Titanium oxide nanotube arrays prepared by anodic oxidation

合集下载

氧化钛纳米片材料的合成及其催化应用进展

氧化钛纳米片材料的合成及其催化应用进展

CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2017年第36卷第7期·2488·化 工 进展氧化钛纳米片材料的合成及其催化应用进展李路1,2,徐金铭2,齐世学1,黄延强2(1烟台大学化学与化工学院,山东 烟台 264005;2中国科学院大连化学物理研究所,航天催化与新材料研究室,辽宁 大连 116023)摘要:氧化钛纳米片材料为一种新兴的二维层状材料,在催化、环境、能源和电子领域引起人们广泛的关注。

本文从催化研究的角度出发,综述了氧化钛纳米片材料的结构、制备方法、金属及非金属元素的掺杂、纳米片基复合材料和其在光催化、光电催化和热催化等方面的应用进展。

分析表明氧化钛纳米片材料拥有特殊的形貌和特别的物理化学性质,通过控制材料的组成及结构变化,能够实现氧化钛纳米片材料的多种功能化。

指出氧化钛纳米片材料虽然有着优良的性能,但是在实际应用中远不能满足要求。

因此,优化合成和探索新形式的二氧化钛纳米片材料,对其表面进行改性及开发具有特殊功能纳米复合材料是解决其瓶颈的有效途径。

探索催化反应过程中的反应机理,开发氧化钛纳米片基工业应用催化剂将是今后重要的研究方向。

关键词:氧化钛纳米片;层状钛酸盐;催化;合成;纳米材料中图分类号:O611.4 文献标志码:A 文章编号:1000–6613(2017)07–2488–09 DOI :10.16085/j.issn.1000-6613.2016-2340Recent advances in titanium oxide nanosheets for catalytic applicationsLI Lu 1,2,XU Jinming 2,QI Shixue 1,HUANG Yanqiang 2(1College of Chemistry and Chemical Engineering ,Yantai University ,Yantai 264005,Shandong ,China ;2Laboratory of Catalysts and New Materials for Aerospace ,Dalian Institution of Chemical Physics ,Chinese Academy of Science ,Dalian 116023,Liaoning ,China )Abstract: As a new class 2D layered materials ,Titanium oxide nanosheets have attracted great interest inthe fields of catalysis ,environment ,energy and electronics. In this work ,we provide an overview of the recent advance of titanium oxide nanosheets on their layered structure ,synthetic methods ,doping with metals or nonmetal ,as well as their nanocomposites and applications in catalysis. Recent researches indicate that titanium oxide nanosheets with unique structure and special physical and chemical properties can achieve multiple functions by controlling their compositions and structures. Although titanium oxide nanosheets have a lot of advantages ,they are still far from practical applications. Therefore it is demanded to explore new synthesis ,doping and modification methods ,and develop new composite materials. In addition ,the reaction mechanism in the catalytic reaction process and the industrial application of titanium oxide nanosheets will be important research directions in the future. Key words :titanium oxide nanosheets ;layered titanate compounds ;catalysis ;synthesis ;nanomaterials助理研究员,从事有序介孔材料合成及表面修饰和生物质催化转化制化学品相关科研工作。

电解-电化学混合电容器的制备与性能

电解-电化学混合电容器的制备与性能

电解-电化学混合电容器的制备与性能杨斌吴慧胡颂伟吕惠玲宋晔*朱绪飞*(南京理工大学软化学与功能材料教育部重点实验室,南京210094)摘要:为解决电化学电容器工作电压过低的问题,本文以钽电解电容器的烧结型钽块为阳极,聚苯胺(PANI)/TiO 2电化学电容器复合电极为阴极,成功制备了高能量密度、高工作电压的电解-电化学混合电容器.PANI/TiO 2复合电极是通过在多孔阳极氧化钛纳米管阵列中电化学聚合PANI 制得.该阴极具有优良的倍率特性,当平均功率密度为0.55mW ·cm -2时,对应的比容量仍达到10.0mF ·cm -2.由于与电解电容器复合,该混合电容器的单元工作电压可高达100V.而且电化学电容器阴极的比容量远大于阳极,故阴极所需尺寸远小于阳极,节省的空间可用于增大阳极尺寸,从而使混合电容器的比容量极大提高.所制备的混合电容器体积能量密度和质量能量密度分别是钽电解电容器的4倍和3倍.将该混合电容器在100V 下进行短路充放电实验,循环10000次后发现容量未衰减,等效串联电阻未增加,显示出极好的循环稳定性和功率特性.计算表明其最大功率密度高达847.5W ·g -1.电化学阻抗谱显示其具有优良的阻抗特性和频率特性.关键词:混合电容器;电化学电容器;TiO 2;聚苯胺;钽电解电容器中图分类号:O646Fabrication and Performance of Electrolytic-ElectrochemicalHybrid CapacitorsYANG BinWU HuiHU Song-WeiLÜHui-Ling SONG Ye *ZHU Xu-Fei *(Key Laboratory of Soft Chemistry and Functional Materials of Ministry of Education,Nanjing University of Science andTechnology,Nanjing 210094,P .R.China )Abstract:To solve the issue of comparatively low operation voltage of electrochemical capacitors,a hybrid capacitor consisting of the anode electrode of tantalum electrolytic capacitor and the cathode electrode of polyaniline (PANI)/TiO 2with high energy density and high working voltage was developed.The PANI/TiO 2composite electrode for use as the capacitor cathode was prepared by in situ electrochemical polymerization of aniline in porous anodic titania nanotube arrays on titanium foil substrates.The composite electrode showed good rate capability with a specific capacitance of 10.0mF ·cm -2and a high power density of 0.55mW ·cm ing a dielectric coated anode electrode,the single-cell hybrid capacitor could withstand working voltages as high as 100V.As the PANI/TiO 2composite cathode only requires a small volume because of its high specific capacitance,available space can be used to enlarge the anode electrode,leading to an increase in specific capacitance of the hybrid capacitor.The hybrid capacitor had high volumetric and gravimetric energy densities,which were about four times and three times higher than those of a tantalum electrolytic capacitor.The short circuit charge-discharge cycle test for the hybrid capacitor at 100V showed that its capacitance did not decrease,and the equivalent series resistance did not increase after 10000cycles,indicating excellent cycle stability and power performance.The peak power density was estimated to be 847.5W ·g -1.In addition,electrochemical impedance spectroscopy data indicated that the hybrid capacitor had good impedance and frequency characteristics.[Article]doi:10.3866/PKU.WHXB201303122物理化学学报(Wuli Huaxue Xuebao )Acta Phys.-Chim.Sin .2013,29(5),1013-1020May Received:January 21,2013;Revised:March 11,2013;Published on Web:March 12,2013.∗Corresponding authors.SONG Ye,Email:songye.njust@.ZHU Xu-Fei,Email:zhuxufei.njust@;Tel:+86-25-84315949.The project was supported by the National Natural Science Foundation of China (51077072,61171043).国家自然科学基金(51077072,61171043)资助项目ⒸEditorial office of Acta Physico-Chimica Sinica1013Vol.29Acta Phys.-Chim.Sin.2013Key Words:Hybrid capacitor;Electrochemical capacitor;TiO2;Polyaniline;Tantalum electrolytic capacitor1引言电化学电容器,也称超级电容器,是利用电子性导体和电解液的界面双电层或基于法拉第赝电容(电吸附或氧化还原过程)原理,来储存电荷的新型电化学储能器件.1,2由于其填补了电介质电容器与二次电池之间的空白,使得同时具有高能量密度和高功率密度的储能器件成为可能,近年来备受人们关注.3-7然而,由于受电解液分解电压的限制,电化学电容器的单元工作电压很低(一般不超过3 V).1而在很多实际应用场合,如电能武器的电源系统,往往工作电压很高,这就需要将许多单元电容串联使用.但实际生产的每个单元电容的容量和等效串联电阻(R ESR)不可能完全一致,导致电容器组承受的总电压在各单元电容上不可能均匀分配,因此串联电容器组的工作电压必须降低,才能保证电容器组中任何单元电容分配的电压不至于超过其电解液分解电压.此外,电容器串联后总容量下降,导致电容器组总能量密度大大降低,且串联后的R ESR 大增,导致总功率密度也下降.与电化学电容器相比,电解电容器的工作电压高、功率密度极高.为了解决电化学电容器工作电压过低的问题,Evans8最先提出将电解电容器和电化学电容器“混合”的想法:在钽电解电容器的基础上,用大容量的电化学电容器电极RuO2取代电解电容器原来的阴极,构成所谓Ta2O5阳极-RuO2阴极混合电容器.8这种电解-电化学混合电容器既能发挥电化学电容器电极能量密度高的特点,又保持了电解电容器单元电压高(电压主要加在阳极上)的优点.但由于钌是稀有金属,导致RuO2电化学电容器电极成本过高,而且多数情况下RuO2为固体粉末,其电极制备工艺也比较繁琐.为此,本文采用价廉的纳米结构导电聚苯胺(PANI)电极替代RuO2作为混合电容器阴极,与钽电解电容器阳极构成电解-电化学混合电容器.由于多孔阳极氧化钛纳米管具有易制备、比表面积大的优点,9-11故以其为基体,采用电化学原位聚合可制备高比容量的PANI/TiO2复合膜阴极,在此基础上成功制备了性能优良的电解-电化学混合电容器.Xie等12曾对PANI/TiO2复合膜进行研究,结果表明其作为电化学电容器电极,显示出较好的电化学性能.他们采用HF的水溶液作为电解液,通过阳极氧化法制备TiO2.水系电解液制备的TiO2纳米管管壁薄,比表面积大.但管壁太薄可能导致结构稳定性不好,并且管长一般只能达到几百纳米到几微米.而乙二醇作溶剂时能得到更长的纳米管,10故本文采用NH4F的乙二醇溶液作为电解液阳极氧化制备TiO2纳米管,详细研究了PANI/ TiO2复合膜阴极的电化学性能和混合电容器的电气特性.这项工作对同时提高储能器件的能量密度和功率密度具有重要的指导意义和实际应用价值.2实验部分2.1原料与试剂钛箔(宝鸡荣豪钛业公司)厚度为0.1mm,纯度99.9%;氢氟酸、硝酸和苯胺均为分析纯(西陇化工股份有限公司);NH4F为分析纯(国药集团化学试剂有限公司);乙二醇和磷酸二氢铵均为电容级(深圳新宙邦科技股份有限公司);硫酸为分析纯(扬州沪宝化学试剂有限公司);烧结型阳极钽块由深圳市金元电子技术有限公司友情提供.2.2TiO2纳米管阵列膜的制备首先,钛片(2.5cm×1cm)通过化学抛光60s去除表面天然氧化膜,然后在去离子水中超声清洗抛光后的钛片.抛光液组成为HF:HNO3:H2O(体积比为1:1:2).阳极氧化在两电极体系的烧杯里进行,阳极和阴极均为抛光、超声清洗后的钛片.电解液组成为0.5%(w)NH4F和2%(V)H2O的乙二醇溶液.为了制备高度有序的氧化钛纳米管阵列,采用了二次氧化法.13,14一次氧化在20°C恒压60V下氧化15min,然后超声15min去除一次氧化膜,而后用去离子水清洗干净;再于同样条件下二次氧化15min后取出样品,用去离子水冲洗后自然晾干.最后,对带有钛基体的TiO2纳米管样品进行退火处理,采用2°C·min-1的升温速率升至500°C,保温5h,然后自然冷却待用.退火所用电炉为合肥日新高温技术有限公司RXL-15型中温箱式电阻炉.2.3PANI/TiO2复合电极的制备在0.1mol·L-1的苯胺和0.5mol·L-1的H2SO4水溶液中,以退火处理后的TiO2/Ti电极为工作电极,铂电极为对电极,饱和甘汞电极为参比电极组成的三电极体系中进行苯胺的电化学聚合.为了使PANI1014杨斌等:电解-电化学混合电容器的制备与性能No.5在TiO2纳米管中均匀生长,采用循环伏安法(CV)聚合(瑞士万通Autolab电化学工作站),电位范围为-0.2-1.0V,扫速为25mV·s-1.循环30圈后停止,取出PANI/TiO2电极样品,用去离子水冲洗后晾干,作为本课题中电解-电化学混合电容器的复合阴极.2.4阳极钽电极的制备本课题中混合电容器的阳极部分采用钽电解电容器的阳极,所用烧结型阳极钽块规格为Φ0.53 cm×1.08cm,质量为2.23g.利用阳极氧化的方法在多孔钽块的表面形成Ta2O5阳极氧化膜,电解液为0.1mol·L-1的磷酸二氢铵溶液,采用10mA·g-1的电流密度恒流升压至120V,恒压2h,然后将电解液温度升至100°C再恒压2h.此过程所用电源为台湾Chroma62006P-300-8型程控直流电源.2.5阴极的电化学性能测试阴极电化学性能使用Autolab电化学工作站,在0.5mol·L-1H2SO4中三电极体系测试.以PANI/ TiO2复合电极为工作电极,铂电极为对电极,饱和甘汞电极为参比电极.不同扫速下的CV测试范围为-0.2-0.75V.不同电流密度下的充放电测试及充放电循环稳定性测试的电位范围为0-0.7V.TiO2/ Ti和PANI/TiO2电极的电化学阻抗谱(EIS)测试频率范围为100kHz-0.01Hz,测试电位为0.3V,正弦波幅值为10mV.文中所有电位均相对于饱和甘汞电极而言.2.6混合电容器的性能测试将阳极钽块与阴极PANI/TiO2复合膜之间用电容器纸隔开并固定,置于3mol·L-1H2SO4电解液中构成混合电容器系统.其电容量、损耗角正切随频率的变化利用TH2816型宽频LCR数字电桥测试(常州同惠电子有限公司),频率范围为0.05-20 kHz.漏电流测试采用TH2686型漏电流测试仪(常州同惠电子有限公司),充电电压为100V,充电1 min后读数.混合电容器EIS谱的测试频率范围为100-0.01Hz,测试电位为0V,正弦波幅值10mV.混合电容器的短路充放电循环实验是将电容器在TH2686型漏电流测试仪充电到100V后,直接将正负极短路放电,每循环一定次数后,测量其100Hz 下的电容量和1kHz下的R ESR值.3结果与讨论3.1PANI/TiO2阴极性能利用CV法电化学合成的PANI与化学氧化法制备的PANI相比纯度更高,并具有更好的电化学活性,15,16所以本文以TiO2纳米管阵列薄膜为电极,采用CV法在TiO2纳米管内原位电化学聚合制备纳米结构的PANI/TiO2复合电极.而且,相较于RuO2固体粉末压制的电极,这种直接在钛片上制备的纳米结构复合电极无需集流体,对于后续应用而言十分方便.苯胺聚合的CV曲线如图1所示,其中插图为聚合初始10圈的CV曲线.由图1可以看出,在CV 扫描的前10圈内,没有出现明显的氧化还原峰(图1插图),这是由于聚合的初始阶段在TiO2纳米管壁内的成核速率较慢,PANI生长缓慢.随着少量的PANI 在管壁内的形成,聚合逐渐变得容易,图1中CV曲线的氧化还原峰增长越来越快正好说明这一点.CV 曲线大约0.2V处的氧化峰(A1)代表PANI的全还原态到翠绿亚胺态的转变,大约0V左右出现其对应的还原峰(A2).而0.65V左右的氧化峰(B1)为翠绿亚胺态到全氧化态转变所对应的峰,约0.6V左右有其对应的还原峰(B2).17扫描至0.7V后,随着电位增加曲线逐渐上抬,这是由于PANI的生长,电流逐渐增大导致的.而上抬的趋势缓慢而均匀,说明PANI在TiO2纳米管中的生长也缓慢而均匀,可避免因聚合速率过快而产生TiO2纳米管堵塞的问题.图2是所制备的PANI/TiO2复合电极在不同扫速下的CV曲线.可以看出,在很宽的扫速范围内(10-150mV·s-1),随着扫速的增加,曲线的形状基本保持一致,说明该复合电极能够快速发生氧化还原反应,具有良好的倍率特性.