2020版高考数学习题:第十三篇 导数及其应用(选修1-1) 第11节 导数在研究函数中的应用 导数与函数零点

合集下载

2019—2020年新课标北师大版高中数学选修1-1《计算导数》课时同步练习及答案解析.docx

2019—2020年新课标北师大版高中数学选修1-1《计算导数》课时同步练习及答案解析.docx

(新课标)2017-2018学年北师大版高中数学选修1-1§3 计算导数课时目标 1.会计算函数在一个点处的导数.2.理解导函数的概念.3.了解导数公式表.1.计算函数y =f(x)在点x =x 0处的导数的步骤: (1)计算函数的增量:Δy =f(Δx +x 0)-f(x 0) (2)确定平均变化率:Δy Δx =f (x 0+Δx )-f (x 0)Δx(3)当Δx 趋于0时,得到导数: f ′(x 0)=0lim x ∆→f (x 0-Δx )-f (x 0)Δx2.导函数一般地,如果一个函数f(x)在区间(a ,b)上的每一点x 处都有导数,导数值记为f ′(x),则f ′(x)=______________________,则f ′(x)为f(x)的__________,简称导数. 3.导数公式表函数 导函数函数导函数y =c (c 是常数) y ′=0 y =sin x y ′=cos xy =x α (α为实数) y ′=αx α-1 y =cos x y ′=-sin xy =a x (a>0,a ≠1)y ′=a x ln a 特别地(e x )=e xy =tan xy ′=1cos 2xy=log a x (a>0,a ≠1)y ′=1xln a特别地(ln x)′=1xy =cot xy ′=-1sin 2x一、选择题 1.已知函数f(x)=13,则f ′(x)等于( )A .-33B .0 C.33D.32.曲线y =-1x 在点⎝⎛⎭⎪⎫2,-12处的切线方程为( )A .x -4y -4=0B .x -y -4=0C .x -4y =0D .2x -4y -4=03.函数y =3x 2+2x +1在点x =1处的导数为( ) A .3 B .7 C .8 D .1 4.曲线y =x 2上切线倾斜角为π4的点是( ) A .(0,0) B .(2,4)C.⎝ ⎛⎭⎪⎫14,116D.⎝ ⎛⎭⎪⎫12,14 5.函数y =(x -1)2的导数是( ) A .(x -1)2B .2(x -1) C .2(1-x) D .-26.y =cos x 在点x =π6处的导数为( )A.32B .-32C .-12D.12题号 1 2 3 4 5 6答案二、填空题7.函数y=5x+4的导数为________.8.函数f(x)=x2+3x导数为5的点是________.9.曲线y=ln x在x=1处的切线斜率为________.三、解答题10.已知函数y=x2+4x,求x=1,2处的导数值.11.已知f(x)=log2x,利用导数公式求f′(2).能力提升12.给出下列结论:①(cos x)′=sin x ;②⎝ ⎛⎭⎪⎫sin π3′=cos π3;③若y =1x 2,则y ′=-1x ;④⎝ ⎛⎭⎪⎪⎫-1x ′=12x x . 其中正确的个数是( ) A .0 B .1 C .2 D .313.已知f ′(x)是一次函数,x 2f ′(x)-(2x -1)f(x)=1,求f(x)的解析式.有本质的区别,但又有密切关系,f′(x0)是其导数y=f′(x)在x=x0处的一个函数值,求函数在一点处的导数,一般先求出函数的导数,再计算这一点处的导数值. 2.可以利用导数公式计算函数在某点处的导数.§3 计算导数知识梳理 2.f ′(x)=0lim x ∆→f (x +Δx )-f (x )Δx导函数作业设计 1.B2.A [∵f ′(2)=14,∴所求切线方程为y +12=14(x -2),即x -4y -4=0.] 3.C4.D [设切点坐标为(x 0,x 20), 则tan π4=1=2x 0.∴x 0=12,所求点为⎝ ⎛⎭⎪⎫12,14.]5.B [∵y =x 2-2x +1,∴y ′=2x -2=2(x -1).] 6.C [由导数公式,y ′=-sin x ,∴f ′⎝ ⎛⎭⎪⎫π6=-sin π6=-12.]7.5 8.(1,4) 9.1解析 y ′=1x,∴f ′(1)=1.10.解 f ′(1)=0lim x ∆→f (1+Δx )-f (1)Δx=0limx ∆→(1+Δx )2+4(1+Δx )-1-4Δx=0lim x ∆→(Δx )2+(Δx )×6Δx =6. f ′(2)=0limx ∆→f (2+Δx )-f (2)Δx=0lim x ∆→(2+Δx )2+4(2+Δx )-22-4×2Δx=8.11.解 ∵f ′(x)=(log2x)′=1xln2=2xln 2, ∴f ′(2)=1ln 2.12.B [因为(cos x)′=-sin x ,所以①错误;sin π3=32,而⎝ ⎛⎭⎪⎪⎫32′=0,所以②错误;⎝ ⎛⎭⎪⎫1x 2′=(x -2)′=-2x -3,所以③错误;⎝ ⎛⎭⎪⎪⎫-1x ′=(-12x -)′=1232x -=12x x , 所以④正确,故选B.]13.解 由f ′(x)为一次函数可知f(x)为二次函数. 设f(x)=ax 2+bx +c (a ≠0),则f ′(x)=2ax +b.把f(x),f ′(x)代入方程x 2f ′(x)-(2x -1)f(x)=1中得:x 2(2ax +b)-(2x -1)(ax 2+bx +c)=1,即(a -b)x 2+(b -2c)x +c -1=0 要使方程对任意x 恒成立, 则需有a =b ,b =2c ,c -1=0, 解得a =2,b =2,c =1, 所以f(x)=2x 2+2x +1.。

(好题)高中数学选修1-1第四章《导数应用》测试(包含答案解析)

(好题)高中数学选修1-1第四章《导数应用》测试(包含答案解析)

一、选择题1.函数()ln f x x x =-与()ln x g x xe x x =--的最小值分别为,a b ,则 ( ) A .a b = B .a b >C .a b <D .,a b 的大小不能确定2.已知函数()22sin x m f x e x +=-在30,4π⎡⎤⎢⎥⎣⎦上有两个不同的零点,则实数m 的取值范围是( ) A .3,44ππ⎫⎡--⎪⎢⎣⎭ B .3,44ππ⎛⎤ ⎥⎝⎦C .,42ππ⎛⎫⎪⎝⎭D .,24ππ⎛⎫-- ⎪⎝⎭3.函数()cos f x x x =⋅的导函数为()f x ',则()f x 与()f x '在一个坐标系中的图象为( )A .B .C .D .4.函数3()1218f x x x =-+在区间[]3,3-上的最大值为( ) A .34B .16C .24D .175.设函数()f x 为偶函数,且当0x ≥时,()cos x f x e x =-,则不等式(21)(2)0f x f x --->的解集为( )A .(1,1)-B .(,3)-∞-C .(3,)-+∞D .(1,)(,1)+∞⋃-∞-6.已知函数4213(),42f x x x mx n =-++其中m ,n 为正整数,若函数()f x 有极大值,则m 的值为( ) A .1B .2C .3D .47.已知函数()()()22210,0x ax x x f x e ax e x ⎧-+<⎪=⎨-+-≥⎪⎩有两个零点,则实数a 的取值范围是( ) A .(),e +∞ B .()2e ,+∞C .()20,eD .()0,e8.已知函数321()13f x x ax x =+++在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,则实数a 的取值范围为( )A .(,1]-∞-B .55,34⎡⎤--⎢⎥⎣⎦C .5,13⎛⎤-- ⎥⎝⎦D .55,34⎛⎫--⎪⎝⎭9.已知对任意实数x 都有()()2xf x f x e '-=,()01f =-,若()()1f x k x >-恒成立,则k 的取值范围是( ) A .()1,+∞B .323,42e ⎛⎫ ⎪⎝⎭C .()121,4eD .()321,4e10.函数()()()()22ln 00x x x f x x e x -⎧-<⎪=⎨≥⎪⎩,若关于x 的方程()()2240f x af x a a -+-=有四个不等的实数根,则实数a 的取值范围为( ) A .()0,4 B .()(),44,-∞⋃+∞C .(){}4,04- D .(){},44-∞-11.函数3()3f x x x =-在[0,]m 上最大值为2,最小值为0,则实数m 取值范围为( ) A .[1B .[1,)+∞C .(1D .(1,)+∞12.定义在R 上的函数()f x 满足()()2f x f x '+<,则下列不等式一定成立的是( ) A .(3)2(2)2ef f e +<+ B .(3)2(2)2ef f e +>+ C .(3)2(2)2f e ef +<+D .(3)2(2)2f e ef +>+二、填空题13.已知函数2()ln 3mf x x x x x=+-+.若函数()f x 在[1,2]上单调递减,则实数m 的最小值为________.14.已知函数()4,0,0x x e x f x e x x+≤⎧⎪=⎨>⎪⎩,若存在10x ≤,20x >,使得()()12f x f x =,则()12x f x 的取值范围是______.15.已知1a >,若对于任意的1[,)3x ∈+∞,不等式()4ln 3e ln xx x a a -≤-恒成立,则a的最小值为______.16.已知函数()f x 对定义域内R 内的任意x 都有()()4f x f x =-,且当2x ≠,其导数()f x '满足()()2xf x f x ''<,若()30f =,则不等式()0xf x >的解集为__________.17.已知函数()x f x e alnx =-+2在[]1,4上单调递增,则a 的取值范围是__.18.已知函数()321f x x x =++,若对于x R ∀∈不等式()21xf ax e a -+≤恒成立,则实数a 的取值范围为:____________.19.已知函数()y f x =在R 上的图象是连续不断的一条曲线,并且关于原点对称,其导函数为()f x ',当0x >时,有不等式()()22x f x xf x '>-成立,若对x R ∀∈,不等式()()2220x x e f e a x f ax ->恒成立,则正整数a 的最大值为_______.20.已知函数()(ln )f x x x ax =-有且仅有一个极值点,则实数a 的取值范围是_____.三、解答题21.已知函数()xf x e ax =-.(1)讨论()f x 的单调性;(2)当1a =-,若关于x 的不等式()f x mx ≥在()0,∞+上恒成立,求实数m 的取值范围.22.已知函数()2ln f x x a x x=--. (1)已知()f x 在点()()1,1f 处的切线方程为2y x =-,求实数a 的值; (2)已知()f x 在定义域上是增函数,求实数a 的取值范围. 23.已知函数2()(41)43(0)xf x ax a x a e a ⎡⎤=-+++≠⎣⎦. (1)若1a =,求曲线()y f x =在(0,(0))f 处的切线方程; (2)若()f x 在2x =处取得极小值,求a 的取值范围. 24.已知函数()x f x e ax a =--.(1)当1a =时,求过点()0,1-且与曲线()y f x =相切的直线方程; (2)若()0f x ≥,求实数a 的取值范围. 25.已知函数()2ln f x x a x =+.(1)当2a =-时,求函数()f x 在点()()11f ,处的切线方程;(2)若()()2g x f x x=+在[1,+)∞上是单调增函数,求实数a 的取值范围. 26.已知函数()1ln =--f x x x .(1)证明:()f x 存在唯一的零点; (2)当0x >时,证明:ln x e x x >>.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据函数的单调性分别求出函数()f x ,()g x 的最小值,比较a ,b 即可. 【详解】()f x 的定义域是()0,∞+,11()1x f x x x'-=-=, 令()0f x '<,解得:01x <<,令()0f x '>,解得:1x >,()f x 在(0,1)递减,在(1,)+∞递增, ()f x 的最小值是()1f 1=,故1a =,()x g x xe lnx x =--,定义域(0,)+∞,()()()11111x xx g x x e xe x x+=+--=-',令()1xh x xe =-,则()()10xh x x e '=+>,(0,)x ∈+∞则可得()h x 在(0,)+∞上单调递增,且()010h =-<,()110h e =->, 故存在0(0,1)x ∈使得()0h x =即001x x e=,即000x lnx +=,当0(0,)x x ∈时,()0h x <,()0g x '<,函数()g x 单调递减,当()0x x ∈+∞,时,()0g x '>,函数()g x 单调递增, 故当0x x =时,函数取得最小值0000000()11xg x x e lnx x lnx x =--=--=,即1b =,所以a b = 故选:A . 【点睛】关键点睛:题考查了函数的单调性,最值问题,考查导数的应用以及转化思想,解答本题的关键是由()()()11111xx x g x x e xe x x+=+--=-',得出当0(0,)x x ∈时,函数()g x 单调递减,当()0x x ∈+∞,时,函数()g x 单调递增,根据000x lnx +=,求出最小值,属于中档题.2.A解析:A【分析】()0f x=有两解变形为2sinm xe=有两解,设2sin ()x g x=,利用导数确定函数的单调性、极值,结合()g x的大致图象可得结论.【详解】由()22sinx mf x e x+=-得2sinmxxee=,设2sin()xxg xe=,则2(cos sin)()xx xg xe-'=,易知当04xπ<<时,()0g x'>,()g x递增,当344xππ<<时,()0g x'<,()g x递减,(0)0g=,414geππ⎛⎫=⎪⎝⎭,34314geππ⎛⎫=⎪⎝⎭,如图是()g x的大致图象,由2sinmxxee=有两解得34411mee eππ≤<,所以344mππ-≤<-.故选:A.【点睛】关键点点睛:本题考查函数的零点问题,解题关键是转化.函数的零点转化为方程的解,再用分离参数变形为2mxxee=,问题转化为2()xxg xe=的图象与直线my e=有两个交点,利用导数研究函数()g x的单调性、极值后可得.3.A解析:A【分析】分析函数()f x、()f x'的奇偶性,以及2fπ⎛⎫' ⎪⎝⎭、()fπ'的符号,利用排除法可得出合适的选项.【详解】函数()cos f x x x =的定义域为R ,()()()cos cos f x x x x x f x -=--=-=-, 即函数()cos f x x x =为奇函数,()cos sin f x x x x '=-,函数()f x '的定义域为R ,()()()()cos sin cos sin f x x x x x x x f x ''-=-+-=-=,函数()f x '为偶函数,排除B 、C 选项;22f ππ⎛⎫'=- ⎪⎝⎭,()1f π'=-,则()02f f ππ⎛⎫<< ⎪⎝⎭''.对于D 选项,图中的偶函数为()f x ',由02f π⎛⎫'< ⎪⎝⎭,()0f π'<与题图不符,D 选项错误, 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.4.A解析:A 【分析】对函数求导,求出函数()y f x =的极值点,分析函数的单调性,再将极值与端点函数值比较大小,找出其中最大的作为函数()y f x =的最大值. 【详解】()31218f x x x =-+,则()2312f x x '=-,令'0f x,解得2x =±,列表如下:所以,函数y f x =的极大值为234f -=,极小值为22f =,又()327f -=,()39f =,因此,函数()y f x =在区间[]3,3-上的最大值为34, 故选:A . 【点睛】方法点睛:本题考查利用导数求函数在定区间上的最值,解题时严格按照导数求最值的基本步骤进行,考查计算能力,属于中等题.5.D解析:D 【分析】利用导数判断函数在[)0,+∞的单调性,然后根据奇偶性判断()f x 在(],0-∞的单调性,再利用单调性与奇偶性结合求解不等式. 【详解】当0x ≥时,()cos x f x e x =-,所以()sin xf x e x '=+,因为0x ≥,所以1x e ≥,即()1sin 0f x x '≥+≥,所以函数()f x 在[)0,+∞上单调递增,又因为函数()f x 为R 上的偶函数,所以函数()f x 在(],0-∞上单调递减,在[)0,+∞上单调递增,则不等式(21)(2)0f x f x --->,等价于212x x ->-,所以1x <-或1x >.故选:D. 【点睛】对于求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f ”,转化为解不等式(组)的问题,若()f x 为偶函数,则()()()f x f x f x -==. 6.A解析:A 【分析】对()f x 进行求导得3()3f x x x m '=-+,构造新函数3()3,h x x x m x R =-+∈,利用导数研究函数()h x 的单调性,结合题意,可知函数()f x 有极大值,则()()1010h h ⎧->⎪⎨<⎪⎩,求解不等式且结合m ,n 为正整数,即可得出结果.【详解】 由题可知,4213()42f x x x mx n =-++()x R ∈, 则3()3f x x x m '=-+,设3()3,h x x x m x R =-+∈,则2()33h x x '=-,令2()330h x x '=-=,解得:121,1x x =-=,则当1x <-或1x >时,()0h x '>;当11x -<<时,()0h x '<,所以()h x 在区间()(),1,1,-∞-+∞上单调递增;在区间()1,1-上单调递减, 又因为函数()f x 有极大值,则()()1010h h ⎧->⎪⎨<⎪⎩,即()()120120h m h m ⎧-=+>⎪⎨=-<⎪⎩,解得:22m -<<,而m ,n 为正整数,所以m 的值为1. 故选:A. 【点睛】关键点点睛:本题考查利用导数研究函数的单调性和极值,从而求参数值,构造新函数且利用导数求出单调区间是解题的关键,考查转化思想和运用能力.7.B解析:B 【分析】分离变量,利用导函数应用得到函数在0x <无零点,则0x >有两个零点,利用函数最值得到参数范围 【详解】当0x =时,()201e f =--,∴0x =不是函数()f x 的零点.当0x <时,由()0f x =,得221x a x -=,设()221x h x x -=,()()3210x h x x-'=<,则()h x 在(),0-∞上单调递减,且()0h x <.所以0x <时无零点当0x >时,()0f x =等价于2x e e a x +=,令()2x e e g x x +=,()22x x xe e e g x x--'=, 得()g x 在()0,2上单调递减,在()2,+∞上单调递增,()2min (2)g x g e ==,()2g x e ≥.因为()f x 有2个零点,所以2a e >. 故选:B. 【点睛】分离变量法,利用导数求函数的单调性,极值是解题关键.8.B解析:B 【分析】求导得到2()21'=++f x x ax ,然后根据()f x 在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,由(0)0(1)0(2)0(3)0f f f f ''≥⎧⎪≤⎪⎨''≤⎪⎪≥⎩求解.【详解】 已知函数321()13f x x ax x =+++, 则2()21'=++f x x ax ,因为()f x 在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,所以(0)0(1)0(2)0(3)0f f f f ''≥⎧⎪≤⎪⎨''≤⎪⎪≥⎩,即10121044109610a a a ≥⎧⎪++≤⎪⎨++≤⎪⎪++≥⎩,解得 5534a -≤≤-, 所以实数a 的取值范围为55,34⎡⎤--⎢⎥⎣⎦故选:B 【点睛】本题主要考查导数与函数的单调性以及二次函数与根的分布,还考查了逻辑推理和运算求解的能力,属于中档题.9.D解析:D 【分析】由导数的运算求出()f x ,然后用分离参数法得出1x >时,(21)1x e x k x -<-,1x <时,(21)1x e x k x ->-,再设(21)()1x e x h x x -=-,求出()h x 在1x >时最小值,在1x <时的最大值,从而可得k 的范围. 【详解】因为()()2xf x f x e '-=,所以()()2x f x f x e '-=,即()2x f x e '⎡⎤=⎢⎥⎣⎦,所以()2x f x x c e =+(c 为常数),()(2)x f x e x c =+,由(0)1f c ==-,()(21)x f x e x =-,不等式()()1f x k x >-为(21)(1)xe x k x ->-,1x =时,不等式为0e >,成立,1x >时,(21)1x e x k x -<-,1x <时,(21)1x e x k x ->-, 设(21)()1x e x h x x -=-,则2(23)()(1)x xe x h x x -'=-,当312x <<或01x <<时,()0h x '<,当32x >或0x <时,()0h x '>,所以()h x 在(0,1)和31,2⎛⎫⎪⎝⎭上是减函数,在3,2⎛⎫+∞ ⎪⎝⎭和(,0)-∞上是增函数,1x >时,()h x 在32x =时取得极小值也最小值32342h e ⎛⎫= ⎪⎝⎭,由(21)1x e x k x -<-恒成立得324k e <,1x <时,()h x 在0x =时取得极大值也是最大值(0)1h =,由(21)1x e x k x ->-恒成立得1k >,综上有3214k e <<. 故选:D . 【点睛】本题考查导数的运算,考查用导数研究不等式恒成立问题,用分离参数法转化为求函数的最值是解题关键,解题时注意分类讨论思想的应用.10.C解析:C 【分析】作出函数()f x 的大致图象,令()t f x =,则原问题可转为关于t 的方程2240t at a a -+-=有2个不等实根1t 和2t ,结合()f x 的图象可确定1t 和2t 符合两种情形:10t =,24t =或()10,4t ∈,()()2,04,t ∈-∞+∞,最后分两类讨论即可求得a 的取值范围. 【详解】当0x ≥时,()22xf x x e-=,∴()()222xf x x xe-'=-,∴当02x <<时,()0f x '>,()f x 单调递增; 当2x >时,()0f x '<,()f x 单调递减, 函数()f x 的大致图象如图所示:令()t f x =, 当0t =或4时,方程()t f x =有2个实根; 当()(),04,t ∈-∞+∞,方程()t f x =有1个实根.当t ∈(0,4)时,方程t =f (x )有3个实根; 则关于x 的方程()()2240fx af x a a -+-=有四个不等的实数根可等价于关于t 的方程2240t at a a -+-=有2个不等实根1t 和2t .∴1t 和2t 可符合两种情形:10t =,24t =或1t ∈(0,4),()()2,04,t ∈-∞+∞.若10t =,24t =,则124a t t =+=; 若1t ∈(0,4),()()2,04,t ∈-∞+∞,设g (t )=t 2﹣at +4a ﹣a 2,则g (0)•g (4)<0,∴()()22416440a aa a a -⋅-+-<,解得40a .综上,实数a 的取值范围为(){}4,04-.故选:C .【点睛】本题考查方程根的问题,利用导数研究函数的单调性与最值,考查学生的数形结合思想、转化与化归思想、逻辑推理能力和运算能力,属于中档题.11.A解析:A 【分析】求导得()3(1)(1)f x x x =+-',从而知函数()f x 的单调性,再结合(0)0f =,f (1)2=,即可得解 【详解】.3()3f x x x =-,2()333(1)(1)f x x x x ∴=-=+-',令()0f x '=,则1x =或1-(舍负),当01x <时,()0f x '>,()f x 单调递增;当1x >时,()0f x '<,()f x 单调递减. 函数()f x 在[0,]m 上最大值为2,最小值为0,且(0)(3)0f f ==,f (1)2=,13m ∴≤≤故选:A. 【点睛】本题考查利用导数研究函数的最值问题,理解原函数的单调性与导函数的正负性之间的联系是解题的关键,考查学生的逻辑推理能力和运算能力,属于基础题.12.A解析:A 【分析】设()()2xxF x e f x e =-,求导并利用()()2f x f x '+<可得()F x 在R 上单调递减,根据(2)(3)F F >可得结果.【详解】设()()2x xF x e f x e =-,则[]()()()2()()2x x x xF x e f x e f x e ef x f x '''=+-=+-,因为()()2f x f x '+<,所以()()()20F x e f x f x ''⎡⎤=+-<⎣⎦,所以()F x 在R 上单调递减,则(2)(3)F F >,即2233(2)2(3)2e f e e f e ->-,故(3)2(2)2ef f e +<+. 故选:A. 【点睛】本题考查了构造函数解决导数问题,考查了利用导数研究函数的单调性,利用单调性比较大小,属于中档题.二、填空题13.6【分析】求导函数令恒成立变量分离转化为求新函数的最大值【详解】可得令若函数在上单调递减即当时单调增所以函数在上单调递增所以故答案为:6【点睛】关键点睛:变量分离转化为不等式恒成立问题进而求又一函数解析:6 【分析】求导函数()f x ',令()0f x '≤恒成立,变量分离转化为求新函数的最大值. 【详解】21()23mf x x x x'=+--,()0f x '≤,可得3223m x x x ≥-+, 令()3223g x x x x =-+,若函数()f x 在[1,2]上单调递减,即()max m g x ≥ 当[1,2]x ∈时,()2661g x x x '=-+单调增,()()266110g x x x g ''=-+≥>,所以函数()g x 在[1,2]上单调递增()()max 26g x g ==,所以6m ≥.故答案为:6 【点睛】关键点睛:变量分离,转化为不等式恒成立问题,进而求又一函数的最值.14.【分析】由得根据的范围得利用导数得可得令将化为关于的二次函数根据二次函数知识可求得结果【详解】因为所以所以因为所以当时由得由得所以在上递减在上递增所以在处取得最小值所以所以令则所以所以当时取得最小值解析:24,0e ⎡⎤-⎣⎦【分析】由()()12f x f x =得2124x e x e x =-,根据1x 的范围得224x e e x ≤,利用导数得22x e e x ≥,可得224x e e e x ≤≤,令22x e t x =,将()12x f x 化为关于t 的二次函数,根据二次函数知识可求得结果. 【详解】因为()()12f x f x =,所以2124x e x e x +=,所以2124x e x e x =-, 因为10x ≤,所以224x e e x ≤, 当0x >时,()x e f x x =,22(1)()x x x e x e e x f x x x'--==, 由()0f x '>得1x >,由()0f x '<得01x <<,所以()f x 在(0,1)上递减,在(1,)+∞上递增,所以()f x 在1x =处取得最小值e ,所以224x e e e x ≤≤, 所以()12x f x 22224x x e e e x x ⎛⎫=- ⎪⎝⎭222224x x e e e x x ⎛⎫=-⋅ ⎪⎝⎭, 令22x e t x =,则4e t e ≤≤,所以()12x f x 24t et =-()2224t e e =--,所以当2t e =时,12()x f x 取得最小值24e -,当4t e =时,12()x f x 取得最大值0, 所以12()x f x 的取值范围是24,0e ⎡⎤-⎣⎦. 故答案为:24,0e ⎡⎤-⎣⎦ 【点睛】关键点点睛:令22x e t x =,将()12x f x 化为关于t 的二次函数,根据二次函数知识求解是解题关键.15.【分析】不等式等价变形利用同构函数的单调性得解【详解】令∴在上单调递增∵∴∴恒成立令只需∴单调递增∴单调递减时的最大值为∴∴的最小值为故答案为:【点睛】不等式等价变形同构函数是解题关键解析:3e【分析】不等式等价变形()()()4ln 3ln 3ln 3ln xxxe x x a a x x a a e e-≤-⇔-≤-,利用同构函数()ln f x x x =-的单调性得解【详解】()()4ln 3ln 3ln 3ln x x e x x a a x x ae a x -≤-⇔-≤--()()3ln 3ln x x x x ae ae ⇔-≤-令()ln f x x x =-,()111x f x x x-'=-=, ∴()f x 在[)1,+∞上单调递增.∵1a >,1[,)3x ∈+∞,∴[)3,1,x e x a ∈+∞,∴33xx eae x x a ⇔≤⇔≤恒成立,令()3x x g x e =,只需max ()a g x ≥,()33xxg x e -'=, ∴1[,1),()0,()3x g x g x ∈'>单调递增,∴(1,),()0,()x g x g x ∈+∞'<单调递减,1x ∴=时,()g x 的最大值为3e,∴3a e ≥,∴a 的最小值为3e.故答案为:3e【点睛】不等式等价变形,同构函数()ln f x x x =-是解题关键.16.【分析】由可得对称轴是由可得从而得出判断的单调区间再结合即可得不等式的解集【详解】因为函数对定义域内内的任意都有所以对称轴是因为满足即所以当时单调递增当时单调递减又因为所以时时时当与同号时所以的解集 解析:()(),01,3-∞⋃【分析】由()()4f x f x =-,可得()f x 对称轴是2x =,由()()2xf x f x ''<可得()()20x f x '-<,从而得出判断()f x 的单调区间,再结合()30f =,即可得不等式()0xf x >的解集.【详解】因为函数()f x 对定义域内R 内的任意x 都有()()4f x f x =-, 所以()f x 对称轴是2x =,因为()f x '满足()()2xf x f x ''<,即()()20x f x '-<, 所以当2x <时()0f x '>,()f x 单调递增, 当2x >时()0f x '<,()f x 单调递减, 又因为()()130f f ==,所以1x <时,()0f x <,13,x <<时,()0f x >,3x >时,()0f x <, 当x 与()f x 同号时,()0xf x >, 所以()0xf x >的解集为:()(),01,3-∞⋃, 故答案为:()(),01,3-∞⋃ 【点睛】本题主要考查了函数的对称性和单调性,导数的符号决定原函数的单调性,根据单调性解不等式,属于中档题.17.【分析】由函数在区间上单调递增即在上恒成立即在上恒成立设利用导数求得的单调性与最小值即可求解【详解】由题意函数则因为函数在区间上单调递增即在上恒成立即在上恒成立设则所以当时所以为单调递增函数所以函数 解析:a e ≤【分析】由函数()f x 在区间[]1,4上单调递增,即()0xaf x e x'=-≥在[]1,4上恒成立,即x a xe ≤在[]1,4上恒成立,设()xg x xe =,利用导数求得()g x 的单调性与最小值,即可求解. 【详解】由题意,函数()2xf x e alnx =-+,则()xa f x e x '=-, 因为函数()f x 在区间[]1,4上单调递增,即()0xa f x e x'=-≥在[]1,4上恒成立,即x a xe ≤在[]1,4上恒成立,设()xg x xe =,则()(1)x x xe xe e g x x ='=++,所以当[]1,4x ∈时,()(1)0xg x e x '=+≥,所以()g x 为单调递增函数,所以函数()xg x xe =的最小值为()1g e =,所以a e ≤.【点睛】本题主要考查了利用函数的单调性求参数问题,其中解答中把函数的转化为不等式的恒成立问题,利用导数求得新函数的单调性与最值是解答的关键,着重考查了推理与运算能力,属于基础题.18.【分析】根据在R 上递增结合将不等式恒成立转化为恒成立然后分和两种情况利用导数法求解【详解】因为所以成立所以在R 上递增又成立所以恒成立即恒成立当时转化为恒成立令当时单调递减当时单调递增所以当时求得最小解析:10a e≤≤【分析】根据()f x 在R 上递增,结合()01f =,将x R ∀∈不等式()21xf ax e a -+≤恒成立,转化为()2xa x e +≤ ,x R ∀∈恒成立,然后分20x +≤和20x +>两种情况,利用导数法求解. 【详解】因为()321f x x x =++,所以()2320f x x '=+>成立,所以()f x 在R 上递增,又()()01,21xf f ax e a =-+≤x R ∀∈成立,所以20x ax e a -+≤,x R ∀∈ 恒成立,即()2xa x e +≤,x R ∀∈恒成立, 当20x +>时,转化为2xe a x ≤+恒成立,令()2xg x ex =+,()()()212x x e g x x +'=+,当21x -<<-时,()0g x '<,()g x 单调递减, 当1x >-时,()0g x '>,()g x 单调递增, 所以当1x =-时,()g x 求得最小值min 1()(1)g x g e=-=, 所以1a e≤, 当20x +≤时,转化为2xe a x ≥+恒成立,(),(,2)a g x x ≥∈-∞-上恒成立,(,2)x ∈-∞-时,()0,()g x g x '<单调递减,又(,2),()0x g x ∈-∞-<,所以0a ≥不等式恒成立,综上:实数a 的取值范围为10a e≤≤ 故答案为:10a e≤≤ 【点睛】本题主要考查导数与函数的单调性,导数与不等式恒成立,还考查了转化化归的思想,分类讨论思想和运算求解的能力,属于中档题.19.【分析】令先判断函数g(x)的奇偶性和单调性得到在R 上恒成立再利用导数分析解答即得解【详解】因为当时有不等式成立所以令所以函数g(x)在(0+∞)上单调递增由题得所以函数g(x)是奇函数所以函数在R 解析:2【分析】令2()(),g x x f x =先判断函数g(x)的奇偶性和单调性,得到e x ax >在R 上恒成立,再利用导数分析解答即得解. 【详解】因为当0x >时,有不等式()()22x f x xf x '>-成立,所以()()22+20,[()]0x f x xf x x f x ''>∴>,令2()(),g x x f x =所以函数g(x)在(0,+∞)上单调递增, 由题得22()()()g(x),g x x f x x f x -=-=-=- 所以函数g(x)是奇函数,所以函数在R 上单调递增. 因为对x R ∀∈,不等式()()2220xxe f e a x f ax ->恒成立,所以()()222,()()e xxxxe f ea x f ax g e g ax ax >∴>∴>,,因为a >0,所以当x≤0时,显然成立.当x >0时,()(0)xe a h x x x<=>,所以2(1)()xx e h x x-'=,所以函数h (x)在(0,1)单调递减,在(1,+∞)单调递增. 所以min ()(1)h x h e ==, 所以a <e,所以正整数a 的最大值为2. 故答案为2 【点睛】本题主要考查函数的奇偶性及其应用,考查函数单调性的判断及其应用,考查利用导数研究不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.属于中档题.20.【分析】根据题意可得只有一个解只有一个解与只有一个交点求导数分析单调性及当时;当时画出函数的草图及可得的取值范围再检验是否符合题意即可得出答案【详解】解:因为函数有且仅有一个极值点所以只有一个解即只 解析:(,0]-∞【分析】根据题意可得()210f x lnx ax '=-+=只有一个解12lnx a x+⇒=只有一个解2y a ⇒=与1()lnx y g x x+==只有一个交点,求导数()g x ',分析单调性,及当0x →时,()g x →-∞;当x →+∞时,()0g x →,画出函数()g x 的草图,及可得a 的取值范围,再检验是否符合题意,即可得出答案. 【详解】解:因为函数()(ln )f x x x ax =-有且仅有一个极值点, 所以1()ln ln 210f x x ax x a x ax x ⎛⎫'=-+-=-+= ⎪⎝⎭只有一个解, 即ln 12x a x+=,只有一个解, 即2y a =与ln 1()x y g x x+==只有一个交点, 因为2ln ()xg x x -'=, 当(0,1)x ∈时,()0g x '>,函数()g x 单调递增,当(1,)x ∈+∞时,()0g x '<,函数()g x 单调递减, 所以max ()(1)1g x g ==,当0x →时,()g x →-∞;当x →+∞时,()0g x →, 画出函数()g x 的草图如下:结合图象可得21a =或20a ≤, 解得12a =或0a ≤, 当12a =时,21()ln 2f x x x x =-, 所以()1ln f x x x '=+-,令()1ln h x x x =+-,所以1()1h x x'=-, 所以()h x 在(0,1)上单调递增,在(1,)+∞上单调递减,所以()(1)0h x h ≤=,所以()1ln 0f x x x '=+-≤恒成立, 所以()f x 在(0,)+∞上单调递减, 所以函数()f x 没有极值点. 所以实数a 的取值范围是(,0]-∞. 故答案为:(,0]-∞ 【点睛】本题考查利用导数分析极值,解题关键是转化思想的应用,属于中档题.三、解答题21.(1)答案见解析;(2)(],1e -∞+. 【分析】(1)求得()xf x e a '=-,分0a ≤、0a >两种情况讨论,分析导数的符号变化,由此可得出函数()f x 的单调性;(2)利用参变量分离法得出1xe m x ≤+在()0,∞+上恒成立,利用导数求出函数()1xe g x x=+在()0,∞+上的最小值,由此可求得实数m 的取值范围.【详解】解:(1)()x f x e ax =-,()x f x e a '∴=-.当0a ≤时,则()0f x '>在(),-∞+∞上恒成立,所以()f x 在(),-∞+∞上单调递增; 当0a >时,由()0f x '>,得ln x a >,由()0f x '<,得ln x a <, 所以()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增. 综上所述,当0a ≤时,函数()f x 在(),-∞+∞上单调递增;当0a >时,函数()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增;(2)由题意知xe x mx +≥在()0,∞+上恒成立,即1xe m x≤+恒成立,令()1x e g x x =+,其中0x >,则()()21x x e g x x-'=. 当01x <<时,则()0g x '<;当1x >时,则()0g x '>.所以()g x 在()0,1上单调递减,在()1,+∞上单调递增,则()()min 11g x g e ==+. 所以实数m 的取值范围为(],1e -∞+. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥. 22.(1)2a =;(2)(-∞. 【分析】(1)由题意可得出()11f '=,由此可求得实数a 的值;(2)求出函数()f x 的定义域为()0,∞+,由题意可知,()2210af x x x'=+-≥在()0,∞+上恒成立,利用参变量分离法得出min2a x x ⎛⎫≤+ ⎪⎝⎭,利用基本不等式求出2x x +在()0,∞+上的最小值,由此可得出实数a 的取值范围.【详解】 (1)()2ln f x x a x x =--,()221af x x x'∴=+-,()13f a '∴=-,又()f x 在点()()1,1f 处的切线方程为2y x =-,()131f a '∴=-=,解得2a =; (2)()f x 的定义域为()0,∞+,()f x 在定义域上为增函数,()2210af x x x'∴=+-≥在()0,∞+上恒成立, 2a x x ∴≤+在()0,∞+上恒成立,min 2a x x ⎛⎫∴≤+ ⎪⎝⎭,由基本不等式2x x +=≥x 时等号成立,故min2x x ⎛⎫+= ⎪⎝⎭ 故a的取值范围为(-∞.【点睛】结论点睛:利用函数的单调性求参数,可按照以下原则进行:(1)函数()f x 在区间D 上单调递增()0f x '⇔≥在区间D 上恒成立;(2)函数()f x 在区间D 上单调递减()0f x '⇔≤在区间D 上恒成立;(3)函数()f x 在区间D 上不单调()f x '⇔在区间D 上存在异号零点;(4)函数()f x 在区间D 上存在单调递增区间x D ⇔∃∈,使得()0f x '>成立; (5)函数()f x 在区间D 上存在单调递减区间x D ⇔∃∈,使得()0f x '<成立. 23.(1)27y x =+;(2)1,2⎛⎫+∞⎪⎝⎭. 【分析】(1)求出导函数()'f x ,得切线斜率(0)f ',从而可得切线方程;(2)求出()'f x ,求出()0f x '=的两根1a和2,根据两根的大小讨论()f x 的极值,由2是极小值点得出a 的范围.【详解】本题考查利用导数研究函数性质.解析(1)若1a =,()2()57x f x x x e =-+,所以()2()32x f x x x e '=-+,所以(0)2 f '=,又(0)7f =,因此曲线()y f x =在(0,(0))f 处的切线方程为27y x =+.(2)2()(21)2(1)(2)x x f x ax a x e ax x e '⎡⎤=-++=--⎣⎦,令()0 f x '=,得1x a =或2x =, 若102a <<,即12a > 则当1,2x a ⎛⎫∈⎪⎝⎭时,()0f x '<,当(2,)x ∈+∞时,()0f x '>, 所以()f x 在2x =处取得极小值.. 若12a ≤,且0a ≠,则当(0,2)x ∈时,112ax x ≤<, 所以10ax ,同时20x -<,所以()0f x '>,从而2x =不是()f x 的极小值点..综上可知,a 的取值范围是1,2⎛⎫+∞⎪⎝⎭. 【点睛】本题考查导数的几何意义,考查由极值点求参数范围.掌握极值的定义是解题关键.方法是:求出导函数()'f x ,确定()0f x '=的根,然后由根分实数为若干个区间,讨论各区间中()'f x 和正负,得单调区间,若在0x 左侧递减,右侧递增,则0x 是极小值点,若在0x 左侧递增,右侧递减,则0x 是极大值点.24.(1)()110e x y ---=;(2)01a ≤≤.【分析】(1)设切点坐标,求出导数及切线方程,把()0,1-代入切线方程可得0x ,然后再求出切线方程;(2)求出导函数,对a 进行讨论并判断函数的单调性,利用函数的最小值可得答案.【详解】(1)当1a =时,点()0,1-不在函数图象上,()1x f x e '=-, 设切点为()000, x x e ax a --,则切线方程为()()()0000xy e ax a f x x x '---=-, 因为过点()0,1-,所以0000()111x x e x e x --++=--, 解得01x =,因此所求的直线方程为()110e x y ---=.(2)()x f x e a '=-,当0a ≤时,()'0f x >,所以在R 上单调递增,其中0a =,()0xf x e =>,符合题意, 当0a <时,取110a x a-=<,()1110x f x e =-<,不符合题意; 当0a >时,()()n 0,,l x a f x '∈-∞<,所以()f x 在(),ln a -∞上单调递减,()()ln ,,0x a f x '∈+∞>,所以()f x 在()ln ,a +∞上单调递增,所以()()ln f x f a ≥,要使()0f x ≥,只需()ln 0f a ≥,()ln ln ln 0a f a e a a a =--≥,解得01a <≤;综上所述,01a ≤≤.【点睛】本题考查求函数过一点的切线方程和求参数问题,对于求切线的问题时需要讨论此点是否是切点;对于求参数问题,有时可采用对原函数进行求导讨论其单调性和最值方法求解,也可以采用对参数实行分离的方法,构造新函数并求新函数的值域可得解.25.(1)1y =;(2)0a ≥.【分析】(1)利用导数的几何意义可求得结果;(2)转化为()0g x '≥,即222a x x≥-在[1,+)∞上恒成立,再构造函数求出最大值即可得解.【详解】(1)当2a =-时,()22f x x lnx =-,定义域为(0,)+∞, 2222()2x f x x xx -'=-=,所以函数()f x 在点()()11f ,处的切线的斜率为2212(1)01f ⨯-'==, 又(1)1201f =-⨯=,所以函数()f x 在点()()11f ,处的切线方程为1y =(2)因为()()2g x f x x=+22ln x a x x =++在[1,+)∞上是单调增函数, 所以322222()2a x ax g x x x x x+-'=-+=0≥在[1,+)∞上恒成立, 即222a x x≥-在[1,+)∞上恒成立, 因为222y x x =-在[1,+)∞上为单调递减函数,所以当1x =时,222y x x=-取得最大值0, 所以0a ≥.【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:①若()k f x ≥在[,]a b 上恒成立,则max ()k f x ≥;②若()k f x ≤在[,]a b 上恒成立,则min ()k f x ≤;③若()k f x ≥在[,]a b 上有解,则min ()k f x ≥;④若()k f x ≤在[,]a b 上有解,则max ()k f x ≤;26.(1)证明见解析;(2)证明见解析.【分析】(1)对()f x 求导,利用导数判断()f x 的单调性,求出()f x 的极值或最值,即可求证;(2)构造函数()x g x e x =-,求导利用单调性证明()0xg x e x =->,再由(1)可知()1ln 0f x x x =--≥即1ln x x ≥+可得ln x x >,进而可证明0x >时, ln x e x x >>.【详解】(1)()1ln =--f x x x 的定义域为()0,∞+,1()1f x x'=- 当01x <<时,1()10f x x '=-<,当1x >时,1()10'=->f x x, 所以()f x 在()0,1单调递减,在()1,+∞单调递增,所以1x =时()f x 最小为(1)11ln10f =--=,所以()f x 存在唯一的零点1x =,(2)令()x g x e x =-,则()1x g x e '=-,当0x >时,()10xg x e '=->, ()x g x e x =-在()0,∞+单调递增,所以()()0001g x g e >=-=,即10x e x ->>,即0x e x ->,所以x e x >,由(1)知()1ln =--f x x x 在()0,1单调递减,在()1,+∞单调递增,所以()f x 最小为(1)11ln10f =--=,所以()1ln 0f x x x =--≥即1ln x x ≥+,所以ln x x >,综上所述:当0x >时,ln x e x x >>.【点睛】方法点睛:判断函数零点个数的方法(1)直接法:令()0f x =,如果能求出解,那么有几个不同的解就有几个零点;(2)利用函数的零点存在性定理:利用函数的零点存在性定理时,不仅要求函数的图象在区间[],a b 上是连续不断的曲线,并且()()0f a f b ⋅<,还必须结合函数的图象与性质,(如单调性、奇偶性)才能确定函数有多少个零点;(3)图象法:画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数,()h x 和()g x 的形式,根据()()()0f x h x g x =⇔=,则函数()f x 的零点个数就是函数()y h x =和()y g x =的图象交点个数;(4)利用函数的性质:若能确定函数的单调性,则其零点个数不难得到,若所考查的函数是周期函数,则需要求出在一个周期内的零点个数,根据周期性则可以得出函数的零点个数.。

