所确定的图形是()A.直线B.椭圆C.双曲D.抛物线解:ρ=)6sin(1211)]cos 2123(1[21πθθ++⋅=++(三)综合例题赏析例3椭圆的两个焦点坐标是是参数)(sin 51cos 3Φ⎩⎨⎧Φ+-=Φ+=y x ()A.(-3,5),(-3,-3)B.(3,3),(3,-5)C.(1,1),(-7,1)D.(7,-1),(-1,-1)解:化为普通方程得125)1(9)3(22=++-y x ∴a 2=25,b 2=9,得c 2=16,c=4.∴F(x-3,y+1)=F(0,±4)∴在xOy 坐标系中,两焦点坐标是(3,3)和(3,-5).应选B.例4参数方程表示)20()sin 1(212sin 2cos πθθθθ<<⎪⎪⎩⎪⎪⎨⎧+=+=y x A.双曲线的一支,这支过点(1,21) B.抛物线的一部分,这部分过(1,21)C.双曲线的一支,这支过(-1,21) D.抛物线的一部分,这部分过(-1,21)解:由参数式得x 2=1+sinθ=2y(x>0)即y=21x 2(x>0).∴应选B.例5在方程⎩⎨⎧==θθcos sin y x (θ为参数)所表示的曲线一个点的坐标是()A.(2,-7)B.(31,32) C.(21,21) D.(1,0)解:y=cos2θ=1-2sin2θ=1-2x 2将x=21代入,得y=21∴应选C.例6下列参数方程(t 为参数)与普通方程x 2-y=0表示同一曲线的方程是()A.⎩⎨⎧==t y t xB.⎩⎨⎧==ty tx 2cos cos C.⎪⎩⎪⎨⎧-+==t t y tgt x 2cos 12cos 1D.⎪⎩⎪⎨⎧+-==t ty tgt x 2cos 12cos 1解:普通方程x 2-y 中的x∈R,y≥0,A.中x=|t|≥0,B.中x=cost∈〔-1,1〕,故排除A.和B.C.中y=t t 22sin 2cos 2=ctg 2t=2211xt tg ==,即x 2y=1,故排除C.∴应选D.例7曲线的极坐标方程ρ=4sinθ化成直角坐标方程为()A.x 2+(y+2)2=4B.x 2+(y-2)2=4C.(x-2)2+y 2=4D.(x+2)2+y 2=4解:将ρ=22y x +,sinθ=22y x y +代入ρ=4sinθ,得x 2+y 2=4y,即x 2+(y-2)2=4.∴应选B.例8极坐标ρ=cos(θπ-4)表示的曲线是()A.双曲线B.椭圆C.抛物线D.圆解:原极坐标方程化为ρ=21(cosθ+sinθ)⇒22ρ=ρcosθ+ρsinθ,∴普通方程为2(x 2+y 2)=x+y,表示圆.应选D.例9在极坐标系中,与圆ρ=4sinθ相切的条直线的方程是()A.ρsinθ=2 B.ρcosθ=2C.ρcosθ=-2 D.ρcosθ=-4例9图解:如图.⊙C 的极坐标方程为ρ=4sinθ,CO⊥OX,OA 为直径,|OA|=4,l 和圆相切,l 交极轴于B(2,0)点P(ρ,θ)为l 上任意一点,则有cosθ=ρ2=OPOB ,得ρcosθ=2,∴应选B.例104ρsin 22θ=5表示的曲线是()A.圆B.椭圆C.双曲线的一支D.抛物线解:4ρsin 22θ=5⇔4ρ·.5cos 2221cos -=⇔-θρρθ把ρ=22y x +ρcosθ=x,代入上式,得222y x +=2x-5.平方整理得y 2=-5x+.425.它表示抛物线.∴应选D.例11极坐标方程4sin 2θ=3表示曲线是()A.两条射线 B.两条相交直线 C.圆D.抛物线解:由4sin 2θ=3,得4·222yx y +=3,即y 2=3x 2,y=±x 3,它表示两相交直线.∴应选B.四、能力训练(一)选择题1.极坐标方程ρcosθ=34表示()A.一条平行于x 轴的直线B.一条垂直于x 轴的直线C.一个圆D.一条抛物线2.直线:3x-4y-9=0与圆:)(,sin 2cos 2为参数θθθ⎩⎨⎧==y x 的位置关系是()A.相切B.相离C.直线过圆心D.相交但直线不过圆心3.若(x,y)与(ρ,θ)(ρ∈R)分别是点M 的直角坐标和极坐标,t 表示参数,则下列各组曲线:①θ=6π和sinθ=21;②θ=6π和tgθ=33,③ρ2-9=0和ρ=3;④⎩⎨⎧+=+=⎪⎪⎩⎪⎪⎨⎧+=+=t y t x ty t x 322213222和其中表示相同曲线的组数为()A.1 B.2 C.3 D.44.设M(ρ1,θ1),N(ρ2,θ2)两点的极坐标同时满足下列关系:ρ1+ρ2=0,θ1+θ2=0,则M,N 两点位置关系是()A.重合B.关于极点对称C.关于直线θ=2π D.关于极轴对称5.极坐标方程ρ=sinθ+2cosθ所表示的曲线是()A.直线B.圆C.双曲线D.抛物线6.经过点M(1,5)且倾斜角为3π的直线,以定点M 到动点P 的位移t 为参数的参数方程是()A.⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 235211 B.⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 235211 C.⎪⎪⎩⎪⎪⎨⎧-=+=t y t x 235211D.⎪⎪⎩⎪⎪⎨⎧+=+=t x t y 2152317.将参数方⎪⎪⎩⎪⎪⎨⎧+++⋅=+++⋅=2222222222m m m b y m m mm a x (m 是参数,ab≠0)化为普通方程是()A.)(12222a xb y a x ≠=+ B.)(12222a x b y a x -≠=+C.)(12222a x by a x ≠=- D.)(12222a x by a x -≠=-8.已知圆的极坐标方程ρ=2sin(θ+6π),则圆心的极坐标和半径分别为()A.(1,3π),r=2 B.(1,6π),r=1 C.(1,3π),r=1D.(1,-3π),r=29.参数方程⎪⎩⎪⎨⎧-=+=21y t t x (t 为参数)所表示的曲线是()A.一条射线B.两条射线C.一条直线D.两条直线10.双曲线⎩⎨⎧+=+-=θθsec 212y tg x (θ为参数)的渐近线方程为()A.y-1=)2(21+±x B.y=x 21±C.y-1=)2(2+±x D.y+1=)2(2-±x 11.若直线⎩⎨⎧=+=bty at x 4((t 为参数)与圆x 2+y 2-4x+1=0相切,则直线的倾斜角为()A.3π B.32π C.3π或32π D.3π或35π12.已知曲线⎩⎨⎧==pty pt x 222(t 为参数)上的点M,N 对应的参数分别为t 1,t 2,且t 1+t 2=0,那么M,N 间的距离为()A.2p(t 1+t 2)B.2p(t 21+t 22) C.│2p(t 1-t 2)│D.2p(t 1-t 2)213.若点P(x,y)在单位圆上以角速度ω按逆时针方向运动,点M(-2xy,y 2-x 2)也在单位圆上运动,其运动规律是()A.角速度ω,顺时针方向B.角速度ω,逆时针方向C.角速度2ω,顺时针方向D.角速度2ω,逆时针方向14.抛物线y=x 2-10xcosθ+25+3sinθ-25sin 2θ与x 轴两个交点距离的最大值是()A.5B.10C.23D.315.直线ρ=θθsin cos 23+与直线l 关于直线θ=4π(ρ∈R)对称,则l 的方程是()A.θθρsin cos 23-=B.θθρcos cos 23-=C.θθρsin 2cos 3-=D.θθρsin 2cos 3+=(二)填空题16.若直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+=ty t x 532543(t 为参数),则过点(4,-1)且与l 平行的直线在y 轴上的截距为.17.参数方程⎪⎪⎩⎪⎪⎨⎧+=+=θθθθcos 1sin cos 1cos y x (θ为参数)化成普通方程为.18.极坐标方程ρ=tgθsecθ表示的曲线是.19.直线⎩⎨⎧-=+-=ty tx 3231(t 为参数)的倾斜角为;直线上一点P(x ,y)与点M(-1,2)的距离为.(三)解答题20.设椭圆⎩⎨⎧==θθsin 32cos 4y x (θ为参数)上一点P,若点P 在第一象限,且∠xOP=3π,求点P 的坐标.21.曲线C 的方程为⎩⎨⎧==pty pt x 222(p>0,t 为参数),当t∈[-1,2]时,曲线C 的端点为A,B,设F 是曲线C 的焦点,且S △AFB =14,求P 的值.22.已知椭圆222y x +=1及点B(0,-2),过点B 作直线BD,与椭圆的左半部分交于C、D 两点,又过椭圆的右焦点F 2作平行于BD 的直线,交椭圆于G,H 两点.(1)试判断满足│BC│·│BD│=3│GF 2│·│F 2H│成立的直线BD 是否存在?并说明理由.(2)若点M 为弦CD 的中点,S △BMF2=2,试求直线BD 的方程.23.如果椭圆的右焦点和右顶点的分别是双曲线⎩⎨⎧=+=θθtg y x 3sec 48(θ为参数)的左焦点和左顶点,且焦点到相应的准线的距离为49,求这椭圆上的点到双曲线渐近线的最短距离.24.A,B 为椭圆2222by a x +=1,(a>b>0)上的两点,且OA⊥OB,求△AOB 的面积的最大值和最小值.25.已知椭圆162422y x +=1,直线l∶812yx +=1,P 是l 上一点,射线OP 交椭圆于点R,又点Q 在OP 上且满足│OQ│·│OP│=│OR│2,当点P 在l 上移动时,求点Q 的轨迹方程.并说明轨迹是什么曲线.参考答案(一)1.B 2.D3.C4.C5.B6.A7.A8.C9.B 10.C 11.C 12.C 13.C 14.C 15.D(二)16.-4;17.y 2=-2(x-21),(x≤21);18.抛物线;19.135°,|32t|(三)20.(5154,558);21.;33222.(1)不存在,(2)x+y+2=0;23.51(27-341);24.Smax=2ab ,s max=2222b a b a +;25.25)1(25)1(22-+-y x =1(x,y)不同时为零)。

