苏科版八年级数学下册《第十单元分式》综合测试卷含答案

合集下载

苏科版八年级数学下《第10章分式》测试题含答案

苏科版八年级数学下《第10章分式》测试题含答案

八年级下第10章 分式 测试题(时间: 满分:120分)(班级: 姓名: 得分: )一、选择题(每小题3分,共24分)一、选择题(每小题3分,共30分)1.下列各式:51(1 – x ),34-πx,222y x -,x x 25,其中分式有( )A .1个B .2个C .3个D .4个2.如果分式13-x 有意义,则x 的取值范围是( ) A .全体实数 B .x ≠1 C .x =1 D .x >1 3.下列约分正确的是( ) A .313mm m +=+ B .212yx y x -=-+ C .123369+=+a ba b D .yxa b y b a x =--)()(4.若x ,y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( )A .yx 23B . 223yxC .y x 232D .2323y x5.计算xx -++1111的正确结果是( ) A .0B .212x x- C .212x- D .122-x 6.在一段坡路,小明骑自行车上坡时的速度为v 1千米/时,下坡时的速度为v 2千米/时,则他在这段坡路上、下坡的平均速度是( ) A .221v v +千米/时 B .2121v v v v +千米/时 C .21212v v v v +千米/时 D .无法确定7.若关于x 的方程xmx m x -+-+333=3的解为正数,则m 的取值范围是( ) A .m <29 B .m <29且m ≠23 C .m >49- D .m >49-且m ≠43-8.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,每天多做x 件才能按时交货,则x 满足的方程为( )A .54872048720=-+xB .x +=+48720548720C .572048720=-xD .54872048720=+-x9.对于实数a ,b ,定义一种新运算“⊗”为:a ⊗b=21a b -,这里等式右边是通常的实数运算.例如:81311312-=-=⊗.则方程142)2(--=-⊗x x 的解是( )A .x=4B .x=5C .x=6D .x=7 10.张华在一次数学活动中,利用“在面积一定的长方形中,正方形的周长最短”的结论,推导出“式子x +x1(x >0)的最小值是2”.其推导方法如下:在面积是1的长方形中,设长方形的一边长为x ,则另一边长是x 1,长方形的周长是2(x +x 1);当长方形成为正方形时,就有x =x1(x >0),解得x =1,这时长方形的周长2(x +x 1)= 4最小,因此x +x1(x >0)的最小值是2.模仿张华的推导,你求得式子xx 92+(x >0)的最小值是( )A .1B .2C .6D .10 二、填空题(每小题4分,共32分) 11.分式x 21,221y,xy 51-的最简公分母为____________. 12.约分:①ba ab2205=____________,②96922+--x x x =____________.13.用科学记数法表示:0.000 002 016=____________. 14.要使15-x 与24-x 的值相等,则x =____________. 15.计算:(a 2b )-2(a -1b -2)-3=____________. 16.若关于x 的方程12123++=+-x mx x 无解,则m 的值为____________. 17.已知1424122-+-+=-y y y y x x ,则y 2+ 4y + x 的值为____________. 18.如果记 221x y x =+ = f (x ),并且f (1)表示当x =1时y 的值,即f (1)=2211211=+;f (12)表示当x =12时y 的值,即f (12)=221()12151()2=+;那么f (1)+ f (2)+f (12)+f (3)+f (13)+…+ f(n )+f (1n)= ____________.(结果用含n 的式子表示) 三、解答题(共58分)19.(每小题6分,共12分)计算:(1)224816x x x x --+; (2)2m n m n n m m n n m -++---. 20.(每小题6分,共12分)解下列方程:(1)1123x x =-; (2)2124111x x x +=+--.21.(10分)先化简,再求值:2222a a a b a ab b ⎛⎫- ⎪--+⎝⎭÷222a a a b a b ⎛⎫- ⎪+-⎝⎭+1,其中a=23,b = –3.22.(10分)已知x 为整数,且222218339x x x x ++++--为整数,求所有符合条件的x 的值.23.(14分)甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校,乙同学骑自行车去学校.已知甲步行的速度是乙骑自行车速度的21,公交车的速度是乙骑自行车速度的2倍.甲、乙两同学同时从家出发去学校,结果甲同学比乙同学早到2分钟. (1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?附加题(15分,不计入总分) 24.一列按一定顺序和规律排列的数: 第1个数是112⨯; 第2个数是123⨯; 第3个数是134⨯; ……对任何正整数n ,第n 个数与第(n +1)个数的和等于2(2)n n +.(1)经过探究,我们发现:112⨯=1112-,123⨯=1123-,134⨯=1134-, 设这列数的第5个数为a ,那么a >1156-,a =1156-,a <1156-,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n 个数(即用正整数n 表示第n 个数),并且证明你的猜想满足“第n 个数与第(n+1)个数的和等于2(2)n n +”;(3)设M 表示211,212,213,…,212016这个数的和,即M =211+212+213+…+212016, 求证:2016403120172016M <<.参考答案一、1. A 2. B 3. C 4. A 5. C 6. C 7. B 8.D 9. B 10.C二、11. 10xy 212.①a 41 ②33-+x x 13.2.016×10-614.6 15.4b a16. -5 17. 2 18. 21-n三、19.解:(1)224816x x x x --+=2(4)(4)4x x xx x -=--; (2)2m n m n n m m n n m -++---=2m n m n mn m n m n m n m--+=----. 20.解:(1)方程两边乘3x (x -2),得3x =x -2. 解得x =-1.检验:当x =-1时,3x (x -2)≠0. 所以,原分式方程的解为x =-1. (2)方程两边乘(x +1)(x -1),得x -1+2(x +1)=4. 解得x =1.检验:当x =1时,(x +1)(x -1)=0,因此x =1不是原分式方程的解. 所以,原分式方程无解.21.解:原式=2()()1()ab a b a b a b ab -+-⋅+--=1a b a b ++-=2aa b-. 当a=23,b =-3时,原式=411. 22.解:原式=2(3)2(3)2182(3)(3)(3)(3)(3)x x x x x x x x --++++=+-+-=23x -. ∵x 为整数,且23x -为整数, ∴x -3=±2或x -3=±1,解得x =1或x=2或x=4或x=5. ∴所有符合条件的x 的值为1、2、4、5.23.解:(1)设乙骑自行车的速度为x 米/分,则甲步行的速度是12x 米/分,公交车的速度是2x 米/分,根据题意,得60012x +30006002x -=3000x -2. 解得x =300.经检验,x =300是原方程的解.答:乙骑自行车的速度为300米/分. (2)300×2=600(米).答:当甲到达学校时,乙同学离学校还有600米. 24.解:(1)由题意知第5个数a=156⨯=1156-. (2)∵第n 个数为1(1)n n +,第(n+1)个数为1(1)(2)n n ++,∴1(1)n n ++1(1)(2)n n ++=2(1)(2)n nn n n ++++=()()()2112n n n n +++=2(2)n n +,即第n 个数与第(n+1)个数的和等于2(2)n n +.(3)∵112-=112⨯<211=1,12-13=123⨯<212<112⨯=1-12,13-14=134⨯<213<123⨯=12-13,…,12015-12016=120152016⨯<212015<120142015⨯=12014-12015, 12016-12017=120162017⨯<212016<120152016⨯=12015-12016,∴1-12017<211+212+213+…+212015+212016<122016-,即20162017<211+212+213+…+212015+212016<40312016. ∴20162017<M<40312016.。

苏科版八年级下册数学第10章 分式 含答案

苏科版八年级下册数学第10章 分式 含答案

苏科版八年级下册数学第10章分式含答案一、单选题(共15题,共计45分)1、若分式有意义,则a的取值范围是()A.a=﹣5B.a≠5C.a=5D.a≠﹣52、若分式有意义,则x应满足的条件是()A.x≠0B.x≥3C.x≠3D.x≤33、下列运算中,其中正确的是()A. B. C. = a+b D. a 34、若分式有意义,则x的取值范围是()A.x>5B.x≠﹣5C.x≠5D.x>﹣55、对分式,,通分时,最简公分母是()A.24B.12C.24xyD.12x6、使式子成立的x的取值范围是()A.x≥﹣2B.x>﹣2C.x>﹣2,且x≠2D.x≥﹣2,且x≠27、“十一”国庆节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增力了两名同学,结果每个同学比原来少摊了3元钱车费.设参加旅游的同学共人,则所列方程为()A. B. C. D.8、西宁市创建全国文明城市已经进入倒计时!某环卫公司为清理卫生死角内的垃圾,调用甲车3小时只清理了一半垃圾,为了加快进度,再调用乙车,两车合作1.2小时清理完另一半垃圾.设乙车单独清理全部垃圾的时间为x小时,根据题意可列出方程为()A. + =1B. + =C. + =D. +=19、对于两个不相等的实数a、b,我们规定符号Min{a,b}表示a、b中的较小的值,如Min{2,4}=2,按照这个规定,方程Min{ }= 的解为()A.0B.0或2C.无解D.不确定10、若把分式中的x和y都扩大3倍,那么分式的值()A.扩大为原来的3倍B.不变C.缩小为原来的D.缩小为原来的11、随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A. B. C. D.12、若分式有意义,则的取值范围是()A. B. C. 且 D.13、若关于x的方程+ =0有增根,则m的值是()A.﹣2B.﹣3C.5D.314、已知实数a、b满足(a2+b2)2﹣2(a2+b2)=8,则a2+b2的值为()A.﹣2B.4C.4或﹣2D.﹣4或215、计算的结果是()A. B. C.y D.x二、填空题(共10题,共计30分)16、=________17、若在实数范围内有意义,则实数x的取值范围是________.18、分式方程﹣1= 的解是________19、当________时,分式的值为0.20、若分式的值为0,则x的值等于________.21、当________时,分式没有意义.22、若关于x的分式方程无解,则m的值是________.23、已知的值为正整数,则整数的值为________24、若()•ω=1,则ω=________ .25、代数式有意义,x应满足的条件是________三、解答题(共5题,共计25分)26、解方程:.27、在制作某种零件时,甲做250个零件与乙做200个零件所用的时间相同,已知甲每小时比乙多做10个零件,则甲、乙每小时各做多少个零件?28、解下列分式方程:(1);(2).29、某服装店销售一种服装,若按原价销售,则每月销售额为10000元,若按八五折销售,则每月多卖出20件,且月销售额增加1900元,每件服装的原价为多少元?30、在争创全国卫生城市的活动中,我区“义工队”义务清运一堆重达100吨的垃圾,清运了25吨后因附近居民主动参与到义务劳动中,使清运的速度比原来提高了一倍,前后共用5小时就完成清运,请你求出义工队原计划每小时清运多少吨垃圾?参考答案一、单选题(共15题,共计45分)2、C3、B4、C5、D6、C7、D8、B9、A10、C11、D12、D13、D14、B15、D二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。

