2011届备考高考数学基础知识训练18
四川省德阳市2011届高考数学 全册知识点汇编
,有 ,而当 这与假设矛盾,故假设不成立, .
关于本例的第(3)题,我们还可给出直接证法,事实上:
由 得 <0或
结论成立;
若 ,此时 从而 即数列{ }在 时单调递减,由 ,可知 上成立.
比较上述两种证法,你能找出其中的异同吗?数学解题后需要进行必要的反思,学会反思才能长进.
A.arccosB.π-arccosC.-arccosD.-arccos
B
18.正方体的全面积为a2,它的顶点都在一个球面上,这个球的表面积为( )
A.B.C.2πa2D.3πa2
B
19.一个长方体的长、宽、高分别为3、4、5,且它的顶点都在一个球面上,这个球的表面积为( )
A.20πB.25πC.50πD.200π
①定义:
②判断方法:Ⅰ.定义法步骤:a.求出定义域;
b.判断定义域是否关于原点对称;
c.求 ;
d.比较 或 的关系。
Ⅱ图象法
③已知:
若非零函数 的奇偶性相同,则在公共定义域内 为偶函数
若非零函数 的奇偶性相反,则在公共定义域内 为奇函数
④常用的结论:若 是奇函数,且 ,则 ;
若 是偶函数,则 ;反之不然。
A.10B.10C.20D.30
A
25.在北纬60º圈上有甲、乙两地,它们在纬度线上的弧长等于R,R为地球半径,则这两地的球面距离为( )
A.πRB.πRC.πRD.πR
B
填空题:
设m、n是不重合的两条直线, 是不重合的平面,给出下列命题:请判断其是否正确,如错误,请举出反例。
若 ,则
若 ,则
若 ,则
∴<即异面直线AB'与BC'的夹角为arccos
2011届高考数学第一轮精品复习课件18
课堂互动讲练
【解析】 (1)∵a1a89=a44a46= 解析】 ∵ a452=16, , ∴a45=±4. ∴a44a45a46=±64. (2)∵{an}为正项等比数列, 为正项等比数列, ∵ 为正项等比数列 ∴Sn,S2n-Sn,S3n-S2n成等比 数列. 数列. ∴(S2n-Sn)2=Sn(S3n-S2n), , 即122=2(S3n-14),得S3n=86. , 答案】 【答案】 (1)±64 (2)86 ±
课堂互动讲练
例1 (2009年高考全国卷Ⅱ)设数列 } 年高考全国卷Ⅱ 设数列{a 年高考全国卷 设数列 n 的前n项和为 项和为S 已知a 的前 项和为 n,已知 1=1,Sn+1= , + 4an+2. (1)设bn=an+1-2an,证明数列 设 + {bn}是等比数列; 是等比数列; 是等比数列 的通项公式. (2)求数列 n}的通项公式. 求数列{a 的通项公式 求数列
三基能力强化
5.在数列 n},{bn}中,bn是an与 在数列{a , 在数列 中 an+1的等差中项,a1=2,且对任意 , + 的等差中项, n∈N*,都有 n+1-an=0,则{bn}的 都有3a + ∈ , 的 通项公式bn=________. 通项公式
4 1 n-1 答案: 答案: ×( ) 3 3
基础知识梳理
4.等比数列的前 n 项和公式 . na1 (q=1), = , - Sn=a1(1-qn) a1-anq (q≠1). = ≠ 1-q - - 1-q
三基能力强化
1.(2009年高考广东卷改编 已知 . 年高考广东卷改编)已知 年高考广东卷改编 等比数列{a 的公比为正数 的公比为正数, 等比数列 n}的公比为正数,且a3a9 ) =2a52,a2=2,则a1=( ,
2011高考数学试题汇编──函数与导数
2011高考数学试题汇编──函数与导数33、(四川理)设函数.(Ⅰ)当x=6时,求的展开式中二项式系数最大的项;(Ⅱ)对任意的实数x,证明>(Ⅲ)是否存在,使得an<<恒成立?若存在,试证明你的结论并求出a的值;若不存在,请说明理由.本题考察函数、不等式、导数、二项式定理、组合数计算公式等内容和数学思想方法。
考查综合推理论证与分析解决问题的能力及创新意识。
(Ⅰ)解:展开式中二项式系数最大的项是第4项,这项是(Ⅱ)证法一:因证法二:因而故只需对和进行比较。
令,有由,得因为当时,,单调递减;当时,,单调递增,所以在处有极小值故当时,,从而有,亦即故有恒成立。
所以,原不等式成立。
(Ⅲ)对,且有又因,故∵,从而有成立,即存在,使得恒成立。
34、(陕西理)设函数f(x)=其中a为实数.(Ⅰ)若f(x)的定义域为R,求a的取值范围;(Ⅱ)当f(x)的定义域为R时,求f(x)的单减区间.解:(Ⅰ)的定义域为,恒成立,,,即当时的定义域为.(Ⅱ),令,得.由,得或,又,时,由得;当时,;当时,由得,即当时,的单调减区间为;当时,的单调减区间为.35、(山东理)设函数,其中.(Ⅰ)当时,判断函数在定义域上的单调性;(Ⅱ)求函数的极值点;(Ⅲ)证明对任意的正整数,不等式都成立.解(I) 函数的定义域为.,令,则在上递增,在上递减,.当时,,在上恒成立.即当时,函数在定义域上单调递增。
(II)分以下几种情形讨论:(1)由(I)知当时函数无极值点.(2)当时,,时,时,时,函数在上无极值点。
(3)当时,解得两个不同解,.当时,,,此时在上有唯一的极小值点.当时,在都大于0 ,在上小于0 ,此时有一个极大值点和一个极小值点. 综上可知,时,在上有唯一的极小值点;时,有一个极大值点和一个极小值点;时,函数在上无极值点。
(III)当时,令则在上恒正,在上单调递增,当时,恒有.即当时,有,对任意正整数,取得【试题点评】函数的单调性、导数的应用、不等式的证明方法。
新疆2011年高考备考数学基础知识训练(18)
新疆2011年高考备考数学基础知识训练(18)备考2011高考数学基础知识训练(18)班级______ 姓名_________ 学号_______ 得分_______一、填空题(每题5分,共70分)1 .满足{}{}d c b a M b a ,,,,⊆⊆的集合M 的个数为___________[来源:学&科&网Z&X&X&K]2 .已知复数11i z=-,121i z z =+,则复数2z = 3 .若3'0(),()3f x x f x ==,则0x 的值为_________________;4 .若命题p 的逆命题是q ,命题q 的逆否命题是r ,则p 与r 的关系是____.[来源:]5 .观察下列等式:13=1213+23=3213+23+33=6213+23+33+43=102………………则第n (n ∈N *)个式子可能为 .16.已知直线a,b是异面直线, 直线c//a, c与b 不相交,求证: b,c是异面直线.[来源:Z,xx,] [来源:Z§xx§]17.如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30 ,相距10海里C处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B 处救援(角度精确到1 )?(参考数据: sin41°37[来源:学#科#网北21A BZ#X#X#K][来源:Z+xx+]18.如图,设1F 、2F 分别为椭圆C :22221x y a b += (0a b >>)的左、右焦点.(1)设椭圆C 上的点3(1,)2A 到F 1、F 2两点距离之和等于4,求椭圆C 的方程和离心率;(2)设点K 是(1)中所得椭圆上的动点,求线段1F K 的中点的轨迹方程.A y x O 2F 1F19.设数列{}n a 的前n 项和为nS ,且对任意正整数n ,32n n a S +=。
2011届高考数学复习配套月考A卷试题新人教版
适用地区:大纲地区 考查范围:集合与简易逻辑、函数、数列、三角函数 一、选择题 (本大题共 12 小题,每小题 5 分 )
1. (2010 ·银川一中第三次月考 )已知 M={ x|x2> 4} , N
2
x
1 , 则 CRM∩N=
x1
()
A. { x|1< x≤2}
3 D.
3
4.(文 )(2010 ·茂名二模)在等差数列 { an } 中,已知 a1 1,a2 a4 10, an 39, 则 n =
() A. 19
B. 20
C. 21
D . 22
5. (2010·太原五中 5 月月考)在等比数列 { an } 中,前 n 项和为 Sn ,若 S3 7, S6 63 则
4.(文)【答案】 B
【解析】依题意,设公差为
d,则由 a1 1
得 d 2 ,所以 1+2( n-1)=39 ,所以
2a1 4d 10
n=20 ,选择 B . 5【答案】 B
【解析】 依题意, a1 a2 a3 7 ,a1 a2 a3 a4 a5 a6 63 ,所以 a4 a5 a6 56 ,
因此 q3=8,q=2,选择 B 6【答案】 A
13.( 2010·南山中学热身考试) 函数 y
sin x
2cos2
x
的最大值是
.