高中数学《参数方程-直线的参数方程》课件

高中数学《参数方程-直线的参数方程》课件
§2 直线和圆锥曲线的参数方程
-1-
2.1
直线的参数方程
-2-
首 页
课程目标
1.掌握直线参数方程的标准形
式,理解参数 t 的几何意义.
2.能依据直线的几何性质,写出
它的两种形式的参数方程,体会
参数的几何意义.
3.能利用直线的参数方程解决
简单的实际问题.
学习脉络
J 基础知识 Z 重点难点
ICHU ZHISHI

4

= -1 + cos ,
4
3π (t
= 2 + sin
4
解:因为 l 过定点 M,且 l 的倾斜角为 ,
所以它的参数方程是

2
t,
2
(t
2
+ t
2
= -1=2
为参数).
为参数).①
把①代入抛物线方程,得 t2+ 2t-2=0.
解得 t1=
- 2+ 10
- 2- 10
,t2=
5
= 1 + t,
=
为参数).
因为 3×5-4×4+1=0,所以点 M 在直线 l 上.
4
5
由 1+ t=5,得 t=5,即点 P 到点 M 的距离为 5.
因为 3×(-2)-4×6+1≠0,所以点 N 不在直线 l 上.
由两点间距离公式得|PN|= (1 + 2)2 + (1-6)2 = 34.
π
6
即 α= 或

3
时,|PA||PB|最小,其最小值为
1
6
2 1+4
6

圆锥曲线的参数方程全解

圆锥曲线的参数方程全解

将y=
b
a x代入①,解得点A的横坐标为
a

xA = a2(sec tan).
解: 同理可得,点B的横坐标为xB = a2(sec tan).
设AOx=,则tan b . 所以MAOB的面积为
a
S MAOB =|OA||OB|sin2 =
xA
cos

xB
cos
sin2
过点A作圆C1的切线AA '与x轴交于点A ' ,
过圆C2与x轴的交点B作圆C2的切线BB'与直线OA交于点B'. 过点A ' ,B'分别作y轴,x轴的平行线A' M,B' M交于点M.
双曲线的参数方程
y
设M (x, y) 则A' (x, 0), B'(b, y).
a
B'
A
•M
点A在圆C1上 A(acos,asin).

又OA AA',OA AA'=0
o B A' x
b
AA' =(x-acos,-asin )
a cos(x a cos) (a sin)2 0 解得:x a
又 点B'在角的终边上,记 由三角函数定义有:tan y .
co1sy消saxbe去22cta参n数by22得:x1
2
2
说明:⑴ 这里参数 叫做双曲线的离心角与直线OM
的倾斜角不同. ⑵ 双曲线的参数方程可以由方程
x2 a2

y2 b2
1
与三角
恒等式sec2 1 tan2 相比较而得到,所以双曲
线的参数方程的实质是三角代换.

高中数学参数方程知识点详解(讲义+过关检测+详细答案)

高中数学参数方程知识点详解(讲义+过关检测+详细答案)

5.【答案】D
【解析】 x2 t, y2 1 t 1 x2, x2 y2 1,而t 0, 0 1 t 1,得0 y 2 .
4
4
6.【答案】D
【解析】圆
x=2 cos,
的圆心为原点,半径为
y =2 sin
2,
则圆心到直线 3x-4y-9=0 的距离为 9 ,小于半径 2,故直线与圆相交. 5
D.(1, 3)
2.已知某曲线的参数方程为 xy==ccooss2, +1,则该曲线是(

A.直线
B.圆
C.双曲线
3.若一直线的参数方程为
x
x0
1 2
t
(t 为参数),则此直线的倾斜Байду номын сангаас为(
y
y0
3t 2
A.30º
B. 60º
C.120º
4.若点
P(4,a)在曲线
x=
t 2
(t 为参数)上,点 F(2,0),则|PF|等于(
)
y=2 t
A.4
B.5
C.6
D.抛物线 ) D.150º
D.7
5.与参数方程为
x
t
(t为参数) 等价的普通方程为( )
y 2 1 t
A. x2 y2 1 4
B. x2 y2 1(0 x 1) 4
C. x2 y2 1(0 y 2) 4
D. x2 y2 1(0 x 1, 0 y 2) 4
y2 b2
1( a
0 , b 0 )的参数方程为:
x a sec
y
b
tan

为参数,
[0, 2 ) 且
, 2
3 2

直线参数方程

直线参数方程
本文详细讲解了直线的参数方程,这是高中数学中的重要内容,是平面解析几何和圆锥曲线等知识的延伸。首先,介绍了直线参数方程的标准形式,其中参数t具有明确的几何意义,表示直线上任意一点到定点的距离。通过教学过程的分析,展示了如何引导学生从实际情境出发,理解并掌握直线参数方程的概念和应用。重点强调了参数t的几何意义以及如何将直线的普通方程转化为参数方程。此外,还通过例题和练习,帮助学ቤተ መጻሕፍቲ ባይዱ巩固所学知识,提高应用能力。本文旨在帮助学生深入理解直线参数方程的本质,掌握其应用方法,并培养数形结合的思想和解决实际问题的能力。

人教版高二数学2-2第二章参数方程

人教版高二数学2-2第二章参数方程

4-4第二章 参数方程【知识点梳理】一、参数方程的概念:一般地,在取定的坐标系中,如果曲线上任意一点的坐标(x ,y )都是某个变数t的函数⎩⎪⎨⎪⎧x =f (t ),y =g (t )①,并且对于t 取的每一个允许值,由方程组①所确定的点P (x ,y )都在这条曲线上,那么方程组①就叫作这条曲线的参数方程,联系x ,y 之间关系的变数t 叫作参变数,简称 参数 . 相对于参数方程,我们把直接用坐标(x ,y )表示的曲线方程f (x ,y )=0叫作曲线的普通方程.说明:(1)一般来说,参数的变化范围是有限制的。

