芝罘区数学【易错点17】数列裂项相消法求和

合集下载

数列裂项相消法求和

数列裂项相消法求和
裂项相消法求和
(2012大纲卷高考理)已知等差数列{an}的前n项和为Sn,a5=5,
S5=15,则数列
an
1 an1
的前100项和为?( )
A100 101
B 99 101
C 99 100
D. 101 100
(2012大纲卷高考理)已知等差数列{an}的前n项和为Sn,a5=5,
S5=15,则数列
2(n 1)②
① ②得,an 2 n 1
= 2,所以an
2n ,因为a1 =2也适合上式,
所以an 2( n n N )
解: (1)因为a1
a2 2
a3 22
+ an 2 n 1
2n(n N )①
当n 1时,a1 2
当n
2时,a1
a2 2
a3 22
+
an 1 2n2
2(n 1)②
n
1
1
,
所以S 100
1
1 2
1 2
1 3
1 1 1 1 100 100 101 101 101
什么是裂项法?
把数列的通项拆成两项之差,则分母的 每一项都可以按此法拆成两项之差,并 在求和时一些正负项可以相互抵消,使 前n项和变成首尾有限项之和.
例1:已知数列的通项公式an
=
1 n(n
1 anan1
1 (2n1)(2n1)
1 2
(1 2n1
1) 2n1
Sn
b1
b2
bn
1 2
(1
1 3
1 3
1 5

1 2n1
1) 2n1
1 2
(1
1) 2n1

裂项相消法求和公式

裂项相消法求和公式

裂项相消法求和公式
裂项相消法是数学中常用的一种方法,用于简化求和式。

它通
常用于对称性比较明显的求和式,可以通过将求和式中的相邻项相减,从而简化问题。

裂项相消法常用于数学和物理中的求和问题,
下面我将从数学和物理两个方面来介绍裂项相消法的求和公式。

在数学中,裂项相消法可以用于简化一些复杂的求和式,特别
是在级数求和的过程中。

一个常见的裂项相消法求和公式是对称式
的求和。

比如,对于等差数列$a_1, a_2, a_3, ..., a_n$,我们可
以利用裂项相消法将求和式简化为$\frac{1}{2}(a_1+a_n)n$。

这个
公式的推导过程就是利用了裂项相消法,通过将数列的首尾项相加,次首尾项相加,依次类推,最终得到简化后的形式。

在物理中,裂项相消法同样有着重要的应用。

比如在物理中的
力学问题中,特别是涉及到质心的问题中,裂项相消法可以帮助简
化力矩的求和问题。

通过将作用在质点上的力分解成对称的部分,
然后利用裂项相消法简化力矩的表达式,从而简化了问题的求解过程。

总的来说,裂项相消法是一种非常有用的数学方法,它可以帮
助简化复杂的求和式,特别是对称性比较明显的求和式。

在数学和物理问题中都有着重要的应用。

通过合理运用裂项相消法,可以简化问题、加快计算速度,是数学和物理学习中的重要工具之一。

数列之裂项相消求和

数列之裂项相消求和

=1
3
1(1- )
=39
1-
⇒a1=3,所以 an=3n.
(2)由已知得 bn=log332n+1=2n+1,所以 Tn=3+5+…+(2n+1)=n(n+2),
1
=
=
1
=
1 1
( +2) 2
1 1 1
-
2 1 3
-
1
+2
1
1
1
,所以 ∑ = + + +…+
1
=1
1 1 1
1 1 1
1 1
2 2 4
项和

.
解析 (1)因为 , 9 为函数 () = ( − 2)( − 99) 的两个零点且
(−1)
1+
2
= 2, 9 = 99 .又因为 =
= 3 ,所以数列 {
( − 1) = 2 + 1 .
1
(2)因为
所以
1
(
2


=
=
1
(
2
,所以 9
9×8
1+ 2
< 9 ,所以
× 2 = 99 ,解得
(2n+1)
1
1

1
1
解析∵an=
= 2n-1 2n+1 ,
(2n-1)
(2n+1) 2
1
1-
1
1
n
1
1
1 1
1
2n+1 =
∴Sn= [(1- )+( - )+…+(

)]=
.
2

数列求和的“裂项相消法”讲解

数列求和的“裂项相消法”讲解

创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*对于本题通项公式类型的数列,采用的“求前n项和”的方法叫“裂项相消法”——就是把通项拆分成“两项的差”的形式,使得恰好在求和时能够“抵消”多数的项而剩余少数几项。

很多题目要善于进行这种“拆分”请看几例:(1)本题:()()2211111nn n n nan n n n++===-++-+(变形过程中用了“分子有理化”技巧)得12233411111 11111 nn n nS n++ =++++==+ -----…【往下自己求吧!答案C 】(2)求和1111122334(1)nSn n=++++⨯⨯⨯+…解:通项公式:()()()1111111n n n a n n n n n n +-===-+++ 所以 111111*********n S n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭…1111n n n =-+=+(3)求和 1111377111115(41)(43)n S n n =++++⨯⨯⨯-+… 解:()()()()()()43411111141434414344143n n n a n n n n n n +--⎛⎫===- ⎪-+-+-+⎝⎭得 1111377111115(41)(43)n S n n =++++⨯⨯⨯-+ (11111111)143771111154143n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦… 1114343n ⎛⎫=- ⎪+⎝⎭ ()343nn =+(4)求和 1111132435(2)n S n n =++++⨯⨯⨯+… ()()()21111122222n n n a n n n n n n +-⎛⎫===- ⎪+++⎝⎭()()()()1111111113243546572112n S n n n n n n =++++++++⨯⨯⨯⨯⨯--++… 1111111111111112132435462112n n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-++-+-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥--++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦…11111212n n =+--++ (仔细看看上一行里边“抵消”的规律 ) 311212n n =--++ 最后这个题,要多写一些项,多观察,才可能看出抵消的规律来。