2020版高考数学习题: 导数及其应用(选修1-1) 第11节 导数利用导数求在研究函数中的应用 解不等式问题

2020版高考数学习题: 导数及其应用(选修1-1) 第11节 导数利用导数求在研究函数中的应用 解不等式问题

第三课时利用导数求解不等式问题【选题明细表】基础巩固(时间:30分钟)1.设f(x)是R上的可导函数,且满足f′(x)>f(x),对任意的正实数a,下列不等式恒成立的是( B )(A)f(a)<e a f(0) (B)f(a)>e a f(0)(C)f(a)< (D)f(a)>解析:构造函数g(x)=,则g′(x)==>0,即g(x)=是增函数,而a>0,所以g(a)>g(0),即f(a)>e a f(0).故选B.2.若对任意a,b满足0<a<b<t,都有bln a<aln b,则t的最大值为.解析:因为0<a<b<t,bln a<aln b,所以<,令y=,x∈(0,t),则函数在(0,t)上递增,故y′=>0,解得0<x<e.故t的最大值为e.答案:e3.(2018·广东深圳中学第一次阶段性测试)函数f(x)=x-2sin x,对任意的x1,x2∈[0,π],恒有|f(x1)-f(x2)|≤M,则M的最小值为.解析:因为f(x)=x-2sin x,所以f′(x)=1-2cos x,所以当0<x<时,f′(x)<0,f(x)单调递减;当<x<π时,f′(x)>0,f(x)单调递增.所以当x=时,f(x)有极小值,即最小值,且f(x)min=f()=-2sin =-.又f(0)=0,f(π)=π,所以f(x)max=π.由题意得|f(x1)-f(x2)|≤M等价于M≥|f(x)max-f(x)min|=π-(-)=+.所以M的最小值为+.答案:+4.(2018·济南模拟)已知f(x)=(1-x)e x-1.(1)求函数f(x)的最大值;(2)设g(x)=,x>-1且x≠0,证明:g(x)<1.(1)解:f′(x)=-xe x.当x∈(-∞,0)时,f′(x)>0,f(x)单调递增;当x∈(0,+∞)时,f′(x)<0,f(x)单调递减.所以f(x)的最大值为f(0)=0.(2)证明:由(1)知,当x>0时,f(x)<0,g(x)<0<1.当-1<x<0时,g(x)<1等价于f(x)>x.设h(x)=f(x)-x,则h′(x)=-xe x-1.当x∈(-1,0)时,0<-x<1,0<e x<1,则0<-xe x<1,从而当x∈(-1,0)时,h′(x)<0,h(x)在(-1,0)上单调递减.当-1<x<0时,h(x)>h(0)=0,即g(x)<1.综上,当x>-1且x≠0时总有g(x)<1.能力提升(时间:15分钟)5.(2018·安徽江南十校联考)已知函数f(x)=xln x(x>0).(1)求f(x)的单调区间和极值;(2)若对任意x∈(0,+∞),f(x)≥恒成立,求实数m的最大值.解:(1)由f(x)=xln x(x>0),得f′(x)=1+ln x,令f′(x)>0,得x>;令f′(x)<0,得0<x<.所以f(x)的单调增区间是(,+∞),单调减区间是(0,).故f(x)在x=处有极小值f()=-,无极大值.(2)由f(x)≥及f(x)=xln x,得m≤恒成立,问题转化为m≤()min.令g(x)=(x>0),则g′(x)=,由g′(x)>0⇒x>1,由g′(x)<0⇒0<x<1.所以g(x)在(0,1)上是减函数,在(1,+∞)上是增函数,所以g(x)min=g(1)=4,因此m≤4,所以m的最大值是4.6.已知函数f(x)=在x=0处的切线方程为y=x.(1)求a的值;(2)若对任意的x∈(0,2),都有f(x)<成立,求k的取值范围.解:(1)由题意得f′(x)=,因为函数在x=0处的切线方程为y=x,所以f′(0)==1,得a=1.(2)由(1)知f(x)=<对任意x∈(0,2)都成立,所以由>0知k+2x-x2>0,即k>x2-2x对任意x∈(0,2)都成立,从而k≥0.由不等式整理可得k<+x2-2x,令g(x)=+x2-2x,所以g′(x)=+2(x-1)=(x-1)(+2),令g′(x)=0得x=1,当x∈(1,2)时,g′(x)>0,函数g(x)在(1,2)上单调递增,同理,函数g(x)在(0,1)上单调递减,所以k<g(x)min=g(1)=e-1.综上所述,实数k的取值范围是[0,e-1).7.已知函数f(x)=x2-(2a+1)x+aln x(a∈R).(1)若f(x)在区间[1,2]上是单调函数,求实数a的取值范围;(2)函数g(x)=(1-a)x,若∃x0∈[1,e]使得f(x0)≥g(x0)成立,求实数a 的取值范围.解:(1)f′(x)=,当导函数f′(x)的零点x=a落在区间(1,2)内时,函数f(x)在区间[1, 2]上就不是单调函数,所以实数a的取值范围是a≤1或a≥2.即实数a的取值范围为(-∞,1]∪[2,+∞).(2)由题意知,不等式f(x)≥g(x)在区间[1,e]上有解,即x2-2x+a(ln x-x)≥0在区间[1,e]上有解.因为当x∈[1,e]时,ln x≤1≤x(不同时取等号),x-ln x>0,所以a≤在区间[1,e]上有解.令h(x)=,则h′(x)=.因为x∈[1,e],所以h′(x)≥0,h(x)单调递增,所以x∈[1,e]时,h(x)max=h(e)=,所以a≤,所以实数a的取值范围是(-∞,].。

2020版导与练一轮复习理科数学课件:第十三篇 导数及其应用(选修1-1) 第10节 导数的概念及运算 .pdf

2020版导与练一轮复习理科数学课件:第十三篇 导数及其应用(选修1-1) 第10节 导数的概念及运算 .pdf

第10节 导数的概念及运算考点专项突破知识链条完善 把散落的知识连起来知识梳理1.导数的概念(1)函数y=f(x)在x=x 0处的导数()()00f x x f x x+∆-∆(2)函数f(x)的导函数函数f′(x)= 为f(x)的导函数.()()0lim x f x x f x x ∆→+∆-∆2.导数的几何意义函数y=f(x)在点x 0处的导数f′(x 0)的几何意义,就是曲线y=f(x)在点P(x 0,f(x 0))处的切线的 ,过点P的切线方程为 .斜率y-y 0=f′(x 0)(x-x 0) 3.基本初等函数的导数公式基本初等函数导函数f(x)=C(C为常数)f′(x)= .f(x)=x α(α∈Q *)f′(x)=.0αx α-1f(x)=sin x f′(x)= .f(x)=cos x f′(x)= .f(x)=e x f′(x)= .f(x)=a x(a>0,且a≠1)f′(x)= .f(x)=ln x f′(x)=f(x)=loga x(a>0,且a≠1)f′(x)=cos x-sin xe xa x ln a1lnx a1x4.导数的运算法则若f′(x),g′(x)存在,则有(1)[f(x)±g(x)]′= ;(2)[f(x)·g(x)]′= ;f′(x)±g′(x) f′(x)g(x)+f(x)g′(x) ()()()()()2f xg x f x g x g x ''-⎡⎤⎣⎦【重要结论】1.奇函数的导数是偶函数,偶函数的导数是奇函数.周期函数的导数还是周期函数.2.函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这点处的切线越“陡”.1.(教材改编题)曲线y=x 3+11在点P(1,12)处的切线与y轴交点的纵坐标是( )(A)-9 (B)-3 (C)9 (D)15解析:因为y=x 3+11,所以y′=3x 2,所以y′|x=1=3,所以曲线y=x 3+11在点P(1,12)处的切线方程为y-12=3(x-1),令x=0,得y=9.对点自测C2.已知f(x)=xln x,若f′(x0)=2,则x等于( )解析:f(x)的定义域为(0,+∞),f′(x)=ln x+1,由f′(x0)=2,即ln x+1=2,解得x0=e.B3.(2018·天津卷)已知函数f(x)=e x ln x,f′(x)为f(x)的导函数,则f′(1)的值为 .答案:e答案:x-y+1=05.下面四个结论中正确的是 .(1)f′(x0)是函数y=f(x)在x=x附近的平均变化率.(2)函数f(x)=sin(-x)的导数f′(x)=cos x.(3)求f′(x0)时,可先求f(x),再求f′(x).(4) 曲线的切线与曲线不一定只有一个公共点.解析:(1)f′(x0)表示y=f(x)在x=x0处的切线斜率,(1)错误.(2)f(x)=sin(-x)=-sin x,则f′(x)=-cos x,(2)错误.(3)求f′(x)时,应先求f′(x),再代入求值,(3)错误,只有(4)正确.答案:(4)考点专项突破 在讲练中理解知识考点一 导数的运算(多维探究)考查角度1:利用求导法则运算【例1】 求下列函数的导数:(1)y=e x ln x;反思归纳(1)熟记基本初等函数的导数公式及运算法则是导数计算的前提,求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错.(2)如函数为根式形式,可先化为分数指数幂,再求导.【跟踪训练1】 求下列函数的导数:考查角度2:抽象函数的导数运算【例2】 已知函数f(x)的导函数为f′(x),且满足关系式f(x)=x2+3xf′(2) +ln x,则f′(2)= .反思归纳(1)准确活用求导法则是解题的关键,另外一定注意f′(x0)(x是变量x某一取值)是一个常数,不是变量.(2)求解该类问题时要善于观察题目特征,恰当赋值,重视方程思想的运用.【跟踪训练2】 已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(1)+ln x,则f′(1)等于( )(A)-e (B)-1 (C)1 (D)e考点二 导数的几何意义(多维探究)考查角度1:求切线方程或切点坐标【例3】 (1)已知函数f(x)=xln x,若直线l过点(0,-1),并且与曲线y=f(x)相切,则直线l的方程为 ;答案:(1)x-y-1=0(2)已知f(x)为偶函数,当x≤0时,f(x)=e-x-1-x,则曲线y=f(x)在点(1,2)处的切线方程是 ;解析:(2)令x≥0,则-x≤0,f(-x)=e x-1+x,又f(x)为偶函数,所以x≥0时,f(x)=e x-1+x,所以f(1)=2,f′(x)=e x-1+1,f′(1)=2,所求切线方程为y-2=2(x-1),即y=2x.答案:(2)y=2x(3)若曲线y=xln x上点P处的切线平行于直线2x-y+1=0,则点P的坐标是 .答案:(3)(e,e)反思归纳(1)求曲线在点P(x0,y)处的切线,则表明P点是切点,只需求出函数在P处的导数,然后利用点斜式写出切线方程,若切线垂直于x轴,则切线方程为x=x.(2)求曲线过点P的切线,则P点不一定是切点,应先设出切点坐标,然后列出切点坐标的方程解出切点坐标,进而写出切线方程.求出切点坐标是解题的关键.【跟踪训练3】 (1)(2018·全国Ⅰ卷)设函数f(x)=x3+(a-1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为( )(A)y=-2x(B)y=-x(C)y=2x(D)y=x解析:(1)法一 因为f(x)为奇函数,所以f(-x)=-f(x),由此可得a=1,故f(x)=x3+x,f′(x)=3x2+1,f′(0)=1,所以曲线y=f(x)在点(0,0)处的切线方程为y=x.故选D.法二 因为f(x)=x3+(a-1)x2+ax为奇函数,所以f′(x)=3x2+2(a-1)x+a为偶函数,所以a=1,即f′(x)=3x2+1,所以f′(0)=1,所以曲线y=f(x)在点(0,0)处的切线方程为y=x.故选D.答案:(1)D答案:(2)(1,1)考查角度2:求参数的值或取值范围【例4】 (1)(2018·开封模拟)函数f(x)=ln x+ax的图象存在与直线2x-y=0平行的切线,则实数a的取值范围是( )(A)(-∞,2] (B)(-∞,2)(C)(2,+∞) (D)(0,+∞)答案:(1)B答案:(2)-8反思归纳(1)求解与曲线切线有关的参数问题,其实质是利用导数的几何意义求曲线切线方程的逆用.(2)解题的关键是根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.答案:(1)1(2)已知曲线f(x)=acos x与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,则实数a+b的值为 .解析:(2)因为两曲线的交点为(0,m),所以m=acos 0,m=02+b×0+1.所以m=1,a=1.因为曲线f(x),g(x)在(0,m)处有公切线,所以f′(0)=g′(0),所以-sin 0=2×0+b,所以b=0.所以a+b=1.答案:(2)1备选例题【例2】 (2018·西安质检)已知函数f(x)=axln x,x∈(0,+∞),其中a为实数, f′(x)为f(x)的导函数.若f′(1)=3,则a的值为 .答案:3【例3】 已知函数f(x)=-f′(0)e x+2x,点P为曲线y=f(x)在点(0,f(0))处的切线l上的一点,点Q在曲线y=e x上,则|PQ|的最小值为 .点击进入应用能力提升。

高中数学人教版选修1-1 第三章 导数及其应用 导数的计算

高中数学人教版选修1-1  第三章 导数及其应用 导数的计算

3.2导数的计算[教材研读]预习课本P81~85,思考以下问题1.幂函数f(x)=x2,f(x)=x 12的导数是什么?2.根据导数的运算法则,积f(x)g(x)的导数与f′(x),g′(x)有何关系?[要点梳理]1.基本初等函数的导数公式2.导数运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x );(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );当g (x )=c 时,[cf (x )]′=cf ′(x ).(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). [自我诊断]判断(正确的打“√”,错误的打“×”)1.y =1x ,y =x ,y =x 2等求导函数,都可以看成y =x α(α∈Q *),并用其导数公式求导.( )2.y =ln x 在x =2处的切线的斜率为12.( )3.f (x )=e x 在点(0,1)处的切线的方程为x -y +1=0.( )[答案] 1.√ 2.√ 3.√题型一 利用导数公式求函数的导数思考:如何充分利用基本初等函数的导数公式?提示:若函数解析式不能直接使用导数公式,则化成能应用导数公式的形式.求下列函数的导数:(1)y =10x ;(2)y =lg x ;(4)y =4x 3;(5)y =⎝ ⎛⎭⎪⎫sin x 2+cos x 22-1. [思路导引] 把解析式化简成能应用公式的形式.[解] (1)y ′=(10x )′=10x ln10.(2)y ′=(lg x )′=1x ln10.(5)∵y =⎝⎛⎭⎪⎫sin x 2+cos x 22-1 =sin 2x 2+2sin x 2cos x 2+cos 2x 2-1=sin x ,∴y ′=(sin x )′=cos x .(1)若给出的函数解析式符合基本初等函数的导数公式,则直接利用公式求导.(2)若给出的函数解析式不符合导数公式,则通过恒等变换对解析式进行化简或变形后求导,如根式要化成指数幂的形式求导.[跟踪训练]求下列函数的导数:(1)y =⎝ ⎛⎭⎪⎫1e x ; (2)y =⎝ ⎛⎭⎪⎫110x ; (3)y =lg5;(4)y =3lg 3x ;(5)y =2cos 2x 2-1.[解] (1)y ′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1e x ′=⎝ ⎛⎭⎪⎫1e x ln 1e =-1e x =-e -x . (2)y ′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫110x ′=⎝ ⎛⎭⎪⎫110x ln 110=-ln1010x =-10-x ln10. (3)∵y =lg5是常数函数,∴y ′=(lg5)′=0.(4)∵y =3lg 3x =lg x ,∴y ′=(lg x )′=1x ln10.(5)∵y =2cos 2x 2-1=cos x ,∴y ′=(cos x )′=-sin x .题型二 利用导数的运算法则求导数(链接教材P 84例2)求下列函数的导数:(1)y =x 3·e x ;(2)y =x -sin x 2cos x 2;(3)y =x 2+log 3x ;(4)y =e x +1e x -1.[思路导引] 尽量把解析式转化为能用和差的求导法则,减少求导法则的应用的烦索性.[解] (1)y ′=(x 3)′e x +x 3(e x )′=3x 2e x +x 3e x =x 2(3+x )e x .(2)∵y =x -12sin x ,∴y ′=x ′-12(sin x )′=1-12cos x .(3)y ′=(x 2+log 3x )′=(x 2)′+(log 3x )′=2x +1x ln3. (4)y ′=(e x +1)′(e x -1)-(e x +1)(e x -1)′(e x -1)2=e x (e x -1)-(e x +1)e x(e x -1)2=-2e x(e x -1)2.(1)分析求导式符合哪种求导法则,每一部分式子是由哪种基本初等函数组合成的,确定求导法则,基本公式.(2)如果求导式比较复杂,则需要对式子先变形再求导,常用的变形有乘积展开变为和式求导,商式变乘积式求导,三角函数恒等变换后求导等.(3)利用导数法则求导的原则是尽可能化为和、差,利用和、差的求导法则求导,尽量少用积、商的求导法则求导.[跟踪训练]求下列函数的导数:(1)y =cos x x ;(2)y =x sin x +x ;(3)y =1+x 1-x +1-x 1+x ; (4)y =lg x -1x 2.[解] (1)y ′=⎝ ⎛⎭⎪⎫cos x x ′=(cos x )′·x -cos x ·(x )′x 2=-x ·sin x -cos x x 2=-x sin x +cos x x 2. (2)y ′=(x sin x )′+(x )′=sin x +x cos x +12x .(3)∵y =(1+x )21-x +(1-x )21-x =2+2x 1-x =41-x-2, ∴y ′=⎝ ⎛⎭⎪⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2.(4)y ′=⎝ ⎛⎭⎪⎫lg x -1x 2′=(lg x )′-⎝ ⎛⎭⎪⎫1x 2′=1x ln10+2x 3. 题型三 利用导数公式研究曲线的切线问题点P 是曲线y =e x 上任意一点,求点P 到直线y =x 的最小距离.[思路导引] 分析知,与曲线相切且与y =x 平行的直线与曲线的切点到直线y =x 的距离最小.[解]如图,当曲线y =e x 在点P (x 0,y 0)处的切线与直线y =x 平行时,点P 到直线y =x 的距离最近.则曲线y =e x 在点P (x 0,y 0)处的切线斜率为1,又y ′=(e x )′=e x ,∴e x 0=1,得x 0=0,代入y =e x ,得y 0=1,即P (0,1).利用点到直线的距离公式得最小距离为22.(1)本例中的问题涉及切点、切点处的导数、切线方程三个主要元素.其他的条件可以进行转化,从而转化为这三个要素间的关系.(2)准确利用求导法则求出导函数是解决此类问题的第一步,也是解题的关键,务必做到准确.(3)分清已知点是否在曲线上,若不在曲线上,则要设出切点,这是解题时的易错点.[跟踪训练]求过曲线y =cos x 上点P ⎝ ⎛⎭⎪⎫π3,12且与曲线在这点处的切线垂直的直线方程.[解] ∵y =cos x ,∴y ′=(cos x )′=-sin x ,1.本节课的重点是基本初等函数的导数公式及导数运算法则,难点是灵活运用导数公式和运算法则解决相关问题.2.本节课要重点掌握的规律方法 (1)利用导数公式求导数. (2)利用导数运算法则求导数. (3)利用导数运算研究曲线的切线问题.3.本节课的易错点是导数公式(a x )′=a x ln a 和(log a x )′=1x ln a 以及运算法则[f (x )·g (x )]′与⎣⎢⎡⎦⎥⎤f (x )g (x )′的区别.1.已知f (x )=1x ,则f ′(3)=( ) A .-13 B .-19 C.19D.13[解析] ∵f (x )=1x ,∴f ′(x )=-1x 2,∴f ′(3)=-132=-19,故选B.[答案] B2.函数y =3x 2的导数为( ) A .y ′=3x2B .y ′=32xC .y ′=23x3D .y ′=233x[解析][答案] D3.已知直线y =kx 是曲线y =e x 的切线,则实数k 的值为( ) A.1e B .-1e C .-e D .e[解析][答案] D4.已知f (x )=e x ln x ,则f ′(x )=( ) A.e x x B .e x+1xC.e x (x ln x +1)xD.1x +ln x[解析] f ′(x )=(e x)′·ln x +e x·(ln x )′=e x·ln x +e x·1x =e x (x ln x +1)x,所以选C.[答案] C5.已知使函数y =x 3+ax 2-43a 的导数为0的x 值也使y 值为0,则常数a 的值为( )A .0或±3B .0C .±3D .非以上答案[解析] y ′=3x 2+2ax ,令y ′=0,即3x 2+2ax =0,∴x =0或x =-2a 3.分别代入y =x 3+ax 2-43a ,得0=-43a ,即a =0;-8a 327+4a 39-43a =0,即a =±3,∴a =0或a =±3.[答案] A6.曲线y =ln x 在点M (e,1)处的切线的斜率是__________,切线的方程为__________________.[解析] y ′=1x ,则k =y ′|x =e =1e ,切线方程y -1=1e (x -e),即x -e y =0.[答案] 1e x -e y =0。

2020版高中数学人教B版选修1-1课件:3.3.3 导数的实际应用

2020版高中数学人教B版选修1-1课件:3.3.3 导数的实际应用

3.设一个容积V固定的有铝合金盖的圆柱形铁桶,高为h,底面 半径为r,已知单位面积铝合金的价格是铁的3倍,则h∶ r= ________时,造价最低.
答案: 4∶ 1
当x∈(80,120)时,h′(x)>0,h(x)是增函数. 故当x=80时,h(x)取得极小值h(80)=11.25. 因为h(x)在(0,120]上只有一个极值,所以它是最小值. 故当汽车以80千米/时的速度匀速行驶时,从甲地到乙地耗油最 少,最少为11.25升.
1.最优化问题
2.求实际问题的最值,主要步骤如下:
(1)建立实际问题的数学模型,写出实际问题中变量之间的函数 关系y=f(x); (2)求函数的导数f′(x),解方程f′(x)=0,求出 极值点 ;
(3)比较函数在区间端点和在 最大(小)者为最大(小)值.
极值点
的取值大小,确定其
答案: D
答案: B
(2)为了使全程运输成本最小,汽车应以多大速度行驶?
再见
1.利用导数解决生活中优化问题的一般步骤 (1)分析实际问题中各量之间的关系,列出实际问题的数学模型, 写出实际问题中变量之间的函数关系y=f(x); (2)求函数的导数f′(x),解方程f′(x)=0; (3)比较函数在区间端点和使f′(x)=0的点的数值的大小,最大(小) 者为最大(小)值. (4)写出答案.
2.某地建一座桥,两端的桥墩已建好,这两墩相距m米,余下工 程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工 程费用为256万元,距离为x米的相邻两墩之间的桥面工程费用为 (2+)x万元,假设桥墩等距离分布,所有桥墩都视为点,且不考 虑其他因素,记余下工程的费用为y万元. (1)试写出y关于x的函数关系式; (2)当m=640米时,需新建多少个桥墩才能使y最小?