2
3
3
14( 2010·青岛二摸)已知点 P sin ,cos
4
4
落在角 的终边上,且
[ 0, 2 ) ,则
tan
的值为
;
3
15( 2010·隆尧一中五月模拟)定义:我们把满足 a n a n 1 k ( n 2, k 是常数)的数列
2011届高考数学基础知识复习题6
备考2011高考数学基础知识训练(6)班级______ 姓名_________ 学号_______ 得分_______一、填空题(每题5分,共70分) 1.0sin 600=___________2. 已知1249a =(a>0) ,则23log a = . 3. 复数1__________2ii+=-4. 若0,x >则131311424222(23)(23)4()x x x x x -+⋅--⋅-= .5. 函数2231()2x x y -+=的值域为 .6. 函数f (x )=x 3+x +1(x ∈R ),若f (a )=2,则f (-a )的值为 .7. 设Q P 和是两个集合,定义集合}{Q x P x x Q P ∉∈=-且,|,若{}4,3,2,1=P , }R x x x Q ∈<⎩⎨⎧+=,221|,则=-Q P .8. 为了保证信息安全传输必须使用加密方式,有一种方式其加密、解密原理如下:加密 发送明文 密文 密文 明文已知加密为2-=x a y (x 为明文、y 为密文),如果明文“3”通过加密后得到密文为“6”, 再发送,接受方通过解密得到明文“3”,若接受方接到密文为“14”,则原发的明文是 . 9. 方程223xx -+=的实数解的个数为 .10. 已知数列{}n a ,则“数列{}n a 为等比数列”是“数列{}lg n a 为等差数列”的______条件 (填写:充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件)11.关于函数有下列四命题),0()(>-=a xax x f : ①),0()0,()(+∞-∞ 的值域是x f ; ②)(x f 是奇函数; ③()(,0)f x -∞在及(0,)+∞上单调递增;④方程|()|(0)f x b b =≥总有四个不同的解; 其中正确的有 .12. 若函数223y x x =-+在闭区间[0,]m 上有最大值3,最小值2;则m 的取值集合为 .13. ()y f x =在(0,2)上是增函数,(2)y f x =+是偶函数,则57(1),(),()22f f f 的大小关系是 .14. 已知t 为常数,函数t x x y --=22在区间[0,3]上的最大值为2,则t=________.二、解答题(共90分,写出详细的解题步骤)15.(14分)已知集合A ={2215x x x --≤0},B={22(29)9x x m x m m --+-≥0,m R ∈}(1)若[]3,3A B ⋂=-,求实数m 的值;(2)设全集为R ,若R A C B ⊆,求实数m 的取值范围.16.(14分)已知函数()f x m n = 其中(sin cos )m x x x ωωω=+(cos sin ,2sin ),0,()n x x x f x ωωωω=-> 其中若相邻两对称轴间的距离不小于.2π(Ⅰ)求ω的取值范围;(Ⅱ)在,3,3,,,,,,=+=∆c b a C B A c b a ABC 的对边分别是角中 ,最大时当ω ABC A f ∆=求,1)(的面积.17.(14分)已知数列的等比数列公比是首项为41,41}{1==q a a n ,设 *)(log 3241N n a b n n ∈=+,数列n n n n b a c c ⋅=满足}{(1)求证:}{n b 是等差数列;(2)求数列}{n c 的前n 项和S n .18.(16分)某厂家拟在2010年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x 万件与年促销费用m (m ≥0)万元满足31kx m =-+(k 为常数),如果不搞促销活动,则该产品的年销售量是1万件. 已知2010年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用). (1)将2010年该产品的利润y 万元表示为年促销费用m 万元的函数; (2)该厂家2010年的促销费用投入多少万元时,厂家的利润最大?19.(16分)已知函数22()ln ()f x x a x ax a R =-+∈.(1)当a=1时,求函数()f x 最大值;(2)若函数()f x 在区间(1,+∞)上是减函数,求实数a 的取值范围.20.(16分)已知二次函数1)(2++=bx ax x f 和函数bx a bx x g 21)(2+-=, (1)若)(x f 为偶函数,试判断)(x g 的奇偶性;(2)若方程()g x x =有两个不等的实根()2121,x x x x <,则①证明函数)(x f 在(-1,1)上是单调函数;②若方程0)(=x f 的两实根为()4343,x x x x <,求使4213x x x x <<<成立的a 的取值范围.参考答案: 1、2. 解:由1249a =得2442()()93a ==, ∴422332log log ()43a ==.答案:4. 3、 135i+4.解:131311424222(23)(23)4()x x x x x -+---=11322434423x x --+=-. 答案:-23.5. 解:设1()2uy =,2232u x x =-+≥,所以结合函数图象知,函数y 的值域为1(0,]4.答案:1(0,]4.6.解:3()1f x x x -=+为奇函数,又()2f a =∴()11f a -=,故()11f a --=-,即()0f a -=.答案:0.7.解:由定义}{Q x P x x Q P ∉∈=-且,|,求P Q -可检验{}4,3,2,1=P 中的元素在不在}R x x x Q ∈<⎩⎨⎧+=,221|中,所有在P 中不在Q 中的元素即为P Q -中的元素,故=-Q P {}4.答案:{}4.8. 解:由已知,当x=3时y=6,所以326a -=,解得2a =;∴22x y =-;当y=14时,有2214x-=,解得x=4. 答案:“4”.9.解:画出函数2xy -=与23y x=-的图象,它们有两个交点,故方程223x x -+=的实数解的个数为2个.答案:2.10、 必要不充分条件11.解:x =()0f x =,故①不正确;|()|0f x =只有2个解,故④不正确;∴正确的有②③. 答案:②③.12. 解:由223y x x =-+即2(1)2y x =-+,结合图象分析知m 的取值范围为[1,2]时, 能使得函数取到最大值3和最小值2. 答案:[1,2].13. 解:结合图象分析知:()y f x =的图象是由(2)y f x =+的图象向右平移两个单位而得到的;而(2)y f x =+是偶函数,即(2)y f x =+的图象关于y 轴对称,所以()y f x =的图象关于x=2对称,画出图象可以得到75()(1)()22f f f <<. 答案:75()(1)()22f f f <<.14.解:二次函数22y x x t =--图像的对称轴为1,x =函数t x x y --=22的图像是将二次函数22y x x t =--图像在x 轴下方部分翻到x 轴上方(x 轴上方部分不变)得到的.由区间[0,3]上的最大值为2,知max (3)32,y f t ==-=解得15t =或;检验5t =时,(0)52f =>不符,而1t =时满足题意.答案:1.15. 解:(Ⅰ)∵[3,5]A =-,(][),9,B m m =-∞-⋃+∞ …………………… 4分[]3,3A B ⋂=-, ∴ 935m m -=⎧⎨≥⎩ ∴12m = …………………… 7分 (Ⅱ) {9}R C B x m x m =-<<…………………… 9分 ∵R A C B ⊆ ∴5,93m m >-<-或,…………………… 12分 ∴56m << ……………………14分16.解: (Ⅰ)x x x x x f ωωωωsin cos 32sin cos )(22⋅+-=⋅=x x ωω2sin 32cos +=)62sin(2πω+=x ………………3分0>ω ,22)(ωπωπ==∴T x f 的周期函数……………4分 由题意可知,22,22πωππ≥≥即T 解得}10|{,10≤<≤<ωωωω的取值范围是即……………………6分 (Ⅱ)由(Ⅰ)可知ω的最大值为1,)62sin(2)(π+=∴x x f 1)(=A f 21)62sin(=+∴πA ……………8分 而132666A πππ<+<ππ6562=+∴A 3π=∴A ………………10分 由余弦定理知bca cb A 2cos 222-+= 22b c bc 3,b c 3∴+-=+=又 (12)联立解得⎩⎨⎧==⎩⎨⎧==2112c b c b 或………11分23sin 21==∴∆A bc S ABC ……14分 注:或用配方法不求b ,c 值亦可17. 解:(1)由题意知,*)()41(N n a nn ∈=12log 3,2log 3141141=-=-=a b a b n n3log 3log 3log 3log 341141411411===-=-∴+++q a a a a b b nn n n n n ∴数列3,1}{1==d b b n 公差是首项的等差数列……………………7分 (2)由(1)知,*)(23,)41(N n n b a n nn ∈-==*)(,)41()23(N n n c n n ∈⨯-=∴,)41()23()41)53()41(7)41(4411132n n n n n S ⨯-+(⨯-++⨯+⨯+⨯=∴-1432)41()23()41)53()41(7)41(4)41(141+⨯-+(⨯-++⨯+⨯+⨯=n n n n n S 两式相减得132)41()23(])41()41()41[(34143+⨯--++++=n n n n S.)41()23(211+⨯+-=n n *)()41(3812321N n n S n n ∈⨯+-=∴+……………………14分18. 解:(1)由题意可知,当0=m 时,1=x ,∴13k =-即2=k ,∴231x m =-+,每件产品的销售价格为8161.5xx+⨯元.∴2010年的利润)168(]1685.1[m x xxx y ++-+⨯= m m m x -+-+=-+=)123(8484)0(29)]1(116[≥++++-=m m m …8分(2)∵0m ≥时,16(1)81m m ++≥=+.∴82921y ≤-+=,当且仅当1611m m =++,即3m =时,max 21y =.………………15分 答:该厂家2010年的促销费用投入3万元时,厂家的利润最大,最大为21万元.……16分注:导数法求解酌情给分19. 解:(1)当a=1时,2()ln f x x x x =-+,其定义域是(0,)+∞,--------- 1分2121()21x x f x x x x--'∴=-+=-------------------- 2分令()0f x '=,即2210x x x---=,解得12x =-或1x =.0x >Q ,12x ∴=-舍去. 当01x <<时,()0f x '>;当1x >时,()0f x '<.∴函数()f x 在区间(0,1)上单调递增,在区间(1,+∞)上单调递减∴当x=1时,函数()f x 取得最大值,其值为2(1)ln1110f =-+=.--- 6分(2)法一:因为22()ln f x x a x ax =-+其定义域为(0,)+∞,所以222121(21)(1)()2a x ax ax ax f x a x a x x x-++-+-'=-+==①当a=0时,1()0,()f x f x x'=>∴在区间(0,)+∞上为增函数,不合题意---------------------------------- 8分②当a>0时,()0(0)f x x '<>等价于(21)(1)0(0)ax ax x +->>,即1x a>. 此时()f x 的单调递减区间为1(,)a+∞.依题意,得11,0.a a ⎧≤⎪⎨⎪>⎩解之得1a ≥.------------------- 12分③当a<0时,()0(0)f x x '<>等价于(21)(1)(0)ax ax x +->>,即12x a>· 此时()f x 的单调递减区间为1(,)2a -+∞,11,20.a a ⎧-≤⎪∴⎨⎪<⎩得12a ≤- 14分 综上,实数a 的取值范围是1(,][1,)2-∞-+∞U ----------- 16分 法二:22()ln ,(0,)f x x a x ax x =-+∈+∞Q2221()a x ax f x x-++'∴=由()f x 在区间(1,)+∞上是减函数,可得22210a x ax -++≤在区间(1,)+∞上恒成立.----------------------------------8 ① 当0a =时,10≤不合题意---------------------------------- 1 0② 当0a ≠时,可得11,4(1)0a f ⎧<⎪⎨⎪≤⎩即210,4210a a a a ⎧><⎪⎨⎪-++≤⎩或10,4112a a a a ⎧><⎪⎪∴⎨⎪≥≤-⎪⎩或或 ---------------------------------- 14注:发现必过定点(0,1)解题亦可1(,][1,)2a ∴∈-∞-+∞U----------------------------------1620. (Ⅰ)∵)(x f 为偶函数,∴()()f x f x -=,∴0bx =,∴0b =∴21()g x a x=-,∴函数()g x 为奇函数;……(4分) (Ⅱ)⑴由x bx a bx x g =+-=21)(2得方程(*)0122=++bx x a 有不等实根 ∴△0422>-=a b 及0≠a 得12>ab即1122b b a a -<-->或3eud 教育网 教学资源集散地。
