有监督和BP神经网络(1)
BP神经网络及深度学习研究-综述(最新整理)
BP神经网络及深度学习研究摘要:人工神经网络是一门交叉性学科,已广泛于医学、生物学、生理学、哲学、信息学、计算机科学、认知学等多学科交叉技术领域,并取得了重要成果。
BP(Back Propagation)神经网络是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。
本文将主要介绍神经网络结构,重点研究BP神经网络原理、BP神经网络算法分析及改进和深度学习的研究。
关键词:BP神经网络、算法分析、应用1 引言人工神经网络(Artificial Neural Network,即ANN ),作为对人脑最简单的一种抽象和模拟,是人们模仿人的大脑神经系统信息处理功能的一个智能化系统,是20世纪80 年代以来人工智能领域兴起的研究热点。
人工神经网络以数学和物理方法以及信息处理的角度对人脑神经网络进行抽象,并建立某种简化模型,旨在模仿人脑结构及其功能的信息处理系统。
人工神经网络最有吸引力的特点就是它的学习能力。
因此从20世纪40年代人工神经网络萌芽开始,历经两个高潮期及一个反思期至1991年后进入再认识与应用研究期,涌现出无数的相关研究理论及成果,包括理论研究及应用研究。
最富有成果的研究工作是多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。
因为其应用价值,该研究呈愈演愈烈的趋势,学者们在多领域中应用[1]人工神经网络模型对问题进行研究优化解决。
人工神经网络是由多个神经元连接构成,因此欲建立人工神经网络模型必先建立人工神经元模型,再根据神经元的连接方式及控制方式不同建立不同类型的人工神经网络模型。
现在分别介绍人工神经元模型及人工神经网络模型。
1.1 人工神经元模型仿生学在科技发展中起着重要作用,人工神经元模型的建立来源于生物神经元结构的仿生模拟,用来模拟人工神经网络[2]。
人们提出的神经元模型有很多,其中最早提出并且影响较大的是1943年心理学家McCulloch和数学家W. Pitts在分析总结神经元基本特性的基础上首先提出的MP模型。
神经网络分类
神经网络分类
神经网络分类
1、BP神经网络
BP(BackPropagation)神经网络是一种神经网络学习算法。
其由输
入层、中间层、输出层组成的阶层型神经网络,中间层可扩展为多层。
相邻
层之间各神经元进行全连接,而每层各神经元之间无连接,网络按有教师示
教的方式进行学习,当一对学习模式提供给网络后,各神经元获得网络的输
入响应产生连接权值(Weight)。
然后按减小希望输出与实际输出误差的方向,从输出层经各中间层逐层修正各连接权,回到输入层。
此过程反复交替进行,直至网络的全局误差趋向给定的极小值,即完成学习的过程。
2、RBF(径向基)神经网络
径向基函数(RBF-RadialBasisFunction)神经网络是由J.Moody和
C.Darken在80年代末提出的一种神经网络,它是具有单隐层的三层前馈网络。
由于它模拟了人脑中局部调整、相互覆盖接收域(或称感受野-ReceptiveField)的神经网络结构,因此,RBF网络是一种局部逼近网络,它
能够以任意精度逼近任意连续函数,特别适合于解决分类问题。
神经网络的发展历程
神经网络的发展历程神经网络作为一种模拟大脑工作方式的计算机技术,可以用来识别图像、语音、自然语言等各种数据,被广泛应用于机器学习、深度学习等领域。
神经网络的发展历程可以追溯到上个世纪初期,下面我们来看一下其发展的历程。
一、早期神经网络神经网络的早期基础可以追溯到1940年代,当时神经科学家McCulloch和Pitts提出了一个简单的神经元模型,即McCulloch-Pitts神经元模型。
这个神经元模型可以接收多个输入,并以非线性的方式进行计算(通常是采用阈值函数),将计算结果输出。
1958年,美国心理学家Frank Rosenblatt发布了第一个可以自我训练的人工神经元模型,即感知机(Perceptron)。
感知机可以接收多个输入信号,并以加权的形式对其进行计算,当计算结果超过阈值时,激活输出。
感知机使用了反向传播算法(Backpropagation)来进行误差的反馈和权重的学习,从而达到了自我训练的目的。
感知机受到了广泛的关注和应用,被誉为“神经网络之父”。
二、神经网络的低谷期1970年代,神经网络遭遇了一次挫折。
当时,美国计算机科学家Marvin Minsky和Seymour Papert发表了《逆境的心理学》一书,批判了感知机模型的局限性,认为它只能用来解决线性可分问题,无法处理非线性问题。
这导致了神经网络的低谷期,研究者们转而研究其他机器学习算法,比如决策树、支持向量机等。
三、神经网络的复兴1980年代,随着计算机技术的进步和神经网络理论的不断完善,神经网络再次引起了广泛的关注。
美国加州大学教授David Rumelhart和Geoffrey Hinton等人提出了BP神经网络模型,该模型可以用来解决非线性问题,并在OCR、语音识别等领域取得了成功。
1990年代,Radial Basis Function(RBF)神经网络、自组织神经网络(Self-Organizing Neural Network,SONN)等模型相继被提出。
最新 BP神经网络算法及其改进的几个方法-精品
BP神经网络算法及其改进的几个方法1 概述人工神经网络(Artificial Neural Networks,ANN),是基于人类大脑的生物活动所提出的,是一个模型。
它由众多节点通过一定的方式互联组成,是一个规模巨大、自适应的系统。
其中有一种学习算法是误差传递学习算法即BP 算法。
BP算法是人工智能最常用到的学习方法,从一定意义上来讲,BP算法的提出,终结了多层网络在学习训练算法上的空白史,是在实际应用中最有效的网络训练方法,对ANN的应用和发展起到了决定性的作用。
BP算法是使用从输出层得到的误差来估算前一层的误差,再利用该误差估算更前一层的误差。
依次进行,就会获得其他所有各层的估算误差。
这样就实现了将从输出层的得到误差沿着与输入信号传送相反的方向逐级向网络的输入端传递的过程[1]。
但是,BP算法也存在着不可忽视的缺陷。
基于此,该文总结介绍了BP的改进方法。
2 BP算法的基本思想2.1 BP算法的基本原理BP算法是有监督指导的算法,它的学习训练过程一般分为两步:首先是输入样本的正向传递;第二步误差的反向传递;其中信号正向传递,基本思想是样本值从输入层输入,经输入层传入隐藏层,最后通过输出层输出,中间层对样本数据进行处理操作,利用各层的权值和激活函数对数据进行操作然后在输出层获得输出[2];接下来就是反向传递,算法得到的实际输出值与期望目标输出之间必然会有误差,根据误差的大小来决定下一步的工作。
如果误差值较小满足训练的精度要求,则认为在输出层得到的值满足要求,停止训练;反之,则将该误差传递给隐藏层进行训练,按照梯度下降的方式,对权值和阈值进行调整,接着进行循环,直到误差值满足精度要求停止训练[3]。
3 BP算法的缺陷尽管BP算法有着显著的优点,但是在实际应用过程中,BP算法会出现很多问题。
尤其是下面的问题,对BP神经网络更好的发展有很大影响。
有的甚至会导致算法崩溃。
3.1 收敛速度的问题BP算法在进行训练学习时,收敛速度慢,特别是在网络训练达到一定的精度时,BP算法就会出现一个长时间的误差“平原”,算法的收敛速度会下降到极慢[4]。
bp使用方法
bp使用方法BP(反向传播算法)是一种用于训练神经网络的算法。