数学选修1-1导数在研究函数中的应用练习题含答案

数学选修1-1导数在研究函数中的应用练习题含答案

数学选修1-1导数在研究函数中的应用练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 函数y=(3−x2)e x的单调递增区间是( )A.(−∞, 0)B.(0, +∞)C.(−∞, −3)D.(−3, 1)2. 若曲线y=ax−ln(x+1)在点(0,0)处的切线方程为y=3x,则a=( )A.1B.2C.3D.43. 已知f(x)=(e x−a)(eax+1),若f(x)≥0(x∈R)恒成立,则满足条件的a的个数有( )A.1B.2C.3D.44. 若函数f(x)=ax3−2x2在x=−1时取得极值,则f(1)等于()A.−103B.−23C.0D.135. 已知函数f(x)=13x3+12ax2−bx+a2−2(a,b∈R),若f(x)在x=−1处有极值53,则a−b的值是()A.−4或3B.3C.−4D.−16. 函数f(x)=ln x过点(0, 0)的切线方程为()A.y=xB.y=2e x C.y=12x D.y=1ex7. 设定义在(0, +∞)的函数f(x)的导函数是f′(x),且x4f′(x)+3x3f(x)=e x,f(3)=e381,则x>0时,f(x)()A.有极大值,无极小值B.有极小值,无极大值C.既无极大值,又无极小值D.既有极大值,又有极小值8. 已知f(x)=x3−ax2+4x有两个极值点x1、x2,且f(x)在区间(0, 1)上有极大值,无极小值,则实数a的取值范围是()A.a>72B.a≥72C.a<72D.a≤729. 已知函数f(x)=−x 3+ax 2−4在x =2处取得极值,若m, n ∈[−1, 1],则f(m)+f ′(n)的最小值为() A.−13 B.−15 C.10 D.1510. 已知函数f(x)=x ln x 的图象上有A 、B 两点,其横坐标为x 1,x 2(0<x 1<x 2<1)且满足f(x 1)=f(x 2),若k =5(x 1+x 22+√x 1x 2),且k 为整数时,则k 的值为( )(参考数据:e ≈2.72) A.1 B.2 C.3 D.411. 函数f(x)=12x −sin x 在[−π2,π2]上的最小值是________.12. 函数f(x)=ax 2−2x −9在x =1处取得极值,则实数a =________.13. 给出函数①y =x 3,②y =x 4+1,③y =|x|,④y =√x ,其中在x =0处取得极值的函数是________(填序号).14. 函数f(x)=e x cos x 的图象在x =π2处的切线斜率为________−e π2 .15. 函数f(x)=12x −x 3在区间[−3, 3]的最小值是________.16. 已知函数f(x)=x 3−ax 2+3x ,a ∈R .若x =3是f(x)的一个极值点,则f(x)在R 上的极大值是________.17. 定义在(0, +∞)上的函数f(x),总有f′(x)>f(x)+ex −ln x 成立,且f(2)=e 2−2,则不等式f(x)≥e x −2的解集为________.18. 若直线y =kx +b 是曲线y =e x−2的切线,也是曲线y =e x −1的切线,则b =________.19. 若函数f (x )={e x −a,x >1−x 3+3x 2,x ≤1有最小值,则实数a 的取值范围为________.20. 若直线y =12x +m 与曲线y =x 3−2相切,则m =________.21. 已知函数f(x)=ax3−x2+x−5在R上无极值,求a的取值范围.22. 已知函数f(x)=−x3+3x2+9x+a,求f(x)的单调递减区间.23. 已知函数f(x)=x3−x2+x+2.(1)求曲线f(x)在点(1,f(1))处的切线方程;(2)求经过点A(1,3)的曲线f(x)的切线方程.24. 已知函数f(x)=x2−2(a+1)x+2a ln x(a≠0).(1)当a=1时,求函数f(x)的图象在点x=1处的切线方程;(2)讨论函数f(x)的单调性.25. 已知函数f(x)=x ln x−ae x+a,其中a∈R.(1)当a=0时,求函数在(e,f(e))处的切线方程;(2)若函数f(x)在定义域内单调递减,求实数a的取值范围.26. 已知f(x)=(3e x−2a)⋅√x,其中a∈R,e=2.718⋯为自然对数的底数.(Ⅰ)若x=1为函数f(x)的极值点,求a的值.(Ⅱ)若f(x)≤6e在x∈[0,2]上恒成立,求a的取值范围.27. 已知函数f(x)=ln x−ax2+(a−2)x.(1)若f(x)在x=1处取得极值,求a的值;(2)求函数y=f(x)在[a2,a]上的最大值.28. 已知:函数f(x)=ln(x+a)+x2,当x=−1时,f(x)取得极值,求:实数a的值,并讨论f(x)的单调性.29. 已知函数f(x)=e ax ⋅(ax +a +1),其中a ≥−1.(1)当a =1时,求曲线y =f(x)在点(1, f(1))处的切线方程;(2)求f(x)的单调区间.30. 已知函数f(x)=13x 3+ax +b ,(a, b ∈R)在x =2处取得极小值−43.求a +b 的值.31. 已知函数g(x)=x 2−(2a +1)x +a ln x . (1)当a =1时,求函数g(x)的单调增区间;(2)求函数g(x)在区间[1, e]上的最小值;32. 已知函数f (x )=x −a ln x +1(a ∈R ).(1)若a =1,求函数f(x)在点(1,f (1))处的切线方程;(2)求函数f(x)的单调区间.33. 已知函数f(x)=x(x −c)2(其中c 为常数,c ∈R ) (1)若函数f(x)在定义域内有极值,求实数c 的取值范围;(2)若函数f(x)在x =2处取得极大值,求实数c 的值.34. 已知函数f(x)=x −ln x . (1)求f(x)的最小值;(2)证明:对于任意正整数n ,(1+12)×(1+13)×⋯×(1+1n )<e .35. 已知函数f(x)=x 3+3bx 2+3cx 的两个极值点为x 1,x 2,x 1∈[−1, 0],x 2∈[1, 2].证明:0≤f(x 1)≤72,−10≤f(x 2)≤−12.36. 已知函数f(x)=−x 2+ax −ln x(a ∈R). (1)求函数f(x)既有极大值又有极小值的充要条件;(2)当函数f(x)在[12, 2]上单调时,求a的取值范围.37. 已知函数f(x)=x(x−a)2+b在x=2处有极大值.(1)当[−2, 4]时,函数y=f(x)的图象在抛物线y=1+45x−9x2的下方,求b的取值范围.(2)若过原点有三条直线与曲线y=f(x)相切,求b的取值范围.38. 已知函数f(x)=13ax3−12a2x2+2x+1,其中a∈R.(1)若f(x)在x∈R时存在极值,求a的取值范围;(2)若f(x)在[−1,12]上是增函数,求a的取值范围.39. (山东省济宁市2019届高三二模)已知函数f(x)=ln x−xe x+ax(a∈R).若函数f(x)在[1,+∞)上单调递减,求实数a的取值范围;若a=1,求f(x)的最大值.40. 已知函数f(x)=x+1x+a ln x的图象上任意一点的切线中,斜率为2的切线有且仅有一条.(1)求实数a的值;(2)求函数g(x)=f(x)+2x的极值.参考答案与试题解析数学选修1-1导数在研究函数中的应用练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】D【考点】利用导数研究函数的单调性【解析】求出函数的导数,令导函数大于0,求出函数的递增区间即可.【解答】解:y′=(3−x2)e x+(−2x)e x=−(x+3)(x−1)e x,令y′>0,解得:−3<x<1,故函数的单调递增区间是(−3, 1).故选D.2.【答案】D【考点】利用导数研究曲线上某点切线方程【解析】欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x=0处的导函数值,再结合导数的几何意义即可求出切线的斜率,从而问题解决.【解答】解:∵y=ax−ln(x+1),∴y′=a−1,x+1′=a−1=3,当x=0时,k=y x=0∴a=4.故选D.3.【答案】B【考点】利用导数研究函数的最值利用导数研究函数的单调性【解析】本题考查了利用导数研究函数的最值和不等式恒成立问题.【解答】解:∵ f(x)=(e x−a)(eax+1),f(x)≥0(x∈R)恒成立,∴ (e x−a)(eax+1)≥0在R上恒成立.当a<0时,e x−a≥0恒成立,而eax+1≥0在R不成立,∴ a≥0,当a=0时,f(x)=e x≥0成立,当a >0时,由f (x )≥0恒成立,有{e x −a ≥0eax +1≥0或{e x −a ≤0eax +1≤0,由e x −a =0,得x =ln a ;由eax +1,得x =−1ea , 设g (a )=ln a +1ea,则g ′(a )=1a−1e ⋅1a 2,∴ g(a)在(0,1e )上单调递减,在(1e ,+∞)上单调递增,∴ g (x )min =g (1e )=ln 1e +1e⋅1e=0,∴ 方程ln a =−1ea 有一个解,即有一个a 值使得f (x )≥0恒成立, ∴ 满足条件的a 的解有2个. 故选B . 4.【答案】 A【考点】函数在某点取得极值的条件 【解析】对函数求导,因为x =−1是极值点,则该处导数为0,故可求出a 的值,即可求出f(1). 【解答】解:由已知得f′(x)=3ax 2−4x , 又因为在x =−1处有极值, 所以f′(−1)=0,即3a +4=0,即a =−43, 所以f(1)=−43−2=−103. 故选:A . 5.【答案】 C【考点】利用导数研究函数的极值 利用导数研究函数的单调性 【解析】对函数f(x)求导,根据函数f(x)=13x 3+12ax 2−bx +a 2−2(a,b ∈R)在−1处有极值53,可知f′(−1)=0和f(−1)=53,得到{f′(−1)=0f(−1)=53,解方程组得到a 与b 的值,注意验证,可求得答案. 【解答】解:由函数f(x)=13x 3+12ax 2−bx +a 2−2(a,b ∈R ),由于f(x)在x =−1处有极值53,则f′(−1)=0和f(−1)=53, 故{f′(−1)=0,f(−1)=53,即{1−a −b =0,−13+12a +b +a 2−2=53,解得 {a =2,b =−1,或{a =−32,b =52,当a =2,b =−1时,f′(x)=x 2+2x +1=(x +1)2≥0, 故f(x)在R 上为增函数,不满足f(x)在x =−1处有极值53, 则a =−32,b =52,故a −b =−4. 故选C . 6.【答案】 D【考点】利用导数研究曲线上某点切线方程 【解析】求出原函数的导函数,设出切点坐标,得到函数在切点处的切线方程,把原点代入,求出切点坐标,则答案可求. 【解答】由f(x)=ln x ,得f′(x)=1x , 设切点为(x 0, ln x 0),则f′(x 0)=1x 0,∴ 过切点的切线方程为y −ln x 0=1x 0(x −x 0),代入(0, 0),可得ln x 0=1,即x 0=e .∴ 函数f(x)=ln x 过点(0, 0)的切线方程为y −1=1e (x −e), 即y =1e x .7.【答案】 C【考点】利用导数研究函数的极值 【解析】求出函数的导数,根据函数的单调性判断函数的极值即可. 【解答】 解:f′(x)=e x −3x 3f(x)x 4,则ℎ′(x)=e x−3[f′(x)x3+3f(x)x2]=e x−3x[f′(x)x4+3f(x)x3]=e x−3x ⋅e x=e x⋅x−3x,所以ℎ(x)≥ℎ(3)=e3−81f(3)=0,即f′(x)≥0,因此f(x)在(0, +∞)递增,既无极大值,又无极小值,故选:C.8.【答案】A【考点】函数在某点取得极值的条件【解析】求导函数,利用f(x)在区间(0, 1)上有极大值,无极小值,可得f′(x)=0的两个根中:x1∈(0, 1),x2>1,由此可得结论.【解答】解:由题意,f′(x)=3x2−2ax+4∵f(x)在区间(0, 1)上有极大值,无极小值,∴f′(x)=0的两个根中:x1∈(0, 1),x2>1∴f′(0)=4>0,f′(1)=7−2a<0,解得a>72故选A.9.【答案】A【考点】利用导数研究函数的单调性【解析】试题分析:f(x)=−3x2+2ax函数f(x)=−x3+ax2−4在x=2处取得极值.−12+ 4a=0解得|a=3.f(x)=−3x2+6∴ n=[−1,1]时,f(n)=−3n2+6n当n=−时,f(n)最小,最小为−9当m∈[−1,1)时,f(m)=−m3+3m24,f(m)=−3m2+6m令f(m)=0得m=0,m=2所以m=0时,f(m)最小为−4,故f(m)+f(n)的最小值为−9+(−4)=−13,故选A.【解答】此题暂无解答10.【答案】C【考点】利用导数研究函数的极值【解析】推导出f′(x)=1+ln x,x>0,由f′(x)=0,得x=1e,由x1ln x1=x2ln x2,得0<x1<1e <x2<1,由由x1+x22>1e,x2>2e−x1,得到x1+x22+√x1x2<2e,由此能求出k为整数时,k的值.【解答】解:∵f(x)=x ln x,∴f′(x)=1+ln x,x>0,由f′(x)=0,得x=1e,∵函数f(x)=x ln x的图象上有A、B两点,其横坐标为x1,x2(0<x1<x2<1)且满足f(x1)=f(x2),∴x1ln x1=x2ln x2,(0<x1<1e<x2<1),如图所示,由x1+x22>1e,x2>2e−x1,x1+x22+√x1x2<x1+(2e−x1)2+√x1(2e−x1)=1e+√2ex1−x12,∵t=1e +√2ex1−x12关于x1单调递减,0<x1<1e,∴x1+x22+√x1x2<2e,∴5(x1+x22+√x1x2)<10e≈3.7,∴k≤3.∴k为整数时,则k的值为3.故选:C.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】π6−√32【考点】利用导数研究函数的最值利用导数研究函数的单调性【解析】此题暂无解析【解答】解:∵f(x)=12x−sin x,∴f′(x)=12−cos x,x∈[−π2,π2].令f′(x)=0得,x=−π3或x=π3.当x∈[−π2,−π3)时,f′(x)>0,f(x)单调递增;当x∈[−π3,π3]时,f′(x)<0,f(x)单调递减;当x∈(π3,π2]时,f′(x)>0,f(x)单调递增.而f(−π2)=−π4+1,f(π3)=π6−√32.∵f(−π2)>f(π3),∴函数的最小值为f(π3)=π6−√32.故答案为:π6−√32.12.【答案】1【考点】利用导数研究函数的极值【解析】先求导,令导数为0,可求出a的值.【解答】解:f′(x)=2ax−2;∵函数f(x)=ax2−2x−9在x=1处取得极值,∴f′(1)=2a−2=0∴a=1.故答案为:1.13.【答案】②③【考点】函数在某点取得极值的条件【解析】由函数取极值的条件,逐个选项验证可得.【解答】解:选项①对y=x3求导数可得y′=3x2≥0,函数R上单调递增,故不能在x=0处取得极值,错误;选项②对y=x4+1求导数可得y′=4x3,函数在(−∞, 0)上单调递减,在(0, +∞)上单调递增,故在x=0处取得极小值,正确;选项④y=√x的定义域为[0, +∞),不满足在x=0处取得极值,错误.故答案为:②③14.【答案】−e π2【考点】利用导数研究曲线上某点切线方程【解析】求出函数的导数,然后求解图象在x=π2处的切线斜率.【解答】函数f(x)=e x cos x,可得f′(x)=e x cos x−e x sin x,函数f(x)=e x cos x的图象在x=π2处的切线斜率为:f′(π2)=−eπ2.15.【答案】−16【考点】利用导数研究函数的最值【解析】求出函数在该区间上的极值,函数在端点处的函数值,其中最小的即为最小值.【解答】解:由f′(x)=12−3x2=0,得x=−2或x=2,又f(−3)=−9,f(−2)=−16,f(2)=16,f(3)=9.所以函数f(x)在区间[−3, 3]上的最小值是−16.故答案为:−16.16.【答案】1327【考点】利用导数研究函数的极值【解析】f′(x)=3x2−2ax+3,当x=3时有极值,所以f′(3)=0,解得a=5,确定函数的单调性,由此能求出f(x)在R上的极大值【解答】解:f′(x)=3x2−2ax+3,∵当x=3时有极值,所以f′(3)=0,即27+3−2a×3=0,解得a=5.这时,f′(x)=3x2−10x+3,令f′(x)=3x2−10x+3=0,得x1=13,或x2=3.当x变化时,f′(x),f(x)随x的变化情况如下表:由表可知:f(x)的极大值为f(13)=1327, 故答案为:1327. 17.【答案】 [2, +∞) 【考点】利用导数研究函数的单调性 【解析】由题意构造辅助函数g(x)=ex −ln x −2,求导,g′(x)<0,函数单调递减,g′(x)>0,函数单调递增,求得g(x)的最小值,再构造辅助函数ℎ(x)=f(x)+2e x,求导,求得ℎ′(x)≥0,ℎ(x)在(0, +∞)上递增,即f(x)≥e x −2,由f(2)=e 2−2,得ℎ(x)≥ℎ(2),即可求得不等式的解集. 【解答】令g(x)=ex −ln x −2,则g′(x)=e −1x ,∴ g(x)在(0, 1e)时,g′(x)<0;g(x)在(1e, +∞)时,g′(x)>0,∴ g(x)在(0, 1e )上单调递减,在(1e , +∞)上单调递增, ∴ x ∈(0, +∞)时,g(x)≥g(1e )=0, 再令ℎ(x)=f(x)+2e x,则ℎ′(x)=f ′(x)−f(x)−2e x>ex−ln x−2e x=g(x)e x≥0,∴ ℎ(x)在(0, +∞)上递增, ∴ f(x)≥e x −2,即f(x)+2e ≥1,ℎ(x)≥ℎ(2),∴ x ≥2,∴ 解集为:[2, +∞), 18. 【答案】12ln 2−12 【考点】利用导数研究曲线上某点切线方程 【解析】 此题暂无解析 【解答】解:设直线 y =kx +b 与曲线 y =e x−2 切于点 P 1(x 1,e x 1−2) ,与曲线 y =e x −1 切于点 P 2(x 2,e x 2−1),从而x1−2=x2,k=12,e x2=12,x2=−ln2,所以切线方程为y=12(x+ln2)+e x2−1=12x+12ln2−12,于是b=12ln2−12.故答案为:12ln2−12.19.【答案】a≤e【考点】利用导数研究函数的最值利用导数研究函数的单调性【解析】此题暂无解析【解答】解:当x≤1时,f(x)=−x3+3x2,f′(x)=−3x2+6x,令f′(x)=0,得x=0或x=2,当x∈(−∞,0),f(x)单调递减,当x∈(0,1],f(x)单调递增,又f(0)=0,则可得到f(x)图象如下:如图,x>1部分,是f(x)=e x−a的图象,x≤1部分,是f(x)=−x3+3x2的图象,当图中点A不在x轴下方时,函数f(x)有最小值,即e1−a≥0,解得a≤e.故答案为:a≤e.−18或14【考点】利用导数研究曲线上某点切线方程【解析】求得y=x3−2的导数,设切点为(s, t),可得切线的斜率,由切线方程可得s,m的方程组,解方程可得m的值.【解答】y=x3−2的导数为y′=3x2,直线y=12x+m与曲线y=x3−2相切,设切点为(s, t),可得3s2=12,12s+m=s3−2,即有s=2,m=−18;s=−2,m=14.三、解答题(本题共计 20 小题,每题 10 分,共计200分)21.【答案】解:f′(x)=3ax2−2x+1;∵函数f(x)=ax3−x2+x−5在R上无极值,∴{a≠0△=4−4×3a≤0,解得,a≥13.【考点】函数在某点取得极值的条件【解析】由题意求导f′(x)=3ax2−2x+1,从而可得{a≠0△=4−4×3a≤0,从而求a的取值范围.【解答】解:f′(x)=3ax2−2x+1;∵函数f(x)=ax3−x2+x−5在R上无极值,∴{a≠0△=4−4×3a≤0,解得,a≥13.22.【答案】解:∵f(x)=−x3+3x2+9x+a,∴f′(x)=−3x2+6x+9,由f′(x)=−3x2+6x+9<0,即x2−2x−3>0,解得x>3或x<−1,即函数的单调递减区间为(3, +∞),(−∞, −1).【考点】利用导数研究函数的单调性解:∵f(x)=−x3+3x2+9x+a,∴f′(x)=−3x2+6x+9,由f′(x)=−3x2+6x+9<0,即x2−2x−3>0,解得x>3或x<−1,即函数的单调递减区间为(3, +∞),(−∞, −1).23.【答案】解:(1)函数f(x)=x3−x2+x+2的导数为f′(x)=3x2−2x+1,可得曲线f(x)在点(1,f(1))处的切线斜率为3−2+1=2,切点为(1,3),即有曲线f(x)在点(1,f(1))处的切线方程为y−3=2(x−1),即为2x−y+1=0.(2)设切点为(m,n),可得n=m3−m2+m+2,由f(x)的导数f′(x)=3x2−2x+1,可得切线的斜率为3m2−2m+1,切线的方程为y−(m3−m2+m+2)=(3m2−2m+1)(x−m),由切线经过点(1,3),可得3−(m3−m2+m+2)=(3m2−2m+1)(1−m),化为m(m−1)2=0,解得m=0或m=1.则切线的方程为y−2=x或y−3=2(x−1),即为y=x+2或y=2x+1.【考点】利用导数研究曲线上某点切线方程【解析】(1)求出f(x)的导数,可得切线的斜率和切点,运用点斜式方程可得所求切线的方程;(2)设切点为(m,n),代入f(x),求得切线的斜率和方程,代入点A(1,3),解m的方程可得m=0或1,即可得到所求切线的方程.【解答】解:(1)函数f(x)=x3−x2+x+2的导数为f′(x)=3x2−2x+1,可得曲线f(x)在点(1,f(1))处的切线斜率为3−2+1=2,切点为(1,3),即有曲线f(x)在点(1,f(1))处的切线方程为y−3=2(x−1),即为2x−y+1=0.(2)设切点为(m,n),可得n=m3−m2+m+2,由f(x)的导数f′(x)=3x2−2x+1,可得切线的斜率为3m2−2m+1,切线的方程为y−(m3−m2+m+2)=(3m2−2m+1)(x−m),由切线经过点(1,3),可得3−(m3−m2+m+2)=(3m2−2m+1)(1−m),化为m(m−1)2=0,解得m=0或m=1.则切线的方程为y−2=x或y−3=2(x−1),即为y=x+2或y=2x+1.则f′(x)=2x−4+2x,∴f(1)=−3,f′(1)=0,所以函数f(x)的图象在x=1处的切线方程为y+3=0.(2)由已知f(x)的定义域为(0,+∞),f′(x)=2x−2(a+1)+2ax =2[x2−(a+1)x+a]x=2(x−1)(x−a)x.当a<0时,由f′(x)<0得x∈(0,1),由f′(x)>0得x∈(1,+∞),所以f(x)在(0,1)单调递减,在(1,+∞)单调递增,当0<a<1时,由f′(x)<0得x∈(a,1),由f′(x)>0得x∈(0,a)∪(1,+∞),所以f(x)在(0,a),(1,+∞)单调递增,在(a,1)单调递减;当a=1时,f′(x)=2(x−1)2x≥0恒成立,所以f(x)在(0,+∞)单调递增;当a>1时,由f′(x)<0得x∈(1,a),由f′(x)>0得x∈(0,1)∪(a,+∞),所以f(x)在(0,1),(a,+∞)单调递增,在(1,a)单调递减.【考点】利用导数研究曲线上某点切线方程利用导数研究函数的单调性【解析】此题暂无解析【解答】解:(1)当a=1时,f(x)=x2−4x+2ln x,则f′(x)=2x−4+2x,∴f(1)=−3,f′(1)=0,所以函数f(x)的图象在x=1处的切线方程为y+3=0.(2)由已知f(x)的定义域为(0,+∞),f′(x)=2x−2(a+1)+2ax =2[x2−(a+1)x+a]x=2(x−1)(x−a)x.当a<0时,由f′(x)<0得x∈(0,1),由f′(x)>0得x∈(1,+∞),所以f(x)在(0,1)单调递减,在(1,+∞)单调递增,当0<a<1时,由f′(x)<0得x∈(a,1),由f′(x)>0得x∈(0,a)∪(1,+∞),所以f(x)在(0,a),(1,+∞)单调递增,在(a,1)单调递减;当a=1时,f′(x)=2(x−1)2x≥0恒成立,所以f(x)在(0,+∞)单调递增;当a>1时,由f′(x)<0得x∈(1,a),由f′(x)>0得x∈(0,1)∪(a,+∞),所以f(x)在(0,1),(a,+∞)单调递增,在(1,a)单调递减.f ′(x )=ln x +1 ,f ′(e )=2 ,∴ 切线方程为:y −e =2(x −e )即2x −y −e =0 . (2)函数f (x )的定义域为(0,+∞), f ′(x )=ln x +1−ae x ,∵ f (x )在(0,+∞)内是减函数,∴ f ′(x )=ln x +1−ae x ≤0在(0,+∞)内恒成立, ∴ a ≥ln x+1e x在(0,+∞)内恒成立, 令g (x )=ln x+1e x,g ′(x )=1x−ln x−1e x,ℎ(x )=1x −ln x −1在(0,+∞)单调递减,且ℎ(1)=0, ∴ x ∈(0,1)时,g ′(x )>0,x ∈(1,+∞)时,g ′(x )<0, g (x )在(0,1)单调递增,g (x )在(1,+∞)单调递减, g (x )max =g (1)=1e , ∴ a ≥1e ,∴ 当f (x )在定义域内是减函数时,a 的取值范围为[1e ,+∞). 【考点】利用导数研究曲线上某点切线方程 利用导数研究函数的单调性【解析】 此题暂无解析 【解答】解:(1)当a =0时,f (x )=x ln x ,f (e )=e , f ′(x )=ln x +1 ,f ′(e )=2 ,∴ 切线方程为:y −e =2(x −e )即2x −y −e =0 . (2)函数f (x )的定义域为(0,+∞), f ′(x )=ln x +1−ae x ,∵ f (x )在(0,+∞)内是减函数,∴ f ′(x )=ln x +1−ae x ≤0在(0,+∞)内恒成立, ∴ a ≥ln x+1e x在(0,+∞)内恒成立, 令g (x )=ln x+1e x,g ′(x )=1x−ln x−1e x,ℎ(x )=1x −ln x −1在(0,+∞)单调递减,且ℎ(1)=0, ∴ x ∈(0,1)时,g ′(x )>0,x ∈(1,+∞)时,g ′(x )<0, g (x )在(0,1)单调递增,g (x )在(1,+∞)单调递减, g (x )max =g (1)=1e ,∴ 当f (x )在定义域内是减函数时,a 的取值范围为[1e ,+∞).26.【答案】 【考点】利用导数研究函数的极值 【解析】 此题暂无解析 【解答】 此题暂无解答 27.【答案】解:(1)∵ f(x)=ln x −ax 2+(a −2)x , ∴ 函数的定义域为(0,+∞), ∴ f ′(x)=1x −2ax +(a −2)=−(2x−1)(ax+1)x.∵ f(x)在x =1处取得极值, 即f ′(1)=−(2−1)(a +1)=0, ∴ a =−1.当a =−1,在(12,1)内f ′(x)<0,在(1,+∞)内f ′(x)>0,∴ x =1是函数y =f(x)的极小值点. ∴ a =−1.(2)∵ a 2<a, ∴ 0<a <1,f ′(x)=1x −2ax +(a −2)=−(2x −1)(ax +1)x∵ x ∈(0,+∞), ∴ ax +1>0 , ∴ f(x)在(0,12)上单调递增,在(12,+∞)上单调递减,①当0<a ≤12时f(x)在[a 2,a ]单调递增, ∴ f max (x)=f(a)=ln a −a 3+a 2−2a ; ②当{a >12a 2<12,即12<a <√22,f(x)在(a 2,12)单调递增,在(12,a)单调递减, ∴ f max (x)=f (12)=−ln 2−a4+a−22=a4−1−ln 2 ;③当12≤a 2,即√22≤a <1时,f(x)在[a 2,a ]单调递减, ∴ f max (x)=f (a 2)=2ln a −a 5+a 3−2a 2,综上所述,当0<a ≤12时,函数y =f(x)在[a 2,a ]上最大值是ln a −a 3+a 2−2a ;当√22≤a <1时,函数y =f(x)在[a 2,a ]的最大值是2ln a −a 5+a 3−2a 2.【考点】利用导数研究函数的最值 利用导数研究函数的极值【解析】 此题暂无解析 【解答】解:(1)∵ f(x)=ln x −ax 2+(a −2)x , ∴ 函数的定义域为(0,+∞), ∴ f ′(x)=1x −2ax +(a −2)=−(2x−1)(ax+1)x.∵ f(x)在x =1处取得极值, 即f ′(1)=−(2−1)(a +1)=0, ∴ a =−1.当a =−1,在(12,1)内f ′(x)<0,在(1,+∞)内f ′(x)>0,∴ x =1是函数y =f(x)的极小值点. ∴ a =−1.(2)∵ a 2<a, ∴ 0<a <1,f ′(x)=1x −2ax +(a −2)=−(2x −1)(ax +1)x∵ x ∈(0,+∞), ∴ ax +1>0 , ∴ f(x)在(0,12)上单调递增,在(12,+∞)上单调递减,①当0<a ≤12时f(x)在[a 2,a ]单调递增,∴ f max (x)=f(a)=ln a −a 3+a 2−2a ; ②当{a >12a 2<12,即12<a <√22 ,f(x)在(a 2,12)单调递增,在(12,a)单调递减, ∴ f max (x)=f (12)=−ln 2−a4+a−22=a4−1−ln 2 ;③当12≤a 2,即√22≤a <1时,f(x)在[a 2,a ]单调递减,∴ f max (x)=f (a 2)=2ln a −a 5+a 3−2a 2,综上所述,当0<a ≤12时,函数y =f(x)在[a 2,a ]上最大值是ln a −a 3+a 2−2a ;当12<a <√22时,函数y =f(x)在[a 2,a ]的最大值是a4−1−ln 2.当√22≤a <1时,函数y =f(x)在[a 2,a ]的最大值是2ln a −a 5+a 3−2a 2. 28.解:由题意可得:f′(x)=1x+a+2x,因为当x=−1时,f(x)取得极值,所以有f′(−1)=0,解得:a=32,…可得f(x)=ln(x+32)+x2,定义域为(−32, +∞),…所以f′(x)=2x 2+3x+1x+32=(2x+1)(x+1)x+32,…所以当−32<x<−1时,f′(x)>0;当−1<x<−12时,f′(x)<0;当x>−12时,f′(x)>0.所以可得下表:从而得到f(x)分别在区间(−32,−1),(−12,+∞)单调递增,在区间(−1,−12)单调递减.【考点】函数在某点取得极值的条件利用导数研究函数的单调性【解析】先求函数定义域,然后对函数求导,由题意可得,f′(−1)=0,代入可求a,代入a的值,分别解f′(x)>0,f′(x)<0,即可得到答案.【解答】解:由题意可得:f′(x)=1x+a+2x,因为当x=−1时,f(x)取得极值,所以有f′(−1)=0,解得:a=32,…可得f(x)=ln(x+32)+x2,定义域为(−32, +∞),…所以f′(x)=2x 2+3x+1x+32=(2x+1)(x+1)x+32,…所以当−32<x<−1时,f′(x)>0;当−1<x<−12时,f′(x)<0;当x>−12时,f′(x)>0.所以可得下表:从而得到f(x)分别在区间(−32,−1),(−12,+∞)单调递增,在区间(−1,−12)单调递减.29.【答案】解:(1)当a=1时,f(x)=e x⋅(1x+2),f′(x)=e x⋅(1x +2−1x2).由于f(1)=3e,f′(1)=2e,所以曲线y=f(x)在点(1, f(1))处的切线方程是2ex−y+e=0.(2)f′(x)=ae ax(x+1)[(a+1)x−1]x2,x≠0.①当a=−1时,令f′(x)=0,解得x=−1,所以f(x)的单调递减区间为(−∞, −1),单调递增区间为(−1, 0),(0, +∞);当a≠−1时,令f′(x)=0,解得x=−1或x=1a+1.②当−1<a<0时,f(x)的单调递减区间为(−∞, −1),(1a+1,+∞),单调递增区间为(−1, 0),(0,1a+1);③当a=0时,f(x)为常值函数,不存在单调区间;④当a>0时,f(x)的单调递减区间为(−1, 0),(0,1a+1),单调递增区间为(−∞, −1),(1a+1,+∞).【考点】利用导数研究曲线上某点切线方程利用导数研究函数的单调性【解析】(1)先求导数f′(x),欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x=0处的导函数值,再结合导数的几何意义即可求出切线的斜率,从而问题解决.(2)对字母a进行分类讨论,再令f′(x)大于0,解不等式,可得函数的单调增区间,令导数小于0,可得函数的单调减区间.【解答】解:(1)当a=1时,f(x)=e x⋅(1x+2),f′(x)=e x⋅(1x +2−1x2).由于f(1)=3e,f′(1)=2e,所以曲线y=f(x)在点(1, f(1))处的切线方程是2ex−y+e=0.(2)f′(x)=ae ax(x+1)[(a+1)x−1]x2,x≠0.①当a=−1时,令f′(x)=0,解得x=−1,所以f(x)的单调递减区间为(−∞, −1),单调递增区间为(−1, 0),(0, +∞);当a≠−1时,令f′(x)=0,解得x=−1或x=1a+1.②当−1<a<0时,f(x)的单调递减区间为(−∞, −1),(1a+1,+∞),单调递增区间为(−1, 0),(0,1a+1);③当a=0时,f(x)为常值函数,不存在单调区间;④当a>0时,f(x)的单调递减区间为(−1, 0),(0,1a+1),单调递增区间为(−∞, −1),(1a+1,+∞).30.【答案】解:求导函数,可得f′(x)=x2+a∵函数在x=2处取得极小值−43∴f′(2)=0,f(2)=−43∴83+2a+b=−43,4+a=0∴a=−4,b=4∴a+b=0【考点】函数在某点取得极值的条件【解析】求导函数,利用函数在x=2处取得极小值−43,建立方程,可求a、b的值,从而可求a+b的值.【解答】解:求导函数,可得f′(x)=x2+a∵函数在x=2处取得极小值−43∴f′(2)=0,f(2)=−43∴83+2a+b=−43,4+a=0∴a=−4,b=4∴a+b=031.【答案】解:(1)当a=1时,g(x)=x2−3x+ln x,∴g′(x)=2x2−3x+1x>0,解得x>1或x<12.∴函数f(x)的单调增区间为(0, 12),(1, +∞).(2)g(x)=x2−(2a+1)x+a ln x,g′(x)=2x−(2a+1)+a x=2x2−(2a+1)x+ax=(2x−1)(x−a)x.当a≤1时,x∈[1, e],g′(x)>0,g(x)单调递增,g(x)min=−2a. 当1<a<e时,x∈(1, a),则g′(x)<0,g(x)单调递减.x∈(a, e),则g′(x)>0,g(x)单调递增.g(x)min=g(a)=−a2−a+a ln a,当a≥e时,x∈[1, e],g′(x)≤0,g(x)单调递减,g(x)min=e2−(2a+1)e+a.∴g(x)min={−2a,a≤1,−a2−a+a ln a,1<a<e,e2−(2a+1)e+a,a≥e.【考点】利用导数研究函数的最值利用导数研究函数的单调性【解析】(1)由g′(x)=2x2−3x+1x>0,能求出函数f(x)的单调增区间.(2)g′(x)=2x−(2a+1)+ax =(2x−1)(x−a)x=0,由此根据a的取值范围分类讨论,能求出g(x)min.【解答】解:(1)当a=1时,g(x)=x2−3x+ln x,∴g′(x)=2x2−3x+1x>0,解得x>1或x<12.∴函数f(x)的单调增区间为(0, 12),(1, +∞).(2)g(x)=x2−(2a+1)x+a ln x,g′(x)=2x−(2a+1)+a x=2x2−(2a+1)x+ax=(2x−1)(x−a)x.当a≤1时,x∈[1, e],g′(x)>0,g(x)单调递增,g(x)min=−2a. 当1<a<e时,x∈(1, a),则g′(x)<0,g(x)单调递减.x∈(a, e),则g′(x)>0,g(x)单调递增.g(x)min=g(a)=−a2−a+a ln a,当a≥e时,x∈[1, e],g′(x)≤0,g(x)单调递减,g(x)min=e2−(2a+1)e+a.∴g(x)min={−2a,a≤1,−a2−a+a ln a,1<a<e,e2−(2a+1)e+a,a≥e.32.【答案】解:(1)当a=1时,f(x)=x−ln x+1,f(1)=2,∴f′(x)=1−1x,∴f′(1)=0,∴切线方程为y=2.(2)∵f′(x)=1−ax =x−ax,当a≤0时,f′(x)>0,f(x)的单调递增区间为(0,+∞),无单调递减区间;当a>0时,令f′(x)=0⇒x=a,∴当x∈(0,a)时,f′(x)<0,f(x)单调递减,当x∈(a,+∞)时,f′(x)>0,f(x)单调递增.∴f(x)的单调递减区间为(0,a),单调递增区间为(a,+∞).综上所述:当a≤0时,f(x)的增区间为(0,+∞),无减区间;当a>0时,f(x)的减区间为(0,a),增区间为(a,+∞).【考点】利用导数研究曲线上某点切线方程利用导数研究函数的单调性【解析】此题暂无解析【解答】解:(1)当a=1时,f(x)=x−ln x+1,f(1)=2,∴f′(x)=1−1x,∴f′(1)=0,∴切线方程为y=2.(2)∵f′(x)=1−ax =x−ax,当a≤0时,f′(x)>0,f(x)的单调递增区间为(0,+∞),无单调递减区间;当a>0时,令f′(x)=0⇒x=a,∴当x∈(0,a)时,f′(x)<0,f(x)单调递减,当x∈(a,+∞)时,f′(x)>0,f(x)单调递增.∴f(x)的单调递减区间为(0,a),单调递增区间为(a,+∞).综上所述:当a≤0时,f(x)的增区间为(0,+∞),无减区间;当a >0时,f(x)的减区间为(0,a),增区间为(a,+∞). 33.【答案】 解:(1)依题意得f ′(x)=3x 2−4cx +c 2… 若f(x)有极值,则△=4c 2>0,∴ c ≠0… (2)f ′(x)=3x 2−4cx +c 2=0得x =c 或c3, 因为函数f(x)在x =2处取得了极大值,故 x =2是f ′(x)=0的一个实根,故c >0 ∴ c >c3…所以函数f(x)在(−∞,c3)上递增,在(c3,c)上递减,(c,+∞)上递增,f(x)在x =c3处取得极大值; … ∴ c3=2⇒c =6…【考点】函数在某点取得极值的条件 【解析】(1)求函数的导数,利用导数和极值之间的关系求c 的取值范围. (2)利用函数f(x)在x =2处取得极大值,求实数c 的值. 【解答】 解:(1)依题意得f ′(x)=3x 2−4cx +c 2… 若f(x)有极值,则△=4c 2>0,∴ c ≠0… (2)f ′(x)=3x 2−4cx +c 2=0得x =c 或c3,因为函数f(x)在x =2处取得了极大值,故 x =2是f ′(x)=0的一个实根,故c >0 ∴ c >c3…所以函数f(x)在(−∞,c3)上递增,在(c3,c)上递减,(c,+∞)上递增, f(x)在x =c3处取得极大值; … ∴ c3=2⇒c =6… 34. 【答案】 f ′(x)=1−1x =x−1x,当x ∈(0, 1)时,f′(x)<0,故f(x)在(0, 1)单调递减; 当x ∈(1, +∞)时,f′(x)>0,f(x)在(1, +∞)单调递增; 故f(x)≥f(1)=1,故f(x)的最小值为1.由(1)可得,f(x)=x −ln x ≥1即ln x ≤x −1,所以ln(1+1k )≤1k<1k(k−1)=1k−1−1k,k∈N∗,n≥2,则ln(1+122)+ln(1+132)+⋯+ln(1+1n2)<1−12+12−13+⋯+1n−1−1n=1−1n<1,即ln(1+122)(1+132)…(1+1n2)<1,所以ln(1+122)(1+132)…(1+1n2)<e.【考点】利用导数研究函数的最值【解析】(1)先对函数求导,然后结合导数可求函数的单调性,进而可求函数的最小值;(2)结合(1)对x进行赋值,然后结合数列的裂项求和及不等式的放缩法即可证明.【解答】f′(x)=1−1x =x−1x,当x∈(0, 1)时,f′(x)<0,故f(x)在(0, 1)单调递减;当x∈(1, +∞)时,f′(x)>0,f(x)在(1, +∞)单调递增;故f(x)≥f(1)=1,故f(x)的最小值为1.由(1)可得,f(x)=x−ln x≥1即ln x≤x−1,所以ln(1+1k2)≤1k2<1k(k−1)=1k−1−1k,k∈N∗,n≥2,则ln(1+122)+ln(1+132)+⋯+ln(1+1n2)<1−12+12−13+⋯+1n−1−1n=1−1n<1,即ln(1+122)(1+132)…(1+1n2)<1,所以ln(1+122)(1+132)…(1+1n2)<e.35.【答案】证明:f′(x)=3x2+6bx+3c,由题意知方程f′(x)=0有两个根x1,x2,且x1∈[−1, 0],x2∈[1, 2],则有f′(−1)≥0,f′(0)≤0,f′(1)≤0,f′(2)≥0.即满足下列条件2b−c−1≤0,c≤0,2b+c+1≤0且4b+c+4≥0∴有图中四边形ABCD即是满足这些条件的点(b, c)的区域.∴−2≤c≤0由题设知f′(x1)=3x12+6bx1+3c=0,则bx1=−12x12−12c,∴f(x1)=−12x13+3c2x1,由于x1∈[−1, 0],c≤0,∴0≤f(x1)≤12−3c2,∵−2≤c≤0,∴0≤f(x1)≤72.f′(x2)=3x22+6bx2+3c=0,bx2=−22x22−22c,∴f(x2)=−12x23+3c2x2,由于x2∈[1, 2],c≤0,∴−4+3c≤f(x2)≤−12+32c.∵−2≤c≤0,∴−10≤f(x2)≤−12.【考点】利用导数研究函数的极值【解析】f(x)得f′(x)=3x2+6bx+3c由题意知方程f′(x)=0有两个根x1,x2,且x1∈[−1, 0],x2∈[1, 2]则由根的分布得有2b−c−1≤0,c≤0,2b+c+1≤0且4b+c+4≥0,可得−2≤c≤0,用消元法消去参数b,利用参数c表示出f(x1)和f(x1)的值域,再利用参数c的范围能证明0≤f(x1)≤72,−10≤f(x2)≤−12.【解答】证明:f′(x)=3x2+6bx+3c,由题意知方程f′(x)=0有两个根x1,x2,且x1∈[−1, 0],x2∈[1, 2],则有f′(−1)≥0,f′(0)≤0,f′(1)≤0,f′(2)≥0.即满足下列条件2b−c−1≤0,c≤0,2b+c+1≤0且4b+c+4≥0∴有图中四边形ABCD即是满足这些条件的点(b, c)的区域.∴−2≤c≤0由题设知f′(x 1)=3x 12+6bx 1+3c =0,则bx 1=−12x 12−12c , ∴ f(x 1)=−12x 13+3c 2x 1,由于x 1∈[−1, 0],c ≤0, ∴ 0≤f(x 1)≤12−3c 2,∵ −2≤c ≤0, ∴ 0≤f(x 1)≤72.f′(x 2)=3x 22+6bx 2+3c =0, bx 2=−22x 22−22c , ∴ f(x 2)=−12x 23+3c 2x 2,由于x 2∈[1, 2],c ≤0, ∴ −4+3c ≤f(x 2)≤−12+32c .∵ −2≤c ≤0, ∴ −10≤f(x 2)≤−12.36. 【答案】解:(1)∵ f′(x)=−2x +a −1x=−2x 2+ax−1x(x >0),∴ f(x)既有极大值又有极小值⇔方程2x 2−ax +1=0有两个不等的正实数根x 1,x 2. ∴ {a2>0,Δ=a 2−4×2×1>0, ∴ a >2√2,∴ 函数f(x)既有极大值又有极小值的充要条件是a >2√2. (2)f′(x)=−2x +a −1x ,令g(x)=2x +1x (x >0), 则g′(x)=2−1x 2,由g′(x)<0结合题意得:12<x <√22,∴ g(x)在[12, √22)上递减,由g′(x)>0结合题意得:g(x)在(√22, 2]上递增. 又g(12)=3,g(2)=92,g(√22)=2√2,∴ g(x)max =92,g(x)min =2√2.若f(x)在[12, 2]单调递增,则f′(x)≥0即a ≥g(x), ∴ a ≥92.若f(x)在[12, 2]单调递减,则f′(x)≤0,即a ≤g(x), ∴ a ≤2√2.所以f(x)在[12, 2]上单调时,则a ≤2√2或a ≥92.【考点】函数在某点取得极值的条件 利用导数研究函数的单调性 【解析】(1)f′(x)=−2x +a −1x=−2x 2+ax−1x(x >0),由题意可得f(x)既有极大值又有极小值⇔方程2x 2−ax +1=0有两个不等的正实数根x 1,x 2;于是由{a 2>0△=a 2−4×2×1>0即可求得a 的取值范围;(2)f′(x)=−2x +a −1x ,令g(x)=2x +1x ,结合题意可得g(x)在[12, √22)上递减, g(x)在(√22, 2]上递增;从而可求得当x ∈[12, 2]时,g(x)max =92,g(x)min =2√2.于是得,若f(x)在[12, 2]单调递增,f′(x)≥0即a ≥g(x),从而求得a 的取值范围;同理可求,若f(x)在[12, 2]单调递减时a 的取值范围.【解答】解:(1)∵ f′(x)=−2x +a −1x =−2x 2+ax−1x(x >0),∴ f(x)既有极大值又有极小值⇔方程2x 2−ax +1=0有两个不等的正实数根x 1,x 2. ∴ {a2>0,Δ=a 2−4×2×1>0, ∴ a >2√2,∴ 函数f(x)既有极大值又有极小值的充要条件是a >2√2. (2)f′(x)=−2x +a −1x ,令g(x)=2x +1x (x >0),则g′(x)=2−1x 2,由g′(x)<0结合题意得:g(x)在[12, √22)上递减,由g′(x)>0结合题意得:g(x)在(√22, 2]上递增. 又g(12)=3,g(2)=92,g(√22)=2√2,∴ g(x)max =92,g(x)min =2√2.若f(x)在[12, 2]单调递增,则f′(x)≥0即a ≥g(x), ∴ a ≥92.若f(x)在[12, 2]单调递减,则f′(x)≤0,即a ≤g(x), ∴ a ≤2√2.所以f(x)在[12, 2]上单调时,则a ≤2√2或a ≥92.37.【答案】 解:(1)f(x)=x(x −a)2+b =x 3−2ax 2+a 2x +b ⇒f ′(x)=3x 2−4ax +a 2,f ′(2)=12−8a +a 2=0⇒a =2或a =6, 当a =2时,函数在x =2处取得极小值,舍去;当a =6时,f ′(x)=3x 2−24x +36=3(x −2)(x −6), 函数在x =2处取得极大值,符合题意,∴ a =6.∵ 当x ∈[−2, 4]时,函数y =f(x)的图象在抛物线y =1+45x −9x 2的下方, ∴ x 3−12x 2+36x +b <1+45x −9x 2在x ∈[−2, 4]时恒成立,即b <−x 3+3x 2+9x +1在x ∈[−2, 4]时恒成立,令ℎ(x)=−x 3+3x 2+9x +1, 则ℎ′(x)=−3x 2+6x +9=−3(x −3)(x +1),由ℎ′(x)=0得,x 1=−1,x 2=3. ∵ ℎ(−2)=3,ℎ(−1)=−4,ℎ(3)=28,ℎ(4)=21, ∴ ℎ(x)在[−2, 4]上的最小值是−4,b <−4.(2)f(x)=x 3−12x 2+36x +b ,设切点为(x 0,x 03−12x 02+36x 0+b),则切线斜率为f′(x)=3x 02−24x 0+36,切线方程为y −x 03+12x 02−36x 0−b =(3x 02−24x 0+36)(x −x 0),即 y =(3x 02−24x 0+36)x −2x 03+12x 02+b ,∴ −2x 03+12x 02+b =0⇒b =2x 03−12x 02.令g(x)=2x 3−12x 2,则g ′(x)=6x 2−24x =6x(x −4), 由g ′(x)=0得,x 1=0,x 2=4. 函数g(x)的单调性如下:y =f(x)相切.【考点】利用导数研究函数的极值 【解析】(1)其中一个函数的图象在另一个函数图象的下方,转化为两个函数的“差函数”在相应区间内恒小于0的问题;(2)求切线主要还是抓住切点,因此既然有三条切线,因此应该有三个切点,也就是利用切点表示的方程将原点代入后,得到关于切点横坐标x的方程有三个不同的实数根.再结合导数研究函数的图象求解.【解答】解:(1)f(x)=x(x−a)2+b=x3−2ax2+a2x+b⇒f′(x)=3x2−4ax+a2,f′(2)=12−8a+a2=0⇒a=2或a=6,当a=2时,函数在x=2处取得极小值,舍去;当a=6时,f′(x)=3x2−24x+36=3(x−2)(x−6),函数在x=2处取得极大值,符合题意,∴a=6.∵当x∈[−2, 4]时,函数y=f(x)的图象在抛物线y=1+45x−9x2的下方,∴x3−12x2+36x+b<1+45x−9x2在x∈[−2, 4]时恒成立,即b<−x3+3x2+9x+1在x∈[−2, 4]时恒成立,令ℎ(x)=−x3+3x2+9x+1,则ℎ′(x)=−3x2+6x+9=−3(x−3)(x+1),由ℎ′(x)=0得,x1=−1,x2=3.∵ℎ(−2)=3,ℎ(−1)=−4,ℎ(3)=28,ℎ(4)=21,∴ℎ(x)在[−2, 4]上的最小值是−4,b<−4.(2)f(x)=x3−12x2+36x+b,设切点为(x0,x03−12x02+36x0+b),则切线斜率为f′(x)=3x02−24x0+36,切线方程为y−x03+12x02−36x0−b=(3x02−24x0+36)(x−x0),即y=(3x02−24x0+36)x−2x03+12x02+b,∴−2x03+12x02+b=0⇒b=2x03−12x02.令g(x)=2x3−12x2,则g′(x)=6x2−24x=6x(x−4),由g′(x)=0得,x1=0,x2=4.函数g(x)的单调性如下:y= f(x)相切.38.【答案】解:由f(x)=13ax3−12a2x2+2x+1得:f′(x)=ax2−a2x+2(1)①当a=0时,f′(x)=2>0∴f(x)单调递增,∴f(x)不存在极值②当a≠0时,△=a4−8a≤0,即0<a≤2,f′(x)≥0或f′(x)≤0恒成立∴f(x)不存在极值a的范围为0≤a≤2∴f(x)存在极值a的范围为a<0或a>2.(2)由题意f′(x)≥0在(−1, 12]恒成立①当a=0时f′(x)=2>0恒成立∴a=0合题意。