新疆2011年高考备考数学基础知识训练(10)
新疆2011年高考备考数学基础知识训练(10)2011年备考高考数学基础知识训练(10)班级______ 姓名_________ 学号_______ 得分_______一、填空题(每题5分,共70分)1.幂函数()y f x =的图象经过点1(2,)8--,则满足()f x =27的x 的值是__________.2.若复数i i i z 其中,2)1(=+是虚数单位,则复数z=__________.3.若i x x x)23()1(22+++-是纯虚数,则实数x 的值是__________.4.在ABC ∆中,︒===60,8,5C b a ,则⋅的值为__________.5.已知向量()()()2,1,3,0a b λλ==>,若()2a b b -⊥,则等于3时,=C tan __________.11.若2()21f x x ax =++在[1,2]上是单调函数,则a 的取值范围是__________.[来源:学&科&网Z&X&X&K]12.在△ABC 中,O 为中线AM 上一个动点,若AM=4,则−→OA ⋅(−→OB +−→OC )的最小值是__________.[来源:Z&xx&]13.已知函数()x x mxx f 2ln 2-+=在定义域内是增函数,则实数m 的取值范围为__________.14.已知20a b =≠,且关于x 的函数f(x)=321132x a x a bx ++⋅在R 上有极值,则a 与b 的夹角范围为__________.二、解答题(共90分,写出详细的解题步骤)15. (14分)设非零向量12e e 与不共线 (1)如果121212,2833,AB e e BC e e CD e e =+=+=-,求证:A 、B 、D 三点共线. (2)若12123e e e e ==2,,与的夹角为60,是否存在实数m ,使得()()1212me e e e +与- 垂直?并说明理由[来源:Z§xx§]16.(14分)已知点(23)(54)(108)A B C ,,,,,,若()AP AB AC λλ=+∈R ,求当点P 在第二象限时,λ的取值范围.17.(15分)已知函数()2cos (sin cos )1,f x x x x x =-+∈R.(1)求函数()f x 的最小正周期;(2)求函数()f x 在区间3,84ππ⎡⎤⎢⎥⎣⎦上的最小值和最大值.18.(15分)在ABC △中,已知∠A π=3,23BC =.设∠B x =,周长为y .(1) 求函数()y f x =的解析式和定义域;(2) 求y 的最大值.19.(16分)已知向量),2sin ,2(cos ),23sin ,23(cos x x b x x a -==且]2,0[π∈x ,求:(1) b a •及||b a +;(2) 若||2)(b a b a x f +-•=λ的最小值是23-,求λ的值.20.(16分)已知函数12||)(2-+-=a x axx f (a 为实常数).(1)若1=a ,作函数)(x f 的图像;(2)设)(x f 在区间]2,1[上的最小值为)(a g ,求)(a g 的表达式;(3)设x x f x h )()(=,若函数)(x h 在区间]2,1[上是增函数,求实数a 的取值范围.参考答案一、填空题:1、13;2、i +1;3、1;4、-20;5、3;6、71; 7、3+4i ; 8、23π; 9、]65,3[ππ;10、3- 11、2a ≤-或1a ≥-; 12、-813、 12m ≥ 14、],3(ππ二、解答题:15. (1)证明略 (2)m=616.解:设点P 的坐标为()x y ,,则(23)AP x y =--,,(5243)(10283)AB AC λλ+=--+--,,(31)(85)(3815)λλλ=+=++,,,. AP AB AC λ=+∵,(23)(3815)x y λλ--=++,,∴.即238315x y λλ-=+⎧⎨-=+⎩,.解得580450λλ+<⎧⎨+>⎩,. 即当4558λ-<<-时,点P 在第二象限内.17.(1)()2cos (sin cos )1f x x x x =-+sin 2cos2x x =-224x π⎛⎫=- ⎪⎝⎭.因此,函数()f x 的最小正周期为π.(2) 因为()224f x x π⎛⎫- ⎪⎝⎭在区间3,88ππ⎡⎤⎢⎥⎣⎦上为增函数, 在区间33,84ππ⎡⎤⎢⎥⎣⎦上为减函数,[来源:学*科*网]又3330,2,221,884244f f f ππππππ⎛⎫⎛⎫⎛⎫⎛⎫===-=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭故函数()f x 在区间3,88ππ⎡⎤⎢⎥⎣⎦2,最小值为1-.18、解:(1)ABC △的内角和A B C ++=π,由00A B C π=>>3,, 得20B π<<3.应用正弦定理,知23sin 4sin sin sin BC AC B x x A ===3, 2sin 4sin sin BC AB C x A π⎛⎫==- ⎪3⎝⎭.因为y AB BC AC =++,所以224sin 4sin 2303y x x x ππ⎛⎫⎫=+-+<< ⎪⎪3⎝⎭⎭,(2)因为14sin cos sin 232y x x x ⎛⎫3=+++ ⎪ ⎪2⎝⎭ 54323x x ππππ⎛⎫⎫=++<+< ⎪⎪6666⎝⎭⎭,所以,当x ππ+=62,即x π=3时,y 取得最大值3.19、解:(1)x x x x x 2cos 2sin 23sin 2cos 23cos =⋅-⋅=⋅, ||+22)2sin 23(sin )2cos 23(cos x x x x -++=x x 2cos 22cos 22=+=, 因为]2,0[π∈x ,所以0cos >x ,所以x b a cos 2||=+. (2)x x x f cos 42cos )(λ-=,即2221)(cos 2)(λλ---=x x f.1cos 0],2,0[≤≤∴∈x x π ①当0<λ时,当且仅当0cos =x 时,)(x f 取得最小值-1,这与已知矛盾;②当10≤≤λ时,当且仅当λ=x cos 时,)(x f 取得最小值221λ--,由已知得23212-=--λ,解得21=λ; ③当1>λ时,当且仅当1cos =x ,)(x f 取得最小值λ41-,由已知得3142λ-=-, 解得85=λ,这与1>λ相矛盾.综上所述,21=λ为所求.20、解:(1)当1=a 时,1||)(2+-=x x x f⎪⎩⎪⎨⎧≥+-<++=0,10,122x x x x x x .作图(如右所示)……(4分) (2)当]2,1[∈x 时,12)(2-+-=a x axx f .若0=a ,则1)(--=x x f 在区间]2,1[上是减函数, 3)2()(-==f a g .……(5分)若0≠a ,则141221)(2--+⎪⎭⎫ ⎝⎛-=a a a x a x f ,)(x f 图像的对称轴是直线a x 21=.当<a 时,)(x f 在区间]2,1[上是减函数,36)2()(-==a f a g .……(6分)当1210<<a ,即21>a 时,)(x f 在区间]2,1[上是增函数, 23)1()(-==a f a g .……(7分)当2211≤≤a ,即2141≤≤a 时,141221)(--=⎪⎭⎫⎝⎛=a a a f a g ,……(8105 -2 32 1 yx O -1 -3 1分)[来源:学+科+网][来源:学,科,网] 当221>a ,即410<<a 时,)(x f 在区间]2,1[上是减函数,[来源:学&科&网]36)2()(-==a f a g .……(9分) 综上可得⎪⎪⎪⎩⎪⎪⎪⎨⎧>-≤≤--<-=2123214114124136)(a ,a a ,a a a ,a a g 当当当 .……(10分)[来源:](3)当]2,1[∈x 时,112)(--+=x a ax x h ,在区间]2,1[上任取1x ,2x ,且21x x<,则⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛--+-⎪⎪⎭⎫ ⎝⎛--+=-211211221212)(112112)()(x x a a x x x a ax x a axx h x h212112)12()(x x a x ax x x --⋅-=.……(12分)因为)(x h 在区间]2,1[上是增函数,所以0)()(12>-x h x h ,因为012>-x x ,021>x x ,所以0)12(21>--a x ax ,即1221->a x ax ,当0=a 时,上面的不等式变为10->,即0=a 时结论成立.……(13分)当0>a 时,a a x x 1221->,由4121<<x x 得,112≤-a a ,解得10≤<a ,…(14分)当0<a 时,a a x x 1221-<,由4121<<xx 得,412≥-a a ,解得021<≤-a ,(15分)所以,实数a 的取值范围为⎥⎦⎤⎢⎣⎡-1,21.……(16分)[来源:学科网]。
2011年高考数学试卷(含答案)
是否 开始输入N k=1,p=1 k=k+1 p=p ·k k<N 输出p 结束结束数 学(理科)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中.只有一项是符合题目要求的. (1) (1) 复数复数212ii+-的共轭复数是(的共轭复数是( ))(A) 35i - (B) (B) 35i (C) (C) i - (D) (D) i(2) (2) 下列函数中,既是偶函数又在(下列函数中,既是偶函数又在(下列函数中,既是偶函数又在(00,+∞)单调递增的函数是(∞)单调递增的函数是( )) (A)y=x 2(B)y=|x|+1(C)y=-x 2+1 (D)y=2-|x|(3) (3) 执行右面的程序框图,如果输入的N 是6,那么输出的p 是(是( )(A ) 120 (B) 720 (C) 1440 (D )5040 (4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则两位同学参加同一个兴趣小组的概率为(可能性相同,则两位同学参加同一个兴趣小组的概率为( ) (A )13 (B) 12 (C) 23 (D )34(5) 已知角θ的顶点与原点重合,始边与x 轴的正半周重合,始边在直线y=2x 上,则cos2θ=( ))(A )45- (B) 35- (C) 35 (D )45(6)在一个几何体的三视图中,正视图和俯视图如右图所示,)在一个几何体的三视图中,正视图和俯视图如右图所示, 则相应的侧视图可以为(则相应的侧视图可以为( ))(A ) (B ) (C ) (D )(7)已知直线l 过双曲线C 的一个焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,|AB||AB|为为C 的实轴长的2倍,则C 的实轴长的2倍,则C 的离心率为(的离心率为( ))(A )2 (C ) 3 (B ) 2 (D )3 (8)51()(2)ax x x x+-的展开式中各项系数的和为2,则该展开式中常数项为(,则该展开式中常数项为( )(A )-40 (C ) -20 (B ) 20 (D )40 (9)由曲线y x =,直线y=x-2及y 轴所围成的图形的面积为(轴所围成的图形的面积为( )(正视图) (侧视图) (A )310 (B )4 (C )163(D )6 (10)已知a与b 均为单位向量,其夹角为q ,有下列四个命题,有下列四个命题12:||10,3p a b p q éö+>ÛÎ÷êëø 22:||1,3p a b pq p æù+>ÛÎçúèû 3:||10,3p a b p q éö->ÛÎ÷êëø 4:||1,3p a b pq p æù->ÛÎçúèû其中的真命题是(其中的真命题是( )(A )14,p p (B )13,p p (C )23,p p (D )24,p p(11)设函数()sin()cos()f x x x w j w j =+++(0,||)2pw j ><的的最最小小正正周周期期为为ππ,且且()()f x f x -=,则(,则( )(A )()f x 在(0,)2p单调递减单调递减 (B )()f x 在3(,)44pp 单调递减单调递减(C )()f x 在(0,)2p 单调递增单调递增 (D )()f x 在3(,)44p p 单调递增单调递增(12)函数11y x=-的图象与函数2sin (24)y x x p =-££的图象所有交点的横坐标之和等于(等于( )(A) 2 (B)4 (C)6 (D)8 (A) 2 (B)4 (C)6 (D)8第Ⅱ卷二.填空题:本大题共4小题,每小题5分。