裂项相消法求和

裂项相消法求和

裂项相消法求和裂项相消法是一种求和的方法,它通过将一系列相邻或相对数之间的差值相消,得到最终的和。

这种方法在高中数学中常常被用到,可以简化复杂的求和过程,使得计算更加简便和高效。

裂项相消法的基本思想是利用数列中的对称性,找出相邻项之间的差值,并通过相消的方式将它们消去。

这样一来,原来复杂的数列求和问题就变得相对简单起来。

举个例子来说明裂项相消法的使用。

假设我们要求和的数列是1-2+3-4+5-6+...+99-100。

一般情况下,我们可以使用等差数列求和公式来计算,但这里我们尝试使用裂项相消法来解决。

我们可以观察到数列中的对称性。

每两个相邻的数之间的差值都是1,所以我们可以分别将这些差值相加,即(1-2)+(3-4)+(5-6)+...+(99-100)。

接下来,我们可以发现每一对差值之和都是-1。

所以这个数列的和就等于差值的个数乘以-1,即有50个差值,所以和为50*(-1)=-50。

通过这个简单的例子,我们可以看出裂项相消法的优势。

它可以将原本复杂的数列求和问题转化为一系列简单的差值相加,从而得到最终的和。

而且,这种方法通常比直接使用求和公式更容易理解和计算。

除了对称性外,裂项相消法还可以利用数列中的其他特点来简化求和过程。

比如,如果数列中存在重复的项,我们可以将它们相加后再相消。

又或者,如果数列中存在周期性的规律,我们可以根据规律性质来简化求和。

这些都是裂项相消法的应用技巧,可以根据具体情况进行灵活运用。

裂项相消法是一种简化数列求和问题的方法。

它通过利用数列中的对称性和其他特点,将原本复杂的求和过程转化为简单的差值相加,从而得到最终的和。

在解决一些特定的数列求和问题时,裂项相消法可以帮助我们更加高效地计算,提高求解的准确性和速度。

所以,在数学学习中,掌握和运用裂项相消法是非常重要的。

裂项相消法求和附答案知识讲解

裂项相消法求和附答案知识讲解

裂项相消法求和附答案裂项相消法利用列项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面剩两项,再就是通项公式列项后,有时需要调整前面的系数,使列项前后等式两边保持相等。