苏科版初中数学八年级下册《第10章 分式》单元测试卷

苏科版初中数学八年级下册《第10章 分式》单元测试卷

苏科新版八年级下学期《第10章分式》单元测试卷一.选择题(共21小题)1.下列各式中,分式的个数是().A.2B.3C.4D.52.使分式有意义的x的取值范围是()A.x≠1B.x≠2C.x≠1且x≠2D.x可为任何数3.若分式的值为0,则x的值是()A.±3B.﹣3C.3D.04.已知﹣=5,则分式的值为()A.1B.5C.D.5.一件工作,甲单独完成需要a天,乙单独完成需要b天,如果甲、乙二人合作,那么每天的工作效率是()A.a+b B.+C.D.6.不改变分式的值,使分子、分母的最高次项的系数都为正,正确的变形是()A.B.C.D.7.化简的结果是()A.1B.C.D.08.若=﹣,则a﹣2b的值是()A.﹣6B.6C.﹣2D.29.下列分式中,最简分式是()A.B.C.D.10.张萌将分式进行通分,则这两个分式的最简公分母为()A.2(x+y)(x﹣y)B.4(x+y)(x﹣y)C.(x+y)(x﹣y)D.4(x+y)211.计算(a2b)3•的结果是()A.a5b5B.a4b5C.ab5D.a5b612.已知,则的值为()A.1B.0C.﹣1D.﹣213.张阿姨,李阿姨到农贸市场买大米,第一次,张阿姨买了100千克大米,李阿姨买了100元的大米;第二次,张阿姨还是买了100千克大米,李阿姨还是买了100元的大米.下列说法正确的是()A.如果米价下降张阿姨买的合算B.如果米价上涨张阿姨买的合算C.无论米价怎样变化李阿姨买的合算D.无法判断谁买的合算14.已知+=3,则代数式的值为()A.3B.﹣2C.﹣D.﹣15.下列方程是分式方程的是()A.B.C.x2﹣1=3D.2x+1=3x 16.若关于x的分式方程无解,则m的值为()A.﹣1.5B.1C.﹣1.5或2D.﹣0.5或﹣1.5 17.方程=的解是()A.﹣B.C.﹣D.18.用换元法解方程,若设=y,则原方程可化为()A.y2﹣7y+6=0B.y2+6y﹣7=0C.6y2﹣7y+1=0D.6y2+7y+1=0 19.若分式方程有增根,则a的值是()A.﹣2B.0C.2D.0或﹣2 20.小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A时能提高60%,若走路线B的全程能比走路线A少用15分钟.若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程()A.=15B.=15C.=D.21.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是()A.8B.7C.6D.5二.解答题(共7小题)22.下面是售货员与小明的对话:根据对话内容解答下列问题:(1)A、B两种文具的单价各是多少元?(2)若购买A、B两种文具共20件,其中A种文具的数量少于B种文具的数量,且购买总费用不超过260元,共有几种购买方案.23.两列火车分别行驶在两平行的轨道上,其中快车车长100米,慢车车长150米,当两车相向而行时,快车驶过慢车某个窗口(快车车头到达窗口某一点至车尾离开这一点)所用的时间为5秒.(1)求两车的速度之和及两车相向而行时慢车驶过快车某个窗口(慢车车头到达窗口某一点至车尾离开这一点)所用的时间;(2)如果两车同向而行,慢车的速度不小于8米/秒,快车从后面追赶慢车,那么从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需时间至少为多少秒?24.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?25.济南在创建全国文明城市的进程中,高新区为美化城市环境,计划种植树木30000棵,由于志愿者的加入,实际每天植树比原计划多20%.结果提前10天完成任务,求原计划每天植树多少棵.26.在某校举办的2012年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品200个以上可以按折扣价出售;购买200个以下(包括200个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要1050元;若多买35个,则按折扣价付款,恰好共需1050元.设小王按原计划购买纪念品x个.(1)求x的范围;(2)如果按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同,那么小王原计划购买多少个纪念品?27.一项工程,甲队单独完成比乙队单独完成需少用9天,甲队单独做3天的工作乙队单独做需要4天,(1)甲、乙两队单独完成此项工程各需几天?(2)该项工程先由甲、乙两队合作,再由甲队单独完成,若完成此项工程不超过18天,甲乙两队至少合作几天?28.今年我区的葡萄喜获丰收,葡萄一上市,水果店的王老板用2400元购进一批葡萄,很快售完;老板又用5000元购进第二批葡萄,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批葡萄每件进价多少元?(2)王老板以每件150元的价格销售第二批葡萄,售出80%后,为了尽快售完,决定打折促销,要使第二批葡萄的销售利润不少于640元,剩余的葡萄每件售价最少打几折?(利润=售价﹣进价)苏科新版八年级下学期《第10章分式》单元测试卷参考答案与试题解析一.选择题(共21小题)1.下列各式中,分式的个数是().A.2B.3C.4D.5【分析】判断分式的依据是看代数式的分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:,的分母中均不含有字母,因此它们是整式,而不是分式;a+的分子不是整式,因此不是分式.,,的分母中含有字母,因此是分式.故选:B.【点评】本题考查了分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式,A叫做分式的分子,B叫做分式的分母.注意π不是字母,是常数,所以不是分式,是整式.2.使分式有意义的x的取值范围是()A.x≠1B.x≠2C.x≠1且x≠2D.x可为任何数【分析】分式有意义的条件是分母≠0,即x2﹣3x+2≠0,解得x.【解答】解:∵x2﹣3x+2≠0即(x﹣1)(x﹣2)≠0,∴x﹣1≠0且x﹣2≠0,∴x≠1且x≠2.故选:C.【点评】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.3.若分式的值为0,则x的值是()A.±3B.﹣3C.3D.0【分析】分式的值等于零,分子等于零,且分母不等于零.【解答】解:依题意,得x2﹣9=0且x+3≠0,解得,x=3.故选:C.【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.已知﹣=5,则分式的值为()A.1B.5C.D.【分析】已知等式左边通分并利用同分母分式的减法法则变形,整理后代入原式计算即可得到结果.【解答】解:已知等式整理得:=5,即x﹣y=﹣5xy,则原式===1,故选:A.【点评】此题考查了分式的值,熟练掌握运算法则是解本题的关键.5.一件工作,甲单独完成需要a天,乙单独完成需要b天,如果甲、乙二人合作,那么每天的工作效率是()A.a+b B.+C.D.【分析】合作的工作效率=甲的工作效率+乙的工作效率,据此可得.【解答】解:∵甲单独完成需要a天,乙单独完成需要b天,∴甲的工效为,乙的工效为,∴甲、乙二人合作每天的工作效率是+,故选:B.【点评】本题主要考查列代数式,解题的关键是熟练掌握工程问题中关于合作的工作效率的相等关系.6.不改变分式的值,使分子、分母的最高次项的系数都为正,正确的变形是()A.B.C.D.【分析】首先判断出分式的分子、分母的最高次项的系数分别为﹣1、﹣5,它们都是负数;然后根据分式的基本性质,把分式的分子、分母同时乘以﹣1,使分子、分母的最高次项的系数都为正即可.【解答】解:==∴不改变分式的值,使分子、分母的最高次项的系数都为正,正确的变形是.故选:C.【点评】此题主要考查了分式的基本性质的应用,要熟练掌握,解答此题的关键是要明确:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.7.化简的结果是()A.1B.C.D.0【分析】将分子利用平方差公式分解因式,再进一步计算可得.【解答】解:原式=====1,故选:A.【点评】本题主要考查约分,解题的关键是掌握平方差公式分解因式和约分的定义.8.若=﹣,则a﹣2b的值是()A.﹣6B.6C.﹣2D.2【分析】先去分母,得4x=(a﹣b)x+(﹣2a﹣2b),再根据对应相等求出a、b 的值,代入计算即可.【解答】解:化简得,4x=(a﹣b)x+(﹣2a﹣2b),∴a﹣b=4,﹣2a﹣2b=0,解得a=2,b=﹣2,∴a﹣2b=2﹣2×(﹣2)=6,故选:B.【点评】本题考查了通分以及解二元一次方程组,是基础知识要熟练掌握.9.下列分式中,最简分式是()A.B.C.D.【分析】根据最简分式的定义对各选项逐一判断即可得.【解答】解:A、==,不符合题意;B、==,不符合题意;C、是最简分式,符合题意;D、==,不符合题意;故选:C.【点评】本题主要考查最简分式,解题的关键是掌握一个分式的分子与分母没有公因式时,叫最简分式.10.张萌将分式进行通分,则这两个分式的最简公分母为()A.2(x+y)(x﹣y)B.4(x+y)(x﹣y)C.(x+y)(x﹣y)D.4(x+y)2【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式的分母分别是2x+2y=2(x+y)、4x﹣4y=4(x ﹣y),故最简公分母是4(x+y)(x﹣y).故选:B.【点评】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.11.计算(a2b)3•的结果是()A.a5b5B.a4b5C.ab5D.a5b6【分析】根据积的乘方等于乘方的积,分式的乘法,可得答案.【解答】解:原式=a6b3•=a5b5,故选:A.【点评】本题考查了分式的乘除法,熟记法则并根据法则计算是解题关键.12.已知,则的值为()A.1B.0C.﹣1D.﹣2【分析】解决本题首先将已知条件转化为最简形式,再把所求分式通分、代值即可.本题考查了分式的加减运算.【解答】解:把已知+=去分母,得(a+b)2=ab,即a2+b2=﹣ab∴+===﹣1.故选C.【点评】分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.13.张阿姨,李阿姨到农贸市场买大米,第一次,张阿姨买了100千克大米,李阿姨买了100元的大米;第二次,张阿姨还是买了100千克大米,李阿姨还是买了100元的大米.下列说法正确的是()A.如果米价下降张阿姨买的合算B.如果米价上涨张阿姨买的合算C.无论米价怎样变化李阿姨买的合算D.无法判断谁买的合算【分析】先设第一次大米的单价为a,第二次大米的单价为b,分别计算两人两次所卖大米的平均单价,求出单价,再比较两者的差,根据结果来比较大小.【解答】解:设第一次大米的单价为a,第二次大米的单价为b,张阿姨两次购买的平均单价为,李阿姨两次购买的平均单价为则﹣=≥0.所以无论米价怎样变化都是李阿姨买的合算.故选:C.【点评】本题考查了分式的混合运算,解题的关键是求出两人两次所买大米的平均单价,再比较单价的大小.14.已知+=3,则代数式的值为()A.3B.﹣2C.﹣D.﹣【分析】已知等式左边通分并利用同分母分式的加法法则计算,整理得到a+2b =6ab,代入原式计算即可得到结果.【解答】解:+==3,即a+2b=6ab,则原式===﹣,故选:D.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.15.下列方程是分式方程的是()A.B.C.x2﹣1=3D.2x+1=3x【分析】依据分式方程的定义进行判断即可.【解答】解:A、﹣=0是一元一次方程,故A错误;B、=﹣2是分式方程,故B正确;C、x2﹣1=3是一元二次方程,故C错误;D、2x+1=3x是一元一次方程,故D错误.故选:B.【点评】本题主要考查的是分式方程的定义,熟练掌握分式方程的定义是解题的关键.16.若关于x的分式方程无解,则m的值为()A.﹣1.5B.1C.﹣1.5或2D.﹣0.5或﹣1.5【分析】去分母得出方程①(2m+x)x﹣x(x﹣3)=2(x﹣3),分为两种情况:①根据方程无解得出x=0或x=3,分别把x=0或x=3代入方程①,求出m;②求出当2m+1=0时,方程也无解,即可得出答案.【解答】解:方程两边都乘以x(x﹣3)得:(2m+x)x﹣x(x﹣3)=2(x﹣3),即(2m+1)x=﹣6,分两种情况考虑:①∵当2m+1=0时,此方程无解,∴此时m=﹣0.5,②∵关于x的分式方程无解,∴x=0或x﹣3=0,即x=0,x=3,当x=0时,代入①得:(2m+0)×0﹣0×(0﹣3)=2(0﹣3),解得:此方程无解;当x=3时,代入①得:(2m+3)×3﹣3(3﹣3)=2(3﹣3),解得:m=﹣1.5,∴m的值是﹣0.5或﹣1.5,故选:D.【点评】本题考查了对分式方程的解的理解和运用,关键是求出分式方程无解时的x的值,题目比较好,难度也适中.17.方程=的解是()A.﹣B.C.﹣D.【分析】根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论解答可得.【解答】解:两边都乘以2(x+2),得:2(2x﹣1)=x+2,解得:x=,当x=时,2(x+2)≠0,所以x=是分式方程的解,故选:D.【点评】本题主要考查解分式方程,解题的关键是掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.18.用换元法解方程,若设=y,则原方程可化为()A.y2﹣7y+6=0B.y2+6y﹣7=0C.6y2﹣7y+1=0D.6y2+7y+1=0【分析】观察方程的两个分式具备的关系,若设=y,则原方程另一个分式为6×.可用换元法转化为关于y的方程.去分母、整理即可.【解答】解:把=y代入原方程得:y+6×=7,方程两边同乘以y整理得:y2﹣7y+6=0.故选:A.【点评】换元法解分式方程时常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.19.若分式方程有增根,则a的值是()A.﹣2B.0C.2D.0或﹣2【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出未知字母的值.【解答】解:方程两边都乘(x+a)(x﹣2),得x+a+3(x﹣2)(x+a)=(a﹣x)(x﹣2),∵原方程有增根,∴最简公分母(a+x)(x﹣2)=0,∴增根是x=2或﹣a,当x=2时,方程化为:2+a=0,解得:a=﹣2;当x=﹣a时,方程化为﹣a+a=2a(﹣a﹣2),即a(a+2)=0,解得:a=0或﹣2.当a=﹣2时,原方程可化为+3=,化为整式方程得,1+3(x﹣2)=﹣x﹣2,即:x=,不存在增根,故不符合题意,当a=0时,原方程可化为,化为整式方程得,x+3x(x﹣2)=﹣x(x﹣2),解得x=或x=0,此时,有增根为x=0,∴a=0符合题意,故选:B.【点评】增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.20.小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A时能提高60%,若走路线B的全程能比走路线A少用15分钟.若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程()A.=15B.=15C.=D.【分析】若设走路线A时的平均速度为x千米/小时,则走路线B时的平均速度为1.6x千米/小时,根据路线B的全程比路线A的全程多7千米,走路线B 的全程能比走路线A少用15分钟可列出方程.【解答】解:设走路线A时的平均速度为x千米/小时,根据题意,得﹣=.故选:D.【点评】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.21.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是()A.8B.7C.6D.5【分析】工效常用的等量关系是:工效×时间=工作总量,本题的等量关系为:甲工作量+乙工作量=1,根据从第三个工作日起,乙志愿者加盟此项工作,本题需注意甲比乙多做2天.【解答】解:方法1、设甲志愿者计划完成此项工作需x天,故甲的工效都为:,由于甲、乙两人工效相同,则乙的工效为甲前两个工作日完成了,剩余的工作量甲完成了,乙在甲工作两个工作日后完成了,则+=1,解得x=8,经检验,x=8是原方程的解.故选:A.方法2、设甲志愿者计划完成此项工作需a天,则一天完成工作总量的,由于甲、乙两人工效相同,则乙的一天完成工作总量的,甲实际工作了(a﹣3)天,乙比甲少工作两天,实际工作了(a﹣5)天,即用甲的工作量加乙的工作量=1,建立方程×(a﹣3)+×(a﹣5)=1,∴a=8,故选:A.【点评】本题主要考查分式方程的应用,还考查了工效×时间=工作总量这个等量关系.二.解答题(共7小题)22.下面是售货员与小明的对话:根据对话内容解答下列问题:(1)A、B两种文具的单价各是多少元?(2)若购买A、B两种文具共20件,其中A种文具的数量少于B种文具的数量,且购买总费用不超过260元,共有几种购买方案.【分析】(1)设A种文具的单价为x元,则B种文具单价为(25﹣x)元,根据用80元购买A种文具的数量是用120元购买B种文具的数量的2倍,列方程求解;(2)设学校购进A种文具a件,则购进B种文具(20﹣a)件,根据其中A种文具的数量少于B种文具的数量,且购买总费用不超过260元,列不等式求出a的取值范围,结合a为正整数,确定购买方案.【解答】解:(1)设A种文具的单价为x元,则B种文具单价为(25﹣x)元,由题意得,=,解得:x=10,经检验,x=10是分式方程的解,且符合题意,25﹣x=15答:种文具的单价为10元,则B种文具单价为15元;(2)设学校购进A种文具a件,则购进B种文具(20﹣a)件,由题意得,解得:8≤a<10,∵a是正整数,∴a为8或9∴共有两种购买方案.【点评】本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.23.两列火车分别行驶在两平行的轨道上,其中快车车长100米,慢车车长150米,当两车相向而行时,快车驶过慢车某个窗口(快车车头到达窗口某一点至车尾离开这一点)所用的时间为5秒.(1)求两车的速度之和及两车相向而行时慢车驶过快车某个窗口(慢车车头到达窗口某一点至车尾离开这一点)所用的时间;(2)如果两车同向而行,慢车的速度不小于8米/秒,快车从后面追赶慢车,那么从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需时间至少为多少秒?【分析】(1)快车驶过慢车某个窗口等量关系为:两车的速度之和×所用时间=快车车长;慢车驶过快车某个窗口等量关系为:两车的速度之和×所用时间=慢车车长;(2)等量关系为:两车速度之差×时间=两车车长之和.【解答】解:(1)设快,慢车的速度分别为x米/秒,y米/秒.根据题意得x+y==20,即两车的速度之和为20米/秒;设慢车驶过快车某个窗口需用t1秒,根据题意得x+y=,∴t1=.即两车相向而行时,慢车驶过快车某个窗口所用时间为7.5秒.答:两车的速度之和为20米/秒,两车相向而行时,慢车驶过快车某个窗口所用时间为7.5秒;(2)所求的时间t2=,∴,依题意,当慢车的速度为8米/秒时,t2的值最小,t2=,∴t2的最小值为62.5秒.答:从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需时间至少为62.5秒.【点评】找到相应的等量关系是解决问题的关键;难点是得到相应的车速和路程.24.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?(1)设B种原料每千克的价格为x元,则A种原料每千克的价格为(x+10)【分析】元,根据每件产品的成本价不超过34元,即可得出关于x的一元一次不等式,解之取其中的最大值即可得出结论;(2)设这种产品的批发价为a元,则零售价为(a+30)元,根据数量=总价÷单价结合用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,即可得出关于a的分式方程,解之经检验后即可得出结论.【解答】解:(1)设B种原料每千克的价格为x元,则A种原料每千克的价格为(x+10)元,根据题意得:1.2(x+10)+x≤34,解得:x≤10.答:购入B种原料每千克的价格最高不超过10元.(2)设这种产品的批发价为a元,则零售价为(a+30)元,根据题意得:=,解得:a=50,经检验,a=50是原方程的根,且符合实际.答:这种产品的批发价为50元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出分式方程.25.济南在创建全国文明城市的进程中,高新区为美化城市环境,计划种植树木30000棵,由于志愿者的加入,实际每天植树比原计划多20%.结果提前10天完成任务,求原计划每天植树多少棵.【分析】设原计划每天种树x棵,则实际每天栽树的棵数为(1+20%),根据题意可得,实际比计划少用10天,据此列方程求解.【解答】解:设原计划每天种树x棵,则实际每天栽树的棵数为(1+20%),由题意得,﹣=10,解得:x=500,经检验,x=500是原分式方程的解,且符合题意.答:原计划每天种树500棵.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.26.在某校举办的2012年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品200个以上可以按折扣价出售;购买200个以下(包括200个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要1050元;若多买35个,则按折扣价付款,恰好共需1050元.设小王按原计划购买纪念品x个.(1)求x的范围;(2)如果按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同,那么小王原计划购买多少个纪念品?【分析】(1)根据商场的规定确定出x的范围即可;(2)设小王原计划购买x个纪念品,根据按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同列出分式方程,求出解即可得到结果.【解答】解:(1)根据题意得:0<x≤200,且x∈N;(2)设小王原计划购买x个纪念品,根据题意得:×5=×6,整理得:5x+175=6x,解得:x=175,经检验x=175是分式方程的解,且满足题意,则小王原计划购买175个纪念品.【点评】此题考查了分式方程的应用,弄清题中的等量关系“按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同”是解本题的关键.27.一项工程,甲队单独完成比乙队单独完成需少用9天,甲队单独做3天的工作乙队单独做需要4天,(1)甲、乙两队单独完成此项工程各需几天?(2)该项工程先由甲、乙两队合作,再由甲队单独完成,若完成此项工程不超过18天,甲乙两队至少合作几天?【分析】(1)设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+9)天,根据甲队单独做3天的工作乙队单独做需要4天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设甲乙两队合作y天,根据完成此项工程不超过18天,即可得出关于y的一元一次不等式,解之即可得出y的取值范围,取其中的最小值即可得出结论.【解答】解:(1)设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+9)天,根据题意得:=,解得:x=27,经检验,x=27是原方程的解,且符合题意,∴x+9=36.答:甲队单独完成此项工程需27天,乙队单独完成此项工程需36天.(2)设甲乙两队合作y天,根据题意得:+≥1,解得:y≥12.。