2011届高考数学一轮复习精品题集分类汇编之立体几何(29页)
必修2 立体几何初步§1.1.1柱、锥、台、球的结构特征重难点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征;柱、锥、台、球的结构特征的概括.考纲要求:认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.经典例题:如图,长方体ABCD-A1B1C1D1的长、宽、高分别是5cm、4cm、3cm,一只蚂蚁从A到C1点,沿着表面爬行的最短距离是多少.当堂练习:1.由平面六边形沿某一方向平移形成的空间几何体是()A.六棱锥 B.六棱台 C.六棱柱 D.非棱柱、棱锥、棱台的一个几何体2下列说法中,正确的是()A.棱柱的侧面可以是三角形 B.由六个大小一样的正方形所组成的图形是正方体的展开图C.正方体的各条棱都相等 D.棱柱的各条棱都相等3.一个骰子由1~6六个数字组成,请你根据图中三种状态所显示的数字,推出“?”处的数字是()A. 6 B. 3 C. 1 D. 24.有两个面互相平行, 其余各面都是梯形的多面体是()A.棱柱 B.棱锥 C.棱台 D.可能是棱台, 也可能不是棱台, 但一定不是棱柱或棱锥5.构成多面体的面最少是()A.三个 B.四个 C.五个 D.六个6.用一个平面去截棱锥, 得到两个几何体, 下列说法正确的是()A.一个几何体是棱锥, 另一个几何体是棱台B.一个几何体是棱锥, 另一个几何体不一定是棱台C.一个几何体不一定是棱锥, 另一个几何体是棱台D.一个几何体不一定是棱锥, 另一个几何体不一定是棱台7.甲:“用一个平面去截一个长方体, 截面一定是长方形”;乙:“有一个面是多边形,其余各面都是三角形的几何体是棱锥”.这两种说法()A.甲正确乙不正确 B.甲不正确乙正确 C.甲正确乙正确 D.不正确乙不正确8.圆锥的侧面展开图是()A.三角形 B.长方形 C. D.形9.将直角三角形绕它的一边旋转一周, 形成的几何体一定是()A.圆锥 B.圆柱 C.圆台 D.上均不正确10.下列说法中正确的是()A.半圆可以分割成若干个扇形B.面是八边形的棱柱共有8个面C.直角梯形绕它的一条腰旋转一周形成的几何体是圆台D.截面是圆的几何体,不是圆柱,就是圆锥11.用一个平面去截一个几何体,得到的截面是四边形,这个几何体可能是()A.圆锥 B.圆柱 C.球体 D.以上都可能12.A、B为球面上相异两点, 则通过A、B可作球的大圆有()A.一个 B.无穷多个 C.零个 D.一个或无穷多个13.一个正方体内接于一个球,过球心作一个截面,下面的几个截面图中,必定错误的是()A. B. C. D.14.用一个平行于棱锥底面的平面去截棱锥, 得到两个几何体, 一个是________,另一个是.15. 如右图, 四面体P-ABC中, PA=PB=PC=2, ∠APB=∠BPC=∠APC=300. 一只蚂蚁从A点出发沿四面体的表面绕一周, 再回到A点, 问蚂蚁经过的最短路程是_________.16.如右图将直角梯形ABCD绕AB边所在的直线旋转一周,由此形成的几何体是由简单几何体是___________________.17.边长为5cm的正方形EFGH是圆柱的轴截面, 则从E点沿圆柱的侧面到相对顶点G的最短距离是_______________.18.只有3个面的几何体能构成多面体吗?4面体的棱台吗?棱台至少几个面.19.棱柱的特点是:(1)两个底面是全等的多边形,(2)多边形的对应边互相平行,(3)棱柱的侧面都是平行四边形.反过来,若一个几何体,具备上面三条,能构成棱柱吗?或者说,上面三条能作为棱柱的定义吗?20.如下图几何体是由哪些简单几何体构成的?21.(1)圆柱、圆锥、圆台可以看成以矩形的一边、直角三角形的一直角边、直角梯形中垂直于底边的腰所在直线为旋转轴,将矩形、直角三角形、直角梯形旋转一周而形成的曲面围成的几何体,三个图形之间的什么联系?(2)一个含有300的直角三角板绕其一条边旋转一周所得几何体是圆锥吗?如果以底边上的高所在直线为轴旋转1800得到什么几何体?旋转3600又如何?第1章立体几何初步§1.1.2中心投影与平行投影以及直观图的画法重难点:理解中心投影、平行投影的概念,掌握三视图的画法规则及能画空间几何体的三视图并能根据三视图判断空间几何体的形状和结构,了解球、棱柱、棱锥、台的表面积和体积公式的推理过程.考纲要求:①能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图;②会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式;③会画某些建筑物的三视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求);④了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).经典例题:右图是一个多面体的展开图,每个面内都标注了字母,请根据要求回答问题:(1)这个几何体是什么体?(2)如果面A在几何体的底部,那么哪一个面会在上面?(3)如果面F在前面,从左面看是面B,那么哪一个面会在上面?(4)从右边看是面C,面D在后面,那么哪一个面会在上面?当堂练习:1.下列投影是中心投影的是( )A . 三视图B . 人的视觉C . 斜二测画法D .. 人在中午太阳光下的投影2.下列投影是平行投影的是( )A . 俯视图B . 路灯底下一个变长的身影C . 将书法家的真迹用电灯光投影到墙壁上D . 以一只白炽灯为光源的皮影3.若一个几何体的主视图和左视图都是等腰三角形,俯视图是圆,则该几何体可能是( )A . 圆柱 B. 三棱柱 C. 圆锥 D.球体4.下列几何体中,主视图、左视图、俯视图相同的几何体是( )A . 球和圆柱B . 圆柱和圆锥C . 正方体的圆柱D . 球和正方体5.一个含的圆柱、圆锥、圆台和球的简单组合体的三视图中,一定含有( )A . 四边形B . 三角形C . 圆D .椭圆6.如果用表示一个立方体,用表示两个立方体叠加,用表示三个立方体叠加,那么右图中有7个立方体叠成的几何体,从主视图是( )A .B .C .D .7.在原来的图形中,两条线段平行且相等,则在直观图中对应的两条线段( )A .平行且相等B . 平行但不相等C .. 相等但不平行D . 既不平行也不相等8.下列说法中正确的是( )A . 互相垂直的两条直线的直观图仍然是互相垂直的两条直线B . 梯形的直观图可能是平行四边形C . 矩形的直观图可能是梯形D . 正方形的直观图可能是平行四边形9.如右图中“斜二测”直观图所示的平面图形是( )A . 直角梯形B .等腰梯形C . 不可能是梯形D .平行四边形10.如右图所示的直观图,其平面图形的面积为( )A . 3B . 223 C . 6 D .. 3211.若一个三角形,采用斜二测画法作出其直观图,若其直观图的面积是原三角形面积的( )A .21倍 B .2倍 C .22倍 D .2倍12.如右图,直观图所表示的平面图形是( )A . 正三角形B . 锐角三角形C . 钝角三角形D . 直角三角形13.如右图,用斜二测画法作∆ABC 水平放置的直观图形得∆A1B1C1,其中A1B1=B1C1,A1D1是B1C1边上的中线,由图形可知在∆ABC 中,下列四个结论中正确的是( )A .AB=BC=ACB . AD ⊥BC C . AC>AD>AB>BCD . AC>AD>AB=BC14.主视图与左视图的高要保持______,主视图与俯视图的长应_________,俯视图与左视图的宽度应_________.15.如果一个几何体的视图之一是三角形, 那么这个几何体可能有___________________(写出两个几何体即可).16.一个水平放置的正方形的面积是4, 按斜二测画法所得的直观图是一个四边形, 这个四边形的面积是________________.17.斜二测画法所得的直观图的多边形面积为a, 那么原图多边形面积是_____________.18.如图是由小立方块描成几何体同的俯视图,小正方形中的数字表示在该位置的小立方块的个数,请画出它的主视图和左视图.19.画出如图的三视图(单位:mm).20.已知斜二测画法得得的直观图 A/B/C/是正三角形,画出原三角形的图形.21.如下图, 如果把直角坐标系放在水平平面内, 用斜二测画法, 如何可以找到a的点P在直观图中的位置P/ ?坐标为(),b第1章 立体几何初步§1.2点、线、面之间的位置关系考纲要求:①理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.◆公理1:如果一条直线上的两点在一个平面内,这条直线上所有的点在此平面内. ◆公理2:过不在同一条直线上的三点,有且只有一个平面.◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.◆公理4:平行于同一条直线的两条直线互相平行.◆定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.②以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定.理解以下判定定理.◆如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行. ◆如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行. ◆如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直. ◆如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.理解以下性质定理,并能够证明.◆如果一条直线与一个平面平行,经过该直线的任一个平面与此平面相交,那么这条直线就和交线平行.◆如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.◆垂直于同一个平面的两条直线平行.◆如果两个平面垂直,那么一个平面内垂直于它们交线的直线于另一个平面垂直. ③能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.§1.2.1 平面的基本性质重难点:理解平面的概念及表示,掌握平面的基本性质并注意他们的条件、结论、作用、图形语言及符号语言.经典例题: 如图,设E ,F ,G ,H ,P ,Q 分别是正方体所在棱上的中点,求证:E ,F ,G ,H ,P ,Q 共面.当堂练习:1.下面给出四个命题: ①一个平面长4m, 宽2m; ②2个平面重叠在一起比一个平面厚; ③一个平面的面积是25m2; ④一条直线的长度比一个平面的长度大, 其中正确命题的个数是( )A . 0B .1C .2D .32.若点N 在直线a 上,直线a 又在平面α内,则点N ,直线a 与平面α之间的关系可记作( )A .N a α∈∈B .N a α∈⊂C .N a α⊂⊂D .N a α⊂∈3. 空间不共线的四点,可以确定平面的个数为( )A .0B .1C .1或4D . 无法确定4. 空间 四点A ,B ,C ,D 共面但不共线,则下面结论成立的是( )A . 四点中必有三点共线B . 四点中必有三点不共线C .AB ,BC ,CD ,DA 四条直线中总有两条平行 D . 直线AB 与CD 必相交5. 空间不重合的三个平面可以把空间分成( )A . 4或6或7个部分B . 4或6或7或8个部分C . 4或7或8个部分D . 6或7或8个部分6.下列说法正确的是( )①一条直线上有一个点在平面内, 则这条直线上所有的点在这平面内; ②一条直线上有两点在一个平面内, 则这条直线在这个平面内; ③若线段AB α⊂, 则线段AB 延长线上的任何一点一点必在平面α内; ④一条射线上有两点在一个平面内, 则这条射线上所有的点都在这个平面内.A . ①②③B . ②③④C . ③④D . ②③7.空间三条直线交于同一点,它们确定平面的个数为n ,则n 的可能取值为( )A . 1B .1或3C .1或2或3D .1或 48.如果,,,,B b A a b a =⋂=⋂⊂⊂ αα那么下列关系成立的是( )A .α⊂B .α∉C .A =⋂αD .B =⋂α9.空间中交于一点的四条直线最多可确定平面的个数为( )A .7个B .6个C . 5个D .4个10.两个平面重合的条件是它们的公共部分有( )A .两个公共点B .三个公共点C .四个公共点D .两条平行直线11.一条直线和直线外的三点所能确定的平面的个数是( )A . 1或3个B .1或4个C .1个、3个或4个D . 1个、2个或4个12.三条直线两两相交,可以确定平面的个数是( )A .1个B .1个或2个C .1个或3个D .3个13.