它通过反向传播误差来调整神经网络中的权重和偏差,以使其能够更好地逼近目标函数。
BP算法是一种有监督学习算法,它需要有标记的训练集作为输入,并且可以通过梯度下降法来最小化目标函数的误差。
BP算法的基本思想是在神经网络中,从输入层到输出层的正向传播过程中,通过计算网络的输出值与目标值之间的差异(即误差),然后将这个误差反向传播到网络的每一层,在每一层中调整权重和偏差,以最小化误差。
这个反向传播的过程将误差逐层传递,使得网络的每一层都能对误差进行一定程度的“贡献”,并根据这个贡献来调整自己的权重和偏差。
具体来说,BP算法可以分为以下几个步骤:1. 初始化网络:首先需要确定神经网络的结构,包括输入层、隐藏层和输出层的神经元个数,以及每层之间的连接权重和偏差。
这些权重和偏差可以初始化为随机值。
2. 前向传播:将输入样本送入网络,按照从输入层到输出层的顺序,逐层计算每个神经元的输出值。
具体计算的方法是将输入值和各个连接的权重相乘,然后将结果求和,并通过一个非线性激活函数(如Sigmoid函数)进行映射得到最终的输出值。
3. 计算误差:将网络的输出值与目标值进行比较,计算误差。
常用的误差函数有均方误差函数(Mean Squared Error,MSE)和交叉熵函数(Cross Entropy),可以根据具体问题选择合适的误差函数。
4. 反向传播:从输出层开始,根据误差对权重和偏差进行调整。
首先计算输出层神经元的误差,然后根据误差和激活函数的导数计算输出层的敏感度(即对权重的影响),并根据敏感度和学习率更新输出层的权重和偏差。
5. 更新隐藏层权重:同样地,根据输出层的敏感度,计算隐藏层的敏感度,并更新隐藏层的权重和偏差。
隐藏层的敏感度可以通过将输出层的敏感度按权重加权求和得到。
6. 重复步骤4和5:重复执行步骤4和5,将误差逐层传播,更新每一层的权重和偏差,直到达到训练的停止条件(如达到最大迭代次数或误差降至某个阈值)。
BP神经网络原理与应用实习论文
学年论文(本科)学院数学与信息科学学院专业信息与计算科学专业年级10级4班姓名徐玉琳于正平马孝慧李运凤郭双双任培培论文题目BP神经网络原理与应用指导教师冯志敏成绩2013年 9月 24日BP神经网络的原理与应用1.BP神经网络的原理1.1 BP神经网络的结构BP神经网络模型是一个三层网络,它的拓扑结构可被划分为:输入层(InputLayer )、输出层(Outp ut Layer ) ,隐含层(Hide Layer ).其中,输入层与输出层具有更重要的意义,因此也可以为两层网络结构(把隐含层划入输入层,或者把隐含层去掉)每层都有许多简单的能够执行并行运算的神经元组成,这些神经元与生物系统中的那些神经元非常类似,但其并行性并没有生物神经元的并行性高.BP神经网络的特点:1)网络由多层构成,层与层之间全连接,同一层之间的神经元无连接.2)BP网络的传递函数必须可微.因此,感知器的传递函数-——二值函数在这里没有用武之地.BP网络一般使用Sigmoid函数或线性函数作为传递函数.3)采用误差反向传播算法(Back-Propagation Algorithm)进行学习.在BP 网络中,数据从输入层隐含层逐层向后传播,训练网络权值时,则沿着减少误差的方向,从输出层经过中间各层逐层向前修正网络的连接权值.随着学习的不断进行,最终的误差越来越来小.BP神经网络的学习过程BP神经网络的学习算法实际上就是对误差函数求极小值的算法,它采用的算法是最速下降法,使它对多个样本进行反复的学习训练并通过误差的反向传播来修改连接权系数,它是沿着输出误差函数的负梯度方向对其进行改变的,并且到最后使误差函数收敛于该函数的最小点.1.3 BP网络的学习算法BP网络的学习属于有监督学习,需要一组已知目标输出的学习样本集.训练时先使用随机值作为权值,修改权值有不同的规则.标准的BP神经网络沿着误差性能函数梯度的反向修改权值,原理与LMS算法比较类似,属于最速下降法.拟牛顿算法牛顿法是一种基于二阶泰勒级数的快速优化算法.其基本方法是1(1)()()()x k x k A k g k -+=-式中 ()A k ----误差性能函数在当前权值和阀值下的Hessian 矩阵(二阶导数),即2()()()x x k A k F x ==∇牛顿法通常比较梯度法的收敛速度快,但对于前向型神经网络计算Hessian 矩阵是很复杂的,付出的代价也很大.有一类基于牛顿法的算法不需要二阶导数,此类方法称为拟牛顿法(或正切法),在算法中的Hessian 矩阵用其近似值进行修正,修正值被看成梯度的函数. 1)BFGS 算法在公开发表的研究成果中,你牛顿法应用最为成功得有Boryden,Fletcher,Goldfard 和Shanno 修正算法,合称为BFG 算法. 该算法虽然收敛所需的步长通常较少,但在每次迭代过程所需要的计算量和存储空间比变梯度算法都要大,对近似Hessian 矩阵必须进行存储,其大小为n n ⨯,这里n 网络的链接权和阀值的数量.所以对于规模很大的网络用RPROP 算法或任何一种梯度算法可能好些;而对于规模较小的网络则用BFGS 算法可能更有效. 2)OSS 算法 由于BFGS 算法在每次迭代时比变梯度算法需要更多的存储空间和计算量,所以对于正切近似法减少其存储量和计算量是必要的.OSS 算法试图解决变梯度法和拟牛顿(正切)法之间的矛盾,该算法不必存储全部Hessian 矩阵,它假设每一次迭代时与前一次迭代的Hessian 矩阵具有一致性,这样做的一个有点是,在新的搜索方向进行计算时不必计算矩阵的逆.该算法每次迭代所需要的存储量和计算量介于梯度算法和完全拟牛顿算法之间. 最速下降BP 法最速下降BP 算法的BP 神经网络,设k 为迭代次数,则每一层权值和阀值的修正按下式进行(1)()()x k x k g k α+=-式中()x k —第k 次迭代各层之间的连接权向量或阀值向量;()g k =()()E k x k ∂∂—第k 次迭代的神经网络输出误差对各权值或阀值的梯度向量.负号表示梯度的反方向,即梯度的最速下降方向;α—学习效率,在训练时是一常数.在MATLAB 神经网络工具箱中,,可以通过改变训练参数进行设置;()E K —第k 次迭代的网络输出的总误差性能函数,在MATLAB 神经网络工具箱中BP 网络误差性能函数默认值为均方误差MSE,以二层BP 网络为例,只有一个输入样本时,有2()()E K E e k ⎡⎤=⎣⎦21S≈22221()S i i i t a k =⎡⎤-⎣⎦∑ 222212,1()()()()s ii j i i j a k f w k a k b k =⎧⎫⎪⎪⎡⎤=-⎨⎬⎣⎦⎪⎪⎩⎭∑21221112,,11()(()())()s s i j i j i i i j j f w k f iw k p ib k b k ==⎧⎫⎡⎤⎛⎫⎪⎪=++⎢⎥ ⎪⎨⎬⎢⎥⎝⎭⎪⎪⎣⎦⎩⎭∑∑若有n 个输入样本2()()E K E e k ⎡⎤=⎣⎦21nS ≈22221()S ii i ta k =⎡⎤-⎣⎦∑根据公式和各层的传输函数,可以求出第k 次迭代总误差曲面的梯度()g k =()()E k x k ∂∂,分别代入式子便可以逐次修正其权值和阀值,并是总的误差向减小的方向变化,直到达到所需要的误差性能为止. 1.4 BP 算法的改进BP 算法理论具有依据可靠、推导过程严谨、精度较高、通用性较好等优点,但标准BP 算法存在以下缺点:收敛速度缓慢;容易陷入局部极小值;难以确定隐层数和隐层节点个数.在实际应用中,BP 算法很难胜任,因此出现了很多改进算.