苏科版八年级下册数学第10章 分式 含答案

苏科版八年级下册数学第10章 分式 含答案

苏科版八年级下册数学第10章分式含答案一、单选题(共15题,共计45分)1、若在实数范围内有意义,则x的取值范围是()A.x≥B.x≥﹣C.x>D.x≠2、下列各式中:①x=0;②2x>3;③x2+x-2=0;④+2=0;⑤3x-2;⑥x=x-1;⑦x-y=0;⑧xy=4,是方程的有( )A.5B.6C.4D.33、小马虎同学在下面的计算中只作对了一道题,他做对的题目是()A. B.a 3÷a=a 2 C. D.4、化简的结果是()A. B. C. D.5、若分式的值为0,则x的值是()A.-1B.1C.±1D.不存在6、在﹣3x,6﹣a=2,4ab2, 0,,,>,x中,是代数式的共有()A.7个B.6个C.5个D.4个7、衡阳市某生态示范园计划种植一批梨树,原计划总产值30万kg,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万kg,种植亩数减少了10亩,则原来平均每亩产量是多少万kg?设原来平均每亩产量为x万kg,根据题意,列方程为()A. B. C. D.8、计算结果为()A.1B.-1C.a+bD.-a-b9、下列结论正确的是( )A.3a 2b-a 2b=2B.单项式-x 2的系数是-1C.使式子(x+2)0有意义的x的取值范围是x≠0 D.若分式的值等于0,则a=±110、化简﹣的结果是()A.a+bB.aC.a﹣bD.b11、方程的解为().A.x=-1B.x=0C.x=D.x=112、某商场要销售70件积压衬衫,销售30件后,降低售价,每天能多售出10件,结果70件衬衫一共用5天全部售完,原来每天销售多少件衬衫?设原来每天销售x件衬衫,下面列出的方程正确的是( )A. B. C. D.13、分式的计算结果是()A. B. C. D.14、已知.则分式的值为( ).A.3B.1C.D.015、化简:﹣,结果正确的是(&nbsp; )A.1B.C.D.x 2+y 2二、填空题(共10题,共计30分)16、方程= 的根x=________.17、若代数式有意义,则的取值范围为________.18、方程的解是________.19、如果关于x的方程2无解,则a的值为________.20、关于的方程的解是正数,则的取值范围是________.21、若分式的值为,则的值为________.22、计算:=________ .23、计算:=________.24、已知,则________.25、已知3a-b=0,则分式的值为________三、解答题(共5题,共计25分)26、先化简,再求值:.其中.27、如果方程与的解相同,求(a-3)2的值.28、为了锻炼意志提高班级凝聚力,某校八年级学生决定全班参加“美丽佛山一路向前﹣﹣﹣50公里徒步”活动,从起点步行出发20分钟后,负责宣传的王老师骑自行车以2倍的速度原路追赶,结果在距起点10千米处追上,求学生步行的速度和王老师骑自行车的速度分别是多少?29、某校学生捐款支援地震灾区,第一次捐款总额为6600元,第二次捐款总额为7260元,第二次捐款人数比第一次多30人,而且两次人均捐款额恰好相等,求第一次的捐款人数。

2020-2021学年苏科版八年级下册数学 第十章 分式 单元综合测试(含解析)

2020-2021学年苏科版八年级下册数学 第十章 分式 单元综合测试(含解析)