空间四边形ABCD 各边AB 、BC 、CD 、DA 上分别取E 、F 、G 、H 四点,如果EF ⋂GH=P ,则点P ( )A .一定在直线BD 上B .一定在直线AC 上 C .在直线AC 或BD 上 D .不在直线AC 上也不在直线BD 上14.设平面α与平面β交于直线 , 直线α⊂a , 直线β⊂b ,M b a =⋂, 则M_______ .15.直线AB 、AD α⊂,直线CB 、CD β⊂,点E ∈AB ,点F ∈BC ,点G ∈CD ,点H ∈DA ,若直线HE ⋂直线FG=M ,则点M 必在直线___________上.16.如图,在棱长为a 的正方体ABCD-A1B1C1D1中,M 、N 分别为AA1、C1D1的中点,过D 、M 、N 三点的平面与直线A1B1交于点P ,则线段PB1的长为_______________.17.如图, 正方体ABCD-A1B1C1D1中,对角线BD1与过A1、D 、C1的平面交于点M ,则BM :MD1=________________. (16题) (17题)18.如图,E 、F 、G 、H 分别是空间四边形AB 、BC 、CD 、DA 上的点,且EH 与FG 交于点O .求证:B 、D 、O 三点共线.19.证明梯形是平面图形.20.已知: 直线c b a ||||, 且直线 与a, b, c 都相交. 求证: 直线 ,,,c b a 共面.21.在正方体ABCD-A1B1C1D1中, 直线A1C 交平面ABC1D1于点M , 试作出点M 的位置.第1章 立体几何初步§1.2.2 空间两直线的位置关系重难点:理解异面直线的概念,能计算异面直线所成角;掌握公理4及等角定理. 经典例题:如图,直线a,b 是异面直线,A 、B 、C 为直线a 上三点,D 、E 、F 是直线b 上三点,A ' 、B ' 、C '、D ' 、E '分别为AD 、DB 、BE 、EC 、CF 求证:(1)'''A B C ∠='''C D E ∠;(2)A ' 、B ' 、C '、D ' 、E '共面.当堂练习:1.若a ,b 是异面直线, b, c 是异面直线, 则a ,c 的位置关系是( )A . 相交、平行或异面B . 相交或平行C . 异面D . 平行或异面2.分别和两条异面直线都相交的两条直线的位置关系是( )A .异面B . 相交C .平行D .异面或相交3.在正方体ABCD-A1B1C1D1中,与对角线AC1异面的棱有( )A .3条B . 4条C . 6条D . 8条4.已知a ,b 是异面直线,直线c 平行于直线a ,那么c 与b ( )A . 一定是异面直线B .一定是相交直线C . 不可能是平行直线D .不可能是相交直线5.下面命题中,正确结论有( )如果一个角的两边与另一个角的两边分别平行,那么这两个角相等;如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;如果一个角的两边和另一个角的两边分别垂直,那么这两个角相等或互补;④ 如果两条直线同平行于第三条直线,那么这两条直线互相平行.A . 1个B . 2个C . 3个D .4个6.下列命题中正确命题的个数是( )两条直线和第三条直线等角,则这两条直线平行;平行移动两条异面直线中的任何一条,它们所成的角不变;过空间四边形ABCD 的顶点A 引CD 的平行线段AE, 则∠BAE 是异面直线AB 与CD 所成的角;④ 四边相等, 且四个角也相等的四边形是正方形.A . 0B . 1C . 2D . 37.已知异面直线a,b 分别在,αβ内,面αβ=c ,则直线c ( )A .一定与a,b 中的两条都相交B .至少与a,b 中的一条都相交C .至多与a,b 中的一条都相交D .至少与a,b 中的一条都平行8.两条异面直线所成的角指的是( )①两条相交直线所成的角; ②过空间中任一点与两条异面直线分别平行的两条相交直线所成的锐角或直角; ③过其中一条上的一点作与另一条平行的直线, 这两条相交直线所成的锐角或直角; ④ 两条直线既不平行又不相交, 无法成角.A .①②B .②③C .③④D .①④9.空间四边形ABCD 中, AB 、BC 、CD 的中点分别是P 、Q 、R , 且PQ=2 , QR=5, PR=3 ,那么异面直线AC 和BD 所成的角是( )A . 900B . 600C . 450D .30010.直线a 与直线b 、c 所成的角都相等, 则b 、c 的位置关系是( )A .平行B .相交C . 异面D . 以上都可能11.空间四边形ABCD 的两条对角线AC 和BD 的长分别为6和4,它们所成的角为900,则四边形两组对边中点的距离等于( )A .B . 5C . 5D . 以上都不对12.如图,ABCD —A1B1C1D1是正方体,E ,F ,G ,H ,M ,N 分别是所在棱的中点, 则下列结论正确的是( ) A .GH 和MN 是平行直线;GH 和EF 是相交直线 B .GH 和MN 是平行直线;MN 和EF 是相交直线C .GH 和MN 是相交直线;GH 和EF 是异面直线D .GH 和EF 是异面直线;MN 和EF 也是异面直线13.点A 是等边三角形BCD 所在平面外一点, AB=AC=AD=BC=a, E 、F 分别在AB 、CD 上,且)0(>==λλFD CF EB AE ,设λλβαλ+=)(f ,λα表示EF 与AC 所成的角,λβ表示EF与BD 所成的角,则( )A 1)(λf 在),0(+∞上是增函数B . )(λf 在),0(+∞上是增函数C . )(λf 在)1,0(上是增函数,在),1(+∞上是减函数D . )(λf 在),0(+∞上是常数14.直线a 、b 不在平面α内,a 、b 在平面α内的射影是两条平行直线,则a 、b 的位置关系是_______________________.15.正方体ABCD-A1B1C1D1中,E 、F 、G 、H 分别为AA1、CC1、C1D1、D1A1的中点,则四边形EFGH 的形状是___________________.16.空间四边形ABCD 中, AD=1 , BC=3, BD=2, AC=2, 且AD BC ⊥, 则异面直线AC 和BD 所成的角为__________________.17.已知a ,b 是一对异面直线,且a ,b 成700角, 则在过P 点的直线中与a ,b 所成的角都为700的直线有____________条.18.已知AC 的长为定值,D ∉平面ABC ,点M 、N 分别是∆DAB 和∆DBC 的重心. 求证: 无论B 、D 如何变换位置, 线段MN 的长必为定值.19.M 、N 分别是正方体ABCD-A1B1C1D1的棱BB1、B1C1的中点,(1)求MN 与AD 所成的角;(2)求MN 与CD 1所成的角.20.如图,已知空间四边形ABCD 的对角线AC=14cm,BD=14cm ,M ,N 分别是AB ,CD的中点,MN=73cm ,求异面直线AC 与BD 所成的角.21.在共点O 的三条不共面直线a 、b 、c 上,在点O 的同侧分别取点A 的A1、B 的B1、C 和C1,使得OC OC OA OA OB OB OA OA 1111,==.求证: ABC ∆∽∆A1B1C1 .第1章 立体几何初步§1.2.3 直线与平面的位置关系重难点:了解直线与平面的位置关系,在判定和证明直线与平面的位置关系时,除了能熟练运用判定定理和性质定理外,还要充分利用定义;线面关系的判定和证明,要注意线线关系、线面关系的转化.经典例题:直角∆ABC 所在平面外一点S ,且⑴求证:点S与斜边中点D的连线SD⊥面ABC;⑵若直角边BA=BC,求证:BD⊥面SAC.当堂练习:1.下面命题正确的是()A.若直线与平面不相交,则这条直线与这个平面没有公共点B.若直线与平面不相交,则这条直线与这个平面内的任何一条直线没有公共点 C.若一条直线与一个平面有公共点,直线与这相交D.直线在平面外,则直线与平面相交或平行2.直线b是平面α外的一条直线,下列条件中可得出b||α的是()A.b与α内的一条直线不相交B.b与α内的两条直线不相交C.b与α内的无数条直线不相交D.b与α内的所有直线不相交3.下列命题正确的个数是()①若直线 上有无数个点不在平面α内, 则α|| ; ②若直线 与平面α平行, 则 与平面α内有任意一条直线都平行; ③如果两条平行直线中的一条直线与一个平面平行, 那么另一条直线也与这个平面平行; ④若直线 与平面α平行, 则 与平面α内的任意一条直线都没有公共点.A.0个 B. 1个 C. 2个 D.3个4.下无命题中正确的是()①过一点, 一定存在和两条异面直线都平行的平面; ②垂直于同一条直线的一条直线和一个平面平行; ③若两条直线没有公共点, 则过其中一条直线一定有一个平面与另一条直线平行.A.① B.③ C.①③ D.①②③5.直线a,b是异面直线,A是不在a,b上的点,则下列结论成立的是()A.过A有且只有一个平面平行于a,b B.过A至少有一个平面平行于a,bC.过A有无数个平面平行于a,b D.过A且平行于a,b的平面可能不存在6.直线a,b是异面直线,则下列结论成立的是()A.过不在a,b上的任意一点,可作一个平面与a,b平行B.过不在a,b上的任意一点,可作一条直线与a,b相交C.过不在a,b上的任意一点,可作一条直线与a,b都平行D.过a可以并且只可以作一个平面与b平行7.下面条件中, 能判定直线α平面的一个是()⊥A. 与平面α内的两条直线垂直 B. 与平面α内的无数条直线垂直 C. 与平面α内的某一条直线垂直 D. 与平面α内的任意一条直线垂直8.空间四边形ABCD中, AC=AD, BC=BD, 则AB与CD所成的角为()A. 300 B. 450 C. 600 D. 900 9.如果直线 与平面α不垂直, 那么在平面α内()A.不存在与 垂直的直线 B.存在一条与 垂直的直线C.存在无数条与 垂直的直线 D.任意一条都与 垂直M B F CND AE E M A B HC D A FE G 10.定点P 不在∆ABC 所在平面内, 过P 作平面α, 使∆ABC 的三个顶点到平面α的距离相等, 这样的平面共有( )A . 1个B . 2个C . 3个D . 4个 11.∆ABC 所在平面外一点P, 分别连结PA 、PB 、PC, 则这四个三角形中直角三角形最多有( )A . 4个B . 3个C . 2个D . 1个12.下列四个命题:①过平面外一点存在无数条直线和这个平面垂直;②若一条直线和平面内的无数多条直线垂直,则这条直线和平面垂直;③仅当一条直线和平面内两条相交直线垂直且过交点时这条直线才和平面垂直;④若一条直线平行于一个平面,则和这条直线垂直的直线必和这个平面垂直. 其中正确的个数是( )A .0B . 1C . 2D . 313.如图,在正方形SG1G2G3中,E ,F 分别是G1G2,G2G3的中点,D 是EF 的中点,现沿SE ,SF 及EF 把这个正方形折成一个几何体,使G1,G2,G3三点重合于点G ,这样,下列五个结论:(1)SG ⊥平面EFG ;(2)SD ⊥平面EFG ;(3)GF ⊥平面SEF ;(4)EF ⊥平面GSD ;(5)GD ⊥平面SEF. 正确的是( )A .(1)和(3)B .(2)和(5)C .(1)和(4)D .(2)和(4)14.若直线a 与平面α内的无数条直线平行, 则a 与α的关系为_____________. 15.在空间四边形ABCD 中, AD N AB M ∈∈,,若AMANMB ND =, 则MN 与平面BDC 的位置关系是__________________.16.∆ABC 的三个顶点A 、B 、C 到平面α的距离分别为2cm 、3cm 、4cm ,且它们在平面α的同一侧, 则∆ABC 的重心到平面α的距离为________________.17.若空间一点P 到两两垂直的射线OA 、OB 、OC 的距离分别为a 、b 、c ,则OP 的值为______________.18.已知四面体ABCD 中,M ,N 分别是ACD ABC ∆∆和的重心, 求证:(1)BD||平面CMN ;(2)MN||平面ABD .19.如图,空间四边形ABCD 被一平面所截,截面EFGH 是一个矩形,(1)求证:CD||平面EFGH ; (2)求异面直线AB ,CD 所成的角.20.M ,N ,P 分别为空间四边形ABCD 的边AB ,BC ,CD 上的点,且AM :MB=CN :NB=CP :PD.求证:(1)AC||平面MNP ,BD||平面MNP ; (2)平面MNP 与平面ACD 的交线||AC . D S G2G 3G 1F E G21. 如图O 是正方体下底面ABCD 中心,B1H ⊥D1O ,H 为垂足. 求证:B1H ⊥平面AD1C .第1章 立体几何初步§1.2.4 平面与平面的位置关系重难点:了解直线与平面的位置关系,在判定和证明直线与平面的位置关系时,除了能熟练运用判定定理和性质定理外,还要充分利用定义;线面关系的判定和证明,要注意线线关系、线面关系的转化.经典例题:如图,在四面体S-ABC 中, SA ⊥底面ABC,AB ⊥BC .DE 垂直平分SC, 且分别交AC 、SC 于D 、E. 又SA =AB,SB =BC.求以BD 为棱, 以BDE 与BDC 为面的二面角的度数.