Voltage Sag Disturbance Detection Based on RMS

合集下载

设备电源线上传导骚扰电压的测量方法-硬件和射频工程师

设备电源线上传导骚扰电压的测量方法-硬件和射频工程师
我国的 GB4343、GB4824、GB9254 和 GB17743(分别对应于家用电器和电动工具、工科医 射频设备、的发射测量。尽 管这些标准所属产品相差很远,但里面讲到的传导骚扰和辐射骚扰的测试项目和测试方法还是共 通的。
本文主要介绍设备电源线上对导骚扰电压的测量方法,以及相应测量仪器的主要技术指标。 文末附录中还列出了目前上海三基电子工业有限公司力推的一套测量电源线传导骚扰电压的测 试系统,由于系统具有比较合理的性能价格比,所以这种系统尤其适合企业一级的用户开展这方 面试验的需要。
设备电源线上传导骚扰电压的测量方法
上海三基电子工业有限公司 钱振宇
电气和电子设备在工作时所产生的电磁骚扰主要是由于其内部的各种电子线路、开关电源、 电动机、机械开关和保护器的动作所形成的。骚扰按其传播途径,主要有沿电源线、信号线传播 的传导骚扰,和向周围空间发射的辐射骚扰。前者用骚扰电压(端子电压)度量;后者则用骚扰 功率和辐射场强度量。
对接地试品,接地线应采用长度不超过 1000mm 的导线与人工电源网络的接地点相连。试品 的电源线与人工电源网络的连接采用一根长度不超过 1000mm 的导线,电源线与接地线平行敷设, 间距不超过 100mm。当电源线长度超过 800mm 时,超长部分折叠成 300~400mm 的线束,而试 品与人工电源网络之间的距离仍保持 800mm 不变。另外,参考接地平板至少比试品的边缘大出 0.5m。
下面将试验中用到的测量接收机和人工电源网络作重点介绍,以满足读者理解试验布局时的 需要。
1.2 测量接收机 测量接收机实际上是一台专用测量接收机。由于测量对象是微弱的连续波信号,及幅值很强 的脉冲信号,这就要求测量接收机本身的噪声极小,灵敏度很高,检波器的动态范围大,输入阻 抗低(50Ω),前级电路的过载能力强。检波器要有多种检波功能(为适应不同测量需求,有峰值、 准峰值、平均值和有效值等检波功能)。整机在整个测量频段内的测量精度能满足±2dB 要求。 最后,测量接收机的频率范围要与测试的频率相匹配。 对于有自动测试功能的测量接收机,采用微处理机进行控制,有宽频带自动校准、频率设置 和自动扫描的功能。可以通过接口与计算机配合,由计算机实行管理,还可经由打印机和绘图仪 输出测试结果。 Ⅰ. 测量接收机与普通场强仪的区别 用于广播、电视信号场强或工科医高频设备辐射场强测量的普通场强仪,主要测量对象是正 弦波电磁场。而用在电气设备的电磁骚扰及自然界骚扰测量的接收机则是频谱很宽的连续波及脉 冲骚扰。因此两种测量仪器的要求不同,主要反映在带宽、检波方式及脉冲响应等指标上。 ⑴带宽 普通场强仪测量的是正弦波信号,为降低噪声,故带宽较窄。而测量接收机正相反。带宽的 不同会直接影响测量结果。按国标 GB/T6113.1(对应于国际标准 CISPR 16-1)规定,测量接收 机在 9~150kHz 范围内的带宽为 200Hz;0.15~30MHz 范围内的带宽为 9kHz;30~1000MHz 范 围内的带宽为 120kHz。 ⑵检波方式 普通场强仪的检波常采用平均值或有效值检波,因为这两种检波都能正确反映正弦波信号的 变化。作为测量接收机,必须要对脉冲骚扰作出正确反应,准峰值检测器则是正确选择,而平均 值检波器则不能反映脉冲幅度及频度的变化。 ⑶脉冲响应特性 场强仪对脉冲响应没有专门要求,而测量接收机的准峰值检波则有严格规定。 Ⅱ. 测量接收机与频谱仪的区别 频谱仪也是目前使用较多的一种测量仪器,与测量接收机的硬件结构有很多共同点:例如两 者都为超外差接收机,都可以用选择频率的方式来测量信号电压。但两种仪器毕竟不同,频谱仪 由于下列原因不能独自满足电磁骚扰的测量: ①由于没有预选器,当在测量低电平信号时,如果有喀呖声或电源开关瞬变的宽带脉冲信号

瞬时无功功率理论电能质量扰动分类

瞬时无功功率理论电能质量扰动分类

摘要:提出了一种对电能质量扰动进行检测、定位、辨识与分类的有效方法。

首先对含有噪声的信号进行小波去噪处理,得到信噪比较高的信号,再对去噪后的信号进行差变处理得到差变信号,通过小波去噪和信号差变法来确定扰动的位置和持续时间。

将去噪后的单相电压信号通过移相-60°得到三相电压,并用三相电压代替三相电流,利用瞬时无功功率理论计算出瞬时有功,进而计算出瞬时电压幅值,根据扰动的持续时间和扰动的幅度对扰动类型进行识别。

关键词:瞬时无功理论;小波去噪;分类与识别;电能质量扰动;电力系统1 引言如何正确分类与识别诸如电压上升(voltage swell)、电压跌落(voltage sag)、瞬时脉冲、瞬时断电、暂态振荡等电能质量扰动,在电能质量研究领域中已越来越受到重视。

国内外学者已提出了许多检测方法,其中小波变换尤为突出[1-4]。

许多文献在采用小波技术解决电能质量扰动识别问题时,多数未考虑噪声的影响;而实际电网中通常含有噪声,这使得小波变换中反应高频信号的前两个尺度往往不能正确提取一些电能质量扰动的特征量,及谐波存在时不能正确确定发生在工频相位0˚或p 附近的电压上升与电压跌落的开始时刻与持续时间,因此减少噪声干扰十分必要。

文[5]作者建议在时域分析所有扰动。

文[6]在无噪声的情况下在时域分析了扰动信号。

时域分析的特点是简单、快捷,但噪声的影响使得分析产生较大的误差。

此外,对电能质量扰动的分类需借助于电压幅值的计算,而传统计算幅值的方法速度较慢,采用瞬时无功功率理论计算电压幅值可提高运算速度。

本文先采用小波软阈值去噪技术去除测量信号中的噪声,再在时域内鉴别扰动发生的时刻和持续时间。

对去噪后的单相电压信号延迟60°可得到三相电压,将三相电流用三相电压代替,进行a–b 变换,得到瞬时有功功率,且对变换结果进行简单的数字处理,即可得到与扰动波形相似的变换结果,从中提取信号的特征,从而对电压上升、电压跌落、瞬时断电、暂态振荡、电压短时跌落(voltage dip)、暂态脉冲等扰动类型进行分类。