(2)参数是联系变量x ,y 的桥梁,可以有实际意义,也可无实际意义。

二、几种常见的参数方程1.直线的参数方程过定点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数) 0≤α<π.2.圆的参数方程圆心在点M (x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数,0≤θ≤2π).3.圆锥曲线的参数方程(1)椭圆x 2a 2+y 2b 2=1的参数方程为⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数,0≤θ≤2π).(2)双曲线x 2a 2-y 2b2=1(a >0,b >0)的参数方程为⎩⎪⎨⎪⎧x =a cos θ,y =btan θ(θ为参数,0≤θ≤2π且2π3θ,2πθ≠≠).,则{,有sec 2θ-tan 2θ=1(3)抛物线y 2=2px (p >0)的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数).三、参数方程与普通方程的互化将参数方程化成普通方程的常用方法有: (1)代数法消去参数①代入法:从参数方程中选出一个方程,解出参数,然后把参数的表达式代入另一个方程,消去参数,得到曲线的普通方程.②代数运算法:通过乘、除、乘方等运算把参数方程中的方程适当地变形,然后把参数方程中的两个方程进行代数运算,消去参数,得到曲线的普通方程. (2)利用三角恒等式消去参数如果参数方程中的x ,y 都表示为参数的三角函数,那么可以考虑用三角函数公式中的恒等式消去参数,得到曲线的普通方程. (3)注意事项① 互化中必须使,x y 的取值范围保持一致. ② 同一个普通方程可以有不同形式的参数方程.几种常见的参数方程例1:(1)过点(0,0)且倾斜角为60°的直线的参数方程是________.【答案】 (1)⎩⎨⎧x =12t ,y =32t【解析】⎩⎪⎨⎪⎧x =t cos 60°,y =t sin 60°,即⎩⎨⎧x =12t ,y =32t(t 为参数).(2)过点P (-4,0),倾斜角为5π6的直线的参数方程为________.【答案】 ⎩⎨⎧x =-4-32t ,y =t2【解析】∵直线l 过点P (-4,0),倾斜角α=5π6,所以直线的参数方程为⎩⎨⎧x =-4+t cos 5π6,y =0+t sin 5π6,即(t 为参数)⎩⎨⎧x =-4-32t ,y =t2.(3)参数方程⎩⎪⎨⎪⎧x =1+t cos 20°,y =2+t sin 20°(t 为参数)表示的直线的倾斜角是________. 【解析】方程符合直线参数方程的标准形式,易知倾斜角为20°.(4)直线⎩⎪⎨⎪⎧x =-2+t cos 50°,y =3-t sin 40°(t 为参数)的倾斜角α等于( ) A.40° B.50° C.-45° D.135°【答案】 D 【解析】 根据tan α=-sin 40°cos 50°=-1,因此倾斜角为135°.例2:(1)圆的参数方程为:⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数),则圆的圆心坐标为( )A.(0,2)B.(0,-2)C.(-2,0)D.(2,0)【答案】 D 【解析】 由圆的参数方程知,圆心为(2,0). (2)圆心在点(-1,2),半径为5的圆的参数方程为( )A.⎩⎪⎨⎪⎧x =5-cos θ,y =5+2sin θ(0≤θ<2π) B.⎩⎪⎨⎪⎧x =2+5cos θ,y =-1+5sin θ(0≤θ<2π) C.⎩⎪⎨⎪⎧ x =-1+5cos θ,y =2+5sin θ(0≤θ<π) D.⎩⎪⎨⎪⎧x =-1+5cos θ,y =2+5sin θ(0≤θ<2π) 【答案】 D 圆心在点C (a ,b ),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =a +r cos θ,y =b +r sin θ(θ∈[0,2π)).故圆心在点(-1,2),半径为5的圆的参数方程为⎩⎪⎨⎪⎧x =-1+5cos θ,y =2+5sin θ(0≤θ<2π).例3:(1)椭圆⎩⎪⎨⎪⎧x =3cos θ,y =2sin θ的长轴长和短轴长分别为( )A.3 2B.6 2C.3 4D.6 4【答案】 D 【解析】 由方程可知a =3,b =2,∴2a =6,2b =4.(2)曲线C :⎩⎨⎧x =3cos φ,y =5sin φ(φ为参数)的离心率为________.【答案】 23 【解析】由曲线C 的参数方程可以看出a =3,b =5,得a 2=9,b 2=5,⇒c 2=4,所以e=c a =23. 例4:双曲线C :⎩⎪⎨⎪⎧x =3sec φ,y =4tan φ(φ为参数)的焦点坐标为________.【答案】 (-5,0),(5,0)【解析】 曲线C 的普通方程为x 29-y 216=1,得焦点坐标为F 1(-5,0),F 2(5,0)参数方程与普通方程的互化例1:(1)将参数方程⎩⎪⎨⎪⎧x =t ,y =2t(t 为参数)化为普通方程是________.【解析】 把t =x 代入②得y =2x 即普通方程为y =2x .(2)将参数方程⎩⎪⎨⎪⎧x =2t 2,y =t +1(t 为参数)化为普通方程是________.【解析】由②得t =y -1,代入①得x =2(y -1)2.(3)将参数方程⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数)化为普通方程是________.【解析】由sin 2 θ+cos 2 θ=1得x 2+y 2=1.(4)将参数方程⎩⎪⎨⎪⎧x =2+sin 2θ,y =-1+cos 2θ(θ为参数)化为普通方程是________【解析】由y =-1+cos 2θ,可得y =-2sin 2θ, 把sin 2θ=x -2代入y =-2sin 2θ,可得y =-2(x -2), 即2x +y -4=0. 又∵2≤x =2+sin 2θ≤3,∴所求的方程是2x +y -4=0(2≤x ≤3),它表示的是一条线段. (5)将(x -2)2+y 2=1化为参数方程是 【解析】令x -2=cos α,y =sin α,∴C 1的一个参数方程为⎩⎪⎨⎪⎧x =2+cos α,y =sin α(α为参数,α∈R ).【练一练】1.曲线⎩⎪⎨⎪⎧x =2cos θ-1,y =2sin θ+2(θ为参数)的一条对称轴的方程为( )A.y =0B.x +y =0C.x -y =0D.2x +y =0【答案】 D 【解析】 曲线⎩⎪⎨⎪⎧x =2cos θ-1,y =2sin θ+2(θ为参数)的普通方程为(x +1)2+(y -2)2=4,圆心C的坐标为(-1,2),过圆心的直线都是圆的对称轴,故选D.2.与普通方程x 2+y -1=0等价的参数方程为( )A.⎩⎪⎨⎪⎧x =sin t ,y =cos 2t (t 为参数) B.⎩⎪⎨⎪⎧ x =cos t ,y =sin 2t (t 为参数) C.⎩⎨⎧x =1-t ,y =t(t 为参数) D.⎩⎪⎨⎪⎧x =tan t ,y =1-tan 2t (t 为参数) 【答案】 D【解析】 A 化为普通方程为x 2+y -1=0,x ∈[-1,1],y ∈[0,1]. B 化为普通方程为x 2+y -1=0,x ∈[-1,1],y ∈[0,1]. C 化为普通方程为x 2+y -1=0,x ∈[0,+∞),y ∈(-∞,1]. D 化为普通方程为x 2+y -1=0,x ∈R ,y ∈(-∞,1].参数方程的应用【例1】(1)在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =t ,y =t (t 为参数)⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数),则曲线C 1与C 2的交点坐标为________. 【答案】 (1,1) 【解析】 C 1的普通方程为y 2=x (x ≥0,y ≥0),C 2的普通方程为x 2+y 2=2.由⎩⎪⎨⎪⎧ y 2=x ,(x ≥0,y ≥0),x 2+y 2=2,得⎩⎪⎨⎪⎧x =1,y =1.∴C 1与C 2的交点坐标为(1,1).(2)在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧ x =t ,y =t -a ,(t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为________.【答案】 3 【解析】 直线l :⎩⎪⎨⎪⎧x =t ,y =t -a 消去参数t 后得y =x -a .椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ消去参数φ后得x 29+y 24=1.又椭圆C 的右顶点为(3,0),代入y =x -a 得a =3.【例2】已知某条曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =at 2(其中t 是参数,a ∈R ),点M (5,4)在该曲线上.(1)求常数a ;(2)求曲线C 的普通方程.【解】 (1)由题意,可知⎩⎪⎨⎪⎧1+2t =5,at 2=4,故⎩⎪⎨⎪⎧t =2,a =1,所以a =1. (2)由已知及(1)可得,曲线C 的方程为⎩⎪⎨⎪⎧x =1+2t ,y =t 2,由第一个方程,得t =x -12,代入第二个方程,得y =⎝⎛⎭⎫x -122,即(x -1)2=4y 为所求.【例3】已知直线l 的参数方程:⎩⎪⎨⎪⎧x =t ,y =1+2t (t 为参数)和圆C 的极坐标方程:ρ=22sin ⎝⎛⎭⎫θ+π4(θ为参数). (1)将直线l 的参数方程和圆C 的极坐标方程化为直角坐标方程; (2)判断直线l 和圆C 的位置关系.解:(1)消去参数t ,得直线l 的直角坐标方程为y =2x +1;ρ=22sin ⎝⎛⎭⎫θ+π4即ρ=2(sin θ+cos θ).两边同乘以ρ得ρ2=2(ρsin θ+ρcos θ), 消去参数θ,得圆C 的直角坐标方程为:(x -1)2+(y -1)2=2. (2)圆心C 到直线l 的距离d =|2-1+1|22+12=255<2,所以直线l 和圆C 相交.【例4】在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线 C 1:ρ2-4ρcos θ+3=0,θ∈[0,2π],曲线C 2:ρ=34sin ⎝⎛⎭⎫π6-θ,θ∈[0,2π].(1)求曲线C 1的一个参数方程;(2)若曲线C 1和曲线C 2相交于A ,B 两点,求|AB |的值. 解 (1)由ρ2-4ρcos θ+3=0,可得x 2+y 2-4x +3=0. ∴(x -2)2+y 2=1.令x -2=cos α,y =sin α,∴C 1的一个参数方程为⎩⎪⎨⎪⎧x =2+cos α,y =sin α(α为参数,α∈R ).(2)C 2:4ρ⎝⎛⎭⎫sin π6cos θ-cos π6sin θ=3, ∴4⎝⎛⎭⎫12x -32y =3,即2x -23y -3=0.∵直线2x -23y -3=0与圆(x -2)2+y 2=1相交于A ,B 两点,且圆心到直线的距离d =14,∴|AB |=2× 1-⎝⎛⎭⎫142=2×154=152.。