当堂练习:1.下列命题中正确的命题是( )①平行于同一直线的两平面平行; ②平行于同一平面的两平面平行;③垂直于同一直线的两平面平行; ④与同一直线成等角的两平面平行.A .①和②B .②和③C .③和④D .②和③和④2. 设直线 ,m,平面,αβ,下列条件能得出||αβ的是( )A .,m αα⊂⊂,且||,||m ββB . ,m αα⊂⊂,且||mC . ,m αβ⊥⊥,且||mD . ||,||m αβ,且||m3. 命题:①与三角形两边平行的平面平行于是三角形的第三边; ②与三角形两边垂直的直线垂直于第三边;③与三角形三顶点等距离的平面平行这三角形所在平面. 其中假命题的个数为( )A .0B .1C .2D .34.已知a,b 是异面直线,且a ⊥平面α,b ⊥平面β,则α与β的关系是( )A . 相交B . 重合C . 平行D . 不能确定5.下列四个命题:①分别在两个平面内的两直线平行;②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一平面;③如果一个平面内的两条直线平行于另一个平面,则这两个平面平行; ④如果一个平面内的任何一条直线都平行另一个平面,则这两个平面平行. 其中正确命题是( )A . ①、②B . ②、④C . ①、③D . ②、③A 1A CA 16. 设平面βα||,A βα∈∈B ,,C 是AB 的中点,当A 、B 分别在βα,内运动时,那么所有的动点C ( )A . 不共面B .当且仅当A 、B 分别在两条直线上移动时才共面C . 当且仅当A 、B 分别在两条给定的异面直线上移动时才共面D . 不论A 、B 如何移动,都共面7.,αβ是两个相交平面,a ,b αβ⊂⊂,a 与b 之间的距离为d1,α与β之间的距离为d2,则( ) A .d1=d2 B .d1>d2 C .d1<d2D .d1≥d28.下列命题正确的是( )A . 过平面外一点作与这个平面垂直的平面是唯一的B . 过直线外一点作这条直线的垂线是唯一的C . 过平面外的一条斜线作与这个平面垂直的平面是唯一的D . 过直线外一点作与这条直线平行的平面是唯一的9.对于直线m 、n 和平面α、β, 下列能判断α⊥β的一个条件是( )A .,||,||m n m n αβ⊥B .,,m n m n αβα⊥⋂=⊂C .||,,m n n m βα⊥⊂D .||,,m n m n αβ⊥⊥10.已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题: ①m l ⊥⇒βα//②m l //⇒⊥βα③βα⊥⇒m l //④βα//⇒⊥m l 其中正确的两个命题是( )A .①与②B .③与④C .②与④D .①与③11.设αβ--是直二面角,直线,,a b αβ⊂⊂且a 不与 垂直,b 不与 垂直,则( )A . a 与b 可能垂直,但不可能平行B . a 与b 可能垂直也可能平行C . a 与b 不可能垂直,但可能平行D . a 与b 不可能垂直,也不可能平行12.如果直线 、m 与平面α、β、γ满足: =β∩γ, //α,m ⊂α和m ⊥γ那么必有( )A .α⊥γ且 ⊥mB .α⊥γ且m ∥βC . m ∥β且 ⊥mD .α∥β且α⊥γ13.如图,正方体ABCD —A1B1C1D1中,点P 在侧面BCC1B1上运动,并且总是保持AP ⊥BD1,则动点P 的轨迹是( A .线段B1C B .线段BC1 C .BB1中点与CC1中点连成的线段 D .BC 中点与B1C1中点连成的线段 14.平面βα平面||, ∆ABC 和∆A/B/C/分别在平面α和平面β内, 若对应顶点的连线共点,则这两个三角形_______________.15.夹在两个平行平面间的两条线段AB 、CD 交于点O ,已知AO=4,BO=2,CD=9,则线段CO 、DO 的长分别为_________________.16.把直角三角形ABC 沿斜边上的高CD 折成直二面角A-CD-B 后, 互相垂直的平面有______对.17.γβα,,是两两垂直的三个平面, 它们交于点O, 空间一点P 到平面,,αβγ的距离分别是2cm , 3cm , 6cm , 则点P 到点O 的距离为__________________.18.已知a 和b 是两条异面直线,求证过a 而平行于b 的平面α必与过b 而平行于a 的平面β平行.。
2011年高考数学解答题训练-18
17、已知三点A ,B ,C 的坐标分别为)3,0(),0,3(),,4)(sin ,(cos C B Z k k A ∈≠πααα,且1-=⋅(1)求ααcos sin +的值;(2)求αααtan 12cos 2sin 1+-+的值。
18、如图,在矩形ABCD 中,2,1,AB AD E ==是CD 的中点,以AE 为折痕将DAE ∆向上折起,使D 为D ',且平面D AE '⊥平面ABCE . (Ⅰ)求证:AD EB '⊥;(Ⅱ)求直线AC 与平面ABD '所成角的正弦值.19、已知22()()2x af x x R x -=∈+在区间[1,1]-上是增函数 (I )求实数a 的取值范围;(II )记实数a 的取值范围为集合A ,且设关于x 的方程1()f x x=的两个非零实根为12,x x 。
①求12||x x -的最大值;②试问:是否存在实数m ,使得不等式2121||m tm x x ++>-对a A ∀∈及[1,1]t ∈-恒成立?若存在,求m 的取值范围;若不存在,请说明理由.18题ABCD 'E20、有A ,B ,C ,D 四个城市,它们都有一个著名的旅游点,依此记为a ,b ,c ,d.把ABCD 和a ,b ,c ,d 分别写成左、右两列,现在一名旅游爱好者随机用4条线把左右两边的字母全部连接起来,构成“一一对应”,已知每连对一个得2分,连错得0分; (Ⅰ)求该爱好者得分的分布列; (Ⅱ)求该爱好者得分的数期望.21、已知定义在R 上的单调函数y=f (x ),当x <0时,f (x )>1,且对任意的实数x 、y ∈R ,有f (x +y)=f (x )f (y ),(Ⅰ)求f (0),并写出适合条件的函数f (x )的一个解析式; (Ⅱ)数列{a n }满足)()2(1)()0(*11N n a f a f f a n n ∈--==+且,①求通项公式a n 的表达式;②令1322121111,,)21(++++=+++==n n n n n an a a a a a a T b b b S b n , 试比较S n 与34T n 的大小,并加以证明.22、设椭圆C :)0(12222>>=+b a by a x 的左焦点为F ,上顶点为A ,过点A 与AF 垂直的直线分别交椭圆C 与x 轴正半轴于点P 、Q ,且8AP=PQ 5⑴求椭圆C 的离心率;⑵若过A 、Q 、F 三点的圆恰好与直线l :30x +=相切,求椭圆C 的方程.17、解:(1)).sin 3,cos (),sin ,cos 3(αααα--=--=AC AB.32cos sin :1)3(sin sin cos )3(cos ,1=+-=-+-∴-=⋅αααααα整理得 (2)原式=,cos sin 2cos sin 1cos sin 2sin 22ααααααα=++ 95cos sin 2,94cos sin 2132cos sin -=∴=+=+αααααα平方得由故原式=95-18、解(Ⅰ)在Rt BCE ∆中,BE =在Rt AD E '∆中,AE =∵22222AB BE AE ==+,∴AE BE ⊥.---------------------------2分∵平面AED '⊥平面ABCE ,且交线为AE , ∴BE ⊥平面AED '.∵AD '⊂平面AED ',∴A D '⊥.------------------------------------5分(Ⅱ)设AC 与BE 相交于点F ,由(Ⅰ)知AD BE '⊥,∵AD ED ''⊥,∴AD '⊥平面EBD ',∵AD '⊂平面AED ',∴平面ABD '⊥平面EBD ',且交线为BD ',---------7分 如图19-2,作FG BD '⊥,垂足为G ,则FG ⊥平面ABD ',连结AG ,则FAG ∠是直线AC 与平面ABD '所成的角.-------------------9分A BCD 'EF G 19-2由平面几何的知识可知12EF EC FB AB ==,∴133EF EB ==.--------------11分 在Rt AEF ∆中,AF ==在Rt EBD '∆中,FG D E FB D B '=',可求得9FG =.∴sin FG FAG AF ∠=== ------------------------------------------------------------------------13分19、解:(1)2222(2)()(2)x ax f x x ---'=+ ……………………………………………1分 ()f x 在[1,1]-上是增函数()0f x '∴≥即220x ax --≤,在[1,1]x ∈-恒成立 …………① …………3分设2()2x x ax ϕ=--,则由①得 (1)120(1)120a a ϕϕ=--≤⎧⎨-=+-≤⎩解得11a -≤≤所以,a 的取值范围为[1,1].-………………………………………………………6分(2)由(1)可知{|11}A a a =-≤≤由1()f x x =即2212x a x x -=+得220x ax --= 280a ∆=+> 12,x x ∴是方程220x ax --=的两个非零实根12x x a ∴+=,122x x =-,又由(1)11a -≤≤12||3x x ∴-=≤……………………………9分于是要使2121||m tm x x ++≥-对a A ∀∈及[1,1]t ∈-恒成立即213m tm ++>即220m tm +-≥对[1,1]t ∀∈-恒成立 ………②………11分 设 22()2(2)g t m tm mt m =+-=+-,则由②得22(1)20(1)20g m m g m m ⎧-=-->⎪⎨=+->⎪⎩ 解得2m >或2m <- 故存在实数(,2)(2,)m ∈-∞-+∞ 满足题设条件…………………………14分20、(I )解:设答对题的个数为y ,得分为ξ,y=0,1,2,4∴ξ=0,2,4,8…………………………………………………………1分 2499)0(44===A P ξ……………………………………………………3分 312481)2(4424==⨯==A C P ξ…………………………………………5分412461)4(4424==⨯==A C P ξ…………………………………………7分 2411)8(44===A P ξ………………………………………………9分(II )E ξ=0×24+2×3+4×4+8×24=2答:该人得分的期望为2分………………………………12分 21、解:(I )由题意,令y=0,x<0,得f(x)[1-f(0)]=0,∵x<0时,f(x)>1.∴1-f(0)=0. f(0)=1.…………………………………………………………2分 适合题意的f(x)的一个解析式为f(x)=(21)x.………………………………4分 (II )①由递推关系知f(a n+1)·f(-2-a n )=1,即f(a n+1-2-a n )=f(0). ∵f(x)的R 上单调,∴a n+1-a n =2,(n ∈N *),…………………………6分 又a 1=1,故a n =2n -1.……………………………………………………7分②b n =12)21()21(-=n a n ,S n =b 1+b 2+…+b n =21+(21)3+…+(21)2n -1 n n n n n n n n nn n n n n n T S n n n n n a a a a a a T 4)12()12(423)41121(32)1211(23)411(32349)1211(21)1211215131311(21)12)(12(1531311111).411(23)21(1])21(1[211322122⋅++-⋅=-+=+---==+-=+--++-+-=+-++⨯+⨯=+++=-=--+分欲比较S n 与n T 34的大小,只需比较4n 与2n+1的大小.由=1,2,3代入可知4n >2n+1,猜想4n >2n+1.……………………10分 下用数学归纳法证明(i )当n=1时,41>2×1+1成立(ii )假设当n=k 时命题成立,即4k >2k+1当n=k+1时,4k+1=4×4k >4(2k+1)=8k+4=2(k+1)+1+6k+1>2(k+1)+1, 说明当n=k+1时命题也成立. 由(i )(ii )可知,4n >2n+1 对于n ∈N *都成立.故S n >n T 34.………………………………………………………………12分 注:证明4n >2n+1,除用数学归纳法证明以外,还可用其它方法证明,如:4n =(1+3)n =1+.1231333221+>+≥⋅++⋅+⋅n n C C C n nn n n22、解⑴设Q (x 0,0),由F (-c ,0)A (0,b )知),(),,(0b x b c -==cb x b cx AQ FA 2020,0,==-∴⊥ 设PQ AP y x P 58),,(11=由,得21185,1313b x y bc ==…2分 因为点P 在椭圆上,所以1)135()138(22222=+b b a c b …………4分 整理得2b 2=3a c ,即2(a 2-c 2)=3a c ,22320e e +-=,故椭圆的离心率e =21………6分 ⑵由⑴知22323,2b b ac a c ==得, 11,22c c a a ==由得于是F (-21a ,0) Q )0,23(a ,△AQF 的外接圆圆心为(21a ,0),半径r=21|FQ|=a ……………………11分所以a a =+2|321|,解得a =2,∴c=1,b=3,所求椭圆方程为13422=+y x ……14分。