(1)若是{a n }等差数列,则)11.(1111++-=n n n n a a d a a ,)11.(21122n ++-=n n n a a d a a (2)11111+-=+n n n n )( (3))11(1)(1k n n k k n n +-=+ (4))121121(2112)121+--=+-n n n n )(( (5)])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n (6)n n n n -+=++111(7))(11n k n k kn n -+=++1.已知数列的前n 项和为, .(1)求数列的通项公式;(2)设,求数列的前n 项和为.[解析] (1) ……………①时, ……………②①②得:即……………………………………3分在①中令, 有, 即, (5)分故对2.已知{a n}是公差为d的等差数列,它的前n项和为S n,S4=2S2+8.(Ⅰ)求公差d的值;(Ⅱ)若a1=1,设T n是数列{}的前n项和,求使不等式T n≥对所有的n∈N*恒成立的最大正整数m的值;[解析](Ⅰ)设数列{a n}的公差为d,∵ S4=2S2+8,即4a1+6d=2(2a1+d) +8,化简得:4d=8,解得d=2.……………………………………………………………………4分(Ⅱ)由a1=1,d=2,得a n=2n-1,…………………………………………5分∴=. (6)分∴ T n===≥,…………………………………………8分又∵不等式T n≥对所有的n∈N*恒成立,∴≥,…………………………………………10分化简得:m2-5m-6≤0,解得:-1≤m≤6.∴ m的最大正整数值为6.……………………………………………………12分3.)已知各项均不相同的等差数列{a n}的前四项和S4=14,且a1,a3,a7成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设T n为数列的前n项和,求T2 012的值.[答案] (Ⅰ)设公差为d,由已知得(3分)解得d=1或d=0(舍去),∴a1=2. (5分)故a n=n+1. (6分)(Ⅱ)==-,(8分)∴T n=-+-+…+-=-=. (10分)∴T2 012=. (12分)4.)已知数列{a n}是等差数列,-=8n+4,设数列{|a n|}的前n项和为S n,数列的前n项和为T n.(1)求数列{a n}的通项公式;(2)求证:≤T n<1.[答案] (1)设等差数列{a n}的公差为d,则a n=a1+(n-1)d. (2分)∵-=8n+4,∴(a n+1+a n)(a n+1-a n)=d(2a1-d+2nd)=8n+4.当n=1时,d(2a1+d)=12;当n=2时,d(2a1+3d)=20.解方程组得或(4分)经检验知,a n=2n或a n=-2n都满足要求.∴a n=2n或a n=-2n. (6分)(2)证明:由(1)知:a n=2n或a n=-2n.∴|a n|=2n.∴S n=n(n+1). (8分)∴==-.∴T n=1-+-+…+-=1-. (10分)∴≤T n<1. (12分)5.已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列. (Ⅰ)求数列{a n}的通项公式;(Ⅱ)令b n=(-1)n-1,求数列{b n}的前n项和T n.[答案] 查看解析[解析] (Ⅰ)因为S1=a1,S2=2a1+×2=2a1+2,S4=4a1+×2=4a1+12,由题意得(2a1+2)2=a1(4a1+12),解得a1=1,所以a n=2n-1.(Ⅱ)b n=(-1)n-1=(-1)n-1=(-1)n-1.当n为偶数时,T n=-+…+-=1-=.当n为奇数时,T n=-+…-+++=1+=. 所以T n=6. 已知点的图象上一点,等比数列的首项为,且前项和(Ⅰ) 求数列和的通项公式;(Ⅱ) 若数列的前项和为,问的最小正整数是多少?[解析]解:(Ⅰ) 因为,所以,所以,,,又数列是等比数列,所以,所以,又公比,所以,因为,又,所以,所以,所以数列构成一个首项为1,公差为1的等差数列,,所以,当时,,所以. (6分)(Ⅱ) 由(Ⅰ) 得,(10分)由得,满足的最小正整数为72. (12分)7. 在数列,中,,,且成等差数列,成等比数列().(Ⅰ)求,,及,,,由此归纳出,的通项公式,并证明你的结论;(Ⅱ)证明:.[解析] (Ⅰ)由条件得,由此可得.猜测. (4分)用数学归纳法证明:①当时,由上可得结论成立.②假设当时,结论成立,即,那么当时,. 所以当时,结论也成立.由①②,可知对一切正整数都成立. (7分)(Ⅱ)因为.当时,由(Ⅰ)知.所以.综上所述,原不等式成立. (12分)8.已知数列的前项和是,且.(Ⅰ)求数列的通项公式;(Ⅱ)设,,求使成立的最小的正整数的值.[解析] (1)当时,,由,……………………1分当时,∴是以为首项,为公比的等比数列. (4)分故…………………6分(2)由(1)知,………………8分,故使成立的最小的正整数的值 (12)分9. 己知各项均不相等的等差数列{a n}的前四项和S4=14,且a1,a3,a7成等比数列.(I)求数列{a n}的通项公式;(II)设T n为数列的前n项和,若T n≤¨对恒成立,求实数的最小值.[解析] 122. (Ⅰ)设公差为d. 由已知得……………………………3分解得,所以………………………………6分(Ⅱ),………………………………9分对恒成立,即对恒成立又∴的最小值为 (12)分10. 已知数列前项和为,首项为,且,,成等差数列.(Ⅰ)求数列的通项公式;(II)数列满足,求证:,[解析] (Ⅰ)成等差数列, ∴,,当时,,两式相减得: .所以数列是首项为,公比为2的等比数列,. (6分)(Ⅱ) ,(8分),. (12分)11.等差数列{a n}各项均为正整数, a1=3, 前n项和为S n, 等比数列{b n}中, b1=1, 且b2S2=64, {}是公比为64的等比数列.(Ⅰ) 求a n与b n;(Ⅱ) 证明:++…+<.[答案] (Ⅰ) 设{a n}的公差为d, {b n}的公比为q, 则d为正整数,a n=3+(n-1) d,b n=q n-1.依题意有①由(6+d) q=64知q为正有理数, 又由q=知, d为6的因子1, 2, 3, 6之一, 解①得d=2, q=8.故a n=3+2(n-1) =2n+1, b n=8n-1.(Ⅱ) 证明:S n=3+5+…+(2n+1) =n(n+2) ,所以++…+=+++…+==<.12. 等比数列{a n}的各项均为正数, 且2a1+3a2=1, =9a2a6.(Ⅰ) 求数列{a n}的通项公式;(Ⅱ) 设b n=log3a1+log3a2+…+log3a n, 求数列的前n项和.[答案] (Ⅰ) 设数列{a n}的公比为q. 由=9a2a6得=9, 所以q2=.因为条件可知q>0, 故q=.由2a1+3a2=1得2a1+3a1q=1, 所以a1=.故数列{a n}的通项公式为a n=.(Ⅱ) b n=log3a1+log3a2+…+log3a n=-(1+2+…+n)=-,故=-=-2,++…+=-2++…+=-.所以数列的前n项和为-.13.等差数列{a n}的各项均为正数,a1=3,其前n项和为S n,{b n}为等比数列,b1=1,且b2S2=16,b3S3=60.(Ⅰ)求a n和b n;(Ⅱ)求++…+.[答案] (Ⅰ)设{a n}的公差为d,且d为正数,{b n}的公比为q,a n=3+(n-1)d,b n=q n-1,依题意有b2S2=q·(6+d)=16,b3S3=q2·(9+3d)=60,(2分)解得d=2,q=2.(4分)故a n=3+2(n-1)=2n+1,b n=2n-1.(6分)(Ⅱ)S n=3+5+…+(2n+1)=n(n+2),(8分)所以++…+=+++…+=(10分)==-.(12分)14.设数列{a n}的前n项和S n满足:S n=na n-2n(n-1). 等比数列{b n}的前n项和为T n,公比为a1,且T5=T3+2b5.(1)求数列{a n}的通项公式;(2)设数列的前n项和为M n,求证:≤M n<.[答案](1)∵T5=T3+2b5,∴b4+b5=2b5,即(a1-1)b4=0,又b4≠0,∴a1=1.n≥2时,a n=S n-S n-1=na n-(n-1)a n-1-4(n-1),即(n-1)a n-(n-1)a n-1=4(n-1).∵n-1≥1,∴a n-a n-1=4(n≥2),∴数列{a n}是以1为首项,4为公差的等差数列,∴a n=4n-3. (6分)(2)证明:∵==·,(8分)∴M n=++…+==<,(10分)又易知M n单调递增,故M n≥M1=. 综上所述,≤M n<. (12分)。