高中数学选修1-1同步练习题库:导数在研究函数中的应用(简答题:困难)

高中数学选修1-1同步练习题库:导数在研究函数中的应用(简答题:困难)

导数在研究函数中的应用(简答题:困难)1、已知函数.(Ⅰ)若,求曲线在点处的切线方程;(Ⅱ)求函数的单调区间;(Ⅲ)设函数.若对于任意,都有成立,求实数的取值范围.2、已知函数.(1)若函数与在处有相同的切线,求的值;(2)若函数在定义域内不单调,求的取值范围.(3)若,恒有成立,求实数的最大值.3、已知函数(,是自然对数的底数).(1)若函数在区间上是单调减函数,求实数的取值范围;(2)求函数的极值;(3)设函数图象上任意一点处的切线为,求在轴上的截距的取值范围.4、已知函数为常数),曲线在与轴的交点处的切线斜率为. (1)求的值及函数的单调区间;(2)若,且,试证明:.5、已知,.(1)若函数在上单调递增,求实数的取值范围;(2)设正实数,满足,当时,求证:对任意的两个正实数,总有.6、设函数 .(1)关于的方程在区间上有解,求的取值范围;(2)当时,恒成立,求实数的取值范围.7、已知,函数(1)讨论函数的单调性;(2)若函数有两个不同的零点,求实数的取值范围;(3)在(2)的条件下,求证:8、已知函数,,(其中,为自然对数的底数,……). (1)令,若对任意的恒成立,求实数的值;(2)在(1)的条件下,设为整数,且对于任意正整数,,求的最小值.9、已知函数,,(其中,为自然对数的底数,……). (1)令,求的单调区间;(2)已知在处取得极小值,求实数的取值范围.10、已知函数在处取得极小值.(1)求实数的值;(2)设,其导函数为,若的图象交轴于两点且,设线段的中点为,试问是否为的根?说明理由.11、设函数.(1)当时,求的单调区间;(2)若的图象与轴交于两点,起,求的取值范围;(3)在(2)的条件下,求证.(参考知识:若,则有)12、设函数.(1)当时,求的单调区间;(2)若的图象与轴交于两点,起,求的取值范围;(3)令,,证明:.13、已知函数,其中为自然对数的底数.(1)讨论函数在区间上的单调性;(2)已知,若对任意,有,求实数的取值范围.14、已知函数.(1)求的单调区间;(2)设曲线与轴正半轴的交点为,曲线在点处的切线方程为,求证:对于任意的正实数,都有;(3)若方程为实数)有两个正实数根且,求证:.15、己知函数,.(I)求函数上零点的个数;(II)设,若函数在上是增函数.求实数的取值范围.16、(本小题满分16分)已知函数f(x)=2x3-3(a+1)x2+6ax,a∈R.(Ⅰ)曲线y=f(x)在x=0处的切线的斜率为3,求a的值;(Ⅱ)若对于任意x∈(0,+∞),f(x)+f(-x)≥12ln x恒成立,求a的取值范围;(Ⅲ)若a>1,设函数f(x)在区间[1,2]上的最大值、最小值分别为M(a)、m(a),记h(a)=M(a)-m(a),求h(a)的最小值.17、已知函数,.(Ⅰ)若函数与的图像在点处有相同的切线,求的值;(Ⅱ)当时,恒成立,求整数的最大值;(Ⅲ)证明:.18、已知函数.(1)当时,求函数的单调区间;(2)当时,恒成立,求的取值范围.19、已知函数.(1)当时,求函数的最值;(2)当时,对任意都有恒成立,求实数的取值范围;(3)当时,设函数,数列满足,,求证:,.20、已知函数,.(1)分别求函数与在区间上的极值;(2)求证:对任意,.21、已知函数(常数).(Ⅰ)求函数的单调区间;(Ⅱ)若曲线与直线相切,证明:.22、已知函数(,为自然对数的底数).(1)讨论函数的单调性;(2)若,函数在上为增函数,求实数的取值范围.23、设函数.(1)若,证明:在上存在唯一零点;(2)设函数,(表示中的较小值),若,求的取值范围.24、知函数f(x)=ax2﹣2x+lnx(a≠0,a∈R).(1)判断函数 f (x)的单调性;(2)若函数 f (x)有两个极值点x1,x2,求证:f(x1)+f(x2)<﹣3.25、已知函数(其中).(1)求在处的切线方程;(2)已知函数,若对任意,恒成立,求实数的取值范围.26、设函数,=.(Ⅰ)求函数的单调区间;(Ⅱ)若函数有两个零点.(1)求满足条件的最小正整数的值;(2)求证:.27、已知函数.(1)讨论函数的单调性;(2)当时,证明:对任意的,有.28、设函数,其中是自然对数的底数.(1)若在上为单调函数,求实数的取值范围;(2)若,求证:有唯一零点的充要条件是.29、设函数,其中和是实数,曲线恒与轴相切于坐标原点.(1)求常数的值;(2)当时,关于的不等式恒成立,求实数的取值范围;(3)求证:对于任意的正整数,不等式恒成立.30、已知函数.(1)若在区间上单调递增,求实数的取值范围;(2)若存在唯一整数,使得成立,求实数的取值范围.31、设函数,(1)当时,求函数的单调区间;(2)当,时,求证:.32、已知函数().(Ⅰ)若曲线在点处的切线与轴垂直,求的值;(Ⅱ)若函数有两个极值点,求的取值范围;(Ⅲ)证明:当时,.33、已知函数,.(Ⅰ)若,求曲线在点处的切线方程;(Ⅱ)当时,函数的两个极值点为,,且.求证:.34、已知函数()(1)讨论的单调性;(2)若关于的不等式的解集中有且只有两个整数,求实数的取值范围.35、已知数列满足:证明:当时(I);(II);(III)36、已知函数.(1)求函数的极值点;(2)设,若函数在内有两个极值点,求证:.37、已知函数.(1)若函数在区间上递增,求实数的取值范围;(2)求证:.38、已知函数(,为自然对数的底数)在点处的切线经过点.(Ⅰ)讨论函数的单调性;(Ⅱ)若,不等式恒成立,求实数的取值范围.39、已知函数有极值,且导函数的极值点是的零点。

2020版理科数学习题: 导数及其应用(选修1-1) 第11节 导数在研究函数中的应用 导数与函数的单调性

2020版理科数学习题: 导数及其应用(选修1-1) 第11节 导数在研究函数中的应用 导数与函数的单调性

第11节 导数在研究函数中的应用第一课时 导数与函数的单调性【选题明细表】知识点、方法题号判定函数的单调性、求单调区间2,5,6,8由单调性理解导函数图象1比较大小或解不等式3,10,11由单调性求参数的取值范围4,7,12由导数研究函数单调性的综合问题9,13,14基础巩固(时间:30分钟)1.已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是( B )解析:由导函数的图象知,在[-1,1]上f′(x)>0,故函数f(x)在[-1,1]上是单调递增的.又因为在[-1,0]上f′(x)的值逐渐增大,在[0,1]上f′(x)的值逐渐减小,所以在[-1,0]上,f(x)的增长率逐渐增大,在[0,1]上 f(x) 的增长率逐渐变小.故选B.2.函数f(x)=x-ln x的单调递减区间为( A )(A)(0,1)(B)(0,+∞)(C)(1,+∞)(D)(-∞,0)∪(1,+∞)解析:函数的定义域是(0,+∞),且f′(x)=1-=,令f′(x)<0,解得0<x<1.所以单调递减区间是(0,1).3.已知f(x)=1+x-sin x,则f(2),f(3),f(π)的大小关系正确的是( D )(A)f(2)>f(3)>f(π)(B)f(3)>f(2)>f(π)(C)f(2)>f(π)>f(3)(D)f(π)>f(3)>f(2)解析:因为f(x)=1+x-sin x,所以f′(x)=1-cos x,当x∈(0,π]时,f′(x)>0,所以f(x)在(0,π]上是增函数,所以f(π)>f(3)>f(2).4.(2018·山东淄博桓台二中月考)若函数f(x)=kx-ln x在区间(2,+∞)上单调递增,则k的取值范围是( B )(A)(-∞,-2](B)[,+∞)(C)[2,+∞)(D)(-∞,)解析:f′(x)=k-,因为函数f(x)=kx-ln x在区间(2,+∞)上单调递增,所以f′(x)≥0在区间(2,+∞)上恒成立.所以k≥,而y=在区间(2,+∞)上单调递减,所以k≥,所以k的取值范围是[,+∞).5.(2018·湖南长沙长郡中学月考)求形如y=f(x)g(x)的函数的导数,我们常采用以下做法:先两边同取自然对数得ln y=g(x)ln f(x),再两边同时求导得·y′=g′(x)ln f(x)+g(x)··f′(x),于是得到y′=f(x)g(x)[g′(x)ln f(x)+g(x)··f′(x)],运用此方法求得函数y=的单调递增区间是( C )(A)(e,4)(B)(3,6)(C)(0,e)(D)(2,3)解析:由题设,y′=·(-·ln x+)=·(x>0).令y′>0,得1-ln x>0,所以0<x<e.所以函数y=的单调递增区间为(0,e).故选C.6.已知函数f(x)=(-x2+2x)e x(x∈R,e为自然对数的底数),则函数f(x)的单调递增区间为 .解析:因为f(x)=(-x2+2x)e x,所以f′(x)=(-2x+2)e x +(-x 2+2x)e x=(-x 2+2)e x .令f′(x)>0,则(-x 2+2)e x >0,因为e x >0,所以-x 2+2>0,解得-<x<,所以函数f(x)的单调递增区间为(-,).答案:(-,)7.若函数f(x)=ax 3+3x 2-x 恰好有三个单调区间,则实数a 的取值范围是 .解析:由题意知f′(x)=3ax 2+6x-1,由函数f(x)恰好有三个单调区间,得f′(x)有两个不相等的零点,所以3ax 2+6x-1=0需满足a≠0,且Δ=36+12a>0,解得a>-3,所以实数a 的取值范围是(-3,0)∪(0,+∞).答案:(-3,0)∪(0,+∞)8.已知函数f(x)=x 3+ax 2-x+c,且a=f′().(1)求a 的值;(2)求函数f(x)的单调区间.解:(1)由f(x)=x 3+ax 2-x+c,得f′(x)=3x 2+2ax-1.所以a=f′()=3×()2+2a×-1,解得a=-1.(2)由(1)可知f(x)=x 3-x 2-x+c,则f′(x)=3x2-2x-1=3(x+)(x-1),令f′(x)>0,解得x>1或x<-;令f′(x)<0,解得-<x<1.所以f(x)的单调递增区间是(-∞,-)和(1,+∞);f(x)的单调递减区间是(-,1).能力提升(时间:15分钟)9.(2017·山东卷)若函数e x f(x)(e=2.718 28…,是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中具有M性质的是( A )(A)f(x)=2-x(B)f(x)=x2(C)f(x)=3-x(D)f(x)=cos x解析:若f(x)具有M性质,则[e x f(x)]′=e x[f(x)+f′(x)]>0在f(x)的定义域上恒成立,即f(x)+f′(x)>0在f(x)的定义域上恒成立.对于选项A,f(x)+f′(x)=2-x-2-x ln 2=2-x(1-ln 2)>0,符合题意.经验证,选项B,C,D均不符合题意.故选A.10.(2018·惠州调研)已知函数f(x)=xsin x+cos x+x2,则不等式f(lnx)+f(ln )<2f(1)的解集为( D )(A)(e,+∞) (B)(0,e)(C)(0,)∪(1,e)(D)(,e)解析:f(x)=xsin x+cos x+x2是偶函数,所以f(ln )=f(-ln x)=f(ln x),所以f(ln x)+f(ln )<2f(1)可变形为f(ln x)<f(1).f′(x)=xcos x+2x=x(2+cos x),因为2+cos x>0,所以f(x)在(0,+∞)上单调递增,在(-∞,0)上单调递减,所以f(ln x)<f(1)等价于-1<ln x<1,所以<x<e.11.(2018·重庆市一模)已知函数f(x)的导函数为f′(x),且f′(x) <f(x)对任意的x∈R恒成立,则下列不等式均成立的是( A )(A)f(ln 2)<2f(0),f(2)<e2f(0)(B)f(ln 2)>2f(0),f(2)>e2f(0)(C)f(ln 2)<2f(0),f(2)>e2f(0)(D)f(ln 2)>2f(0),f(2)<e2f(0)解析:令g(x)=,则g′(x)=<0,故g(x)在R上递减,而ln 2>0,2>0,故g(ln 2)<g(0),g(2)<g(0),即<,<,即f(ln 2)<2f(0),f(2)<e2f(0).12.(2018·安徽江南十校联考)设函数f(x)=x2-9ln x在区间[a-1,a+1]上单调递减,则实数a的取值范围是 .解析:f(x)的定义域为(0,+∞),且f′(x)=x-.由f′(x)=x-<0,解得0<x<3.因为f(x)=x2-9ln x在[a-1,a+1]上单调递减,所以解得1<a≤2.答案:(1,2]13.(2018·天津滨海新区八校联考)设函数f(x)=x2e x.(1)求在点(1,f(1))处的切线方程;(2)求函数f(x)的单调区间;(3)当x∈[-2,2]时,求使得不等式f(x)≤2a+1能成立的实数a的取值范围.解:(1)因为f′(x)=x2e x+2xe x,所以k=f′(1)=3e,切点(1,e).切线方程为3ex-y-2e=0.(2)令f′(x)>0,即x(x+2)e x>0,得f(x)在区间(-∞,-2),(0,+∞)上单调递增,在区间(-2,0)上单调递减.(3)由(2)知,f(x)在区间(-2,0)上单调递减,在区间(0,2)上单调递增,f min(x)=f(0)=0.当x∈[-2,2]时,不等式f(x)≤2a+1能成立,须2a+1≥f min(x),即2a+1≥0,故a≥-.故a的取值范围为[-,+∞).14.已知函数f(x)=e x ln x-ae x(a∈R).(1)若f(x)在点(1,f(1))处的切线与直线y=x+1垂直,求a的值;(2)若f(x)在(0,+∞)上是单调函数,求实数a的取值范围.解:(1)f′(x)=e x ln x+e x·-ae x=(-a+ln x)e x,f′(1)=(1-a)e,由(1-a)e·=-1,得a=2.(2)由(1)知f′(x)=(-a+ln x)e x,若f(x)为单调递减函数,则f′(x)≤0在x>0时恒成立,即-a+lnx≤0在x>0时恒成立.所以a≥+ln x在x>0时恒成立.令g(x)=+ln x(x>0),则g′(x)=-+=(x>0),由g′(x)>0,得x>1;由g′(x)<0,得0<x<1.故g(x)在(0,1)上为单调递减函数,在(1,+∞)上为单调递增函数,此时g(x)的最小值为g(1)=1,但g(x)无最大值(且无趋近值).故f(x)不可能是单调递减函数.若f(x)为单调递增函数,则f′(x)≥0在x>0时恒成立,即-a+lnx≥0在x>0时恒成立,所以a≤+ln x在x>0时恒成立,由上述推理可知a≤1.故实数a的取值范围是(-∞,1].。

2020版理科数学习题: 导数及其应用(选修1-1) 第11节 导数在研究函数中的应用 导数与函数零点

2020版理科数学习题: 导数及其应用(选修1-1) 第11节 导数在研究函数中的应用 导数与函数零点

第四课时 导数与函数零点【选题明细表】知识点、方法题号利用导数研究函数零点个数2,5根据函数零点求参数3,4函数零点的综合应用1,6,7基础巩固(时间:30分钟)1.(2018·河北邢台第二次月考)已知f(x)=e x-ax2.命题p:∀a≥1,y=f(x)有三个零点;命题q:∃a∈R,f(x)≤0恒成立.则下列命题为真命题的是( B )(A)p∧q(B)(¬p)∧(¬q)(C)(¬p)∧q(D)p∧(¬q)解析:对于命题p:当a=1时,f(x)=e x-x2,在同一坐标系中作出y=e x,y=x2的图象(图略),由图可知y=e x与y=x2的图象有1个交点,所以f(x) =e x-x2有1个零点,故命题p为假命题,因为f(0)=1,所以命题q显然为假命题.故(¬p)∧(¬q)为真.2.(2018·贵阳联考)已知函数f(x)的定义域为[-1,4],部分对应值如表:x-10234f(x)12020f(x)的导函数y=f′(x)的图象如图所示.当1<a<2时,函数y=f(x)-a的零点的个数为( D )(A)1(B)2(C)3(D)4解析:根据导函数图象,知2是函数的极小值点,函数y=f(x)的大致图象如图所示.由于f(0)=f(3)=2,1<a<2,所以y=f(x)-a的零点个数为4.3.若函数f(x)=+1(a<0)没有零点,则实数a的取值范围为 .解析:f′(x)==(a<0).当x<2时,f′(x)<0;当x>2时,f′(x)>0,所以当x=2时,f(x)有极小值f(2)=+1,若使函数f(x)没有零点,当且仅当f(2)=+1>0,解之得a>-e2,因此-e2<a<0.答案:(-e2,0)4.(2018·河北武邑中学第二次调研)已知函数f(x)=x3-x2-ax-2的图象过点A(4,).(1)求函数f(x)的单调增区间;(2)若函数g(x)=f(x)-2m+3有3个零点,求m的取值范围.解:(1)因为函数f(x)=x3-x2-ax-2的图象过点A(4,),所以-4a-4a-2=,解得a=2,即f(x)=x3-x2-2x-2,所以f′(x)=x2-x-2.由f′(x)>0,得x<-1或x>2.所以函数f(x)的单调增区间是(-∞,-1),(2,+∞).(2)由(1)知f(x)极大值=f(-1)=--+2-2=-,f(x)极小值=f(2)=-2-4-2=-,由数形结合,可知要使函数g(x)=f(x)-2m+3有三个零点,则-<2m-3<-,解得-<m<.所以m的取值范围为(-,).能力提升(时间:15分钟)5.已知函数f(x)=e x-1,g(x)=+x,其中e是自然对数的底数,e= 2.718 28….(1)证明:函数h(x)=f(x)-g(x)在区间(1,2)上有零点;(2)求方程f(x)=g(x)的根的个数,并说明理由.(1)证明:由题意可得h(x)=f(x)-g(x)=e x-1--x.所以h(1)=e-3<0,h(2)=e2-3->0,所以h(1)h(2)<0,所以函数h(x)在区间(1,2)上有零点.(2)解:由(1)可知h(x)=f(x)-g(x)=e x-1--x.由g(x)=+x知x∈[0,+∞),而h(0)=0,则x=0为h(x)的一个零点.又h(x)在(1,2)内有零点,因此h(x)在[0,+∞)上至少有两个零点.h′(x)=e x--1,记(x)=e x--1,ϕ则′(x)=e x+.ϕ当x∈(0,+∞)时,′(x)>0,ϕ因此(x)在(0,+∞)上单调递增,ϕ易知(x)在(0,+∞)内只有一个零点,ϕ则h(x)在[0,+∞)上有且只有两个零点,所以方程f(x)=g(x)的根的个数为2.6.已知函数f(x)=e x+ax-a(a∈R且a≠0).(1)若f(0)=2,求实数a的值,并求此时f(x)在[-2,1]上的最小值;(2)若函数f(x)不存在零点,求实数a的取值范围.解:(1)由f(0)=1-a=2,得a=-1.易知f(x)在[-2,0]上单调递减,在[0,1]上单调递增,所以当x=0时,f(x)在[-2,1]上取得最小值2.(2)f′(x)=e x+a,由于e x>0.①当a>0时,f′(x)>0,f(x)是增函数,当x>1时,f(x)=e x+a(x-1)>0.当x<0时,取x=-,则f(-)<1+a(--1)=-a<0.所以函数f(x)存在零点,不满足题意.②当a<0时,f′(x)=e x+a,令f′(x)=0,得x=ln(-a),在(-∞,ln(-a))上,f′(x)<0,f(x)单调递减,在(ln(-a),+∞)上,f′(x)>0,f(x)单调递增,所以当x=ln(-a)时,f(x)取得最小值.函数f(x)不存在零点,等价于f(ln(-a))=e ln(-a)+aln(-a)-a=-2a+aln(-a)>0,解得-e2<a<0.综上所述,所求实数a的取值范围是(-e2,0).7.已知函数f(x)=ax+ln x,其中a为常数.(1)当a=-1时,求f(x)的单调递增区间;(2)当0<-<e时,若f(x)在区间(0,e)上的最大值为-3,求a的值;(3)当a=-1时,试推断方程|f(x)|=+是否有实数根.解:(1)由已知可知函数f(x)的定义域为{x|x>0},当a=-1时,f(x)=-x+ln x(x>0),f′(x)=(x>0);当0<x<1时,f′(x)>0;当x>1时,f′(x)<0.所以f(x)的单调递增区间为(0,1).(2)因为f′(x)=a+(x>0),令f′(x)=0,解得x=-;由f′(x)>0,解得0<x<-;由f′(x)<0,解得-<x<e.从而f(x)的单调递增区间为(0,-),递减区间为(-,e),所以f(x)max=f(-)=-1+ln(-)=-3,解得a=-e2.(3)由(1)知当a=-1时,f(x)max=f(1)=-1,所以|f(x)|≥1.令g(x)=+,则g′(x)=.当0<x<e时,g′(x)>0;当x>e时,g′(x)<0.从而g(x)在(0,e)上单调递增,在(e,+∞)上单调递减.所以g(x)max=g(e)=+<1,所以|f(x)|>g(x),即|f(x)|>+,所以,方程|f(x)|=+没有实数根.。

2020年高中数学人教A版选修1-1 导数及其应用 练习13 Word版含答案

2020年高中数学人教A版选修1-1 导数及其应用 练习13 Word版含答案

学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.如果函数y =ax +b 在区间[1,2]上的平均变化率为3,则a =( )A .-3B .2C .3D .-2【解析】 根据平均变化率的定义,可知Δy Δx =(2a +b )-(a +b )2-1=a =3.故选C.【答案】 C2.若函数f (x )=-x 2+10的图象上一点⎝ ⎛⎭⎪⎫32,314及邻近一点⎝ ⎛⎭⎪⎫32+Δx ,314+Δy ,则Δy Δx =( ) A .3B .-3C .-3-(Δx )2D .-Δx -3【解析】 ∵Δy =f ⎝ ⎛⎭⎪⎫32+Δx -f ⎝ ⎛⎭⎪⎫32=-3Δx -(Δx )2, ∴Δy Δx =-3Δx -(Δx )2Δx=-3-Δx .故选D. 【答案】 D3.若质点A 按照规律s =3t 2运动,则在t =3时的瞬时速度为( )A .6B .18C .54D .81【解析】因为ΔsΔt=3(3+Δt)2-3×32Δt=18Δt+3(Δt)2Δt=18+3Δt,所以limΔt→0ΔsΔt=18.【答案】 B4.如图3-1-1,函数y=f(x)在A,B两点间的平均变化率是()图3-1-1A.1 B.-1C.2 D.-2【解析】ΔyΔx=f(3)-f(1)3-1=1-32=-1.【答案】 B5.已知函数f(x)=13-8x+2x2,且f′(x0)=4,则x0的值为() A.0 B.3C.3 2 D.6 2【解析】f′(x0)=limΔx→0Δy Δx=lim Δx→0[13-8(x0+Δx)+2(x0+Δx)2]-(13-8x0+2x20)Δx=limΔx→0-8Δx+22x0Δx+2(Δx)2Δx=limΔx→0(-8+22x0+2Δx)=-8+22x0=4,所以x0=3 2. 【答案】 C二、填空题6.一物体的运动方程为s =7t 2+8,则其在t =________时的瞬时速度为1.【解析】 Δs Δt =7(t 0+Δt )2+8-(7t 20+8)Δt =7Δt +14t 0,当lim Δt →0 (7Δt +14t 0)=1时,t 0=114.【答案】 1147.已知曲线y =1x -1上两点A ⎝ ⎛⎭⎪⎫2,-12,B ⎝ ⎛⎭⎪⎫2+Δx ,-12+Δy ,当Δx =1时,割线AB 的斜率为________.【解析】 Δy =⎝ ⎛⎭⎪⎫12+Δx -1-⎝ ⎛⎭⎪⎫12-1=12+Δx -12=2-(2+Δx )2(2+Δx )=-Δx2(2+Δx ),∴Δy Δx =-Δx2(2+Δx )Δx =-12(2+Δx ),即k =Δy Δx =-12(2+Δx ).∴当Δx =1时,k =-12×(2+1)=-16.【答案】 -168.已知函数f (x )=1x ,则f ′(2)=________.【解析】 lim Δx →0 f (2+Δx )-f (2)Δx =lim Δx →0 -Δx2(2+Δx )Δx=lim Δx →0 -12(2+Δx )=-14.【答案】 -14三、解答题9.求y =x 2+1x +5在x =2处的导数. 【解】 ∵Δy =(2+Δx )2+12+Δx +5-⎝ ⎛⎭⎪⎫22+12+5 =4Δx +(Δx )2+-Δx 2(2+Δx ), ∴Δy Δx =4+Δx -14+2Δx, ∴y ′|x =2=lim Δx →0 Δy Δx=lim Δx →0 ⎝ ⎛⎭⎪⎫4+Δx -14+2Δx =4+0-14+2×0=154. 10.若函数f (x )=-x 2+x 在[2,2+Δx ](Δx >0)上的平均变化率不大于-1,求Δx 的范围. 【导学号:26160069】【解】 因为函数f (x )在[2,2+Δx ]上的平均变化率为:Δy Δx =f (2+Δx )-f (2)Δx=-(2+Δx )2+(2+Δx )-(-4+2)Δx=-4Δx +Δx -(Δx )2Δx=-3-Δx , 所以由-3-Δx ≤-1,得Δx ≥-2.又因为Δx >0,即Δx 的取值范围是(0,+∞).[能力提升]1.函数y =x 2在x 0到x 0+Δx 之间的平均变化率为k 1,在x 0-Δx 到x 0之间的平均变化率为k 2,则k 1与k 2的大小关系为( )A .k 1>k 2B .k 1<k 2C .k 1=k 2D .不确定【解析】 k 1=f (x 0+Δx )-f (x 0)Δx =(x 0+Δx )2-x 20Δx=2x 0+Δx , k 2=f (x 0)-f (x 0-Δx )Δx =x 20-(x 0-Δx )2Δx=2x 0-Δx . 因为Δx 可大于零也可小于零,所以k 1与k 2的大小不确定.【答案】 D2.设函数在x =1处存在导数,则lim Δx →0 f (1+Δx )-f (1)3Δx=( ) A .f ′(1)B .3f ′(1) C.13f ′(1) D .f ′(3)【解析】 lim Δx →0 f (1+Δx )-f (1)3Δx =13lim Δx →0 f (1+Δx )-f (1)Δx=13f ′(1). 【答案】 C3.如图3-1-2是函数y =f (x )的图象,则函数f (x )在区间[0,2]上的平均变化率为________.图3-1-2【解析】 由函数f (x )的图象知,f (x )=⎩⎨⎧ x +32,-1≤x ≤1,x +1,1<x ≤3.所以函数f (x )在区间[0,2]上的平均变化率为:f (2)-f (0)2-0=3-322=34. 【答案】 344.一作直线运动的物体,其位移s 与时间t 的关系是s (t )=3t -t 2(s 的单位是:m ,t 的单位是:s).(1)求此物体的初速度;(2)求此物体在t =2 s 时的瞬时速度;(3)求t =0 s 到t =2 s 时的平均速度. 【导学号:26160070】【解】 (1)s (Δt )-s (0)Δt =3Δt -(Δt )2Δt=3-Δt . 当Δt →0时,s (Δt )-s (0)Δt→3, 所以v 0=3.(2)s (2+Δt )-s (2)Δt=3(2+Δt )-(2+Δt )2-(3×2-22)Δt=-Δt -1. 当Δt →0时,s (2+Δt )-s (2)Δt→-1, 所以t =2时的瞬时速度为-1.(3)v =s (2)-s (0)2=6-4-02=1......................................使用本文档删除后面的即可致力于打造全网一站式文档服务需求,为大家节约时间文档来源网络仅供参考欢迎您下载可以编辑的word文档谢谢你的下载本文档目的为企业和个人提供下载方便节省工作时间,提高工作效率,打造全网一站式精品需求!欢迎您的下载,资料仅供参考!(本文档收集于网络改编,由于文档太多,审核难免疏忽,如有侵权或雷同,告知本店马上删除)。

高中数学人教版选修1-1(文科) 第三章 导数及其应用 3.1.1 变化率问题,3.1.2导数的概念

高中数学人教版选修1-1(文科) 第三章 导数及其应用 3.1.1 变化率问题,3.1.2导数的概念

高中数学人教版选修1-1(文科)第三章导数及其应用 3.1.1 变化率问题,3.1.2导数的概念(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)某物体的位移S(米)与时间t(秒)的关系是,则物体在t=2秒时的瞬时速度为()A . 1m/sB . 2m/sC . -1m/sD . 7m/s2. (2分) (2020高二上·黄陵期末) 若,则等于()A . 0B . 1C . 3D .3. (2分)若当,则f′(x0)等于().A .B .C . -D . -4. (2分) (2016高二下·故城期中) 函数f(x)=ax3﹣3x+1 对于x∈[﹣1,1]总有f(x)≥0成立,则a 的取值范围为()A . [2,+∞)B . [4,+∞)C . {4}D . [2,4]5. (2分)若函数f(x)=2x2﹣1的图象上一点(1,1)及邻近一点(1+△x ,1+△y),则等于()A . 4B . 4xC . 4+2△xD . 4+2△x26. (2分)设,若函数有小于零的极值点,则实数的取值范围为()A .B .C .D .7. (2分)设函数f(x)在x=2处导数存在,则=()A . ﹣2f′(2)B . 2f′(2)C . ﹣f′(2)D . f′(2)8. (2分)曲线在点处的切线与直线垂直,则实数a的值为()A . 2B . -2C .D .二、填空题 (共3题;共3分)9. (1分) (2020高二上·兰州期末) 已知函数的图象在点M(1 ,f(1))处的切线方程是 +2,则的值等于________10. (1分)(2016高三上·新津期中) 对定义域内的任意实数x都有(其中△x表示自变量的改变量),则a的取值范围是________.11. (1分)函数f(x)=x2cosx 导数为f′(x),则f′(x)=________.三、解答题 (共3题;共25分)12. (10分)在曲线上取一点及附近一点,求:(1);(2).13. (5分)已知某物体的位移S(米)与时间t(秒)的关系是S(t)=3t﹣t2 .(Ⅰ)求t=0秒到t=2秒的平均速度;(Ⅱ)求此物体在t=2秒的瞬时速度.14. (10分)(2018·武邑模拟) 已知函数,曲线在点处的切线方程为4x-2y-3=0.(1)求的值;(2)证明:f(x)>lnx .参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共3题;共3分)9-1、10-1、11-1、三、解答题 (共3题;共25分)12-1、12-2、13-1、14-1、14-2、。

(易错题)高中数学选修1-1第四章《导数应用》测试题(包含答案解析)(3)

(易错题)高中数学选修1-1第四章《导数应用》测试题(包含答案解析)(3)