第十章分式单元综合测试一.选择题1.在中,是分式的有()A.1个B.2个C.3个D.4个2.若分式有意义,则x满足的条件是()A.x=5B.x≠5C.x=0D.x≠03.下列分式中,最简分式是()A.B.C.D.4.下列约分正确的是()A.=x3B.=0C.=x+y D.=x﹣y5.如果把分式中的x,y同时扩大为原来的4倍,那么该分式的值()A.不变B.扩大为原来的4倍C.缩小为原来的D.缩小为原来的6.化简+的结果是()A.x+y B.x﹣y C.D.7.化简÷的结果是()A.x+3B.x﹣3C.3﹣x D.﹣6x8.如果a2+a﹣1=0,那么代数式(1﹣)÷的值是()A.3B.1C.﹣1D.﹣39.为有效解决交通拥堵问题,营造路网微循环,某市决定对一条长860m的道路进行拓宽改造.为了减轻施工对城市交通造成的影响,实际施工时,每天改造道路的长度比原计划增加10%,结果提前6天完成任务.求实际每天改造道路的长度与实际施工天数.珍珍同学根据题意列出方程﹣=6;文文同学根据题意列出方程=×(1+10%).已知两人的答案均正确,则下列说法正确的是()A.x,y代表相同的含义B.x表示实际每天改造道路的长度C.y表示实际施工天数D.表示实际每天改造道路的长度10.如果关于x的不等式组有且只有四个整数解,且关于x的分式方程=﹣8的解为非负数,则符合条件的所有整数a的个数为()A.1B.2C.3D.4二.填空题11.若分式的值为0,则x=.12.化简:=.13.分式与的最简公分母为.14.计算:=.15.计算:=.16.计算的结果等于.17.方程=﹣2的解是.18.要使的值和的值互为相反数,则x的值是.19.如果方程+=0不会产生增根,那么k的取值范围是.20.某校要建立两个计算机教室,为此要购买相同数量的A型计算机和B型计算机.已知一台A 型计算机的售价比一台B型计算机的售价便宜400元,如果购买A型计算机需要224000元,购买B型计算机需要240000元.求一台A型计算机和一台B型计算机的售价分别是多少元.设一台B型计算机的售价是x元,依题意列方程为.三.解答题21.已知x=﹣4时,分式无意义,x=2时,此分式的值为零,求分式的值.22.约分:(1)(2)23.计算:.24.计算下列各式:(1)•;(2)÷(x﹣2)•.25.解方程:=1.26.某超市用4000元购进某种牛奶,面市后供不应求,超市又用1万元购进第二批这种牛奶,所购数量是第一批的2倍,但单价贵了2元.(1)第一批牛奶进货单价为多少元?(2)超市销售两批牛奶售价相同,两批全部售完后要求获利不少于4000元,则售价至少为多少元?27.我们定义:如果两个分式A与B的差为常数,且这个常数为正数,则称A是B的“雅中式”,这个常数称为A关于B的“雅中值”.如分式A=,B=,A﹣B=﹣()===2,则A是B的“雅中式”,A关于B的“雅中值”为2.(1)已知分式C=,D=,判断C是否为D的“雅中式”,若不是,请说明理由,若是,请证明并求出C关于D的“雅中值”;(2)已知分式P=,Q=,P是Q的“雅中式”,且P关于Q的“雅中值”是2,x为整数,且“雅中式”P的值也为整数,求E所代表的代数式及所有符合条件的x的值之和;(3)已知分式M=,N=(a,b,c为整数),M是N的“雅中式”,且M关于N的“雅中值”是1,求a﹣b+c的值.参考答案一.选择题1.解:的分母中含有字母,属于分式,其他的属于整式.故选:B.2.解:∵分式有意义,∴x﹣5≠0,∴x≠5,故选:B.3.解:A、=,所以A选项不符合;B、=,所以B选项不符合;C、==,所以C选项不符合;D、为最简分式,所以D选项符合.故选:D.4.解:A、原式=x4,所以A选项错误;B、原式=1,所以B选项错误;C、为最简分式,所以C选项错误;D、原式==x﹣y,所以D选项正确.故选:D.5.解:x,y同时扩大为原来的4倍,则有==•,∴该分式的值是原分式值的,故选:D.6.解:原式=﹣===x﹣y.故选:B.7.解:原式=•=x﹣3.故选:B.8.解:原式=(﹣)÷=•==,∵a2+a﹣1=0,∴a2+a=1,则原式==3,故选:A.9.解:若设原计划每天改造道路x米,则实际每天改造道路(1+10%)x米,根据题意,可列方程﹣=6;若设实际施工天数为y天,则原计划施工的天数为(y+6)天,根据题意,可列方程=×(1+10%);所以x,y代表不同的含义,表示计划每天改造道路的长度.故选:C.10.解:,不等式组化简为,由不等式组有且只有四个整数解,得到,2<解得:6≤a<10,即整数a=6,7,8,9,,分式方程去分母得:ax﹣28=﹣8(4﹣x)解得:x=,由分式方程的解为非负数以及分式有意义的条件,a﹣8<0,解得:a<8,故a=6和7.故选:B.二.填空题11.解:由题意得:x2﹣1=0,且1﹣x≠0,解得:x=﹣1.故答案为:﹣1.12.解:原式==.故答案为.13.解:分式与的分母为2x2y和6xy2,系数的最小公倍数是6,再取x2和y2,可得最简公分母为6x2y2,故答案为6x2y2.14.解:原式=+=+=+==.故答案为:.15.解:原式=[﹣]•=﹣•=﹣•=﹣2(a+3)=﹣2a﹣6.故答案为:﹣2a﹣6.16.解:原式=•=.故答案为:.17.解:去分母得:2x=3﹣2(2x﹣2),去括号得:2x=3﹣4x+4,移项合并得:6x=7,解得:x=,检验:把x=代入得:2x﹣2=﹣2=≠0,则x=是分式方程的解.故答案为:x=.18.解:根据题意可得:+=0,去分母得:x﹣5+2x﹣4=0,解得:x=3,经检验,x=3是原分式方程的解,故答案为3.19.解:+=0,去分母得,2k+x=0,当x=﹣2时,会产生增根,把x=﹣2代入整式方程得,2k﹣2=0,解得k=1,∴解方程+=0时,不会产生增根,实数k的取值范围为k≠1.故答案是:k≠1.20.解:设一台B型计算机的售价是x元,则一台A型计算机的售价是(x﹣400)元,依题意得:=.故答案为:=.三.解答题21.解:∵分式无意义,∴2x+a=0即当x=﹣4时,2x+a=0.解得a=8∵分式的值为0,∴x﹣b=0,即当x=2时,x﹣b=0.解得b=2∴.22.解:(1)=;(2)原式==.23.解:原式====.24.解:(1)原式=;(2)原式=••=.25.解:方程两边同乘以(x+3)(x﹣1)得:2x(x﹣1)﹣24=(x+3)(x﹣1),整理得:2x2﹣2x﹣24=x2+2x﹣3,则x2﹣4x﹣21=0,(x﹣7)(x+3)=0,解得:x1=7,x2=﹣3,检验:当x=﹣3时,(x+3)(x﹣1)=0,故x=﹣3是方程的增根,当x=7时,(x+3)(x﹣1)≠0,故x=7是原方程的根.26.解:(1)设第一批牛奶进货单价为x元,则第二批牛奶进货单价为(x+2)元,依题意可得:=2×,解得x=8.经检验x=8是方程的解,答:第一批牛奶进货单价为8元;(2)设售价为y元,依题意可得:×(y﹣8)+2××(y﹣10)≥4000,解得y≥12.答:售价至少为12元.27.(1)C是D的“雅中式”,理由如下,==.即:C不是D的“雅中式”.(2).∵P是Q的雅中式.又∵P关于Q的雅中值为2.∴E﹣2x2﹣6x=2(9﹣x2).∴E=6x+18.∴P===.∵P的值也为整数,且分式有意义.故3﹣x=±1,或3﹣x=±2,或者3﹣x=±3,或3﹣x=±6,∴x的值为:﹣3,0,1,2,4,5,6,9.∵x≠±3.∴x的值为:﹣3,0,1,2,4,5,6,9.符合条件的x的值之和为:0+1+2+4+5+9=27.(3)∵M是N的“雅中式”,且M关于N的“雅中值”是1.=1.整理得:(﹣b﹣c+a+4)x+bc﹣5a=0.由上式子恒成立,则:.消去a得:bc﹣5b﹣5c+20=0.∴b(c﹣5)﹣5(c﹣5)=5.∴(b﹣5)(c﹣5)=5.∵a、a、c的整数.∴b﹣5、c﹣5也是整数.当b﹣5=1、c﹣5=5时,b=5,c=10,此时a=12.∴a﹣b+c=16.当b﹣5=5、c﹣5=1时,b=10,c=6,此时a=12.∴a﹣b+c=8.当b﹣5=﹣1、c﹣5=﹣5时,b=4,c=0,此时a=0.∴a﹣b+c=﹣4.当b﹣5=﹣5、c﹣5=﹣1时,b=0,c=4,此时a=0.∴a﹣b+c=4.综上:a﹣b+c的值为:16或8或﹣4或4.。

第10章 分式 苏科版数学八年级下册综合素质评价(含答案)

第10章 分式 苏科版数学八年级下册综合素质评价(含答案)