圆锥曲线的参数方程 课件

圆锥曲线的参数方程  课件

椭圆的参数方程及应用
将参数方程yx==35scionsθθ (θ 为参数)化为普通方 程,并判断方程表示曲线的焦点坐标.
【思路探究】 根据同角三角函数的平方关系,消去参 数,化为普通方程,进而研究曲线形状和几何性质.
【自主解答】
由yx==35scionsθθ
得csionsθθ==3y5x,,

两式平方相加,得x522+3y22=1.
抛物线的参数方程
设抛物线 y2=2px 的准线为 l,焦点为 F,顶点 为 O,P 为抛物线上任一点,PQ⊥l 于 Q,求 QF 与 OP 的交 点 M 的轨迹方程.
【思路探究】 解答本题只要解两条直线方程组成的方 程组得到交点的参数方程,然后化为普通方程即可.
【自主解答】 设 P 点的坐标为(2pt2,2pt)(t 为参数), 当 t≠0 时,直线 OP 的方程为 y=1t x, QF 的方程为 y=-2t(x-p2), 它们的交点 M(x,y)由方程组
∴a=5,b=3,c=4.
因此方程表示焦点在 x 轴上的椭圆,焦点坐标为 F1(4,0)
和 F2(-4,0).
椭圆的参数方程yx==bacsionsθθ,, (θ 为参数,a,b 为常数, 且 a>b>0)中,常数 a、b 分别是椭圆的长半轴长和短半轴长, 焦点在长轴上.
若本例的参数方程为yx==53scionsθθ ,(θ 为参数),则如何求 椭圆的普通方程和焦点坐标?
它到两渐近线的距离分别是 d1 和 d2,

d1·d2=|absec
φ+abtan b2+a2
φ| ·
|absec φ-abtan φ| b2+-a2
=|a2b2seac22+φ-b2tan2 φ|=aa2+2b2b2(定值).

直线的参数方程

直线的参数方程
������ ������
������
������
设方程的两实根分别为 t1、t2,则
∴直线截椭圆的弦长是|t1-t2|= (������������ + ������������ ) -������������������ ������������ = .
������
������
������
[问题]上述解法中存在什么错误吗?
为参数)化为普通方程,得 x+y-1=0.将抛物线 C 的参 ������ = ������ 2 数方程 ������ = ������������ ������ (s 为参数)化为普通方程,得 y=2x . ������ + ������- ������ = ������ 2 联立方程 消去 y, 得 2x +x-1=0,解得 ������ ������ = ������������ x1=-1,x2= .直线 l 与抛物线 C 的交点坐标为 (-1,2),( , ).
入椭圆方程可得:
������ ������
2
(������-������) ������
������
+(1+t) =1,
������������ + ������������ = ������������ ������������ =
������ ������ ������ ������
2
即 t + t+ =0.
������ = ������������ + ������������, (t 为参数) ������ = ������������ + ������������ ,这里的
问题4
如何用直线 l 的参数方程求弦长和求弦的中点 坐标? 一般是先设出直线 l 的参数方程为 ������ = ������������ + ������������������������������, (t 为参数),代入圆锥曲线的方程, ������ = ������������ + ������������������������������

圆锥曲线的参数方程及其应用

圆锥曲线的参数方程及其应用

圆锥曲线的参数方程及其应用李学友㊀刘㊀芳(湖北省荆门市第一中学㊀448000)摘㊀要:对于一些曲线问题ꎬ特别是椭圆㊁双曲线与抛物线问题ꎬ有时用参数方程表示比用普通方程表示时来解决问题更方便ꎬ同时有助于学生进一步体会解决问题中数学方法的灵活多变.关键词:参数方程ꎻ椭圆ꎻ双曲线ꎻ抛物线ꎻ应用中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2020)28-0036-02收稿日期:2020-07-05作者简介:李学友(1973.1-)ꎬ男ꎬ湖北省荆门人ꎬ本科ꎬ中学高级教师ꎬ从事高中数学教学研究.刘芳(1977.9-)ꎬ女ꎬ湖北省荆门人ꎬ本科ꎬ中学高级教师ꎬ从事高中数学教学研究.㊀㊀参数方程是以参变量为中介来表示曲线上点的坐标的方程ꎬ是曲线在同一坐标系下的又一种表示形式.特别对于一些圆锥曲线问题时ꎬ用参数方程表示比用普通方程表示时来解决问题更方便ꎬ同时有助于学生进一步体会解决问题中数学方法的灵活多变.㊀㊀一㊁椭圆的参数方程椭圆x2a2+y2b2=1(a>b>0)的参数方程:x=acosφy=bsinφ{(a>b>0ꎬφ为参数)ꎬ其中参数φ称为离心角.例1㊀在平面直角坐标系xOy中ꎬ点P(xꎬy)是椭圆x23+y2=1上的一个动点ꎬ求S=x+y的最大值.分析㊀通过把椭圆的直角坐标方程转化为相应的参数方程ꎬ结合对应的表达式转化为三角函数的最值问题再加以分析与求解.解析㊀因椭圆x23+y2=1的参数方程为x=3cosθy=sinθ{(θ为参数)ꎬ故可设动点P的坐标为(3cosθꎬsinθ)ꎬ其中0ɤθ<2π.因此S=x+y=3cosθ+sinθ=2(32cosθ+12sinθ)=2sin(θ+π3)ꎬ所以当sin(θ+π3)=1ꎬ即θ=π6时ꎬS取最大值2.点评㊀对于椭圆中的最值问题ꎬ通过参数方程表示比用普通方程表示更方便.特别利用参数方程来求解一些最值问题ꎬ是应用中的一大特点.㊀㊀二㊁双曲线的参数方程双曲线x2a2-y2b2=1(a>0ꎬb>0)的参数方程:x=a2(t+1t)y=b2(t-1t)ìîíïïïï(a>0ꎬb>0ꎬt为参数).例2㊀动点P(xꎬy)在双曲线x29-y216=1上运动ꎬ则x-12y的取值范围是.分析㊀先把双曲线化为参数方程ꎬ将相应的代数式转化为参数t的表达式ꎬ通过分类讨论ꎬ结合基本不等式确定取值范围问题.解析㊀由双曲线x29-y216=1得其对应的参数方程为x=32(t+1t)y=2(t-1t)ìîíïïïï(t为参数).那么x-12y=32(t+1t)-12(t-1t)=t2+52t.当t>0时ꎬ可知t2+52tȡ2t2 52t=5ꎻ当t<0时ꎬ可知-t2-52tȡ2(-t2) (-52t)=5ꎬ故t2+52tɤ-5.综上可知x-12y的取值范围是(-ɕꎬ-5]ɣ[5ꎬ+ɕ).故填答案:(-ɕꎬ-5]ɣ[5ꎬ+ɕ).点评㊀对于双曲线中的代数式取值范围问题ꎬ通过参数方程表示比用普通方程表示更直观ꎬ结合参数的转化功能ꎬ巧妙利用基本不等式来解决有关的取值范围或最值问题ꎬ达到非常好的效果.63㊀㊀三㊁抛物线的参数方程抛物线y2=2px(p>0)的参数方程:x=2pt2y=2pt{(t为参数)ꎬ其中参数t的几何意义是抛物线上的点与抛物线的顶点连线的斜率的倒数.例3㊀过抛物线C:y2=2px(p>0)的顶点作两条互相垂直的弦OA㊁OBꎬ求线段AB中点M的轨迹方程.分析㊀先把抛物线化为参数方程ꎬ设出点A㊁B的坐标ꎬ利用弦OA㊁OB垂直建立相应参数的关系式ꎬ结合中点公式消去相应的参数求得对应的轨迹方程.解析㊀设抛物线C的参数方程为x=2pt2y=2pt{(t为参数)ꎬ且设A(2pt12ꎬ2pt1)ꎬB(2pt22ꎬ2pt2)ꎬ那么线段AB中点M(pt12+pt22ꎬpt1+pt2).由于弦OA㊁OB互相垂直ꎬ则有kOA kOB=2pt12pt21 2pt22pt22=1t1t2=-1ꎬ即t1t2=-1.设M(xꎬy)ꎬ则有x=p(t21+t22)ꎬy=p(t1+t2).{由y=p(t1+t2)两边平方ꎬ根据x=p(t12+p22)和t1t2=-1消去参数整理可得:y2=px-2p2.点评㊀对于抛物线中的轨迹问题ꎬ通过参数方程表示比用普通方程表示解决起来更简单快捷ꎬ可以直接利用参数坐标建立相应的关系式加以分析与应用.利用参数方程来解决圆锥曲线问题是一种很好的数学方法ꎬ特别对于有些难以下手的问题ꎬ若用参数方程去解决的话ꎬ往往能化繁为简ꎬ迎刃而解ꎬ起到事半功倍的效果.既能锻炼学生的逻辑思维ꎬ拓宽解题思路ꎬ培养学生一题多解的能力ꎬ又能激发他们的潜能ꎬ潜移默化他们的数学思想ꎬ提高他们的学习积极性和主动探索实践的能力.㊀㊀参考文献:[1]张全军.圆锥曲线性质中的问题分析[J].高中数理化ꎬ2016(04):10.[2]薛存义.圆锥曲线离心率的解题策略[J].新课程(中学)ꎬ2014(09):193.[3]林国红.同心圆锥曲线中两个定值命题的证明[J].中学数学研究(华南师范大学版)ꎬ2019(23):27-29.[4]陈婷婷.对一道圆锥曲线考题的解析突破与教学探讨 以2019年江苏高考圆锥曲线题为例[J].数学教学通讯ꎬ2019(33):41-42+73.[责任编辑:李㊀璟]解析数学建模在高中数学解题中的应用曹彩霞(江苏省海门市四甲中学㊀226100)摘㊀要:数学建模是用数学知识解决实际问题的具体体现.高中数学教学中ꎬ提升学生的数学建模能力ꎬ不仅有助于学生深化对数学模型的理解ꎬ而且还能很好地提高其解题能力ꎬ因此ꎬ授课中应注重数学建模应用讲解ꎬ提升学生的建模与数学模型应用能力.关键词:高中数学ꎻ数学建模ꎻ解题ꎻ应用中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2020)28-0037-02收稿日期:2020-07-05作者简介:曹彩霞(1981.10-)ꎬ女ꎬ江苏省海门人ꎬ本科ꎬ中学一级教师ꎬ从事高中数学教学研究.㊀㊀一㊁认真审题ꎬ构建函数模型学生对函数模型并不陌生ꎬ在初中阶段已有所了解.高中数学涉及的函数模型更为深入ꎬ难度更大ꎬ授课中应注重该种模型的应用讲解.一方面ꎬ构建函数模型的关键在于找到自变量和因变量之间的关系ꎻ另一方面ꎬ为学生讲解常见函数模型解答方法.例1㊀有一片树林现有木材储蓄量为7100m3ꎬ要力争是木材储蓄量20年后翻两番ꎬ已达到28400m3.(1)求平均每年木材储蓄量的增长率.(2)如果平均每年增长率为8%ꎬ几年可以翻两番?认真分析可知ꎬ解答该题目需要用到指数函数模型.对于(1)可设年增长率为xꎬ根据题意可构建如下模型:7100(1+x)20=28400ꎬ即(1+x)20=4ꎬ由对数知识可知ꎬ20lg(1+x)=2lg2ꎬ即lg(1+x)ʈ0.0301ꎬʑx+1ʈ1.072ꎬ所以xʈ0.072=7.2%.(2)设y年可以翻两番ꎬ则构建模型为:7100(1+0.08)y=28400ꎬ解得yʈ18.02ꎬ即十八年后可以翻两番.通过该题目的讲解使学生认识到ꎬ构建函数模型要认真审题ꎬ找到关键字构建对应数据模型.㊀㊀二㊁把握特点ꎬ构建数列模型数列模型是高中数学中较为常见的模型ꎬ包括等差73。