裂项相消法求和附答案解析.docx

裂项相消法求和附答案解析.docx

.裂项相消法利用列相消法求和,注意抵消后并不一定只剩下第一和最后一,也有可能前面剩两,后面剩两,再就是通公式列后,有需要整前面的系数,使列前后等式两保持相等。

( 1 )若是 {a n }等差数列,1 1 .( 11) ,1 1 .( 1 1 )a n a n 1 d a n a n 1a n a n 22d a n a n 2( 2 )111 n(n1) n n1( 3 )1k)1 ( 1n1)n(n k n k( 4 )1 1 (11)(2n 1()2n 1) 2 2n 1 2n 1( 5 )n(n12)1[1(n1] 1)( n2n(n 1)1)(n2)( 6 )1n1nn n1( 7 )11n k n) n n k(k1. 已知数列的前n和,.(1 )求数列的通公式;(2 ),求数列的前n和.[ 解析 ] (1)⋯⋯⋯⋯⋯①.,⋯⋯⋯⋯⋯②①②得 :即⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分在①中令, 有, 即,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分故2. 已知 {a n} 是公差 d 的等差数列,它的前n 和 S n, S4=2S 2 +8 .(Ⅰ)求公差 d 的;(Ⅱ)若 a 1 =1 , T n是数列 {} 的前 n 和,求使不等式T n≥所有的n ∈N* 恒成立的最大正整数m 的;[ 解析 ] (Ⅰ)数列{a n }的公差 d ,∵ S4 =2S 2 +8 ,即 4a 1 +6d=2(2a 1 +d) +8,化得:4d=8,解得 d=2 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(Ⅱ)由 a 1=1 , d=2 ,得 a n =2n-1,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分∴=.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分.∴ T n ===≥ ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分又∵ 不等式n所有的 n ∈ N* 恒成立,T ≥∴ ≥,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分化得: m 2 -5m-6≤0 ,解得: -1 ≤m ≤6 .∴ m 的最大正整数 6 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分3.) 已知各均不相同的等差数列{a n } 的前四和S4 =14, 且 a 1 ,a3 ,a7成等比数列 . ( Ⅰ) 求数列 {a n } 的通公式 ;( Ⅱ)T n数列的前n和,求T2 012的.[ 答案 ] ( Ⅰ ) 公差 d, 由已知得(3 分)解得 d=1或d=0(舍去),∴a1=2. (5分)故 a n =n+1. (6分)( Ⅱ)==-,(8 分 ).∴T n= - + - + ⋯+ -= -=. (10 分 )∴T 2 012 =. (12分)4.) 已知数列 {a}是等差数列 ,- =8n+4, 数列 {|an |} 的前 n 和 S ,数列的前 nn n 和 T n .(1)求数列 {a n }的通公式 ;(2)求 : ≤T n <1.[ 答案 ] (1) 等差数列 {a n }的公差d,a n =a 1 +(n-1)d. (2分)∵- =8n+4,∴(a n+1 +a n )(a n+1 -a n )=d(2a 1 -d+2nd)=8n+4.当n=1,d(2a 1 +d)=12;当n=2,d(2a 1 +3d)=20.解方程得或(4 分)知 ,a n =2n或a n=-2n都足要求.∴a n =2n或a n=-2n. (6分)(2) 明 : 由 (1) 知 :a n =2n或a n=-2n.∴|a n |=2n..∴S n =n(n+1). (8分)∴ == -.∴T n=1- + - + ⋯+ -=1-. (10 分 )∴ ≤T n <1. (12分)5. 已知等差数列 {a n } 的公差2, 前 n 和 S n ,且 S1,S2 ,S4成等比数列 .( Ⅰ) 求数列 {a n } 的通公式 ;( Ⅱ) 令 b n =(-1)n-1,求数列 {b n }的前 n 和 T n .[ 答案 ] 看解析[ 解析 ] ( Ⅰ ) 因 S1 =a 1 ,S2=2a 1 +×2=2a1+2,S =4a1+×2=4a1+12,4由意得 (2a 1+2) 2 =a 1 (4a 1+12),解得 a 1 =1,所以 a n =2n-1.( Ⅱ)b n =(-1)n-1=(-1)n-1=(-1) n-1当 n 偶数 , T n =-=1-=.当 n 奇数 , T n =-.所以 T n =..+ ⋯ +-+ ⋯ -+++=1+=6.已知点的象上一点,等比数列的首,且前和( Ⅰ) 求数列和的通项公式;( Ⅱ) 若数列[ 解析 ] 解: (Ⅰ )因为的前项和为,问,所以的最小正整数,是多少?所以,,,又数列是等比数列,所以,所以,又公比,所以,因为,又所以数列所以所以,所以,所以构成一个首项为 1 ,公差为,当时,. ( 6 分),1 的等差数列,,,( Ⅱ) 由(Ⅰ ) 得,(10 分)由得,满足的最小正整数为 72.