第10章分式综合素质评价一、选择题(每题2分,共16分)1.代数式25x,1π,2x2+4,x2-23,1x,x+1x+2中,属于分式的有( )A.2个B.3个C.4个D.5个2.使分式2x-4有意义的x的取值范围是( )A.x≤4B.x≥4C.x≠4D.x=43.分式①a+2a2+3,②a-ba2-b2,③4a12(a-b),④1x-2中,最简分式有( )A.1个B.2个C.3个D.4个4.解分式方程2x-1-2xx-1=1,可知方程的解为( )A.x=1 B.x=3 C.x=12D.无解5.《九章算术》之“粟米篇”中记载了中国古代的“粟米之法”:“粟率五十,粝米三十…”(粟指带壳的谷子,粝米指糙米),其意为:“50单位的粟,可换得30单位的粝米…”.问题:有3斗粟(1斗=10升),若按照此“粟米之法”,则可以换得的粝米为( )A.1.8升B.16升C.18升D.50升6.计算m2m-1-2m-1m-1的结果是( )A.m+1 B.m-1 C.m-2 D.-m-27.对于非零的两个实数a,b,规定a*b=3b-2a,若5*(3x-1)=2,则x的值为( )A.56B.34C.23D.-168.若关于x 的分式方程3x -a x -3+x +13-x=1的解为正数,且关于y 的不等式组{y +9≤2(y +2),2y -a 3>1的解集为y ≥5,则所有满足条件的整数a 的值之和是( )A .13B .15C .18D .20二、填空题(每题2分,共20分)9.x 6ab 2与y9a 2bc 的最简公分母是________.10.计算:a 2a -b+b 2-2ab a -b=________.11.若x =1是分式方程a -2x -1x -2=0的根,则a =________.12.若关于x 的方程ax +1x -1-1=0无实数根,则a 的值为________.13.若关于x 的分式方程m x -1+31-x=1的解为正数,则m 的取值范围是________.14.小明同学在对分式方程2x x -2+3-m 2-x=1去分母时,方程右边的1没有乘x -2,若此时解得整式方程的解为x =2,则原方程的解为________.15.如图的解题过程中,第①步出现错误,但最后所求的值是正确的,则图中被盖住的x 的值是_______________.先化简,再求值:3-xx -4+1,其中x =★.解:原式=3-xx -4·(x -4)+(x -4)…①=3-x +x -4=-1.16.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现,小琼步行12 000步与小博步行9 000步消耗的能量相同.若小琼每消耗1千卡能量行走的步数比小博的多10步,则小博每消耗1千卡能量需要行走________步.17.若mn =n -m ≠0,则3n -3m的值为 ________.18.“绿水青山就是金山银山”.某地为美化环境,计划种植树木6 000棵.由于志愿者的加入,实际每天植树的棵数比原计划增加了25%,结果提前3天完成任务,则实际每天植树________棵.三、解答题(19~21题每题6分,22~23题每题8分,24~26题每题10分,共64分)19.计算:(1)2aa 2-9-1a -3;(2)(1+2a +1a 2)÷a +1a.20.先化简,再求值:(1)(1+1m -1)·m 2-1m,其中m =2.(2)a 2-6ab +9b 2a 2-2ab ÷a -3b a -2b -1a,其中a =4,b =1.21.解分式方程:(1)x 2x -3+53-2x=4.(2)x -2x +2-1=16x 2-4.22.已知M=2xyx2-y2,N=x2+y2x2-y2,用“+”或“-”连接M,N,有三种不同的形式:M+N,M-N,N-M,任选其中一种进行计算,并化简求值,其中x:y=5:2.23.已知关于x的方程mx+3-13-x=m+4x2-9.(1)若m=-3,解这个方程;(2)若原方程无解,求m的值.24.为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了20%,现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天.问原先每天生产多少万剂疫苗?25.小张去离家2 520 m的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23 min,于是他跑步回家,拿到门票后立刻找到一辆共享单车原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4 min,且骑车的平均速度是跑步的平均速度的1.5倍.(1)求小张跑步的平均速度.(2)如果小张在家取票和寻找共享单车共用了5 min ,他能否在演唱会开始前赶到奥体中心?并说明理由.26.阅读下面材料,解答后面的问题.解方程:x -1x -4xx -1=0.解:设y =x -1x ,则原方程可化为y -4y =0,方程两边同时乘y ,得y 2-4=0,解得y =±2.经检验,y =2和y =-2都是方程y -4y =0的解.当y =2时,x -1x =2,解得x =-1;当y =-2时,x -1x =-2,解得x =13. 经检验,x =-1和x =13都是原分式方程的解.∴原分式方程的解为x =-1或x =13.上述这种解分式方程的方法称为换元法.(1)若在方程x -14x -xx -1=0中,设y =x -1x ,则原方程可化为________________;(2)若在方程x -1x +1-4x +4x -1=0中,设y =x -1x +1,则原方程可化为_______________;(3)模仿上述换元法解方程:x -1x +2-3x -1-1=0.答案一、1.B 2.C 3.B 4.D 5.C 6.B 7.B8.A 点拨:解分式方程得x =a -2,∵x >0且x ≠3,∴a -2>0且a -2≠3,∴a >2且a ≠5.解不等式组得{y ≥5,y >a +32,∵不等式组的解集为y ≥5,∴a +32<5,∴a <7.∴2<a <7且a ≠5,∴所有满足条件的整数a 的值之和为3+4+6=13.二、9.18a 2b 2c 10.a -b 11.1 12.1或-113.m >2且m ≠314.x =1 点拨:小明去分母得到的整式方程是2x -(3-m )=1,把x =2代入,得4-(3-m )=1,解得m =0.故原分式方程为2xx -2+32-x =1,解得x =1,经检验,x =1是原分式方程的解.15.5 点拨:3-x x -4+1=3-x +x -4x -4=14-x ,当14-x=-1时,可得x =5,检验:当x =5时,4-x ≠0,∴题图中被盖住的x 的值是5.16.30 点拨:设小博每消耗1千卡能量需要行走x 步,则小琼每消耗1千卡能量需要行走(x +10)步,根据题意得12 000x +10=9 000x ,解得x =30,经检验,x =30是原方程的解,且符合题意.故小博每消耗1千卡能量需要行走30步.17.-3 点拨:原式=3m mn -3nmn =3(m -n )mn.∵mn =n -m ,∴原式=-3mn mn=-3.18.500三、19.解:(1)原式=2a (a +3)(a -3)-a +3(a +3)(a -3)=a-3(a+3)(a-3)=1a+3.(2)原式=a2+2a+1a2÷a+1a=(a+1)2a2·aa+1=a+1a.20.解:(1)原式=(m-1m-1+1m-1)·(m+1)(m-1)m=mm-1·(m+1)(m-1)m=m+1,当m=2时,原式=m+1=2+1=3.(2)a2-6ab+9b2a2-2ab÷a-3ba-2b-1a=(a-3b)2a(a-2b)·a-2ba-3b-1a=a-3ba-1a=a-3b-1a,当a=4,b=1时,原式=4-3×1-14=0.21.解:(1)方程两边同乘2x-3,得x-5=4(2x-3),解得x=1,检验:当x=1时,2x-3≠0,所以x=1是原分式方程的解.(2)方程两边同乘(x+2)(x-2),得x2-4x+4-x2+4=16,解得x=-2.检验:当x=-2时,(x+2)(x-2)=0,所以x=-2是增根,原分式方程无解.22.解:选择一,M+N=2xyx2-y2+x2+y2x2-y2=(x+y)2(x+y)(x-y)=x+yx-y.当x:y=5:2时,x=5 2y,∴原式=52y+y52y-y=73;选择二,M -N =2xyx 2-y 2-x 2+y 2x 2-y 2=-(x -y )2(x +y )(x -y )=y -xx +y.当x :y =5:2时,x =52y ,∴原式=y -52y 52y +y =-37;选择三,N -M =x 2+y 2x 2-y 2-2xyx 2-y 2=(x -y )2(x +y )(x -y )=x -y x +y .当x :y =5:2时,x =52y ,∴原式=52y -y 52y +y =37.点拨:任选一种即可.23.解:(1)把m =-3代入原方程得-3x +3-13-x =-3+4x 2-9.方程两边同乘(x -3)(x +3),得-3(x -3)+(x +3)=1.解这个一元一次方程,得x =5.5.检验:当x =5.5时,(x +3)(x -3)≠0,∴x =5.5是原方程的解.(2)当(x +3)(x -3)=0时,x =3或-3.方程两边同乘(x -3)(x +3),得m (x -3)+(x +3)=m +4,整理,得(m +1)x =1+4m ,当m +1=0时,1+4m ≠0,方程无解,此时m =-1.当m +1≠0时,x =1+4m m +1,当x =3时,(x -3)(x +3)=0,方程无解,即1+4m m +1=3,解得m =2,经检验,m =2是方程1+4m m +1=3的解.当x =-3时,(x -3)(x +3)=0,方程无解,即1+4m m +1=-3,解得m =-47,经检验,m =-47是方程1+4mm +1=-3的解.综上,若原方程无解,则m =-1或2或-47.24.解:设原先每天生产x 万剂疫苗,由题意可得240(1+20%)x +0.5=220x ,解得x =40,经检验,x =40是原方程的解,且符合题意.答:原先每天生产40万剂疫苗.25.解:(1)设小张跑步的平均速度为x m/min ,则小张骑车的平均速度为1.5x m/min ,根据题意,得2 520x -2 5201.5x=4,解得x =210.经检验,x =210是原方程的解,且符合题意.答:小张跑步的平均速度为210 m/min.(2)不能.理由:小张跑步到家所用时间为2 520÷210=12(min),小张骑车赶回奥体中心所用时间为12-4=8(min),小张从开始跑步回家到赶回奥体中心所用时间为12+8+5=25(min),∵25>23,∴小张不能在演唱会开始前赶到奥体中心.26.解:(1)y 4-1y =0 (2)y -4y=0(3)原方程可化为x -1x +2-x +2x -1=0,设y =x -1x +2,则原方程可化为y -1y =0,方程两边同时乘y ,得y 2-1=0,解得y =±1.经检验,y =1和y =-1都是方程y -1y =0的解.当y =1时,x -1x +2=1,该方程无解;当y =-1时,x -1x +2=-1,解得x =-12.经检验,x =-12是原分式方程的解.∴原分式方程的解为x =-12.。

苏科版八年级数学下册 第十章《分式》综合练习

苏科版八年级数学下册 第十章《分式》综合练习

苏科版八年级第十章《分式》一、选择题:1、下列计算中,正确的是( ).A. 12a =12(a+b)B. C. D.2、用换元法解分式方程时,如果设,将原方程化为关于的整式方程,那么这个整式方程是()A .B .C .D.3、已知关于x的分式方程211ax+=+的解是非正数,则以的取值范围是 ( )A.a≤一1 B.a≤一1且a≠一2C.a≤1且a≠2 D.a≤14、若关于x的分式方程=2﹣的解为正数,则满足条件的正整数m的值为()A.1,2,3 B.1,2 C.1,3 D.2,35、已知x2﹣3x﹣4=0,则代数式的值是()A.3 B.2 C. D.6、无论x取何值,下列分式总有意义的是()[来源:学。