利用动量法改进BP 算法标准BP 算法实质上是一种简单的最速下降静态寻优方法,在修正W(K)时,只按照第K 步的负梯度方向进行修正,而没有考虑到以前积累的经验,即以前时刻的梯度方向,从而常常使学习过程发生振荡,收敛缓慢.动量法权值调整算法的具体做法是:将上一次权值调整量的一部分迭加到按本次误差计算所得的权值调整量上,作为本次的实际权值调整量,即:其中:α为动量系数,通常0<α<0.9;η—学习率,范围在0.001~10之间.这种方法所加的动量因子实际上相当于阻尼项,它减小了学习过程中的振荡趋势,从而改善了收敛性.动量法降低了网络对于误差曲面局部细节的敏感性,有效的抑制了网络陷入局部极小.自适应调整学习速率标准BP算法收敛速度缓慢的一个重要原因是学习率选择不当,学习率选得太小,收敛太慢;学习率选得太大,则有可能修正过头,导致振荡甚至发散.可采用图所示的自适应方法调整学习率.调整的基本指导思想是:在学习收敛的情况下,增大η,以缩短学习时间;当η偏大致使不能收敛时,要及时减小η,直到收敛为止.动量-自适应学习速率调整算法采用动量法时,BP算法可以找到更优的解;采用自适应学习速率法时,BP算法可以缩短训练时间.将以上两种方法结合起来,就得到动量-自适应学习速率调整算法.1. L-M学习规则L-M(Levenberg-Marquardt)算法比前述几种使用梯度下降法的BP算法要快得多,但对于复杂问题,这种方法需要相当大的存储空间L-M(Levenberg-Marquardt)优化方法的权值调整率选为:其中:e —误差向量;J —网络误差对权值导数的雅可比(Jacobian )矩阵;μ—标量,当μ很大时上式接近于梯度法,当μ很小时上式变成了Gauss-Newton 法,在这种方法中,μ也是自适应调整的. 1.5 BP 神经网络的设计 网络的层数输入层节点数取决于输入向量的维数.应用神经网络解决实际问题时,首先应从问题中提炼出一个抽象模型,形成输入空间和输出空间.因此,数据的表达方式会影响输入向量的维数大小.例如,如果输入的是64*64的图像,则输入的向量应为图像中所有的像素形成的4096维向量.如果待解决的问题是二元函数拟合,则输入向量应为二维向量.理论上已证明:具有偏差和至少一个S 型隐含层加上一个线性输出层的网络,能够逼近任何有理数.增加层数可以更进一步的降低误差,提高精度,但同时也使网络复杂化,从而增加了网络权值的训练时间.而误差精度的提高实际上也可以通过增加神经元数目来获得,其训练效果也比增加层数更容易观察和调整.所以一般情况下,应优先考虑增加隐含层中的神经元数. 隐含层的神经元数网络训练精度的提高,可以通过采用一个隐含层,而增加神经元数了的方法来获得.这在结构实现上,要比增加隐含层数要简单得多.那么究竟选取多少隐含层节点才合适?这在理论上并没有一个明确的规定.在具体设计时,比较实际的做法是通过对不同神经元数进行训练对比,然后适当地加上一点余量.1)0niMi C k =>∑,k 为样本数,M 为隐含层神经元个数,n 为输入层神经元个数.如i>M,规定C i M =0.2)和n 分别是输出层和输入层的神经元数,a 是[0.10]之间的常量.3)M=2log n ,n 为输入层神经元个数.初始权值的选取由于系统是非线性的,初始值对于学习是否达到局部最小、是否能够收敛及训练时间的长短关系很大.如果初始值太大,使得加权后的输入和n落在了S型激活函数的饱和区,从而导致其导数f (n)非常小,从而使得调节过程几乎停顿下来.所以一般总是希望经过初始加权后的每个神经元的输出值都接近于零,这样可以保证每个神经元的权值都能够在它们的S型激活函数变化最大之处进行调节.所以,一般取初始权值在(-1,1)之间的随机数.学习速率学习速率决定每一次循环训练中所产生的权值变化量.大的学习速率可能导致系统的不稳定;但小的学习速率导致较长的训练时间,可能收敛很慢,不过能保证网络的误差值不跳出误差表面的低谷而最终趋于最小误差值.所以在一般情况下,倾向于选取较小的学习速率以保证系统的稳定性.学习速率的选取范围在0.01-0.8之间.1.6BP神经网络局限性需要参数多且参数选择没有有效的方法对于一些复杂问题 ,BP 算法可能要进行几小时甚至更长的时间训练,这主要是由于学习速率太小所造成的.标准BP 网络学习过程缓慢,易出现平台,这与学习参数率l r的选取有很大关系.当l r较时,权值修改量大,学习速率也快,但可能产生振荡;当l r较小时,虽然学习比较平稳,但速度十分缓慢.容易陷入局部最优BP网络易陷入局部最小, 使 BP网络不能以高精度逼近实际系统.目前对于这一问题的解决有加入动量项以及其它一些方法.BP 算法本质上是以误差平方和为目标函数 , 用梯度法求其最小值的算法.于是除非误差平方和函数是正定的, 否则必然产生局部极小点, 当局部极小点产生时 , BP算法所求的就不是解.1.6.3 样本依赖性这主要表现在网络出现的麻痹现象上.在网络的训练过程中,如其权值调的过大,可能使得所有的或大部分神经元的加权值偏大,这使得激活函数的输入工作在S型转移函数的饱和区,从而导致其导函数非常小,使得对网络权值的调节过程几乎停顿下来.通常为避免这种现象的发生,一是选取较小的初始权值,二是采用较小的学习速率,但又要增加时间训练.初始权敏感对于一些复杂的问题,BP算法可能要进行几个小时甚至更长时间的训练.这主要是由于学习速率太小造成的.可采用变化的学习速率或自适应的学习速率来加以改进.2.BP神经网络应用2.1 手算实现二值逻辑—异或这个例子中,采用手算实现基于BP网络的异或逻辑.训练时采用批量训练的方法,训练算法使用带动量因子的最速下降法.在MATLAB中新建脚本文件main_xor.m,输入代码如下:%脚本%批量训练方式.BP网络实现异或逻辑%%清理clear allclcrand('seed',2)eb = 0.01; %误差容限eta = 0.6; %学习率mc = 0.8; %动量因子maxiter = 1000; %最大迭代次数%% 初始化网络nSampNum = 4;nSampDim = 2;nHidden = 3;nOut = 1;w = 2*(rand(nHidden,nSampDim)-1/2);b = 2*(rand(nHidden,1)-1/2);wex = [w,b];W = 2*(rand(nOut,nHidden)-1/2);B = 2*(rand(nOut,1)-1/2);WEX = [W,B];%%数据SampIn=[0,0,1,1;...0,1,0,1;…1,1,1,1];expected = [0,1,1,0];%%训练iteration = 0;errRec = [];outRec =[];for i = 1:maxiter% 工作信号正向传播hp = wex*SampIn;tau = logsig(hp);tauex = [tau',1*ones(nSampNum,1)]';HM = WEX*tauex;out = logsig(HM);outRec = [outRec,out'];err = expected - out;sse = sumsqr(err);errRec = [errRec,sse];fprintf('第%d 次迭代,误差:%f \n',i,sse);% 判断是否收敛iteration = iteration + 1;if sse <= ebbreak;end% 误差信号反向传播% DELTA 和delta 为局部梯度DELTA = err.*dlogsig(HM,out);delta = W' * DELTA.