一、选择题1.定义在[0,)+∞的函数()f x ,对任意0x ≥,恒有()()f x f x '>,(1)f a e=,2(2)f b e=,则a 与b 的大小关系为( ) A .a b >B .a b <C .a b =D .无法确定2.已知α,β∈R ,则“0αβ+<”是“sin sin αβαβ+<+”的( ) A .充分不必要条件 B .必要不充分条件 C .既不充分也不必要条件 D .充分必要条件 3.若函数11()ln x x f x x x e e m --+=-+++有零点,则实数m 的取值范围是( )A .(,3]-∞-B .(,1]-∞-C .[1,)-+∞D .[3,)+∞ 4.已知函数3213()32f x x x c =++有3个不同的零点,则c 的取值范围是( ) A .9,02⎛⎫-⎪⎝⎭ B .4,(0,)3⎫⎛-∞-⋃+∞ ⎪⎝⎭C .4,03⎛⎫- ⎪⎝⎭D .9,(0,)2⎫⎛-∞-⋃+∞ ⎪⎝⎭5.对任意0x >,若不等式2e ln e xa x ax x++≥恒成立(e 为自然对数的底数),则正实数a 的取值范围是( )A .(0,e]B .2(0,e ]C .2[,e]eD .22[,e ]e6.已知函数()1ln 1f x x x =--,则()y f x =的图象大致为( )A .B .C .D .7.若函数32()x x x f x e e e a =---存在零点,则实数a 的取值范围为( ) A .[2,)-+∞B .[,)e C .2[,)e -+∞ D .[1,)-+∞8.已知实数2343a e =,4565b e =,6787c e =,那么a ,b ,c 大小关系为( )A .a b c >>B .b a c >>C .c b a >>D .a c b >>9.已知函数()()()110ln x f x x x++=>,若()1kf x x >+恒成立,则整数k 的最大值为( ) A .2B .3C .4D .510.已知函数31()sin xxf x x x e e =-+-,其中e 是自然数对数的底数,若2(1)(2)0f a f a -+≤,则实数a 的取值范围是( )A .1[,1]2- B .1[1,]2-C .1(,1][,)2-∞-⋃+∞D .1(,][1,)2-∞-⋃+∞11.若函数()xx f x ax e e -=+-在R 上单调递减,则实数a 的取值范围为( )A .2a ≤B .1a ≤C .1a ≥D .2a ≥12.已知函数()ln f x ax x =-,若()0f x ≥对一切(0,)x ∈+∞恒成立,则a 的取值范围是( ) A .(0,)+∞B .1[,)e+∞C .[1,)+∞D .[),e +∞二、填空题13.定义在R 上的函数()f x 满足:()()22f x f x x -+=,且当0x ≤时,()2f x x '<,则不等式()()25510f x x x f +-+≥的解集为______.14.已知函数()2cos sin 2f x x x =+,则()f x 的最大值是__________.15.设函数f (x )在R 上存在导数f '(x ),当x ∈(0,+∞)时,f '(x )<x .且对任意x ∈R ,有f (x )=x 2﹣f (﹣x ),若f (1﹣t )﹣f (t )12≥-t ,则实数t 的取值范围是_____. 16.函数2sin y x x =-在[]0,2π上的递增区间是________. 17.已知函数()()()2ln f x x x x x a a R =+-∈,若1,22x ⎡⎤∃∈⎢⎥⎣⎦,使得()()f x xf x '>成立,则实数a 的取值范围是______________.18.已知a R ∈,设函数232,1()1,1x x a x f x x a nx x ⎧-+=⎨->⎩,若关于x 的不等式()0f x ≥在R上恒成立,则a 的取值范围是_________.19.已知函数()()ln ,11,1xx x f x x e x ≥⎧=⎨-<⎩,若函数()()()2g x f x f x a =--⎡⎤⎣⎦有6个零点,则实数a 的取值范围是______.20.函数()ln f x x ax =-在()1,+∞上单调递减,则实数a 的取值范围是______.三、解答题21.已知函数()22xk f x e x x =--,k ∈R . (1)当0k =时,求函数() f x 的最小值;(2)若() f x 在[)1,+∞上单调递增,求实数k 的取值范围. 22.已知函数32()f x x ax =-+. (1)讨论函数()f x 的单调性;(2)设1a =-,若()(ln )f x x k x <-,求实数k 的取值范围.23.已知函数()()()242,f x x x a a R =--∈,()f x '为()f x 的导函数,且()10f '-=.(1)讨论函数()f x 的单调性;(2)求函数()f x 在[]22-,上的最大值和最小值. 24.(1)证明下列不等式:1x e x ≥+;(2)求函数32()39f x x x x =--的极值.25.已知函数()ln f x kx x =-(k ∈R ).(1)若函数()f x 在()()1,1f 处的切线与x 轴平行,求函数()f x 的单调区间; (2)讨论函数()f x 的零点个数.26.已知函数2()ln f x x ax =-. (1)当a =1时,①求f (x )在(1,f (1))处的切线方程; ②求f (x )的极值点;(2)若f (x )≤0恒成立,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】构造函数()()x f x g x e =,对其求导得''()()()xf x f xg x e -=,由()()f x f x '>,可得'()0g x <,从而可得()g x 在[0,)+∞上单调递减,进而可比较出a 与b 的大小【详解】解:令()()x f x g x e =,则''()()()xf x f xg x e-=, 因为()()f x f x '>,所以'()0g x <, 所以()g x 在[0,)+∞上单调递减, 因为12<,所以(1)(2)g g >,即2(1)(2)f f e e>,所以a b >, 故选:A 【点睛】关键点点睛:此题考查导数的应用,考查数学转化思想,解题的关键是构造函数()()x f x g x e=,然后求导后可判断出()g x 在[0,)+∞上单调递减,从而可比较出a 与b 的大小,属于中档题 2.D解析:D 【分析】首先构造函数()sin x x x f -=,利用导数判断函数的单调性,再判断选项. 【详解】构造函数()sin x x x f -=,()1cos 0f x x '=-≥恒成立,()f x ∴是单调递增函数,0αβ+<,即αβ<-,()()f f αβ∴<-,即()()sin sin ααββ-<---,即sin sin αβαβ+<+,反过来,若sin sin αβαβ+<+,即()()sin sin ααββ-<---,αβ∴<-,即0αβ+<.故选:D 【点睛】关键点点睛:本题的关键是通过条件观察后构造函数()sin x x x f -=,通过判断函数的单调性,比较大小.3.A解析:A 【分析】设11()ln e e x x g x x x --+=-++,则函数11()ln x x f x x x e e m --+=-+++有零点转化为函数()g x 的图象与直线y m =-有交点,利用导数判断函数()g x 的单调性,即可求出.【详解】设11()ln e e x x g x x x --+=-++,定义域为()0,∞+,则111()1e e x x g x x--+'=-+-,易知()'g x 为单调递增函数,且(1)0,g '= 所以当(0,1)x ∈时,()0g x '<,()g x 递减; 当(1,)x ∈+∞时, ()0g x '>, ()g x 递增,所以 ()(1)3,g x g ≥= 所以3m -≥,即3m ≤-.故选:A . 【点睛】本题主要考查根据函数有零点求参数的取值范围,意在考查学生的转化能力,属于基础题.4.A解析:A 【分析】求出三次函数的导数,根据导函数正负情况分析单调性和极值,图象要与x 轴三个交点,据此得出取值范围. 【详解】由条件得2()3(3)f x x x x x '=+=+, 令()0f x '>,可得解集为(,3)(0,)-∞-⋃+∞ 令()0f x '<,可得解集为(3,0)-则()f x 在(,3)-∞-和(0,)+∞上单调递增,在(3,0)-上单调递减,又9(3)2f c -=+,(0)f c =,要使()f x 有3个不同的零点,则902c c <<+,所以902c -<<.【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.5.B解析:B 【分析】将不等式化简并换元,构造函数2()ln e (e)f t t a t t =-+≥,则min ()0f t ≥即可,对函数求导,判断导函数零点与区间端点的关系,分类讨论得出函数的单调性和最小值,代入求解可得正实数a 的取值范围. 【详解】22e e e ln e ln e 0x x x a x ax a x x x ++≥⇔-+≥,令e x t x=(由e e x x ≥可知e t ≥), 则2ln e 0t a t -+≥,设2()ln e (e)f t t a t t =-+≥,则min ()0f t ≥即可,易得()1(e)a t a f t t t t-'=-=≥, ①当0e a <≤时,()0f t '≥,所以此时()(e)y f t t =≥是增函数,故2min ()(e)e e 0f t f a ==-+≥,解得2e e a ≤+,又0e a <≤,所以0e a <≤;②当e a >时,则()y f t =在[,)e a 上递减,在(,)a +∞上递增,故min ()()f t f a =,min ()0()0f t f a ≥⇔≥,所以2ln e 0a a a -+≥,设2()ln e (e)g a a a a a =-+>,故()0g a ≥即可,而()ln (e)g a a a '=->,显然()0g a '<,即()y g a =在(e,)+∞上递减,又2(e )0g =,而()0g a ≥,所以2()(e )g a g ≥,所以2e a ≤,又e a >,因此2e e a <≤.综上所述,0e a <≤或2e e a <≤,即2(0,e ]a ∈.故选:B 【点睛】方法点睛:本题考查不等式的恒成立问题,考查导数在单调性和最值中的应用,考查分类讨论思想,关于恒成立问题的几种常见解法总结如下: 1.参变分离法,将不等式恒成立问题转化为函数求最值问题;2.主元变换法,把已知取值范围的变量作为主元,把求取值范围的变量看作参数;3.分类讨论,利用函数的性质讨论参数,分别判断单调性求出最值;4.数形结合法,将不等式两端的式子分别看成两个函数,作出函数图象,列出参数的不等式求解.6.A解析:A利用导数分析函数ln 1y x x =--的单调性以及函数值符号,由此可得出函数()y f x =的图象. 【详解】对于函数ln 1y x x =--,该函数的定义域为()0,∞+,求导得111x y x x-'=-=. 当01x <<时,0y '<,此时函数ln 1y x x =--单调递减; 当1x >时,0y '>,此时函数ln 1y x x =--单调递增.所以,函数ln 1y x x =--的最小值为min 1ln110y =--=,即对任意的0x >,ln 10x x --≥.所以,函数()y f x =的定义域为()()0,11,+∞,且()0f x >,函数()y f x =的单调递增区间为()0,1,递减区间为()1,+∞. 所以,函数()y f x =的图象如A 选项中函数的图象. 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.7.D解析:D 【分析】由题意得32x x x a e e e =--,令32()x xx g x e e e =--,求()g x 的取值范围可得答案.【详解】 由32()0xx x f x ee e a =---=,则32x x x a e e e =--,令32()xxx g x e ee =--,则()()()3223()3211213xxx x x x x x x g x e ee e e e e e e '=--=+-=--,当()0g x '>得0x >,()g x 单调递增,当()0g x '<得0x <,()g x 单调递减, 所以min()(0)1g x g ≥=-,()2215()124x x x x xg x e e e e e ⎡⎤⎛⎫=--=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当x 趋向于正无穷大时,()g x 也趋向于正无穷大, 所以函数()f x 存在零点,则1a ≥-. 故选:D.方法点睛:本题考查函数零点问题.解题方法是把零点个数转化为方程解的个数,再转化为函数图象交点个数,由图象观察所需条件求得结论.考查了分析问题、解决问题的能力.8.C解析:C 【分析】根据所给实数的表达式进行构造函数,然后利用导数判断出函数的单调性,最后利用函数的单调性进行判断即可. 【详解】构造函数'()(2)()(1)xxf x x e f x x e =-⇒=-,当1x >时,'()0,()f x f x <单调递减, 当1x <时,'()0,()f x f x >单调递增.因为2342()33a e f ==,4564()55b e f ==,6786()77c e f ==,246357<<,所以642()()()753f f f >>,即c b a >>.故选:C 【点睛】关键点睛:根据几个实数的特征构造函数,利用导数判断其单调性是解决此类问题的关键.9.B解析:B 【分析】 将不等式化为()()111ln x x k x +++>,令()()()111ln x g x xx ++=+,求出导函数,利用导数判断函数的单调性,从而可得()02,3x ∃∈使()00g x '=,进而可得()()001()g x x x g ≥=+,即求.【详解】()()()1ln 10x f x x x ++=>, ()1k f x x ∴>+可化为()111ln x k x x ++>+ 即()()111ln x x k x+++>, 令()()()111ln x g x xx ++=+, 则()()()()21ln 11111x x x x ln x g x x +++---++⎡⎤⎣⎦'=()211x ln x x--+=令()()11h x x ln x =--+, 则()111h x x '=-+,()0,x ∈+∞时, ()0h x '>,()g x '∴在()0,∞+单调递增.又()()1ln 32ln 420,30,49g g --''=<=> ()02,3x ∃∈使()00g x '=,即()0011ln x x +=-.当()00,x x ∈时,()()0,g x g x '<单调递减, 当0(,)x x ∈+∞时,()()0,g x g x '>单调递增,()()000001ln 1))1(()(1x x g x x x x g +∴≥==+++, ()02,3x ∈,()013,4x +∴∈,∴正整数k 的最大值为3.故选:B. 【点睛】关键点点睛:本题考查了导数研究不等式恒成立问题,解题的关键根据函数的单调性确定存在()02,3x ∈,使得()00g x '=,考查了分离参数法求范围.10.B解析:B 【分析】利用函数的奇偶性将函数转化为f (M )≤f (N )的形式,再利用单调性脱去对应法则f ,转化为一般的二次不等式求解即可. 【详解】由于()31sin xx f x x x e e=-+-,,则f (﹣x )=﹣x 3sin x ++e ﹣x ﹣e x =﹣f (x ),故函数f (x )为奇函数.故原不等式f (a ﹣1)+f (2a 2)≤0,可转化为f (2a 2)≤﹣f (a ﹣1)=f (1﹣a ),即f (2a 2)≤f (1﹣a );又f '(x )=3x 2﹣cosx+e x +e ﹣x ,由于e x +e ﹣x ≥2,故e x +e ﹣x ﹣cosx>0, 所以f '(x )=3x 2﹣cosx+e x +e ﹣x ≥0恒成立,故函数f (x )单调递增,则由f (2a 2)≤f (1﹣a )可得,2a 2≤1﹣a ,即2a 2+a ﹣1≤0, 解得112a -≤≤,故选B . 【点睛】本题考查了函数的奇偶性和单调性的判定及应用,考查了不等式的解法,属于中档题.11.A解析:A 【分析】 由()xx f x ax e e -=+-在R 上单调递减,可得:导函数()0x x f x a e e -'=--≤在R 上恒成立,参变分离后,求最值即可的解.【详解】 由()xx f x ax ee -=+-在R 上单调递减,可得:导函数()0x xf x a e e -'=--≤在R 上恒成立,因为0x e >,参变分离可得:min (+)x xa e e -≤,+2x x e e -≥=2a ≤故选:A 【点睛】本题考查了利用函数单调性求参数范围,考查了恒成立思想和基本不等式的应用,属于中档题.12.B解析:B 【分析】()ln 0f x ax x =-≥对一切(0,)x ∈+∞恒成立,即ln xa x≥对一切(0,)x ∈+∞恒成立,设()ln g xx x=,求出()g x 的导数,进而求出其最大值,得到答案. 【详解】 ()ln 0f x ax x =-≥对一切(0,)x ∈+∞恒成立,即ln xa x≥对一切(0,)x ∈+∞恒成立 设()ln g x x x=,则()21ln 'xg x x -=由()21ln '0x g x x -=>,则0x e <<,由()21ln '0xg x x -=<,则x e > 所以()g x 在()0e ,上单调递增,在()+∞e ,上单调递减. 当x e =时, ()g x 有最大值()1g e e=所以1a e≥ 故选:B【点睛】本题考查恒成立求参数问题,考查分离参数法的应用,属于中档题.二、填空题13.【分析】令问题转化为根据函数的单调性求出不等式的解集即可【详解】因为所以令则所以为奇函数又因为当时所以在上单调递减即在上单调递减而不等式所以所以故答案为:【点睛】构造辅助函数是高中数学中一种常用的方解析:5,2⎛⎤-∞ ⎥⎝⎦【分析】令()()2g x f x x =-,问题转化为()()5g x x g -≥,根据函数的单调性求出不等式的解集即可. 【详解】因为()()22f x f x x -+=,所以()()()220f x x f x x ---+-=,令()()2g x f x x =-,则()()0g x g x -+=,所以()g x 为奇函数.又因为当0x ≤时,()()20g x f x x ''=-<, 所以()g x 在(],0-∞上单调递减, 即()g x 在R 上单调递减.而不等式()()()()()()()2225510555f x f x x f x x f x x g x g x +≥-+⇔-≥---⇔≥-,所以5x x ≤-,所以52x ≤. 故答案为:5,2⎛⎤-∞ ⎥⎝⎦【点睛】构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.14.【分析】求导后利用导数的正负求得函数的单调区间利用单调性求得函数的最大值【详解】由题意知是周期为的偶函数当时得的减区间为当时的增区间为所以当时取最大值故答案为:【点睛】本题主要考查利用导数求函数的最【分析】求导后利用导数的正负求得函数的单调区间,利用单调性求得函数的最大值. 【详解】2()2sin 2cos22sin 2(12sin )2(2sin 1)(sin 1)f x x x x x x x '=-+=-+-=--+由题意知()f x 是周期为2π的偶函数, 当()0f x '≤时,得()f x 的减区间为52,2()66k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦, 当()0f x '≥时,()f x 的增区间为5132,2()66Z k k k ππππ⎡⎤++⎢⎥∈⎣⎦,所以当2()6x k k Z ππ=+∈时,()f x 取最大值2.【点睛】本题主要考查利用导数求函数的最值,意在考查学生的数学运算的学科素养,属中档题.15.+∞)【分析】构造函数可得即是奇函数由时可得进而根据奇函数及可知在R 上是减函数再根据可得则即可求解【详解】令因为则所以所以是奇函数易知所以因为当时所以所以在上单调递减所以在R 上是减函数所以因为所以即解析:[12,+∞) 【分析】构造函数()()212g x f x x =-,可得()()0g x g x -+=,即()g x 是奇函数,由()0,x ∈+∞时,()f x x '<可得()()0g x f x x ''=-<,进而根据奇函数及()00g =可知()g x 在R 上是减函数,再根据()()112f t f t t --≥-可得()()1g t g t -≥,则1t t -≤,即可求解. 【详解】 令()()212g x f x x =-, 因为()()2f x x f x =--,则()()2f x f x x +-=, 所以()()()()()()22211022g x g x f x x f x x f x f x x -+=--+-=-+-=, 所以()g x 是奇函数,易知()00f =,所以()00g =,因为当()0,x ∈+∞时,()f x x '<,所以()()0g x f x x ''=-<, 所以()g x 在()0,∞+上单调递减,所以()g x 在R 上是减函数, 所以()()()()()()()221111111222g t g t f t t f t t f t f t t --=----+=--+-, 因为()()112f t f t t --≥-,所以()()10g t g t --≥,即()()1g t g t -≥, 所以1t t -≤,即12t ≥, 所以1,2t ⎡⎫∈+∞⎪⎢⎣⎭, 故答案为:1,2⎡⎫+∞⎪⎢⎣⎭【点睛】本题考查构造函数法利用导函数判断函数单调性,考查利用函数单调性比较大小,考查函数的奇偶性的应用.16.【分析】根据函数求导解的解集即可【详解】因为函数所以令得或当时所以函数在上的递增区间是故答案为:【点睛】本题主要考查导数与函数的单调性还考查了转化问题和运算求解的能力属于中档题解析:5,33ππ⎡⎤⎢⎥⎣⎦【分析】根据函数2sin y x x =-,求导12cos y x '=-,解0y '>的解集即可. 【详解】因为函数2sin y x x =-, 所以12cos y x '=-, 令12cos 0y x '=-=,得3x π=或53x π=, 当533x ππ≤≤时,0y '>, 所以函数2sin y x x =-在[]0,2π上的递增区间是5,33ππ⎡⎤⎢⎥⎣⎦.故答案为:5,33ππ⎡⎤⎢⎥⎣⎦【点睛】本题主要考查导数与函数的单调性,还考查了转化问题和运算求解的能力,属于中档题.17.【分析】求得导函数后代入不等式则可将不等式化为根据能成立的思想可得利用基本不等式可求得最小值进而得到结果【详解】即为整理得到即使得成立(当且仅当即时取等号)即实数的取值范围为故答案为:【点睛】本题考解析:)+∞【分析】求得导函数后,代入不等式则可将不等式化为12a x x>+,根据能成立的思想可得min 12a x x ⎛⎫>+ ⎪⎝⎭,利用基本不等式可求得最小值,进而得到结果.【详解】()()()2ln 12f x x x a x x a '=++-+-,()()f x xf x '∴>即为()()()222ln ln 2x x x x a x x x x x a x x a +->++-+-,整理得到22210x ax -+<,即1,22x ⎡⎤∃∈⎢⎥⎣⎦,使得221122x a x x x+>=+成立,12x x +≥=12x x =,即2x =时取等号),a ∴>, 即实数a的取值范围为)+∞.故答案为:)+∞.【点睛】本题考查利用导数解决能成立的问题,关键是能够通过分离变量的方式将问题转化为变量和函数最值之间大小关系的比较问题,进而通过求解函数最值得到结果.18.【分析】根据分段函数当时将恒成立转化为恒成立令利用二次函数的性质求得其最大值当时将转化为恒成立令用导数法求得其最小值然后两种情况取交集【详解】当时等价于恒成立令其中则所以当时等价于恒成立令则当时递增 解析:[]1,e【分析】根据分段函数,当1x ≤时,将()2320f x x x a =-+≥恒成立,转化为232x x a -恒成立,令23()2x x g x -=,利用二次函数的性质求得其最大值,当1x >时,将()ln 0f x x a x =-≥,转化为1xanx 恒成立,令()ln x h x x=,用导数法求得其最小值,然后两种情况取交集. 【详解】当1x ≤时,()2320f x x x a =-+≥等价于232x x a -恒成立,令()22231139()322228x x g x x x x -⎛⎫==--=--+ ⎪⎝⎭,其中1x ≤,则()max 1g x =, 所以1a ≥,当1x >时,()ln 0f x x a x =-≥等价于1xanx恒成立, 令()ln xh x x=,则221ln ln 1()(ln )(ln )x x x x h x x x -⋅-'==, 当x e >时,()()0,h x h x '>递增, 当1x e <<时,()()0,h x h x '<递减, ∴x e =时,()h x 取得最小值()h e e =, ∴()min a h x e ≤=, 综上:a 的取值范围是[]1,e . 故答案为:[]1,e . 【点睛】本题主要考查二次函数的最值,函数的最值与导数以及导数与不等式恒成立问题,还考查了运算求解的能力,属于中档题.19.【分析】当时利用导数法得到函数的单调性与极值再由时作出函数的大致图象令将问题转化为方程有两个不等根且即各有3个根求解【详解】当时所以当时递增当时递减所以当时取得最大值1又当时所以的大致图象如图所示:解析:1,04⎛⎫- ⎪⎝⎭【分析】当1x <时,()()1xf x x e =-,利用导数法得到函数的单调性与极值,再由1≥x 时,()ln f x x =,作出函数()f x 的大致图象,令()f x t =,将问题转化为方程20t t a --=有两个不等根12,t t ,且12,(0,1)t t ∈即()()12,f x t f x t ==各有3个根求解.【详解】当1x <时,()()1xf x x e =-,所以()xf x xe '=-,当0x <时,()0f x '>,()f x 递增,当01x <<时,()0f x '<,()f x 递减, 所以当0x =时, ()f x 取得最大值1, 又当1≥x 时,()ln f x x =,所以()f x 的大致图象如图所示:令()f x t =,则转化为方程20t t a --=有两个不等根12,t t , 且()()2121,(0,1),,t f x t f t x t ==∈各有3个根, 方程20t t a --=在(0,1)有两个不同的解,设2()g t t t a =--,所以(0)0140(1)0g a a g a =->⎧⎪∆=+>⎨⎪=->⎩,解得104a -<<. 故答案为:1,04⎛⎫- ⎪⎝⎭【点睛】本题主要方程的根与函数的零点问题,利用导数研究函数的单调性与极值,还考查了转化化归思想、数形结合思想和运算求解的能力,属于中档题.20.【分析】求导得到恒成立化简得到计算得到答案【详解】在恒成立即恒成立故故答案为【点睛】本题考查了利用导数计算函数的单调性意在考查学生的计算能力 解析:[1,)+∞【分析】 求导得到1'()0f x a x =-≤恒成立,化简得到1a x≤,计算得到答案. 【详解】1()ln '()0f x x ax f x a x=-∴=-≤在()1,+∞恒成立即1a x≤恒成立,故1a ≥ 故答案为[1,)+∞【点睛】本题考查了利用导数计算函数的单调性,意在考查学生的计算能力.三、解答题21.(1)1;(2)1k e ≤-. 【分析】(1)求出()'fx ,在定义域内,分别令()'0f x >求得x 的范围,可得函数()f x 增区间,()'0f x <求得x 的范围,可得函数()f x 的减区间;(2)() f x 在[1,)+∞上单调递增,等价于()'0f x ≥ 在[1,)+∞上恒成立,即1x e k x-≤在[1,)+∞恒成立,利用导数求出1x e x -的最小值即可得答案. 【详解】(1)当0k =时, ()()',1 xx e x e f fx x =-∴=-,令'0fx,则100x e x -=⇒=,当0x >时,10x e ->,()f x 在()0,∞+上递增, 当0x <时,10x e -<,()f x 在(),0-∞上递减,()()min 01f x f ∴==;(2)因为() f x 在[1,)+∞上单调递增,所以()'0fx ≥ 在[1,)+∞上恒成立, 因为()'1xf x e kx =--,所以10x e kx --≥在[1,)+∞恒成立,即1x e k x-≤在[1,)+∞恒成立,令()1x e g x x-=,则()min k g x ≤在[1,)+∞上恒成立,()()'211x e x g x x-+=,当[1,)x ∈+∞时,()'0g x >恒成立, ()g x ∴在[1,)+∞上单调递增,()()1min1111e g x g e -∴===-,1k e ∴≤-.【点睛】方法点睛:不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数,排除不合题意的参数范围,筛选出符合题意的参数范围. 22.(1)单调递减区间为2(,0),,3a ⎛⎫-∞+∞⎪⎝⎭,单调递增区间为20,3a ⎛⎫⎪⎝⎭;(2)13ln ,24⎛⎫-+∞ ⎪⎝⎭. 【分析】(1)求出导函数()(32)f x x x a '=--,讨论0a =、0a <或0a >,利用导数与函数单调性之间的关系即可求解.(2)将不等式分离参数转化为2ln k x x x >--在(0,)+∞上恒成立,令2()ln g x x x x =--,利用导数求出()g x 的最大值即可求解.【详解】解:(1)2()32(32)f x x ax x x a '=-+=--令()0f x '=,得12203x x a ==, 当0a =时,()0f x '≤恒成立,且仅在0x =时取等号, 故()f x 在R 上单调递减 当0a <时,在区间2,3a ⎛⎫-∞ ⎪⎝⎭和(0,)+∞上()0f x '<,在区间2a,03⎛⎫⎪⎝⎭上()0f x '>, 所以()f x 的单调递减区间为2,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭,, ()f x 的单调递增区间为2a,03⎛⎫⎪⎝⎭当0a >时,在区间2(,0),,3a ⎛⎫-∞+∞⎪⎝⎭上()0f x '<,在区间20,3a ⎛⎫⎪⎝⎭上()0f x '>. 所以()f x 的单调递减区间为2(,0),,3a ⎛⎫-∞+∞⎪⎝⎭,单调递增区间为20,3a ⎛⎫⎪⎝⎭(2)当1a =-时,由题意可知,()(ln )f x x k x <-在(0,)+∞上恒成立, 即322(ln )ln x x x k x k x x x --<-⇒>--在(0,)+∞上恒成立设2()ln g x x x x =--,则2121(1)(21)()21x x x x g x x x x x'--+-+-=--==令()0g x '>得10,2x ⎛⎫∈ ⎪⎝⎭;令()0g x '<得1,2x ⎛⎫∈+∞ ⎪⎝⎭,所以函数()g x 在10,2⎛⎤⎥⎝⎦上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减 113()ln 224g x g ⎛⎫∴≤=- ⎪⎝⎭∴实数k 的取值范围是13ln ,24⎛⎫-+∞ ⎪⎝⎭. 【点睛】关键点点睛:本题考查了利用导数研究函数的单调性,利用导数研究不等式恒成立,解题的关键是分离参数,将不等式转化为2ln k x x x >--在(0,)+∞上恒成立,考查了分类讨论的思想.23.(1)单调递增区间为][4,1,,3⎛⎫-∞-+∞ ⎪⎝⎭,单调递减区间为41,3⎡⎤-⎢⎥⎣⎦; (2)最大值为9,最小值为10027-. 【分析】(1)先求出()'f x ,由()'10f -=求出a 的值,再由()'0f x >得增区间,()'0f x <得减区间;(2)根据(1)的结论求出函数的极值,与端点处函数值进行比较即可结果. 【详解】(1) 函数()()()242(f x x x a a =--∈ R ),()()()22'2242628f x x x a x x ax ∴=-+-⨯=--.()'10,6280f a -=∴+-=,解得1a =.则()()()232421284,f x x x x x x x =--=--+∈ R .()()()2'6282341f x x x x x =--=-+,令()'0f x =,解得1241,3x x =-=. 由()'0f x >得43x >或1x <-,此时函数单调递增, 由()'0f x <得413x -<<,此时函数单调递减, 即函数的单调递增区间为][4,1,,3⎛⎫-∞-+∞ ⎪⎝⎭,单调递减区间为41,3⎡⎤-⎢⎥⎣⎦.(2)当22x -≤≤时,函数()f x 与()'f x 的变化如下表:由表格可知:当1x =-时,函数f x 取得极大值,19f -=, 当43x =时,函数()f x 取得极小值,4100327f ⎛⎫=- ⎪⎝⎭,又()()20,20f f -==,可知函数()f x 的最大值为9,最小值为10027-. 【方法点睛】本题主要考查利用导数判断函数的单调性以及函数在闭区间上的最值,属于难题. 求函数()f x 最值的步骤:(1) 确定函数的定义域;(2) 求导数()f x ';(3) 解方程()0,f x '=求出函数定义域内的所有根;(4) 列表检查()f x '在()0f x '=的根0x 左右两侧值的符号,如果左正右负(左增右减),那么()f x 在0x 处取极大值,如果左负右正(左减右增),那么()f x 在0x 处取极小值. (5)如果只有一个极值点,则在该处即是极值也是最值;(6)如果求闭区间上的最值还需要比较端点值得函数值与极值的大小24.(1)证明见解析;(2)极大值为5,极小值为27-. 【分析】(1)设()1x f x e x =--,则'()1x f x e =-,由'()0f x =得0x =,分析函数的单调性,可求得函数的最值,不等式可得证;(2)对函数求导,求出函数()y f x =的极值点,分析函数的单调性,可求得函数的极值. 【详解】解:(1)证明:设()1x f x e x =--,则'()1x f x e =-,由'()0f x =得0x =, 所以当0x <时,'()0f x <,当0x >时,'()0f x >,所以()f x 在(),0-∞单调递减,在()0,∞+单调递增,所以()(0)0f x f ≥=,即10x e x --≥,所以1x e x ≥+;(2)32()39f x x x x =--2()3693(1)(3)f x x x x x ==+'---,令()0f x '=,得1x =-或3x =,则所以当时函数取极大值为,当时函数取极小值为;【点睛】关键点点睛:本题考查利用导数证明不等式和求函数在定区间上的极值,关键在于构造函数,分析其导函数的符号,得出原函数的单调性.25.(1)函数()f x 的单调递增区间是()1,+∞,单调递减区间是()0,1;(2)当1k e>时,函数()f x 没有零点;当1k e =或0k ≤时,函数()f x 有1个零点;当1k e<<0时,函数()f x 有2个零点. 【分析】(1)由题得()10f '=,进而得1k =,再根据导数求解单调区间即可;(2)根据题意将问题转化为函数()ln g x x =与y kx =的交点个数问题,再讨论过原点的函数()ln g x x =的切线方程的斜率,进而求解. 【详解】解:(1)因为函数()f x 在()()1,1f 处的切线与x 轴平行,()1'f x k x=-, 所以()10f '=,即10k -=,求得1k =, 所以()ln f x x x =-,()111x f x x x-'=-=(0x >), 令()'0f x >,则1x >;令()'0f x <,则01x <<, ∴函数()f x 的单调递增区间是()1,+∞,单调递减区间是()0,1.(2)函数()f x 的零点个数可等价于函数()ln g x x =与y kx =的交点个数. 设()00,P x y 是函数()ln g x x =上的一点, 由()ln g x x =得,()1g x x'=, ∴()g x 在点()00,P x y 处的切线方程为()0001ln y x x x x -=-, 令0x y ==则0x e =,∴过原点所作的函数()ln g x x =的切线方程为1y x e=,故由图可知, 故当1k e>时,函数()f x 没有零点; 当1k e=或0k ≤时,函数()f x 有1个零点; 当1k e<<0时,函数()f x 有2个零点. 【点睛】本题第二问解题的关键在于根据题意将问题转化为函数()ln g x x =与y kx =的交点个数问题,再讨论过原点的函数()ln g x x =的切线方程的斜率,数形结合即可求解.考查化归转化思想和运算求解能力,是中档题. 26.(1)①0x y +=;②极大值点是22,无极小值点;(2)12a e ≥. 【分析】(1)①利用导数的几何意义求切线方程;②利用导数判断函数的单调性,根据极值点的定义求解;(2)不等式转化为2ln xa x ≥恒成立,即2maxln x a x ⎛⎫≥ ⎪⎝⎭,利用导数求函数()2ln xg x x=的最大值. 【详解】 (1)①当1a =时,()2ln f x x x =-,定义域是()0,∞+,()21122x x x xf x -=-=',()11f '=-,()11f =-, 所以函数在点()()1,1f 处的切线方程是()11y x +=--, 即0x y +=;②()0f x '>时,解得:20x <<,函数在区间20,2⎛⎫ ⎪ ⎪⎝⎭单调递增,()0f x '<,解得:x >,函数在区间⎫+∞⎪⎪⎝⎭单调递减,所以函数在2x =时取得极大值,极大值点是2,无极小值点;(2)若()0f x ≤恒成立,等价于2ln 0x ax -≤,即2ln xa x ≥恒成立,即2maxln x a x ⎛⎫≥ ⎪⎝⎭ 设()2ln xg x x=,()432ln 12ln x x x x g x x x --'==, 当()0g x '=时,x =当(x ∈时,()0g x '>,函数单调递增,当)x ∈+∞时,()0g x '<,函数单调递减,所以当x =()max 12g x e=, 即12a e ≥. 【点睛】方法点睛:由不等式恒成立求参数的取值范围的方法:1.讨论最值,先构造函数,利用导数研究函数的单调性,求出含参函数的最值,进而得出相应的含参不等式求参数的取值范围;2.分离参数:先分离参数变量,再构造函数,求出函数的最值,从而求出参数的取值范围.。

(易错题)高中数学选修1-1第四章《导数应用》测试(包含答案解析)

(易错题)高中数学选修1-1第四章《导数应用》测试(包含答案解析)