科。

网Z。

X。

X。

K]A.3xx-B.122x+C.2221x+D.1xx-7、若分式1(3)(1)xx x--+的值为0,则x等于()A.-1 B.-1或3 C.-1或1 D.18、如果把分式3xyx y+中的x和y都扩大为原来的2倍,那么分式的值()A.扩大2倍 B.缩小2倍 C.缩小4倍 D.扩大4倍9、下面是嘉淇在学习分式运算时解答的四道题:()其中计算正确的是( )A.①B.②C.③D.④ 10、下列说法:①解分式方程一定会产生增根;②方程x−2x −4x+4=0的根为2;③ 方程12x =12x−4的最简公分母是2x(2x −4);④x+1x−1=1+1x−1是分式方程. 其中正确的个数是( ). A. 1个 B. 2个 C. 3个 D. 4个11、已知关于x 的方程3x−1−x+ax(x−1)=0增根是1,则字母a 的取值为 2 B. −2 C. 1D. −112、已知,关于x 的分式方程2x−3+x+a3−x =2有增根,且关于x 的不等式组{x >ax ≤b只有4个整数解,那么b 的取值范围是( )A. −1<b ≤3B. 2<b ≤3C. 8≤b <9D. 3≤b <4 13、化简211211x x x x ⎛⎫÷- ⎪+++⎝⎭的结果是( ) A.11x + B. 1x x+ C. x+1 D. x ﹣1 14、甲、乙两人同时从A 地出发至B 地,如果甲的速度v 保持不变,而乙先用 的速度到达中点,再用的速度到达B 地,则下列结论中正确的是( )A. 甲、乙同时到达B 地B. 甲先到达B 地C. 乙先到达B 地D. 谁先到15、达B 地与速度v 有关16、已知,则的值是( )230.5x y z==32x y z x y z +--+A .B.7C.1D. 17、已知,且,则的值为( ) A . B . C .2 D .18、若关于x 的方程+=3的解为正数,则m 的取值范围是( )A .m <B .m <且m≠C .m >﹣D .m >﹣且m≠﹣ 19、已知1a +12b =3,则代数式2a−5ab+4b4ab−3a−6b的值为( )A. 15B. −15C. 12D. −1220、已知:点p(1−2a,a −2)在第三象限内,且a 为整数,则关于x 的分式方程x+1x−a=2的解是( )A. 5B. 3C. 1D. 不能确定 21、对于两个不相等的实数a 、b ,我们规定符号Max{a,b}表示a 、b 中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,−x}=2x+1x的解为( )A. 1−√2B. 2−√2C. 1+√2或1−√2D. 1+√2或−122、如图,设k =甲图中阴影部分面积乙图中阴影部分面积(a >b >0),则有( )A. k >2B. 1<k <2C. 12<k <1D. 0<k <12二、填空题:1、约分:= ___________.1713226a b ab +=0a b >>a ba b+-22±2±2、在分式:①224a a +-;②25xy x xy -;③1421()a ab -;④2369x x x +-+中,最简分式有 个.3、若关于x 的分式方程311x a x x--=-无解,则a = . 4、若219x x ⎛⎫+= ⎪⎝⎭,则21x x ⎛⎫- ⎪⎝⎭的值为___________.5、若关于x 的分式方程311x a x x--=-无解,则a =__________. 6、若1142,22a ab b a b a ab b+--=--则的值是________.7的值为0的x 值是___________.8、若22440,x yx xy y x y--+=+则等于________. 9、已知,则的值为______. 10、当a=﹣1时,代数式的值是 .11、已知一个口袋中装有六个完全相同的小球,小球上分别标有1,2,5,7,8,13六个数,搅匀后一次从中摸出一个小球,将小球上的数记为m ,则使得一次函数y =−mx +10−m 经过一、二、四象限且关于x 的分式方程mxx−8=3+8xx−8的解为整数的概率是______ .12、某农场原计划用m 天完成2bhm 的播种任务,如果要提前a 天结束,那么平均每天比原计划要多播种 ___________ 2hm . 13、若,则w = __________.14、若代数式(x−2)(x−3)2x−6的值为零,则x =______________.2242141x y y x y y +-=-+-24y y x ++15、从-3,-1,12,1,3这五个数中,随机抽取一个数,记为a ,若数a使关于x 的不等式组()127330x x a ⎧+≥⎪⎨⎪-⎩,<无解,且使关于x 的分式方程3x x --23a x --=-1有整数解,那么这5个数中所有满足条件的a 的值之和是 16、若分式方程xx−1−m1−x =2有增根,则这个增根是______. 17、解关于x 的方程1−kx x−2=12−x 出现增根,则增根x =________,常数k =________.18、若关于x 的分式方程1ax+b =1bx+a 有增根(a ≠b ,且a ,b 都不为零),则a b=________.19、当x>2时,M=12--x x 与N=23--x x 的大小关系______20、某农场原计划用朋天完成2bhm 的播种任务,如果要提前a 天结束,那么平均每天比原计划要多播种 2hm . 21、A 1与-11-x 的最简公分母是2(x2-1),则分母A________22、已知实数a 、b 、c 满足a +b =ab =c ,有下列结论:①若c ≠0,1a +1b =1;②若a =3,则b +c =9;③若a 、b 、c 中只有两个数相等,则a +b +c =8.其中正确的是 __________. (把所有正确结论的序号都填上)23、若分式A =4x 2−4,B =1x+2+12−x ,其中x ≠±2,则A 与B 的关系是________. 24、对于正数x ,规定.例如,,则 ______ .三、解答题: 1、计算:(1)222242x y x xy y -++·22x xy x y ++÷22x xy x y -+; (2)62122-++x x x ÷⎪⎭⎫ ⎝⎛---331x x x .(3)2411241111x x x x +++-+++ (4) 221111x x x x+⎛⎫-÷ ⎪--⎝⎭;2、先化简,后求值:(1) 211122a a a -⎛⎫-÷⎪++⎝⎭,其中3a =. (2)2222a a a b a ab b ⎛⎫- ⎪--+⎝⎭ ÷ 222a a a b a b ⎛⎫- ⎪+-⎝⎭+1 ,其中a=23,b=-32、先化简代数式(a a+2−aa−2)•2−a a,再从你喜欢的数中选择一个恰当的作为x 的值,代入求出代数式的值.4、解下列方程 (1)51141022233x x x x +++=-- (2)214111x x x +-=--5、苏科版教科书对分式方程验根的归纳如下: “解分式方程时,去分母后所得整式方程的解有可能使原分式方程中的分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.” 请你根据对这段话的理解,解决下面问题:已知关于x 的方程m−1x−1−xx−1=0无解,方程x 2+kx +6=0的一个根是m .(1)求m 和k 的值;(2)求方程x 2+kx +6=0的另一个根.6、当m 为何值时,关于x 的方程223242mx x x x +=--+无解?7、五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同 (1)求甲、乙两种救灾物品每件的价格各是多少元?(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?8、已知为整数,且为整数,求所有符合条件的x 的值.9、先仔细看(1)题,再解答(2)题.(1)a 为何值时,方程xx−3=2+ax−3会产生增根?x 918232322-++-++x x x x(2)当m为何值时,方程yy−1−m2y2−y=y−1y会产生增根?10、先阅读下列解法,再解答后面的问题.已知3x−4x-3x+2=Ax−1+Bx−2,求A、B的值.解:将等号右边通分,再去分母,得:3x−4=A(x−2)+B(x−1),即:3x−4=(A+B)x−(2A+B),∴{A+B=3−(2A+B)=−4解得{A=1 B=2(1)已知11x-3x2-14x+24=Ax+6+B4−3x,用上面的解法求A、B的值.(2)计算:[1(x−1)(x+1)+1(x+1)(x+3)+1(x+3)(x+5)+…+1(x+9)(x+11)](x+11),并求x取何整数时,这个式子的值为正整数.11、阅读理解:小铭、小冲和小新学习完《整式的乘法》和《分式》两章后,小铭提出了一问题:小铭:“我知道一般情况下,当m ≠n 时,m 2+n ≠m +n 2.可是我发现有这样一个神奇的等式:当m 、n 分别取m =ab ,n =b−a b时,有(a b )2+b−a b=ab +(b−a b)2(其中a ,b 为任意实数,且b ≠0),却满足m 2+n =m +n 2.但我不知道为什么,你们知道吗?”小冲和小新对小铭的问题进行了探究,请你帮他们完成下面的探究过程: (1)小冲先取特殊值a =2,b =3,分别代入(a b )2+b−a b和ab +(b−a b)2进行计算,请你分别计算这两个式子的值,判断它们是否相等;(2)小冲后来想到a 、b 的值不能一一列举完,于是分别计算(a b )2+b−a b和ab +(b−a b)2的结果,请你帮小冲完成这两个式子的计算,判断它们是否相等; (3)小新发现,由m =ab ,n =b−a b可得m +n =1.于是设计了这样一道变式题:已知:m 2+n =m +n 2(其中m 、n 为任意实数且m ≠n),求证:m +n =1. 请你完成小新的这道证明题.12、华昌中学开学初在金利源商场购进A 、B 两种品牌的足球,购买A 品牌足球花费了2 500元,购买B 品牌足球花费了2 000元,且购买A 品牌足球的数量是购买B 品牌足球数量的2倍,已知购买一个B 品牌足球比购买一个A 品牌的足球多花30元.(1)求购买一个A 品牌、一个B 品牌的足球各需多少元;(2)华昌中学为响应习总书记“足球进校园”的号召,决定再次购进A 、B 两种品牌足球共50个.恰逢金利源商场对两种品牌足球的售价进行调整,A 品牌足球的售价比第一次购买时提高了8%,B 品牌足球按第一次购买时售价的9折出售.如果这所中学此次购买A 、B 两种品牌足球的总费用不超过3 260元,那么华昌中学此次最多可购买多少个B 品牌足球?13、某县向某贫困山区赠送一批计算机,首批270台将于近期起运.经与某物流公司联系,得知用A型汽车若干辆刚好装完,用B型汽车不仅可少用1辆,而且有一辆车还差30台才刚好装满.(1)已知每辆A型汽车所装计算机的台数是B型汽车的34,求A、B两种型号的汽车各能装计算机多少台?(2)在(1)中条件下,已知A型汽车的运费是每辆350元,B型汽车的运费是每辆400元,若同时用这两种型号的汽车运送这批计算机,其中B型汽车比A型汽车多用1辆,并且刚好装满运完,按这种方案运输,则A、B两种型号的汽车各需多少辆?总运费为多少元?14、超市用2500元购进某种品牌苹果进行试销,由于销售状况良好,超市又调拨6000元资金购进该品牌苹果,但这次进货价比上次每千克少0.5元,购进苹果的数量是上次的3倍.(1)试销时该品牌苹果的进货价是每千克多少元?(2)如果超市按每千克4元的定价出售,当售出大部分后,余下600千克按五折出售完,那么超市在这两次苹果销售中共获利多少元?15、某一工程,在工程招标时,接到甲、乙两个工程队的投标书。

第10章 分式 苏科版数学八年级下册综合检测(含答案)

第10章 分式 苏科版数学八年级下册综合检测(含答案)

第10章 分 式综合检测(满分100分,限时60分钟)一、选择题(本题共8题,每题3分,共24分)1.下列式子中,是分式的为( )A.12―a B.xπ―3 C.-x3 D.x2+y2.下列判断错误的是( )A.当a≠0时,分式2a 有意义B.当a=2时,分式3a ―62a +1的值为0C.当a>2时,分式a ―2a 2的值为正数D.当a=-2时,分式a +2a 2―4的值为03.(2022江苏扬州广陵期中)把分式x 2x ―3y 中的x 和y 都扩大为原来的3倍,则分式的值( )A.不变  B.扩大为原来的3倍C.缩小为原来的13 D.扩大为原来的9倍4.(2022江苏无锡月考)若式子x 2+1x ―1 2xx ―1的运算结果为x-1,则在“ ”中添加的运算符号为( )A.+B.-C.×D.÷5.(2022江苏泰州月考)下列运算正确的是( )A.1a +1b =2a +b B.―a +ba ―b =-1C.a÷b·1b =a D.ab =a ―1b ―16.(2021四川成都中考)分式方程2―x x ―3+13―x=1的解为( )A.x=2B.x=-2C.x=1D.x=-17.(2020黑龙江齐齐哈尔中考)若关于x 的分式方程3xx ―2=m2―x +5的解为正数,则m 的取值范围为( )A.m<-10B.m≤-10C.m≥-10且m≠-6D.m>-10且m≠-68.(2022山东泰安中考)某工程需要在规定时间内完成,如果甲工程队单独做,恰好如期完成; 如果乙工程队单独做,则多用3天,现在甲、乙两队合作2天,剩下的由乙队单独做,恰好如期完成,求规定时间.如果设规定时间为x 天,下面所列方程中错误的是( )A.2x +xx +3=1B.2x=3x +3+×2+x ―2x +3=1D.1x +x x +3=1二、填空题(每题3分,共24分)9.(2022江苏南京鼓楼期中)请你写出一个值恒为正数的分式: .10.(2022江苏南京三十九中期中)分式2xx ―2和3x 2―2x 的最简公分母是 . 11.(2022浙江温州中考)计算:x 2+xyxy+xy ―x 2xy = .12.若不改变分式的值,使分子与分母的最高次项的符号为正,则―1―2x ―x 2―x 2+1= . 13.(2022四川内江中考)对于非零实数a,b,规定a￿b=1a―1b,若(2x-1)￿2=1,则x 的值为 .14.(2021浙江宁波镇海期末)已知1x ―1y=2,则―x+xy+y2x+7xy―2y= .15.(2022黑龙江齐齐哈尔中考)若关于x的分式方程1x―2+2x+2=x+2mx2―4的解大于1,则m的取值范围是 .16.(2022江苏盐城月考)已知ab=1,且a≠b.若P=aa+1+bb+1,Q=1a+1+1b+1,则P Q(填“>”“<”“=”“≤”或“≥”).三、解答题(共52分)17.(10分)解分式方程:(1)(2022江苏苏州中考) xx+1+3x=1;(2)(2021江苏连云港中考)x+1x―1―4x2―1=1.18.(2022江苏江阴期中)(10分)先化简―÷a2+aa2―2a+1,再从-1,0,1,2四个数中选一个恰当的数作为a的值代入求值.19.【新素材·青春仪式】(2022江苏扬州中考)(10分)某中学为准备十四岁青春仪式,原计划由八年级(1)班的4个小组制作360面彩旗,后因1个小组另有任务,其余3个小组的每名学生要比原计划多做3面彩旗才能完成任务.如果这4个小组的人数相等,那么每个小组有学生多少名?20.(2021四川广安中考)(10分)国庆节前,某超市为了满足人们的购物需求,计划购进甲、乙两种水果进行销售.经了解,甲种水果和乙种水果的进价与售价如下表所示:甲乙进价(元/千克)x x+4售价(元/千克)2025已知用1 200元购进甲种水果的质量与用1 500元购进乙种水果的质量相同.(1)求x的值;(2)若超市购进这两种水果共100千克,其中甲种水果的质量不低于乙种水果质量的3倍,则超市应如何进货才能获得最大利润,最大利润是多少?21.(12分)阅读下列材料:方程x+1x=2+12有两个解,它们是x 1=2,x 2=12;关于x 的方程:x+1x =c +1c 有两个解,它们是x 1=c,x 2=1c ;x-1x=c ―x +―1x=c +x 1=c,x 2=-1c ;x+2x =c +2c 的解是x 1=c,x 2=2c ;x+3x =c +3c 的解是x 1=c,x 2=3c ;……(1)请观察上述方程与解的特征,比较关于x 的方程x+m x=c +mc (m≠0)与它们的关系,猜想它的解是什么,并利用“方程的解”的概念进行验证;(2)请利用上题的结论解关于x 的方程:x+2x ―1=a +2a ―1.答案全解全析1.A A.12―a的分母中含有字母,是分式,符合题意;B、C不是分式,不符合题意;D选项不符合AB的形式,不是分式.故选A.2.D 当a=-2时,a2-4=0,分式a+2a2―4无意义,所以D选项错误,符合题意.故选D.3.B 将x,y扩大为原来的3倍,即将x,y分别用3x,3y代替,有(3x)23x―3×3y=3x2x―3y,∴分式的值扩大为原来的3倍,故选B.4.B ∵x2+1x―1―2xx―1=x2+1―2xx―1=(x―1)2x―1=x-1,∴在“ ”中添加的运算符号为-.故选B.5.B A.1a +1b=a+bab,不符合题意;B正确;C.a÷b·1b =a·1b·1b=a b2,不符合题意;D.运算错误,不符合题意.故选B.6.A 2―xx―3―1x―3=1,2-x-1=x-3,解得x=2,检验:当x=2时,x-3=2-3=-1≠0,∴x=2是分式方程的解,故选A.7.D 去分母得3x=-m+5(x-2),解得x=m+102,∵方程的解为正数,∴m+102>0且m+102-2≠0,解得m>-10且m≠-6.故选D.8.D+×2+x―2x+3=1,整理得2x +xx+3=1或2x=1―xx+3或2x=3x+3.∴A、B、C选项均正确,故选D.9.答案不唯一.如1x2+1解析 此题是一个开放性试题,答案不唯一.10.x(x-2)解析 第一个分式的分母为x-2,第二个分式的分母分解因式为x(x-2),∴最简公分母是x(x-2).11.2解析 x 2+xyxy +xy ―x 2xy=2xy xy =2.12.x 2+2x +1x 2―1解析 原式=―(1+2x +x 2)―(x 2―1)=x 2+2x +1x 2―1.13.56解析 由题意得12x ―1―12=1,等式两边同时乘2(2x-1)得2-2x+1=2(2x-1),解得x=56,经检验,x=56是原方程的根,∴x=56.14.1解析 ∵1x―1y =2,∴y ―x xy =2,∴y-x=2xy,x-y=-2xy,∴原式=y ―x +xy2(x ―y )+7xy=2xy +xy ―4xy +7xy=3xy 3xy =1.15.m>0且m≠1解析 方程两边同时乘(x+2)(x-2)得x+2+2(x-2)=x+2m,整理得2x=2m+2,解得x=m+1,∵分式方程的解大于1,∴m+1>1,且m+1≠2,m+1≠-2,解得m>0,且m≠1,∴m 的取值范围是m>0且m≠1.16.=解析 P-Q=aa +1+bb +1―+=ab +a +ab +b ―(a +b +2)(a +1)(b +1)=2ab ―2(a +1)(b +1).∵ab=1,且a≠b,∴2ab-2=0,∴P-Q=0,∴P=Q.17.解析 (1)方程两边同乘x(x+1),得x 2+3(x+1)=x(x+1),解得x=-32.经检验,x=-32是原方程的解.(2)去分母得(x+1)2-4=x 2-1,整理得2x=2,解得x=1,经检验,x=1是分式方程的增根,故此方程无解.18.解析 ―÷a 2+a a 2―2a +1=2a ―(a ―1)a (a ―1)÷a (a +1)(a ―1)2=a +1a (a ―1)×(a ―1)2a (a +1)=a ―1a 2,因为a≠1、-1、0,所以a 只能取2,所以原式=14.19.解析 设每个小组有学生x 名,根据题意,得3603x―3604x=3,解这个方程,得x=10,经检验,x=10是原方程的根.答:每个小组有学生10名.20.解析 (1)由题意可知1 200x=1 500x +4,解得x=16,经检验,x=16是原方程的解.(2)设购进甲种水果m千克,利润为y元,则购进乙种水果(100-m)千克,由题意可知y=(20-16)m+(25-16-4)(100-m)=-m+500,∵甲种水果的质量不低于乙种水果质量的3倍,∴m≥3(100-m),解得m≥75,即75≤m<100.在y=-m+500中,-1<0,∴y随m的增大而减小,∴当m=75时,y最大,最大为-75+500=425,∴购进甲种水果75千克,乙种水果25千克才能获得最大利润,最大利润为425元.21.解析 (1)关于x的方程x+mx=c+m c(m≠0)的解是x1=c,x2=m c.验证:当x=c时,方程左边=c+mc ,方程右边=c+mc,左边=右边,∴方程成立;当x=mc 时,方程左边=mc+c,方程右边=c+mc,左边=右边,∴方程成立.故关于x的方程x+mx=c+m c(m≠0)的解为x1=c,x2=m c.(2)由关于x的方程x+2x―1=a+2a―1,得x-1+2x―1=a―1+2a―1,∴x-1=a-1或x-1=2a―1,∴x1=a,x2=a+1a―1.。