这种优点与选择在TiO2纳米管中生长PANI密切相关,TiO2纳米管具有很大的比表面积,在TiO2纳米管内生长的PANI比表面积大大提高,与电解液的接触更好,离子扩散图1在TiO2/Ti上电化学聚合PANI的CV曲线Fig.1CV curves for the electrochemical polymerizationof PANI on TiO2/Ti1015Vol.29 Acta Phys.-Chim.Sin.2013距离更短,故PANI的掺杂-脱掺杂过程大大加速,导致倍率特性提高.18,19随着扫速的增加,氧化峰和还原峰的位置分别向正、负电位方向略微偏移,这主要是由电极内阻造成的.20从图2的插图可以看出,全还原态PANI到翠绿亚胺态转变过程的峰电流与扫速的平方根成正比,说明该电极反应是一个扩散控制过程.21恒流充放电曲线常被用来计算电极的比容量,不同电流密度下的充放电性能也常用来考察电极的功率特性.图3是PANI/TiO2复合电极在不同电流密度下的恒流充放电曲线.通过充放电曲线,可计算出比容量C s:C s=I s·Δt/ΔV(1)其中I s为放电电流密度,Δt为放电时间,ΔV为电势窗口.PANI/TiO2复合电极在不同电流密度下的比容量如图4所示.可见,随着电流密度的增加,比容量表现出下降趋势.这是由于PANI氧化-还原过程中伴随着H+和对阴离子SO2-4的嵌入和脱出,当在低电流密度下,氧化-还原反应进行得较慢,H+和对阴离子SO2-4有充足的时间进出高分子链,从而使PANI 表现出很高的赝电容;反之,当电流密度升高时,H+和对阴离子SO2-4进出高分子链的速率可能跟不上氧化-还原反应速率,造成离电解液较远的内层PANI的氧化-还原反应不能及时进行,从而使赝电容有所下降.然而,对于PANI/TiO2复合电极,在2.0 mA·cm-2的高电流密度下,比容量仍能保持电流密度为0.1mA·cm-2时的86%,即电流密度扩大20倍,比容量却没有明显的衰减,这再次表明该复合电极具有良好的倍率特性,能够在大电流下快速充放电,这与图2不同扫速下CV曲线的所得结论是一致的.另外电极的平均功率密度P s可由式(2)计算得到:7 P s=I s∫V d t/t(2)其中,V为放电过程的瞬时电压,t为总的放电时间.通过计算可知,电极功率密度为0.027mW·cm-2时,对应的比容量为11.6mF·cm-2;而功率密度为0.55 mW·cm-2时,对应的比容量为10.0mF·cm-2,即功率密度提高20倍时比容量并没有显著的衰减,同样表明该PANI/TiO2复合电极具有优异的倍率特性和功率特性.由于本课题中,混合电容器的另一极为钽电解电容器的阳极,因其属于电介质电容器而具有优异的功率特性,所以该PANI/TiO2复合电极所具备的良好功率特性正是与之完好匹配的保证.EIS是评价电极电化学性能的重要手段,图5给出了PANI/TiO2复合电极在0.5mol·L-1H2SO4溶液中的Nyquist图.为了便于比较,同时给出了TiO2纳米管阵列膜(TiO2/Ti)电极的Nyquist图.由图5可以看出,曲线在高频部分没有出现明显的小半圆,这说明电极的电荷转移电阻不大,22电极过程不是电荷传递控制过程.这与前面峰电流与扫速的平方根图2PANI/TiO2电极在0.5mol·L-1H2SO4溶液中不同扫速(v)下的CV曲线Fig.2CV curves of PANI/TiO2electrode in0.5mol·L-1 H2SO4solution at different scan rates(v)图3PANI/TiO2电极在不同电流密度下的充放电曲线Fig.3Charge-discharge curves of PANI/TiO2at differentcurrentdensities图4PANI/TiO2电极在不同电流密度下的比容量(C s) Fig.4Specific capacitance(C s)of PANI/TiO2at differentcurrentdensities 1016杨斌等:电解-电化学混合电容器的制备与性能No.5成正比所得结论吻合,说明该复合电极的电化学过程为扩散控制过程.图5高频部分在实轴的截距表示纯电阻,这主要由溶液的欧姆电阻构成,也包括体系的其他欧姆电阻.TiO 2/Ti 电极的EIS 谱与实轴的截距很小,说明该TiO 2/Ti 电极本身的内阻很低,这也是PANI/TiO 2复合电极具有优良功率特性的基础.另外,根据电容阻抗Z ʺ=-1/ωC 的关系,由图5中0.01Hz 对应的纵坐标可知,PANI/TiO 2的电容明显大于TiO 2/Ti 的电容,即TiO 2本身的电容量较低,PANI/TiO 2复合电极的电容量主要来自PANI.电化学电容器的长期循环稳定性也是一项重要指标,PANI/TiO 2复合电极在0.5mol ·L -1H 2SO 4溶液中,在0.5mA ·cm -2的电流密度下进行了1100次连续的恒流充放电实验,其比容量保持率和库仑效率随充放电循环次数的变化关系如图6所示.由图6看出,该复合电极在初始的50圈充放电后比容量衰减了约5%,随后衰减变缓.容量衰减与PANI 在充放电过程中伴随的结构损伤有关.23,24由于复合电极是在TiO 2纳米管中原位聚合PANI 而成,所以TiO 2纳米管能够对PANI 提供支撑作用,减弱其结构损伤.复合电极充放电1000次后比容量能保持75.9%,1100次后仍然是75.9%,趋于稳定.这表明该电极具有优良的循环稳定性和较长的使用寿命.由图6还可以看出,在整个1100次的充放电过程中,库仑效率都接近于100%,随着循环次数的增加,1000次以后库仑效率为99.79%,1100圈后为99.97%,这归功于该复合电极的纳米结构.纳米结构的PANI 与TiO 2纳米管壁接触良好,从而具有更短的电荷传输路径,可减小内阻,在改善功率特性的同时也提高了库仑效率.3.2混合电容器性能本文采用烧结型钽电解电容器阳极与上述PANI/TiO 2复合电极构建了电解-电化学混合电容器.混合电容器的EIS 谱如图7所示.从图7中插图可以看出,Nyquist 曲线高频部分与实轴的截距很小,说明混合电容器系统具有很低的R ESR .另外,混合电容器的Nyquist 曲线几乎与实轴垂直,表现出很好的电容特性.实际上,电容器的电性能参数是测试频率的函数,图8给出了混合电容器的电容量、损耗随频率的变化关系.可见,随着频率的增加,其电容量下降而损耗上升.尤其是当频率超过2kHz 时,电容量迅速衰减而损耗迅速上升,这与电解电容器的变化规律一致.这种现象主要是由于电极化弛豫过程在高频下对电容量的贡献下降所造成的.25另外,当频率升至20kHz 时,电容量似乎又开始增加,但需要指出的是,此时通过LCR 数字电桥测出的容量值,实际图5TiO 2/Ti 电极和PANI/TiO 2电极分别在0.5mol ·L -1H 2SO 4溶液中的Nyquist 图Fig.5Nyquist plots of TiO 2/Ti and PANI/TiO 2electrodesin 0.5mol ·L -1H 2SO 4solutionThe inset shows the high frequency part.图6比容量保持率和库仑效率随循环次数的变化曲线Fig.6Changes of specific capacitance retention andCoulombic efficiency with cyclenumber图7混合电容器的Nyquist 图Fig.7Nyquist plot of the hybrid capacitorThe inset shows the high frequencypart.1017Vol.29Acta Phys.-Chim.Sin.2013上并不能反映电容器真实的电容量,因为20kHz 的高频已经接近混合电容器的自谐振频率.图9给出了混合电容器系统的相位角和R ESR 随频率的变化规律.由图可见,电容器的相位角在100Hz 以下均接近90°,显示出低频下很好的电容特性.当频率升至约1870Hz 时,相位角为45°,此时混合电容器系统的电阻与电抗相等.混合电容器的这一特征频率值至少比常规电化学电容器的高2个数量级.26另外,混合电容器的R ESR 随频率增加而减小,1kHz 时的R ESR 为1.18Ω.说明混合电容器系统具有较低的内阻,其峰值功率(P =U 2/(4·R ESR ))27可高达2kW 以上.该混合电容器样品的主要电性能参数列于表1中,为了方便比较,表1同时给出了CKA38系列钽电解电容器和THQ1系列Evans 电容器的相关电性能参数.从表1中可以看出,本文所试制的混合电容器的能量密度明显高于钽电解电容器,其体积能量密度和质量能量密度分别是钽电解电容器的4倍和3倍,而与Evans 电容器的相当.这是因为PANI/TiO 2阴极的比容量远大于阳极,故阴极所需尺寸远小于阳极,节省的空间可用于增大阳极尺寸,从而使混合电容器比容量极大提高,亦即提高钽电解电容器的能量密度.而且,该混合电容器的漏电流值很小,与钽电解电容器的相近.另外,三种电容器的功率密度均远高于一般的电化学电容器,显现混合电容器和电解电容器所具有的高功率优势.由于本文试制的混合电容器质量最轻,最大功率密度是三种电容器中最高的,显示出其突出的功率特性.如前所述,这与PANI/TiO 2阴极的良好功率特性密切相关.由于该混合电容器是将电解电容器与电化学电容器两种不同类型的电容器组合而成的,而两种电容器的储能机理有本质不同,因此研制这种电容器必然涉及两种电容器如何匹配的问题.混合电容器的等效电路可看成由电解电容器与电化学电容器串联而成,当对电容器充电时,由于要满足串联电容器电量相等的关系,可以很容易推导出阴、阳电极两端的电压分配关系式:U c =C aa c U 0(3)U a =C cC a +C c U(4)其中,U a 、U c 分别为阳极钽电解电容器与阴极PANI/TiO 2电化学电容器两端所承受的电压,C a 、C c 分别为阳极和阴极的电容量,U 0为充电电压.对于混合电容器而言,其阴极必须工作在PANI 的电化学稳定窗口之内,也就是说,U c 应小于0.7V .Chang 等26已证实,混合电容器在短路放电的瞬间,其阴极电压图8混合电容器的电容量及损耗(δ)随频率的变化曲线Fig.8Capacitance and dissipation factor (δ)of the hybridcapacitor as a function offrequency Type of capacitors hybrid capacitor sample tantalum electrolytic capacitor (CKA38)Evans capacitor (THQ1)Operating voltage/V 100100100Capacitance/μF 54681900V olumetric energy density/(J ·cm -3)1.110.251.21Gravimetric energy density/(J ·g -1)0.120.040.20Maximumpower density/(W ·g -1)847.5555.6425.5R ESR (1kHz)/Ω1.180.450.13Leakage current/μA1310200图9混合电容器的R ESR 和相位角随频率变化曲线Fig.9R ESR and phase angle of the hybrid capacitor as afunction of frequency表1各类电容器的电性能对比Table 1Comparison of electrical performances for differentcapacitors1018杨斌等:电解-电化学混合电容器的制备与性能No.5U c 会发生突变,由(3)式变为:U c =(C a a c -Rc )U 0(5)其中,R c 、R 分别为阴极内阻和混合电容器总的内阻.若保证阴极PANI/TiO 2能正常工作,则(3)式确定的充电时其所承受的最大电压和(5)式确定的放电时的最大电压均不能超过0.7V ,否则可能造成PANI 的过氧化,导致电容器性能下降.为了验证短路充放电是否会影响PANI/TiO 2阴极性能,作者对混合电容器进行了短路充放电循环实验,结果如图10所示.显然,在短路充放电10000次的循环中,混合电容器的电容量和R ESR 均表现出十分稳定的值,R ESR 甚至略有下降,说明混合电容器能够满足大电流充放电的要求,可以应用于脉冲电源等高功率场合.同时,也间接说明PANI/TiO 2阴极始终能工作在其电化学稳定窗口内,不会有过氧化之虞.4结论通过在TiO 2纳米管阵列中,电化学原位聚合PANI 而制得PANI/TiO 2复合电极.以此复合电极为阴极,烧结型钽块为阳极,成功制备了高能量密度、高工作电压的电解-电化学混合电容器.PANI/TiO 2复合电极具有优良的倍率特性,当平均功率密度为0.55mW ·cm -2时对应的比容量仍达到10.0mF ·cm -2.由于混合电容器的电压绝大部分加在钽阳极上,其单元工作电压可高达100V .其体积能量密度可达1.11J ·cm -3,质量能量密度达0.12J ·g -1,分别是钽电解电容器的4倍和3倍.短路充放电实验表明,混合电容器具有极好的循环稳定性和功率特性,可满足脉冲电源的应用要求.计算表明其最大功率密度高达847.5W ·g -1.电化学阻抗谱测试显示其具有优良的阻抗特性和频率特性.References(1)Conway,B.E.Electrochemical Supercapacitors ,1st ed.;Kluwer Academic Publishing/Plenum Publisher:New York,1999;pp 11-30.(2)Burke,A.J.Power Sources 2000,91,37.doi:10.1016/S0378-7753(00)00485-7(3)Wu,Q.;Xu,Y .;Yao,Z.;Liu,A.;Shi,G.ACS Nano 2010,4,1963.doi:10.1021/nn1000035(4)Yang,X.;Zhu,J.;Qiu,L.;Li,D.Adv.Mater.2011,23,2833.(5)Zhu,J.B.;Xu,Y .L.;Wang,J.;Wang,J.P.Acta Phys.-Chim.Sin.2012,28(2),373.[朱剑波,徐友龙,王杰,王景平.物理化学学报,2012,28(2),373.]doi:10.3866/PKU.WHXB201112021(6)Zhu,Y .;Murali,S.;Stoller,M.D.;Ganesh,K.J.;Cai,W.;Ferreira,P.J.;Pirkle,A.;Wallace,R.M.;Cychosz,K.A.;Thommes,M.;Su,D.;Stach,E.A.;Ruoff,R.S.Science 2011,332,1537.doi:10.1126/science.1200770(7)Yang,H.S.;Zhou,X.;Zhang,Q.W.Acta Phys.-Chim.Sin.2005,21(4),414.[杨红生,周啸,张庆武.物理化学学报,2005,21(4),414.]doi:10.3866/PKU.WHXB20050414(8)Evans,D.A.High Energy Density Electrolytic-Electrochemical Hybrid Capacitor./pdf/carts14.pdf.(9)Jun,Y .;Park,J.H.;Kang,mun.2012,48,6456.doi:10.1039/c2cc30733b(10)Wang,D.A.;Liu,Y .;Wang,C.W.;Zhou,F.Prog.Chem.2010,22(6),1035.[王道爱,刘盈,王成伟,周峰.化学进展,2010,22(6),1035.](11)Zhu,X.F.;Han,H.;Song,Y .;Duan,W.Q.Acta Phys.-Chim.Sin.2012,28(6),1291.[朱绪飞,韩华,宋晔,段文强.物理化学学报,2012,28(6),1291.]doi:10.3866/PKU.WHXB201204093(12)Xie,K.Y .;Li,J.;Lai,Y .Q.;Zhang,Z.A.;Liu,Y .X.;Zhang,G.G.;Huang,H.T.Nanoscale 2011,3,2202.doi:10.1039/c0nr00899k (13)Han,S.C.;Doh,J.M.;Yoon,J.K.;Kim,G.H.;Byun,J.Y .;Han,S.H.;Hong,K.T.;Kwun,S.I.Met.Mater.Int.2009,15(3),493.doi:10.1007/s12540-009-0493-x(14)Yu,Q.Q.;Chu,C.L.;Lin,P.H.;Sheng,X.B.;Guo,C.;Dong,Y .S.Rare Metal Mat.Eng.2011,40(Suppl.2),201.[余青青,储成林,林萍华,盛晓波,郭超,董寅生.稀有金属材料与工程,2011,40(Suppl.2),201.](15)Ma,L.;Tang,Q.Journal of Chongqing University (Natural Science Edition)2002,25(2),124.[马利,汤琪.重庆大学学报(自然科学版),2002,25(2),124.](16)Prasad,K.R.;Munichandraiah,N.J.Power Sources 2002,112,443.图10混合电容器的电容量和R ESR 随短路充放电次数的变化Fig.10Change in capacitance and R ESR of the hybridcapacitor as a function of the short circuitcharge-discharge cyclenumber 1019Vol.29 Acta Phys.-Chim.Sin.2013(17)Huang,W.S.;Humphrey,B.D.;MacDiarmid,A.G.J.Chem.Soc.Faraday Trans.I1986,82,2385.(18)Arico,A.S.;Bruce,P.;Scrosati,B.;Tarascon,J.M.;vanSchalkwijk,W.Nat.Mater.2005,4,366.doi:10.1038/nmat1368 (19)Cho,S.I.;Lee,S.B.Accounts Chem.Res.2008,41(6),699.doi:10.1021/ar7002094(20)Zhang,Q.Q.;Li,Y.;Feng,Y.Y.;Feng,W.Electrochim.Acta2013,90,95.doi:10.1016/j.electacta.2012.11.035(21)Tian,S.J.;Baba,A.;Liu,J.Y.;Wang,Z.H.;Knoll,W.;Park,M.K.;Advincula,R.Adv.Funct.Mater.2003,13,473.doi:10.1002/adfm.200304320(22)Zhong,H.X.;Zhao,C.B.;Luo,H.;Zhang,L.Z.ActaPhys.-Chim.Sin.2012,28(11),2641.[仲皓想,赵春宝,骆浩,张灵志.物理化学学报,2012,28(11),2641.]doi:10.3866/PKU.WHXB201207181(23)Dhawale,D.S.;Vinub,A.;Lokhandea,C.D.Electrochim.Acta2011,56,9482.doi:10.1016/j.electacta.2011.08.042(24)Pud,A.A.Synth.Met.1994,66,1.doi:10.1016/0379-6779(94)90155-4(25)Zhang,L.Y.;Yao,X.Dielectric Physics;Xiʹan Jiao TongUniversity Press:Xi'an,1991;pp193-221.[张良莹,姚熹.电介质物理.西安:西安交通大学出版社,1991:193-221.] (26)Chang,T.Y.;Wang,X.;Evans,D.A.;Robinson,S.L.;Zheng,J.P.J.Power Sources2002,110,138.(27)Sherrill,S.A.;Banerjee,P.;Rubloff,G.W.;Lee,S.B.Phys.Chem.Chem.Phys.2011,13,20714.1020。