*dlogsig(hp,tau);dWEX = DELTA*tauex';dwex = delta*SampIn';% 更新权值if i == 1WEX = WEX + eta*dWEX;wex = wex + eta*dwex;elseWEX = WEX + (1-mc)*eta*dWEX + mc*dWEXold;wex = wex + (1-mc)*eta*dwex+mc*dwexold;enddWEXold = dWEX;dwexold = dwex;W = WEX(:,1:nHidden);end%%显示figure(1)grid[nRow,nCol]=size(errRec);semilogy(1:nCol,errRec,'LineWidth',1.5);title('误差曲线');xlabel('迭代次数');x=-0.2:.05:1.2;[xx,yy] = meshgrid(x);for i=1:length(xx)for j=1:length(yy)xi=[xx(i,j),yy(i,j),1];hp = wex*xi';tau = logsig(hp);tauex = [tau',1]';HM = WEX*tauex;out = logsig(HM);z (i,j) =out;endendfigure(2)mesh(x,x,z);figure(3)plot([0,1],[0,1],'*','LineWidth',2);hold onplot([0,1],[1,0],'O','LineWidth',2);[c,h]=contour(x,x,z,0.5,'b');clabel(c,h);legend('0','1','分类面');title('分类面')2.2 误差下降曲线如下图所示:Finger 1010*******400500600700800900100010-210-110误差曲线迭代次数网格上的点在BP 网络映射下的输出如下图:Finger 2异或本质上是一个分类问题,,分类面如图:Finger 3分类面-0.200.20.40.60.81 1.2本文介绍了神经网络的研究背景和现状,分析了目前神经网络研究中存在的问题.然后描述了BP神经网络算法的实现以及BP神经网络的工作原理,给出了BP网络的局限性.本文虽然总结分析了BP神经网络算法的实现,给出了实例分析,但是还有很多的不足.所总结的BP神经网络和目前研究的现状都还不够全面,经过程序调试的图形有可能都还存在很多细节上的问题,而图形曲线所实现效果都还不够好,以及结果分析不够全面、正确、缺乏科学性等,这些都还是需加强提高的.近几年的不断发展,神经网络更是取得了非常广泛的应用,和令人瞩目的发展.在很多方面都发挥了其独特的作用,特别是在人工智能、自动控制、计算机科学、信息处理、机器人、模式识别等众多方面的应用实例,给人们带来了很多应用上到思考,和解决方法的研究.但是神经网络的研究最近几年还没有达到非常热门的阶段,这还需有很多热爱神经网络和研究神经网络人员的不断研究和创新,在科技高度发达的现在,我们有理由期待,也有理由相信.我想在不久的将来神经网络会应用到更多更广的方面,人们的生活会更加便捷.学年论文成绩评定表。
BP神经网络的滤波算法改进
BP神经网络的滤波算法改进BP神经网络的滤波算法改进滤波是信号处理中常用的技术,用于去除噪声或不需要的频率成分。
BP神经网络作为一种强大的模型,可以用于滤波任务。
在本文中,我将介绍如何使用BP神经网络进行滤波,并提出一种改进的算法。
步骤1:收集和准备数据首先,我们需要收集一些包含噪声的信号数据,并根据需要附上相应的目标输出。
这些数据可以是实际采集的传感器数据,例如音频、图像或其他类型的信号。
接下来,我们需要对数据进行预处理,包括归一化、去噪和划分训练集与测试集等。
步骤2:构建BP神经网络接下来,我们需要构建一个BP神经网络来进行滤波任务。
BP神经网络是一种有监督学习算法,它由输入层、隐藏层和输出层组成。
输入层接收预处理后的信号数据,输出层生成滤波后的信号预测,而隐藏层则起到中间处理的作用。
步骤3:设置BP神经网络的参数在构建BP神经网络之前,我们需要设置一些关键参数,包括隐藏层数、每个隐藏层的神经元数量和学习率等。
这些参数的选择对网络性能至关重要,需要进行实验和调整。
步骤4:训练BP神经网络一旦网络参数设置完毕,我们就可以开始训练BP神经网络了。
训练过程通常使用梯度下降法来最小化网络的误差。
对于滤波任务,误差可以使用均方根误差(RMSE)或其他适当的度量方式来衡量。
步骤5:验证网络性能训练完成后,我们需要验证网络的性能。
这可以通过使用测试集数据进行预测并计算误差来完成。
如果网络的预测结果与目标输出相比较接近,那么我们可以认为网络的滤波效果是良好的。
步骤6:优化BP神经网络如果网络的性能不如预期,我们可以考虑优化BP神经网络。
一种改进的方法是引入正则化技术,如L1或L2正则化,以减少过拟合的发生。
另一种方法是调整网络的结构和参数,例如增加隐藏层数或调整学习率。
步骤7:应用滤波算法一旦网络已经优化并通过验证,我们就可以将其应用于实际的滤波任务中了。
通过将新的输入信号传入网络,我们可以得到滤波后的输出结果,从而去除噪声或其他不需要的频率成分。
机器学习-BP(back propagation)神经网络介绍
BP神经网络BP神经网络,也称为反向传播神经网络(Backpropagation Neural Network),是一种常见的人工神经网络类型,用于机器学习和深度学习任务。
它是一种监督学习算法,用于解决分类和回归问题。
以下是BP神经网络的基本概念和工作原理:神经元(Neurons):BP神经网络由多个神经元组成,通常分为三层:输入层、隐藏层和输出层。
输入层接收外部数据,隐藏层用于中间计算,输出层产生网络的最终输出。
权重(Weights):每个连接两个神经元的边都有一个权重,表示连接的强度。
这些权重是网络的参数,需要通过训练来调整,以便网络能够正确地进行预测。
激活函数(Activation Function):每个神经元都有一个激活函数,用于计算神经元的输出。
常见的激活函数包括Sigmoid、ReLU(Rectified Linear Unit)和tanh(双曲正切)等。
前向传播(Forward Propagation):在训练过程中,输入数据从输入层传递到输出层的过程称为前向传播。
数据经过一系列线性和非线性变换,最终产生网络的预测输出。
反向传播(Backpropagation):反向传播是BP神经网络的核心。
它用于计算网络预测的误差,并根据误差调整网络中的权重。
这个过程分为以下几个步骤:1.计算预测输出与实际标签之间的误差。
2.将误差反向传播回隐藏层和输入层,计算它们的误差贡献。
3.根据误差贡献来更新权重,通常使用梯度下降法或其变种来进行权重更新。
训练(Training):训练是通过多次迭代前向传播和反向传播来完成的过程。
目标是通过调整权重来减小网络的误差,使其能够正确地进行预测。
超参数(Hyperparameters):BP神经网络中有一些需要人工设置的参数,如学习率、隐藏层的数量和神经元数量等。
这些参数的选择对网络的性能和训练速度具有重要影响。
BP神经网络在各种应用中都得到了广泛的使用,包括图像分类、语音识别、自然语言处理等领域。
入侵检测系统中两种异常检测方法分析【我的论文】(精)
网络入侵检测系统的研究摘要:随着互联网络的广泛应用,网络信息量迅速增长,网络安全问题日趋突出。
入侵检测作为网络安全的重要组成部分,已成为目前研究的热点,本文介绍了入侵检测系统的概念、功能、模式及分类,指出了当前入侵检测系统存在的问题并提出了改进措施,特别是针对异常入侵检测方法的研究,着重分析了基于神经网络的和层次聚类的异常检测方法,并从理论和试验层次队两种检测技术进行分析比较,客观分析了两种算法的优缺点。