高中数学圆锥曲线知识点总结

高中数学圆锥曲线知识点总结

高中数学中,圆锥曲线是重要的内容之一。

以下是对圆锥曲线的知识点进行总结:1. 圆锥曲线的定义:圆锥曲线是在平面上由一个固定点(焦点)和一个到该点的固定距离之比(离心率)确定的曲线。

2. 椭圆:-定义:椭圆是所有到两个焦点的距离之和等于常数的点的集合。

-基本方程:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,其中$a$和$b$分别代表椭圆的半长轴和半短轴。

-离心率:$e=\frac{\sqrt{a^2-b^2}}{a}$,离心率满足$0<e<1$。

3. 双曲线:-定义:双曲线是所有到两个焦点的距离之差的绝对值等于常数的点的集合。

-基本方程:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,其中$a$和$b$分别代表双曲线的半长轴和半短轴。

-离心率:$e=\frac{\sqrt{a^2+b^2}}{a}$,离心率满足$e>1$。

4. 抛物线:-定义:抛物线是所有到一个焦点的距离等于到直线(准线)的距离的点的集合。

-基本方程:$y^2=4ax$,其中$a$为抛物线的焦点到准线的距离的一半。

5. 圆:-定义:圆是到一个固定点的距离等于常数的点的集合。

-基本方程:$(x-h)^2+(y-k)^2=r^2$,其中$(h,k)$为圆心的坐标,$r$为半径的长度。

6. 圆锥曲线的性质:-焦点和准线:椭圆和双曲线有两个焦点和一条准线,抛物线有一个焦点和一条准线,圆只有一个焦点和没有准线。

-对称性:椭圆和双曲线关于$x$轴、$y$轴对称,抛物线关于$y$轴对称。

-焦点与离心率的关系:椭圆和双曲线的离心率小于1,抛物线的离心率等于1,圆的离心率为0。

-焦点与直径的关系:椭圆和双曲线的焦点在直径上,抛物线的焦点在对称轴上。

7. 焦点和准线的性质:-椭圆和双曲线:对于椭圆和双曲线,焦点到准线的距离等于焦点到曲线上任意点的距离之差的一半。

同时,准线也是曲线的对称轴。

高中数学第二章参数方程2.2圆的参数方程2.3椭圆的参数方程2.4双曲线的参数方程课件北师大版选修4_4

高中数学第二章参数方程2.2圆的参数方程2.3椭圆的参数方程2.4双曲线的参数方程课件北师大版选修4_4

圆 , 则 圆 心 (1 , 3 ) 到 直 线 x + 3 y - 2 = 0 的 距 离 为
|1+ 3× 12+
33-2 2|=1,故直线和圆相切.
(2)设圆上的点 P(1+cos θ, 3+sin θ)(0≤θ<2π).
|OP|= 1+cos θ2+ 3+sin θ2= 当 θ=43π时,|OP|min=1.
的参数方程为xy==23scions
φ, φ
(φ 为参数),
设 P(x,y)是椭圆上在第一象限内的一点,
则 P 点的坐标是 P(3cos φ,2sin φ),
内接矩形面积为
S=4xy=4×3cos φ·2sin φ=12sin 2φ.
当 sin 2φ=1,即 φ=45°时,面积 S 有最大值 12,
这时 x=3cos 45°=322,y=2sin 45°= 2.
故面积最大的内接矩形的长为 3 2,宽为 2 2,最大面积为
12.
与椭圆上的动点 M 有关的最值、定值、轨迹等 问题一般利用其参数方程求解.
2.在平面直角坐标系 xOy 中 ,设 P(x,y)是椭圆x32+y2=1 上一个动点,求 x+y 的最大值. 解:椭圆方程x32+y2=1 的参数方程为xy==sin3cθos θ, (θ 为参数). 设椭圆上任一点 P( 3cos θ,sin θ), 则 x+y= 3cos θ+sin θ=2sinθ+π3. ∵sinθ+π3∈[-1,1], ∴当 sinθ+π3=1 时,x+y 取最大值 2.
x=rcos α, OM=OPcos α,MP=OPsin α,即 y=rsin α (α 为参
数).这就是圆心在原点、半径为 r 的圆的参数方程.参数
α 的几何意义是 OP 与 x 轴正方向的夹角.