( 12 分)7. 在数列,中,,,且成等差数列,成等比数列() .(Ⅰ)求,,及,,,由此归纳出,的通项公式,并证明你的结论;(Ⅱ)证明:.[ 解析 ] (Ⅰ)由条件得,由此可得.猜测. ( 4分)用数学归纳法证明:①当时,由上可得结论成立.②假设当时,结论成立,即,那么当时,.所以当时,结论也成立.由①②,可知对一切正整数都成立. ( 7 分)(Ⅱ)因为.当时,由(Ⅰ)知.所以.综上所述,原不等式成立. (12分)8. 已知数列的前项和是,且.(Ⅰ)求数列的通项公式;(Ⅱ)设,,求使成立的最小.的正整数的.[ 解析 ](1)当,,由,⋯⋯⋯⋯⋯⋯⋯⋯1分当,∴是以首,公比的等比数列.⋯⋯⋯⋯⋯⋯⋯⋯4分故⋯⋯⋯⋯⋯⋯⋯ 6 分(2 )由( 1 )知,⋯⋯⋯⋯⋯⋯ 8 分,故使成立的最小的正整数的.⋯⋯⋯⋯⋯⋯12分.9.己知各均不相等的等差数列 {a n } 的前四和 S4=14 ,且 a 1, a 3, a 7成等比数列.(I)求数列 {a n } 的通公式;( II ) T n数列的前n和,若T n≤¨ 恒成立,求数的最小.[ 解析 ] 122.解得(Ⅰ)公差 d. 由已知得⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯,所以3 分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分(Ⅱ),⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分恒成立,即恒成立10.又∴的最小⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯已知数列前和,首,且,,成等差数列.12 分.(Ⅰ)求数列的通公式;( II )数列足,求:,[ 解析 ] (Ⅰ)成等差数列,∴,,当,,两式相减得:.所以数列是首,公比 2 的等比数列,.(6分)( Ⅱ),( 8 分),.( 12 分)11. 等差数列 {a n } 各均正整数, a 1 =3,前n和S n,等比数列{b n}中, b1=1,且b 2 S2 =64, {} 是公比64 的等比数列 .( Ⅰ) 求 a n与 b n ;( Ⅱ) 明 : + + ⋯ + <.. [ 答案 ] ( Ⅰ ){a n } 的公差d, {b n }的公比q, d 正整数 ,a n =3+(n-1) d,b n =q n-1.依意有①由(6+d) q=64知q正有理数,又由q=知, d 6 的因子 1, 2, 3, 6之一,解①得d=2, q=8.故 a n =3+2(n-1) =2n+1, b n =8n-1.( Ⅱ) 明 :S n =3+5+⋯+(2n+1) =n(n+2) ,所以+ + ⋯+ =+++ ⋯+==<.12.等比数列{a n}的各均正数, 且 2a 1+3a 2 =1,=9a 2a 6.( Ⅰ) 求数列 {a n }的通公式 ;( Ⅱ) b n =log 3 a 1+log3a 2 +⋯+log 3 a n ,求数列的前n和.[ 答案 ] ( Ⅰ ) 数列 {a n} 的公比q.由=9a 2 a 6得=9 , 所以 q 2=.因条件可知q>0,故q=..由 2a 1 +3a 2 =1 得 2a 1 +3a 1 q=1,所以a1=.故数列 {a n } 的通公式 a n=.( Ⅱ) b n =log 3 a 1+log3a 2 +⋯+log 3 a n=-(1+2+⋯+n)=-,故=-=-2,+ + ⋯+ =-2++ ⋯ +=-.所以数列的前 n 和 -.13. 等差数列 {a n } 的各均正数,a 1=3, 其前 n 和 S n ,{b n } 等比数列 ,b 1 =1, 且b 2 S2 =16,b3 S3 =60.( Ⅰ) 求 a n和 b n ;( Ⅱ) 求+ + ⋯ +.[ 答案 ] ( Ⅰ ) {a n }的公差d, 且 d 正数 ,{b n }的公比q,a n =3+(n-1)d,b n=q n-1 ,依意有 b 2 S2 =q ·(6+d)=16,b 3 S3 =q 2·(9+3d)=60,(2分).解得 d=2,q=2.(4分)故 a n =3+2(n-1)=2n+1,b n =2n-1.(6分)( Ⅱ)S n =3+5+⋯+(2n+1)=n(n+2),(8分)所以+ + ⋯+=+++ ⋯+=(10 分 )== -.(12 分 )14. 数列 {a n } 的前 n 和 S n足 :S n =na n -2n(n-1).等比数列{b n}的前n和T n,公比a 1 ,且 T5 =T 3 +2b 5 .(1)求数列 {a n }的通公式 ;(2) 数列的前n和M n,求:≤M n<.[ 答案 ](1) ∵T5 =T 3+2b 5 ,∴b 4+b 5=2b 5,即 (a 1 -1)b 4 =0, 又 b 4≠0, ∴a1 =1.n ≥2,a n =S n -S n-1 =na n -(n-1)a n-1 -4(n-1),即(n-1)a n-(n-1)a n-1 =4(n-1).∵n-1 ≥1, ∴a n -a n-1 =4(n≥2),.∴数列{a n }是以 1 首 ,4 公差的等差数列,∴a n =4n-3. (6分)(2) 明 : ∵==·,(8 分 )∴M n =++ ⋯+==< ,(10 分 )又易知 M n增 ,故 M n≥M 1=.上所述 , ≤M n < . (12分)。