同时预测了入侵检测系统的发展趋势。
关键词:入侵检测;入侵检测系统;BP神经网络;层次聚类;网络安全。
在基于网络的计算机应用给人们生活带来方便的同时,网上黑客的攻击活动正以每年10倍的速度增长,因此,保证计算机系统、网络以及整个信息基础设施的安全已经成为刻不容缓的重要课题。
防火墙作为一种边界安全的手段,在网络安全保护中起着重要作用,其主要功能石控制对网络的非法访问,通过监视、限制、更改通过网络的数据流,一方面尽可能屏蔽内部网的拓扑结构,另一方面对内屏蔽外部危险站点,以防范外对内的非法访问。
然而,由于性能的限制,防火墙通常不能提供实时的入侵检测能力,为了弥补防火墙存在缺陷,引入了入侵检测IDS( Intrusion Detection System )技术。
入侵检测是防火墙之后的第二道安全闸门,是对防火墙的合理补充,在不影响网络性能的情况下,通过对网络的检测,帮助系统对付网络攻击,扩展系统管理员的安全管理能力(包括安全审计、监视、进攻识别和响应),提供对内部攻击、外部攻击和误操作的实时保护。
一、入侵检测系统的概念入侵检测定义为识别为被授权使用的计算机系统和有合法权利使用系统但却滥用特权的过程。
即通过对计算机网络或系统中的若干关键点收集信息并对其进行分析,从而发现是否有违反安全策略的行为和被入侵的迹象。
进行入侵检测的软件与硬件的组合便是入侵检测系统(IDS)。
一个入侵检测产品通常由两部分组成,即传感器与控制台。
BP神经网络的简介
BP神经网络的发展在人工神经网络发展历史中,很长一段时间里没有找到隐层的连接权值调整问题的有效算法。
直到误差反向传播算法(BP算法)的提出,成功地解决了求解非线性连续函数的多层前馈神经网络权重调整问题。
BP (Back Propagation)神经网络,即误差反传误差反向传播算法的学习过程,由信息的正向传播和误差的反向传播两个过程组成。
输入层各神经元负责接收来自外界的输入信息,并传递给中间层各神经元;中间层是内部信息处理层,负责信息变换,根据信息变化能力的需求,中间层可以设计为单隐层或者多隐层结构;最后一个隐层传递到输出层各神经元的信息,经进一步处理后,完成一次学习的正向传播处理过程,由输出层向外界输出信息处理结果。
当实际输出与期望输出不符时,进入误差的反向传播阶段。
误差通过输出层,按误差梯度下降的方式修正各层权值,向隐层、输入层逐层反传。
周而复始的信息正向传播和误差反向传播过程,是各层权值不断调整的过程,也是神经网络学习训练的过程,此过程一直进行到网络输出的误差减少到可以接受的程度,或者预先设定的学习次数为止。
BP神经网络模型BP网络模型包括其输入输出模型、作用函数模型、误差计算模型和自学习模型。
(1)节点输出模型隐节点输出模型:Oj=f(∑Wij×Xi-qj) (1)输出节点输出模型:Yk=f(∑Tjk×Oj-qk) (2)f-非线形作用函数;q -神经单元阈值。
图1 典型BP网络结构模型(2)作用函数模型作用函数是反映下层输入对上层节点刺激脉冲强度的函数又称刺激函数,一般取为(0,1)内连续取值Sigmoid函数: f(x)=1/(1 e) (3)(3)误差计算模型误差计算模型是反映神经网络期望输出与计算输出之间误差大小的函数:(4)tpi- i节点的期望输出值;Opi-i节点计算输出值。
(4)自学习模型神经网络的学习过程,即连接下层节点和上层节点之间的权重矩阵Wij的设定和误差修正过程。
BP神经网络算法步骤
传统的BP 算法简述BP 算法是一种有监督式的学习算法,其主要思想是:输入学习样本,使用反向传播算法对网络的权值和偏差进行反复的调整训练,使输出的向量与期望向量尽可能地接近,当网络输出层的误差平方和小于指定的误差时训练完成,保存网络的权值和偏差.具体步骤如下:(1)初始化,随机给定各连接权[w],[v]及阀值θi,rt 。
(2)由给定的输入输出模式对计算隐层、输出层各单元输出(3)计算新的连接权及阀值,计算公式如下:(4)选取下一个输入模式对返回第2步反复训练直到网络设输出误差达到要求结束训练。
第一步,网络初始化给各连接权值分别赋一个区间(—1,1)内的随机数,设定误差函数e ,给定计算精度值 和最大学习次数M 。
第二步,随机选取第k 个输入样本及对应期望输出()12()(),(),,()q k d k d k d k =o d()12()(),(),,()n k x k x k x k =x第三步,计算隐含层各神经元的输入和输出第四步,利用网络期望输出和实际输出,计算误差函数对输出层的各神经元的偏导数()o k a δ第五步,利用隐含层到输出层的连接权值、输出层的()o k δ和隐含层的输出计算误差函数对隐含层各神经元的偏导数()h k δ第六步,利用输出层各神经元的()o k δ和隐含层各神经元的输出来修正连接权值()ho w k第七步,利用隐含层各神经元的()h k δ和输入层各神经元的输入修正连接权。
第八步,计算全局误差2111(()())2qm o o k o E d k y k m ===-∑∑ 第九步,判断网络误差是否满足要求。
当误差达到预设精度或学习次数大于设定的最大次数,则结束算法。
否则,选取下一个学习样本及对应的期望输出,返回到第三步,进入下一轮学习。
ε。
神经网络的学习方法
一、绪论1.1 人工神经元网络的基本概念和特征一、形象思维人的思维主要可概括为逻辑(含联想)和形象思维两种。
以规则为基础的知识系统可被认为是致力于模拟人的逻辑思维(左脑)人工神经元网络则可被认为是探索人的形象思维(右脑)二、人工神经元网络人工神经元网络是生理学上的真实人脑神经网络的结构和功能,以及若干基本特性的某种理论抽象,简化和模拟而构成的一种信息处理系统。
三、神经元是信息处理系统的最小单元。
大脑是由大量的神经细胞或神经元组成的。
每个神经元可以看作为一个小的处理单元,这些神经元按照某种方式互相连接起来,构成了大脑内部的生理神经元网络,他们中各神经元之间连接的强弱,按照外部的激励信号作自适应变化,而每个神经元又随着接收到的多个激励信号的综合大小呈现兴奋或抑制状态。
而大脑的学习过程是神经元之间连接强度随外部激励信息做自适应变化的过程,大脑处理信息的结果确由神经元的状态表现出来。
四、神经元基本结构和作用1。
组成:细胞体、树突、轴突和突触。
2。
树突:负责传入兴奋或抑制信息(多条),较短,分支多,信息的输入端3。
轴突:负责传出兴奋或抑制信息(一条),较长,信息的输出端4。
突触:一个神经元与另一个神经元相联系的特殊结构部位,包括:突触前、突触间隙、突触后三个部分。
突触前:是第一个神经元的轴突末梢部分突触后:是第二个神经元的受体表面突触前通过化学接触或电接触,将信息传往突触后受体表面,实现神经元的信息传输。
5。
神经元网络:树突和轴突一一对接,从而靠突触把众多的神经元连成一个神经元网络。
6。
神经网络对外界的反应兴奋:相对静止变为相对活动抑制:相对活动变为相对静止7。
传递形式神经元之间信息的传递有正负两种连接。
正连接:相互激发负连接:相互抑制8。
各神经元之间的连接强度和极性可以有不同,并且可进行调整。
五简化的神经元数学模型x1x2x3x4s ix1,x2,..,x n:输入信号u i:神经元内部状态θi:与值ωi:ui到 uj连接的权值s i:外部输入信号,可以控制神经元uif(·) :激发函数y i:输出Ơi:= Σw ij x j +s i - θiU i = g(Ơi)y i = h(u i) = f(g(Ơi)) = f(Σw ij x j +s i - θi)f = h x g六、显示出人脑的基本特征1。