专业英语词组

专业英语词组

Generation发电delivery 输电consumption 消费electric power system电力系统power system电力系统power generation电能生产power transmission system输电系统power distribution systems配电系统power plant发电厂power station发电厂electric energy电能Transmission systems配电系统generation plants 电厂distribution systems 配电系统power systems 电力系统interconnections互联distribution system 配电系统individual loads 个体负荷transmission lines 输电线substations 变电站voltage transformation 变压器switching functions开关功能subtransmission中压输电neighboring power systems附近电力系统generating sources 发电原料transmission networks输电网络structural redundancy 结构冗余withstand unusual contingencies 承受意外事故service disruption 供电中断the radial system放射系统the loop system 环状系统the network system网状系统Distribution circuits 配电电路high-voltage transmission lines 高压输电线line sections线路截面direct current (DC) 直流alternating current (AC) 交流Industrial loads 工业负荷residential and 居民负荷commercial loads 商业负荷subsystems子系统synchronous 同步的synchronize 同步,使同步principle 主要的,首要的turbine 涡轮机,汽轮机prime mover 原动机,原动力bus 母线,总线frequency 频率in phase 同相地phase sequence 相序hydropower 水电hydropower plants 水电厂,水电站hydroelectric 水电的,水力发电的hydraulic 水力的,水压的couple 连接,耦合recreational 休养的,娱乐的fuel v. 得到燃料,刺激,推动n. 燃料,动力dissolved 溶解的,溶化的oxygen 氧riverbank 河堤,河岸downstream 下游的installation 装置,设备connotation 储蓄的东西thermal 热的,热量的combustion 燃烧化石燃料fossil fuelrating 额定condense 凝结,冷凝steam-turbine (蒸)汽轮机escalation 扩大,不断增加reconversion 恢复原状,再转变gas turbine 燃气涡轮机minor extent 小幅度peak load 最大负荷,峰荷nuclear station 核电站reaction 反应,反作用,感应fission 裂变cooling water 冷却塔uranium 铀fast breeder reactor 快中子增殖反应堆nuclear fusion 核聚变feasible 可行的petroleum 石油synthesize 综合,合成backbone 中枢integrated 综合的,完整的voltage level 电压等级step up 升压step down 降压subtransmission 中压输电,次输电subsystem 子系统bulk 大量的demarcation 划分relegate to 委托给,移交给overhead line 架空线cable 电缆megavoltampere MV Athermal limits 发热限制voltage drop 电压降落synchronism 同步性optimum 最优的voltage class 电压等级annealing 退火mechanical strength 机械强度sag 下陷,暂降clearance 间隙,距离statutory minimum 法定最小限度content 比例ampacity 安培容量,载流容量ambient 周围的solar radiation 太阳辐射bundle 捆,束,包neutral 中性点lightning shielding 避雷resistance 电阻inductance 电感capacitance 电容conductance 电导leakage 泄漏insulator 绝缘体impedance 阻抗shunt 旁路,并联admittance 导纳equivalent circuit 等效电路lumped parameter 集中参数uniform distribution 均匀分布non-uniformity 不均匀pronounced 显著的,明确的skin effect 集肤效应oscillation 振荡equilaterally 等边地flux linkage 磁链1电压等级变化transformation of voltage levelstep up升压step down降压2. 输电系统transmission system transmission subsystem 输电子系统subtransmission system中压输电系统3. 变电站substationtransmission substation输电变电站distribution substation配电变电站输电线transmission linetransmission line输电线,传输线overhead line 架空线power line电力线cable电缆series-in series with串联shunt-in parallel with 并联,旁路high energy consuming 高耗能的metallurgical 冶金的settlement center 结算中心intact 完整无缺的agricultural irrigation 农业灌溉compressor 压缩机refrigerator 电冰箱oven 烤箱,烤炉deep fryer 煎锅incandescent light 白炽灯fluorescent light 荧光灯converter 转炉;变流器attributable 可归于……的discharge lamp 放电管mercury 水银,汞vapour 蒸气sodium 钠electromagnetically 电磁控制地contactor 电流接触器dropout 退出trip 跳闸thermostatic 温度调节控制的sustained 持续的capacitor bank 电容器组explicitly 明确地implicitly 含蓄地trip 跳闸block 闭锁plunger 活塞balance-beam 平衡木robust 坚固的,耐用的immune to 免受……的harsh 残酷的solid-state 使用电晶体的,不用真空管的analog circuit 模拟电路pilot 引导,引航gear 设备,传动装置self-explanatory 不需加以说明的maloperation 误操作dielectric 电介质,绝缘体deenergize 去激励,断开conceivable 可想象的overlap 重叠1. 机电继电器electromechanical relays plunger type relay 插棒式继电器balance-beam type relay平衡杆式继电器rotating cup relay 转盘式继电器disc relay圆盘式继电器2. 继电器种类relay classesmagnitude relay幅度继电器directional relay定向继电器,方向继电器ratio relay比率继电器differential relay差动继电器pilot relay控制[引示、辅助]继电器3. 保护与后备protection and backup main protection主保护primary protection主保护backup protection 后备保护local backup protection本地后备保护breaker-failure backup protection 断路器失效后备保护remote backup protection远后备保护unit protection 组合保护busbar 母线ever-increasing 渐增的,不断增长的pilot wire 导引线invariably 不变的,总是e. m.f. (electromotive force)电动势fraction 小部分,片断interim 中间的,临时的negative-sequence 负序delta 三角形inrush 涌入conservator 储油器hinged 装铰链的float 漂浮物bubble 泡沫,气泡chamber 腔,室band 波段,频带intertrip 联锁跳闸modulation 调制bandpass filter 带通滤波器switchgear 开关设备short circuits 短路open circuits开路stability margins 稳定裕度heavy currents过载电流insulating oil 绝缘油cascading级联earth fault 接地故障clearance times 故障切除时间shock exposure time触电时间shielded double circuit 屏蔽双电路Super Grid 超级电网wood pole single circuits 木杆单回路extended earthing system扩展接地系统underground cables地下电缆earth impedance 对地阻抗shielding wire 屏蔽线mutual coupling 互耦合phase conductor相导体earth wire 地线lead sheaths 铅外套insulating layer 绝缘层Overhead lines架空线for the most part在极大程度上,多半bare conductors裸导线Permanent faults 永久故障insulator strings 绝缘子串lightning-arrester避雷器ionization电离lightning stroke雷击single line-to-ground faults单相接地故障line-to-line faults两相短路double line-to-ground faults两相接地故障deterioration 退化transient voltage 暂态电压Major insulation 主绝缘adjacent turns 相邻线闸1. 回路系统circuit systemssingle circuit system单回路系统double circuit system双回路系统2. 故障分类types of faultsshort circuit短路open circuit断路permanent fault永久故障temporary fault短时故障3. 对称分量symmetrical components positive-sequence 正序negative-sequence负序zero-sequence零序4. 工频的表示方法power frequency工频working voltage frequency工作电压频率5. 过电压overvoltageexternal overvoltage外部过电压internal overvoltage内部过电压lightning overvoltage雷电过电压switching overvoltage操作过电压transient overvoltage暂态过电压temporary overvoltage临时过电压6. 统计规律statistical lawsrandom distribution随机分布normal distribution正态分布equilibrium 平衡,均衡regain重新达到disturbance 干扰,扰动instability不稳定性manifest表现synchronism 同步性colloquially 用通俗语dynamics动态collapse崩溃issue重点,难题surviving幸免于tie联络线actuate激励,驱使assumption假定,设想formation 形成,构成time span 时间间隔rigorous严格的,严厉的overlap 交迭simulation 仿真analytical 分析的,解析的opposing反向的,相反的torque 扭矩,转矩perturb扰乱,干扰upset 颠覆,推翻deviation背离fluctuation 波动,起伏coefficient系数linearization 线性化permissible 可允许的excursion 偏移,漂移post-disturbance 扰动后的prior to 在前,居先progressive 逐渐的,渐进的profile 轮廓,断面contingency 偶然incremental change 递增,递增量1. 扰动disturbancefault 故障contingency意外事故perturbation 扰动,干扰2. 同步性synchronism synchronous同步的in synchronism同步,保持同步性in step同步out of step 失步asynchronous异步的nonsynchronous非同步的3. 稳定性分类(1) types of stability (1) steady-state stability 稳态稳定性dynamic stability 动态稳定性transient stability暂态稳定性small-disturbance stability小扰动稳定性4. 稳定性分类(2) types of stability (2) synchronous stability同步稳定性angle stability攻角稳定性voltage stability电压稳定性5. 转矩torquessynchronizing torque 同步转矩damping torque 阻尼转矩restoring torque 回复转矩input mechanical torque 输入机械转矩output electrical torque 输出电磁转矩compensation 补偿absorption 吸收excitation 励磁field current 励磁电流end-region 端部armature 电枢surge impedance 波阻抗natural load 自然负荷leakage 漏电lagging 滞后incentive 动机utility 电力单位prolonged 延长的,长时期的adversely 反过来dispersed 分散的sink 接收器synchronous condenser 同步调相机alternative forms 不同形式self-regulating 自调的sunsynchronous 次同步的swing 摇摆cope with 应对,与… 竞争voltage sag 电压暂降thorough 十分的,彻底的deenergized 失磁的,不带电的prescribed 指定的1. 励磁状况excitation status overexcited过励磁的underexcited欠励磁的2. 负荷状况load statusno load空载full load 满载rated load额定负载3. 无功补偿reactive power compensation passive compensation无源补偿active compensation有源补偿4. 无功补偿器reactive power compensatorssynchronous compensator同步补偿器static compensator静止补偿器optimization 最优化profit 利润capital invested 资金投入regulatory body 制定规章的机构conservation 保留,节约kilowatthour 千瓦时unit 发电机组delivered power 输出功率call upon 启用mine-mouth 矿山口preliminary 预备的,初步的auxiliary 辅助设备installation 装置unthinkable 不能想象的rights of way 公共事业用地converter 变流器,换流器mercury-arc 汞弧semiconductor 半导体rectifier整流器inverter 逆变器strip of剥夺line-commutated线换向的respective分别的thyristor晶闸管valve阀bridge arm桥臂trigger触发simultaneously 同时地monopolar 单极的bipolar 双极的homopolar 同极的junction 连接处double-circuit 双回路reversal 颠倒,反向feasible 可行的spare 备用品side effect 副作用cascade 级联的transformer bank 变压器组1. 换流器converterrectifier整流器inverter 逆变器2. HVDC链的分类categories of HVDClinksmonopolar link单极型bipolar link 双极型homopolar link同极型3. HVDC连接HVDC connectionsback-to-back 背对背的point-to-point点对点的multiterminal多端的power electronic-based 基于电力电子static controllers 无静差控制器controllability可控性power transfer capability电力传输能力power electronics 电力电子semiconductor半导体voltage support电压支持power system stabilization电力系统稳定性power quality 电能质量underutilized未利用interconnected network互联系统Static Var Compensator 静止无功补偿装置synchronous compensators调相机thyristor valves 晶闸管阀reactor banks电抗器组in steps 步调一致thyristor switching晶闸管开关fundamental frequency 几波频率branch current 分支电流phase angle 相角firing pulses 点火脉冲firing angle 触发角var output 无功输出nonsinusoidal current非线性电流be tuned to 调谐minimum transients 最小瞬变stepwise 逐步的breakers断路器response time 响应时间is intended as 目的是作为voltage source converters 电压源变换器voltage source inverter 电压源逆变器square-wave 方波in antiparallel to 反并联three-level converter三电平变换器bidirectional 双向potentials 电位semiconductors半导体Static Synchronous Compensator 静止无功补偿器state-of-the-art 最先经的shunt reactive power compensation 并联无功补偿power factor 功率因数power quality电能质量solid-state 使用电子管的equivalent circuit 等效电路accounts for 解释conduction losses传到损耗leakage inductance 漏电感voltage sag电压暂降Active power filters 有源滤波nonlinear loads 非线性负载real time system实时系统fed back to 回馈PWM (Pulse Width Modulation) harmonic components 谐波部分power quality 电能质量deviation 背离,偏移dip 跌落,下垂sag 凹陷,暂降swell 暂升distortion 畸变fluctuation 波动flicker 闪变conditioner 调节装置crest factor 波峰系数Point of Common Coupling (PCC) 公共连接点Root Mean Square (rms) 均方根Total Harmonic Distortion (THD) 总谐波畸变flat-topped 平顶的pointy 尖的saturation 饱和integral multiple 整倍数fundamental 基频的conceivable 可能的,想象到的arbitrary 任意的square wave 方波steep side 陡坡,陡沿pointy corner 尖角decompose 分解magnetic circuit 磁路saturable 可饱和的furnace 炉子dissipate 散失,消耗useful work 有用功net power 净功率resonance 谐振viable alternative 可行的替换物reciprocating 往复的intermittent load 间歇负荷welder 电焊miscellaneous 各种各样的shovel 铲子rolling mill 轧钢厂sensation 感觉illumination 照度unity 单位scrap 废料remedial measure 补救措施advent 出现,到来。