新疆2011年高考备考数学基础知识训练(1)
新疆2011年高考备考数学基础知识训练(1)备考2011高考数学基础知识训练(1)班级______ 姓名_________ 学号_______ 得分_______一、填空题(每题5分,共70分)1.函数3-=x y 的定义域为___ .2.已知全集U R =,集合{1,0,1}M =-,{}2|0N x xx =+=,则=⋂)(N C M U __ .3.若1()21xf x a =+-是奇函数,则a =___ .4. 已知122,xx -+=且1x >,则1x x --的值为 .5.幂函数a x y =,当a 取不同的正数时,在区间[0,1]上它们的图像是一族美丽的曲线(如右图).设点 A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数αx y =,βx y =的图像三等分,即有NA MN BM ==.那么βα⋅=___ .N M y B Ax11.集合}2log |{21>=x x A ,),(+∞=a B ,若A B A ≠⋂时a 的取值范围是(,)c +∞,则c =___ .12.已知结论:“在正三角形ABC 中,若D 是BC的中点,G 是三角形ABC 重心,则AG GD =2 ”.若把该结论推广到空间,则有结论:“在正四面体ABCD 中,若BCD ∆ 的中心为M ,四面体内部一点O 到四面体各面的距离都相等,则AOOM =___ .[来源:学科网]13.若函数(),()f x g x 分别是R 上的奇函数、偶函数,且满足()()x f x g x e -=,则有(),()f x g x 的解析式分别为 .14.若1||x a x -+≥12对一切x >0恒成立,则a 的取值范围是___ .二、解答题(共90分,写出详细的解题步骤)15.设非空集合A={x|-3≤x ≤a},B={y|y=3x+10,x ∈A},C={z|z=5-x,x ∈A},且B ∩C=C ,求a 的取值范围.[来源:学|科|网][来源:Z|xx|]16. 已知函数1()22x x f x =-.(1)若()2f x =,求x 的值;(2)判断函数()f x 的奇偶性,并证明你的结论.[来源:学*科*网Z*X*X*K]17. 讨论函数2()(0)1ax f x a x =≠-在区间(1,1)-上的单调性.18. 即将开工的上海与周边城市的城际列车铁路线将大大缓解交通的压力,加速城市之间的流通;根据测算,如果一列火车每次拖4节车厢,每天能来回16次;如果每次拖7节车厢,则每天能来回10次;每天来回次数是每次拖挂车厢个数的一次函数,每节车厢一次能载客110人,试问每次应拖挂多少节车厢才能使每天营运人数最多?并求出每天最多的营运人数.(注:营运人数指火车运送的人数) .19.已知二次函数()2f x ax bx c =++.(1)若()10f -=,试判断函数()f x 零点个数; (2)若对任意12,,x x R ∈且12x x <,()()12f x f x ≠,试证明存在()012,x x x ∈, 使()()()01212f x f x f x =+⎡⎤⎣⎦成立.[来源:Z&xx&][来源:]20. 已知f (x )是定义域为(0,+∞)的函数,当x ∈(0,1)时f (x )<0.现针对任意..正实数x 、y ,给出下列四个等式:① f (x y)=f (x ) f (y) ;② f (x y)=f (x )+f (y) ;③ f (x +y)=f (x )+f (y) ; ④ f (x +y)=f (x ) f (y) .请选择其中的一个..等式作为条件,使得f (x )在(0,+∞)上为增函数;并证明你的结论. 解:你所选择的等式代号是 . [来源:学科网]证明:参考答案:1.}3|{≥x x 2.}1{3.12 4. 解:由122x x -+=2228xx -++=,则221224,()4x x x x ---+=∴-=, 又11, 2.x x x ->∴-= 答案:2.5.16.12ln -7.8-≥a 8. 解:[(1)][(2)][(5)](1)(4)0.f f f f f f f f -=====答案:0 .9.)2,23( 10.122511.012.313.解:由已知()()xf xg x e -=,用x -代换x 得: ()(),x f x g x e ----=即()()x f x g x e -+=-,解得:2)(,2)(xx x x e e x g e e x f +-=-=-.答案:2)(,2)(x x x x e e x g e e x f +-=-=-. 14.a ≤215.解:B={y|1≤y ≤3a+10},C={y|5-a ≤y ≤8};由已知B ∩C=C ,得C⊆B ,[来源:Z#xx#]∴518310a a -≥⎧⎨≤+⎩ ,解得243a -≤≤; 又非空集合A={x|-3≤x ≤a},故a ≥-3;∴243a -≤≤,即a 的取值范围为243a -≤≤.16. 解:(1)∵1()22x x f x =-,由条件知1222x x -=,即222210x x -⨯-=, 解得212x =20x >,2log (12)x =∴.(2)()f x 为奇函数,证明如下: 函数()f x 的定义域为实数集R ,对于定义域内的任一x ,都有 111()22(2)()222x x x x x x f x f x ---=-=-=--=-,∴函数()f x 为奇函数.17.解:设121212221211,()()11ax ax x x f x f x x x -<<<-=---则=12122212()(1)(1)(1)a x x x x x x -+--, 1212,(1,1),,x x x x ∈-<且221212120,10,(1)(1)0,x x x x x x ∴-<+>-->[来源:学*科*网Z*X*X*K]于是当120,()();a f x f x ><时当120,()();a f x f x <>时 故当0a >时,函数在(-1,1)上是增函数;当0a <时,函数在(-1,1)上为减函数.18.解:设这列火车每天来回次数为t 次,每次拖挂车厢n 节;则由已知可设b kn t +=.由已知得⎩⎨⎧+=+=b k b k 710416,解得⎩⎨⎧=-=242b k ;242+-=∴n t . 设每次拖挂n 节车厢每天营运人数为y 人;则)2640220(221102n n tn y +-=⨯⨯=;∴当64402640==n 时,总人数最多,为15840人. 答:每次应拖挂6节车厢,才能使每天的营运人数最多,为15840人.19.解:(1)()10,0,f a b c -=∴-+=b a c=+;2224()4()b ac a c ac a c ∆=-=+-=-,∴当a c =时,0∆=,函数()f x 有一个零点; 当a c ≠时,0∆>,函数()f x 有两个零点.(2)令()()()()1212g x f x f x f x =-+⎡⎤⎣⎦,则 ()()()()()()121112122f x f x g x f x f x f x -=-+=⎡⎤⎣⎦, ()()()()()()212212122f x f xg x f x f x f x -=-+=⎡⎤⎣⎦,()()()()()()()212121210,4g x g x f x f x f x f x ∴⋅=--<≠⎡⎤⎣⎦;()0g x ∴=在()12,x x 内必有一个实根,即存在()012,x x x ∈,使0()0g x =即()()()01212f x f x f x =+⎡⎤⎣⎦成立.20.解:选择的等式代号是 ② . 证明:在f (x y)=f (x )+f (y )中,令x =y =1,得f (1)= f (1)+ f (1),故f (1)=0.又f (1)=f(x · 1x )=f (x )+f ( 1x)=0,∴f ( 1x )=-f (x ).………(※)设0<x 1<x 2,则0<x 1x 2<1,∵x ∈(0,1)时f (x )<0,∴f ( x 1x 2 )<0;又∵f ( x 1x 2 )=f (x 1)+f ( 1x 2),由(※)知f ( 1x 2 )=-f (x 2),∴f ( x 1x 2)=f (x 1)-f (x 2)<0;∴f (x 1)<f(x 2) ,∴f (x )在(0,+∞)上为增函数.。
新疆2011年高考备考数学基础知识训练(3)
新疆2011年高考备考数学基础知识训练(3)备考2011高考数学基础知识训练(3)班级______ 姓名_________ 学号_______ 得分_______一、填空题(每题5分,共70分)1.若集合A ={}3x x ≥,B ={}x x m <满足A ∪B =R ,A ∩B =∅,则实数m = .2.命题“03,2>+-∈∀x x R x ”的否定是______________________3. 函数lg(5)ln(5)3y x x x =++-+-的定义域为 .[来源:Z,xx,]4.设函数f (x ) = xa (a >0且a ≠1),若f (2) =14,则f (–2)与f (1)的大小关系是________16. 试讨论关于x的方程kx=3|的解的个数.-|1[来源:学&科&网Z&X&X&K]17.若奇函数f(x)在定义域(-1,1)上是减函数,(1)求满足f(1-a)+f(-a)<0的a 的取值集合M;(2)对于(1)中的a,求函数F(x)=log[1a-21()x-]的定义域.a18.经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t (天)的函数,且销售量近似满足g (t )=80-2t (件),价格近似满足1()20|10|2f t t =--(元). (1)试写出该种商品的日销售额y 与时间t (0≤t ≤20)的函数表达式;(2)求该种商品的日销售额y 的最大值与最小值.19. ()y f x =是定义在R 上的奇函数,且当0x ≥时,f(x)=2x -x 2;(1) 求x<0时,f(x)的解析式;(2) 问是否存在这样的正数a,b,当[,]x a b ∈时,g(x)=f(x),且g(x)的值域为[11,]?b a若存在,求出所有的a,b 值;若不存在,请说明理由.20.已知函数()2()log 21xf x =+. (1)求证:函数()f x 在(,)-∞+∞内单调递增;(2)若()2()log 21(0)xg x x =->,且关于x 的方程()()g x m f x =+在[1,2]上有解,求m 的取值范围.参考答案:1.解:结合数轴知,当且仅当m =3时满足A ∪B =R ,A ∩B =∅.答案:3.2、 2,30x R xx ∃∈-+≤ 3. 解:由50501030x x x x +>⎧⎪->⎪⎨-≥⎪⎪-≠⎩ 得定义域为: [1,3)(3,5)⋃.[来源:学科网][来源:学科网ZXXK]答案:[1,3)(3,5)⋃.4、(2)(1)f f ->5、156、−17、 148、36π-9、 (,4)(4,1)-∞-⋃-10. 解:由对数运算法则知log 6,a x =log 5,a y =log 7,a z =又由01a <<知log ay x =在(0,)+∞上为减函数, y x z ∴>>.答案:y x z >>.11、412、(,2)(0,2)-∞-⋃13、 23- 14、1λ≤-[来源:学*科*网Z*X*X*K]15. 解:由x 2+4x =0得,x 1=0,x 2=-4;∴A={0,-4}. ∵A ∩B =B ,∴B ⊆A .(1)若B =∅,则Δ=4(a +1)2-4(a 2-1)<0,解得a <-1.(2)若0∈B ,则a 2-1=0,∴a =±1;当a =-1时,B ={0}; 当a =1时,B =A ;都符合A ∩B =B .(3)若-4∈B ,则(-4)2+2(a +1)·(-4)+a 2-1=0,∴a =1或a =7;[来源:学科网]当a =7时,B ={x |x 2+2(7+1)x +72-1=0}={-4,-12},不符合A ∩B =B .综上,实数a 的取值范围是a =1或a ≤-1.16. 