钛及钛合金表面纳米化之阳极氧化

钛及钛合金表面纳米化之阳极氧化

钛及钛合金表面纳米化之阳极氧化作者:罗锦洁来源:《科技创新与应用》2015年第26期摘要:综述了钛及钛合金的性质、现阶段的发展状况、应用领域,为了冲破其使用的局限性,可对钛及钛合金进行表面纳米化,对其表面改性的方法多种多样,而阳极氧化最为实用,并对阳极氧化的原理机制进行了阐述,同时对钛及钛合金发展的未来进行了展望。

关键词:钛及钛合金的性质;发展状况;应用领域除氧、硅、铝、铁、钙、钠、钾、镁之外,钛在地球蕴藏量占到第九位,其储藏量约为0.44%~0.57%,属于蕴藏量较多的元素[1]。

钛在纯净状态下其颜色呈银白色,同时具有金属光泽,熔点极高,是一种较为难溶的金属。

钛有两种同素异构体分别是α-Ti和β-Ti,α-Ti为密排六方结构,只有在882℃以下才能保持稳定,当超过882℃,α-Ti将转变为β-Ti,β-Ti为体心立方结构,它能在882℃~1678℃间保持稳定。

钛从发现以来,一直受到人们的广泛关注,科学家对它的研究探索从未止步,现在我们对钛的性质有了较为深入的了解,钛和钛合金有许多优点,比如密度高、比强度高、耐蚀耐高温、机械力学性能好、质量轻等,它们凭借这些优异的性能发展迅猛,在各行各业中都得到了广泛应用,例如化工、航空航天、医用材料、电子行业等各个领域,相比于其它金属,钛还具有优异的生物相容性,与人体股骨头的弹性模量极为接近,因此将钛用于制备生物材料对人类某些疾病的治疗有着极大帮助[2]。

钛和钛合金虽然具有其他金属无法比拟的优点,但是随着社会的进步及科学的发展,它们自身所具备的性能已经无法满足人类生产生活需要,如何对其改性来冲破其使用的局限性成为一个亟待解决的问题,与传统材料相比,纳米材料具有更加优越的性能,由此人们想到在钛及钛合金上应用纳米技术,使它的应用更加广泛。

现如今直接制备纳米体材料的成本高、产出小,对设备、材料的标准要求苛刻,而表面纳米化技术相对来说对设备等硬件条件要求低,成本小,操作技术简单、成熟,在一定程度上可以满足生产所需,所以直接对钛和钛合金进行表面纳米化,来提高或改善其性能,提升其应用价值。