基于DILCD和SDEO的电能质量扰动检测新方法

基于DILCD和SDEO的电能质量扰动检测新方法

基于DILCD和SDEO的电能质量扰动检测新方法周超;黄纯;易凡【摘要】针对局部特征尺度分解(LCD)出现的模态混叠现象,提出了基于微积分局部特征尺度分解(DILCD)和对称差分能量算子(SDEO)的电能质量扰动信号分析方法.首先选取电力系统中的暂降、暂升,谐波、间谐波,衰减振荡等单一及其复合扰动信号分别进行DILCD分解可得到若干个内禀尺度分量(ISC);然后利用SDEO解调ISC分量求取瞬时频率和瞬时幅值,定位扰动发生的起止时刻.仿真结果表明,该方法能有效检测分析非平稳电能质量扰动信号,获得的瞬时幅值波动、端部效应小,频率检测精度高,时间定位准确.【期刊名称】《电力系统及其自动化学报》【年(卷),期】2018(030)009【总页数】10页(P141-150)【关键词】电能质量;扰动分析;微积分;局部特征尺度分解;内禀尺度分量【作者】周超;黄纯;易凡【作者单位】湖南省电力公司检修公司,长沙 410004;湖南大学电气与信息工程学院,长沙 410082;湖南省电力公司检修公司,长沙 410004【正文语种】中文【中图分类】TM727.2近年来,由于电力电子元件的大规模使用及非线性、冲击性负荷的增加,对电能质量造成严重的影响。

电网中存在的电压暂降、暂升、短时中断,谐波、间谐波以及电压衰减振荡等电能质量问题受到了广泛的关注[1]。

电能质量扰动信号的提取对电能质量的监管至关重要。

扰动信号可看作多分量非线性信号,提取时可先对扰动信号进行分解得出单分量信号,然后对其解调得到扰动参数。

用于电能质量扰动信号常用的分解方法有快速傅里叶变换[2]、小波变换[3]、S变换[4-5]、希尔伯特变换[6]、原子分解算法[7-8]和局部均值分解算法[9]等,这些方法各有特点。

傅里叶变换(FFT)主要用来分析稳态信号,不能处理非平稳、非线性信号;小波变换缺乏自适应性,受基函数选择的影响,对噪声较敏感;S变换频率分辨率高,能独立分析信号每个频率分量的幅值变化,但是要得到各频率分量对应的理想幅值曲线,需要对变换结果进行适当修正;希尔伯特变换采用三次样条函数插值,具有欠、过包络现象,还有迭代判据、端点效应等问题;原子分解算法计算量大,对构造谐波、间谐波,电压闪变的电能质量扰动的相关原子库还有待研究;局部均值分解由于受到余弦函数值域的限制,定位扰动起止时刻不够准确。

p736_10m法半电波暗室是电气医疗设备辐射骚扰测量场地的最优选择

p736_10m法半电波暗室是电气医疗设备辐射骚扰测量场地的最优选择

10m法半电波暗室是电气医疗设备辐射骚扰测量场地的最优选择王培连、陈嘉晔、殷磊、冯丹茜、符吉林【摘要】本文根据电气医疗设备的特点,对电气医疗器械电磁兼容测试中辐射骚扰测量场地的选择进行了介绍,对选择10法半电波暗室的必要性进行了阐述。

【关键词】10米法 电波暗室 医疗设备 辐射骚扰测试【Abstract】this article introduces selection of radiated emission test site for medical equipment according to the characteristic of medical equipment,and explain the necessity ofchoosing 10m anechoice chamber.【Key word】 10m,anechoice chamber,medical equipment,radiated emission test引言医疗设备产品种类众多,有47个大门类,6000多个品种,12000多种规格。

学科跨度大,差异明显,仅仅有源医疗设备就集核物理、激光、超声、电子学、光学等众多先进技术于一体,产品从重量只有几克的食道探测器,到重量超过百吨的质子刀,X光机,CT等。

正是由于医疗设备的多样性才对我们EMC测试场地提出了与一般电气产品不同的要求。

电磁兼容测试中,辐射骚扰测试场地主要有开阔试验场(OATS)和电波暗室。

由于开阔实验场远离市区,使用不方便,或者建在市区,因背景噪声过而大影响测试,故试验室一般使用半电波暗室进行辐射骚扰的测试,美国FCC,日本VCCI,IEC,CISPR,中国GB等标准都规定了使用半电波暗室进行辐射骚扰测量的方法。

半电波暗室按尺寸大小分,一般有3m法、5m 法、10m法三个规格,由于电波暗室造价昂贵,EMC测试一般采用3m法或10m法半电波暗室。

医疗设备也是如此,但是由于医疗设备的多样性和大型性,更由于很多专业的电气医疗设备使用高频射频能量进行治疗,对我们选择EMC辐射骚扰测试场地提出了与一般电气产品不同的要求,通常10m法电波暗室是电气医疗设备辐射骚扰测量场地的最优选择。