(新课标)人教版高中教材目录

(新课标)人教版高中教材目录

(新课标)人教版高中教材目录——数学必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量间的相关关系第三章概率3.1 随机事件的概率3.2 古典概型3.3 几何概型必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换1必修5第一章解三角形1.1 正弦定理和余弦定理1.2 应用举例1.3 实习作业第二章数列2.1 数列的概念与简单表示法2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题3.4 基本不等式======================================================== 选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 变化率与导数3.2 导数的计算3.3 导数在研究函数中的应用3.4 生活中的优化问题举例选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎证明2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算第四章框图4.1 流程图4.2 结构图2选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆2.3 双曲线2.4 抛物线选修 2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理1.2 排列与组合1.3 二项式定理第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用2.3 离散型随机变量的均值与方差2.4 正态分布第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用选修4-1 几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线3选修4-4 坐标系与参数方程第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线选修4-5 不等式选讲第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲讲明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式4(新课标)人教版高中教材目录——政治必修1 经济生活【第一单元生活与消费】第一课神奇的货币揭开货币的神秘面纱信用工具和外汇第二课多变的价格影响价格的因素价格变动的影响第三课多彩的消费消费及其类型树立正确的消费观综合探究正确对待金钱【第二单元生产、劳动与经营】第四课生产与经济制度发展生产满足消费我国的基本经济制度第五课企业与劳动者公司的经营新时代的劳动者第六课投资理财的选择储蓄存款和商业银行股票、债券和保险综合探究做好就业与自主创业的准备【第三单元收入与分配】第七课个人收入的分配按劳分配为主体多种分配方式并存收入分配与社会公平第八课财政与税收国家财政征税和纳税综合探究提高效率促进公平【第四单元发展社会主义市场经济】第九课走进社会主义市场经济市场配置资源社会主义市场经济第十课社会发展观和小康社会的经济建设全面建设小康社会的经济目标又好又快科学发展第十一课经济全球化与对外开放面对经济全球化积极参与国际经济竞争与合作综合探究经济全球化与中国5【第一单元公民的政治生活】第一课生活在人民当家作主的国家人民民主专政:本质是人民当家作主政治权利与义务:参与政治生活的基础和准则政治生活:有序参与第二课我国公民的政治参与民主选举:投出理性一票民主决策:作出最佳选择民主管理:共创幸福生活民主监督:守望公共家园综合探究有序与无序的政治参与【第二单元为人民服务的政府】第三课我们政府是人民的政府政府的职能:管理与服务政府的责任:对人民负责第四课我国政府受人民的监督政府的权力:依法行使权力的行使:需要监督综合探究政府的权威从何而来【第三单元发展社会主义民主政治】第五课我国的人民代表大会制度人民代表大会:国家权力机关人民代表大会制度:我国的根本政治制度第六课我国的政党制度中国共产党执政:历史和人民的选择中国共产党:以人为本执政为民共产党领导的多党合作和政治协商制度:中国特色的政党制度第七课我国的民族区域自治制度及宗教政策处理民族关系的原则:平等、团结、共同繁荣民族区域自治制度:适合国情的基本政治制度我国的宗教政策综合探究社会主义民主政治的特点和优势【第四单元当代国际社会】第八课走近国际社会国际社会的主要成员:主权国家和国际组织国际关系的决定性因素:国家利益第九课维护世界和平促进共同发展和平与发展:时代的主题世界多极化:不可逆转我国外交政策的宗旨:维护世界和平促进共同发展6【第一单元文化与生活】第一课文化与社会体味文化文化与经济、政治第二课文化对人的影响感受文化影响文化塑造人生综合探究聚焦文化竞争力【第二单元文化传承与创新】第三课文化的多样性与文化传播世界文化的多样性文化在交流中传播第四课文化的继承性与文化发展传统文化的继承文化在继承中发展第五课文化创新文化创新的源泉和作用文化创新的途径综合探究建设“学习型社会”【第三单元中华文化与民族精神】第六课我们的中华文化源远流长的中华文化博大精深的中华文化第七课我们的民族精神永恒的中华民族精神弘扬中华民族精神综合探究铸牢中华民族的精神支柱【第四单元发展中国特色社会主义文化】第八课走进文化生活色彩斑斓的文化生活在文化生活中选择第九课推动社会主义文化大发展大繁荣坚持先进文化的前进方向建设社会主义精神文明第十课文化发展的中心环节加强思想道德建设思想道德修养与科学文化修养综合探究感悟当代中国的先进文化7必修4 生活与哲学【第一单元生活智慧与时代精神】第一课美好生活的向导生活处处有哲学关于世界观的学说第二课百舸争流的思想哲学的基本问题唯物主义和唯心主义第三课时代精神的精华真正的哲学都是自己时代的精神上的精华哲学史上的伟大变革综合探究走进哲学问辩人生【第二单元探索世界与追求真理】第四课探究世界的本质世界的物质性认识运动把握规律第五课把握思维的奥妙意识的本质意识的作用第六课求索真理的历程人的认识从何而来在实践中追求和发展真理综合探究求真务实与时俱进【第三单元思想方法与创新意识】第七课唯物辩证法的联系观世界是普遍联系的用联系的观点看问题第八课唯物辩证法的发展观世界是永恒发展的用发展的观点看问题第九课唯物辩证法的实质与核心矛盾是事物发展的源泉和动力用对立统一的观点看问题第十课创新意识与社会进步树立创新意识是唯物辩证法的要求创新是民族进步的灵魂综合探究坚持唯物辩证法反对形而上学【第四单元认识社会与价值选择】第十一课寻觅社会的真谛社会发展的规律社会历史的主体第十二课实现人生的价值价值与价值观价值判断与价值选择价值的创造与实现综合探究坚定理想铸就辉煌思想政治选修1 科学社会主义常识思想政治选修2 经济学常识思想政治选修4 科学思维常识思想政治选修5 生活中的法律常识思想政治选修6 公民道德与伦理常识8(新课标)人教版高中教材目录——历史必修一第一单元古代中国的政治制度第一课夏、商、西周的政治制度第二课秦朝中央集权制度的形成第三课从汉至元政治制度的演变第四课明清君主专制的加强第二单元古代希腊罗马的政治制度第五课古代希腊民主政治第六课罗马法的起源与发展探究活动课“黑暗”的西欧中世纪——历史素材阅读与研讨第三单元近代西方资本主义政治制度的确立与发展第七课英国君主立宪制的建立第八课美国联邦政府的建立第九课资本主义政治制度在欧洲大陆的扩展第四单元近代中国反侵略、求民主的潮流第十课鸦片战争第十一课太平天国运动第十二课甲午中日战争和八国联军侵华第十三课辛亥革命第十四课新民主主义革命的崛起第十五课国共的十年对峙第十六课抗日战争第十七课解放战争第五单元从科学社会主义理论到社会主义制度的建立第十八课马克思主义的诞生第十九课俄国十月革命的胜利第六单元现代中国的政治建设与祖国统一第二十课新中国的民主政治建设第二十一课民主政治建设的曲折发展第二十二课祖国统一大业第七单元现代中国的对外关系第二十三课新中国初期的外交第二十四课开创外交新局面第八单元当今世界政治格局的多极化趋势第二十五课两极世界的形成第二十六课世界多极化趋势的出现第二十七课世纪之交的世界格局必修二第一单元古代中国经济的基本结构与特点第一课发达的古代农业第二课古代手工业的进步第三课古代商业的发展第四课古代的经济政策第二单元资本主义世界市场的形成和发展第五课开辟新航路第六课殖民扩张与世界市场的拓展第七课第一次工业革命第八课第二次工业革命第三单元近代中国经济结构的变动与资本主义的曲折发展第九课近代中国经济结构的变动第十课中国民族资本主义的曲折发展第四单元中国特色社会主义建设的道路第十一课经济建设的发展和曲折第十二课从计划经济到市场经济第十三课对外开放格局的初步形成第五单元中国近代社会生活的变迁第十四课物质生活与习俗的变迁第十五课交通工具和通讯工具的进步第十六课大众传媒的变迁探究活动课中国民生百年变迁(20世纪初~21世纪)──历史展览第六单元世界资本主义经济政策的调整第十七课空前严重的资本主义世界经济9危机第十八课罗斯福新政第十九课战后资本主义的新变化第七单元苏联的社会主义建设第二十课从“战时共产主义”到“斯大林模式”第二十一课二战后的苏联经济改革第八单元世界经济的全球化趋势第二十二课战后资本主义世界经济体系的形成第二十三课世界经济的区域集团化第二十四课世界经济的全球化趋势必修三第一单元中国传统文化主流思想的演变第1课“百家争鸣”和儒家思想的形成第2课“罢黜百家,独尊儒术”第3课宋明理学第4课明清之际活跃的儒家思想第二单元西方人文精神的起源及其发展第5课西方人文主义思想的起源第6课文艺复兴和宗教改革第7课启蒙运动第三单元古代中国的科学技术与文学艺术第8课古代中国的发明和发现第9课辉煌灿烂的文学第10课充满魅力的书画和戏曲艺术探究活动课中国传统文化的过去、现在与未来──历史小论文第四单元近代以来世界的科学历程第11课物理学的重大进展第12课探索生命起源之谜第13课从蒸汽机到互联网第五单元近代中国的思想解放潮流第14课从“师夷长技”到维新变法第15课新文化运动与马克思主义的传播第六单元20世纪以来中国重大思想理论成果第16课三民主义的形成和发展第17课毛泽东思想第18课新时期的理论探索第七单元现代中国的科技、教育与文学艺术第19课建国以来的重大科技成就第20课“百花齐放”“百家争鸣”第21课现代中国教育的发展第八单元19世纪以来的世界文学艺术第22课文学的繁荣第23课美术的辉煌第24课音乐与影视艺术第一单元梭伦改革第1课雅典城邦的兴起第2课除旧布新的梭伦改革第3课雅典民主政治的奠基石第一单元资料与注释第1课改革变法风潮与秦国历史机遇第2课“为秦开帝业”──商鞅变法第3课富国强兵的秦国第二单元资料与注释第1课改革迫在眉睫第2课北魏孝文帝的改革措施第3课促进民族大融合第三单元资料与注释第1课社会危机四伏和庆历新政第2课王安石变法的主要内容第3课王安石变法的历史作用第四单元资料与注释探究活动课一历史上的改革与发展10第五单元欧洲的宗教改革第1课宗教改革的历史背景第2课马丁·路德的宗教改革第3课宗教改革运动的扩展第五单元资料与注释第六单元穆罕默德·阿里改革第1课18世纪末19世纪初的埃及第2课穆罕默德·阿里改革的主要内容第3课改革的后果第六单元资料与注释第七单元1861年俄国农奴制改革第1课19世纪中叶的俄国第2课农奴制改革的主要内容第3课农奴制改革与俄国的近代化第七单元资料与注释探究活动课二古老文化与现代文明第八单元日本明治维新第1课从锁国走向开国的日本第2课倒幕运动和明治政府的成立第3课明治维新第4课走向世界的日本第八单元资料与注释第九单元戊戌变法第1课甲午战争后民族危机的加深第2课维新运动的兴起第3课百日维新第4课戊戌政变第九单元资料与注释探究活动课三改革成败的机遇与条件选修二近代社会的民主思想与实践第一单元专制理论与民主思想的冲突第1课西方专制主义理论第2课近代西方的民主思想第二单元英国议会与国王的斗争第1课英国议会与王权矛盾的激化第2课民主与专制的反复较量第三单元向封建专制统治宣战的檄文第1课美国《独立宣言》第2课法国《人权宣言》第3课《中华民国临时约法》探究活动课一撰写历史短评──试评辛亥革命和《中华民国临时约法》第四单元构建资产阶级代议制的政治框架第1课英国君主立宪制的建立第2课英国责任制内阁的形成第3课美国代议共和制度的建立第五单元法国民主力量与专制势力的斗争第1课法国大革命的最初胜利第2课拿破仑帝国的建立与封建制度的复辟第3课法国资产阶级共和制度的最终确立第六单元近代中国的民主思想与反对专制的斗争第1课西方民主思想对中国的冲击第2课中国资产阶级的民主思想第3课资产阶级民主革命的酝酿和爆发第4课反对复辟帝制、维护共和的斗争第七单元无产阶级和人民群众争取民主的斗争第1课英国宪章运动第2课欧洲无产阶级争取民主的斗争第3课抗战胜利前中国人民争取民主的斗争第4课抗战胜利后的人民民主运动探究活动课二近代时期人民对民主的追求与斗争──学习编辑历史报纸1112(新课标)人教版高中教材目录——地理必修1第一章行星地球第一节宇宙中的地球第二节太阳对地球的影响第三节地球的运动第四节地球的圈层结构第二章地球上的大气第一节冷热不均引起大气运动第二节气压带和风带第三节常见天气系统第四节全球气候变化第三章地球上的水第一节自然界的水循环第二节大规模的海水运动第三节水资源的合理利用第四章地表形态的塑造第一节营造地表形态的力量第二节山岳的形成第三节河流地貌的发育第五章自然地理环境的整体性与差异性第一节自然地理环境的整体性第二节自然地理环境的差异性必修2第一章人口的变化第一节人口的数量变化第二节人口的空间变化第三节人口的合理容量第二章城市与城市化第一节城市内部空间结构第二节不同等级城市的服务功能第三节城市化第三章农业地域的形成与发展第一节农业的区位选择第二节以种植业为主的农业地域类型第三节以畜牧业为主的农业地域类型第四章工业地域的形成与发展第一节工业的区位因素与区位选择第二节工业地域的形成第三节传统工业区与新工业区第五章交通运输布局及其影响第一节交通运输方式的布局第二节交通运输布局变化的影响第六章人类与地理环境的协调发展第一节人地关系思想的演变第二节中国的可持续发展实践必修3第一章地理环境与区域发展第一节地理环境对区域发展的影响第二节地理信息技术在区域地理环境研究中的应用第二章区域生态环境建设13第一节荒漠化的防治──以我国西北地区为例第二节森林的开发和保护──以亚马孙热带林为例第三章区域自然资源综合开发利用第一节能源资源的开发──以我国山西省为例第二节河流的综合开发──以美国田纳西河流域为例第四章区域经济发展第一节区域农业发展──以我国东北地区为例第二节区域工业化与城市化──以我国珠江三角洲地区为例第五章区际联系与区域协调发展第一节资源的跨区域调配──以我国西气东输为例第二节产业转移──以东亚为例选修1 宇宙与地球第一章宇宙第一节天体和星空第二节探索宇宙第三节恒星的一生和宇宙的演化第二章太阳系与地月系第一节太阳和太阳系第二节月球和地月系第三节月相和潮汐变化第三章地球的演化和地表形态的变化第一节地球的早期演化和地质年代第二节板块构造学说第三节地表形态的变化选修2 海洋地理第一章海洋概述第一节地球上的海与洋第二节人类对海洋的探索与认识第二章海岸与海底地形第一节海岸第二节海底地形的分布第三节海底地形的形成第三章海洋水体第一节海水的温度和盐度第二节海水的运动第四章海-气作用第一节海-气相互作用及其影响第二节厄尔尼诺和拉尼娜现象第五章海洋开发第一节海岸带的开发第二节海洋资源的开发利用第三节海洋能的开发利用第四节海洋空间的开发利用第六章人类与海洋协调发展第一节海洋自然灾害与防范第二节海洋环境问题与环境保护14第三节维护海洋权益加强国际合作选修3 旅游地理第一章现代旅游及其作用第一节现代旅游第二节现代旅游对区域发展的意义第二章旅游资源第一节旅游资源的分类与特性第二节旅游资源开发条件的评价第三节我国的旅游资源第三章旅游景观的欣赏第一节旅游景观的审美特性第二节旅游景观欣赏的方法第三节中外著名旅游景观欣赏第四章旅游开发与保护第一节旅游规则第二节旅游开发中的环境保护第五章做一个合格的现代游客第一节设计旅游活动第二节参与旅游环境保护选修4 城乡规划第一章城乡发展与城市化第一节聚落的形成和发展第二节城市化与城市环境问题第二章城乡合理布局与协调发展第一节城市空间形态及变化第二节城镇布局与协调发展第三节城乡特色景观与传统文化的保护第三章城乡规划第一节城乡规划的内容及意义第二节城乡土地利用与功能分区第三节城乡规划中的主要布局第四章城乡建设与人居环境第一节城乡人居环境第二节城乡商业与生活环境第三节城乡公共服务设施与生活环境选修5 自然灾害与防治第一章自然灾害与人类活动第一节自然灾害及其影响第三节人类活动对自然灾害的影响第二章中国的自然灾害第一节中国自然灾害的特点第二节中国的地质灾害第三节中国的水文灾害第四节中国的气象灾害第五节中国的生物灾害第三章防灾与减灾第一节自然灾害的监测与防御第二节自然灾害的求援与求助第三节自然灾害中的自救与互救15。