Titanium dioxide

Titanium dioxide

Titanium dioxide, also known as titanium(IV) oxide or titania, is the naturally occurring oxide of titanium, chemical formula TiO2. When used as a pigment, it is called titanium white, Pigment White 6, or CI 77891. Generally it comes in two different forms, rutile and anatase. It has a wide range of applications, from paint to sunscreen to food colouring. When used as a food colouring, it has E number E171.OccurrenceTitanium dioxide occurs in nature as well-known minerals rutile, anatase and brookite, and additionally as two high pressure forms, a monoclinic baddeleyite-like form and an orthorhombic α-PbO2-like form, both found recently at the Ries crater in Bavaria.[2][3] The most common form is rutile,[4] which is also the equilibrium phase at all temperatures.[5] The metastable anatase and brookite phases both convert to rutile upon heating.[4][6] Rutile, anatase and brookite all contain six coordinated titanium.Titanium dioxide has eight modifications –in addition to rutile, anatase and brookite there are three metastable forms produced synthetically (monoclinic, tetragonal and orthorombic), and five high pressure forms (α-PbO2-like, baddeleyite-like, cotunnite-like, orthorhombic OI, and cubic phases):The cotunnite-type phase was claimed by L. Dubrovinsky and co-authors to be the hardest known oxide with the Vickers hardness of 38 GPa and the bulk modulus of 431 GPa (i.e. close to diamond's value of 446 GPa) at atmospheric pressure.[14] However, later studies came to different conclusions with much lower values for both the hardness (7–20 GPa, which makes it softer than common oxides like corundum Al2O3 and rutile TiO2)[15]and bulk modulus (~300 GPa).[16][17]The naturally occurring oxides can be mined and serve as a source for commercial titanium. The metal can also be mined from other minerals such as ilmenite or leucoxene ores, or one of the purest forms, rutile beach sand. Star sapphires and rubies get their asterism from rutile impurities present in them.[18]Titanium dioxide (B) is found as a mineral in magmatic rocks and hydrothermal veins, as well as weathering rims on perovskite. TiO2 also forms lamellae in other minerals.[19]Spectral lines from titanium oxide are prominent in class M stars, which are cool enough to allow molecules of this chemical to form.ProductionCrude titanium dioxide is purified via converting to titanium tetrachloride in the chloride process. In this process, the crude ore (containing at least 70% TiO2) is reduced with carbon, oxidized with chlorine to give titanium tetrachloride; i.e., carbothermal chlorination. This titanium tetrachloride is distilled, and re-oxidized in a pure oxygen flame or plasma at 1500–2000 K to give pure titanium dioxide while also regenerating chlorine.[20] Aluminium chloride is often added to the process as a rutile promotor; the product is mostly anatase in its absence.Another widely used process utilizes ilmenite as the titanium dioxide source, which is digested in sulfuric acid. The by-product iron(II) sulfate is crystallized and filtered-off to yield only the titanium salt in the digestion solution, which is processed further to give pure titanium dioxide. Another method for upgrading ilmenite is called the Becher Process. One method for theproduction of titanium dioxide with relevance to nanotechnology is solvothermal Synthesis of titanium dioxide.NanotubesAnatase can be converted by hydrothermal synthesis to delaminated anatase inorganic nanotubes[21]and titanate nanoribbons which are of potential interest as catalytic supports and photocatalysts. In the synthesis, anatase is mixed with 10 M sodium hydroxide and heated at 130 °C for 72 hours. The reaction product is washed with dilute hydrochloric acid and heated at 400 °C for another 15 hours. The yield of nanotubes is quantitative and the tubes have an outer diameter of 10 to 20 nm and an inner diameter of 5 to 8 nm and have a length of 1 μm. A higher reaction temperature (170 °C) and less reaction volume gives the corresponding nanowires.[22] Another process for synthesizing TiO2 is through Anodization in an electrolytic solution. When anodized in a 0.5 weight percent HF solution for 20 minutes, well-aligned titanium oxide nanotube arrays can be fabricated an average tube diameter of 60 nm and length of 250 nm. Based on X-ray Diffraction, nanotubes grown through anodization are amorphous. [23]ApplicationsPigmentTitanium dioxide is the most widely used white pigment because of its brightness and very high refractive index, in which it is surpassed only by a few other materials. Approximately 4 million tons of pigmentary TiO2 are consumed annually worldwide. When deposited as a thin film, its refractive index and colour make it an excellent reflective optical coating for dielectric mirrors and some gemstones like "mystic fire topaz". TiO2 is also an effective opacifier in powder form, where it is employed as a pigment to provide whiteness and opacity to products such as paints, coatings, plastics, papers, inks, foods, medicines (i.e. pills and tablets) as well as most toothpastes. In paint, it is often referred to offhandedly as "the perfect white", "the whitest white", or other similar terms. Opacity is improved by optimal sizing of the titanium dioxide particles.In ceramic glazes titanium dioxide acts as an opacifier and seeds crystal formation.Titanium dioxide is often used to whiten skimmed milk; this has been shown statistically to increase skimmed milk's palatability.[24]Titanium dioxide is used to mark the white lines of some tennis courts.[25]The exterior of the Saturn V rocket was painted with titanium dioxide; this later allowed astronomers to determine that J002E3 was the S-IVB stage from Apollo 12 and not an asteroid. Sunscreen and UV absorberIn cosmetic and skin care products, titanium dioxide is used as a pigment, sunscreen and a thickener. It is also used as a tattoo pigment and in styptic pencils. Titanium dioxide is produced in varying particle sizes, oil and water dispersible, and with varying coatings for the cosmetic industry. This pigment is used extensively in plastics and other applications for its UV resistant properties where it acts as a UV absorber, efficiently transforming destructive UV light energy into heat.Titanium dioxide is found in almost every sunscreen with a physical blocker because of its high refractive index, its strong UV light absorbing capabilities and its resistance to discolouration under ultraviolet light. This advantage enhances its stability and ability to protect the skin from ultraviolet light. Sunscreens designed for infants or people with sensitive skin are often based ontitanium dioxide and/or zinc oxide, as these mineral UV blockers are believed to cause less skin irritation than other UV absorbing chemicals. The titanium dioxide particles used in sunscreens have to be coated with silica or alumina, because titanium dioxide creates radicals in the photocatalytic reaction. These radicals are carcinogenic, and could damage the skin.Electronic data storage mediumIn 2010, researchers at the University of Tokyo, Japan have created a 25 terabyte titanium oxide-based discOther applicationsSynthetic single crystals of TiO2Titanium dioxide in solution or suspension can be used to cleave protein that contains the amino acid proline at the site where proline is present. This breakthrough in cost-effective protein splitting took place at Arizona State University in 2006.[34]Titanium dioxide is also used as a material in the memristor, a new electronic circuit element. It can be employed for solar energy conversion based on dye, polymer, or quantum dot sensitized nanocrystalline TiO2 solar cells using conjugated polymers as solid electrolytes.[35]Synthetic single crystals and films of TiO2 are used as a semiconductor,[36]and also in Bragg-stack style dielectric mirrors due to the high refractive index of TiO2 (2.5 – 2.9)Health and safetyTitanium dioxide is incompatible with strong reducing agents and strong acids.[39]Violent or incandescent reactions occur with molten metals that are very electropositive, e.g. aluminium, calcium, magnesium, potassium, sodium, zinc and lithium.[40]Titanium dioxide accounts for 70% of the total production volume of pigments worldwide. It is widely used to provide whiteness and opacity to products such as paints, plastics, papers, inks, foods, and toothpastes. It is also used in cosmetic and skin care products, and it is present in almost every sunblock, where it helps protect the skin from ultraviolet light.Many sunscreens use nanoparticle titanium dioxide (along with nanoparticle zinc oxide) which does get absorbed into the skin.[41][42]The effects on human health are not yet well understood.[43]Titanium dioxide dust, when inhaled, has been classified by the International Agency for Research on Cancer (IARC) as an IARC Group 2B carcinogen possibly carcinogenic to humans.[44] The findings of the IARC are based on the discovery that high concentrations of pigment-grade (powdered) and ultrafine titanium dioxide dust caused respiratory tract cancer in rats exposed by inhalation and intratracheal instillation.[45] The series of biological events or steps that produce the rat lung cancers (e.g. particle deposition, impaired lung clearance, cell injury, fibrosis, mutations and ultimately cancer) have also been seen in people working in dusty environments. Therefore, the observations of cancer in animals were considered, by IARC, as relevant to people doing jobs with exposures to titanium dioxide dust. For example, titanium dioxide production workers may be exposed to high dust concentrations during packing, milling, site cleaning and maintenance, if there are insufficient dust control measures in place. However, the human studies conducted so far do not suggest an association between occupational exposure to titanium dioxide and an increased risk for cancer. The safety of the use of nano-particle sized titanium dioxide, which can penetrate the body and reach internal organs, has been criticized.[46] Studies have alsofound that titanium dioxide nanoparticles cause genetic damage in mice.[47]。

二氧化钛纳米管的制备及应用综述

二氧化钛纳米管的制备及应用综述

二氧化钛纳米管的制备及应用综述段秀全盖利刚周国伟(山东轻工业学院化学工程学院,山东济南250353)摘要:TiO2纳米管具有较大的直径和较高的比表面积等特点,在微电子、光催化和光电转换等领域展现出良好的应用前景。

本文对TiO2纳米管材料的合成方法、形成机理及应用研究进行了综述。

关键词:TiO2纳米管;制备;应用中图分类号: O632.6 文献标识码: APreparation and Application of TiO2 nanotubesDUAN Xiu-quan, GAI Li-gang, ZHOU Guo-wei(School of Chemical Engineering, Shandong Polytechnic University, Jinan, 250353, China) Abstract: TiO2nanotubes have wide applications in microelectronics, photocatalysis, and photoelectric conversions, due to their relatively larger diameters and higher specific surface areas. In this paper, current research progress relevant to TiO2nanotubes has been reviewed including synthetic methods, formation mechanisms, and potential applications.Keywords: TiO2 nanotubes; preparation; application自1991年日本NEC公司Iijima[1]发现碳纳米管以来,管状结构纳米材料因其独特的物理化学性能,及其在微电子、应用催化和光电转换等领域展现出的良好的应用前景,而受到广泛的关注。

氧化钛纳米管阵列阳极氧化法的制备及形成机理研究

氧化钛纳米管阵列阳极氧化法的制备及形成机理研究

氧化钛纳米管阵列阳极氧化法的制备及形成机理研究*郭智博1,尹荔松2,龚 青1,阳素玉1,安科云1(1 中南大学物理科学与技术学院,长沙410083;2 五邑大学分析测试中心,江门529020)摘要 采用阳极氧化法在氢氟酸、冰醋酸、聚乙二醇水溶液恒压处理钛箔,制备了结构规整有序的高密度T iO 2纳米管阵列。

利用电子扫描电镜(SEM )对纳米管的形貌进行了表征,详细考察了氧化时间对纳米管阵列形貌和尺寸的影响,绘制并分析了电流-时间曲线。

对纳米管阵列的形成机理进行了研究,认为纳米管的形成经历了4个关键阶段,分别是致密膜的生成、微孔的出现、纳米管的融合和管长稳定生长至最长。

关键词 氧化钛 阳极氧化 纳米管阵列 制备 形成机理The Study of Preparation and Formation Mechanism for Titaniu mOxide Nanotube Arrays by Anodic Oxidation MethodGUO Zhibo 1,YIN Lisong 2,GONG Qing 1,YA NG Suyu 1,AN Keyun 1(1 Scho ol of P hy sics Science and T echno lo gy ,Centr al So uth U niv ersity ,Chang sha 410083;2 A T C,W uy i U niv ersity ,Jiangmen 529020)Abstract It is the method that using anodic o xidatio n in HF +ACO H+P EG solut ion under the co nstant vo lt -age to deal w ith the titanium fo il,w hich can prepare the high -densit y T iO 2nanotube arr ays w ith regular and o rder ly structure.It is the pr epar ator y st eps that character izing the mo rpho lo gy o f the nano tubes by SEM ,ex amining det ailed the ox idatio n time wo rking on t he mor pholog y and size of nanotube arr ays,mapping and analy zing the curr ent -time cur ve.I t is studied the fo rmation mechanism of nanotube ar ray s.T he fo rmatio ns of nanotubes thro ug h the four key stages are:the format ion of dense films,por ous appea rance,the integ ration of nano tubes and the tube length g row th stability to maximum.Key words t itanium ox ide,ano dic o x idat ion,nanotube ar ray s,preparatio n,for matio n mechanism*中国博士后基金资助项目(20060390878);湖南省博士后基金资助(2007R S4024)郭智博:男,1984年生,硕士研究生,从事纳米功能材料研究 E -mail:qnw x@ 尹荔松:通讯作者,1971年生,教授,博士后,硕士生导师,从事纳米功能材料研究0 引言物质的微观结构很大程度上决定着材料的功能性,纳米线、纳米棒、纳米管等结构已得到了广泛的研究[1-3]。

氧化钛纳米管阵列制备及形成机理

氧化钛纳米管阵列制备及形成机理

联系人 0 林昌健 % 64+7890 :;98<= >+?5 (@?5 :<A B(90 "C/242!D3#CC & 5
国家高技术研
(D#$ 项目 ) (2""$EE$"22$" ) (2"2F$"CC. !!$"4G!#""2 ) 究发展规划 及国家自然科学基金 资助
万方;’() *+&,-! "#$! % ./0, 1/$2/3 4/35$6 & ’ %&&’
图D )-.# D
在 "# $% & ! ’ () 溶液中 D" E 电压阳极氧化 不同时间的 @-FD 膜层 *+, 形貌 *+, /0 1/2/34 5-567-38 /9-:; 0-<84 67/:-=;: -7 "# $% & ! ’() 4/<35-/7 65 D" E 0/2 :-00;2;75 5-8;4
’()*(+,(-
物理化学学报 % !"#$ %"&’"( )"(*&+ & ,-.& /0123 450$63 7$83 . !""#$ !" % / & 0 !"#$ 1 !"##
!"#$
氧化钛纳米管阵列制备及形成机理!
赖跃坤 孙 岚 左 娟 林昌健
$#!""C )
(固体表面物理化学国家重点实验室 . 厦门大学化学系 . 厦门 摘要
图= ’#() =
自然氧化的 "#$% 9 "# 界面 ! : " 曲线 ! # " 750;/ 430 .</ 51.0/-./> "#$% 9 "# #1./04-7/

水系铝离子电池的研究进展与挑战

水系铝离子电池的研究进展与挑战

第48卷第7期2020年7月硅酸盐学报Vol. 48,No. 7July,2020 JOURNAL OF THE CHINESE CERAMIC SOCIETY DOI:10.14062/j.issn.0454-5648.20200043水系铝离子电池的研究进展与挑战徐鹏帅,郭兴明,白莹,吴川(北京理工大学材料学院,北京 100081)摘要:金属铝具有极高的理论质量比容量和体积比容量,且丰度高、成本低。

水系电解液由于具有离子电导率高、低易燃性等优点而被广泛应用于多种金属离子电池中。

在过去的几年中,水系铝离子电池已经取得了快速进展。

介绍了金属铝负极的优化,电解质的选择和电极材料的研究进展,并讨论了存在的挑战和可能的解决策略。

关键词:水系铝离子电池;电解液;电极材料;嵌入;容量中图分类号:TM911.3 文献标志码:A 文章编号:0454–5648(2020)07–1034–11网络出版时间:2020–04–13Research Progress and Challenges of Aqueous Aluminum Ion BatteriesXU Pengshuai, GUO Xingming, BAI Ying, WU Chuan(School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China)Abstract: Aluminum metal delivers great theoretical gravimetric capacity and volumetric capacity, high abundance and low cost. Aqueous electrolytes are widely used in many kinds of metal ion batteries because of their high ionic conductivity and low flammability. Aqueous aluminum ion batteries have been developed rapidly in recent years. This review introduced the optimization of aluminum metal anode, the selection of electrolytes and the research progress of electrode materials. In addition, some challenges in aqueous aluminum ion batteries and possible solutions were also discussed.Keywords: aqueous aluminum ion batteries; electrolyte; electrode materials; intercalation; capacity化石能源的使用和相关碳排放严重影响了我们赖以生存的生态环境和人类的身体健康,因而人类对能源的需求向太阳能、风能和潮汐能等清洁能源持续转变。

二氧化钛胶粒嵌入超细层状钛酸盐制备金红石型氧化钛纳米纤维(中英文混合版)

二氧化钛胶粒嵌入超细层状钛酸盐制备金红石型氧化钛纳米纤维(中英文混合版)

Preparation of rutile TiO2 nanofibers by TiO2 solintercalation of ultrafine layered titanate二氧化钛胶粒嵌入超细层状钛酸盐制备金红石型氧化钛纳米纤维Juan Yang(杨娟), Qinqin Liu(刘芹芹), Xiujuan Sun(孙秀娟)江苏大学材料科学与工程学院,江苏镇江,邮编:2120132006五月17日收到;2006年7月23日接受;2006年8月15日开始在线使用AbstractTo prepare TiO2 intercalated tetratitanate, TiO2 solution and ultrafine layered titanate K2Ti4O9 obtained via solid-state reaction by using nanometer-sized TiO2 as raw material were used as guest and host materials respectively. The structure and morphology of the resulting samples were characterized by XRD and TEM experiments. It was found that during the intercalation process, the interlayer distance was expanded step-by-step and the interlayer structure of titanate might be destroyed and degraded to slits by prolonging the solution intercalation time. Rutile TiO2 nanofibers with the average size of 5×50 nm were obtained at room temperature while the duration time was prolonged to 72 h.© 2006 Elsevier B.V. All rights reserved.摘要:为了制备二氧化钛嵌入钛酸盐(tetratitanate)材料,用二氧化钛溶胶和超细层状K2Ti4O9分别作为主体和辅体原料进行固相反应得到纳米二氧化钛。

液相合成纳米二氧化钛

液相合成纳米二氧化钛
Review /CR
Solution-Phase Synthesis of Titanium Dioxide Nanoparticles and Nanocrystals
Matteo Cargnello,† Thomas R. Gordon,† and Christopher B. Murray*,†,‡
© XXXX American Chemical Society
Special Issue: 2014 Titanium Dioxide Nanomaterials Received: March 27, 2014
A
/10.1021/cr500170p | Chem. Rev. XXXX, XXX, XXX−XXX

Department of Chemistry and ‡Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States as high thermal and chemical stability, make it one of the most employed materials in pigments, UV sunscreens, cosmetics, medical implants, and sensors.1 In addition to these traditional applications, titania is being employed in many other emerging applications including optoelectronics, photovoltaics, catalysis, fuel cells, batteries, smart windows, and self-cleaning and antifogging surfaces. It is also the most heavily investigated wide band gap semiconductor for photocatalytic and photoCONTENTS electrocatalytic processes, which have gained increased interest 1. Introduction A in recent years within the scientific community.2 2. General Principles for Synthesis of Titania Titania particles and structures possessing small particle and Particles D feature size (below 100 nm) can show high visible light 2.1. Solution-Phase Synthesis of Uniform Partransparency combined with high UV light absorption, and in ticles D some cases they display iridescence.3 Small nanoparticles can 2.2. Surfactants and Protecting Ligands E also enhance the adsorption coefficients of organic molecules 3. Titanium Precursors F adsorbed on their surfaces.4 In addition, altering the size, as well 3.1. Titanium Alkoxides F as the shape, of titania nanoparticles has been shown to 3.2. Titanium Halides (TiCl4 and TiF4) F strongly influence the adsorption of molecules and the rate of 3.3. Titanatranes G electron transfer events at the particle surface, which has 3.4. Titanium Metal and Carboxylate-Derived potentially important implications for a variety of applications, Compounds G including catalysis. As a result, titania particles in the size 3.5. Titanium(IV) Bis(ammoniumlactato) Dihydrregime 1−100 nm are very interesting for a variety of oxide G technological applications, and the synthesis of well-controlled 3.6. Titanium Sulfate and Oxysulfate G titania nanostructures is important in order to impart the 3.7. Oxobis(2,4-pentanedionato-O,O ′)titanium desired characteristics to the final material. Particle size, shape, [TiO(acac)2] G and phase are critical in determining the final properties of the 4. Aqueous Methods G nanoscale materials. 4.1. Sol−Gel Methods G Among the many methods used to prepare nanoparticles and 4.2. Hydrothermal Methods J nanostructures, a primary classification can be made by 5. Nonaqueous Methods O distinguishing physical and chemical methods. Physical 5.1. Solvothermal Methods O methods usually rely on top-down approaches in which small 5.2. Nonhydrolytic Methods R structures are fabricated from larger ones. In contrast, chemical 6. Templated Approaches U methods most commonly proceed through a bottom-up 6.1. Soft Templates V approach, in which molecular precursors react to form the 6.2. Hard Templates W final larger structures. Both methods have advantages and 7. Summary and Perspectives W disadvantages: physical methods can produce large quantities of Author Information X material (e.g., the preferred methods in the electronic industry Corresponding Author X are physical methods) but their resolution is limited to tens of Notes X nanometers. Chemical methods, on the other hand, are Biographies X typically performed at a smaller scale in which the precision Acknowledgments X during the preparation of small (e.g., <100 nm and often <10 References X nm) structures can approach the atomic-layer limit.5 Wet chemical or solution-phase methods, in particular, are best suited to achieve the finest control over particle size, shape, and composition as desired for several of the above-mentioned 1. INTRODUCTION Titanium dioxide or titania (TiO2) is one of the most abundant compounds on our planet and a very appealing material for a variety of applications. Unique physical and chemical characteristics combined with earth abundance and nontoxicity, as well

阳极氧化制备TiO_2纳米管阵列电极反应及阻抗研究_田西林

阳极氧化制备TiO_2纳米管阵列电极反应及阻抗研究_田西林

积(cm2);D 为反应的扩散系数(A·cm-2);C 为反应的
浓度(mol·L-1);V 为扫描速度(V·s-1)。当电极反应完
全不可逆时:
Ip=299zAD1/2V1/2C(acza)
(12)
式中,ac 为一常数;za 为速度控制步骤的反应转移电
子数。循环伏安曲线(图 3)上第 1 个 Ti(Ⅲ)生成 Ti(VI)
本实验利用阳极氧化法在钛箔上制备 TiO2 纳米 管阵列,得到高度有序 TiO2 纳米管阵列电极。利用电 子順磁波普仪(EPR)、交流阻抗法(EIS)和循环伏安法 (CV)分析电极反应和电极反应过程中的阻抗变化,计 算电极的电子传输动力学参数,从微观的层面上进一 步了解 TiO2 纳米管阵列表面自由羟基的形成过程机 制,为下一步研究 TiO2 纳米管阵列形貌和结构与染料
立式(1)-式(6)解得[13]:
Z
=
~
S
1 qA
1
τ D eff
eff
1 + e2γ d 1 − e2γ d
(7)
式中, S 为缩放因子(V·m- 3·S- 0.5);A为电极面积;Deff
为TiO2导带中电子扩散系数;γ

⎛ ⎜ ⎝
1 τ D eff eff
+
iω D eff
⎞ 0.5 ;
⎟ ⎠
2 结果与讨论
2.1 TiO2 纳米管阵列的形貌与晶型结构分析 图 1a, 1b 为在 NH4F/甘油电解液体系中,氧化电
压 20 V,氧化时间 20 h 的条件下形成的 TiO2 纳米管 阵列。由图 1a 可见 TiO2 纳米管阵列长度可达 1.2 µm, 管一端开口另一端封闭,且管长和管径均匀,管壁光 滑平整。图 1b 可见 TiO2 纳米管呈高度有序阵列,管 径大约 100 nm。由阳极氧化制备纳米管阵列原理可 知[16]:粘度大(与水介质体系相比)的甘油使得纳米管 生长和溶解速度达到平衡所需的时间变长,为纳米管 生长提供更长的时间;且粘度大的甘油降低了反应产 生的氢离子迁移速度,在管末端及管与管之间被溶解 的区域始终保持了较大的酸度,因而制得的纳米管阵 列之间无交联,管壁平滑。