Voltage sag immunity factor considering severity and duration

Voltage sag immunity factor considering severity and duration

Abstract-- This paper presen ts an application of fuzzy logic technique to quantify the equipment voltage sag immunity level. It describes the fuzzy sets and IF-THEN inference rules involved in a process of providing an equipment immunity factor based on equipmen t voltage toleran ce test data. Typical voltage toleran ce en velopes, such as IEEE Std. 446 an d CBEMA curves, areexploited in defining the fuzzy membership functionscorrespon din g to various classes of voltage sags severity an d duration s. Usin g the equipmen t voltage sag toleran ce test data, the proposed fuzzy reasoning process provides a single factor that represen ts the relative immun ity level of the tested equipmen t. Previous voltage tolerance data of personal computers are used to test the proposed method and the immunity factors distributions of the tested equipment using various fuzzy rules are presented.Index Terms—fuzzy set, immun ity factor, toleran ce curve, voltage sag.I. I NTRODUCTIONO extend the service life of their equipment and to reduce the possibilities of interference with their products’ functions, manufactures of electrical equipment recommend that service disturbance levels in the distribution system be limited. The International Electrotechnical Commission (IEC) and I EEE have introduced the concept of electromagnetic compatibility and according to which electrical equipment should be compatible with the quality levels of the power system [1], [2]. On the other hand, the power service company has to design its power system in such a way that the voltage at the point of delivery maintains an appropriate quality so that equipment can work properly.Many useful indices have been proposed to assess power quality and power acceptability. One of the indices used to describe the system service voltage quality is the system average rms (variation) frequency index (SARFI), usually written as SARFI%V. This is the number of specified short-duration rms variations per system customer. The notation “%V” refers to the bus voltage percent deviation that is counted as an event. Other power quality indices have been proposed based on calculated energy (or lack of energy) delivered during voltage sag events [3]-[6].C. N. Lu is with Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan (e-mail: cnl@.tw).C. C. Shen is with the Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan (e-mail: d8931811@.tw).Process control equipment is extremely sensitive to voltage disturbances. By performing voltage sag tolerance test for each piece of equipment, it is possible to determine how long it will continue to operate after the supply becomes interrupted. The same test can be done for a sag of 10% (of nominal), and for 20%, etc. I f the voltage becomes high enough, the equipment will be able to operate on it indefinitely. Connecting the points from these tests results in the so-called voltage-tolerance curve. The voltage-tolerance curve is an important part of I EEE standard 1346 [2]. This standard recommends a method of comparing equipment performance with the supply power quality. The voltage-tolerance curve is recommended for presenting the equipment performance.Electrical equipment operates best when the rms voltage is constant and equal to the nominal value. I n power system, interference inevitably occurs on some occasions and therefore there is an overlap between the distributions of disturbance and equipment immunity levels (see Fig. 1 [1]). Planning levels of the system distribution level are generally equal to or lower than the compatibility level and are specified by the owner of the distribution network. Equipment immunity levels can be specified by relevant standards or agreed upon between manufactures and users. At most locations where most equipment operate satisfactory, there is no overlap or only a small overlap of disturbance and immunity level (see Fig. 2 [1]). Currently, there is no clear definition for the system disturbance and equipment immunity levels shown in Fig 2.Fig. 1. Illustration of basic voltage quality concepts with time/location statistics covering the whole system [1].V oltage Sag Immunity Factor ConsideringSeverity and DurationC. N. Lu, Senior Member, IEEE and C. C. Shen, Student Member, IEEETFig. 2. Illustration of basic voltage quality concepts with time statistics relevant to one site within the whole system [1].Fig. 3 shows the well-known Computer Business Equipment Manufacturers Association (CBEMA) curve that was recommended by CBEMA to its members. The curve is a kind of reference for equipment voltage tolerance as well as for severity of voltage sags. The “revised CBEMA curve” adopted by the nformation Technology ndustry Council (ITIC), the successor of CBEMA, is shown as a dashed line in Fig. 3 [3].Fig. 3. Voltage tolerance requirements for computing equipment [3].A standard that currently describes how to obtain voltage tolerance of equipment is I EC 61000-4-11 [7]. I t defines a number of preferred magnitudes and durations of sags for which the equipment has to be tested. The equipment does not need to be tested for all these values, but one or more of the magnitudes and durations may be chosen. The preferred combinations of magnitude and duration are shown in Table 1.TABLE IP REFERRED M AGNITUDES AND D URATIONS FOR E QUIPMENT I MMUNITYT ESTING A CCORDING TO IEC-61000-4-11 [7]Duration in Cycles of 50 HzMagnitude 0.5 1 5 10 25 5070%40%0 %While describing equipment behavior through the voltage-tolerance curve, a number of assumptions are made. The basic assumption is that sag can be uniquely characterized through its magnitude and duration. As we have seen in the previous literature, the definitions of magnitude and duration of a voltage sag currently in use for tolerance tests are far from unique. So far there is no generally accepted standard for quantifying equipment voltage sag immunity level. The two-dimensional voltage-tolerance curve clearly has its limitation. An approach that extends the voltage tolerance curve idea for representing the relative voltage sag immunity level is proposed in this paper.II. Q UANTIFYING E QUIPMENT V OLTAGE S AG I MMUNITY L EVEL Voltage sensitivity varies depending on the manufacture, differences in equipment or applications, years-of-use, and operating conditions, etc. I n this paper, the uncertainty of sensitive load in dealing with voltage sag events is formulated by fuzzy logic theory through membership functions that do not use strict boundaries.I n fuzzy logic reasoning, membership function describes the degree of a certain variable belonging to a fuzzy set. This degree of membership, expressed with a number in the interval of [0,1], is a measure of proximity to that set. A membership value of 1 means that the variable is fully satisfactory for that fuzzy set, whereas a value of 0 means that it is completely unacceptable in that fuzzy set. Any deviation is acceptable with an intermediate degree of satisfaction between 0 and 1. Such feature is suitable for modeling the vagueness associated with the power quality and many engineering problems [8], [9].To simulate the human reasoning process, IF-THEN logic rules are used to combine membership values of fuzzy variables. All the consequences for each defined rule are aggregated to give a final value indicating the closest to the real knowledge being modeled. The following steps are generally used to solve the practical problems [8], [9]:1): Describe of the problem in a linguistic form.2): Define the input and output variables for the fuzzy inference system, whose range and thresholds are based on empirical knowledge.3): Define the number and shape of membership functions for each input and output variables.4): Define the IF-THEN inference rules that represent the system practical behavior being modeled.5): Select the fuzzy operators for the defuzzification process.6): Tuning the fuzzy inference system.In our application, the two input variables are the voltage sag magnitudes expressed in percentage, and duration of the event expressed in logarithm of seconds. The voltage sag immunity factor that represents the relative capability of equipment in dealing with the voltage sag problems is chosen as the output variable of the fuzzy system.In this study, the input variable membership functions arebased on IEC 61000-4-11 and ITIC curves. Fig. 4 and Fig. 5show the fuzzy sets of voltage sag magnitude (severity) and duration using numbers suggested by I EC for voltage sag tolerance tests. Fig. 6 and Fig. 7 are the membership functions defined according to I TI C curve. I n order to have an even distribution of the fuzzy sets for both input variables, a combination of Fig. 4 and Fig. 7 is also tested to determine the immunity factor of the equipment under study, The fuzzy membership function of the output variable, i.e., the voltage sag immunity factor, is shown in Fig. 8.Fig. 4. Sag duration membership function based on IEC data.Fig. 5. Sag magnitude membership function based on IEC data.Fig. 6. Sag duration membership function based on ITIC curve.Fig. 7. Sag magnitude membership function based on ITIC curve.Fig. 8. Membership function of voltage sag immunity factor.To represent the behavior of the studied phenomena, agreed I F-THEN rules based on actual operating knowledge can be used to form the fuzzy inference mechanism. One possible set of rules that can be used in the reasoning process is shown in Table I I. Table I I shows 30 (6x5) rules. For instance, if an equipment can sustain a “ Medium” voltage sag with a “Very Long” duration then its voltage sag immunity level is “Medium”. In this study, all IF-THEN rules have the same weight, and the implication method is implemented by “product”, which scales the output fuzzy set. For each combination of the fuzzy set values corresponding to the crisp input variable data, through the reasoning process, a fuzzy set output is generated from each rule. The outputs are then aggregated. The aggregation method is “sum”, which is simply the sum of each rule’s output set. The defuzzification method is the centroid calculation, which returns the center of area under the curve. After the defuzzification, a voltage sag immunity factor corresponding to the input sag test event is obtained. Refer to [8] for a detail description of the inference operations.TABLE II V OLTAGE S AG I MMUNITY L EVEL IF-THEN R ULESVoltage Sag Duration Voltage SagMagnitude Extremely Short Very Short Short Medium Long Very LongVery Small Low Low Low Low Medium MediumSmall Low Low Low Medium Medium Medium Medium Low Low Medium Medium Medium High Large Low Medium Medium Medium High High Very Large Medium Medium Medium High High HighAs mentioned above, the voltage tolerance curve was recommended in IEEE Std. 1346 for representing the voltage sensitivity of equipment, therefore, it is used in this study to determine the equipment voltage sag immunity factor. Previous test results indicate that different types of equipment have different shape of tolerance curve. Fig. 9 shows three different tolerance curves of equipment. Equipment #3 is intuitively more sensitive than the others. To assess theequipment voltage tolerance capability, the immunity factors of the “start” (A or B) and “knee” (C or D) point(s) calculated by the proposed fuzzy inference operation are averaged. As shown in Fig. 9, each point has a combination of voltage sag severity and duration, and is used as input for fuzzy logic operations. Using the membership functions shown in Fig. 4 and Fig. 5, Fig. 6 and Fig. 7, Fig. 4 and Fig. 7 as separate groups test cases, the immunity factors corresponding to the three equipments shown in Fig. 9 are presented in Table III. From Table I I I, it can be seen that using membership functions shown in Fig. 4 and Fig. 7, it provides better results than the other two choices. It has better differentiation.Fig. 9. Equipment tolerance curvesTABLE IIIV OLTAGE S AG I MMUNITY F ACTORS U SING D IFFERENT M EMBERSHIP F UNCTIOND EFINITIONSImmunity Factors Equipment No. Tolerance Curve “Start” Point “Knee” Point(s) Fig. 4 & 5 Fig. 6 & 7 Fig 4 & 7 1 B- C- F B C 0.7994 0.7783 0.7994 2 A- C- F A C 0.6000 0.7783 0.6000 3 A- C- D- E A C, D 0.6000 0.6531 0.5713III. T EST R ESULTS ON P ERSONAL C OMPUTERSFig. 10 shows voltage tolerance curves of 17 personal computers obtained from Japanese and U.S. studies [3]. Voltage sag immunity factors of these tested PCs can be obtained from the proposed the fuzzy inference system. The distribution of the immunity factors and its accumulated density function are shown in Fig. 11. It can be seen that using the membership functions shown in Figures 4 and 7, and the inference rules shown in Table II, the immunity factors have a distribution similar to a normal distribution.f a normal distribution curve is plotted using the mean (0.617) and the standard deviation (0.138) of the data shown in Fig. 11, then an estimate of the immunity capability of the tested PCs can be obtained and is shown in Fig. 12. This curve can be used to determine the average number of equipment failures due to voltage problems per year if a similar curve representing the power service quality is available.Fig. 10. Voltage tolerance curves of the 17 tested PCs.Fig. 11. The distribution of immunity factors of the tested PCs101010Duration in second (s)M a g n i t u d e i n p e r c e n tFig. 12. Immunity factor distribution estimated for tested PCsDifferent inference rules are also tested, if the rules are changed to those shown in Table I V, then the immunity factors distribution of the PCs becomes to that shown in Fig.13. I t can be seen that the distribution skews to the right. Thus, the distribution of the immunity factors depends strongly on the design of the I F-THEN rules used in the inference system. As long as a set of general rules are agreed, then the proposed method can be used to determine relative voltage sag immunity levels of same products from different manufacturers.TABLE IVD IFFERENT V OLTAGE S AG I MMUNITY L EVEL IF-THEN R ULESVoltage Sag DurationVoltage Sag Magnitude ExtremelyShortVeryShortShort Medium LongVeryLongVery Small Low Low Low Medium Medium Medium Small Low Low Medium Medium Medium High Medium Low MediumMediumMediumHigh High Large MediumMediumMedium High High High VeryLarge Medium Medium High High High High Fig. 13. Immunity factors distribution of the tested PCs based on Table IVIV. C ONCLUSIONI n the past, equipment users had very few help in thedetermination of the appropriate voltage quality of the supply for their equipment, manufacturers’ recommendations were not so well defined and were mostly limited to long duration events. This paper proposes a method of building up a single factor that represents the relative voltage sag immunity level of an equipment. Using the IEC and IEEE recommend voltage sag severity and duration for voltage tolerance tests, the input variables membership functions are defined and several inference rules are tested. Test results have shown that the proposed factor provides a convenient way for comparing voltage sag immunity level of sensitive equipment. If a similar procedure is used to determine the disturbance level of a power service environment, an average number of equipment failures due to voltage sag incidents in a period of time can then be properly assessed.V. R EFERENCES[1] Assessment of emission limit of fluctuating load in MV and HV PowerSystem, IEC 61000-3-7, 1996.[2] IEEE Recommended Practice for Evaluating Electric Power SystemComp atibility with Electronic Process, I EEE Standard 1346-1998, May 1998.[3] Math H. J. Bollen, Understanding Power Quality Problems- Voltage Sagsand Interruptions, IEEE Press, 2000.[4] G. T. Heydt, R. Ayyanar, R. Thallam, “Power Acceptability,” IEEEPower Engineering Review, pp. 12-15, Sept. 2002.[5] R. S. Thallam, and G. T. Heydt, “Power acceptability and voltage sagindices in the three phase sense,” paper presented at the Panel Session on “Power Quality: Voltage Sag I ndices in the Three Phase Sense,” I EEE PES Summer meeting, Seattle, WA, July 2000.[6] R. S. Thallam, “Power quality indices based on voltage sag energyvalues,” Proceedings of Power Quality 2001 Conference and Exposition, Chicago, IL, Sept. 2001.[7] Testing and measurement techniques-Voltage dip s, short interrup tionsand voltage variations immunity tests, IEC 61000-4-11, 2001-03.[8] Tutorial on Fuzzy Logic Ap p lication in Power Systems, EEE PESPublication No, TP140-0. Jan. 2000.[9] B. D. Bonatto, T. Niimura, H. W. Dommel, “A Fuzzy Logic Application toRepresent Load sensitivity to Voltage Sag,” Proceedings of 8th International Conference on Harmonics And Quality of Power, vol. 1, pp.60-64, 1998.VI. B IOGRAPHIESChan-Nan Lu received Ph.D. degree from Purdue University. He was with General Electric Co. Pittsfield, Mass., and Harris Corp. Control Division, Melbourne Fl. His current interests are in power system operations and power quality.Cheng-Chieh Shen received his M.S. degree from the National Sun Yat-sen University. He is now pursuing his Ph.D. degree at the National Sun Yat-sen University.。