高中数学精品课件:第二节 参数方程

高中数学精品课件:第二节 参数方程

当 a<-4 时,d 的最大值为-a1+7 1.
由题设得-a+1= 17
17,解得 a=-16.综上,a=8 或 a=-16.
返回
[解题师说] 1.方法要熟 (1)解决直线与圆、圆锥曲线的参数方程的应用问题时, 一般是先化为普通方程,再根据直线与圆、圆锥曲线的位置关 系来解决问题. (2)对于形如xy==yx00++batt, (t 为参数)的参数方程,当 a2+ b2≠1 时,应先化为标准形式后才能利用 t 的几何意义解题.
解析:由xy==35scions
φ, φ
(φ 为参数)得,2x52+y92=1,
当 AB⊥x 轴时,|AB|有最小值.
所以|AB|min=2×95=158. 答案:158
返回
3.曲线
C
的参数方程为xy==csoins
θ, 2θ+1
(θ 为参数),则曲线 C 的普
通方程为____________.
解析:由xy==csoins
θ, 2θ+1
(θ 为参数)消去参数 θ,得 y=2-2x2(-
1≤x≤1).
答案:y=2-2x2(-1≤x≤1)
返回
4.在平面直角坐标系xOy中,已知直线l的参数方程为
x=1+12t,
y=
3 2t
(t为参数),椭圆C的方程为x2+y42=1,设直线
l与椭圆C相交于A,B两点,则线段AB的长为___________.
第二 节
参数方程
课前·双基落实
知识回扣,小题热身,基稳才能楼高
课堂·考点突破
练透基点,研通难点,备考不留死角
课后·三维演练
分层训练,梯度设计,及时查漏补缺
返回
课 前 双基落实
知识回扣,小题热身,基稳才能楼高

参数方程(圆锥曲线的参数方程)