Titanium Dioxide Nanomaterials Synthesis, Properties, Modifications

Titanium Dioxide Nanomaterials Synthesis, Properties, Modifications

Titanium Dioxide Nanomaterials:Synthesis,Properties,Modifications,andApplicationsXiaobo Chen*and Samuel S.Mao†Lawrence Berkeley National Laboratory,and University of California,Berkeley,California94720Received March27,2006Contents1.Introduction28912.Synthetic Methods for TiO2Nanostructures28922.1.Sol−Gel Method28922.2.Micelle and Inverse Micelle Methods28952.3.Sol Method28962.4.Hydrothermal Method28982.5.Solvothermal Method29012.6.Direct Oxidation Method29022.7.Chemical Vapor Deposition29032.8.Physical Vapor Deposition29042.9.Electrodeposition29042.10.Sonochemical Method29042.11.Microwave Method29042.12.TiO2Mesoporous/Nanoporous Materials29052.13.TiO2Aerogels29062.14.TiO2Opal and Photonic Materials29072.15.Preparation of TiO2Nanosheets29083.Properties of TiO2Nanomaterials29093.1.Structural Properties of TiO2Nanomaterials29093.2.Thermodynamic Properties of TiO2Nanomaterials29113.3.X-ray Diffraction Properties of TiO2Nanomaterials29123.4.Raman Vibration Properties of TiO2Nanomaterials29123.5.Electronic Properties of TiO2Nanomaterials29133.6.Optical Properties of TiO2Nanomaterials29153.7.Photon-Induced Electron and Hole Propertiesof TiO2Nanomaterials29184.Modifications of TiO2Nanomaterials29204.1.Bulk Chemical Modification:Doping29214.1.1.Synthesis of Doped TiO2Nanomaterials29214.1.2.Properties of Doped TiO2Nanomaterials29214.2.Surface Chemical Modifications29264.2.1.Inorganic Sensitization29265.Applications of TiO2Nanomaterials29295.1.Photocatalytic Applications29295.1.1.Pure TiO2Nanomaterials:FirstGeneration29305.1.2.Metal-Doped TiO2Nanomaterials:Second Generation29305.1.3.Nonmetal-Doped TiO2Nanomaterials:Third Generation 29315.2.Photovoltaic Applications29325.2.1.The TiO2Nanocrystalline Electrode inDSSCs29325.2.2.Metal/Semiconductor Junction SchottkyDiode Solar Cell29385.2.3.Doped TiO2Nanomaterials-Based SolarCell29385.3.Photocatalytic Water Splitting29395.3.1.Fundamentals of Photocatalytic WaterSplitting2939e of Reversible Redox Mediators2939e of TiO2Nanotubes29405.3.4.Water Splitting under Visible Light29415.3.5.Coupled/Composite Water-SplittingSystem29425.4.Electrochromic Devices29425.4.1.Fundamentals of Electrochromic Devices29435.4.2.Electrochromophore for an ElectrochromicDevice29435.4.3.Counterelectrode for an ElectrochromicDevice29445.4.4.Photoelectrochromic Devices29455.5.Hydrogen Storage29455.6.Sensing Applications29476.Summary29487.Acknowledgment29498.References29491.IntroductionSince its commercial production in the early twentiethcentury,titanium dioxide(TiO2)has been widely used as apigment1and in sunscreens,2,3paints,4ointments,toothpaste,5etc.In1972,Fujishima and Honda discovered the phenom-enon of photocatalytic splitting of water on a TiO2electrodeunder ultraviolet(UV)light.6-8Since then,enormous effortshave been devoted to the research of TiO2material,whichhas led to many promising applications in areas ranging fromphotovoltaics and photocatalysis to photo-/electrochromicsand sensors.9-12These applications can be roughly dividedinto“energy”and“environmental”categories,many of whichdepend not only on the properties of the TiO2material itselfbut also on the modifications of the TiO2material host(e.g.,with inorganic and organic dyes)and on the interactions ofTiO2materials with the environment.An exponential growth of research activities has been seenin nanoscience and nanotechnology in the past decades.13-17New physical and chemical properties emerge when the sizeof the material becomes smaller and smaller,and down to*Corresponding author.E-mail:XChen3@.†E-mail:SSMao@.2891 Chem.Rev.2007,107,2891−295910.1021/cr0500535CCC:$65.00©2007American Chemical SocietyPublished on Web06/23/2007the nanometer scale.Properties also vary as the shapes of the shrinking nanomaterials change.Many excellent reviews and reports on the preparation and properties of nanomaterials have been published recently.6-44Among the unique proper-ties of nanomaterials,the movement of electrons and holes in semiconductor nanomaterials is primarily governed by the well-known quantum confinement,and the transport proper-ties related to phonons and photons are largely affected by the size and geometry of the materials.13-16The specific surface area and surface-to-volume ratio increase dramati-cally as the size of a material decreases.13,21The high surface area brought about by small particle size is beneficial to many TiO 2-based devices,as it facilitates reaction/interaction between the devices and the interacting media,which mainly occurs on the surface or at the interface and strongly depends on the surface area of the material.Thus,the performance of TiO 2-based devices is largely influenced by the sizes of the TiO 2building units,apparently at the nanometer scale.As the most promising photocatalyst,7,11,12,33TiO 2mate-rials are expected to play an important role in helping solvemany serious environmental and pollution challenges.TiO 2also bears tremendous hope in helping ease the energy crisis through effective utilization of solar energy based on photovoltaic and water-splitting devices.9,31,32As continued breakthroughs have been made in the preparation,modifica-tion,and applications of TiO 2nanomaterials in recent years,especially after a series of great reviews of the subject in the 1990s.7,8,10-12,33,45we believe that a new and compre-hensive review of TiO 2nanomaterials would further promote TiO 2-based research and development efforts to tackle the environmental and energy challenges we are currently facing.Here,we focus on recent progress in the synthesis,properties,modifications,and applications of TiO 2nanomaterials.The syntheses of TiO 2nanomaterials,including nanoparticles,nanorods,nanowires,and nanotubes are primarily categorized with the preparation method.The preparations of mesopo-rous/nanoporous TiO 2,TiO 2aerogels,opals,and photonic materials are summarized separately.In reviewing nanoma-terial synthesis,we present a typical procedure and repre-sentative transmission or scanning electron microscopy images to give a direct impression of how these nanomate-rials are obtained and how they normally appear.For detailed instructions on each synthesis,the readers are referred to the corresponding literature.The structural,thermal,electronic,and optical properties of TiO 2nanomaterials are reviewed in the second section.As the size,shape,and crystal structure of TiO 2nanomate-rials vary,not only does surface stability change but also the transitions between different phases of TiO 2under pressure or heat become size dependent.The dependence of X-ray diffraction patterns and Raman vibrational spectra on the size of TiO 2nanomaterials is also summarized,as they could help to determine the size to some extent,although correlation of the spectra with the size of TiO 2nanomaterials is not straightforward.The review of modifications of TiO 2nanomaterials is mainly limited to the research related to the modifications of the optical properties of TiO 2nanoma-terials,since many applications of TiO 2nanomaterials are closely related to their optical properties.TiO 2nanomaterials normally are transparent in the visible light region.By doping or sensitization,it is possible to improve the optical sensitiv-ity and activity of TiO 2nanomaterials in the visible light region.Environmental (photocatalysis and sensing)and energy (photovoltaics,water splitting,photo-/electrochromics,and hydrogen storage)applications are reviewed with an emphasis on clean and sustainable energy,since the increas-ing energy demand and environmental pollution create a pressing need for clean and sustainable energy solutions.The fundamentals and working principles of the TiO 2nanoma-terials-based devices are discussed to facilitate the under-standing and further improvement of current and practical TiO 2nanotechnology.2.Synthetic Methods for TiO 2Nanostructures2.1.Sol −Gel MethodThe sol -gel method is a versatile process used in making various ceramic materials.46-50In a typical sol -gel process,a colloidal suspension,or a sol,is formed from the hydrolysis and polymerization reactions of the precursors,which are usually inorganic metal salts or metal organic compounds such as metal plete polymerization and loss of solvent leads to the transition from the liquid sol into a solid gel phase.Thin films can be produced on a piece ofDr.Xiaobo Chen is a research engineer at The University of California at Berkeley and a Lawrence Berkeley National Laboratory scientist.He obtained his Ph.D.Degree in Chemistry from Case Western Reserve University.His research interests include photocatalysis,photovoltaics,hydrogen storage,fuel cells,environmental pollution control,and the related materials and devices development.Dr.Samuel S.Mao is a career staff scientist at Lawrence Berkeley National Laboratory and an adjunct faculty at The University of California at Berkeley.He obtained his Ph.D.degree in Engineering from The University of California at Berkeley in 2000.His current research involves the development of nanostructured materials and devices,as well as ultrafast laser technologies.Dr.Mao is the team leader of a high throughput materials processing program supported by the U.S.Department of Ener-gy.2892Chemical Reviews,2007,Vol.107,No.7Chen andMaosubstrate by spin-coating or dip-coating.A wet gel will form when the sol is cast into a mold,and the wet gel is converted into a dense ceramic with further drying and heat treatment.A highly porous and extremely low-density material called an aerogel is obtained if the solvent in a wet gel is removed under a supercritical condition.Ceramic fibers can be drawn from the sol when the viscosity of a sol is adjusted into a proper viscosity range.Ultrafine and uniform ceramic powders are formed by precipitation,spray pyrolysis,or emulsion techniques.Under proper conditions,nanomaterials can be obtained.TiO 2nanomaterials have been synthesized with the sol -gel method from hydrolysis of a titanium precusor.51-78This process normally proceeds via an acid-catalyzed hydrolysis step of titanium(IV)alkoxide followed by condensa-tion.51,63,66,79-91The development of Ti -O -Ti chains is favored with low content of water,low hydrolysis rates,and excess titanium alkoxide in the reaction mixture.Three-dimensional polymeric skeletons with close packing result from the development of Ti -O -Ti chains.The formation of Ti(OH)4is favored with high hydrolysis rates for a medium amount of water.The presence of a large quantity of Ti -OH and insufficient development of three-dimensional polymeric skeletons lead to loosely packed first-order particles.Polymeric Ti -O -Ti chains are developed in the presence of a large excess of water.Closely packed first-order particles are yielded via a three-dimensionally devel-oped gel skeleton.51,63,66,79-91From the study on the growth kinetics of TiO 2nanoparticles in aqueous solution using titanium tetraisopropoxide (TTIP)as precursor,it is found that the rate constant for coarsening increases with temper-ature due to the temperature dependence of the viscosity of the solution and the equilibrium solubility of TiO 2.63Second-ary particles are formed by epitaxial self-assembly of primary particles at longer times and higher temperatures,and the number of primary particles per secondary particle increases with time.The average TiO 2nanoparticle radius increases linearly with time,in agreement with the Lifshitz -Slyozov -Wagner model for coarsening.63Highly crystalline anatase TiO 2nanoparticles with different sizes and shapes could be obtained with the polycondensation of titanium alkoxide in the presence of tetramethylammonium hydroxide.52,62In a typical procedure,titanium alkoxide is added to the base at 2°C in alcoholic solvents in a three-neck flask and is heated at 50-60°C for 13days or at 90-100°C for 6h.A secondary treatment involving autoclave heating at 175and 200°C is performed to improve the crystallinity of the TiO 2nanoparticles.Representative TEM images are shown in Figure 1from the study of Chemseddine et al.52A series of thorough studies have been conducted by Sugimoto et ing the sol -gel method on the formation of TiO 2nanoparticles of different sizes and shapes by tuning the reaction parameters.67-71Typically,a stock solution of a 0.50M Ti source is prepared by mixing TTIP with triethanolamine(TEOA)([TTIP]/[TEOA])1:2),followed The diluted with ashape controller solution °C for 1day and at 140°C for3days.The pH of the solutioncan be tuned by adding HClO 4or NaOH solution.Amines are used as the shape controllers of the TiO 2act as surfactants.amines include TEOA,and triethyl-enetetramine.The morphology of the TiO 2nanoparticles changes from cuboidal to ellipsoidal at pH above 11with TEOA.The TiO 2into ellipsoidal above pH 9.5with diethylenetriamine with a higher aspect ratio than that with TEOA.Figure 2shows representative TEM images of the TiO 2nanoparticles under different initial pH conditions with the shape control of TEOA at [TEOA]/[TIPO])2.0.Secondary amines,such as diethylamine,and tertiary amines,such as trimethylamine and triethylamine,act as complexing agents of Ti(IV)ions promote the ratios.The shape of the TiO 2nanoparticle can also be tuned from round-cornered cubes to sharp-edged cubes with sodium oleate and sodium stearate.70The shape control is attributed to the tuning of the growth rate of the different crystal planes of TiO 2nanoparticles by the to these planes under different pH conditions.70A prolonged heating time below 100°C for the as-prepared be used to avoid the the TiO 2nano-during the crystallization process.58,72By heating amorphous TiO 2in ana-2with average particle sizes between 7and 50nm can be obtained,as reported by Zhang and Banfield.73-77Much effort has been exerted to achieve highly crystallized and narrowly dispersed TiO 2nanoparticles using the sol -gel method with other modifications,such as a semicontinuous reaction method by Znaidi et al.78and a two-stage mixed method and a continuous reaction method by Kim et al.53,54By a combination of the sol -gel method and an anodic alumina membrane (AAM)template,TiO 2nanorods have dipping porous into a boiled TiO 2sol followed processes.92,93In a typical experiment,a TiO 2sol solution is prepared by mixing TTIP dissolved in ethanol with a solution containing water,acetyl acetone,and ethanol.AAM is immersed into the boiled it is dried in air and calcined at 400°C for 10h.The AAM template is removed in a 10wt %H 3PO 4aqueous solution.The calcination temperature can be used to control the crystal phase of the TiO 2nanorods.At low temperature,anatase nanorods can be obtained,while at high temperature rutile nanorods can be obtained.The pore size of the AAM template can be used to control the size of these TiO 2nanorods,which typically range from 100to 300nm in diameter and several micrometers in length.Appar-ently,the size distribution of the final TiO 2nanorods is largely controlled by the size distribution of the pores of the AAM template.In order to obtain smaller and mono-sized TiO 2nanorods,it is necessary fabricate high-quality AAM templates.Figure 3shows a for TiO 2nanorods fabricated with this method.Normally,the TiO 2nanorods are composed of small TiO 2nanoparticles or electrophoretic deposition of TiO 2colloidal suspensions into 2nanowire arrays can be obtained.94In a typical procedure,in ethanol at room temperature,with deionized water and ethanol 2-3with nitric acid.is used as the anode,and an AAM with attached to Cu foil is used as the cathode.A TiO 2sol is deposited into the pores of the AMM under a voltage of 2-5V and annealed at 500°C for 24h.After the AAM a 5wt %NaOH solution,isolated TiO 2nanowires are obtained.In order toTitanium Dioxide Nanomaterials Chemical Reviews,2007,Vol.107,No.72893fabricate TiO 2nanowires instead of nanorods,an AAM with long pores is a must.TiO 2nanotubes can also be obtained using the sol -gel method by templating with an AAM 95-98and other organic compounds.99,100For example,when an AAM is used as the template,a thin layer of TiO 2sol on the wall of the pores of the AAM is first prepared by sucking TiO 2sol into the pores of the AAM and removingit under vacuum;TiO 2nanowires are obtained after the sol is fully developed and the AAM is removed.In the procedure by Lee and co-workers,96a TTIP solution was prepared by mixing TTIP with 2-propanol and 2,4-pentanedione.the AAM was dipped into thisFigure 1.TEM images of TiO 2nanoparticles prepared by hydrolysis of Ti(OR)4in the presence of tetramethylammonium hydroxide.Reprinted with permission from Chemseddine,A.;Moritz,T.Eur.J.Inorg.Chem.1999,235.Copyright 1999Wiley-VCH.Figure 2.TEM images of uniform anatase TiO 2nanoparticles.Reprinted from Sugimoto,T.;Zhou,X.;Muramatsu,A.J.Colloid Interface Sci.2003,259,53,Copyright 2003,with permission from Elsevier.2894Chemical Reviews,2007,Vol.107,No.7Chen and Maosolution,it was removed from the solution and placed under vacuum until the entire volume of the solution was pulled through the AAM.The AAMhydrolyzed by water vapor over a HCl solution for 24h,and then calcined ina furnace at 673K for 2h and cooled to room temperaturetemperature ramp of2°C/h.Pure TiO 2nanotubes were dissolved in a 6M NaOH solution for several minutes.96Alternatively,TiO 2nanotubes could be obtained by coating the AAM membranes at 60°C for a certain period of time (12-48h)4under pH )2.1and removing the AAM after TiO 2nanotubes were developed.97Figure 4shows a typical SEM image of the 2array from the AAM template.97In another scheme,a ZnO nanorod array on a glass substrate can be used as a template to fabricate TiO 2nanotubes with the sol -gel method.101Briefly,TiO 2sol isdeposited on a ZnO nanorod template by dip-coating with a slow withdrawing speed,then dried at 100°C for 10min,and heated at 550°C for 1h in air to obtain ZnO/TiO 2nanorod arrays.The ZnO nanorod template is etched-up by immersing the ZnO/TiO 2nanorod arrays in a dilute hydro-chloric acid aqueous solution to obtain TiO 2nanotube arrays.Figure 5shows a typical SEM image of the TiO 2nanotube array with the ZnO nanorod array template.The TiO 2nanotubes inherit the uniform hexagonal cross-sectional shape and the length of 1.5µm and inner diameter of 100-of the ZnO nanorod template.As the concentration of the TiO 2sol is constant,well-aligned TiO 2nanotube arrays can only be obtained from an optimal dip-coating cycle number in the range of 2-3cycles.A dense porous TiO 2thick film with holes is obtained number further increases.The heating rate is critical to the formation of TiO 2nanotube arrays.When the heating rate is extra rapid,e.g.,above 6°C min -1,the TiO 2coat will easily crack and flake off from the ZnO nanorods due to great tensile stress the TiO 2coat and the ZnO 2film with loose,porous nanostructure is obtained.2.2.Aggregates of surfactant molecules dispersed in a liquid the surfactant concentration exceeds the critical micelle concentration (CMC).The CMC free solution in equilibrium with surfactants in aggregated form.In micelles,the hydrophobic hydrocarbon chains of the surfactants are and the hydro-the surfactants are oriented toward the medium.The concentration of lipid present in solution determines the self-organization molecules of surfactants and lipids.The lipids form a single layer on the liquid surface and are dispersed in solution below the CMC.The lipids organize in spherical micelles at the first CMC (CMC-I),into elongated pipes at the second CMC (CMC-II),and into stacked lamellae of pipes at the lamellar point (LM or CMC-III).The CMC depends on the chemical composition,mainly on the ratio of the head area and the tail length.Reverse micelles are formed in nonaqueous the hydrophilic headgroups are directed toward of the micelles while the hydrophobic groups areFigure 3.TEM image of anatase nanorods and a single nanorod composed of small TiO 2nanoparticles or nanograins (inset).Reprinted from Miao,L.;Tanemura,S.;Toh,S.;Kaneko,K.;Tanemura,M.J.Cryst.Growth 2004,264,246,Copyright 2004,with permission from Elsevier.Figure 4.SEM image of TiO 2nanotubes prepared from the AAO template.Reprinted with permission from Liu,S.M.;Gan,L.M.;Liu,L.H.;Zhang,W.D.;Zeng,H.C.Chem.Mater.2002,14,1391.Copyright 2002American Chemical Society.Figure 5.SEM of a TiO 2nanotube array;the inset shows the ZnO nanorod array template.Reprinted with permission from Qiu,J.J.;Yu,W.D.;Gao,X.D.;Li,X.M.Nanotechnology 2006,17,4695.Copyright 2006IOP Publishing Ltd.Titanium Dioxide Nanomaterials Chemical Reviews,2007,Vol.107,No.72895directed outward toward the nonaqueous media.There is no obvious CMC for reverse micelles,because the number of aggregates is usually small and they are not sensitive to the surfactant concentration.Micelles are oftenglobular roughly spherical in shape,but ellipsoids,cylinders,and bilayers are also possible.The shape of amicelle is a functionmolecular geometry of its surfactant molecules and surfactant concentration,tem-perature,pH,and ionic strength.Micelles and inverse micelles are commonly employed to synthesize TiO 2nanomaterials.102-110A statistical experi-mental design method conducted by Kim et al.to for the preparation of TiO 2nanoparticles.103The values of H 2O/surfactant,H 2O/titanium precursor,ammonia concentration,feed rate,and reaction temperature were significant TiO 2nanoparticle size and size distribution.Amorphous TiO 2nanoparticles with diameters of 10-20nm were synthesized and converted to the anatase phase at 600°C and to the more thermodynamically stable rutile phase at 900°C.Li et al.developed TiO 2nanoparticles with the chemical reactions between TiCl 4solution and ammonia in a reversed micro-emulsion system consisting of cyclohexane,poly(oxyethyl-5ether,and poly(oxyethylene)9nonyle phenol ether.104The produced amorphous TiO 2nanoparticles transformed into anatase when heated at temperatures from 200to 750°C and into rutile at temperatures higher than 750°Agglomeration and growth also occurred at elevated Shuttle-like crystalline TiO 2nanoparticles were synthesized by Zhang et al.with hydrolysis of titanium tetrabutoxide in the presence of acids (hydrochloric acid,nitric acid,sulfuric acid,and phosphoric acid)in NP-5(Igepal CO-520)-room temperature.110The particle size of the TiO 2nanoparticles were largely controlled by the reaction condi-tions,and the key factors affecting the formation of rutile at room temperature included the acidity,the type of acid used,and the microenvironment of the reverse micelles.Ag-glomeration of the particles occurred with prolonged reaction times and increasing the [H 2O]/[NP-5]and [H 2O]/[Ti-(OC 4H 9)4]ratios.When suitable acid was applied,round TiO 2nanoparticles could also be obtained.Representative TEM images of the shuttle-like and round-shaped TiO 2nanopar-ticles are In the study carried out by Lim et al.,TiO 2nanoparticles were prepared by the controlled hydrolysis of TTIP in reverse micelles formed in CO 2with the surfactants ammonium carboxylate perfluoropolyether (PFPECOO -4+ethyl methacrylate-block-1H,1H,2H,2H-perfluorooctyl meth-acrylate)(PDMAEMA-b-PFOMA).106It was found that the crystallite size prepared in the presence of reverse micelles increased as either the water to surfactant or the precursor to The TiO 2nanomaterials prepared with the above micelle and reverse micelle methods normally have amorphous structure,and calcination is usually necessary in order to induce high crystallinity.However,this process usually leads to the growth and agglomeration of TiO 2nanoparticles.The crystallinity of TiO 2nanoparticles initially (synthesized by controlled hydrolysis of titanium alkoxide in reverse micelles in a hydrocarbon solvent)could be improved by annealing in the presence of the micelles at temperatures considerably lower than those required for the traditional calcinationtreatment in the solid state.108This procedure could produce crystalline TiO 2nanoparticles with unchanged physical dimensions and minimal agglomeration and allows the preparation of highly crystalline TiO 2nanoparticles,as shown in Figure 7,from the study of Lin et al.1082.3.Sol MethodThe sol method here refers to the nonhydrolytic sol -gel processes and usually involves the reaction of titanium chloride with a variety of different oxygen donor molecules,Figure 6.TEM images of the shuttle-like and round-shaped (inset)TiO 2nanoparticles.From:Zhang,D.,Qi,L.,Ma,J.,Cheng,H.J.Mater.Chem.2002,12,3677(/10.1039/b206996b).s Reproduced by permission of The Royal Society of Chemistry.Figure 7.HRTEM images of a TiO 2nanoparticle after annealing.Reprinted with permission from Lin,J.;Lin,Y.;Liu,P.;Meziani,M.J.;Allard,L.F.;Sun,Y.P.J.Am.Chem.Soc.2002,124,11514.Copyright 2002American Chemical Society.TiX 4+Ti(OR)4f 2TiO 2+4RX (1)TiX 4+2ROR f TiO 2+4RX(2)2896Chemical Reviews,2007,Vol.107,No.7Chen and MaoThe condensation between Ti -Cl and Ti-OR leads to the formation of Ti -O -Ti bridges.Thealkoxide groups can be provided by titanium alkoxides orby reaction of the titanium chloride with alcohols or ethers.In the method by Trentler andColvin,119a metal alkoxide was rapidly injected into the hot solution of titanium halide mixed with trioctylphosphine oxide (TOPO)heptadecane at 300°C dry inert gas protection,completed alkyl substituents including rate of R,while average particle sizes were relatively unaffected.Variation of X yielded a clear trend in average particle size,but without a discernible trend in reaction rate.Increased nucleophilicity resulted in Average sizes ranged from 9.2nm for TiF 4to 3.8nm for TiI 4.The amount of passivating agent influenced the chemistry.was slower and resulted in smaller particles,while reactions without TOPO were much quicker and yielded mixtures of brookite,and anatase with average particle sizes nm.Figure 8shows typical TEM images of TiO 2nanocrystals developed by Trentler et al.119In the method used by Niederberger and Stucky,111TiCl 4was slowly added to anhydrous benzyl alcohol vigorous stirring at 40-150°C for 1-21days in the reaction vessel.The precipitate was calcinated at 450°C for 5h after thoroughly washing.The reaction between TiCl 4and benzyl alcohol was found suitable for the synthesis of highly crystalline anatase phase TiO 2nanoparticles with nearly uniform size and shape at very low temperatures,such as 40°C.The particle size could be selectively adjusted in the range of 4-8nm with the appropriate thermal conditions and a proper choice of the and titanium tetrachloride.The particle growth depended strongly on temperature,and lowering the titanium tetrachloride led to a considerable 111Surfactants have been widely used in the preparation of a variety of nanoparticles with good size distribution and Adding different surfactants acetic acid and acetylacetone,can help synthesize monodispersed TiO 2nanoparticles.120,121For example,Scolan and Sanchez found that monodisperse nonaggregated TiO 2nanoparticles in the 1-5nm range were obtained through hydrolysis of titanium butoxide in the presence of acetylacetone and p -toluenesulfonic acid at 60°C.120The dispersed in water -alcohol or alcohol solutions at concentrations higher than 1M without aggregation,which is attributed to the complexation of the surface by acetylacetonato ligands hybrid made with acetylacetone,p -toluenesulfonic acid,and wa-ter.120With the aid of surfactants,different sized and shaped TiO 2nanorods can be synthesized.122-130For example,the growth of high-aspect-ratio anatase TiO 2nanorods has been reported by Cozzoli and co-workers by controlling the hydrolysis process of TTIP in 122-126,130Typically,TTIP was added into 80-100°C under inert gas protection (nitrogen flow)and stirred for 5min.A 0.1-2M aqueous base solution was then rapidly injected and kept at with stirring.The bases employed included organic amines,such as trimethylamino-N-oxide,trimethylamine,tetramethylammonium hydroxide,tetrabut-ylammonium hydroxyde,triethylamine,and tributylamine.precursor with the carboxylic acid,the hydrolysis rate of titanium alkoxide (in 4-6h)crystal-lization in mild conditions was promoted with the use of suitable catalysts (tertiary amines or quaternary ammonium hydroxides).A kinetically overdriven growth mechanism led 2Typical TEM images of the TiO 2nanorods are shown in Figure 9.123Recently,Joo et al.127and Zhang et al.129reported similar procedures in obtaining TiO 2nanorods without the use of catalyst.Briefly,a mixture of TTIP and OA was used to generate OA complexes of titanium at 80°C 1-octadecene.Figure 8.TEM image of TiO 2nanoparticles derived from reaction of TiCl 4and TTIP in TOPO/heptadecane at 300°C.The inset shows a HRTEM image of a single particle.Reprinted with permission from Trentler,T.J.;Denler,T.E.;Bertone,J.F.;Agrawal,A.;Colvin,V.L.J.Am.Chem.Soc.1999,121,1613.Copyright 1999American Chemical Society.Figure 9.TEM of TiO 2nanorods.The inset shows a HRTEM of a TiO 2nanorod.Reprinted with permission from Cozzoli,P.D.;Kornowski,A.;Weller,H.J.Am.Chem.Soc.2003,125,14539.Copyright 2003American Chemical Society.Titanium Dioxide Nanomaterials Chemical Reviews,2007,Vol.107,No.72897。