NORMA 4000 5000 Power Analyzer 用户说明手册说明书

NORMA 4000 5000 Power Analyzer 用户说明手册说明书

Since some countries or states do not allow limitation of the term of an implied warranty, or exclusion or limitation of incidental or consequential damages, the limitations and exclusions of this warranty may not apply to every buyer. If any provision of this Warranty is held invalid or unenforceable by a court or other decision-maker of competent jurisdiction, such holding will not affect the validity or enforceability of any other provision.
BEGRENZTE GEWÄHRLEISTUNG UND HAFTUNGSBESCHRÄNKUNG
Fluke gewährleistet, daß jedes Fluke-Produkt unter normalem Gebrauch und Service frei von Material- und Fertigungsdefekten ist. Die Garantiedauer beträgt 2 Jahre ab Versanddatum. Die Garantiedauer für Teile, Produktreparaturen und Service beträgt 90 Tage. Diese Garantie wird ausschließlich dem Erster

半电波暗室3m法辐射骚扰测试的实验_胡文涛

半电波暗室3m法辐射骚扰测试的实验_胡文涛
technology)
Abstract: This paper studies on radiated emission test in 3 meters Semi-Anechoic Chamber. This paper firstly demonstrated the inverse proportionality factor of 20 dB per decade is approximate theoretically. Then experimental analyze was proceeded, and comparison of radiated field strength between 3 meters and 10 meters inside the semi-anechoic chamber came to a conclusion that radiated field strength at 3 meters can’t be used to judge whether devices exceed limit value, and 3 meters Semi-Anechoic Chamber is suitable for EMC rectification. Key words: radiated emission; 3 meters; Semi-Anechoic Chamber; EMC
实验在 10 mSAC 中展开,利用双锥对数周期天 线产生辐射电磁场,可以得到稳定的场强,方便后 续的数据分析。双锥对数周期天线放置于离金属地 面 80 cm 高度处,以符合 GB 9254-2008 关于台式受
频率/MHz
(b) 水平极化 图 3 3 m 法与 10 m 法测得场强差值

27453991_基于奇异值分解的电能质量信号去噪

27453991_基于奇异值分解的电能质量信号去噪

第38卷第2期电力系统保护与控制Vol.38 No.2 2010年1月16日 Power System Protection and Control Jan.16, 2010 基于奇异值分解的电能质量信号去噪胡卫红1,舒 泓2,栾宇光3(1.广东电网公司惠州供电局,广东 惠州 516000;2.北京交通大学,北京 100044;3.北京科瑞配电自动化公司,北京 100090)摘要:提出了一种基于奇异值分解的电能质量扰动信号去噪算法。