苏科版八年级下册数学第10章 分式含答案

苏科版八年级下册数学第10章 分式含答案

苏科版八年级下册数学第10章分式含答案一、单选题(共15题,共计45分)1、若分式有意义,则()A. B. C. D. 且2、化简的结果为()A. B. C. D.﹣2b3、下列运算正确的是()A. B. C. D.4、分式,,的公分母可能是()A.aB.12aC.8a 2D.12a 25、分式方程= 的解为( )A.x=0B.x=3C.x=5D.x=96、式子有意义的x的取值范围是()A. 且x≠1B.x≠1C.D. 且x≠17、若分式的值为0,则x的值为()A.1B.-1C.0D.±18、计算:的正确结果是()A. B.1﹣x C.1 D.﹣19、下列各式中与分式相等的是()A. B. C. D.﹣10、为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x棵,则列出的方程为()A. B. C. D.11、在式子、、、、、中,分式的个数有()A.2个B.3个C.4个D.5个12、如果把分式中的x和y都扩大2倍,则分式的值()A.扩大4倍B.扩大2倍C.不变D.缩小2倍13、计算的结果是()A. B. C.y D.x14、化简÷(1+ )的结果是()A. B. C. D.15、精元电子厂准备生产5400套电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产,若乙车间每天生产的电子元件套数是甲车间的1.5倍,结果用30天完成任务,问甲车间每天生产电子元件多少套?在这个问题中设甲车间每天生产电子元件x套,根据题意可得方程为()A. B. C.D.二、填空题(共10题,共计30分)16、,的公分母是________.17、分式乘方的法则:一般地,分式乘方要把分子、分母分别________ ,用式子表示为________18、关于x的分式方程- =0无解,则m=________.19、分式方程的解是________.20、若关于x的方程+ =2的解不大于8,则m的取值范围是________.21、分式的值为0,那么x的值为________.22、当x________时,分式有意义.23、已知 x+2y﹣3z=0,2x+3y+5z=0(),则=________.24、计算:________.25、计算的结果是________.三、解答题(共5题,共计25分)26、解方程:.27、解方程:;28、某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?29、先化简,再求值:÷(a﹣1﹣),其中a是方程x2+x﹣3=0的解.30、先化简,再求值:,其中.参考答案一、单选题(共15题,共计45分)1、C2、B3、C4、D5、D6、A7、B8、A9、C10、A11、B12、B13、D15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。

苏科版八年级下册数学第10章 分式 含答案

苏科版八年级下册数学第10章 分式 含答案

苏科版八年级下册数学第10章分式含答案一、单选题(共15题,共计45分)1、化简的结果是()A. B. C. D.2、在函数中,自变量x的取值范围是()A.x≥﹣1B.x>﹣1且x≠C.x≥﹣1且x≠D.x>﹣13、若分式的值为0,则x的值为( )A.±2B.2C.﹣2D.44、分式有意义,则x的取值范围是()A. x ≠ 1;B. x>1;C. x<1;D. x ≠-15、下列计算正确的是()A.a 0=1B.x 2÷x 3=C.(﹣)2=﹣D.a 4÷2 ﹣1= a 46、我校七年级某班的师生到距离8千米的农场学农,出发小时后,小亮同学骑自行车从学校按原路追赶队伍,结果他们同时到达农场.已知小亮骑车的速度比队伍步行的速度每小时快6千米.若设队伍步行的速度为每小时x千米,则可列方程()A. B. C. D.7、化简的结果是()A.-2a-bB.b-2aC.2a-bD.b+2a8、炎炎夏日,甲安装队为A小区安装66台空调,乙安装队为B小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x台,根据题意,下面所列方程中正确的是()A. B. C. D.9、若分式的值等于0,则x的值为()A.±1B.0C.﹣1D.110、化简的结果为()A. B.a﹣1 C.a D.111、在,,,中分式的个数有()A.2个B.3个C.4个D.5个12、分式方程的解是()A. B. C. D.13、把分式方程−=1的两边同时乘以(x-2),约去分母,得()A.1-(1-x)=1B.1+(1-x)=1C.1-(1-x)= x-2D.1+(1-x)= x-214、使分式值为零的的值为()A. B. C. D.15、分式方程=2的解为()A.x=4B.x=3C.x=0D.无解二、填空题(共10题,共计30分)16、若,则的值为________17、已知关于x的分式方程的解为负数,则k的取值范围是________.18、若式子y=﹣有意义,则实数x的取值范围是________.19、若关于x的分式方程+ =3的解为正实数,则实数m的取值范围是________.20、方程的根为________.21、分式,,的最简公分母为________.22、方程的解是x=________.23、与的最简公分母是________.24、某工厂计划加工一批零件240个,实际每天加工零件的个数是原计划的1.5倍,结果比原计划少用2天.设原计划每天加工零件x个,可列方程________.25、方程的解为________三、解答题(共5题,共计25分)26、先化简,再求值:,其中a= .27、先化简,再求值:÷(﹣x+1),其中x=sin30°+2﹣1+ .28、某校为了丰富学生的课外体育活动,购买了排球和跳绳,已知排球的单价是跳绳的单价的3倍,购买跳绳共花费了750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.29、小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.求小明和小张每分钟各打多少个字?30、如果方程的解与方程4x﹣(3a+1)=6x+2a﹣1的解相同,求式子的值.参考答案一、单选题(共15题,共计45分)1、A2、C3、C4、A5、B7、D8、D9、D10、B11、B12、C13、D14、A15、A二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。

苏科版八年级下册数学第10章 分式 含答案

苏科版八年级下册数学第10章 分式 含答案

苏科版八年级下册数学第10章分式含答案一、单选题(共15题,共计45分)1、施工队要铺设一段长2000米的管道,因在中考期间需要停两天,实际每天施工需要比计划多50米,才能按时完成任务.求原计划每天施工多少米.设原计划每天施工x米.则根据题意所列方程正确的是( )A. - =2B. - =2C. - =2D.- =22、式子①,②,③,④中,是分式的有()A.①②B.③④C.①③D.①②③④3、若关于x的方程的解为正数,则m的取值范围是()A. B. 且 C. D. 且4、若分式的值等于0,则x的值是( )A.-1B.0C.1D.5、下列算式中,你认为错误的是()A. B. C. D.6、如果把分式中的m和n都扩大3倍,那么分式的值()A.不变B.扩大3倍C.缩小3倍D.扩大9倍7、若分式的值为0,则的值为()A.0B.1C.-2D.8、使分式有意义的的取值范围是()A. B. C. D.9、关于代数式的值,说法不正确的是()A.当x≠±2时,其值存在B.当x= 时,其值为0C.当x=4时,其值为7D.当x=0时,其值为10、下列函数中,自变量的取值范围是x>3的是()A.y=x﹣3B.C.D.11、计算+=()A.1B.C.D.12、若关于x的分式方程=2的解为正数,则m的取值范围是()A.m>﹣1B.m≠﹣1C.m>1 且m≠﹣1D.m>﹣1且m≠113、观察佳佳计算的过程:=①=②=③=④则下列说法正确的是()A.运算完全正确B.第①②两步都有错C.只有第③步有错D.第②③两步都有错14、下列各式从左到右的变形正确的是()A. B. C. D.15、解分式方程,去分母后得到的方程正确的是().A. B. C. D.二、填空题(共10题,共计30分)16、函数中,自变量x的取值范围是________.17、将式子写成分式的形式________18、用换元法解方程时,如果设,那么所得到的关于的整式方程为________.19、分式方程的解为 ________.20、对于分式,当x________时,该分式有意义.21、某工程队在金义大都市铺设一条480米的景观路,开工后,由于引进先进设备,工作效率比原计划提高50%,结果提前4天完成任务.若设原计划每天铺设x米,根据题意可列方程为________.22、计算=________23、当m=________,方程会产生增根.24、若2a=3b=4c,且abc≠0,则的值是________ .25、函数y= 的自变量的取值范围是________.三、解答题(共5题,共计25分)26、计算:.27、扬州市某土特产商店购进960盒绿叶牌牛皮糖,由于进入旅游旺季,实际每天销售的盒数比原计划每天多20%,结果提前2天卖完.请你根据以上信息,提出一个用分式方程解决的问题,并写出解答过程.28、先化简再求值:(x﹣)÷(1+),其中x=tan45°+2sin45°.29、某文化用品商店在开学初用2000元购进一批学生书包,按每个120元出售,很快销售一空,于是商店又购进第二批同样的书包,所购数量是第一批数量的3倍,但单价贵了4元,结果第二批用了6300元,仍按120元出售,最后剩下4个按八折卖出,这笔生意该店共盈利多少元?30、甲、乙两地相距135千米,大小两辆汽车从甲地开往乙地,大汽车比小汽车早出发4小时,小汽车比大汽车早到30分钟,小汽车和大汽车的速度之比为5∶2,求两车的速度.参考答案一、单选题(共15题,共计45分)1、A2、C3、C4、C5、B6、C7、C8、A9、C10、D11、A12、D13、C14、D15、D二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