阳极氧化法制备二氧化钛纳米管及其在太阳能电池中的应用

阳极氧化法制备二氧化钛纳米管及其在太阳能电池中的应用

[Review]物理化学学报(Wuli Huaxue Xuebao )Acta Phys.-Chim.Sin.2011,27(X),0001-0009Month Received:October 22,2010;Revised:January 30,2011;Published on Web:April 1,2011.∗Corresponding authors.CHEN Run-Feng,Email :iamrfchen@.HUANG Wei,Email:wei-huang@;Tel:+86-25-85866396.The project was supported by the National Natural Science Foundation of China (20804020),Natural Science Foundation of Jiangsu College Council,China (08KJB150012),and the National Basic Research Program of China (973)(2009CB930601).国家自然青年科学基金项目(20804020)、江苏省高校自然科学基础研究面上项目(08KJB150012)和国家重大科学研究计划(973)(2009CB930600)资助ⒸEditorial office of Acta Physico-Chimica Sinica阳极氧化法制备二氧化钛纳米管及其在太阳能电池中的应用李欢欢1陈润锋1,2,*马琮1张胜兰1安众福1黄维1,2,*(1南京邮电大学信息材料与纳米技术研究院,南京210046;2南京邮电大学有机电子与信息显示国家重点实验室培育基地,南京210046)摘要:介绍了阳极氧化法制备二氧化钛纳米管的技术发展历程,论述了其制备过程及生长机理,探讨了电解液、pH 值、氧化电压、氧化时间、氧化温度和后处理方法等因素对TiO 2纳米管结构和形态的影响,综述了近几年来利用TiO 2纳米管组装染料敏化、量子点和本体异质结等太阳能电池所取得的进展,展望了其未来发展趋势和应用前景.关键词:二氧化钛纳米管;阳极氧化法;太阳能电池中图分类号:O646Titanium Oxide Nanotubes Prepared by Anodic Oxidation and TheirApplication in Solar CellsLI Huan-Huan 1CHEN Run-Feng 1,2,*MA Cong 1ZHANG Sheng-Lan 1AN Zhong-Fu 1HUANG Wei 1,2,*(1Institute of Advanced Materials,Nanjing University of Posts &Telecommunications,Nanjing 210046,P .R.China ;2Key Laboratory for Organic Electronics &Information Displays (KLOEID),Nanjing University of Posts &Telecommunications,Nanjing 210046,P .R.China )Abstract:We review the history,fabrication procedures,and mechanisms of TiO 2nanotubes prepared by the anodic oxidation of titanium.The influence of various preparation factors such as electrolytes,pH value,voltage,bath temperature,and post treatment on the structure and morphology of the TiO 2nanotubes are discussed.This review also summarizes the application of TiO 2nanotubes to dye-sensitized solar cells,quantum dot solar cells and bulk heterojunction solar cells.A perspective on the future development of TiO 2nanotubes and their applications is tentatively discussed.Key Words:Titanium oxide nanotube;Anodic oxidation;Solar cells1前言二氧化钛(TiO 2)是一种物理化学性质稳定的n 型宽禁带半导体材料,具有无毒、无害、容易制备、价格低廉等优点,特别是具有光电转换、光致变色及光催化等独特的光物理化学性能.1,2随着纳米技术研究热潮的兴起,利用物理和化学的方法人工地0001Acta Phys.⁃Chim.Sin.2011V ol.27将TiO2纳米材料排列成一维、二维和三维的纳米结构体系成为近年来研究的热点.其中,一维的TiO2纳米管具有更大的比表面积和更强的吸附能力,表现出更高的光催化活性和光电转换效率,3,4在传感器、5,6太阳能电池、7-10光分解水制氢、11-15光催化降解有机物等16-21领域有着广泛的应用.TiO2纳米管的制备始于1996年,Hoyer等22第一次采用多孔阳极氧化铝模板法制备了TiO2纳米管; 1998年,Kasuga等23用水热法制备了TiO2纳米管; 2001年,Grimes等24用阳极氧化法制备了有序排列的TiO2纳米管;2006年Zaban等25利用微波法制备了TiO2纳米管.采用阳极氧化法制备的TiO2纳米管,既可以在金属钛或钛合金26-28表面生长,亦可生长在氧化铟锡(ITO)或掺杂氟的导电玻璃(FTO)上. TiO2纳米管的管径、管长和形貌可以通过调节电解质和电解液组分、pH值、氧化电压、氧化时间和温度等而实现有序控制.利用阳极氧化法制备的TiO2纳米管垂直于基底,且具有更大的比表面积,其一维结构有利于电子的传输及离子在半导体薄膜与电解液界面的扩散,因此在太阳能电池尤其是在染料敏化太阳能电池(DSSC)等领域发挥着越来越重要的作用.2阳极氧化法制备TiO2纳米管2.1阳极氧化法制备TiO2纳米管的实验装置阳极氧化法制备TiO2纳米管的装置一般是以纯钛片或钛合金片为阳极,惰性金属(如Pt)为阴极,与参比电极组成的三电极体系.用更为简单的钛片为工作电极,惰性金属为对电极组成的两电极体系.制备装置主要包括以下几个主要部分:(1)阳极为钛片、钛合金、钛薄膜等;(2)阴极为铂片或其它惰性电极;(3)电解液一般为含氟的电解液;(4)电源为直流稳压稳流电源.阳极和阴极可通过铜夹片调整距离来调节两个绝缘板间的距离;在容器中置入温度计用来测量电解液温度,将容器置入冰水或水浴锅中可调整电解液温度;还可向容器中置入磁子进行磁力搅拌,亦可直接将容器置入超声波清洗器中进行超声阳极氧化实验.2.2阳极氧化法制备TiO2纳米管的生长机理通过阳极氧化法制备高度有序的TiO2纳米管,一般在含氟的电解液中进行,而在非含氟的酸性或中性电解液中,一般只能制备TiO2多孔膜.通过研究阳极氧化过程中电流-时间关系曲线和不同反应时间下产物的具体形貌,29-32一般认为在含氟的电解液中TiO2纳米管的形成过程大致经历了三个阶段.第一阶段,初始氧化膜的形成,主要发生以下反应:H2O➝2H++O2-(1)Ti-4e➝Ti4+(2) Ti4++2O2-➝TiO2(3)当施加电压的瞬间,阳极(金属钛)表面附近富集的水电离产生O2-(反应式1);同时钛快速溶解,阳极电流增大,生成大量的Ti4+(反应式2);溶解产生的Ti4+与O2-迅速反应(反应式3)在阳极表面形成致密的高阻值初始氧化膜(阻挡层)(图1a).33-35第二阶段,多孔氧化膜的形成.阻挡层形成后,膜层承受的电场强度急剧增大,电场的极化作用削弱了氧化膜中Ti―O键的结合力,36使与O2-键合的Ti4+越过氧化膜-电解液界面与F-结合变得容易,发生了场致溶解,化学溶解也在进行(反应式4):37 TiO2+6F-+4H+➝TiF62-+2H2O(4)与此同时,初始氧化膜形成后随即出现内应力,38且氧化膜中还存在电致伸缩应力、静电斥力等,39促使少量TiO2由非晶态转化为晶态;40由于膜层的成分、膜层中的应力与结晶等因素的影响,使得膜层的表面能量分布不均,引起溶液中的F-在高能部位聚集并强烈溶解该处氧化物,氧化膜表面变得凹凸不平;凹处氧化膜薄,电场强度高,氧化膜溶解快,形成孔核(图1b),孔核又因持续进行的场致和化学溶解过程而扩展为微孔(图1c),从而形成多孔氧化膜结构.41第三阶段,多孔氧化膜的稳定生长.在微孔的生长初期,微孔底部氧化层因薄于孔间氧化层(图1c)而承受更高强度的电场;强电场使O2-快速移向图1TiO2纳米管形成机理示意图9Fig.1Scheme of formation mechanism for TiO2nanotube9 (a)initial oxide layer formation,(b)pit formation,(c)pore formation, (d)void formation between the pores,(e)TiO2nanotube formation0002李欢欢等:阳极氧化法制备二氧化钛纳米管及其在太阳能电池中的应用No.X基体进行氧化反应,同时也使氧化物加速溶解,故小孔底部氧化层与孔间氧化层以不同的速率向基体推进,导致原来较为平整的氧化膜-金属界面变得凹凸不平;随着微孔的生长,孔间未被氧化的金属向上凸起,形成峰状,引发电力线集中,增强了电场,使其顶部氧化膜加速溶解,产生小空腔(图1d);小空腔逐渐加深,将连续的小孔分离,形成有序独立的纳米管结构(图1e).2.3影响TiO2纳米管形态的因素TiO2纳米管的形态受诸多因素影响,主要包括电解液和电解质的组成、电解液的pH值、氧化电压、反应温度、氧化时间,可以控制纳米管的管径、管长、管壁厚度以及管的形态.40,42-452.3.1电解液和电解质的组成电解液有水相电解液(HF溶液或HF与其他强酸的混合液)和有机电解液(HF与乙二醇、丙三醇、二甲基亚砜等混合溶液)两大类,电解质分为含氟和无氟的两类.电解液和电解质的种类对纳米管的形成及其形态的影响最大.按照电解液的组分划分,阳极氧化法制备TiO2纳米管的发展已历经四代(如表146-52所示):(1)第一代纳米管是在含HF的酸性较强(pH<3)的水溶液中制得.Mor等11在醋酸中添加0.5%氢氟酸,其醋酸与水体积以1:7比例混合作为电解液,钛箔片为阳极,获得管长为224nm的TiO2纳米管.将钛箔片置于酸性电解液中时,因氟离子的刻蚀作用,可自组形成高度有序的纳米管,但由于氢氟酸化学溶解速率较快,使纳米管的管长受限,一般不超过500nm.(2)第二代纳米管的制备普遍采用了弱酸性(pH=3-6)的氟化物水溶液作电解液.Kang等53在含有0.5mol·L-1硫酸钠、0.5mol·L-1的磷酸、0.2mol·L-1柠檬酸钠与0.5%(w)氟化钠的混合电解液中阳极处理钛箔片,制备出管长为3μm 的纳米管.在水性电解液中,以氟化物取代氢氟酸,并适当地调整阳极处理参数,亦可获得形貌、孔密度与氢氟酸相似的TiO2纳米管结构,甚至管长更长的纳米管结构.(3)第三代纳米管的制备使用了含水的有机电解液.Paulose等44率先0.5%(w)NH4F的丙三醇溶液中阳极氧化钛片并制得长达7μm的TiO2纳米管.Schmutei等54使用钛箔片与乙二醇中添加2.5%(w)氟化铵的电解液,制备出长达134μm的TiO2纳米管.使用乙二醇有机溶剂,提高溶液的黏度,降低了氟离子的扩散速率,以减缓TiO2溶解速率,从而大幅增长了TiO2纳米管的长度,此后通过进一步调整氧化电压与电解液的组成等,他们先后制备出管长达220、5536056和538μm57的TiO2纳米管.Praksam等58在0.3%(w)氟化铵和含2%(体积分数)水的乙二醇(EG)的溶液中,采用60V电压,氧化96h,制备了长720μm的纳米管.Paulose等38在0.6%(w)NH4F和3.5%(w)H2O的乙烯乙二醇的溶液中,采用60V电压氧化9天制备了长度超过1000μm的TiO2纳米管.(4)第四代纳米管是在非含氟离子电解液中制备.Hahn等59在高氯酸(HClO4)电解液中,采用高电压梯阶的阳极氧化法制得束状TiO2纳米管,制备了TiO2纳米管,纳米管直径约40nm,管壁厚度约10nm,纳米管长度约30μm.Chen等60以0.05-0.3mol·L-1的盐酸(HCl)为电解液,在0.15 mol·L-1的HCl溶液中,在10V下氧化1h,可获得管径约10-20nm的TiO2纳米管,浓度增高或降低,纳表1不同电解液体系中制备的TiO2纳米管的性质Table1Properties of TiO2nanotubes prepared in various electrolytes0003Acta Phys.⁃Chim.Sin.2011V ol.27米管的直径都会增大,而且纳米管排列有序度均降低.2.3.2pH值阳极氧化法制备TiO2纳米管要求电解液呈酸性,从生长和溶解方程(4)可以看出,溶液的pH值(H+浓度)既影响阳极氧化过程中的化学刻蚀速率(支配TiO2纳米管的溶解速率),61又影响TiO2的化学溶解速率(制约TiO2纳米管的形成速率).在强酸性溶液(pH<3)中,纳米管的化学刻蚀速率和溶解速率同时增加,使其最终长度小于500nm,增大电解液的pH值,化学溶解速率下降,从而提高了纳米管生长速率.随着酸性的减弱,可以通过延长反应时间来制备长TiO2纳米管.2.3.3氧化电压研究表明,在一定的氧化时间内,纳米管的长度与氧化电压成正比,随着纳米管底部参与反应的Ti4+和介质中O2-的数量增多,所形成的纳米管的平均管内径、阻挡层厚度、长度都增大.由表1可以看出,阳极氧化电压偏低时只能形成纳米多孔膜,电压偏高时则形成海绵状结构.研究表明,形成纳米管的具体电压范围与电解液体系也有关系.Lin等62发现纳米管的长度在含水的电解液的条件下受氧化电压的影响较大,在非含水的条件只受到微小的影响.2.3.4反应温度阳极氧化过程是电化学生长和化学溶解共同作用的过程,F-对TiO2的刻蚀作用与温度有关,温度越高刻蚀作用就越强;而TiO2的电化学阳极氧化和场致溶解作用则基本不受温度的影响.因此,当温度较高时,F-对TiO2的溶蚀作用占主导,二者不能达到相对平衡,因而无法形成有序的纳米管.在制备纳米管的过程中一般是在常温下进行.2.3.5氧化时间氧化时间对纳米管的影响主要有两个方面:(1)纳米管的形成与否;(2)纳米管的长度.在纳米管生长的初期,纳米管的生长速度大于TiO2的腐蚀速度,纳米管的长度随时间的延长而增长;随着氧化进程的推进,由于电解液中F-浓度不断降低,纳米管中物质的传质过程不断减慢,因此纳米管的生长速度不断减小;当纳米管的生长速度与TiO2的腐蚀速度相等时,纳米管的溶解速度与生长速度达到平衡,此时纳米管的长度达到极限值.3TiO2纳米管的后处理阳极氧化法制备的TiO2纳米管应用于太阳能电池中具有许多缺陷,成为实际应用的“瓶颈”,这是因为(1)TiO2禁带宽度较宽(锐钛矿3.2eV,金红石3.0eV),使其仅能吸收占总太阳光能5%的紫外区光能,对太阳光的利用率较低;(2)TiO2电导率低,不能有效地传递光生载流子,同时又因光生电子与空穴容易复合而使光量子效率较低.此外,在组建太阳能电池等光电功能器件时,为了提高光电转换效率,也要对其进行表面改善.因此,TiO2纳米管的后处理对于提高其材料和相关器件的性能非常关键.3.1热处理阳极氧化法制备的TiO2纳米管为无定形态,必须经过退火处理将晶型结构转变为锐钛矿型,63才能改善纳米管的物理和化学性质.Zhang等64曾报道过在500°C条件下纳米管会发生烧结及变形;Hoyer 等65研究发现,在450°C退火条件下,非晶态TiO2纳米管可以结晶成锐钛矿相,并且纳米管尺寸缩小30%.Yan等66发现在400°C的条件下可以转换成TiO2纳米管,在500-600°C之间转换成锐钛矿的纳米棒,在700°C以上转换成锐钛矿的纳米颗粒. Varghese等67对TiO2纳米管在氩气中进行退火处理,分析结果表明,在高温条件下产生了Ti2O3相,说明Ti4+被还原为Ti3+.在氮气气氛中处理TiO2纳米管也会产生相同作用,但由于退火温度较低,产生的Ti3+含量较少而未能被XRD检测出.3.2掺杂改性对于TiO2纳米管的掺杂特性,主要分为阳离子掺杂(Si4+、Fe3+、Cr+、I5+等),68-71阴离子掺杂(N、C、S、F等),72-75硼离子掺杂(B),76,77半导体复合(CdS、CdSe、CdTe、WO3、Fe2O3等).78-87Misra等88将CdS填充到纳米管内,可以有效地降低禁带宽度,为组建多结的太阳能电池提供了良好的自组装的半导体材料.Falaras等89在纳米管掺杂磁赤铁矿,可以有效地促进电荷的分离.Janik等90通过溅射沉积法将Ag 和Cu沉积到纳米管的表面,用拉曼谱观察了其沉积的过程.Misra等91在纳米管中注入了Pd纳米颗粒可以有效地催化染料,提高光电转换效率.Lu等92通过电化学方法将Cu和Ni到沉积纳米管内,通过掺杂处理以后,可以增加太阳能电池的光电转换效率. 3.3表面改善用TiCl4对TiO2纳米颗粒的表面处理后,能抑制0004李欢欢等:阳极氧化法制备二氧化钛纳米管及其在太阳能电池中的应用No.X电子的结合,促进电子的传输,从而增加电极的电荷密度.Yanagida 等93在用TiCl 4处理后发现组装成TiO 2的纳米颗粒和纳米管复合的染料敏化太阳能电池(DSSC),光电转换效率从原来的6.4%提高到7.1%.Liu 等94通过激光显微机械加工技术对Ti 的表面进行图案处理后,可以明显增大其比表面积和光捕获能力,从而改善光电压和光催化性能.Schmuki 等95利用了阳极氧化的方法制备竹竿型的纳米管,其纳米管的几何和表面性质得到了改善.4在太阳能电池中的应用虽然具有纳米介孔结构的TiO 2颗粒拥有大的比表面积,能够更好地采集入射光及产生光生电子,组装成DSSC,其光电转换效率已经达到了11.1%,96然而其纳米晶粒间的非定向排列使得电子在传输时的散射增强,降低了电子迁移率.TiO 2纳米管具有规则有序的纳米管结构,一方面为光生电子提供了快速传输的通道,另一方面有利于电解液的传质过程.此外,TiO 2纳米管底部的致密阻挡层可以有效地减小暗电流的产生.这些优点使得以TiO 2纳米管电极作为光阳极的DSSC 能够获得更好的光电性能.采用TiO 2纳米管为原料制备的太阳能电池主要包括以下几种类型:(1)基于Ti 片的背光式的染料敏化太阳能电池;(2)基于光阳极导电玻璃(FTO)的染料敏化太阳能电池;(3)基于TiO 2纳米管的量子点太阳能电池;(4)基于TiO 2纳米管的本体异质结太阳能电池.4.1基于Ti 片的背光式的染料敏化太阳能电池2005年Schmuki 等97首先将TiO 2纳米管作为DSSC 的光阳极材料,发现2.5μm 长的纳米管组装成的DSSC 的入射单色光光电转换效率为3.3%,而500nm 长的纳米管组装的DSSC 的只有1.6%,说明TiO 2纳米管管长对太阳能电池有影响,管长增长有利于太阳能电池光电性能的提高.Grimes 等47在钛片上生长出长为6.2μm 的TiO 2纳米管,并组装成背光式DSSC,在AM1.5的光照条件下开路电压V oc =0.82V ,短路电流J sc =10.6mA ·cm -2,填充因子FF=0.51,总的光电转换效率η=4.4%.他们又在KF电解图2基于TiO 2纳米管的背光式染料敏化太阳能电池(DSSC)及其相关性能101Fig.2Back-side illuminated dye-sensitized solar cell based (DSSC)on TiO 2nanotubes and the relatedcharacteristics 101FTO:fluorie-doped tinoxide图3基于TiO 2纳米管的直射式DSSC 及其相关性能101,106Fig.3Front-side illuminated DSSC based on TiO 2nanotubes and the related characteristics 101,106TNT:TiO 2nanotube,ITC:ITU图4基于TiO 2纳米管的量子点太阳能电池107Fig.4Quantum dots solar cell based on TiO 2nanotubes107图5基于TiO 2纳米管的本体异质结太阳能电池112Fig.5Bulk heterojunction solar cell based on TiO 2nanotubes 1120005Acta Phys.⁃Chim.Sin.2011V ol.27液中制备出6μm长的TiO2纳米管,并将其组装成背光式DSSC,总的光电转换效率达到5.44%.Grimes 等103采用第三代纳米管的技术制备出长为220μm 的纳米管,组装了背光式DSSC,在AM1.5的光照条件下开路电压V oc=0.917V,短路电流J sc=12.72mA·cm-2,填充因子FF=0.663,总的光电转换效率为η= 6.89%.Diau等98报道了在含有NH4F的乙二醇溶液下通过阳极氧化法可以得到不同长度的纳米管,对其表面经过TiCl4处理和两次淬火以后,将其组装成背光式DSSC.实验表明随着氧化时间的延长和纳米管的长度增加,其组装成背光式DSSC的性能也在逐渐提高,当纳米管长度为19μm时,在AM1.5的光照条件下,V oc=0.775V,J sc=14.84mA·cm-2,填充因子FF=0.61,总的光电转换效率达到η=7.0%.Lin等99报道了在对纳米管的表面通过O2等离子体和TiCl4处理过以后可以明显改善电池的性能.当纳米管长度为14μm,O2等离子处理10min和TiCl4处理过以后,在AM1.5的光照条件下,V oc=0.77V,J sc=15.44 mA·cm-2,FF=0.62,η=7.37%.2010年,Diau等100报道了通过二次阳极氧化的方法制备TiO2纳米管,其能够制备L=15-57μm的纳米管,将其组装成背光式DSSC.当纳米管长度为30μm时,在AM1.5的光照条件,可以得到V oc=0.741V,J sc=14.63mA·cm-2, FF=0.741,η=7.6%.4.2基于FTO的直射式染料敏化太阳能电池基于Ti片的背光式的染料敏化太阳能的组装方式101(图2)存在不足之处,即太阳光直接从对电极一面入射,Pt层以及电解质溶液会阻挡或吸收部分入射光而降低光照强度,因此产生了基于FTO的直射式染料敏化太阳能电池.2006年,Mor等102蒸镀纯钛薄膜(约800nm)于FTO导电玻璃上,在相同的镀膜与电解液条件下,在低温5°C下,阳极氧化制备出管长为360nm的TiO2纳米管,并将其应用于DSSC 光电极中,在AM1.5的光照条件下V oc=0.75V,J sc= 7.87mA·cm-2,FF=0.49,总的光电转换效率η= 2.96%,电压衰减测试表明,相比于TiO2纳米颗粒体系,这种高度有序的TiO2纳米管具有更高的电子寿命并为电子传输提供了更优异的途径.如果能够进一步增加TiO2纳米管的长度,可能达到单个器件所能达到的33%的理论最大光电转换效率.Grimes等103利用磁控溅射的方法在导电玻璃表面沉积一层Ti 薄膜,然后对Ti膜进行阳极氧化从而制备出透明的TiO2纳米管电极,将此种新型透明管(3.6μm)电极用作光阳极,组装成直射式DSSC,在AM1.5的光照条件下,V oc=0.84V,J sc=10.3mA·cm-2,FF=0.54,光电转换效率η=4.7%.Hun等104利用阳极氧化法制备出了较长的TiO2纳米管,并将其移植到FTO的表面,组建成DSSC.未经TiCl4表面处理之前,长度为20μm的纳米管,在AM1.5的光照条件下其DSSC器件V oc=0.67V, J sc=7.61mA·cm-2,FF=0.66,η=3.37%.表面通过TiCl4处理后,V oc=0.71V,J sc=12.71mA·cm-2,FF= 0.62,η=5.36%.可以发现,经过TiCl4处理后,短路电流得到了很大的提高.Grimes等105制备出长度为33μm的纳米管并将其组装成直射式DSSC,用TiCl4处理过后,在AM1.5的光照条件下,V oc=0.73V,J sc= 15.8mA·cm-2,FF=0.59,η=6.9%.Lei等106采用超声分离(ultrasonically detached)的方法将纳米管从钛片上剥离,然后再黏附在FTO的表面,并组装成直射式DSSC(图3).当纳米管长度为20.8μm时,在AM1.5的光照条件下,V oc=0.814V,J sc=15.46mA·cm-2,FF=0.64,η=8.07%.4.3基于TiO2纳米管的量子点太阳能电池量子点(CdS、CdSe、CdTe等)通过化学浴和电化学沉积等方法分散在纳米管的内外管壁上,其优点是:通过控制量子点的尺寸可以很容易地调节半导体的带隙和光谱吸收范围;光吸收呈带边型,有利于太阳光的有效收集;粒子的表面改性可增加光稳定性;半导体量子点由于量子局限效应而有大的消光系数,导致电荷快速分离;量子点吸收1个光子能够产生多个光生电子.量子点敏化太阳能电池直接用半导体量子点取代染料,具有器件结构和量子点敏化相对简单的特点.Peng等107利用电化学沉积的方法将CdS量子点注入到长度为19.2μm纳米管的内外管壁上,组装成量子点太阳能电池(图4),在AM1.5的光照条件下,V oc=1.27V,J sc=7.82mA·cm-2, FF=0.578,η=4.15%.Lee等108将在纳米管中敏化了两种尺寸的CdSe量子点,当将2.6nm尺寸的量子点注入到纳米管内并组装成量子点太阳能电池时,在AM1.5的光照条件下,V oc=0.63V,J sc=2.49mA·cm-2, FF=0.58,η=0.91%.当将3.0nm的量子点注入到纳米管内,并组装成量子点太阳能电池,在AM1.5的光照条件下V oc=0.63V,J sc=2.31mA·cm-2,FF=0.58,η=0.86%.而将这两种尺寸的量子点共敏到纳米管的表面,并组装成量子点太阳能电池,在AM1.5的光照条件下,V oc=0.63V,J sc=3.23mA·cm-2,FF=0.59,0006李欢欢等:阳极氧化法制备二氧化钛纳米管及其在太阳能电池中的应用No.Xη=1.2%.Huang等109将CdS、CdSe共敏到纳米管的表面,并将其组装成量子点太阳能电池,在AM1.5的条件下光电转换效率η=3.18%.4.4本体异质结太阳能电池本体异质结太阳能电池,因其成本低廉、重量轻、可制成柔性器件等优点受到研究者的重视.共轭聚合物/富勒烯本体异质结型太阳能电池一般由共轭聚合物(P3HT,MEH-PPV,MDMO-PPV等)给体/PCBM(一种可溶性C60衍生物)受体的共混膜(光敏活性层)夹在透明导电ITO玻璃电极(阳极)和金属阴极之间所组成.但是由于聚合物只具有单一的载流子传输特性且极易复合,所以其光生载流子传输效率低,这使得本体异质结太阳能电池的转换效率较低,而将聚合物复合到一维的纳米材料的表面,可以形成完全的导带路径,提高载流子的传输效率,从而提高太阳能电池的光电转换效率.Shankar等110通过阳极氧化法制备了长为4μm的纳米管,将聚噻吩的衍生物自组装到纳米管的表面,组建了基于TiO2纳米管的本体异质结太阳能电池.在AM1.5的光照条件下,V oc=0.7V,短路电流J sc=5.5mA·cm-2,FF=0.55,η=2.1%.Mor等111报道了以摩尔比为1:1,溶于氯仿的P3HT(10mg/ml)和PCBM(8mg/ml)混合渗透在TiO2纳米管(内径50 nm,长270nm)中,然后把PEDOT:PSS通过悬涂法沉积在表面组装成本体异质结太阳能电池,在AM1.5的光照条件下获得开路电压V oc=0.641V,短路电流J sc=12.4mA·cm-2,填充因子FF=0.51,光电转换效率η=4.1%.为了增加在红外和远红外区域内对太阳光的吸收,在FTO的表面对TiO2纳米管(内径35nm,长600-700nm)进行染料敏化,即在渗透了p型的P3HT,并将此TiO2纳米管组装成太阳能电池112(图5).在远红外太阳光的照射下其内量子效率增加了65%,在AM1.5的条件光照射下,传统的光电转换效率可以达到3.2%,染料敏化后的可以达到3.8%.5结论与展望本文综述了阳极氧化法制备TiO2纳米管的发展历程、实验装置、生长的机理、后处理方式以及其在各种类型太阳能电池中的一些应用.利用阳极氧化制备TiO2纳米管方法简单,易于操作,可以实现有序控制纳米管的形态,在组建太阳能电池方面发挥着越来越重要的作用.TiO2纳米管的后处理对其器件性能非常关键,热处理能改变其晶型,掺杂可以提高其对太阳光的吸收,表面修饰可以抑制电子的结合从而促进电子的传输.对于利用TiO2纳米管组建成背光式和直射式染料敏化太阳能电池来说,改善TiO2纳米管的形貌是其主要的发展方向;基于量子点式的敏化太阳能电池,如何拓展对太阳光谱的吸收成为其研究的主要课题;基于本体异质结太阳能电池,怎样提高载流子的迁移率成为以后研究的重点对象.TiO2纳米管以其独特的光物理性能在光电功能器件中得到愈来愈多的应用,阳极氧化法制备TiO2纳米管技术的出现及其发展大大推动了这一重大研究方向的进程.但是目前仍有一些问题需要解决:(1)阳极氧化法制备TiO2纳米管的形成机理和规律还存在争议;(2)如何研发更好的方法,实现纳米管的形态和纳米尺寸的有序控制;(3)如何更合理地设计和组建相关太阳能器件结构,提高光电转换效率.相信随着这些问题的陆续解决,TiO2纳米管及其阳极氧化制备法将得到更多的研究和应用.References(1)Chen,X.B.;Mao,S.S.Chem.Rev.2007,107,2891.(2)Bavykin,D.V.;Friedrich,J.M.;Walsh,F.C.Adv.Mater.2006,18(21),2807.(3)Grimes,C.A.J.Mater.Chem.2007,17(15),1451.(4)Adachi,M.;Murata,Y.;Okada,I.;Yoshikawa,S.J.Electrochem.Soc.2003,150(8),G488.(5)Varghese,O.K.;Gong,D.W.;Paulose,M.;Ong,K.G.;Grimes,C.A.Adv.Mater.2003,15(7-8),624.(6)Varghese,O.K.;Gong,D.W.;Paulose,M.;Ong,K.G.;Grimes,C.A.Sens.Actuators B:Chem.2003,93(1-3),338. (7)Gao,X.F.;Sun,W.T.;Hu,Z.D.;Ai,G.;Zhang,Y.L.;Feng,S.;Li,F.;Peng,L.M.J.Phys.Chem.C2009,113(47),20481.(8)Yodyingyong,S.;Zhou,X.Y.;Zhang,Q.F.;Triampo,D.;Xi,J.T.;Park,K.;Limketkai,B.J.;Cao,G.Z.J.Phys.Chem.C2010,114(49),21851.(9)Mor,G.K.;Varghese,O.K.;Paulose,M.;Shankar,K.;Grimes,C.A.Sol.Energ.Mat.Sol.2006,90,2011.(10)Ok,S.Y.;Cho,K.K.;Kim,K.W.;Ryu,K.S.Physica Scripta.2010,2010(T139),014052.(11)Mor,G.K.;Shankar,K.;Paulose,M.;Varghese,O.K.;Grimes,C.A.Nano Lett.2005,5(1),191.(12)Fujishima,A.;Honda,K.Nature1972,238(5358),37.(13)Paulose,M.;Mor,G.K.;Varghese,O.K.;Shankar,K.;Grimes,C.A.J.Photoch.Photobio.A-Chem.2006,178(1),8.(14)Park,J.H.;Kim,S.;Bard,A.J.Nano Lett.2006,6(1),24.(15)Mohapatra,S.K.;Misra,M.;Mahajan,V.K.;Raja,K.S.J.Phys.Chem.C.2007,111(24),8677.0007。

TiN纳米管的制备及其作为SERS基底的应用(英文)

TiN纳米管的制备及其作为SERS基底的应用(英文)

Surface-enhanced Raman scattering (SERS) is a no n -d e stru ctive ,ultra se n sitive and pow erful a n a ly tic a l technique, and has been w idely used in surface chem istry[1-2],b io lo g ic a l id e n tific a tio n s and detections[3]. It is w ell known the unique property and application o f SERS are closely related to a h ighly efficie n t enhancem ent substrate. To date,various SERS-active
17 同 济 大 学 材 料 科 学 与 工 程 学 院 ,上 海 2000929 27 同 济 大 学 先 进 土 木 工 程 材 料 教 育 部 重 点 实 验 室 ,上 海 2000929
- 摘 要 :采 用 阳 极 氧 化 法 在 钛 片 表 面 制 备 T i〇2纳 米 管 阵 列 ,并 经 氨 气 氮 化 得 到 T iN 纳 米 管 阵 列 ,通 过 X R D 、SEM、XPS、U V V is 对
关 键 词 :氮 化 钛 ;二 氧 化 钛 纳 米 管 阵 列 ;表 面 增 强 拉 曼 散 射
中 图 分 类 号 :O614.24; TB33
文 章 编 号 :1001 4861(2018)07 1392 07
D O I:10.11862/CJIC.2018.185
6 7 superior SERS se n sitivity towards R G,w ith a detection lim it o f 〜10- mo& L -1and the enhancem ent fa cto r o f 〜105.