BP人工神经网络
因此构建(6,13,1)型网络。 (3)编辑程序开始训练
利用MATLAB训练结果如表2所示。 所建立的网络对原样本进行模拟得出结果与原数据之比
LOGO
BP人工神经网络
TDR测试技术
概述 数学描述
应用 改进
LOGO
Page 2
BP人工神经网络——概述
人工神经网络,又称人工神经元网络(ANN),它通过 模仿人脑神经的活动来建立脑神经活动的数学模型。
BP人工神经网络是一种有监督的反馈运行的人工神经 网络,其核心是网络的误差反向传播。
LOGO
表1 原始样本表
LOGO
Page 15
BP人工神经网络——应用
表中1-15组为露天矿边坡积累的资料,根据以上15组样本,对第16组 边坡稳定性预测。
LOGO
Page 16
BP人点数 根据选取的输入向量和输出向量,确定了边坡稳定性预测模型中各
层的节点数,其中输入层的节点数为 6,网络输出层的节点数为 1, (2)确定隐含层的结点数
向后传播
LOGO
求出误差
调整阀值
NO E<e
YES 学习结束
图3 算法流程
Page 13
BP人工神经网络——应用
BP人工神经网络的基本特征: (1)并行分布处理 (2)非线性映射 (3)信息处理和信息存储合的集成 (4)具有联想存储功能 (5)具有自组织自学习能力 (6)软件硬件的实现
LOGO
Page 14
1948年,他在研究工作中比较了人脑结构与存储程序式计算机的根本 区别,提出了以简单神经元构成的再生自动机网络结构。
(完整版)BP神经网络原理
BP 神经网络原理2。
1 基本BP 算法公式推导基本BP 算法包括两个方面:信号的前向传播和误差的反向传播.即计算实际输出时按从输入到输出的方向进行,而权值和阈值的修正从输出到输入的方向进行.图2—1 BP 网络结构Fig.2-1 Structure of BP network图中:jx 表示输入层第j 个节点的输入,j =1,…,M ;ijw 表示隐含层第i 个节点到输入层第j 个节点之间的权值;iθ表示隐含层第i 个节点的阈值;()x φ表示隐含层的激励函数;ki w 表示输出层第k 个节点到隐含层第i 个节点之间的权值,i =1,…,q ;ka 表示输出层第k 个节点的阈值,k =1,…,L ; ()x ψ表示输出层的激励函数;ko 表示输出层第k 个节点的输出.(1)信号的前向传播过程 隐含层第i 个节点的输入net i :1Mi ij j ij net w x θ==+∑ (3—1)隐含层第i 个节点的输出y i :1()()Mi i ij j i j y net w x φφθ===+∑ (3-2)输出层第k 个节点的输入net k :111()qqMk ki i k ki ij j i ki i j net w y a w w x a φθ====+=++∑∑∑ (3—3)输出层第k 个节点的输出o k :111()()()qq M k k ki i k ki ij j i k i i j o net w y a w w x a ψψψφθ===⎛⎫==+=++ ⎪⎝⎭∑∑∑ (3—4)(2)误差的反向传播过程误差的反向传播,即首先由输出层开始逐层计算各层神经元的输出误差,然后根据误差梯度下降法来调节各层的权值和阈值,使修改后的网络的最终输出能接近期望值。
对于每一个样本p 的二次型误差准则函数为E p :211()2Lp k k k E T o ==-∑ (3—5)系统对P 个训练样本的总误差准则函数为:2111()2P Lp p k k p k E T o ===-∑∑ (3—6)根据误差梯度下降法依次修正输出层权值的修正量Δw ki ,输出层阈值的修正量Δa k ,隐含层权值的修正量Δw ij ,隐含层阈值的修正量i θ∆。
BP神经网络的基本原理_一看就懂
BP神经网络的基本原理_一看就懂BP神经网络(Back propagation neural network)是一种常用的人工神经网络模型,也是一种有监督的学习算法。
它基于错误的反向传播来调整网络权重,以逐渐减小输出误差,从而实现对模型的训练和优化。
1.初始化网络参数首先,需要设置网络的结构和连接权重。
BP神经网络通常由输入层、隐藏层和输出层组成。
每个神经元与上下层之间的节点通过连接权重相互连接。
2.传递信号3.计算误差实际输出值与期望输出值之间存在误差。
BP神经网络通过计算误差来评估模型的性能。
常用的误差计算方法是均方误差(Mean Squared Error,MSE),即将输出误差的平方求和后取平均。
4.反向传播误差通过误差反向传播算法,将误差从输出层向隐藏层传播,并根据误差调整连接权重。
具体来说,根据误差对权重的偏导数进行计算,然后通过梯度下降法来更新权重值。
5.权重更新在反向传播过程中,通过梯度下降法来更新权重值,以最小化误差。
梯度下降法的基本思想是沿着误差曲面的负梯度方向逐步调整权重值,使误差不断减小。
6.迭代训练重复上述步骤,反复迭代更新权重值,直到达到一定的停止条件,如达到预设的训练轮数、误差小于一些阈值等。
迭代训练的目的是不断优化模型,使其能够更好地拟合训练数据。
7.模型应用经过训练后的BP神经网络可以应用于新数据的预测和分类。
将新的输入数据经过前向传播,可以得到相应的输出结果。
需要注意的是,BP神经网络对于大规模、复杂的问题,容易陷入局部最优解,并且容易出现过拟合的情况。
针对这些问题,可以采用各种改进的方法,如加入正则化项、使用更复杂的网络结构等。
综上所述,BP神经网络通过前向传播和反向传播的方式,不断调整权重值来最小化误差,实现对模型的训练和优化。
它是一种灵活、强大的机器学习算法,具有广泛的应用领域,包括图像识别、语音识别、自然语言处理等。
基于BP神经网络的PID参数自适应整定
基于BP 神经网络的PID 参数自适应整定曾正1,蔡容容2,詹立新21 武汉大学电气工程学院,430072 2 武汉大学动力与机械学院,430072 联系方式:zengerzheng@摘 要:针对简单单入单出(SISO )系统中PID 控制的参数整定问题进行了仿真研究,利用BP 神经网络进行PID 参数自适应整定。
首先,得到了问题的传递函数模型,并建立了对应的离散化传递函数模型作为仿真研究的对象,并对未校正系统进行了相关的理论分析。
然后,利用BP 神经网络算法在线进行PID 参数自适应整定。
同时,为了形成参照,给出了运用模拟退火算法离线整定PID 参数的仿真过程。
建立了3层BP 网络结构,以δ规则为学习规则,控制器算法为有监督的Hebb 算法,教师信号为给定与被控对象的输出间的偏差信号。
最后,针对系统在多工况下的复杂情况,从静态稳定和动态稳定的角度,对系统稳定性进行了仿真分析。
仿真结果表明,所设计的基于BP 神经网络参数自适应PID 控制系统,控制品质高、鲁棒性强。
为了支持更加复杂情况下的仿真,还搭建GUI 仿真界面。
关键字:PID 控制;参数整定;BP 神经网络;稳定分析;GUI ;1 问题背景分析 1.1 准备知识1.1.1 控制系统的性能指标当系统的时间响应()y t 中的瞬态分量较大而不能忽视时,称系统处于动态或过渡过程中,这时系统的特性称为动态特性。
动态特性指标通常根据系统的阶跃响应曲线定义。
设系统的阶跃响应曲线如图1所示,图中()lim ()x y y t →∞∞=称为稳态值。
动态性能指标主要有以下几种[1]。
图1 系统的阶跃响应曲线(1)上升时间r t :阶跃响应曲线从零第一次上升到稳态值所需的时间为上升时间。