算法重构采集信号时间序列的吸引子轨迹矩阵,根据轨迹矩阵奇异值的加权能量贡献率(PCTE)选择奇异值进行扰动信号重建,重建信号即为去除噪声后的电能质量扰动信号。

仿真试验结果表明奇异值分解能够有效地提高扰动信号的信噪比,保持原始电能质量信号的扰动特征,此算法理论基础完善,易于实现,有良好的发展前景。

关键词:去噪;奇异值分解;能量贡献率;电压降落;信号突变点Power quality signals’ de-noising method based on singular value decomposition (SVD)HU Wei-hong1,SHU Hong2,LUAN Yu-guang3(1.Huizhou Power Supply Company,Huizhou 516000,China;2.Beijing Jiaotong University,Beijing 100044,China;3.Beijing Creat Auto-distribution Company,Beijing 100090,China)Abstract:A power quality signals’ de-noising method based on singular value decomposition(SVD)is proposed in this paper.A track matrix of attractor is reconstructed based on time series,then according to the singular values’ percent of contribution to total energy(PCTE),disturbance signal is reconstructed,which is the de-noised power quality signal.Simulation results indicate that SVD can improve SNR and keep original disturbances’ characters.The proposed algorithm’s theory foundation is consummate and is easy to be carried out,so it has nice developmental foreground.Key words:de-noising;singular value decomposition(SVD);percent of contribution to total energy(PCTE);voltage sag;signals’ break point中图分类号: TM71 文献标识码:A 文章编号: 1674-3415(2010)02-0030-040 引言近年来,随着现代工业技术的发展和城乡居民生活水平的提高,电网中的谐波,电压波动和闪变,三相电压不平衡和电压暂态等电能质量问题越来越受到重视。

电能质量数学模型的构建及实现

电能质量数学模型的构建及实现

电能质量数学模型的构建及实现作者:张红孙鹏郭彦春来源:《科技资讯》 2014年第31期张红1,3 孙鹏1 郭彦春2(1.长春工程学院吉林长春 130012; 2.松原供电公司吉林松原 138000;3.吉林省配电自动化工程研究中心吉林长春 130012)摘要:近年来,非线性电子控件和以微处理器为基础设备的负载器件被广泛使用,从而导致出现了越来越多的电压扰动,电子电子设备的使用会产生电压波动,引起谐波、电压下降、电压上升、电压中断、闪变和波形失真等电能质量(PQ powder quality)问题,该文将电能质量扰动信号可以分为暂态和稳态两种类型,以这两种扰动类型为基础,构建出电压暂降、电压暂升、电压中断、脉冲干扰、振荡暂态等暂态波形和含有不同谐波的稳态数学模型。

关键词:电能质量模型分类构建中图分类号:TM73 文献标识码:A 文章编号:1672-3791(2014)11(a)0178-01电力系统中电子器件的增加导致电力网络的复杂性提高和现代电力系统负载灵敏度的提高,这使得PQ问题变得越来越严重并在电网运行中日益突显出来。

对电能质量进行检测,能够使研究人员获得系统参数[1],可以从整体把握电能质量基本水平,以此了解电力系统运行状况,为研究高效的电能质量做基础[2]。

1 电能质量的分类PQ问题大体上可以分为两部分:暂态和稳态PQ问题。

该文将主要给出暂态信号数学模型和稳态信号数学模型的定义、公式。

在实际的检测应用研究中,电网系统标准电力信号为正弦信号,为了研究方便一般情况下都会将幅值做归一化处理,其频率为。

在PQ检测分析中的扰动实质上是归一化后的正弦信号发生畸变,引起波形上下无规律的短时间的波动,该文按照实践中的扰动数据信息对其建立数学模型,从而直观的表现出这些扰动。

2 暂态模型在PQ问题的研究中,暂态扰动(Transient Disturbance,TD)模型主要涵盖了电压暂降(Voltage Sag,VSG)、电压暂升(Voltage Swell,VSW)、电压中断(Voltage Interruption,VI)、振荡暂态(Transient Oscillation,TO)以及脉冲干扰(Impulse Interference,IPI)这几种模型[3]。

施耐德电气 powerlogic系列 800 型电能表技术说明书

施耐德电气 powerlogic系列 800 型电能表技术说明书

PowerLogic power-monitoring unitsPower Meter Series 800Technical data sheet2007Front view of Power Meter Series 800 meter with integrated display.The PowerLogic Power Meter Series 800 offers many high-performance capabilities needed to meter and monitor an electrical installation in a compact 96 x 96 mm unit. All models include an easy-to-read display that presents measurements for all three phases and neutral at the same time, an RS-485 Modbus communication port, one digital input, one KY -type digital output, total harmonic distortion (THD) metering, and alarming on critical conditions. Four models offer an incremental choice ofcustom logging and power quality analysis capabilities. Expand any model with field-installable option modules that offer a choice of additional digital inputs and outputs, analog inputs and outputs, and T ransparent Ready Ethernet port.Applicationsb Panel instrumentationb Sub-billing, cost allocation and energy management b Remote monitoring of an electrical installation b Power quality analysisb Utility bill verification, utility contract optimization and load preservation.CharacteristicsEasy to installMounts using two clips, with no tools required. Direct connect the voltage inputs, with no need for potential transformers (PTs) up to 600 VAC.Easy to operateIntuitive navigation with self-guided, language-selectable menus.System status at a glanceLarge, anti-glare display with back-light provides summary screens with multiple values. Bar charts graphically represent system loading and I/O.Custom alarming with time stampingOver 50 alarm conditions, including over or under conditions, digital input changes, phase unbalance and more. The models PM850 and PM870 offer boolean logic that can be used to combine up to four alarms.Power quality analysisThe PM800 series offers an incremental range of features for troubleshooting and preventing power quality related problems. All models offer THD metering. The PM810 with PM810LOG option and PM820 offer individual current and voltage harmonics readings. The PM850 and PM870 offer waveform capture (PM870 isconfigurable) and power quality compliance evaluation to the international EN50160 standard. The PM870 offers voltage and current disturbance (sag/swell) detection. Extensive on-board memoryAll models offer billing (energy and demand), maintenance, alarm and customizable data logs, all stored in non-volatile memory (PM810 requires PM810LOG option). IEC 62053-22 class 0.5S accuracy for active energyAccurate energy measurement for sub-billing and cost allocation.Trend curves and short-term forecastingThe models PM850 and PM870 offer trend logging and forecasting of energy and demand readings to help compare load characteristics and manage energy costs. Expandable I/O capabilitiesUse the on-board or optional digital inputs for pulse counting, status/position monitoring, demand synchronization or control (gating) of the conditional energy metering. Use the on-board or optional digital outputs for equipment control orinterfacing, controllable by internal alarms or externally through digital input status. Use the optional analog inputs and outputs for equipment monitoring or interfacing.Metering of other utilities (WAGES)All models offer five channels for demand metering of water, air, gas, electricity or steam utilities (WAGES) through the pulse counting capabilities of the digital inputs. Pulses from multiple inputs can be summed through a single channel.Modular and upgradeableAll models offer easy-to-install option modules (memory, I/O and communications) and downloadable firmware for enhanced meter capabilities.Remote displayThe optional remote display can be mounted as far as 10 m from the metering unit. The adapter includes an additional 2- or 4-wire RS-485/RS-232 communication port.Serial and Ethernet communicationsAll models include an RS-485 port supporting Modbus protocol (ASCII and RTU). An optional module provides Ethernet ModbusTCP/IP communications with e-mail onalarm, full function web server and Ethernet-to-serial line gateway functionality.P B 101813 -51P B 101823-50Rear view of Power Meter Series 800 meter.E 90463Power Meter PM800 Series meter display screen showing bar graphs.D B 111799Part number list continued on next page.Power Meter Series 800 without display.Power Meter Series 800 with remote display.Remote display adapter with display and cable.Remote display adaptor alone.P B 101819 -32P B 101818 -60P B 101822 -68P B 101813-39P B 101814 -36Power Meter Series 800 with integrated display.Power Meter PM870 with ECC module (bottom view showing connectors and configuration switches).ECC module (front view)P E 86119P E 86116ECC module (side viewshowing LED indicators).P E 86120PM8M26 module.Power Meter PM800 with PM8M22 andPM8M26 modules.P B 101824 -50P B 1018216 -34Power Meter Series 800 connectors.1. Control power.2. Voltage inputs.3. Digital input/output.4. RS 485 port.5. Option module connector.6. Current inputs.7. Mounting clips.Power Meter PM800 Series with I/O module.2 digital inputs2 analog outputs 4-20 mA 2 analog inputs 0-5 V or 4-20 mA(3) When using two PM8M2222 the temperature should not exceed 25 °C.(2)Waveform capture with PM850 and PM870 only.Power-monitoring unitsPower Meter Series 800Installation and connectionD B 111765D B 111767D B 111768D B 111769D B 111770D B 111792D B 111793D B 111794D B 111771D B 111772Connection example.(1) Functional earth terminal.Note: other types of connection are possible. See product documentation.D B 111773D B 111774D B 111775D B 111776D B 109274D B 111777D B 109276D B 109277D B 108549D B 109279From master (host) device Belden 8723 or 9842 shielded cable.Colors shown are for Belden 8723.CM4000 or MCT2W485terminator or 120 ohm resistorWiring color codes2-wire connections Belden 9841 cable: (+) blue, white stripe (–) white, blue stripe (shield) silver 4-wire connectionsBelden 9843 cable:(TX+) blue, white stripe (TX–) white, blue stripe (RX+) orange, white stripe (RX–) white, orange stripe (SG) green, white stripe (unused) white, green stripe shieldBelden 9842 cable:(TX+) blue, white stripe (TX–) white, blue stripe (RX+) orange, white stripe (RX–) white, orange stripe shieldBelden 8723 cable: (TX+) green (TX–) white (RX+) red (RX–) black shield••••••••••••••••••••Surge protectionFor surge protection, it is recommend that the shield wire be connected directly to an external earth ground at a single point.P L S D 110351P L S D 110343P L S D 110352P L S D 110344P L S D 110345UP/ON DOWN/OFFON OFFDIP switch settings4-wire2-wire (default)TerminationBiasJumper (2-wire)Schneider Electric Industries SAS 89, boulevard Franklin RooseveltF - 92500 Reuil-Malmaison (France) As standards, specifications and designs develop from time, always ask for confirmation of the information given in this publication. PowerLogic, System Manager, Modbus, ION andION Enterprise are either trademarks or registered trademarks of Schneider Electric.Printed on recycled paper.Design: Schneider ElectricPhotos: Schneider ElectricPrinted: xxxxxPLSED3323EN©27-SchneiderElectric-Allrightsreserved08-2007。