参数方程(圆锥曲线的参数方程)
y=NM=
x=ON=
这是中心在原点O,焦点在x轴上的椭圆的参数方程。
常数a、b分别是椭圆的长半轴长和短半轴长。
在椭圆的参数方程中,通常规定参数θ的范围为
|OA|cosθ=acosθ,
|OB|sinθ=bsinθ
φ
O
A
M
x
y
N
B
椭圆的标准方程:
椭圆的参数方程中参数φ的几何意义:
x
O
y
探究思考
| t | = | M0M |
M0
M
所以,直线参数方程中参数t的绝对值等于直线上动点M到定点M0的距离.
这就是 t 的几何意义,要牢记
x
O
y
分析:
点M是否在直线上
用普通方程去解还是用参数方程去解;
分别如何解.
A
B
M(-1,2)
x
y
O
解:因为把点M的坐标代入直线方程后,符合直线方程,所以点M在直线上.
x
y
O
圆的标准方程:
圆的参数方程:
x2+y2=r2
θ的几何意义是
∠AOP=θ
P
A
θ
椭圆的参数方程:
是∠AOX=φ,
不是∠MOX=φ.
称为点M的离心角
小 结
椭圆的标准方程:
椭圆的参数方程:
——离心角
一般地:
在椭圆的参数方程中,常数a、 b分别是椭圆的长半轴长和短半 轴长. a>b
探究:直线的参数方程形式是不是唯一的
| t | = | M0M |
表示什么曲线?画出图形.
练习:
4
不妨设M为双曲线右支上一点,其坐标为
则直线MA的方程为
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2 直线参数方程及其应用
一、直线参数方程建立
课本在P 55“向量与直线”阅读材料中,介绍了利用向量法建立直线方程的
参数式:⎩⎨⎧ x =x 0+at
y =y 0+bt
(t 为参数) (*),其中(x 0,y 0)是直线上的一点,(a,b)
是直线的一个方向向量,P(x,y)是直线上任意一点,实数t 是对应点P 的参数.这种直线的参数式方程可直线称为直线参数方程.
事实上,我们还可以这样来建立直线的参数方程:因过定点P(x 0,y 0)且倾斜角为α的直线方程为:y -y 0=sin αcos α(x -x 0)(0<α<π,且α≠π
2),则有:y -y 0sin α=x -x 0cos α
.令其比值为t,于是
得:y -y 0sin α=t,x -x 0
cos α=t,即有⎩⎨⎧ x =x 0+tcos αy =y 0+tsin α
(t 为参数) (**),这也是直线的参数方程.
很显然其中参数t 还有很好的几何性质,即|t|=|-→P 0P |.
为区别于其它形式的参数方程,参数方程(**)我们称为直线的标准参数方程.M 0(x 0,
y 0)为定点点,而t 表示有向线段M 0P 的数量,我们规定:当P 在M 的上方时,t >0;而P
在M 的下方时,t <0.通常,当我们将(*)代入二次曲线C 的方程能得到:at 2
+bt +c =0(***)
如果 a ≠0,且△=b 2
-4ac >0时,则(**)所表示的直线 L 与C 相交于A 、B 两点,且有向线段→M 0A ,→M 0B 的数量是方程(***)的二根t 1,t 2,即t 1=M 0A ,t 2=M 0B. 下面的几个结论是经常用到的:
(1)|AB |=| t 1-t 2|=(t 2+t 1)2
-4t 2t 1; (2)AB 的中点P 对应的参数为 t =
t 1+t 2
2

(3)设P 分有向线段AB 的比为 λ,则P 对应的参数为
t 1+λt 2
1+λ
.
(4)当 t 1,t 2满足关系 t 1=λt 2时,则(t 1+t 2)2=λ+1λ+2·t 1t 2
二﹑直线参数方程应用
例1(1)已知直线过点A(-2,3),B(1,-5),求直线AB 的参数方程;(2)直线l 过点A(1,5),倾斜角为π
3
,求直线l 的参数方程.
解:(1)直线AB 的方向向量为v =(1,-5)-(-2,3)=(3,-8),
又因其过点A(-2,3),∴直线AB 的参数方程为⎩⎨⎧ x =-2+3t
y =3-8t
.
(2)直线l 的参数方程为⎩⎪⎨⎪⎧ x =1+tcos π
3
y =5+tsin π3,即⎩⎪⎨⎪⎧ x =1+12t y =5+32
t
.
例2若直线参数方程为⎩⎨⎧ x =1+tsin70︒
y =2-tcos70︒
(t 为参数),求直线的倾斜角.
解:由参数方程得:x -1sin70︒=y -2-cos70︒,∴y-2=﹣cos70︒
sin70︒(x -1),
∴y-2=tan160︒(x -1),由此普通方程可知其倾斜角为160︒.
例3(1)直线l 过点P(1,2),倾斜角为π
4,求l 上与P 的距离为22的点;(2)求直线⎩⎨

x =-2-2t y =3+2t
(t 为参数)上的点到P(-2,3)距离为2的点的坐标.
解:(1)l 的参数方程为⎩⎪⎨⎪⎧ x =1+2
2
t y =2+22t ,令|t|=22,
∴t=±22,代加原参数方程得所求点为(3,4)或(-1,0).
(2)可化成普通方程处理,现仍将参数方程整理成标准形式,利用参数的几何意义求解. 即有⎩⎪⎨⎪⎧ x =-2+(2t)(﹣2
2
)y =3+(2t)·22,又直线过定点P 0(-2,3),且直线上任一点P 对应参数为
2t,
则有|-→P 0P |=|2t|=2,
∴2t=±2,当2t =2时,所求点为(-3,4);当2t =-2时,所求点为(-1,2). 例4已知过点 P 0(-1,2)的直线ι的参数方程是⎩⎨⎧ x =-1+3t
y =2-4t
,求点P 0到另一直
线2x -y +1=0 的交点P 的距离.
解:因为a 2
+b 2
=32
+42
=5≠1,所以此直线的参数方程不是标准线, 令t =1
5t ',化为标准式,得⎩
⎪⎨⎪⎧ x =-1+3
5t 'y =2-45
t ',
将其代入方程2x -y +1=0,解得交点P 对应的参数值 t 'P =32,故|P 0P |=|t 'P |=3
2.
例5过点M(2,1)作直线l ,交x,y 轴的正半轴于A ,B 两点.(1)求|MA|·|MB|的最小值;
(2)当(1)取最小值时,求直线l 的方程.
解析:(1)设直线l 的倾斜角为θ(0<θ<π),则其方程为⎩⎨⎧ x=2+tcos θy=1+tsin θ
(θ为参数,π
2<θ
<π)…①,
x,y 轴方程为xy=0…②,
①代入②整理得t 2
sin θcos θ+t(2sin θ+cos θ)+2=0…③,MA=t 1,MB=t 2,即为③的两个根, ∴|MA|·|MB|=|t 1|·|t 2|=2|sin θcos θ|=4|sin2θ|,∴当θ=3π
4时|MA|·|MB|的最小值为4.
(2)∵A,B 为直线l 与x,y 轴正半轴的交点,∴θ=3π4,将θ=3π
4代入①得⎩⎪⎨⎪⎧ x=2+tcos 3π
4y=1+tsin 3π4,
即⎩
⎪⎨⎪⎧ x-2=﹣2
2t y-1=22
t ,消去t,得x+y-3=0即为所求的l 的直线方程.
例6在已知圆x 2+y 2
=4上有定点A (-1,-3)及动点P 、Q 且∠QAP =π3,求△APQ
面积的最大值.
解:设直线AP 的方程为⎩⎨⎧ x =-1+tcos α
y =-3+tsin α
(t 为参数),
将其代入x 2+y 2=4,得t 2
-2(cos a +3sin a )t =0, 由弦长公式|AP |=|2(cos a +3sin a )|=4|sin (α+π
6)|,
同理可得|AQ |=4|sin (β+π
6)|,
而β=2+π
3
,所以|AQ |=4|cos a |,
故S △APQ =12|AP ||AQ |sin π3=43|sin (α+π6)|·|cos a |=43|sin αcos π6+cos αsin π
6)
|·|cos a |
=43|(
32sin αcos α+12cos 2
α)|=23|32sin2α+12cos2α+1
2
|
=23|sin(2α+π6)+1
2|
当a =π
6时,S max =3 3.
例7已知圆x 2
+y 2
=r 2
及圆内一点A(a ,b)(a ,b 不同时为零),求被A 平分的弦所在直线方程.
解:设所求直线的方程为⎩⎨⎧ x =a +tcos θy =b +tsin θ
(t 为参数)①
②,
代入圆的方程x 2+y 2=r 2,整理得t 2+2(acos θ+bsin θ)t +a 2+b 2-r 2
=0
设t 1,t 2为方程两根,
∵A 是中点,∴t 1+t 2=0,即acos θ+bsin θ=0,
①×a+②×b,得ax +by =a 2
+b 2
+t(acos θ+bsin θ)=a 2
+b 2
, 故所求直线方程是ax +by =a 2
+b 2
.。

相关文档
最新文档