若阶跃曲线不超过稳态值(称为过阻尼系统),则定义阶跃响应曲线从稳态值的10%上升到90%所对应的时间为上升时间。
(2)最大超调p σ:设阶跃响应曲线的最大值为()p y t ,则对大超调p σ为()()100%()p p y t y y σ-∞=⨯∞ (1)p σ大,称系统阻尼小。
BP 神经网络
二、BP神经网络的结构
BP神经网络采用误差反向传播算法 (Back-Propagation Algorithm)进 行学习。在BP网络中,数据从输入 层经隐含层逐层向后传播,训练网络 权值时,则沿着减少误差的方向,从 输出层经过中间各层逐层向前修正网 络的连接权值。
达数万次迭代。根据网络的大小,训练过程可能需要主机时间几个到几十个小
时。 (2)需大量训练数据:人工神经网络在很大程度上取决于训练时关于问题的输
入-输出数据,若只有少量输入-输出数据,一般不考虑使用人工神经网络。
(3)不能保证最佳结果:反向传播是调整网络的一个富有创造性的方法,但它 并不能保证网络能恰当地工作。训练可能导致网络发生偏离,使之在一些操作 区域内结果准确,而在其他区域则不准确。此外,在训练过程中,有可能偶尔 陷入“局部最小”。
够在训练过程中自动调节步长。
当误差以减小的方式趋于目标时,说明正方向是正确的,可以增加学习率; 当误差增加超过一定范围时,说明前一步修正进行的不正确,应减小步长,并 撤销前一步修正过程。
六、BP神经网络的优化
3.数据的归一化处理 BP神经网络在训练前对数据进行归一化处理,隐含层的数量通常不宜过多, 虽然将数据映射到更小的数据区间,有效提高学习速度。
2 1 m (3)网络关于第p个样本的误差: Ep d pj Ypj 2 j 1
(4) 网络关于整个样本集的误差:
E Ep
p
三、BP神经网络的学习算法 2.误差传播分析:
Ⅰ 输出层权的调整 ANp wpq ∆wpq 第L-1层 wpq= wpq+∆wpq 反向传播时,把误差信号按照原来正向传播的通路反向传回,并对每个神 经元的权数进行修改,以望误差信号趋向最小。 权值调整量=学习率*局部梯度*上一层信号输出 第L层 ANq
人工智能模型在智利科金博医院施工安全评价中的应用
1272024.01|(2)隐藏层:隐藏层是在输入层和输出层之间的一层或多层神经元。
它的主要作用是提取输入数据中的特征,通过非线性变换将输入数据映射到一个高维特征空间中。
(3)输出层:输出层是神经网络的最后一层,负责产生预测结果。
输出层的神经元数量取决于问题的类型,比如二分类问题就只有一个输出神经元,多分类问题就有多个输出神经元。
(4)权重和偏置:神经网络中的每个神经元都有一个对应的权重和偏置值,它们控制着神经元之间的连接强度和偏移量。
在图1 BP 神经网络模型结构128 | CHINA HOUSING FACILITIES训练过程中,网络会自动调整这些权重和偏置值,以使得预测结果与实际结果之间的误差最小。
(5)激活函数:激活函数是隐藏层和输出层中的每个神经元使用的非线性函数。
它们的作用是将神经元的输入转化为输出。
常用的激活函数包括s i g m o i d 、R e L U 、t a n h 等。
(6)损失函数:损失函数是用来衡量预测结果和实际结果之间的误差的函数。
常用的损失函数包括均方误差、交叉熵等。
(7)反向传播算法:反向传播算法是B P 神经网络训练的核心算法。
它通过计算损失函数对每个权重和偏置的梯度,然后按照梯度的反方向更新网络中的权重和偏置,使得损失函数不断减小,从而达到训练的目的。
(8)正则化:正则化是一种常用的技术,用于避免过拟合。
常见的正则化技术包括L 1正则化、L 2正则化等。
(9)计算平均误差:所有测试样本平均误差的计算公式为n k k 11E E ==∑ (1)经过反复迭代,当误差小于允许值,网络的训练过程即告结束。
2基于BP 神经网络的施工安全评价模型方法2.1数据来源在机器学习模型的应用中,数据的来源非常关键。
获取合适的数据源是建立高质量、准确的机器学习模型的重要前提。
常见的数据来源包括公共数据集、专业数据服务、企业内部数据、开放式数据共享平台等。
文中数据依托于智利科金博医院项目施工过程中的安全评价设计。
神经网络和模糊系统
【一】预备知识(10)
9、有监督的学习 ,有对监人督工的神学经习网确络实进是行依训照练这,假利设用干学组习训系练统样的本误(x差i , y i )
( E[J] ,为期望输出与实际输出之差),不断校正学 习系统的行为(即突触权值),使误差尽可能地小, 从而可能出神经元函数:f : x—y。 因此,监督学习的最终任务,确实是通过使系统误差 尽可能地小,不断地调整突触权值,最终求出神经元 函数f。
七、反向传播网络学习(5)
4、BP网络拓扑结构
a a k
1
1
b c v11
11
1
11
bk 1
n1
a a k
i
h
b vh1
i
cj
bk j
a a k
n
n
b c v p np
q
pq
bk p
七、反向传播网络学习(6)
5、BP算法:
(1)初始化。将网络中所有权值及阈值赋予(-1, +1)之间的随机值;
当样本数据改变系统参数时,系统会对这些改变进 行自适应或自组织的学习,在神经网络中表现为突触 的改变。
按突触修正假说,神经网络在拓扑结构固定时,其 学习归结为连接权的变化。
因此,对固定拓扑的神经网络,学习确实是求权值, 即突触矩阵。
【一】预备知识(7)
6、什么是监督? 监督确实是对每一个输入Xi,都假定我
有效训练是指,对具有经历功能的系统,当 使用训练样本对其进行学习之后,系统能够记 住所学的方法,并能处理类似的问题。
对ANN进行有监督的学习确实是有经 历功能的系统。也确实是说,使用期望 输出与实际输出的误差不断校正其突触 权值,最终的结果,确实是系统具备了 一定的功能,训练取得了一定的成效。 就像巴普洛夫条件反射试验一样。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v (t ) = Ay (t ) + Bu(t ) + w
v —— N维列向量 A ——N×N维矩阵 y B u w
—— N维列向量(单元输出) ——N×M维矩阵 —— M维列向量(外部输入) —— M维常向量
▲ 线性动态系统
传递函数形式:
xi ( s ) = H ( s )vi ( s )
按时域形式: x i =
W = ( XT X )−1 XT b
T 学习规则: W k +1 = W k + η (bk − W k X k ) X k
或 ∆W k = ηδ k X k
这学习规则即是著名的 δ 学习规则。 δ 随着学习迭代次数k的增加, 保证网络的收敛。 随着学习迭代次数k的增加, k → 0 保证网络的收敛。 ● 反传(BP)网络 误差反传(学习算法) (BP)网络与感知器的主要差别在于:(BP)网络的节点 是非线性的。 采用广义δ 学习规则。
线性系统
xi
非线性函数
yi
1)加法器 2)线性动态系统(SISO) 3)静态非线性系统
vi (t ) =
∑
n
j =1
a ij y i ( t ) +
∑ b ik u k ( t ) + w i
k =1
m
式中 aij 和bik 为权系数,i,j =1,2,…,n, k= 1,2,…m. n 个加法器可以写成向量形式:
基于神经元网络的智能控制
神经元网络的特点:
1)非线性 2)分布处理 3)学习并行和自适应 4)数据融合 5)适用于多变量系统 6)便于硬件实现
神经网络的发展历史