苏科版八年级下册数学第10章 分式 含答案

苏科版八年级下册数学第10章 分式 含答案

苏科版八年级下册数学第10章分式含答案一、单选题(共15题,共计45分)1、对分式,,通分时,最简公分母是()A. B. C. D.2、在、、、、、中分式的个数有()A.2个B.3个C.4个D.5个3、在代数式,(x+y),,,,中,分式有().A.2个B.3个C.4个D.5个4、化简的结果为()A.1+aB.C.D.1﹣a5、下列各式是分式的是( )A. B. C. D.6、下列各式中,无论取何值,分式都有意义的是()。

A. B. C. D.7、函数中自变量x的取值范围是()A. B. C. D.8、化简a2÷b•的结果是()A.aB.C.D.a 29、若分式方程无解,则a的值为()A.0B.-1C.0或-1D.1或-110、某班在“世界读书日”开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍.设第一组人数为x人,根据题意可列方程为()A. B. C. D.11、能使分式方程有非负实数解,且使二次函数的图象在轴上方,则所有整数的和为()A.-8B.-9C.-10D.-1112、某农场挖一条480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x米,那么下列方程正确的是 ( )A. B. C. D.13、若分式中的a、b的值同时扩大到原来的10倍,则分式的值().A.是原来的20倍B.是原来的10倍C.是原来的0.1倍D.不变14、下列各式从左到右的变形正确是()A. B. C.D.15、要使分式有意义,x必须满足的条件是( )A.x≠3B.x≠0C.x>3D.x=3二、填空题(共10题,共计30分)16、计算:________.17、若a满足,则________.18、若分式有意义,则x的取值范围是________.19、要使分式有意义,那么x应满足的条件是________20、计算:=________21、已知,则的值是________.22、各分母系数(都是整数)的最小公倍数与所有字母的________的积叫做最简公分母,它类似于小学分数中的________.23、如果代数式有意义,则的取值范围为________.24、化简的结果是________ .25、使分式有意义的x的取值范围是________.三、解答题(共5题,共计25分)26、解方程:.27、若分式有意义,求x的取值范围.28、为了响应国家对本次新型冠状病毒肺炎防疫工作的号召,某口罩生产厂家承担了生产2100万个口罩的任务,甲车间单独生产了700万个口罩后,由于任务紧急,要求乙车间与甲车间同时生产,结果比原计划提前10天完成任务.已知乙车间的工作效率是甲车间的1.5倍,求甲、乙两车间每天生产口罩各多少万个?29、某服装厂“双十一”前接到一份加工4500件服装的订单,应客户要求,需提前供货.该服装厂决定提高工作效率,实际每天加工的件数是原计划的1.5倍,结果提前10天完工.求原计划每天加工服装的件数.30、已知,求的值.参考答案一、单选题(共15题,共计45分)1、D2、B4、A5、C6、D7、A8、B9、D10、A11、B12、A13、B14、C15、A二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。

苏科版八年级下册数学第10章 分式 含答案

苏科版八年级下册数学第10章 分式 含答案

苏科版八年级下册数学第10章分式含答案一、单选题(共15题,共计45分)1、要使分式的值为0,则实数x为()A.2B.-2C.2或-2D.42、有两块面积相同的试验田,分别收获蔬菜900kg和1500kg,已知第一块试验田每亩收获蔬菜比第二块少300kg,求第一块试验田每亩收获蔬菜多少kg.设第一块试验田每亩收获蔬菜xkg,根据题意,可得方程()A. B. C. D.3、若分式有意义,则x的取值范围是()A.x≠3B.x=3C.x<3D.x>34、解分式方程,去分母得()A. B. C. D.5、若将分式中、的值都扩大2倍,则分式的值( )A.扩大2倍B.扩大4倍C.不变D.缩小2倍6、计算得()A. B. C. D.27、下列各式:(1﹣x),,,,其中分式共有()A. 1个B. 2个C. 3个D. 4个8、分式方程的解是()A. B. C. D.9、若分式的值为0,则x的值是()A.0B.-lC.5D.110、若使分式的值为0,则x的取值为&nbsp; ()A.1或-1B.-3或1C.-3D.-3或-111、计算()3的结果是()A. B. C. D.12、在式子中,分式的个数为()A.2个B.3个C.4个D.5个13、某校八年级学生去距学校10km的科技馆参观,一部分学生骑自行车,过了30min,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑自行车学生速度的4倍,设骑自行车学生的速度为xkm/h,则下列方程正确的是()A. B. C. D.14、分式方程﹣=2的解是()A.x=﹣1B.x=1C.x=﹣2D.x=215、已知a,b,c是实数且a>b,则下列不等式不成立的是()A.a+3>b+3B.a﹣π>b﹣πC.ac 2>bc 2D.二、填空题(共10题,共计30分)16、,,的最简公分母是________.17、分式方程的解为________18、方程﹣1=1的解是________.19、计算:=________20、关于x的方程的解为正数,则k的取值范围是________.21、分式方程﹣=0的解为x=________.22、若分式有意义,则x应满足的条件是________.23、已知:x2+4x﹣1=0,则的值为________.24、已知函数y= ,则自变量x的取值范围是________;若分式的值为0,则x=________.25、方程的解是________.三、解答题(共5题,共计25分)26、先化简,再求值:÷,其中x=2(tan45°-cos30°).27、甲乙两车间同时加工一种零件,甲车间加工75个所用的时间与乙车间加工60个所用的时间相等,已知甲车间比乙车间每天多加工5个,求甲、乙车间每天各加工多少个零件.28、周末,小李乘坐汽车从上海出发区苏州探望奶奶,全程88千米;返回时,因为另选了行车路线,全程为74千米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十单元 分式 综合测试卷
一、选择题(母题2分,共20分)
1.下列分式222222155()4253()22b c x y a b a b a b a y x a b a b b a
-+----+--、、、、,其中最简分式的个数是 ( )
A .1个
B .2个
C .3个
D .4个
2.下列分式约分正确的是 ( )
A .632x x x =
B .0x y x y +=+
C .21x y x xy x +=+
D .222142
xy x y = 3.若1,2x y =-=,则2221648x x y x y
---的值等于 ( ) A .117
-
B .117
C .116
D .115 4.当3a =时,代数式 213(1)24a a a --÷--的值为 ( )
A .5
B .一1
C .5或一1
D .0
5.计算2
322()n a b - 与3
33()2n a b
-的结果 ( ) A .相等 B .互为倒数 C .互为相反数 D .以上都不对
6.无论x 取什么数,总是有意义的分式是 ( )
A .
221x x + B .21x x + C .331x x + D .25x x
- 7.若不论x 取何实数时,分式22a x x a -+总有意义,则a 的取值范围是 ( )
A .a ≥1
B .a >1
C .a ≤1
D .a <1
8.下列各式的变形中,不正确的是 ( )
A .a b a b c c ---=-
B .b a a b c c --=-
C .()a b a b c c -++=-
D .a b a b c c
--+=- 9.一水池有甲、乙两根进水管.两管同时开放6小时可以将水池注满水.如果单开甲管5 小时后,两管同时开放,还需3小时才能注满水池,那么单独开放甲管注满水池需
( )
A .7.5小时
B .10小时
C .12.5小时
D .15小时
10.为保证某高速公路在2014年4月底全线顺利通车,某路段规定在若干天内完成修建任
务.已知甲队单独完成这项任务比规定时间多用10天,乙队单独完成这项任务比规定时间多用40天,如果甲、乙两队合作,那么可比规定时间提前14天完成任务.若设规定时间为x 天,由题意列出的方程是 ( )
A .111104014x x x +=--+
B .111104014
x x x +=++- C . 111104014x x x -=++- D .111101440
x x x +=-+- 二、填空题(每题2分,共20分)
11.下列各式中11152235a n a a b y m b z
π++-、
、、、、中分式有 个. 12·当a 时,分式123a a -+有意义. 13.若分式33
x x --的值为0,则x = . 14·若41(2)(1)21
a m n a a a a -=++-+-,则m = ,n = . 15·若关于x 的分式方程
2133
m x x =+--有增根,则m = . 16·当x = 时,52343
x x -+与的值互为倒数. 17.若a :b :c =1:2:3,则33a b c a b c +--+= . 18·已知0a b a b +=,则ab ab
的值为 . 19.某同学从家去学校上学的速度为a ,放学回家时的速度是b ,则该同学上学、放学的
平均速度为 .
20.设A 、B 、C 为三个连续的正偶数,若A 的倒数与C 的倒数的2倍之和等于B 的倒数
的3倍.设B 数为x ,则所列方程是 .
三、解答题(共60分)
21.(本题12分)计算.
2421(1)422x x x ++-+-; (÷
22(3)
(1)b a a b a b ÷--+; 211(4)()1211
x x x x x x ++÷--+-
22.(本题8分)解下列方程.
54410(1)
1236x x x x -+=--- 2324(2)111
x x x +=+--
23.(本题6分)先化简,再求值:222412)4422a a a a a a
--÷-+--,其中a 是方程23100x x +-= 的根
24.(本题6分)有这样一道题:“计算2221112x x x x x x x
-+-÷--+的值,其中x =2 014”·小明 把“x =2014,,错抄成“x =2410”,但他的计算结果也正确.你能说明这是为什么吗?
25.(本题6分)已知
2
1
13 x
x x =
-+,求
2
421
x
x x
++
值.
26.(本题10分)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30 天的工作量相同.
(1)甲、乙两队单独完成此项任务各需多少天?
(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为
了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?
27.(本题12分)某县向某贫困山区赠送一批计算机,首批270台将于近期起运.经与某物流公司联系,得知用A型汽车若干辆刚好装完,用B型汽车不仅可少用1辆,而且有一辆车还差30台才刚好装满.
(1)已知每辆A型汽车所装计算机的台数是B型汽车的3
4
,求A、B两种型号的汽车
各能装计算机多少台?
(2)在(1)中条件下,已知A型汽车的运费是每辆350元,B型汽车的运费是每辆400 元,若同时用这两种型号的汽车运送这批计算机,其中B型汽车比A型汽车多用1辆,并且刚好装满运完,按这种方案运输,则A、B两种型号的汽车各需多少辆? 总运费为多少元?
参考答案
—、1.A 2.C 3.D 4.B 5.C 6.A 7.B 8.A 9.B 10.B
二、11.3 12.≠32
-
13.一3 14.3 1 15.2 16.3 17.一2 18.一1 19.2ab a b
+ 20.12322x x x +=-+ 三、21.(1)12x +
(2)2x - (3)1a b
- (4)1
x x - 22.(1)2x =,为增根,原方程无解(2)1x =,为增根,原方程无解. 23.原式2(3)322
a a a a ++==∵a 是方程23100x x +-=∴2310a a += ∴原式=1052
= 24.原式=2(1)(1)0(1)(1)1
x x x x x x x -+⨯-=+--, ∵原式化简以后的结果中不含有x ,∴结果与x 的值无关....小明虽然抄错了x 的值,但结果也正确.
25.由2113x x x =-+得21x x x -+,进而14x x +=,求得22114x x +=,2421115
x x x =++ 26.设乙队单独完成此项任务需要x 天,则甲队单独完成此项任务需要(x +10)天,由题意,得453010x x
=+,解得:20x =.经检验,x =20是原方程的解,∴x +10=30(天) 答:甲队单独完成此项任务需要30天,乙队单独完成此项任务需要20天; (2)设甲队至少再单独施工a 天,由题意,得3232303020
a +≥⨯,解得:a ≥3. 答:甲队至少再单独施工3天. 27.解:(1)设B 型汽车每辆可装计算机x 台,则A 型汽车每辆可装计算机
34x 台.依题意得
27027030134
x x +=+解得:x =60. 经检验,x =60是原方程的解.则34x =45(台). 即A 型汽车每辆可装计算机45台,B 型汽车每辆可装计算机60台.
(2)若同时用A 、B 两种型号的汽车运送,设需要用A 型汽车y 辆,则需B 型汽车(y+1)辆.根据题意,得45y+60(y+1)=270.解得y =2.所以需A 型汽车2辆,需B 型汽车3辆.此 时总运费为350×2+400×3=1900(元).。

相关文档
最新文档