裂项相消法求和

裂项相消法求和

裂项相消法求和
四、裂项相消法求和
这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:
4.在数列{a n }中,11211++⋅⋅⋅++++=
n n n n a n ,又11+⋅=n n n a a b ,求数列{b n }的前n 项的和.
练习:求数列
⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.
五、利用数列的通项求和
先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.
5.求
11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和.
实战练习:已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列.
(Ⅰ)求数列{}n a 的通项公式;
(Ⅱ)设⎭
⎬⎫⎩⎨⎧n n a b 是首项为1,公比为3的等比数列,求数列{}n b 的前n 项和n T .。

裂项相消法求和附答案

裂项相消法求和附答案

裂项相消法利用列项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面剩两项,再就是通项公式列项后,有时需要调整前面的系数,使列项前后等式两边保持相等。

(1)若是{a n }等差数列,则)11.(1111++-=n n n n a a d a a ,)11.(21122n ++-=n n n a a d a a (2)11111+-=+n n n n )( (3))11(1)(1k n n k k n n +-=+ (4))121121(2112)121+--=+-n n n n )(( (5)])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n (6)n n n n -+=++111(7))(11n k n k k n n -+=++1.已知数列的前n 项和为, .(1)求数列的通项公式;(2)设,求数列的前n 项和为.[解析] (1) ……………①时, ……………②①②得:即……………………………………3分在①中令, 有, 即,……………………………………5分故对2.已知{a n}是公差为d的等差数列,它的前n项和为S n,S4=2S2+8.(Ⅰ)求公差d的值;(Ⅱ)若a1=1,设T n是数列{}的前n项和,求使不等式T n≥对所有的n∈N*恒成立的最大正整数m的值;[解析](Ⅰ)设数列{a n}的公差为d,∵ S4=2S2+8,即4a1+6d=2(2a1+d) +8,化简得:4d=8,解得d=2.……………………………………………………………………4分(Ⅱ)由a1=1,d=2,得a n=2n-1,…………………………………………5分∴=.…………………………………………6分∴ T n===≥,…………………………………………8分又∵不等式T n≥对所有的n∈N*恒成立,∴≥,…………………………………………10分化简得:m2-5m-6≤0,解得:-1≤m≤6.∴ m的最大正整数值为6.……………………………………………………12分3.)已知各项均不相同的等差数列{a n}的前四项和S4=14,且a1,a3,a7成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设T n为数列的前n项和,求T2 012的值.[答案] (Ⅰ)设公差为d,由已知得(3分)解得d=1或d=0(舍去),∴a1=2. (5分)故a n=n+1. (6分)(Ⅱ)==-,(8分)∴T n=-+-+…+-=-=. (10分)∴T2 012=. (12分)4.)已知数列{a n}是等差数列,-=8n+4,设数列{|a n|}的前n项和为S n,数列的前n项和为T n.(1)求数列{a n}的通项公式;(2)求证:≤T n<1.[答案] (1)设等差数列{a n}的公差为d,则a n=a1+(n-1)d. (2分)∵-=8n+4,∴(a n+1+a n)(a n+1-a n)=d(2a1-d+2nd)=8n+4.当n=1时,d(2a1+d)=12;当n=2时,d(2a1+3d)=20.解方程组得或(4分)经检验知,a n=2n或a n=-2n都满足要求.∴a n=2n或a n=-2n. (6分)(2)证明:由(1)知:a n=2n或a n=-2n.∴|a n|=2n.∴S n=n(n+1). (8分)∴==-.∴T n=1-+-+…+-=1-. (10分)∴≤T n<1. (12分)5.已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列. (Ⅰ)求数列{a n}的通项公式;(Ⅱ)令b n=(-1)n-1,求数列{b n}的前n项和T n. [答案] 查看解析[解析] (Ⅰ)因为S1=a1,S2=2a1+×2=2a1+2,S4=4a1+×2=4a1+12,由题意得(2a1+2)2=a1(4a1+12),解得a1=1,所以a n=2n-1.(Ⅱ)b n=(-1)n-1=(-1)n-1=(-1)n-1.当n为偶数时,T n=-+…+-=1-=.当n为奇数时,T n=-+…-+++=1+=. 所以T n=6. 已知点的图象上一点,等比数列的首项为,且前项和(Ⅰ) 求数列和的通项公式;(Ⅱ) 若数列的前项和为,问的最小正整数是多少?[解析]解:(Ⅰ) 因为,所以,所以,,,又数列是等比数列,所以,所以,又公比,所以,因为,又,所以,所以,所以数列构成一个首项为1,公差为1的等差数列,,所以,当时,,所以. (6分)(Ⅱ) 由(Ⅰ) 得,(10分)由得,满足的最小正整数为72. (12分)7. 在数列,中,,,且成等差数列,成等比数列().(Ⅰ)求,,及,,,由此归纳出,的通项公式,并证明你的结论;(Ⅱ)证明:.[解析] (Ⅰ)由条件得,由此可得.猜测. (4分)用数学归纳法证明:①当时,由上可得结论成立.②假设当时,结论成立,即,那么当时,. 所以当时,结论也成立.由①②,可知对一切正整数都成立. (7分)(Ⅱ)因为.当时,由(Ⅰ)知.所以.综上所述,原不等式成立. (12分)8.已知数列的前项和是,且.(Ⅰ)求数列的通项公式;(Ⅱ)设,,求使成立的最小的正整数的值.[解析] (1)当时,,由,……………………1分当时,∴是以为首项,为公比的等比数列.……………………4分故…………………6分(2)由(1)知,………………8分,故使成立的最小的正整数的值.………………12分9. 己知各项均不相等的等差数列{a n}的前四项和S4=14,且a1,a3,a7成等比数列.(I)求数列{a n}的通项公式;(II)设T n为数列的前n项和,若T n≤¨对恒成立,求实数的最小值.[解析] 122. (Ⅰ)设公差为d. 由已知得……………………………3分解得,所以………………………………6分(Ⅱ),………………………………9分对恒成立,即对恒成立又∴的最小值为……………………………………………………………12分10. 已知数列前项和为,首项为,且,,成等差数列.(Ⅰ)求数列的通项公式;(II)数列满足,求证:,[解析] (Ⅰ)成等差数列, ∴,,当时,,两式相减得:.所以数列是首项为,公比为2的等比数列,. (6分)(Ⅱ) ,(8分),. (12分)11.等差数列{a n}各项均为正整数, a1=3, 前n项和为S n, 等比数列{b n}中, b1=1, 且b2S2=64, {}是公比为64的等比数列.(Ⅰ) 求a n与b n;(Ⅱ) 证明:++…+<.[答案] (Ⅰ) 设{a n}的公差为d, {b n}的公比为q, 则d为正整数,a n=3+(n-1) d,b n=q n-1.依题意有①由(6+d) q=64知q为正有理数, 又由q=知, d为6的因子1, 2, 3, 6之一, 解①得d=2, q=8. 故a n=3+2(n-1) =2n+1, b n=8n-1.(Ⅱ) 证明:S n=3+5+…+(2n+1) =n(n+2) ,所以++…+=+++…+==<.12. 等比数列{a n}的各项均为正数, 且2a1+3a2=1, =9a2a6.(Ⅰ) 求数列{a n}的通项公式;(Ⅱ) 设b n=log3a1+log3a2+…+log3a n, 求数列的前n项和.[答案] (Ⅰ) 设数列{a n}的公比为q. 由=9a2a6得=9, 所以q2=.因为条件可知q>0, 故q=.由2a1+3a2=1得2a1+3a1q=1, 所以a1=.故数列{a n}的通项公式为a n=.(Ⅱ) b n=log3a1+log3a2+…+log3a n=-(1+2+…+n)=-,故=-=-2,++…+=-2++…+=-.所以数列的前n项和为-.13.等差数列{a n}的各项均为正数,a1=3,其前n项和为S n,{b n}为等比数列,b1=1,且b2S2=16,b3S3=60.(Ⅰ)求a n和b n;(Ⅱ)求++…+.[答案] (Ⅰ)设{a n}的公差为d,且d为正数,{b n}的公比为q,a n=3+(n-1)d,b n=q n-1,依题意有b2S2=q·(6+d)=16,b3S3=q2·(9+3d)=60,(2分)解得d=2,q=2.(4分)故a n=3+2(n-1)=2n+1,b n=2n-1.(6分)(Ⅱ)S n=3+5+…+(2n+1)=n(n+2),(8分)所以++…+=+++…+=(10分)==-.(12分)14.设数列{a n}的前n项和S n满足:S n=na n-2n(n-1). 等比数列{b n}的前n项和为T n,公比为a1,且T5=T3+2b5.(1)求数列{a n}的通项公式;(2)设数列的前n项和为M n,求证:≤M n<.[答案](1)∵T5=T3+2b5,∴b4+b5=2b5,即(a1-1)b4=0,又b4≠0,∴a1=1.n≥2时,a n=S n-S n-1=na n-(n-1)a n-1-4(n-1),即(n-1)a n-(n-1)a n-1=4(n-1).∵n-1≥1,∴a n-a n-1=4(n≥2),∴数列{a n}是以1为首项,4为公差的等差数列,∴a n=4n-3. (6分)(2)证明:∵==·,(8分) ∴M n=++…+==<,(10分)又易知M n单调递增,故M n≥M1=.综上所述,≤M n<. (12分)。