• 始于19世纪末20世纪初,源于物理学、心理学和神 始于19世纪末20世纪初,源于物理学、 19世纪末20世纪初 经生理学的跨学科研究。 经生理学的跨学科研究。 • 现代研究:20世纪40年代。从原理上证明了人工神 现代研究:20世纪40年代。 世纪40年代 经网络可以计算任何算术相逻辑函数。 经网络可以计算任何算术相逻辑函数。可以认为是 神经网络领域研究工作的开始。 神经网络领域研究工作的开始。 • 人工神经网络第一个实际应用出现在20世纪50年代 人工神经网络第一个实际应用出现在20世纪50 20世纪50年代 后期, Rosenblatt提出了感知机网络和联想 后期,Frank Rosenblatt提出了感知机网络和联想 学习规则。 学习规则。 • 在60年代,由于缺乏新思想和用于实验的高性能计 60年代 年代, 算机,曾一度动摇了人们对神经网络的研究兴趣。 算机,曾一度动摇了人们对神经网络的研究兴趣。 • 到了80年代,随着个人计算机和工作站计算能力的 到了80年代, 80年代 急剧增强和广泛应用,以及不断引入新的概念, 急剧增强和广泛应用,以及不断引入新的概念,克 服了摆在神经网络研究面前的障碍, 服了摆在神经网络研究面前的障碍,人们对神经网 络的研究热情空前高涨。 络的研究热情空前高涨。
∑
Adline(自适 应线性网) yi
∑
yi
yj ui ∑ K yi
u1 u2 u3 u4 离散Hopfield网
y1 y2 y3 y4
yj ui ∑
a2 i Ts + a1i
xi yi
连续的Hopfield网 ●按学习的方法神经元网络可分成二类: 1)有监督的学习网络: 感知器 误差反传网络(BP) 小脑模型连接控制器(CMAC) 模块(组合)网络 增强学习网络
• • • • • •
电子: 娱乐: 金融: 保险: 制造: 医疗:
• • • • •
石油、天然气: 机器人: 有价证券: 电信: 交通:
生物学的启示
人工神经网络却没 有人脑那么复杂,但它 们之间有两个关键相似 之: 首先,两个网络的构成 都是可计算单元的高度 互连(虽然人工神经元比 生物神经元简单得多)。 其次,处理单元之间的 连接决定了网络的功能。
学习:就是修改神经网络的权值和偏置值的方法和过程(也称 学习 这种过程是训练算法) 学习的目的:为了训练网络来完成某些工作 学习的目的 学习的分类: 学习的分类 1. 有监督学习: 2. 竞争学习: 3. 无监督学习: 学习规则由一组描述网络行为的实例集 增强学习与有监督的学习类似,只是它 在无监督的学习中,仅仅根据网络的输入 合(训练集)给出:{p1,t1}、 并不像有监督的学习一样为每一个输 调整网络的权值和偏置值,它没有目标输 {p2,t2} 、。。。{pq,tq},其中,pq为网 入提供相应的目标输出,而是仅仅给出 出,乍一看这种学习似乎并不可行:不知 络的输入,tq为相应的正确(目标)输出。 一个级别,这个级别(或评分)是对网络 道网络的目的是什么,还能够训练网络吗? 当输入作用到网络时,网络的实际输出 在某些输入序列上的性能测度。当前这 实际上,大多数这种类型的算法都是要完 与目标相比较,然后学习规则调整网络 种类型的学习要比有监督的学习少见。 成某种聚类操作,学会将输入模式分为有 的权值和偏置值,从而使网络的实际输 看起来它最为适合控制系统应用领域。 限的几种类型,这种功能特别适合于诸如 出越来越接近于目标输出。 向量量化等应用问题。 返回
o pk o pj
O
k pj
w ( t + 1) = w ( t ) + ηδ
h kj h ji
x pj
初始化
加输入和期望输出 计算隐层和输出层的输出
调节输出层和隐层的连接权值
o o w kj ( t + 1 ) = w kj ( t ) + ηδ h w kj ( t + 1 ) = w h ( t ) + ηδ ji o pk o pj k O pj
2)无监督学习网络 竞争学习和Kohonen网络 Hopfield网络 双向联想存贮器(BAM) Boltzman机 ● 有监督的神经网络 1)感知器网络
感知器是前馈(正向传输)网络,所有节点都是线性的.
x1 x2 xn
● ● ● ● ● ● ● ● ● ●
b1 b2 bm
●
●
权向量W
输入与输出的关系: XW = b 权矩阵可以按下式求解:
t pm
信息流
隐层节点j输出和输入节点p的关系: h h h h h S pj = w ji x pi O pj = f j ( S pj ) i 输出节点k和隐层输出节点p的关系:
∑
j
S
o pk
= ∑w O
o kj
h pj
o o o Opk = f k (S pk )
学习过程: 定义输出误差 δ pk o δ pk = (t pk − O pk )
●神经元网络的简化模型
x1 w1 w2 · · · xn wn
x2
θ
y
n y (t ) = f ∑ wi xi (t ) − θ i =1 ●神经元网络的一般模型框架
y1 y2 yn u1 uk um 1 ︰ ︰ ai1 ai2 a in bi1 bi2 bim wi
∑
vi
讨论
1)隐层的数目和节点的数目,何谓合适? 2)是否收敛到全局最优?(涉及多维误差曲 面的不确定性) 3)收敛的速度问题。(涉及隐层节点输出 的相互耦合和梯度下降法本身的缺点)
作业
• 阅读:Martin T. Haguan等著,戴葵等译. 神经网络设计. 机械工业出版社,北京: 2002.9:第11章、第12章有关BP算法的 内容
有两个新概念对神经网络的复 兴具有重大的意义: 其一:用统计机理解释某些类型的递 归网络的操作,这类网络可作为联想 存储器; 其二:在20世纪80年代,几个不同的 研究者分别开发出了用于训练多层感 知器的反传算法。
神经网络的应用
• 航空:高性能飞行器自动驾驶仪,飞行路径模 拟,飞机控制系统,自动驾驶优化;器,飞行 部件模拟,飞行器部件故障检测器 • 汽车:汽车自动导航系统,担保行为分析器 • 银行:支票和其他公文阅读器,信贷申请的评 估器 • 国防:武器操纵,目标跟踪,目标辨识,面部 识别、新型的传感器,声纳.雷达和图像信号 处理(包括数据压缩、特征提取、噪声抑制、信 号/图像的识别)
x pj
改变训练样板
No
训练样终止?
y
迭代次数加1
No
迭代终止?
y
BP算法的基本流程
重要结论
具有至少一个隐层的多层前馈网络,如果隐层 单元足够多,那么,利用扁平激励函数和线性多 项式集成函数,可以对任意感兴趣的函数逼成到 任意精度。 扁平激励函数定义:f : R [0,1] 或[-1,1]是非减函 数, limλ →∞ f (λ ) = 1, limλ →∞ f (λ ) = 1 或 - 1。 是 λ 扁平激励函数的参数. 理论证明:多层前馈网络是一种通用逼近器
学习的目的是要使以下定义的误差平方和最小:
1 Ep = 2
∑
k =1
p o kj
m
1 2 δ pk = 2
∑
k
(t pk − O o ) 2 pk
o pk o kj
因此,要求以下的偏导,
∂E
∂S ∂w
∂w
o kj
最后得到二个权值改变的重要公式:
w ( t + 1) = w ( t ) + ηδ
o kj
−∞ 1 , 典型的有: H(s) = 1+ sT
∫
l
h ( t −t ' ) v i ( t ' ) dt '
1 −t / T h(t) = e T
▲静态非线性系统 g(x)
典型的有:
g(x) x g(x) x
Sigmoid函数
x
阈值函数 阈值函数
▲不同的部件可以组成不同的网络 u1 ui ︰ θi u1 ui ︰ θi 单层感知器 (Perceptron) Sigmoid (双极型)