三维多孔支架表面成型二氧化钛纳米管阵列体外促进人牙髓干细胞粘附及成骨分化

三维多孔支架表面成型二氧化钛纳米管阵列体外促进人牙髓干细胞粘附及成骨分化

scaffolds m a d e b y replication technique we r e coated with T i O , slurry of 5 % , 1 5 % , 3 0 % m a s s fractions respectively. After being heated
for 2 h at 5 0 0 , s a m p l e s w e r e respectively i m m e r s e d in 10 m o l / L N a O H for 12, 2 4, 3 6 h at 1 lOTi. Co m p r e s s i v e strength an d porosi­
1.76 M P a , a n d the porosity w a s 7 9 % . C o m p a r e d with the control group, cells from the experimental gr o u p h a d m o r e pseudopodia, e x ­
Abstract : Objective 10 fahricate titanium dioxide ( T i O , ) nanotuhe arrays o n the surface of 3 D porous zirc o n i u m dioxide( Z r 0 2 )
sc affolds a n d detect their influence o n adhesion a n d proliferation of h u m a n dental pulp s t e m cells ( h D P S C s ) . Methods Z r 0 2 porous

一种新型的光电极-二氧化钛钨酸纳米阵列

一种新型的光电极-二氧化钛钨酸纳米阵列

A novel photoelectrode from TiO 2-WO 3nanoarrays grown on FTO for solar water splittingHeba Ali a ,*,Nahla Ismail a ,Aiat Hegazy b ,Mohamed Mekewi caPhysical Chemistry Department,National Research Centre,Dokki,Cairo,Egypt bSolar Energy Department,National Research Centre,Dokki,Cairo,Egypt cChemistry Department,Faculty of Science,Ain Shams University,Abbassia,Cairo,EgyptA R T I C L E I N F OArticle history:Received 3September 2014Received in revised form 22October 2014Accepted 22October 2014Available online 31October 2014Keywords:Water splitting hydrogen energy Photoelectrode TiO 2photoelectrochemical propertiesA B S T R A C TTiO 2-WO 3nanorod arrays were synthesized on fluorine-doped tin oxide (FTO)substrates via a template free process,hydrothermal procedure combined with electrodeposition.The designed photoelectrodes were characterized by X-ray diffraction (XRD),field emission scanning electron microscopy (FE-SEM),high-resolution transmission electron microscopy (HRTEM)and photoelectrochemical measurements.These arrays are employed as photoanodes in water splitting systems under illumination of AM 1.5G (110mW/cm 2).This study demonstrates that the WO 3deposition interval time (0,10,20,40,60min)can signi ficantly affect the photoelectrochemical performance and the amount of hydrogen generated.The optimal deposition time was 20min,which is suf ficient to homogeneously coating the TiO 2nanorods and enhance the photoconversion ef ficiency of TiO 2-WO 3array by 60%compared to pure TiO 2array.The enhanced electrode ef ficiency was attributed to ef ficient charge separation and reduction of the electron-hole pair recombination rate.ã2014Elsevier Ltd.All rights reserved.1.IntroductionIn 1972,Fujishima and Honda reported the photocatalytic production of hydrogen over TiO 2[1].Photoelectrochemical water splitting attained a massive attention in recent years as a result of hydrogen that can be produced from two clean and renewable energy sources,sun and water.Therefore,hydrogen is considered to be the future environmentally energy carrier.Titanium dioxide is a wide band gap semiconductor,3.0eV for rutile and 3.2eV for anatase,and is high chemically stable,inexpensive,and nontoxic.In addition,its band energy matches the redox properties of water [2–4].TiO 2suffers from its limited absorption range of solar spectrum lying in the UV region.To design an ef ficient commercial electrode for hydrogen production employing solar energy conversion,functional materials have to be developed.Various attempts have been made to prolong the solar absorption spectrum of the solar cell towards the visible region and to decrease the wide band gap of TiO 2.WO 3has a band gap of 2.5–2.8eV,so it can be excited by visible light illumination [5–10].Furthermore,both its valence band and the conduction band are lower than those of TiO 2[11].Therefore,design of TiO 2-WO 3hybrid materials are subjected to a challenging research due to its improved photoelectrochemical properties,which can be explained as follows.By illuminating TiO 2,it absorbs light and the photogenerated electrons transfer from TiO 2conduction band to WO 3conduction band.Meanwhile the photogenerated holes move from WO 3valence band toward TiO 2valence band [3,12–15].This transfer causes accumulation of holes in TiO 2and accumulation of electrons in WO 3.Consequently,the charge carrier separation and the photoelectrochemical properties are enhanced.Khare et al.reported the synthesis of WO 3-TiO 2films on silicon wafer by the magnetron sputtering method using W and Ti metallic targets [6].These films were utilized in a photoelec-trochemical cell,and the photocurrent density was signi ficantly enhanced up to 0.11mA/cm 2.Liu et al.synthesized a nano-honeycomb TiO 2-WO 3film on Si wafer and FTO using a polystyrene coatingas a template [16].Yet only 0.2m mol/h cm 2of hydrogen was produced from photoelectrochemical water splitting.Gao et al.evaluated the photocatalytic activity of nitrogen-doped TiO 2(TiO 2-N)and nitrogen-doped TiO 2-WO 3(TiO 2-N-WO 3)[17].It was found that TiO 2-N-3%WO 3showed enhanced photodegradation of 4-Chlorophenol as compared to TiO 2-N,which was attributed to its higher absorption and ef ficient charge separation in the presence of appropriate amount of WO 3.Also,bilayer TiO 2/WO 3photo-catalysts on stainless steel were prepared using Pulsed*Corresponding author.E-mail address:heba_future@ (H.Ali)./10.1016/j.electacta.2014.10.1420013-4686/ã2014Elsevier Ltd.All rights reserved.Electrochimica Acta 150(2014)314–319Contents lists available at ScienceDirectElectrochimica Actaj o u rn a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /e l e c t a c taelectrodeposition technique[18].It was demonstrated that the catalytic activity of the couple TiO2/WO3is better than single WO3 under both UV and visible irradiation.Furthermore,Zhao et al. estimated the electron storage ability of TiO2-WO3via the reduction of Fe3+[19].Their calculations indicated high electron storage capacity for a Ti:W mixed oxidefilm up to a certain concentration ratio,and a further increase in WO3concentration caused a decrease in the stored electrons due to formation of WO3 clusters.Generally,all earlier studies indicate that there is an optimum concentration of WO3to improve the performance of TiO2-WO3mixed oxide materials.To the best of our knowledge,this study is thefirst to report the utilization TiO2-WO3nanorod arrays,which are grown on an FTO substrate by a combination of hydrothermal and electrodeposition method,as photoanodes in water splitting system.Herein, hydrothermal method was applied to synthesize TiO2nanorod array,and then WO3was electrodeposited at different durations (10,20,40,60min)to produce TiO2-WO3arrays.These arrays are employed for photoelectrochemical water splitting under illumi-nation of a solar simulator(110mW/cm2).The photoelectrochem-ical properties,photocurrent and photoconversion efficiency(h), of these arrays were significantly affected by varying the WO3 deposition time.2.Experimental2.1.MaterialsTitanium tetrachloride and hydrochloric acid(Sigma–Aldrich), sodium tungstate(Lobachemie),hydrogen peroxide(Alpha Chem-ika),isoropanol and ethylene glycol(The Sdfine-chem Limited) were all of analytical grade and were utilized without further purification.3.MethodsFTO substrates were ultrasonically cleaned with isopropanol followed by deionized water and then placed at the bottom of teflon-lined autoclave cylinder.A mixture of TiCl4and6M HCl with ratio of1:60was poured over the FTO substrate.The autoclave was heated at150 C for10h.After cooling,the obtained TiO2nanorod film referred to as(T)was rinsed with deionized water.To deposit WO3on the obtained nanorods,a three electrode cell was used,Pt as the counter electrode,Ag/AgCl as the reference electrode,and the delivered TiO2nanorods as the working electrode(1cm2).The WO3electrodeposition was carried out as described elsewhere[20] 25mM Na2WO4and0.075%H2O2electrolyte(pH1.4),at constant potential-450mV and various periods10,20,40,60min.A scheme represents the preparation steps and the proposed morphological changes,based on the FE-SEM is shown in Fig.1.3.1.Characterization techniquesThe crystalline structure of TiO2and TiO2-WO3arrays was examined by X-ray diffraction(XRD,EMPYREAN diffractometer operated at30mA and45KV,using Cu K a radiation,Netherland). The average crystallite size of pure TiO2and TiO2-WO3array was estimated using Debye–Scherrer expression Eq.(1).D¼K lb cos u(1)Where D is the crystal size,K is the Scherrer constant(0.89),l is the wavelength of X-ray radiation,&beta;is the full width at half-maximum(FWHM),and u is the diffraction angle.The morphology of the prepared arrays was observed usingfield emission scanning electron microscope(FE-SEM,Quanta250FEG,Netherland)and high-resolution transmission electron microscope(HRTEM,JEM 2100,Jeol,Japan).Photoelectrochemical properties of TiO2and TiO2-WO3arrays were studied by a solar simulator with a150W ozone-free Xenon lamp equipped with AM1.5Gfilter as an irradiation source and a three electrode cell.Platinum wire was used as a counter electrode, Ag/AgCl was used as a reference electrode and TiO2or TiO2-WO3film(1cm2)was used as a working electrode in1M KOH containing 10wt.%of ethylene glycol.The photocurrent was monitored by a potentiostat(Volta Lab10model PGZ100),and the intensity of solar simulator through the experiment was measured with a (DI-LOG,SL102)solar power meter and multimeter.4.Results and discussion4.1.Structure characterizationThe electrode material design steps are tracked by XRD as illustrated in Fig.2.The FTO pattern is shown in Fig.2(a).The XRD pattern of the TiO2nanorods grown directly on FTO is plotted in Fig.2(b).It matches that of tetragonal rutile TiO2(JCPDS21-1276). The peak at36.10corresponds to(101)plane and the main peak at 62.60corresponds to(002)lattice plan,as reported in literature [21,22].After20min of electrodeposition from a bath containing tungsten salt,the obtained array shows new peaks that matches monoclinic WO3(JCPDS72-0677),Fig.2(c).The peaks at23.060, 23.50and24.30are attributed to the(002),(020)and(200) crystal planes,respectively.This confirms the deposition of WO3on the TiO2nanorod array.The average crystallite size of pure TiO2and TiO2-WO3array is evaluated using Debye–Scherrer equation.From the(101)and(002)peaks,the average crystalline size of pristine TiO2is32Æ0.6nm and that of TiO2-WO3array is43Æ5nm.4.2.Morphological characterizationThe morphology of TiO2and TiO2-WO3nanorod arrays were investigated byfield emission scanning electronmicroscopy Fig.1.Scheme of the fabrication steps for TiO2and TiO2-WO3nanorod arrays.(a) Formation of TiO2nanorod array on FTO glass by hydrothermal method.(b) Electrodeposition of WO3over the TiO2array for20min to produce TiO2-WO3array.(c)Further electrodeposition time,60min,causes thick grows of WO3.H.Ali et al./Electrochimica Acta150(2014)314–319315(FE-SEM)and high-resolution transmission electron microscopy (HRTEM).Fig.3(a)displays the successful preparation of TiO 2nanorod array directly on FTO substrate.Obviously,well organized TiO 2nanorods with different sizes completely cover the FTO substrate.The remaining images display the deposition of WO 3at different deposition times on the nanorods.For 20min deposition,the WO 3uniformly covered the TiO 2nanorods as presented in Fig.3(b).When the deposition time increases up to 60min,Fig.3(c),WO 3grows thicker on the TiO 2nanorods and fills space between the nanorods.The nanorods were scratched and separated from the FTO surface for examination under HRTEM.The images for TiO 2nanorod array,Fig.4(a,b),show that TiO 2array consists of clusters of nanorods with different sizes and thinner at the tip ends.These results are in accordance with that observed by FE-SEM images.Fig.4(c,d)illustrates the sponge coverage of WO 3layer over the nanorods.4.3.Photoelectrochemical characterizationThe photoelectrochemical studies were carried out in 1M KOH containing 10wt.%ethylene glycol using the experimental setup as presented in Fig.5,which includes solar simulator,potentiostat,and the designed electrode.The designed electrode is exposed to the light source through a quartz window.The photoelectrochem-ical properties were performed using a three electrode cell,T,TW or W film as the working electrode,Ag/AgCl as the reference electrode and platinum foil as the counter electrode under solar simulator illumination (110mW/cm 2).Fig.6shows the photocurrent density versus the applied potential at a scan rate of 20mV/s using photoassisted solar simulator.The photocurrent density increases signi ficantly for 10and 20min WO 3electrodeposition coverage as shown in Figs.6(b)and (c),respectively.Whereas longer deposition durations up to 40and 60min lowers the photocurrent density to values less than that of the uncoated TiO 2nanorods as illustrated in Figs.6(d)and (e),respectively.Hence,thickness of WO 3layer plays a vital role of the activity of the photoelectrode.An electrode of pure WO 3film deposited on FTO (1cm 2)was prepared for the purpose of comparison using the same deposition bath and 20min deposition time.Its photocurrent density is very small as shown in Fig.6(f).It is deduced that the mixed oxide electrodes TW 10and TW 20enhance the charge carrier transfer,and this is attributed tothe photo-generated electrons transferred to the WO 3conduction band and the positive holes moves toward the TiO 2valence band.Thus,an ef ficient charge separation and reduction of the electron-hole pair recombination rate occur [12–14,23,24].Conse-quently,the photocurrent and the photoelectrocatalytic activity are improved.A simpli fied scheme of the charge transfer for TiO 2-WO 3mixed oxide electrode is illustrated in Fig.7.Whereas,further increase in deposition time causes the WO 3layer to be thicker,which may shield the role of TiO 2and the electrode photocurrent values are near to that of pure WO 3deposited on FTO substrate.The photocurrent densities indicate that the designed mixed oxide electrode at 20min electrodeposition duration yields the highest photocurrent density.The above results indicate that,there is an optimum amount of WO 3to improvetheFig.3.FE-SEM images of (a)The TiO 2nanorod array photoelectrode on FTO,(b)TiO 2-WO 3photoelectrode array on FTO prepared at 20min deposition time of WO 3on the TiO 2nanorod array,and (c)TiO 2-WO 3photoelectrode array prepared at 60min deposition time of WO 3on the TiO 2nanorod array (c).Inset figures at higher magni fication.I n t e n s i t i y (a r b .u n i t )2 Theta (degree )Fig.2.XRD patterns of (a)The FTO substrate,(b)TiO 2nanorod array prepared onFTO substrate by hydrothermal procedure,and (c)TiO 2-WO 3nanorod array on FTO,which synthesized by hydrothermal fabrication of TiO 2on FTO substrate then electrodeposition of WO 3for 60min.316H.Ali et al./Electrochimica Acta 150(2014)314–319photoelectrochemical activity of TiO 2-WO 3array,which in agreement with the previous work [17,19].The photoconversion ef ficiency (h ),light energy to chemical energy conversion,for all the designed electrodes has been calculated according to photocurrent-potential characteristics by applying Eq.(2):h ð%Þ¼J p E 0revÀj E app j =I 0h iÂ100(2)Where,J p is the photocurrent density (mA/cm 2),E 0rev is the standard reversible potential for water splitting (1.23V),E app is the applied potential (V),and I 0is the power density of incident light (110mW/cm 2).The value of E app =E meas ÀE aoc ,where Emeas is the working electrode potential measured with respect to a reference electrode at which photocurrent was measured under illumination and E aoc is the open circuit potential of working electrode measured with respect to the same reference electrode under the same illumination and in the same electrolyte.Figs.8(b)and (c)reveal an enhancement in photoconversion ef ficiency of the mixedoxide electrodes TW 10and TW 20,respectively,in comparison topristine TiO 2,Fig.8(a).The maximum photoconversion ef ficiency of TW 20electrode is 0.32%,which is 60%higher than that of pure TiO 2electrode.The photoconversion ef ficiency of a WO 3film is small,about 0.004%,and can be neglected.Table 1shows the estimated hydrogen evolution rate of different photoelectrodes.The rate of hydrogen evolved on pure TiO 2nanorod electrode is about 9m mol h À1cm À2.This value is near to that obtained from TiO 2synthesized by radio-frequency magnetron sputtering (12.5m mol h À1)[25].Whereas our hydro-thermal preparation method is more convenient for wide applications and is more cost effective than magnetron sputtering.With the coverage of TiO 2nanorods with WO 3the hydrogen generation rate was increased and then decreased with increasing deposition time.As expected from the photocurrent density values,the TW 20electrode recorded the highest hydrogen evolution rate reaches 18m mol h À1cm À2,which is two times higher than that for a pure TiO 2array.The hydrogen production rate of TW 60electrode was too small to bedetected.Fig.4.HRTEM images of (a,b)The TiO 2nanorods removed from FTO by mechanical scratching from different places,(a)a single nanorod and (b)cluster of nanorods with different sizes,and (c,d)TiO 2-WO 3nanorods prepared by 20min deposition time of WO 3over TiO 2nanorod array at various magni fication.Fig.5.Schematic presentation of the experimental setup forthe photoelectrochemical measurements.C,R and W are connected to Pt,Ag/AgCl and designed electrode,respectively.H.Ali et al./Electrochimica Acta 150(2014)314–3193175.ConclusionA novel photoelectrode from TiO 2-WO 3nanorod arrays were fabricated by two step process,hydrothermal preparation of TiO 2on FTO substrate followed by electrodeposition of WO 3over the former TiO 2nanorod array at various times (10,20,40,60min).Our results demonstrated that coupling TiO 2and WO 3in one array increases the photoreactivity as compared to the individual components.In addition,the thickness of the WO 3layer controls the photoelectrochemical performance of the mixed oxide photo-electrodes.In comparison to TiO 2,TiO 2-WO 3array prepared after 20min deposition time exhibits a greatly enhanced photocatalytic activity.Its photoconversion ef ficiency is nearly 60%higher than that of the pristine TiO 2array.Moreover,the hydrogen production rate of this sample increased by almost two times compared to pure TiO 2array.AcknowledgmentThis research was financially supported by the Science and Technology Development Fund (STDF)in Egypt through project number 3649.References[1]A.Fujishima,K.Honda,Electrochemical photolysis of water at asemiconductor electrode,Nature 238(1972)37.[2]A.D.Paola,M.Bellardita,R.Ceccato,L.Palmisano,F.Parrino,Highly activephotocatalytic TiO 2powders obtained by thermohydrolysis of TiCl 4in water,The Journal of Physical Chemistry C 113(2009)15166.[3]B.Souvereyns,K.Elen,C.De Dobbelaere,A.Kelchtermans,N.Peys,J.D'Haen,M.Mertens,S.Mullens,H.Van den Rul,V.Meynen,P.Cool,A.Hardy,M.K.Van Bael,Hydrothermal synthesis of a concentrated and stable dispersion of TiO 2nanoparticles,Chemical Engineering Journal 223(2013)135.[4]M.R.Bayati,F.Golestain-Fard,A.Z.Moshfegh,Visible photodecomposition ofmethylene blue over micro arc oxidized WO 3–loaded TiO 2nano-porous layers,Applied Catalysis A:General 382(2010)322.[5]C.Santato,M.Ulmann,J.Augusty nski,Enhanced visible light conversion ef ficiency using nanocrystalline WO 3films,Advanced Materials 13(2001)511.[6]C.-F.Lin,C.-H.Wu,Z.-N.Onn,Degradation of 4-chlorophenol in TiO 2WO 3,SnO 2TiO 2/WO 3and TiO 2/SnO 2systems,Journal of Hazardous Materials 154(2008)1033.[7]V.Iliev,D.Tomova,S.Rakovsky,A.Eliyas,G.L.Puma,Enhancement ofphotocatalytic oxidation of oxalic acid by gold modi fied WO 3/TiO 2photocatalysts under UV and visible light irradiation,Journal of Molecular Catalysis A:Chemical 327(2010)51.[8]W.J.Lee,P.S.Shinde,G.H.Go,E.Ramasamy,Ag grid induced photocurrentenhancement in WO 3photoanodes and their scale-up performance toward photoelectrochemical H 2generation,International Journal of Hydrogen Energy 36(2011)5262.[9]B.Subash,B.Krishnakumar,V.Pandiyan,M.Swaminathan,M.Shanthi,Synthesis and characterization of novel WO 3loaded Ag –ZnO and its photocatalytic activity,Materials Research Bulletin 48(2013)63.[10]C.Khare,K.Sliozberg,R.Meyer,A.Savan,W.Schuhmann,A.Ludwig,LayeredWO 3/TiO 2nanostructures with enhanced photocurrent densities,International journal of hydrogen energy 38(2013)15954.[11]A.Strinvasan,M.Miyauchi,Chemically stable WO 3based thin-film for visible-light induced oxidation and superhydrophilicity,The Journal of Physical Chemistry C 116(2012)15421.[12]I.Shiyanovskaya,M.Hepel,Decrease of Recombination Losses in BicomponentWO 3/TiO 2Films Photosensitized with Cresyl Violet and Thionine,Journal of The Electrochemical Society 145(1998)3981.[13]I.Shiyanovskaya,M.Hepel,Bicomponent WO 3/TiO 2Films as Photoelectrodes,Journal of The Electrochemical Society 199(2014)243.[14]T.He,Y.Ma,Y.Cao,X.Hu,H.Liu,G.Zhang,W.Yang,J.Yao,Photochromism ofWO 3colloids combined with TiO 2nanoparticles,The Journal of Physical Chemistry B 106(2002)12670.[15]Y.He,Z.Wu,L.Fu,C.Li,Y.Miao,L.Cao,H.Fan,B.Zou,Photochromism and sizeeffect of WO 3and WO 3-TiO 2aqueous sol,Chemistry of Materials 15(2003)4039.[16]K.-I.Liu,Y.-C.Hsueh,C.-Y.Su,T.-P.Perng,Photoelectrochemical application ofmesoporous TiO 2/WO 3nanohoneycomb prepared by sole gel method,International journal o f hydrogen energy 38(2013)7750.[17]B.Gao,Y.Ma,Y.Cao,W.Yang,J.Yao,Great enhancement of photocatalyticactivity of nitrogen-doped titania by coupling with tungsten oxide,The Journal of Physical Chemistry B 110(2006)14391.[18]E.Valova,J.Georgieva,S.Armyanov,S.Sotiropoulos,A.Hubin,K.Baert,M.Raes,Morphology,Structure and Photoelectrocatalytic Activity of TiO 2/WO 3P h o t o c u r r e n t d e n s i t y (m A /c m 2)Fig.6.Photocurrent density-potential characteristics of (a)TiO 2nanorod photo-electrode array prepared on FTO substrate and (b-e)TiO 2-WO 3nanorodphotoelectrode arrays prepared at various deposition time of WO 3:(b)10min,(c)20min,(d)40min,(e)60min,and (f)WO 3electrodeposited film prepared on FTO substrate for 20min.Fig.7.Scheme of charge carrier transfer in TiO 2-WO 3nanorod arrays.318H.Ali et al./Electrochimica Acta 150(2014)314–319Coatings Obtained by Pulsed Electrodepositiononto Stainless Steel,Journal of The Electrochemical Society157(2010)D309.[19]D.Zhao,C.Chen,C.Yu,W.Ma,J.Zhao,Photoinducedelectron storage in WO3/TiO2nanohybrid material in the presence of oxygen and postirradiatedreduction of heavy metal ions,The Journal of Physical Chemistry C(2009) 13160.[20]N.R.de Tacconi,C.R.Chenthamarakshan,K.Rajeshwar,T.Pauporté,D.Lincot,Pulsed electrodeposition of WO3–TiO2compositefilms,ElectrochemistryCommunications5(2003)220.[21]X.Feng,K.Shankar,O.K.Varghese,M.Paulose,tempa,C.A.Grimes,Vertically aligned single crystal TiO2nanowire arrays grown directly ontransparent conducting oxide coated glass:synthesis details and applications, Nanoletters8(2008)3781.[22]Q.Huang,G.Zhou,L.Fang,L.Hu,Z.-S.Wang,TiO2nanorod arrays grown from amixed acid medium for efficient dye-sensitized solar cells,Energy andEnviromental Science4(2011)2145.[23]V.Luca,M.G.Blackford,K.S.Finnie,P.J.Evans,M.James,M.J.Lindsay,M.Skyllas-Kazacos,P.R.F.Barnes,Sol–gel tungsten oxide/titanium oxide multilayernanoheterostructured thinfilms:structural and photoelectrochemicalproperties,The Journal of Physical Chemistry C(2007)18479.[24]F.Riboni,L.G.Bettini,D.W.Bahnemann,E.Selli,WO3–TiO2vs.TiO2photocatalysts:effect of the W precursor and amount on the photocatalytic activity of mixed oxides,Catalysis Today209(2013)28.[25]R.Dholam,N.Patel,M.Adami,A.Miotello,Physically and chemically synthesizedTiO2composite thinfilms for hydrogen production by photocatalytic watersplitting,International Journal of Hydrogen Energy33(2008)6896.H.Ali et al./Electrochimica Acta150(2014)314–319319。