裂项相消法公式求和公式

裂项相消法公式求和公式

裂项相消法公式求和公式在数学中,求和公式是一个非常基础的概念,它用于将一系列的数值相加,得到它们的总和。

裂项相消法是求和公式的一种常见方法,在这种方法中,我们通过将相邻的项相减,以消去一些项,从而简化求和公式。

本文将详细介绍裂项相消法的公式和使用方法。

裂项相消法公式裂项相消法公式是一个非常重要的求和公式,它可以用来求解一些较为复杂的求和问题。

这个公式的具体形式如下:$$\sum_{i=1}^{n}a_i=\frac{1}{2}\left[\sum_{i=1}^{n}(a_i+a_{n-i+1})-\sum_{i=1}^n(a_i-a_{n-i+1})\right]$$这个公式看起来比较复杂,但实际上它非常简单。

其中,$\sum_{i=1}^{n}a_i$表示从1到n的所有$a_i$的和,而$\sum_{i=1}^{n}(a_i+a_{n-i+1})$和$\sum_{i=1}^{n}(a_i-a_{n-i+1})$分别表示将$a_i$和$a_{n-i+1}$相加和相减后的总和。

根据裂项相消法的原理,这两个总和相减后,可以得到原始的$a_i$的和。

使用裂项相消法求和使用裂项相消法求和的具体方法非常简单,只需要按照公式进行计算即可。

以下是一个具体的例子:$$\sum_{i=1}^{5}i^3$$我们可以使用裂项相消法来计算这个求和式。

首先,我们可以将这个求和式写成两个总和的形式:$$\begin{aligned}\sum_{i=1}^{5}i^3&=\frac{1}{2}\left[\sum_{i =1}^{5}(i^3+(6-i)^3)-\sum_{i=1}^{5}(i^3-(6-i)^3)\right]\\&=\frac{1}{2}\left[\sum_{i=1}^{5}(i^3+(6-i)^3)-\sum_{i=1}^{5}(2i^3-3i^2\times6+3i\times36-2\times6^3)\right]\end{aligned}$$然后,我们可以使用简单的代数运算来计算这两个总和:$$\begin{aligned}&\sum_{i=1}^{5}(i^3+(6-i)^3)=2\times\sum_{i=1}^{5}(i^3+108-18i^2)\\=&2\times(\sum_{i=1}^{5}i^3+540-18\sum_{i=1}^{5}i^2)\\=&2\times(1^3+2^3+3^3+4^3+5^3 +540-18\times(1^2+2^2+3^2+4^2+5^2))\\=&2\times(1+8+27+6 4+125+540-18\times55)\\=&2\times(775)=1550\end{aligned}$$$$\begin{aligned}&\sum_{i=1}^{5}(2i^3-3i^2\times6+3i\times36-2\times6^3)=2\times\sum_{i=1}^{5}(2i^3-18i^2+108i-216)\\=&2\times(2\times1^3-18\times1^2+108\times1-216+2\times2^3-18\times2^2+108\times2-216+2\times3^3-18\times3^2+108\times3-216\\&+2\times4^3-18\times4^2+108\times4-216+2\times5^3-18\times5^2+108\times5-216)\\=&2\times(-740)=-1480\end{aligned}$$然后,我们将这两个总和相减并除以2,即可得到答案:$$\frac{1550-(-1480)}{2}=1515$$因此,$\sum_{i=1}^{5}i^3=1515$。

数列求和之裂项相消法资料讲解

数列求和之裂项相消法资料讲解

小结4:
1 1n k n ,特别 1 n 地 1 n .
n k nk
n 1 n
知识归纳
裂项相消法的常见类型 分式型、等差数列型、根式型
裂项相消法的一般步骤 求通项 裂项 相消
求和
裂项相消法常见裂项公式
见小结
谢谢各位老师莅临指导!
学生思考:
11 1 1 98 99 99 100
1 1 1 1 1 1 11 223 34 1010 01
1 1 100 101 101
? 问题: 1 122 133 14nn 1 1
问题探究
1
例1
求数列
nn
1 的前
n项和
S
n
.
解:
变式1:求数 2n列 11 (2n1) 的n前 项S和 n.
数列求和
裂项相消法
2016年4月1日
教学目标:
知识与技能目标
数列求和的方法之裂项相消法
过程与能力目标
裂项相消法的常见题型及解题思路
教学重难点:
重 点: 裂项相消法的常见题型及解题思路
难 点: 裂项相消法适用题型的特征及相消
后所剩项的判断
教学过程 新课导入
小学奥数中:
? 111 1
12 23 34 10 1 001
2求:证 11111.
S1 S2 S3
Sn
练习2:201年 5 全国 I 卷
S n 为 a n 的 n 项 数 , 已 a n 前 0 , a 和 n 2 列 2 a 知 n 4 S n 3
1求an的通项公式; 2设 bnana 1n1,求数 bn的 列 n项 前 T n和 .
问题探究
求 Tn . TnS3 1 2S 52 2S 73 22n Sn 21,