一、选择题1.已知函数21()ln 2f x x x a =--,若0x ∃>,()0f x ≥,则a 的取值范围是( ) A .1,2⎛⎤-∞- ⎥⎝⎦B .1,2⎛⎤-∞ ⎥⎝⎦C .(],1-∞D .(],e -∞2.已知关于x 的不等式32ln x ax x -≥恒成立,则实数a 的取值范围为( ).A .(,1]-∞B .(0,1]C .10,e⎛⎤ ⎥⎝⎦D .(,0]-∞3.已知函数()sin f x x x =+,若存在[0,]x π∈使不等式(sin )(cos )f x x f m x ≤-成立,则整数m 的最小值为( ) A .1-B .0C .1D .24.已知函数()f x 定义域为R ,其导函数为f x ,且()()30f x f x '->在R 上恒成立,则下列不等式定成立的是( ) A .()()310f e f <B .()()210f e f < C .()()310f e f >D .()()210f e f >5.已知函数()()30f x ax bx c ac =++<,则函数()y f x =的图象可能是( ).A .B .C .D .6.下列不可能是函数()()()xx f x xee Z αα-=-∈的图象的是( )A .B .C .D .7.已知函数()()()22210,0x ax x x f x e ax e x ⎧-+<⎪=⎨-+-≥⎪⎩有两个零点,则实数a 的取值范围是( ) A .(),e +∞B .()2e ,+∞C .()20,eD .()0,e8.已知函数()ln f x x =,若对任意的12,(0,)x x ∈+∞,都有()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦恒成立,则实数k 的最大值是( )A .1-B .0C .1D .29.已知定义域为R 的函数 f x () 的导函数为'f x () ,且满足'24f x f x ()﹣()> ,若 01f =()﹣ ,则不等式22x f x e +()> 的解集为( )A .∞(0,+)B .1+∞(﹣,)C .0∞(﹣,)D .1(﹣,﹣)∞ 10.若函数32()21f x ax x x =+++在(1,2)上有最大值无最小值,则实数a 的取值范围为( ) A .34a >-B .53a <-C .5334a -<<- D .5334a -≤≤- 11.已知函数2()f x x m =+与函数1()ln3g x x x =--,1,22x ⎡∈⎤⎢⎥⎣⎦的图象上恰有两对关于x 轴对称的点,则实数m 的取值范围是( ) A .5ln )4[2,2+ B .5[2ln 2,ln 2)4-+ C .5(ln 2,2ln 2)4+-D .(]2ln2,2-12.设函数()f x 的定义域为R ,其导函数是()f x ',若()()()20,01'+<=f x f x f ,则不等式()2xf x e ->的解集是( ) A .()0,1B .()1,+∞C .()0,∞+D .(),0-∞二、填空题13.已知a R ∈,对于任意的实数[]1,2x ∈,不等式()110xx e a x a e ⎛⎫+---≤ ⎪⎝⎭恒成立,则实数a 的取值范围是________________.14.已知函数)(f x 的定义域为R ,且)(12f -=.若对任意x ∈R ,)(2f x '>,则)(24f x x >+的解集为______.15.已知定义在R 上的函数()f x 关于y 轴对称,其导函数为()f x '. 当0x ≥时,()()1xf x f x '>-. 若对任意x ∈R ,不等式()()0x x x e f e e ax axf ax -+->恒成立,则正整数a 的最大值为_____.16.函数2()ln f x x ax x =-在2(,2)e上不单调,则实数a 的取值范围是_____. 17.已知函数()(0)x f x ae a =>与2()2(0)g x x m m =->的图象在第一象限有公共点,且在该点处的切线相同,当实数m 变化时,实数a 的取值范围为______________. 18.函数3()126f x x x =-++,1,33x ⎡⎤∈-⎢⎥⎣⎦的零点个数是________. 19.函数()ln f x x ax =-在()1,+∞上单调递减,则实数a 的取值范围是______.20.已知函数22(0)()4(0)x e x f x x x ⎧>=⎨+≤⎩,若x R ∀∈,()f x mx ≥,则实数m 的取值范围是________. 三、解答题21.已知函数()2ln 2f x x x =-,函数()212g x x a x=--+. (1)求函数()f x 的单调区间;(2)若对任意1,2x ⎡⎫∈+∞⎪⎢⎣⎭,函数()()f x g x ≥恒成立,求实数a 的取值范围. 22.已知函数22()1ln f x x ax a x =++-. (1)当1a =时,求()f x 的单调区间; (2)若0a =,且(0,1)x ∈,求证:2()2ln 122xf x x x e x-+-<. 23.已知函数()()222ln f x x mx x m m R =+++∈.(1)求曲线()y f x =在点()()1,1f 处的切线方程; (2)函数()f x 有两个不同的极值点()1212,x x x x <,求()211f x x x +的取值范围.24.已知函数2()(41)43(0)xf x ax a x a e a ⎡⎤=-+++≠⎣⎦. (1)若1a =,求曲线()y f x =在(0,(0))f 处的切线方程; (2)若()f x 在2x =处取得极小值,求a 的取值范围. 25.已知函数()ln 1f x x =+.(1)直线20l x y -+=:,求曲线()y f x =上的点到直线l 的最短距离; (2)若曲线21()(1)()(03)2g x x a x f x x =-++<<存在两个不同的点,使得在这两点处的切线都与x 轴平行,求实数a 的取值范围.26.已知函数()ln af x x x x=--.(1)当2a =-时,求函数()f x 的极值;(2)若()2f x x x >-在()1,+∞上恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】 由()f x 得21ln 2a x x ≤-,设21()ln 2g x x x =-,利用导数求()g x 的最大值可得答案. 【详解】 由21()ln 2f x x x a =--,得21ln 2a x x ≤-.设21()ln 2g x x x =-,则211()x g x x x x-'=-=.令()0g x '>,得01x <<;令()0g x '<,得1x >, 则()g x 在(0,1)上单调递增,在(1,)+∞上单调递减,从而1()(1)2g x g ≤=-, 故12a ≤-. 故选:A.本题考查了能成立求参数的问题,关键点是构造函数利用导数求最值,考查了分析问题、解决问题的能力.2.A解析:A 【分析】将不等式32ln x ax x -≥恒成立,转化为不等式2ln x xa x≤-在()0,∞+上恒成立,令()2ln x x xg x =-,用导数法求得其最小值即可. 【详解】因为不等式32ln x ax x -≥恒成立, 所以不等式2ln x xa x ≤- 在()0,∞+上恒成立, 令()2ln x x xg x =-, 则()3312ln x xg x x-+'=, 令()312ln h x x x =-+,则()2230h x x x'=+>, 所以()h x 在()0,∞+上是递增,又()10h =, 所以当01x <<时,()0h x <,即()0g x '<, 当1x >时,()0h x >,即()0g x '>, 所以当1x =时,()g x 取得最小值()11g =, 所以 1a ≤, 故选:A 【点睛】方法点睛:恒成立问题的解法:若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<. 3.A解析:A先对()f x 求导可得()1cos 0f x x '=+≥,()f x 单调递增,原不等式可化为存在[0,]x π∈ 使得sin cos x x m x ≤-有解,即sin cos m x x x ≥+对于[0,]x π∈有解,只需()min m g x ≥,利用导数判断()g x 的单调性求最小值即可. 【详解】由()sin f x x x =+可得()1cos 0f x x '=+≥, 所以()sin f x x x =+在[0,]x π∈单调递增,所以不等式(sin )(cos )f x x f m x ≤-成立等价于sin cos x x m x ≤-, 所以sin cos m x x x ≥+对于[0,]x π∈有解, 令()sin cos g x x x x =+,只需()min m g x ≥, 则()sin cos sin cos g x x x x x x x '=+-=, 当02x π≤≤时,()cos 0g x x x '=≥,()g x 在0,2π⎡⎤⎢⎥⎣⎦单调递增, 当2x ππ<≤时,()cos 0g x x x '=<,()g x 在,2ππ⎡⎤⎢⎥⎣⎦单调递减, ()0cos01g ==,()sin cos 1g ππππ=+=-,所以()()min 1g x g π==-, 所以1m ≥-, 整数m 的最小值为1-, 故选:A. 【点睛】方法点睛:若不等式(),0f x λ≥()x D ∈(λ是实参数)有解,将(),0f x λ≥转化为()g x λ≥或()()g x x D λ≤∈有解,进而转化为()max g x λ≤或()()min g x x D λ≥∈,求()g x 的最值即可.4.A解析:A 【分析】 构造函数()()3xf xg x e =,由()()30f x f x '->得0g x ,进而判断函数()g x 的单调性,判断各选项不等式. 【详解】()()3x f x g x e=,则()()()()()()3323333x x x x f x e f x e f x f x g x e e ⋅--==''',因为()()30f x f x '->在R 上恒成立, 所以0g x在R 上恒成立,故()g x 在R 上单调递减, 所以()()10g g <,即()()3010f f e e<,即()()310f e f <, 故选:A. 【点睛】函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.5.B解析:B 【分析】利用函数()f x 的对称性排除A 选项;然后分0a >和0a <两种情况讨论,利用导数分析函数()f x 的单调性,结合()0f 的符号可得出合适的选项. 【详解】()3f x ax bx c =++,则()3f x ax bx c -=--+,()()2f x f x c ∴+-=,所以,函数()f x 的图象关于点()0,c 对称,排除A 选项;()3f x ax bx c =++,则()23f x ax b '=+,当0a >,x →+∞时,()0f x '>,函数()f x 单调递增, 又0ac <,()00f c ∴=<,排除D 选项;当0a <,x →+∞时,()0f x '<,函数()f x 单调递减, 又0ac <,()00f c ∴=>,排除C 选项. 故选:B . 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.6.B解析:B 【分析】 由函数()()xx f x xee α-=-,分0a =, a 为正整数,a 为正偶数,a 为正奇数,a 为负整数分析其定义域,奇偶性和单调性判断. 【详解】当0α=时,()xxf x e e -=-其定义域为{}|0x x ≠,关于原点对称,又()()()xx x x f x ee e ef x ---=-=--=-,所以()f x 是奇函数,且单调递增,没有选项符合题意;当α为正整数时,()()xx f x xee α-=-的定义域为R ,图象经过原点,当0x >时, ()()11()())(x x x x x xf x x e e e e x e e x x x ααααα-----'⎡⎤⎡⎤==-+++⎣⎦+⎣-⎦,因为0,0x xx x e ee e --->+>,所以()0f x '>,则()f x 递增,又存在0M >,当x M >时,随着x 的增大,()'f x 的变化率越来越大, 若α为正偶数,则()f x 是奇函数,此时C 选项符合题意; 若α为正奇数,则()f x 是偶函数,此时A 选项符合题意; 当α为负整数时,()()xx f x xee α-=-的定义域为{}|0x x ≠,当α为负奇数,()()()()xx f x x e e f x α--=--=,()f x 为{}|0x x ≠上的偶函数,无选项符合;当α为负偶数时且4α≤-时,()()()()xx f x x ee f x α--=--=-,()f x 为{}|0x x ≠上的奇函数, 当0x >时,()()211(())x x x x f x x e e x x x x x e e x ααααααα----+⎛⎫+--+ ⎪-⎝'⎡⎤=+=⎦⎭⎣, 令()2,0x x S x e x x αα-+=+>-, 则()()()()()2222222xxxxx x S x e x x e ααααα---+-'=-=-⨯--,令(),0x x x x αϕ->=,则()01xx ϕ'<=, 故(),0xx x x αϕ->=为减函数,而()00ϕα=->,()()()23ln ln 2ln t t t αααϕ---+=+=-,其中2t =≥,令()232ln ,2u t t t t t =+-≥,则()()2223,2t t u t t t+-'=≥,则()()22232+440tt +-≤⨯-<,故()232ln ,2u t t t t t =+-≥为减函数,所以()2ln 240u t ≤-<,()()ln 0ϕα-<,所以存在()00x ∈+∞,,使得当()00,x x ∈时,()0x ϕ>即()0S x '<, 当()0,x x ∈+∞时,()0x ϕ<即()0S x '>,故()S x 在()00,x 为减函数,在()0,x +∞为增函数,因为()00S =,故()00S x <,而当x a >-时,()0S x >,故存在()10,x ∈+∞,使得当()10,x x ∈时,()0S x <即()0f x '<,当()1,x x ∈+∞时,()0S x >即()0f x '>,所以()f x 在()10,x 上为减函数,在()1,x +∞为增函数, 又当0x >时,()0f x >恒成立,故D 选项符合题意. 对任意的整数α,当α为非负整数时,()f x 在0x =处有定义,且()f x '在0x =不间断,故B 不符合题意,当α为负整数时,()f x 在0x =处没有定义,故B 不符合题意, 故选:B. 【点睛】方法点睛:对于知式选图问题的解法:1、从函数的定义域,判断函数图象的左右位置,从函数的值域判断图象的上下位置;2、从函数的单调性,判断函数图象的变换趋势;3、从函数的奇偶性,判断函数图象的对称性;4、从函数的周期性,判断函数图象图的循环往复;5、从函数的特殊点,排除不和要求的图象;7.B解析:B 【分析】分离变量,利用导函数应用得到函数在0x <无零点,则0x >有两个零点,利用函数最值得到参数范围 【详解】当0x =时,()201e f =--,∴0x =不是函数()f x 的零点.当0x <时,由()0f x =,得221x a x -=,设()221x h x x -=,()()3210x h x x-'=<,则()h x 在(),0-∞上单调递减,且()0h x <.所以0x <时无零点当0x >时,()0f x =等价于2x e e a x +=,令()2x e e g x x +=,()22x x xe e e g x x--'=, 得()g x 在()0,2上单调递减,在()2,+∞上单调递增,()2min (2)g x g e ==,()2g x e ≥.因为()f x 有2个零点,所以2a e >. 故选:B. 【点睛】分离变量法,利用导数求函数的单调性,极值是解题关键.8.B解析:B 【分析】首先代入函数,变形为1221ln1x kx x x >-,再通过换元设12x t x =(1t >),则ln 1k t t >-,利用参变分离转化为(1)ln k t t <-,设()()1ln g t t t =-(1t >),转化为求函数()g t 的最小值. 【详解】 设12x x >,因为()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦,变形为()()()()121212212ln ln x x x x x x kx x x -+->+,即12212lnx kx x x x >-, 等价于1221ln1x k x x x >-,因为120x x >>,令12x t x =(1t >),则ln 1k t t >-,即(1)ln k t t <-. 设()()1ln g t t t =-(1t >),则min ()k g t <.当1t >时1()ln 10g t t t'=+->恒成立,故()g t 在()1,+∞上单调递增,()(1)0g t g >=. 所以0k ≤,k 的最大值为0. 故选:B . 【点睛】关键点点睛:本题的关键是将条件变形为12212ln x kx x x x >-,并进一步变形为1221ln1x k x x x >-,再通过换元,参变分离后转化为求函数的最值.9.A解析:A 【解析】 设()()22xf x F x e+=,则()()()224xf x f x F x e'--'=,∵f (x )−2f ′(x )−4>0,∴F ′(x )>0,即函数F (x )在定义域上单调递增, ∵f (0)=−1,∴F (0)=1,∴不等式f (x )+2>e 2x 等价为不等式()221e xf x +>等价为F (x )>F (0),解得x >0,故不等式的解集为(0,+∞), 本题选择A 选项.10.C解析:C 【详解】分析:函数()3221f x ax x x =+++在()1,2上有最大值无最小值,则极大值在()1,2之间,一阶导函数有根在()1,2,且左侧函数值小于0,右侧函数值大于0,列不等式求解 详解:f ′(x )=3ax 2+4x +1,x ∈(1,2).a =0时,f ′(x )=4x +1>0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去. a ≠0时,△=16﹣12a . 由△≤0,解得43a ≥,此时f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.由△>0,解得a 43<(a ≠0),由f ′(x )=0,解得x 1=,x 2=.当403a <<时,x 1<0,x 2<0,因此f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.当a <0时,x 1>0,x 2<0,∵函数f (x )=ax 3+2x 2+x +1在(1,2)上有最大值无最小值,∴必然有f ′(x 1)=0,∴12,a <0.解得:53-<a 34-<. 综上可得:53-<a 34-<. 故选:C .点睛:极值转化为最值的性质:1、若()[]f x x a,b ∈在上有唯一的极小值,且无极大值,那么极小值为()f x 的最小值;2、若()[]f x x a,b ∈在上有唯一的极大值,且无极小值,那么极大值为()f x 的最大值;11.A解析:A 【分析】将问题转化为()()f x g x =-在1,22⎡⎤⎢⎥⎣⎦恰有两个不同的解,令()()()h x f x g x =+,将问题转化为()h x 在1,22⎡⎤⎢⎥⎣⎦上有两个零点的问题,利用导数可求得()h x 的单调性,进而确定区间端点值和最值,由此构造不等式求得结果. 【详解】()f x 与()g x 在1,22x ⎡∈⎤⎢⎥⎣⎦的图象上恰有两对关于x 轴对称的点,()()f x g x ∴=-在1,22⎡⎤⎢⎥⎣⎦恰有两个不同的解,即221ln 3ln 30x m x x x x m x +--=+-+=在1,22⎡⎤⎢⎥⎣⎦上恰有两个不同的解,令()2ln 3h x x x x m =+-+,则()()()2211123123x x x x h x x x x x---+'=+-==, ∴当1,12x ⎛⎫∈ ⎪⎝⎭时,()0h x '<;当()1,2x ∈时,()0h x '>,()h x ∴在1,12⎛⎫⎪⎝⎭上单调递减,在()1,2上单调递增,又15ln 224h m ⎛⎫=--+⎪⎝⎭,()12h m =-,()2ln 22h m =-+, 原问题等价于()h x 在1,22⎡⎤⎢⎥⎣⎦上恰有两个零点,则5ln 2024m m --+≥>-,解得:5ln 224m +≤<,即m 的取值范围为5ln 2,24⎡⎫+⎪⎢⎣⎭.故选:A . 【点睛】本题考查根据函数零点个数求解参数范围的问题,关键是能够将两函数图象对称点个数的问题转化为方程根的个数的问题,进一步通过构造函数的方式将问题转化为函数零点个数的问题.12.D解析:D 【分析】构造新函数2()()x g x e f x =,求导后可推出()g x 在R 上单调递减,而2()x f x e ->可等价于20()1(0)x e f x e f >=,即()(0)g x g >,故而得解. 【详解】令2()()x g x e f x =,则2()[2()()]x g x e f x f x ''=+,2()()0f x f x +'<,()0g x '∴<,即()g x 在R 上单调递减,(0)1f =,2()x f x e -∴>可等价于20()1(0)x e f x e f >=,即()(0)g x g >,0x ∴<,∴不等式的解集为(,0)-∞.故选:D . 【点睛】本题考查利用导数研究函数的单调性、解不等式,构造新函数是解题的关键,考查学生的转化思想、逻辑推理能力和运算能力,属于中档题.二、填空题13.【分析】当时证明出由题意可得出可得出结合函数的单调性可求得实数的取值范围【详解】当时先证明出构造函数则则函数在区间上单调递增所以所以函数在区间上单调递增当时所以由可得所以当时即令则所以函数在区间上单解析:11,e e ⎡⎤+⎢⎥⎣⎦【分析】当[]1,2x ∈时,证明出11xx e x e +>-,由题意可得出11xxx a e e-≤≤+,可得出()max min11xx x a e e ⎛⎫-≤≤+⎪⎝⎭,结合函数的单调性可求得实数a 的取值范围. 【详解】当[]1,2x ∈时,先证明出11xx e x e +>-,构造函数()11xxf x e x e =+-+, 则()11xx f x e e'=--,则函数()f x '在区间[]1,2上单调递增, 所以,()()1110f x f e e''≥=-->,所以,函数()f x 在区间[]1,2上单调递增, 当[]1,2x ∈时,()()110f x f e e ≥=+>,所以,11x x e x e+>-. 由()110xx e a x a e ⎛⎫+---≤ ⎪⎝⎭,可得11xx x a e e -≤≤+,所以,()max min11xx x a e e ⎛⎫-≤≤+⎪⎝⎭. 当[]1,2x ∈时,011x ≤-≤,即()max 11x -=, 令()1xx g x e e =+,则()10xxg x e e'=->,所以,函数()g x 在区间[]1,2上单调递增, 当[]1,2x ∈时,()()min 11g x g e e ==+,所以,11a e e≤≤+. 因此,实数a 的取值范围是11,e e⎡⎤+⎢⎥⎣⎦. 故答案为:11,e e ⎡⎤+⎢⎥⎣⎦. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.14.【分析】构造函数利用导数研究函数的单调性即可得结论【详解】设则因为对任意所以所以对任意是单调递增函数因为所以由可得则的解集故答案为:【点睛】本题主要考查不等式的求解利用条件构造函数利用导数研究函数的 解析:)(1,-+∞【分析】构造函数)(()24g x f x x =--,利用导数研究函数的单调性即可得结论. 【详解】设)(()24g x f x x =--,则)(()2g x f x ='-', 因为对任意x ∈R ,)(2f x '>,所以()0g x '>, 所以对任意x ∈R , ()g x 是单调递增函数,因为)(12f -=,所以)((1)124440g f -=-+-=-=, 由()()10g x g >-=,可得1x >-, 则)(24f x x >+的解集()1,-+∞. 故答案为:()1,-+∞. 【点睛】本题主要考查不等式的求解,利用条件构造函数、利用导数研究函数的单调性是解决本题的关键.15.2【分析】令利用可得在单调递增不等式恒成立等价于即当时分离参数可得可求出正整数的最大值为2再检验当时对于不等式恒成立即可求解【详解】因为定义在上的函数关于轴对称所以函数为上的偶函数令则因为当时即所以解析:2 【分析】令()()g x xf x x =-,利用()()1xf x f x '>-可得()g x 在[)0,+∞单调递增,不等式()()0x x x e f e e ax axf ax -+->恒成立等价于()()x g e g ax >,即e x ax >,当0x >时,分离参数可得()xe a h x x<=,可求出正整数a 的最大值为2,再检验当2a =时,对于0x <,不等式恒成立,即可求解. 【详解】因为定义在R 上的函数()f x 关于y 轴对称, 所以函数()f x 为R 上的偶函数,令()()g x xf x x =-,则()()()1g x f x xf x ''=+-,因为当0x ≥时,()()1xf x f x '>-,即()()()10g x f x xf x ''=+->, 所以()g x 在[)0,+∞单调递增, 不等式()()0xx xe f e eax axf ax -+->恒成立,即()()xxxe f eeaxf ax ax ->-,即()()x g e g ax >,所以e x ax >,当0x >时,()xe a h x x <=,则()()21x e x h x x -'=, 可得()h x 在()0,1单调递减,在()1,+∞单调递增, 所以()()min 1h x h e ==, 所以a e <,此时最大的正整数a 为2,2a =对于0x <时,e x ax >恒成立,综上所述:正整数a 的最大值为2, 故答案为:2 【点睛】关键点点睛:本题的关键点是构造函数()()g x xf x x =-,利用导数判断出()g x 在[)0,+∞单调递增,不等式恒成立即()()x g e g ax >,利用单调性可得e x ax >,再分类参数求最值.16.【分析】求得函数的导函数根据在区间上有极值求得的取值范围【详解】令得由于分离常数得构造函数所以在上递减在上递增下证:构造函数当时①而即所以所以由①可得所以当时单调递增由于所以当时故也即由于所以所以的 解析:4(2,)ln 21+ 【分析】求得函数()f x 的导函数()'f x ,根据()f x 在区间2(,2)e上有极值,求得a 的取值范围. 【详解】()()'21ln 2ln f x x a x x a x a =-+=--,令'0f x得2ln 0x a x a --=,由于222,ln ln ln 2,ln 2ln 1ln 2x x x e e e<<<<<+<, 分离常数a 得21ln xa x=+.构造函数()21ln x h x x =+,()()'22ln 1ln x h x x =+,所以()h x 在2,1e ⎛⎫ ⎪⎝⎭上递减,在()1,2上递增,()()()424444,12,22ln 2ln 2ln 21ln 21ln eeh h h e e e e⎛⎫======⎪+⎝⎭+. 下证22e e >:构造函数()22xg x x =-,()'2ln 22xg x =-,当2x ≥时,22ln 222ln 22x -≥-①,而1ln 2ln 2e =<=<,即1ln 212<<,所以222ln 24<<,所以由①可得22ln 222ln 220x -≥->.所以当2x ≥时,()g x 单调递增.由于()20g =,所以当2x >时,()()20g x g >=,故()0g e >,也即22022e e e e ->⇒>.由于()22ln 2ln 2eee e >⇒>,所以()22h h e ⎛⎫<⎪⎝⎭. 所以a 的取值范围是4(2,)ln 21+ 故答案为:4(2,)ln 21+ 【点睛】本小题主要考查利用导数研究函数的单调性,属于中档题.17.【分析】设切点为根据已知得求出得构造函数求出的范围即可【详解】设切点为则整理得由解得由上可知令则因为所以在上单调递减所以即故答案为:【点睛】本题考查导数的几何意义利用导数求参数的范围考查计算求解能力解析:280,a e ⎛⎫∈ ⎪⎝⎭【分析】设切点为()00,A x y ,根据已知得0000()(),()()f x g x f x g x ='=',求出02x >,得04x x a e =,构造函数4(),2x xh x x e =>,求出()h x 的范围即可. 【详解】 设切点为()00,A x y ,(),()4x f x ae g x x '='=则0020024x x ae x m ae x ⎧=-⎪⎨=⎪⎩,整理得20004200x x m x m ⎧=-⎪>⎨⎪>⎩,由200240m x x =->,解得02x >.由上可知004x x a e =,令4()xx h x e =,则4(1)()x x h x e -'=. 因为2x >,所以4(1)4()0,()x xx xh x h x e e-'=<=在(2,)+∞上单调递减, 所以280()h x e <<,即280,a e ⎛⎫∈ ⎪⎝⎭. 故答案为:280,e ⎛⎫ ⎪⎝⎭. 【点睛】本题考查导数的几何意义、利用导数求参数的范围,考查计算求解能力,属于中档题.18.0【分析】求得函数的导数求得函数在上单调递增在上单调递减再根据即可判定得到答案【详解】由题意函数可得令即解得所以函数在上单调递增;令即解得或所以函数在上单调递减;又由所以函数图象与轴没有交点即函数没解析:0 【分析】求得函数的导数()3(2)(2)f x x x '=-+-,求得函数()f x 在1[,2)3-上单调递增,在(2,3]上单调递减,再根据1()0,(2)0,(3)03f f f ->>>,即可判定,得到答案.【详解】由题意,函数3()126f x x x =-++,1,33x ⎡⎤∈-⎢⎥⎣⎦,可得22()3123(4)3(2)(2)f x x x x x '=-+=--=-+-, 令()0f x '>,即(2)(2)0x x +-<,解得22x -<<,所以函数()f x 在1[,2)3-上单调递增; 令()0f x '<,即(2)(2)0x x +->,解得2x <-或2x >,所以函数()f x 在(2,3]上单调递减; 又由11()460,(2)220,(3)130327f f f -=--+>=>=>, 所以函数图象与x 轴没有交点,即函数()f x 没有零点, 所以函数()f x 的个数为0个. 故答案为:0. 【点睛】本题主要考查了函数零点的个数的判定,以及利用导数研究函数的单调性与极值,其中解答中利用导数求得函数的单调性与极值是解答的关键,着重考查了推理与运算能力.19.【分析】求导得到恒成立化简得到计算得到答案【详解】在恒成立即恒成立故故答案为【点睛】本题考查了利用导数计算函数的单调性意在考查学生的计算能力 解析:[1,)+∞【分析】 求导得到1'()0f x a x =-≤恒成立,化简得到1a x≤,计算得到答案. 【详解】1()ln '()0f x x ax f x a x=-∴=-≤在()1,+∞恒成立 即1a x≤恒成立,故1a ≥ 故答案为[1,)+∞【点睛】本题考查了利用导数计算函数的单调性,意在考查学生的计算能力.20.【分析】由函数的解析式分类讨论利用分离参数结合导数和基本不等式即可求解【详解】由题意函数(1)当时由可得即设可得当时单调递减;当时单调递增所以即;(2)当时由可得当时显然成立;当时可得因为当且仅当时 解析:[4,2]e -【分析】由函数的解析式,分类讨论,利用分离参数,结合导数和基本不等式,即可求解. 【详解】由题意,函数22,0,()4,0,x e x f x x x ⎧>=⎨+≤⎩,(1)当0x >时,由()f x mx ≥,可得2xe mx ≥,即2xe m x≤,设2()x e g x x =,可得22(21)()x e x g x x-'=, 当102x <<时,()0g x '<,()g x 单调递减;当12x >时,()0g x '>,()g x 单调递增, 所以min 1()22g x g e ⎛⎫==⎪⎝⎭,即2m e ≤; (2)当0x ≤时,由()f x mx ≥,可得24x mx +≥, 当0x =时显然成立; 当0x <时,可得4m x x ≥+,因为444x x x x ⎛⎫+=--+≤- ⎪-⎝⎭,当且仅当1x =-时取等号, 所以4m ≥-.综上可得,实数m 的取值范围是[4,2]e -, 故答案为:[4,2]e -. 【点睛】本题主要考查了函数的恒成立问题的求解,以及分段函数的性质的应用,其中解答中根据分段函数的分段条件,合理分类讨论,利用分离参数,结合导数和基本不等式求解是解答的关键,着重考查了转化思想,分类讨论思想,以及推理与运算能力.三、解答题21.(1)单调递增区间是10,2⎛⎫ ⎪⎝⎭,单调递减区间是1,2⎛⎫+∞ ⎪⎝⎭;(2)(],1-∞. 【分析】(1)求导,判断导函数正负,进而判断函数单调区间; (2)()()f x g x ≥恒成立,可转化为不等式1ln a x x ≤+对于1,2x ⎡⎫∈+∞⎪⎢⎣⎭恒成立,设()1ln h x x x=+,求导,判断单调性并求得最小值,()min a h x ≤. 【详解】(1)函数()2ln 2f x x x =-的定义域为0,,则()()()21212114'4x x x f x x x x x-+-=-==, 由题意120x +>,得当10,2⎛⎫∈ ⎪⎝⎭x 时,()()'0,f x f x >递增, 当1,2⎛⎫∈+∞ ⎪⎝⎭x 时,令()()'0,f x f x <递减, 所以()f x 的单调递增区间是10,2⎛⎫ ⎪⎝⎭,单调递减区间是1,2⎛⎫+∞⎪⎝⎭; (2)对任意1,2x ⎡⎫∈+∞⎪⎢⎣⎭,函数()()f x g x ≥恒成立, 即不等式1ln a x x ≤+对于1,2x ⎡⎫∈+∞⎪⎢⎣⎭恒成立, 令()1ln h x x x=+, 则()22111'x h x x x x-=-=, 当1,12x ⎡⎫∈⎪⎢⎣⎭时,()'0h x <, 函数()h x 单调递减, 当时()1,∈+∞x ,()'0h x >, 函数()h x 单调递增,所以当1x =时,()h x 有最小值()1ln111h =+=, 从而a 的取值范围是(],1-∞. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.22.(1)单调递增区间为(]0,1,单调递减区间为[1,)+∞;(2)证明见解析. 【分析】(1)先求出函数的定义域,再对函数求导,然后分别令0f x 和0f x ,解不等式可求出函数的单调区间; (2)22()2ln 11ln 12222x x f x x x x x e x e x--+-<⇔+-<,即()3(1ln )221(01)x x x e x x x -<-++<<,然后构造函数()(1ln )(01)g x x x x =-<<和()3()221x h x e x x =-++,利用导数分别求出()()11g x g <=,()1h x >,从而可得结论【详解】(1)当1a =时,2()1ln f x x x x =++-,定义域为(0,)+∞,∴1(1)(21)()12x x f x x x x--+'=+-=, 令0fx ,得01x <<;令0f x ,得1x >,∴()f x 的单调递增区间为(]0,1,单调递减区间为[1,)+∞. (2)当0a =时,()1ln f x x =+, ∴22()2ln 11ln 12222x x f x x x x x e x e x--+-<⇔+-<,即()3(1ln )221(01)xx x exx x -<-++<<,令()(1ln )(01)g x x x x =-<<,∴()ln 0g x x '=->, ∴()g x 在0,1上单调递增,∴()()11g x g <=.令()3()221xh x ex x =-++(01x <<),∴()32()2623xh x e x x x '=--++,令32()2623x x x x ϕ=--++,∴2()6122x x x ϕ'=--+在0,1上递减, 又(0)20ϕ'=>,(1)160ϕ'=-<,∴0(0,1)x ∃∈使()00x ϕ'=,且()00,x x ∈时,()0x ϕ'>,()ϕx 递增,()0,1x x ∈时,()0x ϕ'<,()ϕx 递减,而(0)30ϕ=>,(1)30ϕ=-<, ∴1(0,1)x ∃∈使()10x ϕ=,即()10h x '=,()10,x x ∈时()0h x '>,()h x 单调递增,()1,1x x ∈时()0h x '<,()h x 单调递减,而(0)1h =,(1)h e =,∴()1h x >恒成立,∴()()g x h x <,即()3(1ln )221(01)x x x e x x x -<-++<<,即2()2ln 122x f x x x e x-+-<.【点睛】关键点点睛:此题考查导数的应用,利用导数求函数的单调区间,利用导数求函数的最值,第2问解题的关键是把2()2ln 122x f x x x e x-+-<等价转化为()3(1ln )221(01)x x x e x x x -<-++<<,然后构造函数()(1ln )(01)g x x x x =-<<,()3()221x h x e x x =-++,分别求出两个函数的最值即可,考查数学转化思想,属于中档题23.(1)()4230m x y m +-+-=;(2)(),4-∞-. 【分析】(1)对()y f x =求导,切线斜率为()1f ',再求切点坐标,利用点斜式即可写出切线方程;(2)由题意可得1x ,2x 是方程()0f x '=的两个不等式的实根,等价于1x ,2x 是方程210x mx ++=的两个根,由根与系数的关系可得12x x m +=-,121=x x ,将()211f x x x +转化为关于2x ()21x >的函数,再利用单调性求最值即可求解. 【详解】(1)由题意知()0,x ∈+∞,因为()222f x x m x'=++, 所以()142f m '=+,()113f m =+,所以所求切线方程为()()()13421y m m x -+=+-,即()4230m x y m +-+-=;(2)由(1)知()()221222x mx f x x m x x++'=++=, 因为()1212,x x x x <是()f x 的两个不同的极值点,所以1x ,2x 是方程210x mx ++=的两个根,可得12x x m +=-,121=x x ,221m x x ⎛⎫=-+ ⎪⎝⎭,易得21>x ,所以()22122211222ln 1f x x x mx x m x x x +++++=22222222222222211122ln 2ln 211x x x x x x x x x x x x x ⎛⎫⎛⎫-++-++ ⎪ ⎪--+-⎝⎭⎝⎭==()3222222222ln 1x x x x x x =---+>,()()32222222222ln 1g x x x x x x x =---+>,()()2222232ln g x x x x '=-+-,()2221621g x x x ⎛⎫''=-+- ⎪⎝⎭,因为21>x 可得2110x -<,260x -<所以()20g x ''<,()()2222232ln g x x x x '=-+-在()1,+∞单调递减,()()()2132ln1150g x g ''<=-+-=-<,所以()2g x 在()1,x ∈+∞上单调递减,()()214g x g <=-,从而()211f x x x +的取值范围为(),4-∞-.【点睛】方法点睛:求曲线切线方程的一般步骤是(1)求出()y f x =在0x x =处的导数,即()y f x =在点P 00(,())x f x 出的切线斜率(当曲线()y f x =在P 处的切线与y 轴平行时,在P 处导数不存在,切线方程为0x x =);(2)由点斜式求得切线方程'00()()y y f x x x -=⋅-.24.(1)27y x =+;(2)1,2⎛⎫+∞ ⎪⎝⎭. 【分析】(1)求出导函数()'f x ,得切线斜率(0)f ',从而可得切线方程; (2)求出()'f x ,求出()0f x '=的两根1a和2,根据两根的大小讨论()f x 的极值,由2是极小值点得出a 的范围. 【详解】本题考查利用导数研究函数性质.解析(1)若1a =,()2()57xf x x x e =-+, 所以()2()32xf x x x e '=-+, 所以(0)2 f '=,又(0)7f =,因此曲线()y f x =在(0,(0))f 处的切线方程为27y x =+. (2)2()(21)2(1)(2)xxf x ax a x e ax x e '⎡⎤=-++=--⎣⎦, 令()0 f x '=,得1x a=或2x =, 若102a <<,即12a > 则当1,2x a ⎛⎫∈⎪⎝⎭时,()0f x '<,当(2,)x ∈+∞时,()0f x '>, 所以()f x 在2x =处取得极小值.. 若12a ≤,且0a ≠,则当(0,2)x ∈时,112ax x ≤<, 所以10ax ,同时20x -<,所以()0f x '>,从而2x =不是()f x 的极小值点..综上可知,a 的取值范围是1,2⎛⎫+∞ ⎪⎝⎭. 【点睛】本题考查导数的几何意义,考查由极值点求参数范围.掌握极值的定义是解题关键.方法是:求出导函数()'f x ,确定()0f x '=的根,然后由根分实数为若干个区间,讨论各区间中()'f x 和正负,得单调区间,若在0x 左侧递减,右侧递增,则0x 是极小值点,若在0x 左侧递增,右侧递减,则0x 是极大值点. 25.(1;(2)7(1,)3. 【分析】(1)可得与l 平行且与()y f x =相切的切线的切点到直线距离最短,求出切点即可得出;(2)求出()g x 的导数,题目等价于2(1)10x a x -++=在()0,3上有两个不同的根,则列出式子即可求出. 【详解】解:(1)设曲线()y f x =上的点()00,A x y 到直线l 的距离最短,则在点A 的切线与l 平行,001()1f x x ='=,∴01x =,求得01y =, ∴在点A 的切线方程为y x =, ∴点A 到直线l= (2)由题意得21()(1)ln 1(03)2g x x a x x x =-+++<<, ∴21(1)1()(1)x a x g x x a x x-++'=-++=,∵曲线()y g x =上存在两个不同的点,使得在这两点处的切线都与x 轴平行, ∴关于x 的方程()0g x '=,即2(1)10x a x -++=在()0,3上有两个不同的根, 设2()(1)1h x x a x =-++,则()()()()21400101032393110a h a h a ⎧∆=+->⎪=>⎪⎪⎨+<<⎪⎪=-++>⎪⎩,解得713<<a , ∴实数a 的取值范围是7(1,)3.【点睛】本题考查利用导数解决方程的根的问题,解题的关键是将题目等价为2(1)10x a x -++=在()0,3上有两个不同的根.26.(1)极小值为3ln 2-,无极大值;(2)(],1-∞. 【分析】(1)对函数求导,因式分解求得()0f x '=的根,列表判断单调性与极值;(2)将()2f x x x >-转化为3ln a x x x <-在()1,+∞上恒成立,令新的函数()g x ,然后求导以及二次求导以后判断单调性与极值,求出()g x 的最小值即可. 【详解】解:(1) 由2a =-,得()2ln f x x x x=+-,定义域为()0,∞+, ()()()2222212121x x x x f x x x x x-+--'=--==, 令()0f x '=,得2x =(或1x =-舍去),列表:所以f x 的极小值为23ln 2=-f ,无极大值. (2)由2ln a x x x x x -->-,得2ln ax x x<-, 问题转化为3ln a x x x <-在()1,+∞上恒成立,记()()3ln ,1,g x x x x x =-∈+∞,即min ()a g x <在()1,+∞上恒成立,则()()2231ln 3ln 1g x x x x x '=-+=--,令()23ln 1h x x x =--,则()21616x h x x x x-'=-=,由1x >,知2610x ->,即()0h x '>,所以()h x 在()1,+∞上单调递增,()()120h x h >=>,即()0g x '>,所以()g x 在()1,+∞上单调递增,()()11g x g >=, 由()a g x <在()1,+∞上恒成立,所以1a ≤. 【点睛】方法点睛:导函数中两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题,注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.。

(必考题)高中数学选修1-1第四章《导数应用》测试题(包含答案解析)(3)

(必考题)高中数学选修1-1第四章《导数应用》测试题(包含答案解析)(3)