铱钛阳极 在硫酸中的反应

铱钛阳极 在硫酸中的反应

铱钛阳极在硫酸中的反应简介铱钛阳极是一种常用于电化学反应中的阳极材料。

在硫酸中,铱钛阳极具有优异的耐腐蚀性能和电化学活性,因此被广泛应用于电解、电池等领域。

本文将探讨铱钛阳极在硫酸中的反应机理、性能特点以及应用前景。

反应机理铱钛阳极在硫酸中的反应主要涉及以下两个方面:1.氧化反应:铱钛阳极可以在硫酸中发生氧化反应,将溶液中的阴离子氧化为氧气。

这个反应可以用以下方程式表示:2H2O(l) -> O2(g) + 4H+(aq) + 4e-在该反应中,铱钛阳极作为电子提供者,将水分子氧化为氧气,并释放出4个电子和4个氢离子。

2.腐蚀反应:硫酸是一种强酸,具有强腐蚀性。

铱钛阳极在硫酸中会发生一系列腐蚀反应,其中包括铱钛阳极自身的腐蚀以及与硫酸中其他物质的反应。

这些反应会导致铱钛阳极表面的腐蚀和损坏。

性能特点铱钛阳极在硫酸中具有以下性能特点:1.耐腐蚀性:铱钛阳极具有极高的耐腐蚀性,可以在强酸环境下长时间工作而不受腐蚀。

2.电化学活性:铱钛阳极在硫酸中能够提供足够的电子,参与氧化反应和其他电化学反应。

这种活性使得铱钛阳极在电解、电池等领域有着广泛的应用。

3.寿命长:由于铱钛阳极的耐腐蚀性能和稳定性,它的寿命相对较长,可以在恶劣环境下稳定工作。

4.成本较高:铱钛阳极是一种贵金属阳极材料,成本较高,限制了其在某些领域的广泛应用。

应用前景铱钛阳极在硫酸中的反应具有广泛的应用前景,主要体现在以下几个方面:1.电解:铱钛阳极可用于电解过程中的氧化反应,例如水电解、金属电镀等。

其优异的耐腐蚀性和电化学活性使得它成为理想的阳极材料。

2.电池:铱钛阳极可以应用于各种类型的电池中,如燃料电池、锂离子电池等。

它的高活性和稳定性能够提高电池的性能和寿命。

3.化学合成:铱钛阳极可以在化学合成过程中作为催化剂使用,促进反应的进行。

它的耐腐蚀性能和高活性使得它在有机合成等领域有着广泛的应用潜力。

4.环境保护:铱钛阳极可以在废水处理、大气污染治理等领域发挥重要作用。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

RAPID COMMUNICATIONSThe purpose of this Rapid Communications section is to provide accelerated publication of important new results in the fields regularly covered by Journal of Materials Research. Rapid Communications cannot exceed four printed pages in length, including space allowed for title, figures, tables, references, and an abstract limited to about 100 words.Titanium oxide nanotube arrays prepared by anodic oxidationDawei Gong, Craig A. Grimes,a) and Oomman K. VargheseDepartment of Electrical Engineering and Materials Research Institute, 208 Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802Wenchong Hu, R.S. Singh, and Zhi ChenDepartments of Material Science and Engineering, and Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802Elizabeth C. DickeyDepartment of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (Received 11 May 2001; accepted 12 September 2001)Titanium oxide nanotubes were fabricated by anodic oxidation of a pure titanium sheet in an aqueous solution containing 0.5 to 3.5 wt% hydrofluoric acid. These tubes are well aligned and organized into high-density uniform arrays. While the tops of the tubes are open, the bottoms of the tubes are closed, forming a barrier layer structure similar to that of porous alumina. The average tube diameter, ranging in size from 25 to 65 nm, was found to increase with increasing anodizing voltage, while the length of the tube was found independent of anodization time. A possible growth mechanism is presented.Titanium oxide is a useful catalytic1 and gas-sensing2 material. Titanium oxide thin films with nanoporous structures are desirable for these applications due to their large surface areas and high reactivities. Nanoporous titanium oxide films have been fabricated by anodizing titanium sheets in hydrofluoric acid containing solutions.3,4 The anodizing approach is able to build a porous titanium oxide film of controllable pore size, good uniformity, and conformability over large areas at low cost.5 Moreover, as dependent upon the titanium alloy used, metal impurities can be readily introduced. Despite these advantages, there is a dearth of literature on anodization of titanium and titanium-based alloys. Our work is aimed toward better understanding of the anodizing mechanism, as well as the fabrication of new nanodimensional structures for possible application in catalytic, biotemplating,6,7 gas-sensing8 and electronic applications. In this work, we examine the morphology of porous titanium oxide thin films fabricated by anodizing pure titanium sheets under variable conditions. It has been found that the anodized titanium films have more complicated morphologies than anodized aluminum.9 Ina)e-mail: cgrimes@J. Mater. Res., Vol. 16, No. 12, Dec 2001addition to porous films, such as those reported earlier,3 well-aligned nanotubelike structures composed of titanium oxide were obtained. In contrast to the continuous pore structures achieved with aluminum anodization, discrete titanium oxide nanotubes are found to grow from the discontinuous nanoporous titanium oxide film. The high-purity (99.99%) titanium foils used in this work were obtained from Alfa Aesar (Ward Hill, MA).10 All anodization experiments were conducted at room temperature (18 °C) with magnetic agitation. The anodizing voltages were kept constant during the entire process. In the first 5–10 s of the anodization the currents were observed to decrease drastically and then afterwards remained stable. During anodization the color of the titanium oxide layer normally changed from purple to blue, light green, and then finally light red. The morphologies of the titanium oxide films were characterized with a Hitachi S-900 (Tokyo, Japan) field emission scanning electron microscope (FE-SEM). Figures 1(a)–(d) show, respectively, FE-SEM images of the porous structures obtained with different anodizing voltages, 3, 5, 10, and 20 V, in 0.5 wt% HF aqueous solution. At low anodizing voltage [see Fig. 1(a)] the morphology of the porous film is similar to that of porous (spongelike) alumina,9 with a typical pore size of 15 to© 2001 Materials Research Society 3331Rapid Communications30 nm. As the voltage is first increased, the surface becomes particulate, or nodular, in nature, as shown in Fig. 1(b). As the voltage is further increased, the particulate appearance is lost, with discrete, hollow, cylindrical, tubelike features appearing [see Figs. 1(c) and 1(d)]. The nanotube structure is lost at anodizing voltages greater than 40 V, and a spongelike randomly porous structure is formed. Asimilar evolution of topological features was also observed in a 1.5 wt% HF solution at lower voltages; the reduced voltages did not scale linearly with solution concentration. To our knowledge the tubelike structures of anodized titanium observed in Figs. 1(c) and 1(d) have not previously been reported. Cross-sectional FE-SEM images of a titanium oxide nanotube array are shown in Figs. 2(a)FIG. 1. FE-SEM top-view images of porous titanium oxide films anodized in 0.5 wt% HF solution for 20 min under different voltages: (a) 3 V, (b) 5 V, (c) 10 V, and (d) 20 V.FIG. 2. FE-SEM cross-sectional images of titanium oxide nanotubes. The sample was anodized in 0.5 wt% HF solution at 20 V for 20 min.3332 J. Mater. Res., Vol. 16, No. 12, Dec 2001Rapid Communicationsand 2(b). This sample was anodized at 20 V in 0.5 wt% HF solution for 20 min, resulting in an well-aligned titanium oxide nanotube array with an approximately average tube diameter of 60 nm and tube length of 250 nm. It is interesting to note that the tube exteriors show periodic ring structures, the origin of which we are uncertain. Glancing-angle XRD showed the resulting titanium oxide structures to be amorphous. The underside of the nanotube-array films (see Fig. 3) were imaged by first fracturing the sample and then peeling the films from the substrate. The domelike nature of the underside is identical to the so-called barrier layer, a thin oxidized layer separating the porous layer from the metal substrate, commonly seen with porous alumina.9 In our experiments, the titanium oxide nanotube arrays were regularly obtained under anodizing voltages ranging from 10 to 40 V, as dependent on the HF concentration, with relatively higher voltages needed to achieve the tubelike structures in more dilute HF solutions. In all cases, the final length of the nanotubes was found to be independent of the anodizing time.FIG. 3. Fe-SEM image of the bottom of the nanotube array. The sample was anodized in 0.5 wt% HF solution at 20 V for 20 min.FIG. 4. FE-SEM top-view images of porous titanium oxide films anodized in 1.5 wt% HF solution at 20 V for different times: (a) 10 s, (b) 30 s, (c) 120 s, and (d) 8 min.J. Mater. Res., Vol. 16, No. 12, Dec 2001 3333Rapid CommunicationsIt is well known that during the anodization of aluminum, porous structures are formed through two processes: field-enhanced oxidation of aluminum and field-enhanced oxide dissolution.10 Inside the pore channel there are two interfaces: solution/oxide and oxide/metal. Field-enhanced oxidation occurs at the metal/oxide interface near the pore bottom when the oxygen containing ions (O2−/OH−) transport from solution to the oxide layer, along the direction of the pore growth. At the same time, metal ions (Al3+) migrate from metal to the solution/oxide interface and dissolve into the solution. Since the electric field can enhance the migration of the metal ion, the later process is called field-enhanced dissolution. As the electrical field intensity at the pore bottom is much higher than that at the wall, aluminum will be consumed at a high rate near the bottom of the pore, allowing continuous growth of the pore depth. In contrast, for anodized titanium the final thickness of porous oxide film does not increase with the anodizing time. For example, we find that a sample anodized in 0.5% HF solution under 20 V for 6 h has the same thickness as a sample anodized for only 20 min under otherwise identical conditions, a result consistent with earlier work.3 The origin of this behavior may lie in the fact that titanium oxide can be etched at a high rate in HF solution even in the absence of an anodizing voltage. If the etching rate of the oxide in solution is comparable with that of the field-enhanced dissolution, the titanium oxide either in the wall or at the pore bottom will dissolve at a balanced rate resulting in a constant pore depth. To further understand the formation of the nanotubelike structures during anodization of titanium, FE-SEM images were taken from a series of samples fabricated using 20 V in 1.5% HF solution with different anodizing times. The evolution of the film morphology is shown in Fig. 4. It is found that at the initial stage, within 10 s, the surface was covered with a compact oxide film, of uneven height, as shown in Fig. 4(a). After 30 s [see Fig. 4(b)], the original oxide film is clearly dissolving with a continuous nanoporous layer emerging from underneath without any indication of tubelike features. With further anodization [see Fig. 4(c)], most of the original oxide film layer is removed, replaced by a film comprised of emerging discrete tubelike structures. After an elapsed anodization period of 8 min, all vestiges of the original oxide film were completely removed and a continuous film of discrete nanotubes fully developed on the surface. The time-dependent transitions were confirmed by cross-sectional FE-SEM images taken from the corresponding samples. In all cases, the nanotubelike structures were seen to develop from the porous structure formed during removal of the initial surface oxide layer.One possible process contributing to the formation of the nanotube structures during anodization is the migration of titanium ions from the interpore areas to the oxide/solution interface. At high anodizing voltages, the electric field will be strong enough to mobilize these ions and their migration leaves voids in the interpore areas, eventually separating the pores from one another, forming discrete tubelike structures. Such a fieldenhanced void structure was previously observed under the barrier layer of an anodized aluminum oxide film upon a silicon substrate.11,12 To help examine the influence of solution composition on the titanium oxide nanostructures, 1 g chromium trioxide was added to 100 ml 0.5 wt% HF solution. The results show the nanotube arrays formed under 20 and 40 V in this mixed electrolyte have the same diameters as those anodized in pure 0.5 wt% HF solution under 10 and 20 V, respectively. Certainly solution composition has a significant affect on process variables; further research is needed to find the optimum anodizing conditions to achieve optimal arrays of titanium oxide nanotubes. In conclusion, well-aligned titanium oxide nanotubelike arrays have been obtained through titanium anodization in HF solution. The resulting nanotubes are straight, with a controllable pore size ranging from 25 to 65 nm, and have a barrier layer at their bottom.ACKNOWLEDGMENTThis work was supported by the National Science Foundation under Contract Nos. ECS-9988598 and NSF DMR-9976851.REFERENCES1. H. Yamashita, Y. Ichihashi, S.G. Zhang, Y. Matsumura, Y. Souma, T. Tatsumi, and M. Anpo, Appl. Surf. Sci. 121, 305 (1997). 2. A.M. Azad, S.A. Akbar, S.G. Mhaisalkar, L.D. Birkefeld, and K.S. Goto, J. Electrochem. Soc. 139, 3690 (1992). 3. V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M.Y. Perrin, and M. Aucouturier, Surf. Interface Anal. 27, 629 (1999). 4. J.P. Wightman and J.A. Skiles, SAMPE J. 24, 21 (1988). 5. T. Oishi, T. Matsubara, and A. Katagiri, Electrochemistry (in Japanese) 68, 106 (2000). 6. Y. Ito, Biomaterials 20, 2333 (1999). 7. Z. Schwartz, J.Y. Martin, D.D. Dean, J. Simpson, D.L. Cochran, and B.D. Boyan, J. Biomed. Mater. Res. 30(2), 145 (1996). 8. C.A. Grimes, D. Kouzoudis, E.C. Dickey, D. Qian, M.A. Anderson, R. Shahidian, M. Lindsey, and L. Green, J. Appl. Phys. 87, 5341 (2000). 9. G.E. Thompson, R.C. Furneaux, G.C. Wood, J.A. Richardson, and J.S. Goode, Nature 272, 433 (1978). 10. Alfa Aesar website: . 11. O. Jessensky, F. Muller, and U. Gosele, Appl. Phys. Lett. 72, 1173 (1998). 12. D. Crouse, Y.H. Lo, A.E. Miller, and M. Crouse, Appl. Phys. Lett. 76, 50 (2000).3334J. Mater. Res., Vol. 16, No. 12, Dec 2001。

相关文档
最新文档