基于改进S变换的电压骤降自适应检测方法

基于改进S变换的电压骤降自适应检测方法

基于改进S变换的电压骤降自适应检测方法Wu Yan;Li Jianmin【摘要】由于传统S变换(S-Transform,ST)在检测电压骤降问题时存在时频分辨率不高,计算量大的问题,深入研究传统S变换(Modified S-Transform,MST),给出了一种基于改进S变换的电压骤降自适应检测方法,可以准确、快速地实现电压骤降参数的准确提取.首先给出MST中调节因子的取值依据,并用实验分析法给出调节因子的取值范围;而后依据调节因子的取值分布情况,提出分段的调节因子;最后基于调节因子取值函数,建立自适应检测方法.在MATLAB上对算法进行仿真,能够准确的检测出电压骤降参数,且抑制噪声和谐波影响的效果好.实际构建的硬件测试平台验证了该算法的正确性和可行性.【期刊名称】《电测与仪表》【年(卷),期】2019(056)003【总页数】5页(P111-115)【关键词】电压骤降;改进S变换;分段;自适应;抗噪声【作者】Wu Yan;Li Jianmin【作者单位】;【正文语种】中文【中图分类】TM9330 引言电压骤降是指系统供电电压有效值瞬间减小到额定值的10%~90%,持续时间为半个工频周期到几秒[1-2]。

异步电机启动、负载突然变换、数段线路故障、变压器激磁等都可能会引起电网中的电压骤降的发生[3],而这些电压骤降又可能会引起同电网中的其他设备出现如PLC误动作、计算机数据丢失、调速器失灵等问题[4-5],从而造成巨大的经济损失。

据统计,电能扰动引起的事故中70%与电压骤降相关。

因此,对电压骤降进行准确的测量是电压骤降事故裁定的重要依据,同时也对电压骤降进行有效控制、提高电能质量具有重要的意义。

目前,国内外学者对电压骤降参数的提取方法进行了大量的研究。

文献[6]采用短时傅里叶变换,该算法具备时频分辨能力,但其窗函数宽度是固定不变的,因此无法随频率自适应调整时频分辨率;文献[7]采用小波变换,该算法具有良好的时频局部化特性,但其存在小波母函数选择困难、计算量大且容易受到噪声干扰的问题;文献[8]基于dq变换方法实现单相电压的特征量检测,但其仍需要60o的延迟;文献[9]采用S变换,该算法作为短时傅里叶变换和小波变换的一种拓展,克服了短时傅里叶变换固定时频分辨率的缺点,同时具有了比小波变换更为直观的结果。

ESD测试与整改设计参考

ESD测试与整改设计参考

DM53 BAV99
3
3
2
3
2
1
2
5Vstb
1
1
4 ] 视频端子输入的信号线上尽量预留bav99/压敏电阻,串接 电阻, 或其他的esd器件。 5 ] 若有vga 的在线升级设计,RX、TX 上可以分别串接 100R电阻和分别增加bav99(或压敏电阻)来增强esd特性。 6 ] e2prom的I2C上可以分别串接100R电阻和增加bav99或 电容来增强e2prom的抗esd特性。
此图为Layout放置电容的一个例子
2] 尽量保证主ic 的每个i/o 脚、信号脚附近有个串接的限流电 阻,大小从10R-10K,具体的值视信号要求而定。 3] 尽量保证主ic 的每个adc 脚、ir 脚附近有个下地的电容,大 小从10p-100n,具体的值视信号而定。
此原理图为按键+遥控的ESD设计参考
实际的ESD例子: (1)MST5C36 (LOPEZ)打静电无声。 软件上,看audio dsp 是否死机,就是看2d 54 /56 /58h 的值是否在变化,不变化的时候 就是死机的征兆;如果audio dsp 死机,可 以用软件reset 的办法解决问题; 硬件上,audio 的电源的去藕电容要就近IC 摆放,伴音的各路输出输入都要串接电阻, Sif 的两个IP对地预留5.6k-10K 的电阻;还 有加屏蔽罩的办法也可以试一试,但是由于 增加了成本,所以不可取,不到不得已,不 要用这个办法。
5Vstb VDDP RM72 5.6K RM54 5.6K IR_SYNC SAR3 SAR2 CM85 47pF CM86 1000pF CM83 CM126 CM122 CM114 1000pF 33pF 33pF 33pF CM136 100nF RM53 1K RM58 1K RM59 1K IR KEY1 KEY2 DM52 BAV99 5Vstb RM55 5.6K RM64 1K5 XM8 1 2 3 4 SIP4 DM54 BAV99 3 2 1 3 2 1 CN4-20A-S CN3-25A XM5 SIP3

基于扰动有功电流方向的电压暂降源定位方法

基于扰动有功电流方向的电压暂降源定位方法

基于扰动有功电流方向的电压暂降源定位方法唐轶;陈嘉;樊新梅;陈奎;方永丽【摘要】提出一种基于扰动有功电流方向的电压暂降源定位方法.通过电网故障的分析,得到电网故障过程中扰动有功电流变化的规律,分析结果表明扰动有功电流的流向可准确确定电网各种故障源点的方向.以此作为电压暂降源定位的依据,给出了扰动有功电流的算法和电压暂降源定位判据.仿真实验测试证明,该电压暂降源定位方法能准确定位由各种电网故障引起的电压暂降,也能正确定位其他扰动源(如大电机起动引起的电压暂降),尤其在不对称电压暂降时,优于现有的电压暂降源定位方法.【期刊名称】《电工技术学报》【年(卷),期】2015(030)023【总页数】8页(P102-109)【关键词】电能质量;电压暂降;源定位;序分量【作者】唐轶;陈嘉;樊新梅;陈奎;方永丽【作者单位】中国矿业大学信息与电气工程学院徐州 221008;中国矿业大学信息与电气工程学院徐州 221008;中国矿业大学信息与电气工程学院徐州 221008;中国矿业大学信息与电气工程学院徐州 221008;中国矿业大学信息与电气工程学院徐州 221008【正文语种】中文【中图分类】TM31520世纪80年代以来,数字式自动控制技术在工业生产中得到大量应用,相比于传统设备,它们易受到电压暂降的影响,对电能质量的要求更苛刻,哪怕短短几个周期的电压暂降都可能影响这些设备的正常工作,造成不可估量的经济损失[1,2]。