数列裂项相消法求和

数列裂项相消法求和

数列的求和是高考的必考题型,求和问题关键在于分析通项的结构特征,选择恰当的求和方法。

常见的求和方法有:公式法、错位相减法、裂项相消法、分组求和法等。

今天讲讲裂项相消法求和。

常见的列项求和公式()11111)1(+-=+n n n n())11(11)2(kn n k k n n +-=+ )121121(21141)3(2+--=-n n n nn n n -+=++111)4( )(11)5(n k n k kn n -+=++nn na a a log )1(log )11(log )6(-+=+注意:裂开后,两项之差前面的系数为小分母大分母-1【典例1】形如)(1k n n a n+=型{}{}{}nn nn n n nn n n T n b s b a n a a s s n a 项和的前求数列设项公式。

是等比数列,并求其通证明数列都成立。

对任意的正整数且满足项和为的各项为正数,前已知数列,1)2()1(324,2=-+= ⎩⎨⎧≥-==-2,1n ,11n S S S a a S n n n n n ,得用公式求分析:已知下面求n>1时,(1)【典例2】形如kn n a n++=1型 {}2019,,)()1(124)(S S n a N n n f n f a x x f n n n a求项和为的前记数列,令),,的图像过点(已知函数+∈++==解析:【规律方法】利用裂项相消法求和的注意事项。

1、抵消后并不定只剩下第一项和最后一项,也有可能是前面两项,和后两项;或者是前面几项,后面几项。

2、将通项裂开后,有时需要调整前面的系数,系数为:裂开的两项分母之差的倒数。

高中数学复习_数列求和_裂项相消法

高中数学复习_数列求和_裂项相消法

裂项相消法求和把数列的通项拆成两项之差、正负相消剩下首尾若干项。

1、 特别是对于⎭⎬⎫⎩⎨⎧+1n n a a c ,其中{}n a 是各项均不为0的等差数列,通常用裂项相消法,即利用1+n n a a c =⎪⎪⎭⎫⎝⎛-+111n na a d c ,其中()n n a a d -=+1 2、 常见拆项:111)1(1+-=+n n n n)121121(21)12)(12(1+--=+-n n n n])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n!)!1(!n n n n -+=⋅)!1(1!1)!1(+-=+n n n n例1 求数列1{}(1)n n +的前n 和n S .例2 求数列1{}(2)n n +的前n 和n S .例3 求数列1{}(1)(2)n n n ++的前n 和n S .例4 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.例5:求数列311⨯,421⨯,531⨯,…,)2(1+n n ,…的前n 项和S例6、 求和)12)(12()2(534312222+-++⋅+⋅=n n n S n一、累加法1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。

2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以数列{}n a 的通项公式为2n a n =。

数列求和裂项相消法

数列求和裂项相消法

裂项相消法
典范例题
(以下n均为正整数)
例1:
这是一道较为简略的裂项相消法化简题,1到2,2到3,3到4,……,n到n+1,都相差1,直接裂项即可.(化成1/1-
1/2+1/2-1/3...)
例2:
这是例1的升华题,是将分母稍作变更,标题就不一样了.1到3,3到5,5到7,……,2n-1到2n+1,都相差2,裂项后总体要乘以
1/2,如许才可以.
例3:
这是例2的拓展题,此时分母每个因数相差3了,做法一样,裂项后总体要乘以1/3,如许才行.
例4:
这是将例1一般化,此时分母每个因数相差1,裂项后直接相消.
例5:
这是将例3的拓展题,此时分母每个因数相差3,做法一样,裂项后总体要乘以1/3,如许才行.
例6:
这道题易错题,易写成,如许就造成错误,本来是正的,如今是负的.正好相反,这一点多留意.
例7:
这道题易错题,如许就造成错误,本来是正的,如今是负的.正好相反,这一点多留意.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【芝罘区数学】 【芝罘区数学】
1 【易错点17】不能根据数列的通项的特点寻找相应的求和方法,在应用裂项求和方法时对裂项后抵消项的规律不清,导致多项或少项。

例17、求=n S ++++++321121111…n
+++++ 3211. 【易错点分析】本题解答时一方面若不从通项入手分析各项的特点就很难找到解题突破口,其次在裂项抵消中间项的过程中,对消去哪些项剩余哪些项规律不清而导致解题失误。

解:由等差数列的前n 项和公式得2
)1(321+=++++n n n ,∴)1
11(2)1(23211+-=+=++++n n n n n ,n 取1,2,3,…,就分别得到3211,211,11+++,…,∴=n S )1
11(2)4131(2)3121(2)211(2+-++-+-+-n n 1
2)111(2+=+-=n n n . 【知识归类点拔】“裂项法”有两个特点,一是每个分式的分子相同;二是每项的分母都是两个数(也可三个或更多)相乘,且这两个数的第一个数是前一项的第二个数,如果不具备这些特点,就要进行转化。

同是要明确消项的规律一般情况下剩余项是前后对称的。

常见的变形题除本题外,还有其它形式,例如:求n
n 216314212112222++++++++ ,方法还是抓通项,即)2
11(21)2(1212+-=+=+n n n n n n ,问题会很容易解决。

另外还有一些类似“裂项法”的题目,如:11
++=n n a n ,求其前n 项和,可通过分母有理化的方法解决。

数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。

【练17】求和121222-+=n S +141422-++161622-++…+1
)2(1)2(22-+n n . 答案:+-++-++-+=7
15115131131111n S …+1211211+--+n n =122++n n n .。

相关文档
最新文档