一、选择题1.已知,a b ∈R ,若函数()e =-x f x a bx 存在两个零点1x ,2x ,且210x x >>,则下列结论可能成立的是( ). A .0ae b >>B .0ae b >>C .0b ae >>D .0ae b >>2.若关于x 的方程2lnx ax x -=在0,上有两个不等的实数根,则实数a 的取值范围为( ) A .(],1-∞-B .(),1-∞-C .[)1,-+∞D .()1,-+∞3.设函数()f x '是奇函数()()f x x R ∈的导函数,()10f -=,当0x >时,()()0xf x f x '-<,则使得()0f x >成立的x 的取值范围是( )A .()()0,11,+∞B .()(),11,-∞-+∞C .()(),10,1-∞-⋃D .()()1,01,-⋃+∞4.已知函数3213()32f x x x c =++有3个不同的零点,则c 的取值范围是( ) A .9,02⎛⎫- ⎪⎝⎭ B .4,(0,)3⎫⎛-∞-⋃+∞ ⎪⎝⎭C .4,03⎛⎫-⎪⎝⎭ D .9,(0,)2⎫⎛-∞-⋃+∞ ⎪⎝⎭5.已知函数()ln f x x ax =-,其中[)1+x ∈∞,,若不等式()0f x ≤恒成立,则实数a 的取值范围为( ) A .[)1,+∞B .1,1e ⎛⎤-∞- ⎥⎦⎝C .1,e ⎡⎫+∞⎪⎢⎣⎭D .[)0,+∞6.已知函数()()22,02ln ,0xx f x a x x x x -⎧<⎪=⎨++>⎪⎩,若恰有3个互不相同的实数1x ,2x ,3x ,使得()()()1232221232f x f x f x x x x ===,则实数a 的取值范围为( ) A .1a e>-B .10a e-<< C .0a ≥ D .0a ≥或1a e=-7.对于正数k ,定义函数:()()()(),,f x f x kg x k f x k ⎧≤⎪=⎨>⎪⎩.若对函数()ln22f x x x =-+,有()()g x f x =恒成立,则( )A .k 的最大值为1ln 2+B .k 的最小值为1ln 2+C .k 的最大值为ln 2D .k 的最小值为ln 28.设函数()f x 在R 上可导,其导函数为()f x ',且函数()()1y x f x '=-的图象如图所示,则下列结论中一定成立的是( )A .()f x 有极大值()2f -B .()f x 有极小值()2f -C .()f x 有极大值()1fD .()f x 有极小值()1f9.甲乙两人进行乒乓球友谊赛,每局甲胜出概率是()01p p <<,三局两胜制,甲获胜概率是q ,则当q p -取得最大值时,p 的取值为( ) A .12B .1326-C .1326+D .2310.函数()()()()22ln 00xx x f x x e x -⎧-<⎪=⎨≥⎪⎩,若关于x 的方程()()2240f x af x a a -+-=有四个不等的实数根,则实数a 的取值范围为( ) A .()0,4 B .()(),44,-∞⋃+∞C .(){}4,04- D .(){},44-∞-11.已知函数()()()2122x x f x m e m R =+++∈有两个极值点,则实数m 的取值范围为( )A .10e ⎡⎤-⎢⎥⎣⎦,B .111e⎛⎫--- ⎪⎝⎭,C .1e ⎛⎫-∞- ⎪⎝⎭,D .()0+∞,12.若函数()(1)x f x x e a =--在(1,)-+∞上只有一个零点,则a 的取值范围为( ) A .21,e ⎛⎫-- ⎪⎝⎭B .2{1},e⎡⎫-⋃-+∞⎪⎢⎣⎭C .2,e ⎡⎫-+∞⎪⎢⎣⎭D .2{1},0e⎡⎫-⋃-⎪⎢⎣⎭二、填空题13.已知定义在R 上的函数()f x 满足()11f =,且对于任意的x ,1()2f x '<恒成立,则不等式()22lg 1lg 22x f x <+的解集为________.14.已知函数()2ln(1)f x x ax =+-,对任意的(0,1),(0,1)m n ∈∈,当m n ≠时,(1)(1)1f m f n m n+-+<-,则实数a 的取值范围是____________.15.已知函数3223,01()21,1x x m x f x mx x ⎧-+≤≤=⎨-+>⎩,若函数()f x 的图象与x 轴有且只有两个不同的交点,则实数m 的取值范围为________.16.已知函数()2cos sin 2f x x x =+,则()f x 的最小值是______.17.已知函数()f x 定义在R 上的函数,若2()()0x f x e f x --=,当0x ≤时,()()0f x f x '+<,则不等式21()(1)x f x e f x -≥-的解集为__________18.已知函数()f x 是定义在R 上连续的奇函数,fx 为()f x 的导函数,且当 0x >时,()()20xf x f x '+>成立,则函数()()2g x x f x =的零点个数是_______________. 19.已知函数()y f x =在R 上的图象是连续不断的一条曲线,并且关于原点对称,其导函数为()f x ',当0x >时,有不等式()()22x f x xf x '>-成立,若对x R ∀∈,不等式()()2220x x e f e a x f ax ->恒成立,则正整数a 的最大值为_______.20.已知函数()xf x e x =-,()22g x x mx =-,若对任意1x ∈R ,存在[]21,2x ∈,满足()()12f x g x ≥,则实数m 的取值范围为______.三、解答题21.函数()xg x xe =,()22a h x x ax =+,()()()f x g x h x =- (1)求函数()g x 在0x =处切线方程; (2)讨论函数()f x 的单调性. 22.已知函数2()ln ()f x a x a x=-∈R . (1)当1a =-时,求()f x 的单调区间; (2)若()f x 在21,e ⎛⎫+∞⎪⎝⎭上有两个零点,求a 的取值范围. 23.设23()252x f x x x =--+(1)求函数()f x 的单调递增、递减区间;(2)当[1,2]x ∈-时,()f x m <恒成立,求实数m 的取值范围.24.为了美化城市环境,提高市民的精神生活,市政府计划在人民广场一块半径为10米的圆形空地进行种植花草绿化改造.规划如图所示,在中央正六边形区域和六个相同的矩形区域种植鲜花,其余地方种植草地.设OAB θ∠=,正六边形的面积为1S ,六个矩形的面积和为2S .(1)用θ分别表示区域面积1S ,2S ; (2)求种植鲜花区域面积的最大值. (参考数据:3tan 41︒≈,23tan 49︒≈)25.已知函数32113f xx ax ,0a >. (1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线与两坐标轴围成的三角形的面积;(2)是否存在实数a ,使得()f x 在[]0,2上的最小值为56?若存在,求出a 的值;若不存在,说明理由.26.设函数33,().()2,x x x af x a R x x a⎧-=∈⎨->⎩ (1)若0a =,则()f x 的最大值为;(2)若()f x 无最大值,则求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据题意将问题转化为方程xb e a x=在0,上有两个实数根,进而令()(),0,xe g x x x=∈+∞,再研究函数()g x 的单调性得0b e a >>,进而分0a >和0a <讨论即可得答案. 【详解】解:当0a =时,函数()f x 只有一个零点,故0a ≠,因为函数()e =-x f x a bx 存在两个零点1x ,2x ,且210x x >>所以方程xb e a x=在0,上有两个不相等的实数根.令()(),0,x e g x x x =∈+∞,()()21'x x e g x x-=, 所以当()1,∈+∞x 时()'0g x >,()0,1∈x 时()'0g x <,故函数()(),0,xe g x x x=∈+∞在1,上单调递增,在0,1上单调递减;所以()()min 1g x g e ==,所以0be a>>, 当0a >时,0b ae >>,当0a <时,0b ae <<. 故选:D. 【点睛】本题考查利用导数研究函数零点问题,解题的关键在于将问题转化为方程xb e a x=在0,上有两个不相等实数根,进而令()g x 研究函数的单调性即可.考查运算求解能力与化归转化思想,是中档题.2.B解析:B【分析】通过分离参数变成ln x a x x=-,构造函数()ln x f x xx =-,利用导数求其单调区间和值域,数形结合写出a 的取值范围. 【详解】2lnx ax x -=故ln xa x x=- 则()ln x f x xx=- ()2'221ln 1ln 1x x x f x x x ---=-=设()21ln g x x x =--,0x >故()'120g x x x=--< ()21ln g x x x =--在0,上为减函数,10g .故()0,1∈x 时()'0f x >;()1,∈+∞x 时()'0f x <.故()ln x f x xx=-在0,1上为增函数,在1,上为减函数.()()max 11f x f ==-,且0,x →时()f x →-∞;,x →+∞时()f x →-∞y a =与()ln x f x x x=-的图象要有两个交点则a 的取值范围为(),1-∞-. 故选:B 【点睛】方程在某区间上有解的问题,可通过分离参数,构造函数,利用导数求该区间上单调区间和值域,得出参数的取值范围.3.C解析:C 【分析】构造函数()()f xg x x =,分析出函数()g x 为偶函数,且在()0,∞+上为减函数,由()0f x >可得出()00g x x ⎧>⎨>⎩或()0g x x ⎧<⎨<⎩,解这两个不等式组即可得解.【详解】 构造函数()()f xg x x=,该函数的定义域为{}0x x ≠, 由于函数()f x 为奇函数,则()()()()()f x f x f x g x g x x x x---====--, 所以,函数()()f xg x x=为偶函数. 当0x >时,()()()20xf x f x g x x'-'=<,所以,函数()g x 在()0,∞+上为减函数, 由于函数()()f xg x x=为偶函数,则函数()g x 在(),0-∞上为增函数. ()10f -=,则()10f =且()00f =,所以,()()110g g -==.不等式()0f x >等价于()()010g x g x ⎧>=⎨>⎩或()()010g x g x ⎧<=-⎨<⎩,解得1x <-或01x <<.因此,不等式()0f x >的解集为()(),10,1-∞-⋃. 故选:C. 【点睛】方法点睛:利用函数的奇偶性与单调性求解抽象函数不等式,要设法将隐性划归为显性的不等式来求解,方法是:(1)把不等式转化为()()f g x f h x >⎡⎤⎡⎤⎣⎦⎣⎦;(2)判断函数()f x 的单调性,再根据函数的单调性把不等式的函数符号“f ”脱掉,得到具体的不等式(组),但要注意函数奇偶性的区别.4.A解析:A 【分析】求出三次函数的导数,根据导函数正负情况分析单调性和极值,图象要与x 轴三个交点,据此得出取值范围. 【详解】由条件得2()3(3)f x x x x x '=+=+, 令()0f x '>,可得解集为(,3)(0,)-∞-⋃+∞ 令()0f x '<,可得解集为(3,0)-则()f x 在(,3)-∞-和(0,)+∞上单调递增,在(3,0)-上单调递减,又9(3)2f c -=+,(0)f c =,要使()f x 有3个不同的零点,则902c c <<+,所以902c -<<. 故选:A 【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.5.C解析:C 【分析】不等式()0f x ≤恒成立等价于ln x a x ≥在[)1,+∞上恒成立,则maxln x a x ⎛⎫≥ ⎪⎝⎭,运用导数求出函数ln xx在[)1,+∞上的最大值. 【详解】解:当[)1+x ∈∞,时,不等式()0f x ≤恒成立等价于ln xa x≥在[)1,+∞上恒成立, 令ln ()xg x x=,则21ln ()x g x x -'=当0x e <<时,()0g x '>;当x e >时,()0g x '<;所以max 1()()g x g e e==,所以1a e ≥故选:C.【点睛】方法点睛:已知不等式恒成立求参数值(取值范围)问题常用的方法: (1)函数法:讨论参数范围,借助函数单调性求解;(2)分离参数法:先将参数分离,转化成求函数的值域或最值问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.6.D解析:D 【分析】根据题意,令()()221,02ln 2,0x x f x x g x x x a x x ⎧<⎪⎪⋅==⎨⎪++>⎪⎩,得到函数()()2f xg x x =与直线2y =共有三个不同的交点;根据导数的方法,分别判断0x <和0x >时,函数的单调性,以及最值,结合题中条件,即可得出结果. 【详解】因为()()22,02ln ,0x x f x a x x x x -⎧<⎪=⎨++>⎪⎩,令()()221,02ln 2,0x x f x xg x x x a x x ⎧<⎪⎪⋅==⎨⎪++>⎪⎩, 由题意,函数()()2f x g x x =与直线2y =共有三个不同的交点; 当0x <时,()212x g x x =⋅,则()()()()222232222ln 222ln 22222x x x x xxx x xx g x x xx'-⋅⋅+⋅+'==-=-⋅⋅⋅,由()3ln 2202x x g x x +'=-=⋅解得222log ln 2x e =-=-; 所以()2,2log x e ∈-∞-时,()0g x '<,即函数()212x g x x =⋅单调递减; ()22log ,0x e ∈-时,()0g x '>,即函数()212x g x x =⋅单调递增; 所以()()()()222222min 2log 2212log 2422log 4log ee e g x g e e e -=-==<<⋅-,又2121122122g -⎛⎫-==> ⎪⎝⎭⎛⎫⋅- ⎪⎝⎭,()()271128724927g --==>⋅-,所以()212x g x x=⋅与直线2y =有且仅有两个不同的交点; 当0x >时,()ln 2xg x a x =++,则()21ln x g x x -'=, 由()21ln 0xg x x -'==得x e =, 所以当()0,x e ∈时,()0g x '>,则函数()ln 2xg x a x=++单调递增; 当(),x e ∈+∞时,()0g x '<,则函数()ln 2xg x a x=++单调递减; 所以()()max 12g x g e a e==++, 又当1≥x 时,()ln 22xg x a a x=++≥+;当01x <<时,()2g x a <+; 当x e ≥时,()ln 22xg x a a x=++>+, 所以为使()ln 2xg x a x=++与直线2y =只有一个交点, 只需122a e ++=或22a +≥,即1a e=-或0a ≥. 故选:D. 【点睛】本题主要考查由方程根的个数求参数,转化为函数交点个数问题求解即可,属于常考题型.7.B解析:B 【分析】利用导数求出函数()f x 的最大值,由函数()g x 的定义结合()()g x f x =恒成立可知()f x k ≤,由此可得出k 的取值范围,进而可得出合适的选项.【详解】对于正数k ,定义函数:()()()(),,f x f x kg x k f x k ⎧≤⎪=⎨>⎪⎩,且()()g x f x =恒成立,则()f x k ≤.函数()ln22f x x x =-+的定义域为()0,∞+,且()111xf x x x-'=-=. 当01x <<时,()0f x '>,此时,函数()f x 单调递增; 当1x >时,()0f x '<,此时,函数()f x 单调递减. 所以,()()max 11ln 2f x f ==+,1ln 2k ∴≥+.因此,k 的最小值为1ln 2+. 故选:B. 【点睛】解决导数中的新定义的问题,要紧扣新定义的本质,将问题转化为导数相关的问题,本题将问题转为不等式()k f x ≥恒成立,从而将问题转化为求函数()f x 的最大值.8.A解析:A 【分析】由函数()()1y x f x '=-的图象,可得1x >时,()0f x '<;21x -<<时,()0f x '<;2x <-时,()0f x '>.由此可得函数()f x 的单调性,则答案可求.【详解】解:函数()()1y x f x '=-的图象如图所示,∴1x >时,()0f x '<;21x -<<时,()0f x '<;2x <-时,()0f x '>. ∴函数()f x 在(),2-∞-上单调递增,在()2,1-上单调递减,在()1,+∞上单调递减. ∴()f x 有极大值()2f -.故选:A . 【点睛】本题考查根据导函数的相关图象求函数的单调区间,考查数形结合思想,是中档题.9.C解析:C 【分析】采用三局两胜制,则甲在下列两种情况下获胜:甲净胜二局,前二局甲一胜一负,第三局甲胜,由此能求出甲胜概率,进而求得的最大值. 【详解】采用三局两胜制,则甲在下列两种情况下获胜: 甲净胜二局概率为2p ;前二局甲一胜一负,第三局甲胜概率为12(1)C p p p -⋅22(1)p p =-则22(1)q p p p =+-,得q p -222(1)p p p p =+--3223p p p =-+-(01)p <<, 设3223y p p p =-+-,(01)p <<,则2661y p p '=-+-6(p p =---则函数y 在单调递减,在单调递增,故函数在36p =+处取得极大值,也是最大值.故选:C. 【点睛】本题考查了概率的求法和应用以及利用导数求函数最值的方法,解题时要认真审题,注意等价转化思想和分类讨论思想的合理运用,属于中档题.10.C解析:C 【分析】作出函数()f x 的大致图象,令()t f x =,则原问题可转为关于t 的方程2240t at a a -+-=有2个不等实根1t 和2t ,结合()f x 的图象可确定1t 和2t 符合两种情形:10t =,24t =或()10,4t ∈,()()2,04,t ∈-∞+∞,最后分两类讨论即可求得a 的取值范围. 【详解】当0x ≥时,()22xf x x e-=,∴()()222xf x x xe-'=-,∴当02x <<时,()0f x '>,()f x 单调递增; 当2x >时,()0f x '<,()f x 单调递减, 函数()f x 的大致图象如图所示:令()t f x =, 当0t =或4时,方程()t f x =有2个实根; 当()(),04,t ∈-∞+∞,方程()t f x =有1个实根.当t ∈(0,4)时,方程t =f (x )有3个实根; 则关于x 的方程()()2240fx af x a a -+-=有四个不等的实数根可等价于关于t 的方程2240t at a a -+-=有2个不等实根1t 和2t .∴1t 和2t 可符合两种情形:10t =,24t =或1t ∈(0,4),()()2,04,t ∈-∞+∞.若10t =,24t =,则124a t t =+=; 若1t ∈(0,4),()()2,04,t ∈-∞+∞,设g (t )=t 2﹣at +4a ﹣a 2,则g (0)•g (4)<0,∴()()22416440a aa a a -⋅-+-<,解得40a .综上,实数a 的取值范围为(){}4,04-.故选:C .【点睛】本题考查方程根的问题,利用导数研究函数的单调性与最值,考查学生的数形结合思想、转化与化归思想、逻辑推理能力和运算能力,属于中档题.11.B解析:B 【分析】求导()()1xf x x m e '=++,将问题转化为()()1xf x x m e '=++有两个不同的零点,也即是关于x 的方程1x xm e --=有两个不同的解,构造函数()xx g x e =,求导()1xxg x e -'=,分析导函数取得正负的区间,从而得函数()g x 的单调性和最值,从而可得选项.【详解】函数()f x 的定义域为R ,()()'1x fx x m e =++,因为函数()f x 有两个极值点,所以()()1xf x x m e '=++有两个不同的零点, 故关于x 的方程1x xm e--=有两个不同的解, 令()xx g x e =,则()1x xg x e-'=,当(,1)x ∈-∞时, ()0g x '>,当(1,+)x ∈∞时,()0g x '<,所以函数()g x 在区间(,1)-∞上单调递增,在区间(1,+∞)上单调递减, 又当x →-∞时,()g x →-∞;当x →+∞时,()0g x →, 且0,()0x g x >>()11g e=,故101m e <--<,即111m e--<<-. 故选:B. 【点睛】本题考查运用导函数研究函数的单调性、最值、极值,关键在于构造合适的函数,参变分离的方法的运用,属于中档题.12.B解析:B 【分析】先对函数求导,可得当10x -<<时,()0f x '<;当0x >时,()0f x '>,从而得min ()(0)1f x f a ==--,而x →+∞时,()f x →+∞,所以要函数()(1)x f x x e a =--在(1,)-+∞上只有一个零点,只要满足10a --=或20a e--,从而可求出a 的取值范围【详解】()x f x xe '=,当10x -<<时,()0f x '<;当0x >时,()0f x '>.从而min ()(0)1f x f a ==--,又2(1)f a e-=--,且x →+∞时,()f x →+∞, ∴10a --=或20a e --, 即1a =-或2a e-. 故选:B 【点睛】此题考查由导数解决函数零点问题,考查转化思想和计算能力,属于中档题二、填空题13.【分析】由构造单调递减函数利用其单调性求解【详解】设则是上的减函数且不等式即为所以得解得或原不等式的解集为故答案为:【点睛】利用导数研究函数的单调性构造函数比较大小属于难题联系已知条件和结论构造辅助解析:10,10,10.【分析】 由()12f x '<,构造单调递减函数()()12h x f x x =-,利用其单调性求解.【详解】()()11,022f x f x <∴-''<, 设()()12h x f x x =-, 则()()102h x f x ''=-<,()h x ∴是R 上的减函数,且()()111111222h f =-=-=, 不等式()22lg 1lg 22x f x <+,即为()22lg 1lg 22x f x -<,所以()()2lg 1h x h <,得2lg 1x >,解得10x >或1010x, ∴原不等式的解集为10,10,10.故答案为:10,10,10.【点睛】利用导数研究函数的单调性、构造函数比较大小,属于难题,联系已知条件和结论,构造辅助函数是高中数学中一种常用的方法,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.14.【分析】把不等式恒成立转化为函数的导数小于1在内恒成立进而转化为在内恒成立结合函数的性质即可求解【详解】由题意分式的几何意义为:表示点与连线的斜率因为实数在区间内故和在区间内不等式恒成立所以函数图象解析:1,6⎡⎫-+∞⎪⎢⎣⎭【分析】 把不等式(1)(1)1f m f n m n+-+<-恒成立,转化为函数()f x 的导数小于1在(1,2)内恒成立,进而转化为()121a x ->+在(1,2)内恒成立,结合函数的性质,即可求解.【详解】 由题意,分式(1)(1)f m f n m n+-+-的几何意义为:表示点(1,(1))m f m ++与(1,(1))n f n ++连线的斜率, 因为实数,m n 在区间(0,1)内,故1m + 和1n +在区间(1,2)内, 不等式(1)(1)1f m f n m n+-+<-恒成立,所以函数图象上在区间(1,2)内任意两点连线的斜率小于1, 故函数()2ln(1)f x x ax =+-的导数小于1在(1,2)内恒成立,由函数()2ln(1)f x x ax =+-满足10x +>,即定义域为(1,)-+∞,即()2111f x ax x '=-<+在(1,2)内恒成立,即()121a x ->+在(1,2)内恒成立,设函数()()121g x x -=+,根据函数的单调性可知函数()()121g x x -=+在(1,2)上是单调增函数,可得()()126g x g <=-,所以16a ≥-, 故答案为:1,6⎡⎫-+∞⎪⎢⎣⎭.【点睛】对于利用导数研究不等式的恒成立问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立求解参数的取值时,一般涉及分类参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,通常要设出导数的零点,难度较大.15.【分析】利用导数求得在区间上的单调性和最值对分成三种情况进行分类讨论由此求得的取值范围【详解】当时所以在区间上递减最大值为最小值为当时在区间上没有零点在区间上递增而所以在区间上没有零点所以不符合题意解析:1(0,)2【分析】利用导数求得()f x 在区间[]0,1上的单调性和最值,对m 分成0,0,0m m m <=>三种情况进行分类讨论,由此求得m 的取值范围. 【详解】当01x ≤≤时,()()'26661fx x x x x =-=-,所以()f x 在区间[]0,1上递减,最大值为()0f m =,最小值为()11f m =-.当0m <时,()f x 在区间[]0,1上没有零点,在区间()1,+∞上递增, 而2110m -⨯+>,所以()f x 在区间()1,+∞上没有零点.所以0m <不符合题意.当0m =时,3223,01()1,1x x x f x x ⎧-≤≤=⎨>⎩,所以()f x 在区间[)0,+∞上有唯一零点()00f =,所以0m =不符合题意.当0m >时,()f x 在区间[]0,1和区间()1,+∞上递减,要使()f x 的图象与x 轴有且只有两个不同的交点,则需0102110m m m >⎧⎪-≤⎨⎪-⨯+>⎩,解得102m <<.综上所述,m 的取值范围是10,2⎛⎫ ⎪⎝⎭. 故答案为:1(0,)2【点睛】本小题主要考查利用导数研究函数的零点,考查分类讨论的数学思想方法,属于中档题.16.【分析】由解析式可分析得到的一个周期为则只需考虑在上的值域即可利用导函数求得其最值即可【详解】由题的一个周期为故只需考虑在上的值域令解得或可得此时或或所以的最小值只能在点或或和边界点中取到因为所以的解析:【分析】由解析式可分析得到()f x 的一个周期为2T π=,则只需考虑()f x 在[)0,2π上的值域即可,利用导函数求得其最值即可. 【详解】由题,()f x 的一个周期为2T π=, 故只需考虑()f x 在[)0,2π上的值域,()()()()22sin 2cos 22sin 212sin 22sin 1sin 1f x x x x x x x '=-+=-+-=--+,令()0f x '=,解得1sin 2x =或sin 1x =-, 可得此时6x π=或56π或π, 所以()2cos sin 2f x x x =+的最小值只能在点6x π=或56π或π和边界点0x =中取到,因为6f π⎛⎫=⎪⎝⎭,56f π⎛⎫= ⎪⎝⎭()2f π=-,()02f =, 所以()f x的最小值为, 故答案为:【点睛】本题考查导数的运算,考查利用导函数求最值,考查运算能力.17.【分析】令根据题中条件得到为偶函数;对其求导根据题中条件判定在上单调递减;则在上单调递增;化所求不等式为求解即可得出结果【详解】令则因为所以即所以函数为偶函数;又当时所以即函数在上单调递减;则在上单解析:12x x ⎧⎫≥⎨⎬⎩⎭【分析】令()()xg x f x e =,根据题中条件,得到()g x 为偶函数;对其求导,根据题中条件,判定()g x 在(),0-∞上单调递减;则()g x 在()0,∞+上单调递增;化所求不等式为1x x ≥-,求解,即可得出结果.【详解】令()()xg x f x e =,则()()xg x f x e --=-,因为2()()0x f x e f x --=,所以()()x x f x e f x e -=-,即()()g x g x =-, 所以函数()g x 为偶函数;又()[]()()()()xxxg x f x e f x e f x f x e '''=+=+,当0x ≤时,()()0f x f x '+<,所以()[]()()0xg x f x f x e ''=+<,即函数()g x 在(),0-∞上单调递减;则()g x 在()0,∞+上单调递增;又不等式21()(1)x f x e f x -≥-可化为1()(1)x x f x e f x e -≥-,即()()1g x g x ≥-,所以只需1x x ≥-,则()221x x ≥-,解得12x ≥. 故答案为:12x x ⎧⎫≥⎨⎬⎩⎭. 【点睛】本题主要考查由函数单调性与奇偶性解不等式,考查导数的方法判定函数单调性,涉及绝对值不等式的解法,属于常考题型.18.1【分析】分析可得g (x )为R 上连续的奇函数且在R 上为增函数说明函数只有1个零点可得选项【详解】函数是定义在R 上连续的奇函数则函数其定义域为R 则则为R 上连续的奇函数则又由当时则有即函数为上的增函数又解析:1 【分析】分析可得g (x )为R 上连续的奇函数,且在R 上为增函数,说明函数()2()g x x f x =只有1个零点,可得选项. 【详解】()()2g x x f x =,函数()f x 是定义在R 上连续的奇函数,则函数()()2g x x f x =,其定义域为R ,则()()()()2g x x f x g x -=--=-,则()g x 为R 上连续的奇函数,()()2g x x f x =,则()()()()()222g x xf x x f x x xf x f x '''=+=+⎡⎤⎣⎦,又由当0x >时,()()20xf x f x '+>, 则有()0g x '>,即函数() g x 为()0,∞+上的增函数, 又由()g x 为R 上连续的奇函数,且()00g =, 则()g x 为R 上的增函数,故函数()()2g x x f x =只有1个零点,故答案为:1. 【点睛】本题考查函数的单调性、奇偶性、以及函数的零点个数的判断,属于中档题.19.【分析】令先判断函数g(x)的奇偶性和单调性得到在R 上恒成立再利用导数分析解答即得解【详解】因为当时有不等式成立所以令所以函数g(x)在(0+∞)上单调递增由题得所以函数g(x)是奇函数所以函数在R 解析:2【分析】令2()(),g x x f x =先判断函数g(x)的奇偶性和单调性,得到e x ax >在R 上恒成立,再利用导数分析解答即得解. 【详解】因为当0x >时,有不等式()()22x f x xf x '>-成立,所以()()22+20,[()]0x f x xf x x f x ''>∴>,令2()(),g x x f x =所以函数g(x)在(0,+∞)上单调递增, 由题得22()()()g(x),g x x f x x f x -=-=-=- 所以函数g(x)是奇函数,所以函数在R 上单调递增. 因为对x R ∀∈,不等式()()2220xx ef e a x f ax ->恒成立,所以()()222,()()e x x xx e f e a x f ax g e g ax ax >∴>∴>,, 因为a >0,所以当x≤0时,显然成立.当x >0时,()(0)xe a h x x x<=>,所以2(1)()xx e h x x -'=,所以函数h (x)在(0,1)单调递减,在(1,+∞)单调递增.所以min ()(1)h x h e ==, 所以a <e,所以正整数a 的最大值为2. 故答案为2 【点睛】本题主要考查函数的奇偶性及其应用,考查函数单调性的判断及其应用,考查利用导数研究不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.属于中档题.20.【分析】首先对进行求导利用导数研究函数的最值问题根据题意对任意存在使只要的最小值大于等于在指定区间上有解【详解】由得当时当时∴在上单调递减在上单调递增∴在上有解在上有解函数在上单调增故答案为:【点睛 解析:[)0,+∞【分析】首先对()f x 进行求导,利用导数研究函数()f x 的最值问题,根据题意对任意1x R ∈,存在[]21,2x ∈,使12()()f x g x ,只要()f x 的最小值大于等于()g x 在指定区间上有解 . 【详解】由()xf x e x =-,得()1xf x e '=-,当()1,0x ∈-时,()0f x '<,当()0,1x ∈时,()0f x '>, ∴()f x 在()1,0-上单调递减,在()0,1上单调递增, ∴()()min 01f x f ==()1g x ≤在[]1,2上有解,21212x mx m x x -≤⇔≥-在[]1,2上有解,函数1y x x =-在[]1,2上单调增,1101min y ∴=-=,20,0m m ≥≥.故答案为: [)0,+∞ 【点睛】不等恒成立与能成立的等价转换:任意1x A ∈,存在2x B ∈,使()()12min min ()()f x g x f x g x ⇔≥ 任意1x A ∈,任意2x B ∈,使()()12min max ()()f x g x f x g x ⇔= 存在1x A ∈,存在2x B ∈,使()()12max min ()()f x g x f x g x ⇔⇔三、解答题21.(1)y x =;(2)答案见解析. 【分析】(1)求出()g x '、()0k g '=,再求出切点坐标可得答案;(2)求出()f x ',讨论0a ≤、0a >的范围,利用导数可得函数的单调性,注意0a >时,再分ln 1a =-、ln 1a <-、ln 1a >-讨论函数()f x 的单调性. 【详解】(1)()()1xxxg x e xe x e '=+=+,()00g =.()01k g '==,直线方程为y x =.(2)()()()()11x x xf x e xe a x x e a '=+-+=+-,当0a ≤时,0x e a ->,由()0f x '>得1x >-,由()0f x '<得1x <-, 即函数()f x 在()1,-+∞上递增,函数()f x 在(),1-∞-上递减; 当0a >时,令()0f x '=得1x =-或ln x a =.①当ln 1a =-,即1a e -=时,在R 上()0f x '>,从而函数()f x 在R 上递增; ②当ln 1a <-,即10ae 时,由()0f x '>得1x >-或ln x a <,由()0f x '<得ln 1a x <<-,函数()f x 在()1,-+∞和(),ln a -∞上递增;函数()f x 在()ln ,1a -上递减; ③当ln 1a >-,即1a e ->时,由()0f x '>得ln x a >或1x <-时,由()0f x '<得1ln x a -<<,函数()f x 在()1,ln a -上递减,函数()f x 在()ln ,a +∞和(),1-∞-上递增; 综上,当0a ≤时,()f x 递增区间是()1,-+∞上,递减区间是(),1-∞-上; 当10ae 时,()f x 递增区间是(),ln a -∞,()1,-+∞,递减区间是()ln ,1a -;当1a e -=时,()f x 递增区间为(,)-∞+∞;当1a e ->时,()f x 递增区间是(),1-∞-,()ln ,a +∞,递减区间是()1,ln a -. 【点睛】本题考查了导数的几何意义、函数的单调性,对参数进行分类讨论是解题的关键,考查学生分类讨论思想、分析问题解决问题的能力.22.(1)单调递减区间为(0,2),单调递增区间为[2,)+∞;(2)()22,e e --.【分析】(1)求出导函数()'f x ,由()0f x '>确定增区间,由()0f x '<确定减区间; (2)首先说明0a =无零点,0a ≠时,()0f x =变形为1ln 2x x a =.引入ln ()2x x g x =,利用导数研究的单调性与极值,结合方程有两个解可得参数范围. 【详解】解:(1)当1a =-时,2()ln f x x x=+,则22212()(0)x f x x x x x -'=-+=>.令()0f x ',得2x ,所以函数()f x 在[2,)+∞上单调递增; 令()0f x '<,得02x <<,所以函数()f x 在(0,2)上单调递减. 故当1a =-时,()f x 的单调递减区间为(0,2),单调递增区间为[2,)+∞. (2)当0a =时,2()f x x=没有零点,则0a =不符合题意. 当0a ≠时,令2()ln 0f x a x x =-=,得1ln 2x x a =. 设ln ()2x x g x =,则ln 1()2x g x +'=. 由()0g x '>,得1x e >;由()0g x '<,得211x e e<<. 则()g x 在211,e e ⎛⎫⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增, 故min 11()2g x g e e⎛⎫==-⎪⎝⎭. 因为2211g e e ⎛⎫=- ⎪⎝⎭,所以21112e a e -<<-,解得22e a e -<<-.故a 的取值范围为()22,e e --.【点睛】思路点睛:本题考查用导数求函数的单调区间,研究函数零点个数问题.解题思路是函数零点个数转化为方程的解的个数,再转化为直线与函数图象交点个数,利用导数研究函数的单调性与极值等性质后可得结论,关键是转化.23.(1)单调递增区间为2,3⎛⎤-∞- ⎥⎝⎦和[1,)+∞,递减区间2,13⎡⎤-⎢⎥⎣⎦;(2)7m >.【分析】(1)求导2()32f x x x '=--,分别由()0f x '>和()0f x '<求解. (2)根据[1,2]x ∈-时,()f x m <恒成立,则由max ()f x m <求解即可. 【详解】(1)2()32f x x x '=--, 令()0f x '=,解得1x =或23x =-, 当23x <-或1x >时,()0f x '>,()f x 为增函数, 当213x -<<时, ()0f x '<,()f x 为减函数综上:函数()f x 的单调递增区间为2,3⎛⎤-∞- ⎥⎝⎦和[1,)+∞,递减区间为2,13⎡⎤-⎢⎥⎣⎦.(2)当[1,2]x ∈-时,()f x m <恒成立, 只需使()f x 在[1,2]-上最大值小于m 即可 由(1)知()f x 最大值为2225327f ⎛⎫-=+⎪⎝⎭、端点值1(1)5,(2)72f f -==中的较大者. ∴()f x 在[1,2]-上的最大值为(2)7f =, ∴7m >,所以实数m 的取值范围是7m > 【点睛】方法点睛:恒成立问题的解法:若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<.24.(1)216003sin S θ=,221200sin cos 12003sin S θθθ=-;(2)()30073-.【分析】(1)如图:连接BO 、CO 、OD ,过点O 作BC 的垂线,交BC 于点E ,交AD 于点F ,OAD △为等腰三角形,可得AOF OAB θ∠=∠=即可求出BC 的长,进而可得1S ,求出OBC 的高OE ,AB EF OF OE ==-,26S AB BC =⨯⨯即可求解;(2)将面积之和12S S +用角θ表示出来,在求其求导,利用导数判断单调性即可求最值. 【详解】 (1)如图:连接BO 、CO 、OD ,过点O 作BC 的垂线,交BC 于点E ,交AD 于点F , 由对称性可知OAD △为等腰三角形,E 、F 分别为BC 、AD 的中点, 由AB BC ⊥,OF BC ⊥,可得//AB OF ,所以AOF OAB θ∠=∠=, 所以22sin 20sin BC AD AF OA θθ====,所以正六边形的面积2122666400sin OBCS BC S θθ====, 在OBC中,20sin 22OE BC θθ===,所以10cos AB EF OF OE θθ==-=-,所以()26610cos 20sin S AB BC θθθ=⨯⨯=-⨯21200sin cos θθθ=-,综上所述:21S θ=,221200sin cos S θθθ=-. (2)求种植鲜花区域面积的最大值即是求12S S +的最大值.设22121200sin cos y S S θθθθ=+=+-21cos21200sin cos 600sin 22θθθθθ-=-=-600sin 2θθ=+-所以1200cos22y θθ'=- 令0y '=,可得tan 2θ=当249θ>时,0y '<;当249θ<时,0y '>, 所以当249θ=时,y 取得最大值,max 600sin 493003cos493003y =+-因为tan 49︒≈22sin 49cos 491sin 49cos 49︒︒︒︒⎧+=⎪⎨=⎪⎩, 解得2sin 4921cos 49⎧=⎪⎪⎨⎪=⎪⎩,所以max 60030077y =⨯+-=.【点睛】关键点点睛:本题解题的关键是得出AOFOAB θ∠=∠=,求出2BC AD AF ==,OE BC =,AB EF OF OE ==-即可将面积1S ,2S 用θ表示出来,利用导数求面积之和的最值.25.(1)89;(2)存在,12a =.【分析】(1)由1a =,求导()22f x x x '=-,利用导数的几何意义求得曲线()y f x =在点()()1,1f 处的切线方程,再求得切线的x 轴、y 轴上的截距,代入三角形的面积公式求解.(2)求导()()222f x x ax x x a '=-=-,令()0f x '=,得0x =或2x a =,然后分022a <<,22a ≥,由()f x 在[]0,2上的最小值为56求解.【详解】(1)当1a =时,()32113f x x x =-+,()22f x x x '=-, 所以()11f '=-,又()113f =, 所以曲线()y f x =在点()()1,1f 处的切线方程为()113y x -=--, 即3340x y +-=,直线3340x y +-=在x 轴、y 轴上的截距均为43, 所以三角形的面积为14482339S =⨯⨯=. (2)()()222f x x ax x x a '=-=-, 令()0f x '=,得0x =或2x a =. 当022a <<,即01a <<时,当[]0,2x a ∈时,()0f x '≤,()f x 单调递减; 当[]2,2x a ∈时.()0f x '≥,()f x 单调递增. 则()()33min 8524136f x f a a a ==-+=,解得12a =, 当22a ≥,即1a ≥时,当[]0,2x ∈时,()0f x '≤,()f x 单调递减, 则()()min 8524136f x f a ==-+=,解得17124a =<,舍去. 综上:存在12a =,使得()f x 在[]0,2上的最小值为56. 【点睛】方法点睛:(1)求解函数的最值时,要先求函数y =f (x )在[a ,b ]内所有使f ′(x )=0的点,再计算函数y =f (x )在区间内所有使f ′(x )=0的点和区间端点处的函数值,最后比较即得.(2)已知函数的最值求参数,一般先用参数表示最值,列方程求解参数. 26.(1)2;(2)(,1)-∞-. 【分析】(1)将0a =代入,求出函数的导数,分析函数的单调性可得当1x =-时,()f x 有最大值2;(2)若()f x 无最大值,则3123a a a a ≤-⎧⎨->-⎩或312322a a a a a >-⎧⎪->-⎨⎪->⎩,解得可得答案. 【详解】(1)若0a =,33,0()2,0x x x f x x x ⎧-=⎨->⎩,所以233,0()2,0x x f x x ⎧-=⎨->⎩',当1x <-时,()0f x '>,此时函数为单调递增函数,当1x >-时,()0f x '<,此时函数为单调递减函数, 故当1x =-时()f x 有最大值为2 .(2)233,()2,x x af x x a⎧-=⎨->'⎩,令()0f x '=,则1x =±,若()f x 无最大值,则3123a a a a ≤-⎧⎨->-⎩ ① 或312322a a a a a >-⎧⎪->-⎨⎪->⎩②, 由①得(,1)a ∈-∞-,由②得无解, 所以(,1)a ∈-∞-. 故答案为:2;(,1)-∞-. 【点睛】分段函数在高考中的常见题型有:已知分段函数求值、已知分段函数求值域、已知分段函数求不等式解集、已知分段函数求参数取值范围等,分段函数问题要注意分类讨论,涉及分段函数的单调性、奇偶性、周期性等问题,要善于利用数形结合的思想解决问题.。

导数训练题

导数训练题

高二数学(文)选修1-1 导数及其应用一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f x B .'02()f x C .'02()f x - D .0 2、已知函数f (x )=ax 2+c ,且(1)f '=2,则a 的值为( )A .0B .2C .-1D .1 3.函数3y x x =+的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞ 4.(2009年广东卷文)函数xe x xf )3()(-=的单调递增区间是( )A. )2,(-∞B.(0,3)C.(1,4)D. ),2(+∞ 5.已知3)2(3123++++=x b bxx y 是R 上的单调增函数,则b 的取值范围是( )A . 21>-<b b ,或B .21≥-≤b b ,或C . 21<<-bD . 21≤≤-b6..已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x >时,()0()0f x g x ''>>,,则0x <时( )A.()0()0f x g x ''>>,B.()0()0f x g x ''><,C. ()0()0f x g x ''<>,D.()0()0f x g x ''<<,7.函数xx y 142+=单调递增区间是( )A .),0(+∞B .)1,(-∞C .),21(+∞ D .),1(+∞8.函数xx y ln =的最大值为( )A .1-eB .eC .2e D .3109.函数()323922y x x x x =---<<有( )A 、极大值5,极小值-27B 、极大值5,极小值-11C 、 极大值5,无极小值D 、极小值-27,无极大值 10. 函数()f x 的定义域为(0,+∞),且()0,()0f x f x '>>,那么函数()y xf x = ①存在极大值 ②存在极小值 ③是增函数 ④是减函数 其中正确的题号是( )A.① B . ② C. ③ D.④ 11. 若连续函数在闭区间内有惟一极大值和极小值, 则有 ( ) A .极大值一定是最大值,且极小值一定是最小值. B .极大值一定是最大值,或极小值一定是最小值.C .极大值不一定是最大值,极小值也不一定是最小值.D .极大值必大于极小值 12. 函数⎥⎦⎤⎢⎣⎡-∈-=2,2,2sin ππx x x y ,则有 ( )A 、 最大值2π和最小值为2π- B 、最大值2π和最小值为 0 C 、最大值1-2π和最小值为2π- D 、最大值2π和最小值为12π-13. 如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t 时刻五角星露出水面部分的图形面积为()S t ((0)0S =),则导函数()y S t '=的图像大致为A .14. 若'0()3f x =-,则000()(3)limh f x h f x h h→+--=( )A .3-B .6-C .9-D .12- 二、填空题 11、函数y =xx sin 的导数为_________________;12.函数2cos y x x =+在区间[0,]2π上的最大值是 。

(好题)高中数学选修1-1第四章《导数应用》检测题(包含答案解析)(3)

(好题)高中数学选修1-1第四章《导数应用》检测题(包含答案解析)(3)