据欧美电力部门近年来的统计,80%以上的电能质量问题投诉是电压暂降,而开关操作过电压、谐波等投诉不到20%。

与此同时,对各电力部门来说,有关电压暂降引发的投诉和经济纠纷增多,将会削弱其在电力市场环境下的竞争力[3]。

然而,电能又是一种由电力部门提供、由供用电双方共同维护质量的特殊商品,一直以来,电力部门和用户双方缺少对电压暂降起因的判断,在引起电能质量下降的责任上,双方存在分歧。

对电压暂降源诊断、定位,可界定供用电双方责任,也为制定缓和策略提供参考和依据,为此,近年来电压暂降源定位引起了诸多学者的关注。

带电压频率正反馈的主动移频式孤岛检测方法

带电压频率正反馈的主动移频式孤岛检测方法

带电压频率正反馈的主动移频式孤岛检测方法蒋翠;祁新梅;郑寿森【摘要】Active Frequency Drift (AFD) Method is a simple and effective islanding detection method. However, the power quality is affected due to the introduced distortion on inverter current and the non-detection zone is bigger. This paper proposes an improvement to AFD by adopting positive feedback of voltage frequency and changing part of the current amplitude rather than changing the current frequency directly. The total harmonic distortion is analyzed and non-detection zone of the improved algorithm is described by using f 0 normQ × C coordinate plane. Analysis and simulation show that compared to traditional method, the improved one has less distortion on inverter current, smaller non-detection zone and better power quality.%主动移频式孤岛检测(Active Frequency Drift Method, AFD)算法简单、有效,但由于给电流施加了扰动信号,所以输出的电能质量受到影响,同时它的检测盲区(Non-Detection Zone, NDZ)也较大。

标准3米法电波(半)暗室技术与要求

标准3米法电波(半)暗室技术与要求

一、简介电波(半)暗室是面向‎公司交换、接入、SDH、ETS、GSM、数据终端、STP、电源及监控‎等产品的电‎磁兼容测试‎要求而建设‎的。

电波暗室的‎技术指标必‎须符合归一‎化场地衰减‎N SA±3.5dB(30MHz‎~18GHz‎),场均匀性(0,+6dB)的要求(30MHz‎~18GHz‎)。

从而使组建‎的测试系统‎具有高效、先进及高性‎价比的特点‎。

二、电波暗室总‎体技术指标‎要求所有进行验‎收测试系统‎中设备需符‎合 CISPR‎16标准要‎求。

在屏蔽室建‎设完成,安装吸波材‎料或其他装‎修前,完成屏蔽效‎能的测试。

在整个电波‎半暗室完成‎后,完成规一化‎场地衰减N‎S A、场地均匀度和背景‎噪声测试。

所有以上四‎项测试必须‎由我方认可‎的第三方进‎行。

电波半暗室‎应满足以下‎指标:1) 归一化场地‎衰减 NSA3M法暗室‎可确保在直‎径为2M的‎静区内从3‎0MHz至‎1GHz测‎量的归一化‎位衰减(NSA、 Norma‎l ized‎site Atten‎u atio‎n)与理论值偏‎差不超过±3.5dB (标准要求±4.0dB),符合 ANSI C63.4--1992, CISPR‎16, EN501‎47-2 的要求。

2 ) 传输损耗T‎L3M法暗室‎可确保在直‎径为 2M的静区‎内从1GH‎z Hz至1‎8GHz测‎量的传输损‎耗与理论值‎偏差不超过‎±3.5dB(标准要求±4.0dB),符合ANSI C63.4--1992, CISPR‎16, EN501‎47-2 的要求。

3)场地均匀度‎3M法暗室‎必须符合从‎80MHz‎至 2GHz频‎率范围内测‎试区的场地‎均匀性达到‎(0,+6dB)的要求,符合1EC‎61000‎-4-3和EN6‎1000-4-3的要求。

4) 屏蔽效能3M法暗室‎及屏蔽控制‎室必须按照‎E N501‎47-1进行测试‎,屏蔽效能至‎少能满足如‎下要求:频率屏蔽效能10KHz‎--150KH‎z 70dB(磁场)150KH‎z朹1MHz‎100dB‎1MHz--1000M‎H z110‎d B1GHz--18GHz‎100dB‎三、电波暗室的‎系统组成及‎要求1、电波暗室配‎置及要求1)供应商按照‎我方的要求‎完成吸波暗‎室的设计2)供应商完成‎屏蔽室的建造提供屏蔽尺‎寸不小于:9.1m×5.8m×5.55m建筑结构为‎:拼装式结构‎暗室与周围‎大地应有大‎于10M欧‎姆的阻抗隔‎离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
dn851101@
Cai Wei Suo Juan Wang Jianwei
North China Electric Power Research Institute Co., Ltd Beijing, China caiwei@
Xu Yonghai School of Electrical and Electronic
detection results [2].
There are some methods using in the voltage sag sources detection, such as wavelet transform, Kalman filter and artificial neural network, etc, but these techniques are complicated, so it’s difficult to use in engineering applications[3][4]. Considering that in power quality monitoring network nowadays, only part of the sag data could be recorded by some equipments, for instance, if the voltage sag doesn’t reach the trigger threshold, only the RMS value can be recorded; when the sag last a long time, only the data of beginning and ending can be recorded. Based on the analysis of different voltage sag characteristics of different disturbances, a method using RMS voltage to detect the voltage sag sources is proposed in this paper. This method is simple, easy to apply in practice and the recognition rate can meet the needs of projects. The correctness of the method is proved by simulations.
The impacts to various sensitive electrical equipments and the huge lost caused by voltage sags have been recognized by more and more people. Complains caused by voltage sags in developed countries are the most important issues in the power quality complains, and it also has an increasing trend in P.R.China.
The main reasons of the voltage sags are the lines shortcircuit faults, transformers energizing and large-capacity induction motors starting, which make the system current suddenly increases several times or more, and the voltage of points of common connection(PCC) reduces in a short-time.
Figure 1. Voltage sag simulation model
The characteristics of the voltage sag are the amplitude, the duration and the phase-angle jump. The data features of voltage sags caused by different sources are not the same in some aspects. Identification of voltage sag disturbance is one of the most important evaluating indexes in voltage sag analysis. If the voltage sag sources can be detected correctly, and then sags can be analyzed, compensated and inhibited by considering local situation. In the same time, the power utility and the users can coordinate disputes according to the
This work was supported by North China Electric Power Research Institute.
A. Voltage Sags Due to Faults
Short–circuit faults are the most important reasons of voltage sag. The faults can be induced in many situations, like lightning strike, wind, animals and so on. When the fault happens, the current increases quickly, the voltage near the fault point goes down and then the sag starts. The voltage goes back to the normal value till the faults removes, and the sag ends.
II. ANALYSIS OF VOLTAGEds- voltage sag; RMS; recognition; simulation
I. INTRODUCTION Voltage Sag refers to the phenomenon of RMS voltage declines to 90% to 10% of the rated voltage rapidly, with a typical duration of 0.5 to 30 cycles [1]. Transmission and distribution lines’ short-circuit faults, transformers energizing and large-capacity induction motor starting can all cause voltage sags with different phenomenon.
The model below is used to analyze the voltage sag phenomenon in PSCAD [5]. The wiring type of Transformer T1 and T2 is Yn/Y while which of Transformer T3 and T4 is Y/Y. The simulation model is showed in Figure 1.
Voltage Sag Disturbance Detection Based on RMS
Voltage Method
Ding Ning
School of Electrical and Electronic Engineering
North China Electric Power University Beijing, China
Engineering North China Electric Power University
Beijing, China yonghaixu@
Abstract—This paper analyses the different voltage sag phenomenon of the different voltage sag sources and summarizes the characteristics of the different voltage sag sources, including the amplitude of the voltage sag, the swell happening at the same time of the sag, the characteristics of the voltage changes during the sag and the three phases voltage balance or not. Most of the existing voltage sag source recognition methods and their disadvantages and application have been analyzed in this paper. Considering that in actual power quality monitoring network, many monitoring equipments only can provide parts of the voltage sag data, so a simple and practical method is proposed in this paper. Only the RMS voltages are calculated in this method. Based on the different voltage sag amplitudes, the voltage jump happening at the end of the sag(or the voltage changes in trends during the sag), the different deviations of the three-phase voltages and some other characters according to different sources, the characteristic value corresponding can be extracted, and then the classification of voltage sag caused by the shortfaults, transformers energizing and large-capacity induction motor starting can be realized. The correctness of the method is proved by simulations.
相关文档
最新文档