一、选择题1.定义在R 上的偶函数()f x 的导函数为(),f x '若对任意的0x >的实数,都有:()()22f x xf x '+<恒成立,则使()()2211x f x f x -<-成立的实数x 的取值范围为( )A .{}1xx ≠±∣ B .(-1,1) C .()(),11,-∞-+∞D .(-1,0)()0,1⋃2.已知函数32()22sin 524x f x x x π⎛⎫=++++ ⎪⎝⎭,且()22(34)12f t t f t -+-+<,则实数t 的取值范围是( ) A .(1,4) B .(,1)(4,)-∞⋃+∞ C .(4,1)-D .(,4)(1,)-∞-+∞3.已知函数()2sin x mf x x +=-在30,4π⎡⎤⎢⎥⎣⎦上有两个不同的零点,则实数m 的取值范围是( ) A .3,44ππ⎫⎡--⎪⎢⎣⎭ B .3,44ππ⎛⎤⎥⎝⎦C .,42ππ⎛⎫⎪⎝⎭D .,24ππ⎛⎫-- ⎪⎝⎭4.已知函数()f x 定义域为R ,其导函数为f x ,且()()30f x f x '->在R 上恒成立,则下列不等式定成立的是( ) A .()()310f e f <B .()()210f e f < C .()()310f e f >D .()()210f e f >5.已知函数4213(),42f x x x mx n =-++其中m ,n 为正整数,若函数()f x 有极大值,则m 的值为( ) A .1B .2C .3D .46.已知实数2343a e =,4565b e =,6787c e =,那么a ,b ,c 大小关系为( ) A .a b c >> B .b a c >> C .c b a >> D .a c b >>7.已知函数()()()110ln x f x x x++=>,若()1kf x x >+恒成立,则整数k 的最大值为( ) A .2B .3C .4D .58.已知函数,0(),0x e x f x x x ⎧≥=⎨-<⎩(其中e 为自然对数的底数),若函数2()y f x ax =-恰有三个零点,则( )A .24e a >B .24e aC .22e a >D .2e a >9.已知函数()13log xf x e x =-,给出下列两个命题:命题:p 若01x ≥,则()03f x ≥;命题[)0:1,q x ∃∈+∞,()03f x =.则下列叙述错误的是( )A .p 是假命题B .p 的否命题是:若01x <,则()03f x <C .[):1,q x ⌝∀∈+∞,()3f x ≠D .q ⌝是真命题10.若函数()xx f x ax e e -=+-在R 上单调递减,则实数a 的取值范围为( )A .2a ≤B .1a ≤C .1a ≥D .2a ≥11.已知函数()()()22ln 0f x a e x xa =->,1,1D e ⎡⎤=⎢⎥⎣⎦若所有点()(),s f t (s ,t D ∈)所构成的平面区域面积为2e 1-,则a =( ) A .eB .1e 2- C .1 D .2e e - 12.已知定义在R 上的偶函数()f x 的导函数为()'f x ,当0x >时,有2()()0f x xf x '+>,且(1)0f -=,则使得()0f x >成立的x 的取值范围是( )A .(1,0)(0,1)-B .(,1)(1,)-∞-+∞C .(1,0)(1,)D .(,1)(0,1)-∞-二、填空题13.对于任意12,[1,)x x ∈+∞,当21x x >时,恒有2121(ln ln )2()a x x x x -<-成立,则实数a 的取值范围是___________.14.若函数()()32f x x ax a R =--∈在(),0-∞内有且只有一个零点,则()f x 在[]1,2-上的最小值为______.15.已知函数()31=4f x x 图像上有动点()11,A x y ,函数()2g x x =-图像上有动点()22,B x y .若A B 、两点同时从纵坐标=0y 的初始位置出发,沿着各自函数图像向右上方运动至A B 、两点的纵坐标值再次相等,且始终满足212x x -=,则在此运动过程中A B 、两点的距离AB 的取值范围是______.16.函数2()ln f x x ax x =-在2(,2)e上不单调,则实数a 的取值范围是_____. 17.定义在(0,)+∞上的函数()f x 满足()1xf x '<,且(1)1f =,则不等式(31)ln(31)1f x x ->-+的解集是________.18.已知函数()y f x =在R 上的图象是连续不断的一条曲线,并且关于原点对称,其导函数为()f x ',当0x >时,有不等式()()22x f x xf x '>-成立,若对x R ∀∈,不等式()()2220x x e f e a x f ax ->恒成立,则正整数a 的最大值为_______.19.已知函数()f x 是定义在区间()0,∞+)上的可导函数,若对()0,x ∀∈+∞()()20xf x f x '+>恒成立,则不等式()()()202020202019201920192020x f x f x ++<+的解集为______.20.已知定义在()0,∞+上的函数()f x 的导函数为()f x ',且()()32xxf x f x x e'-=,()339f e =,则关于x 的方程()>f x e 的解集为_____________. 三、解答题21.已知函数()ln ()=+∈f x x x ax a R . (Ⅰ)当0a =,求()f x 的最小值;(Ⅱ)若函数()()ln g x f x x =+在区间[1,)+∞上为增函数,求实数a 的取值范围; 22.已知函数()2ln f x x a x x=--. (1)已知()f x 在点()()1,1f 处的切线方程为2y x =-,求实数a 的值; (2)已知()f x 在定义域上是增函数,求实数a 的取值范围. 23.已知函数()x ax f x e=. (1)当1a =时,判断函数()f x 的单调性; (2)若0a >,函数()()212g x f x x x =+-只有1个零点,求实数a 的取值范围. 24.已知函数()()22ln f x x t x t x =++-.(1)若3x =是()f x 的极值点,求()f x 的极大值;(2)若()ln 1xg x e t x =+-,求实数t 的范围,使得()()f x g x ≤恒成立.25.已知函数()1ln f x ax x =--.(1)当1a =时,证明:()f x 存在唯一的零点; (2)若()0f x ≥,求实数a 的取值范围.26.设函数33,().()2,x x x af x a R x x a ⎧-=∈⎨->⎩(1)若0a =,则()f x 的最大值为;(2)若()f x 无最大值,则求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据已知构造合适的函数,对函数求导,根据函数的单调性,求出函数的取值范围,并根据偶函数的性质的对称性,求出0x <的取值范围. 【详解】当0x >时,由2()()20f x xf x +'-<可知:两边同乘以x 得:22()()20xf x x f x x +'-< 设:22()()g x x f x x =-则2()2()()20g x xf x x f x x '=+'-<,恒成立:()g x ∴在(0,)+∞单调递减,由()()21x f x f -21x <-()()2211x f x x f ∴-<-即()()1g x g < 即1x >;当0x <时,函数是偶函数,同理得:1x <-综上可知:实数x 的取值范围为(-∞,1)(1-⋃,)+∞, 故选:C 【点睛】关键点点睛:主要根据已知构造合适的函数,函数求导,并应用导数法判断函数的单调性,偶函数的性质,属于中档题.2.A解析:A 【分析】先利用二倍角公式和诱导公式化简函数,构造()()6g x f x =-为R 上单调递增的奇函数,再转化不等式为()22(34)g t t g t -<-,利用单调性解不等式即得结果. 【详解】解:33()26cos 2sin 62f x x x x x x x π⎛⎫=++-+=+++⎪⎝⎭令3()()62sin g x f x x x x =-=++,则2()32cos 0g x x x '=++>,()()g x g x -=-, 故()g x 在R 上单调递增,且()g x 为奇函数.不等式()22(34)12f t t f t -+-+<,即()226(34)60f t t f t --+-+-<,即()22(34)0g t t g t -+-+<,则()22(34)g t t g t -<- 故2234t t t -<-,即2540t t -+<,所以14t <<. 故选:A. 【点睛】 方法点睛:利用函数奇偶性和单调性解不等式问题:(1)()f x 是奇函数,图像关于原点中心对称,利用奇函数性质将不等式()()12f g x f g x ⎡⎤⎡⎤<⎣⎦⎣⎦形式,再利用单调性得到()1g x 和()2g x 的大小关系,再解不等式即可;(2)()f x 是偶函数,图像关于y 轴对称,利用偶函数性质将不等式()()12f g x f g x ⎡⎤⎡⎤<⎣⎦⎣⎦形式,再利用单调性得到()1g x 和()2g x 的大小关系,再解不等式即可.3.A解析:A 【分析】()0f x =有两解变形为m e =设()g x =单调性、极值,结合()g x 的大致图象可得结论. 【详解】由()2sin x m f x x +=-得m e =()g x =sin )()xx x g x e -'=,易知当04x π<<时,()0g x '>,()g x 递增,当344x ππ<<时,()0g x '<,()g x 递减,(0)0g =,414g e ππ⎛⎫= ⎪⎝⎭,34314g e ππ⎛⎫=⎪⎝⎭,如图是()g x 的大致图象,由mxx e e =有两解得34411m e e e ππ≤<,所以344m ππ-≤<-. 故选:A .【点睛】关键点点睛:本题考查函数的零点问题,解题关键是转化.函数的零点转化为方程的解,再用分离参数变形为2sin m xe =2sin ()x g x =my e =有两个交点,利用导数研究函数()g x 的单调性、极值后可得.4.A解析:A 【分析】 构造函数()()3xf xg x e=,由()()30f x f x '->得0g x ,进而判断函数()g x 的单调性,判断各选项不等式. 【详解】()()3x f x g x e=,则()()()()()()3323333x x x x f x e f x e f x f x g x e e ⋅--==''', 因为()()30f x f x '->在R 上恒成立, 所以0g x在R 上恒成立,故()g x 在R 上单调递减, 所以()()10g g <,即()()3010f f e e<,即()()310f e f <, 故选:A. 【点睛】函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.5.A解析:A 【分析】对()f x 进行求导得3()3f x x x m '=-+,构造新函数3()3,h x x x m x R =-+∈,利用导数研究函数()h x 的单调性,结合题意,可知函数()f x 有极大值,则()()1010h h ⎧->⎪⎨<⎪⎩,求解不等式且结合m ,n 为正整数,即可得出结果. 【详解】 由题可知,4213()42f x x x mx n =-++()x R ∈, 则3()3f x x x m '=-+,设3()3,h x x x m x R =-+∈,则2()33h x x '=-,令2()330h x x '=-=,解得:121,1x x =-=,则当1x <-或1x >时,()0h x '>;当11x -<<时,()0h x '<,所以()h x 在区间()(),1,1,-∞-+∞上单调递增;在区间()1,1-上单调递减, 又因为函数()f x 有极大值,则()()1010h h ⎧->⎪⎨<⎪⎩,即()()120120h m h m ⎧-=+>⎪⎨=-<⎪⎩,解得:22m -<<,而m ,n 为正整数,所以m 的值为1.故选:A. 【点睛】关键点点睛:本题考查利用导数研究函数的单调性和极值,从而求参数值,构造新函数且利用导数求出单调区间是解题的关键,考查转化思想和运用能力.6.C解析:C 【分析】根据所给实数的表达式进行构造函数,然后利用导数判断出函数的单调性,最后利用函数的单调性进行判断即可. 【详解】构造函数'()(2)()(1)xxf x x e f x x e =-⇒=-,当1x >时,'()0,()f x f x <单调递减, 当1x <时,'()0,()f x f x >单调递增.因为2342()33a e f ==,4564()55b e f ==,6786()77c e f ==,246357<<, 所以642()()()753f f f >>,即c b a >>.故选:C 【点睛】关键点睛:根据几个实数的特征构造函数,利用导数判断其单调性是解决此类问题的关键.7.B解析:B 【分析】 将不等式化为()()111ln x x k x +++>,令()()()111ln x g x xx ++=+,求出导函数,利用导数判断函数的单调性,从而可得()02,3x ∃∈使()00g x '=,进而可得()()001()g x x x g ≥=+,即求.【详解】()()()1ln 10x f x x x ++=>, ()1k f x x ∴>+可化为()111ln x k x x ++>+ 即()()111ln x x k x+++>, 令()()()111ln x g x xx ++=+, 则()()()()21ln 11111x x x x ln x g x x +++---++⎡⎤⎣⎦'= ()211x ln x x --+=令()()11h x x ln x =--+, 则()111h x x '=-+,()0,x ∈+∞时, ()0h x '>,()g x '∴在()0,∞+单调递增.又()()1ln 32ln 420,30,49g g --''=<=> ()02,3x ∃∈使()00g x '=,即()0011ln x x +=-.当()00,x x ∈时,()()0,g x g x '<单调递减, 当0(,)x x ∈+∞时,()()0,g x g x '>单调递增,()()000001ln 1))1(()(1x x g x x x x g +∴≥==+++, ()02,3x ∈,()013,4x +∴∈,∴正整数k 的最大值为3.故选:B.【点睛】关键点点睛:本题考查了导数研究不等式恒成立问题,解题的关键根据函数的单调性确定存在()02,3x ∈,使得()00g x '=,考查了分离参数法求范围.8.A解析:A 【分析】由(0)1f =,故0不是函数()2y f x ax =-的零点,则由2()0f x ax -=,得2()(0)f x a x x =≠,令2()()f x g x x =2,01,0xe x x x x⎧>⎪⎪=⎨⎪-<⎪⎩,则题目转化为y a =与()y g x =有三个零点,利用导数研究函数()y g x =的性质并作出示意图可求得答案. 【详解】由(0)1f =,故0不是函数()2y f x ax =-的零点,则由2()0f x ax -=,得2()(0)f x a x x=≠, 令2()()f x g x x =2,01,0xe x x x x⎧>⎪⎪=⎨⎪-<⎪⎩,则题目转化为y a =与()y g x =有三个零点, 当0x >时,2()x e g x x =,则4(2)()x xe x g x x-'=, 则()g x 在(0,2)上递减,在(2,)+∞上递增,当2x =时,()g x 有最小值为2(2)4e g =,当0x →时,()g x →+∞,作出()y g x =的示意图如图所示:由图知,若函数()2y f x ax =-恰有三个零点,则24e a >. 故选:A. 【点睛】方法点睛:求函数()f x 的零点个数的方法如下: 直接解方程()0f x =,求出零点可得零点个数.;数形结合法:转化为两个函数的交点;参变分离法:将参数分离出来,再作函数的图像进而转化为y a =与()y g x =(分离后的函数)的交点问题.9.D解析:D 【分析】分析函数()13log xf x e x =-为增函数,若01x ≥,求出[)1,x ∈+∞时函数的值域,结合命题间的基本关系即可得答案. 【详解】由函数的解析式可得函数的定义域为: ()0,∞+,且导函数()10ln 3xf x e x '+=>, 则函数单调递增,结合()1131log 1e f e =-=, 可得当1≥x 时,函数的值域为[),e +∞.据此可知p 是假命题, q 是真命题, q ⌝是假命题. 结合全称命题与特称命题的关系可得:p 的否命题是:若01x <,则()03f x <.[):1,q x ⌝∀∈+∞,()3f x ≠故选:D 【点睛】本题通过考查函数的单调性和极值来考查命题间的基本关系,属于中档型综合题.10.A解析:A 【分析】 由()xx f x ax e e -=+-在R 上单调递减,可得:导函数()0x x f x a e e -'=--≤在R 上恒成立,参变分离后,求最值即可的解.【详解】 由()x x f x ax ee -=+-在R 上单调递减,可得:导函数()0xx f x a e e -'=--≤在R 上恒成立,因为0x e >,参变分离可得:min (+)x xa e e -≤,+2x x e e -≥=2a ≤故选:A 【点睛】本题考查了利用函数单调性求参数范围,考查了恒成立思想和基本不等式的应用,属于中档题.11.D解析:D 【分析】求得导函数()'f x ,确定()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的单调性,()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的值域,从而可得题中平面区域面积,解之可得a . 【详解】解:()()2222a e x f x a e x x -⎛⎫'=-= ⎪⎝⎭,因为1,1x e ⎡⎤∈⎢⎥⎣⎦,0a >,所以()0f x '>,()f x 在1,1e ⎡⎤⎢⎥⎣⎦上单调递增,则()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的值域为()22,a e e a ⎡⎤+⎣⎦,因为所有点()(),s f t (s ,t D ∈)所构成的平面区域面积为2e 1-,所以()221211a e e e e ⎛⎫---=-⎪⎝⎭, 解得2ea e =-, 故选:D . 【点睛】本题考查用导数求函数的值域,解题方法是求出导函数,用导数确定函数的单调性,求得值域区间,然后可计算出题设平面区域面积,得出结论.12.B解析:B 【分析】根据条件构造函数2()()g x x f x =,求函数的导数,判断函数的单调性,将不等式进行转化求解. 【详解】由题意,设2()()g x x f x =,则2'()2()()[2()'()]g x xf x x f x x f x xf x =+=+, 因为当0x >时,有2()'()0f x xf x +>, 所以当0x >时,'()0g x >,所以函数2()()g x x f x =在(0,)+∞上为增函数,因为(1)0f -=,又函数()f x 是偶函数,所以(1)(1)0f f =-=,所以(1)0g =,而当()0>g x 时,可得1x >,而()0>g x 时,有()0f x >, 根据偶函数图象的对称性,可知()0f x >的解集为()(),11,-∞-⋃+∞, 故选B. 【点睛】该题考查的是与导数相关的构造新函数的问题,涉及到的知识点有函数的求导公式,应用导数研究函数的单调性,解相应的不等式,属于中档题目.二、填空题13.【分析】构造函数求得的取值范围化简不等式求得的取值范围【详解】构造函数依题意任意当时表示函数在区间上任意两点连线的斜率故当时对于任意当时不等式成立当时对于任意当时不等式恒成立可转化为恒成立故综上所述 解析:(,2]-∞【分析】构造函数()()ln 1f x x x =≥,求得()'fx 的取值范围,化简不等式2121(ln ln )2()a x x x x -<-求得a 的取值范围.【详解】构造函数()()ln 1f x x x =≥,()(]'10,1f x x=∈, 依题意任意12,[1,)x x ∈+∞,当21x x >时,2121ln ln 0,0x x x x ->->,2121ln ln x x x x --表示函数()f x 在区间[1,)+∞上任意两点连线的斜率,故()2121ln ln 0,1x x x x -∈-.当0a ≤时,对于任意12,[1,)x x ∈+∞,当21x x >时,不等式2121(ln ln )2()a x x x x -<-成立.当0a >时,对于任意12,[1,)x x ∈+∞,当21x x >时,不等式2121(ln ln )2()a x x x x -<-恒成立可转化为2121ln ln 2x x x x a -<-恒成立,故(]21,0,2a a≥∈. 综上所述,实数a 的取值范围是(,2]-∞. 故答案为:(,2]-∞ 【点睛】求解不等式恒成立问题,可考虑采用分离常数法,结合导数来求解..14.【分析】利用导数分析函数在区间上的单调性根据该函数在区间上有且只有一个零点求得参数的值进而利用导数可求得函数在区间上的最小值【详解】则①当时对任意的恒成立此时函数在区间上单调递增且不合乎题意;②当时 解析:4-【分析】利用导数分析函数()y f x =在区间(),0-∞上的单调性,根据该函数在区间(),0-∞上有且只有一个零点求得参数a 的值,进而利用导数可求得函数()y f x =在区间[]1,2-上的最小值. 【详解】()32f x x ax =--,则()23f x x a '=-.①当0a ≤时,对任意的(),0x ∈-∞,()0f x '>恒成立,此时,函数()y f x =在区间(),0-∞上单调递增,且()()020f x f <=-<,不合乎题意;②当0a >时,令()230f x x a '=-=,可得x =x =当x <()0f x '>,此时函数()y f x =单调递增;当0x <<时,()0f x '<,此时函数()y f x =单调递减.所以,()max 20f x f ⎛=== ⎝,解得3a =,()332f x x x ∴=--. ()()()233311f x x x x '=-=-+,当11x -<<时,()0f x '<,此时函数()y f x =单调递减; 当12x <<时,()0f x '>,此时函数()y f x =单调递增.因此,函数()y f x =在1x =处取得极小值,亦即最小值,故()()min 14f x f ==-. 故答案为:4-. 【点睛】本题考查利用导数求解函数在区间上的最值,同时也考查了利用导数研究函数的零点,考查计算能力,属于中等题.15.【分析】根据题意求出从初始位置出发至两点的纵坐标值再次相等时对应的的取值进而求得的取值范围用两点距离公式表示进而表示成关于的函数用导数的观点求的取值范围即可【详解】解:因为动点在函数图像上动点在函数解析:2⎡⎢⎣⎦【分析】根据题意求出A B 、从初始位置出发至A B 、两点的纵坐标值再次相等时对应的1x 的取值,进而求得1x 的取值范围,用两点距离公式表示AB ,进而表示成关于1x 的函数,用导数的观点求AB 的取值范围即可. 【详解】解:因为动点()11,A x y 在函数()31=4f x x 图像上,动点()22,B x y 在函数函数()2g x x =-图像上,所以311221,24y x y x ==-. 由题知:10x ≥,22x ≥,212x x =+.由当A B 、两点同时从纵坐标=0y 的初始位置出发,沿着各自函数图像向右上方运动至A B、两点的纵坐标值再次相等时,得312124x x =-,所以31114x x =,解得10x =或12x =±. 所以,当A B 、两点同时从纵坐标=0y 的初始位置出发,沿着各自函数图像向右上方运动至A B 、两点的纵坐标值再次相等时12x =.102x ∴≤≤,AB ∴==[]10,2x =∈设[]21,0,4x t t =∈,则[]0,4AB t =∈. 设()[]2321111,0,44162g t t t t t t t ⎛⎫=-=-+∈ ⎪⎝⎭, 则()23116g t t t ='-+,由0g t 得4t =或43t =. 40,3t ⎡⎤∴∈⎢⎥⎣⎦时,()0g t '>,g t 单调递增;4,43t ⎡⎤∈⎢⎥⎣⎦时,()0g t '<,g t 单调递减; 34t ∴=时,()max 43g t g ⎛⎫= ⎪⎝⎭,此时max9AB ====; 0t =时,()()min 00g t g ==,此时,min 2AB ===.AB ⎡∴∈⎢⎣⎦.故答案为:0,9⎡⎢⎣⎦.【点睛】本题主要考查用导数求最值,考查学生用导数解决问题的能力,属于中档题.16.【分析】求得函数的导函数根据在区间上有极值求得的取值范围【详解】令得由于分离常数得构造函数所以在上递减在上递增下证:构造函数当时①而即所以所以由①可得所以当时单调递增由于所以当时故也即由于所以所以的 解析:4(2,)ln 21+ 【分析】求得函数()f x 的导函数()'f x ,根据()f x 在区间2(,2)e上有极值,求得a 的取值范围. 【详解】()()'21ln 2ln f x x a x x a x a =-+=--,令'0f x得2ln 0x a x a --=,由于222,ln ln ln 2,ln 2ln 1ln 2x x x e e e<<<<<+<, 分离常数a 得21ln xa x=+.构造函数()21ln x h x x =+,()()'22ln 1ln x h x x =+,所以()h x 在2,1e ⎛⎫ ⎪⎝⎭上递减,在()1,2上递增,()()()424444,12,22ln 2ln 2ln 21ln 21ln eeh h h e e e e⎛⎫======⎪+⎝⎭+. 下证22e e >:构造函数()22xg x x =-,()'2ln 22xg x =-,当2x ≥时,22ln 222ln 22x -≥-①,而1ln 2ln 2e =<=<,即1ln 212<<,所以222ln 24<<,所以由①可得22ln 222ln 220x -≥->.所以当2x ≥时,()g x 单调递增.由于()20g =,所以当2x >时,()()20g x g >=,故()0g e >,也即22022e e e e ->⇒>.由于()22ln 2ln 2eee e >⇒>,所以()22h h e ⎛⎫<⎪⎝⎭.所以a 的取值范围是4(2,)ln 21+ 故答案为:4(2,)ln 21+ 【点睛】本小题主要考查利用导数研究函数的单调性,属于中档题.17.【分析】构造函数利用导数判断单调性再利用单调性解不等式即可【详解】构造函数则依题意知即在上是减函数又因为所以所以的解为即即的解为所以的解为即即解集是故答案为:【点睛】本题考查了利用函数单调性解不等式解析:12,33⎛⎫⎪⎝⎭【分析】构造函数()()ln 1(0)g x f x x x =-->,利用导数判断单调性,再利用单调性解不等式即可. 【详解】构造函数()()ln 1(0)g x f x x x =-->,则1()1()()xf x g x f x x x'-''=-=,依题意知()0g x '<,即()()ln 1g x f x x =--在0,上是减函数.又因为(1)1f =,所以(1)(1)ln110g f =--=,所以()(1)g x g >的解为01x <<,即()ln 10f x x -->即()ln 1f x x >+的解为01x <<,所以(31)ln(31)1f x x ->-+的解为0311x <-<,即1233x <<,即解集是12,33⎛⎫ ⎪⎝⎭. 故答案为:12,33⎛⎫⎪⎝⎭. 【点睛】本题考查了利用函数单调性解不等式,属于中档题.18.【分析】令先判断函数g(x)的奇偶性和单调性得到在R 上恒成立再利用导数分析解答即得解【详解】因为当时有不等式成立所以令所以函数g(x)在(0+∞)上单调递增由题得所以函数g(x)是奇函数所以函数在R 解析:2【分析】令2()(),g x x f x =先判断函数g(x)的奇偶性和单调性,得到e x ax >在R 上恒成立,再利用导数分析解答即得解. 【详解】因为当0x >时,有不等式()()22x f x xf x '>-成立,所以()()22+20,[()]0x f x xf x x f x ''>∴>,令2()(),g x x f x =所以函数g(x)在(0,+∞)上单调递增, 由题得22()()()g(x),g x x f x x f x -=-=-=- 所以函数g(x)是奇函数,所以函数在R 上单调递增. 因为对x R ∀∈,不等式()()2220xxe f e a x f ax ->恒成立,所以()()222,()()e xxxxe f ea x f ax g e g ax ax >∴>∴>,,因为a >0,所以当x≤0时,显然成立.当x >0时,()(0)xe a h x x x<=>,所以2(1)()xx e h x x -'=,所以函数h (x)在(0,1)单调递减,在(1,+∞)单调递增.所以min ()(1)h x h e ==, 所以a <e,所以正整数a 的最大值为2. 故答案为2 【点睛】本题主要考查函数的奇偶性及其应用,考查函数单调性的判断及其应用,考查利用导数研究不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.属于中档题.19.【分析】令求的导数根据条件可知从而判断单调递增将不等式化为即可求解【详解】令因为的定义域为所以函数的定义域也为则所以函数在上单调递增又可以化为即所以所以故不等式的解集为故答案为:【点睛】本题考查利用 解析:()2020,1--【分析】令()2()g x x f x =,求()g x 的导数'()g x ,根据条件可知'()0g x >,从而判断()g x 单调递增,将不等式化为()()20202019g x g +<即可求解. 【详解】令()2()g x x f x =,因为()f x 的定义域为()0,∞+,所以函数()g x 的定义域也为()0,∞+,则()()()()()2220g x xf x x f x x f x xf x '''=+=+>⎡⎤⎣⎦,所以函数()g x 在()0,∞+上单调递增, 又()()()202020202019201920192020x f x f x ++<+可以化为()()()222020202020192019x f x f ++<,即()()20202019g x g +<,所以020202019x <+<, 所以20201x -<<-, 故不等式的解集为()2020,1--. 故答案为:()2020,1--. 【点睛】本题考查利用函数的单调性解不等式,构造函数求导是解题的关键,属于中档题.20.【分析】由所给等式变形可得则令可求得c 从而求出的解析式利用导数研究函数的单调性利用函数单调性解不等式即可【详解】因为所以即所以因为所以解得则当时函数在上单调递增又所以的解集为故答案为:【点睛】本题考 解析:()1,+∞【分析】由所给等式变形可得()2[]x f x e x '=,则()2x f x e c x =+,令3x =可求得c 从而求出()f x 的解析式,利用导数研究函数()f x 的单调性,利用函数单调性解不等式即可. 【详解】因为()()32x xf x f x x e '-=,所以()()242xx f x xf x e x'-=,即()2[]x f x e x '=, 所以()2x f x e c x=+,因为()339f e =,所以33e e c =+,解得0c,则()2x f x e x =,()()20xf x x e x =>,当0x >时,()()22220x x x f x x e x e e x x '=⋅+⋅=+>,函数()f x 在()0,∞+上单调递增,又()1f e =,所以()()1f x e f >=的解集为()1,+∞. 故答案为: ()1,+∞ 【点睛】本题考查导数的运算法则、利用导数研究函数的单调性、利用函数的单调性解不等式,属于中档题.三、解答题21.(1)11()f e e=-;(2)2a ≥- 【分析】(1)对函数求导,令'()ln 1=0=+f x x ,讨论函数的单调性即可求出结果.(2)由()g x 在区间[1,)+∞单调递增,可得'()0≥g x 在[1,)+∞恒成立,分离参数可得:1ln (1)+≥-+x a x ,构造函数即可求出结果. 【详解】(1)()ln 1,'()ln 1=+=+f x x x f x x 令'()ln 1=0=+f x x ,解得1=x e当x 变化时,(),()f x f x '的变化情况如下:所以min ()()f x f ee ==-(2)1'()ln 1=+++g x x a x, ()g x 在区间[1,)+∞单调递增,所以'()0≥g x 在[1,)+∞恒成立,即1ln (1)+≥-+x a x在[1,)+∞恒成立 设221111()ln ,'()0-=+∴=-=>x h x x h x x x x x1()ln ∴=+h x x x[1,)+∞单调递增,min ()=(1)=1h x h 只需1(1)≥-+a 即可,解得2a ≥-【点睛】方法点睛:()g x 在区间[1,)+∞单调递增'()0⇔≥g x 在[1,)+∞恒成立,分离参数,构造函数是常用方法.本题考查了运算求解能力和逻辑推理能力,属于中档题目.. 22.(1)2a =;(2)(-∞. 【分析】(1)由题意可得出()11f '=,由此可求得实数a 的值;(2)求出函数()f x 的定义域为()0,∞+,由题意可知,()2210af x x x'=+-≥在()0,∞+上恒成立,利用参变量分离法得出min2a x x ⎛⎫≤+ ⎪⎝⎭,利用基本不等式求出2x x+在()0,∞+上的最小值,由此可得出实数a 的取值范围.【详解】(1)()2ln f x x a x x =--,()221af x x x'∴=+-,()13f a '∴=-,又()f x 在点()()1,1f 处的切线方程为2y x =-,()131f a '∴=-=,解得2a =; (2)()f x 的定义域为()0,∞+,()f x 在定义域上为增函数,()2210af x x x'∴=+-≥在()0,∞+上恒成立, 2a x x ∴≤+在()0,∞+上恒成立,min 2a x x ⎛⎫∴≤+ ⎪⎝⎭,由基本不等式2x x +=≥x时等号成立,故min2x x ⎛⎫+= ⎪⎝⎭ 故a的取值范围为(-∞. 【点睛】结论点睛:利用函数的单调性求参数,可按照以下原则进行:(1)函数()f x 在区间D 上单调递增()0f x '⇔≥在区间D 上恒成立; (2)函数()f x 在区间D 上单调递减()0f x '⇔≤在区间D 上恒成立; (3)函数()f x 在区间D 上不单调()f x '⇔在区间D 上存在异号零点; (4)函数()f x 在区间D 上存在单调递增区间x D ⇔∃∈,使得()0f x '>成立; (5)函数()f x 在区间D 上存在单调递减区间x D ⇔∃∈,使得()0f x '<成立. 23.(1)当1a =时,函数()f x 在区间(),1-∞上单调递增;在区间1,上单调递减;(2)当函数()g x 只有1个零点时,实数a 的取值范围是,2e ⎛⎫+∞ ⎪⎝⎭. 【分析】(1)先对函数求导,然后分别由0f x 和0f x 可求出函数的增区间和减区间;(2)由0g x,得1x =,或ln x a =,然后分ln 1a =,ln 1a <和ln 1a >三种情况讨论,当ln 1a =可得()g x 只有1个零点,当ln 1a <时,求出()g x 的单调区间,然后讨论其零点,当ln 1a >时,求出()g x 的单调区间,然后讨论其零点,从而可求出实数a 的取值范围 【详解】解:(1)当1a =时,()xxf x e =,定义域为R , 所以()1xxf x e -'=.当1x <时,0f x ,函数()f x 单调递增; 当1x >时,0f x ,函数()f x 单调递减.综上所述,当1a =时,函数()f x 在区间(),1-∞上单调递增;在区间1,上单调递减.(2)因为0a >,函数()212x ax g x e x x =+-, 所以()()()111x x x a x e a g x x x e e -⎛⎫-'=+-=- ⎪⎝⎭. 当0g x 时,得1x =,或ln x a =.①若ln 1a =,即a e =,则0g x 恒成立,函数()g x 在R 上单调递增,因为()00g =,所以函数()g x 只有1个零点.②若ln 1a <,即0a e <<,当ln x a <时,0g x ,函数()g x 单调递增;当ln 1a x <<时,0g x,函数()g x 单调递减; 当1x >时,0g x ,函数()g x 单调递增.(Ⅰ)当ln 0a <,即01a <<时,()()()ln 001g a g g >=>,又因为()2220a g e =>,所以函数()g x 在区间1,2上有1个零点, 故函数()g x 在R 上至少有2个零点,不符合题意.(Ⅱ)当ln 0a =,即1a =时,()()()ln 001g a g g ==>,又因为()2220g e=>,所以函数()g x 在区间1,2上有1个零点, 故函数()g x 在R 上至少有2个零点,不符合题意.(Ⅲ)当ln 0a >,即1a e <<时,()()()ln 001g a g g >=>,若函数()g x 只有1个零点,需()1102a e g =->, 解得2e a e <<. ③若ln 1a >,即a e >, 当1x <时,0g x ,函数()g x 单调递增;当1ln x a <<时,0g x ,函数()g x 单调递减;当ln x a >时,0g x,函数()g x 单调递增.所以()()100g g >=,()21ln ln 02g a a => 所以函数()g x 在R 上只有1个零点.综上所述,当函数()g x 只有1个零点时,实数a 的取值范围是,2e ⎛⎫+∞⎪⎝⎭. 【点睛】关键点点睛:此题考查导数的应用,利用导数求函数的单调区间和求函数的零点,第二问解题的关键是由0g x 求得1x =或ln x a =,然后分ln 1a =,ln 1a <和ln 1a >三种情况讨论函数的单调性,从而由零点的情况求出参数的取值范围,属于中档题24.(1)7-;(2)t e ≥-.【分析】(1)先对函数求导,结合极值存在的条件可求t ,然后结合导数可研究函数的单调性,进而可求极大值;(2)由已知代入可得,221x e x x t x-+--≤在0x >时恒成立,构造函数()221x e x x h x x-+-=,结合导数及函数的性质可求. 【详解】解:(1)()22t f x x t x '=--+,0x >,由题意可得,()23403f t '=-=,解可得6t =,∴()()()213628x x f x x x x--'=-+=, 所以,当3x >,01x <<时 ,()0f x '>,函数单调递增,当13x <<时,()0f x '<,函数单调递减,故当1x =时,函数取得极大值()17f =-;(2)由()()f x g x ≤得()22ln ln 1xx t x t x e t x -++≤+-在0x >时恒成立可得,221x e x x t x -+--≤在0x >时恒成立,2min21x e x x t x ⎛⎫-+--≤ ⎪⎝⎭ 令()221x e x x h x x-+-=, 则()()()()()()2222222211111x x x x e x x e x x x e x e x x h x x x x -+--+------+'===, 令()1x F x e x =--,所以()'1x F x e =-,令()'0F x =,提0x =, 所以当0x >,()'0F x >,函数单调递增,当0x <时,()'0F x <,函数单调递减,故当0x =时,函数取得最小值()00F =,又0x >,所以10x e x -->,所以()h x 在()0,1上单调递减,在()1,+∞上单调递增,所以()()min 1h x h e ==,可得()min t h x e -≤=,所以t e ≥-.【点睛】方法点睛:不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立. 25.(1)证明见解析;(2)1a ≥. 【分析】(1)当1a =时,求导得到()111x f x x x -'=-=,判断出函数的单调性,求出最值,可证得命题成立;(2)当0a ≤且1x >时,()0f x <不满足题意,故0a >,又定义域为()0,∞+,讲不等式化简,参变分离后构造新函数,求导判断单调性并求出最值,可得实数a 的取值范围.【详解】(1)函数()f x 的定义域为()0,∞+,当1a =时,由()111x f x x x -'=-=, 当()0,1x ∈时,()0f x '<,()f x 单调递减;当()1,x ∈+∞时,()0f x '>,()f x 单调递增;.且()10f =,故()f x 存在唯一的零点;(2)当0a ≤时,不满足()0f x ≥恒成立,故0a >由定义域为()0,∞+,()1ln 0f x ax x =--≥可得1ln x a x +≥, 令1()lnx h x x +=,则2()lnx h x x'=-, 则当01x <<时,()0h x '>,函数()h x 单调递增,当1x >时,()0h x '<,函数()h x 单调递减,故当1x =时,函数()h x 取得最大值h (1)1=,故实数a 的取值范围是1a ≥.【点睛】方法点睛:本题考查函数零点的问题,考查导数的应用,考查不等式的恒成立问题,关于恒成立问题的几种常见解法总结如下:1.参变分离法,将不等式恒成立问题转化为函数求最值问题;2.主元变换法,把已知取值范围的变量作为主元,把求取值范围的变量看作参数;3.分类讨论,利用函数的性质讨论参数,分别判断单调性求出最值;4.数形结合法,将不等式两端的式子分别看成两个函数,作出函数图象,列出参数的不等式求解.26.(1)2;(2)(,1)-∞-.【分析】(1)将0a =代入,求出函数的导数,分析函数的单调性可得当1x =-时,()f x 有最大值2;(2)若()f x 无最大值,则3123a a a a ≤-⎧⎨->-⎩或312322a a a a a >-⎧⎪->-⎨⎪->⎩,解得可得答案. 【详解】(1)若0a =,33,0()2,0x x x f x x x ⎧-=⎨->⎩,所以233,0()2,0x x f x x ⎧-=⎨->⎩', 当1x <-时,()0f x '>,此时函数为单调递增函数,当1x >-时,()0f x '<,此时函数为单调递减函数,故当1x =-时()f x 有最大值为2 .(2)233,()2,x x a f x x a⎧-=⎨->'⎩,令()0f x '=,则1x =±,若()f x 无最大值,则 3123a a a a ≤-⎧⎨->-⎩ ① 或312322a a a a a >-⎧⎪->-⎨⎪->⎩②, 由①得(,1)a ∈-∞-,由②得无解,所以(,1)a ∈-∞-.故答案为:2;(,1)-∞-.【点睛】分段函数在高考中的常见题型有:已知分段函数求值、已知分段函数求值域、已知分段函数求不等式解集、已知分段函数求参数取值范围等,分段函数问题要注意分类讨论,涉及分段函数的单调性、奇偶性、周期性等问题,要善于利用数形结合的思想解决问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四课时导数与函数零点
【选题明细表】
知识点、方法题号利用导数研究函数零点个数2,5
根据函数零点求参数3,4
函数零点的综合应用1,6,7
基础巩固(时间:30分钟)
1.(2018·河北邢台第二次月考)已知f(x)=e x-ax
2.
命题p:∀a≥1,y=f(x)有三个零点;
命题q:∃a∈R,f(x)≤0恒成立.
则下列命题为真命题的是(B)
(A)p∧q (B)(¬p)∧(¬q)
(C)(¬p)∧q (D)p∧(¬q)
解析:对于命题p:当a=1时,f(x)=e x-x2,在同一坐标系中作出y=e x,
y=x2 的图象(图略),由图可知y=e x 与y=x2 的图象有1 个交点,所以
f(x)=e x-x2有1个零点,故命题p为假命题,因为f(0)=1,所以命题q显然为假命题.故(¬p)∧(¬q)为真.
2.(2018·贵阳联考)已知函数f(x)的定义域为[-1,4],部分对应值
如表:
x -1 0 2 3 4
f(x) 1 2 0 2 0
f(x)的导函数y=f′(x)的图象如图所示.
当1<a<2时,函数y=f(x)-a的零点的个数为(D)
(A)1 (B)2 (C)3 (D)4
解析:根据导函数图象,知2是函数的极小值点,函数y=f(x)的大致图象如图所示.
由于f(0)=f(3)=2,1<a<2,
所以y=f(x)-a的零点个数为4.
3.若函数f(x)= +1(a<0)没有零点,则实数a的取值范围为.
解析:f′(x)= = (a<0).
当x<2时,f′(x)<0;
当x>2时,f′(x)>0,
所以当x=2时,f(x)有极小值f(2)= +1,
若使函数f(x)没有零点,当且仅当f(2)= +1>0,
解之得a>-e2,因此-e2<a<0.
答案:(-e2,0)
4.(2018·河北武邑中学第二次调研)已知函数f(x)= x3- x2-ax-2的图象过点A(4, ).
(1)求函数f(x)的单调增区间;
(2)若函数g(x)=f(x)-2m+3有3个零点,求m的取值范围.
解:(1)因为函数f(x)= x3- x2-ax-2的图象过点A(4, ),
所以-4a-4a-2= ,解得a=2,
即f(x)= x3- x2-2x-2,
所以f′(x)=x2-x-2.
由f′(x)>0,得x<-1或x>2.
所以函数f(x)的单调增区间是(-∞,-1),(2,+∞).
(2)由(1)知f(x)极大值=f(-1)=- - +2-2=- ,
f(x)极小值=f(2)= -2-4-2=- ,
由数形结合,可知要使函数g(x)=f(x)-2m+3有三个零点,
则- <2m-3<- ,
解得- <m< .
所以m的取值范围为(- , ).
能力提升(时间:15分钟)
5.已知函数f(x)=e x-1,g(x)= +x,其中e 是自然对数的底数,e= 2.718 28….
(1)证明:函数h(x)=f(x)-g(x)在区间(1,2)上有零点;
(2)求方程f(x)=g(x)的根的个数,并说明理由.
(1)证明:由题意可得
h(x)=f(x)-g(x)=e x-1- -x.
所以h(1)=e-3<0,h(2)=e2-3- >0,
所以h(1)h(2)<0,
所以函数h(x)在区间(1,2)上有零点.
(2)解:由(1)可知h(x)=f(x)-g(x)=e x-1- -x.
由g(x)= +x知x∈[0,+∞),
而h(0)=0,则x=0为h(x)的一个零点.
又h(x)在(1,2)内有零点,
因此h(x)在[0,+∞)上至少有两个零点.
h′(x)=e x- -1,记(x)=e x- -1,
则′(x)=e x+ .
当x∈(0,+∞)时,′(x)>0,
因此(x)在(0,+∞)上单调递增,
易知(x)在(0,+∞)内只有一个零点,
则h(x)在[0,+∞)上有且只有两个零点,
所以方程f(x)=g(x)的根的个数为2.
6.已知函数f(x)=e x+ax-a(a∈R且a≠0).
(1)若f(0)=2,求实数a的值,并求此时f(x)在[-2,1]上的最小值;
(2)若函数f(x)不存在零点,求实数a的取值范围.
解:(1)由f(0)=1-a=2,得a=-1.
易知f(x)在[-2,0]上单调递减,在[0,1]上单调递增,
所以当x=0时,f(x)在[-2,1]上取得最小值2.
(2)f′(x)=e x+a,由于e x>0.
①当a>0时,f′(x)>0,f(x)是增函数,
当x>1时,f(x)=e x+a(x-1)>0.
当x<0时,取x=- ,
则f(- )<1+a(- -1)=-a<0.
所以函数f(x)存在零点,不满足题意.
②当a<0时,f′(x)=e x+a,
令f′(x)=0,得x=ln(-a),
在(-∞,ln(-a))上,f′(x)<0,f(x)单调递减,
在(ln(-a),+∞)上,f′(x)>0,f(x)单调递增,
所以当x=ln(-a)时,f(x)取得最小值.
函数f(x)不存在零点,等价于
f(ln(-a))=e ln(-a)+aln(-a)-a=-2a+aln(-a)>0,
解得-e2<a<0.
综上所述,所求实数a的取值范围是(-e2,0).
7.已知函数f(x)=ax+ln x,其中a为常数.
(1)当a=-1时,求f(x)的单调递增区间;
(2)当0<- <e时,若f(x)在区间(0,e)上的最大值为-3,求a的值;
(3)当a=-1时,试推断方程|f(x)|= + 是否有实数根.
解:(1)由已知可知函数f(x)的定义域为{x|x>0},
当a=-1时,f(x)=-x+ln x(x>0),
f′(x)= (x>0);
当0<x<1时,f′(x)>0;
当x>1时,f′(x)<0.
所以f(x)的单调递增区间为(0,1).
(2)因为f′(x)=a+ (x>0),
令f′(x)=0,解得x=- ;
由f′(x)>0,解得0<x<- ;
由f′(x)<0,解得- <x<e.
从而f(x)的单调递增区间为(0,- ),
递减区间为(- ,e),
所以f(x)max=f(- )=-1+ln(- )=-3,
解得a=-e2.
(3)由(1)知当a=-1时,f(x)max=f(1)=-1,
所以|f(x)|≥1.
令g(x)= + ,则g′(x)= .
当0<x<e时,g′(x)>0;
当x>e时,g′(x)<0.
从而g(x)在(0,e)上单调递增,在(e,+∞)上单调递减.
所以g(x)max=g(e)= + <1,
所以|f(x)|>g(x),
即|f(x)|> + ,
所以,方程|f(x)|= + 没有实数根.。

相关文档
最新文档