解:设()|31|x f x =-,则关于x 的方程k x =-|13|的解的个数可转化为观察函数()f x 的图象与直线y k =的交点个数;而函数31,(0)()|31|13,(0)x x x x f x x ⎧-≥⎪=-=⎨-<⎪⎩,由函数3xy =的图象通过图象变换易作出函数()f x 的图象,如下图所示: [来源:学,科,网]直线y k =是与x 轴平行或重合的直线,观察上图知:当0k <时,直线y k =与()f x 的图象没有交点,故方程kx =-|13|的解的个数为0个;当0k =时,直线y k =与()f x 的图象有1个交点,故方程kx=-|13|的解的个数为1个;当01k <<时,y k =与()f x 的图象有2个交点,故方程kx =-|13|的解的个数为2个; 当1k ≥时,直线y k =与()f x 的图象有1个交点,故方程kx=-|13|的解的个数为1个.17.解:(1)不等式f (1-a )+f (-a )<0可化为f (1-a )<-f (-a ),而f (x )为奇函数,∴ f (1-a )<f (a ),又yy=k(y=k(0y=1 x y=f y=k(Of (x )在定义域(-1,1)上是减函数,∴111111a a a a ⎧⎪⎨⎪⎩-<-<,-<-<,->,解得0<a <12, ∴M ={a |0<a<12}. (2)为使F (x )=alog [1-21()xa-]有意义,必须1-21()xa ->0,即21()xa-<1. 由0<a <12得12a>,∴2-x <0,∴x >2. ∴函数的定义域为{2}x x >.18.解:(1)1()()(802)(20|10|)(40)(40|10|)2y g t f t t t t t =⋅=-⋅--=--- =(30)(40),(010),(40)(50),(1020).t t t t t t +-<⎧⎨--⎩≤≤≤ (2)当0≤t <10时,y 的取值范围是[1200,1225],在t =5时,y 取得最大值为1225;当10≤t ≤20时,y 的取值范围是[600,1200],在t =20时,y 取得最小值为600.∴第5天,日销售额y 取得最大,为1225元;第20天,日销售额y 取得最小,为600元.答:日销售额y 最大为1225元;最小为600元.19. 解: (1)设0,x <则0x ->于是22()2,()()()2,f x x x f x f x f x x x -=--=--=+又为奇函数,所以x <即时,2()2(0);f x x x x =+<(2)分下述三种情况:①01,a b <<≤那么11a >,而当0,()x f x ≥的最大值为1,故此时不可能使()()g x f x =;②若01,a b <<<此时若()(),()g x f x g x =则的最大值为g(1)=f(1)=1,得a=1,这与01a b<<<矛盾;③若1,a b ≤<因为1x ≥时,f(x)是减函数,则2()2,f x x x =-于是有[来源:学#科#网]22221()2(1)(1)01(1)(1)0()2g b b b a a a b b b b g a a a a⎧==--⎪⎧--+=⎪⎪⇔⎨⎨---=⎪⎩⎪==-+⎪⎩考虑到1,a b ≤<解得151,a b +==; 综上所述,1,152a b =⎧⎪⎨+=⎪⎩20.解:(1)证明:任取12x x <,则()()11221222221()()log 21log 21log 21x x x x f x f x +-=+-+=+,1212,02121x x x x <∴<+<+,11222212101,log 02121x x x x ++∴<<∴<++,12()()f x f x ∴<,即函数()f x 在(,)-∞+∞内单调递增.(2)解法1:由()()g x m f x =+得()()m g x f x =-=()()22log 21log 21x x--+22212log log 12121x x x -⎛⎫==- ⎪++⎝⎭,当12x ≤≤时,222123,152133215xx ≤≤∴≤-≤++,m ∴的取值范围是2213log,log 35⎡⎤⎛⎫⎛⎫ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.(2)解法2:解方程()()22log 21log 21x x m -=++,得221log 12m m x ⎛⎫+= ⎪-⎝⎭,22112,1log 212m m x ⎛⎫+≤≤∴≤≤ ⎪-⎝⎭,解得2213log log 35m ⎛⎫⎛⎫≤≤ ⎪ ⎪⎝⎭⎝⎭.m ∴的取值范围是2213log ,log 35⎡⎤⎛⎫⎛⎫ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.。
2011年全国各地高考数学试题及解答分类大全(数系的扩充与复数的引入)
2011年全国各地高考数学试题及解答分类大全(数系的扩充与复数的引入)一、选择题:1. (2011安徽文、理)设 i 是虚数单位,复数ai i1+2-为纯虚数,则实数a 为( ) (A )2 (B) -2 (C) 1-2 (D) 121.A 【解析】本题主要考察复数的乘法运算和复数的概念。
法一:()()()()()ai i ai a a i i i i 1+2+1+2-+2+1==2-2-2+5为纯虚数,所以,a a 2-=0=2; 法二:()i a i ai i i-1+=2-2-为纯虚数,所以a =2,答案为A. 法三: 设()ai bi b R i1+∈2-=,则1+(2)2ai bi i b bi =-=+,所以1,2b a ==.故选A. 【技巧点拨】复数运算乘法是本质,除法中的分母“实化”也是乘法,同时注意提取公因式,因式分解等变形技巧的运用。
2. (2011北京文、理)复数212i i-=+ ( ) (A)i (B )i - (C)4355i -- (D)4355i -+ 2.【答案】A2.【解析】:22i 2(i 2)(12i)2242(1)2412i (12i)(12i)1414(1)i i i i i i i ---------+====++----,选A 。
3. (2011福建理) i 是虚数单位,若集合S=}{1.0.1-,则( ) A.i S ∈ B.2i S ∈ C. 3i S ∈ D.2S i ∈ 3.解析:由21i S =-∈得选项B 正确。
4. (2011福建文) i 是虚数单位1+i 3等于( )A.iB.-iC.1+i D .1-i4. 解析:1+i 3=1-I ,答案应选D 。
5.(2011广东文)设复数z 满足1iz =,其中i 为虚数单位,则z =( )A .i -B .iC .1-D .15. 解析:(A ).1()i z i i i i -===-⨯-6.(2011广东理)设复数z 满足(1)2i z +=,其中i 为虚数单位,则z =( )A .1i +B .1i -C .22i +D .22i -解析:(B ).22(1)11(1)(1)i z i i i i -===-++-7. (2011湖北理)i 为虚数单位,则=⎪⎭⎫ ⎝⎛-+201111i i ( ) A.i - B.1- C.i D.17.【答案】A 7. 解析:因为()i i i i i =-+=-+221111,所以i i i i i i -====⎪⎭⎫ ⎝⎛-++⨯3350242011201111,故选A .8.(2011湖南文、理)若,,a b R i ∈为虚数单位,且()a i i b i +=+,则( )A.1,1a b == B.1,1a b =-= C.1,1a b ==- D.1,1a b =-=-8.答案:C8. 解析:因()1a i i ai b i +=-+=+,根据复数相等的条件可知1,1a b ==-。
2011全国理科数学‘数列’部分高考题学习资料
(k 1)bk 1(b 2)
,
bk 1 2k 1Fra bibliotek所以当 n k 1 时,猜想成立,
由①②知,
n N * , an
nbn (b 2)
.
bn 2n
(2)(ⅰ)当 b
2 时, an
2
2n 1 2n 1
1,故 b
2 时,命题成立;
(ⅱ)当 b 2 时, b2 n 22 n 2 b2n 22 n 2n 1 bn ,
1 tan( k 1) tan k
得
tan(k 1) tan k
所以
tan(k 1) tan k 1 tan 1
n
n2
Sn
bi
tan(k 1) tan k
i1
i3
n 2 tan(k 1) tan k
(
1)
i3
tan1
tan( n 3) tan 3 n
tan 1
2、 若数列 An a1 ,a2, ...,an( n 2) 满足 an 1 a1 1(k 1,2,..., n 1) ,数列 An 为 E 数列,
bn 2n 1
(b2n 1
bn 1 2n ) (bn 2n 1 2n 1 (bn 2n )
22n 1 )
bn 1 2n 1 1 .故当 b 2 时,命题成立;
综上(ⅰ)(ⅱ)知命题成立.
5、已知数列 an 的前 n 项和为 Sn ,且满足: a1 a (a 0) , an 1 rSn (n N* ,
2
即 4 整除 n(n 1), 亦即 n 4m或n 4m 1( m N*) .
当
n 4m 1( m N*) 时, E数列 An的项满足 a4k 1 a4k 1 0, a4k 2
2011届高考数学一轮复习精品题集分类汇编之复数(11页)
复数第3章 数系的扩充与复数的引入 §3.1复数的概念重难点:理解复数的基本概念;理解复数相等的充要条件;了解复数的代数表示法及其几何意义. 考纲要求:①理解复数的基本概念. ②理解复数相等的充要条件.③了解复数的代数表示法及其几何意义.经典例题: 若复数1z i =+,求实数,a b 使22(2)az bz a z +=+。
(其中z 为z 的共轭复数).当堂练习: 1.0a =是复数(,)a bia b R +∈为纯虚数的( )A .充分条件 B.必要条件 C.充要条件 D.非充分非必要条件2设1234,23z i z i =-=-+,则12z z -在复平面内对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.=+-2)3(31i i( )A .i 4341+B .i 4341--C .i2321+D .i2321--4.复数z 满足()1243i Z i +=+,那么Z =( )A .2+iB .2-iC .1+2iD .1-2i5.如果复数212bii -+的实部与虚部互为相反数,那么实数b 等于( )A. 2B.23C.2D.-236.集合{Z ︱Z =Z n i i nn ∈+-,},用列举法表示该集合,这个集合是( )A {0,2,-2} B.{0,2}C.{0,2,-2,2i }D.{0,2,-2,2i ,-2i } 7.设O 是原点,向量,OA OB →→对应的复数分别为23,32i i --+,那么向量BA →对应的复数是( ).55A i -+ .55B i -- .55C i + .55D i -8、复数123,1z i z i =+=-,则12z z z =⋅在复平面内的点位于第( )象限。
A .一 B.二 C.三 D .四 9.复数2(2)(11)()a a a ia R --+--∈不是纯虚数,则有( ).0A a ≠ .2B a ≠ .02C a a ≠≠且 .1D a =-10.设i 为虚数单位,则4(1)i +的值为 ( )A .4 B.-4 C.4i D.-4i11.设i z i C z 2)1(,=-∈且(i 为虚数单位),则z= ;|z|= .12.复数21i +的实部为 ,虚部为 。
2011年高考数学一轮精品题集:圆锥曲线
2011届高考数学一轮复习精品题集圆锥曲线第2章 圆锥曲线与方程考纲总要求:①了解圆锥曲线的实际背景,了解在刻画现实世界和解决实际问题中的作用. ②掌握椭圆的定义、几何图形、标准方程及简单几何性质.③了解双曲线、抛物线的定义、几何图形和标准方程,知道它们的简单几何性质. ④理解数形结合的思想. ⑤了解圆锥曲线的简单应用.§2.1-2椭圆重难点:建立并掌握椭圆的标准方程,能根据已知条件求椭圆的标准方程;掌握椭圆的简单几何性质,能运用椭圆的几何性质处理一些简单的实际问题.经典例题:已知A 、B 为椭圆22a x +22925a y =1上两点,F2为椭圆的右焦点,若|AF2|+|BF2|=58a ,AB 中点到椭圆左准线的距离为23,求该椭圆方程.[:.]当堂练习:1.下列命题是真命题的是 ( ) A .到两定点距离之和为常数的点的轨迹是椭圆B .到定直线c a x 2=和定点F(c ,0)的距离之比为a c的点的轨迹是椭圆C .到定点F(-c ,0)和定直线ca x 2-=的距离之比为a c(a>c>0)的点的轨迹 是左半个椭圆D .到定直线c a x 2=和定点F(c ,0)的距离之比为ca(a>c>0)的点的轨迹是椭圆2.若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点)23,25(-,则椭圆方程是 ( )A .14822=+x yB .161022=+x yC .18422=+x yD .161022=+y x 3.若方程2+y2=2表示焦点在y 轴上的椭圆,则实数的取值范围为 ( )A .(0,+∞)B .(0,2)C .(1,+∞)D .(0,1)4.设定点F1(0,-3)、F2(0,3),动点P 满足条件)0(921>+=+a a a PF PF ,则点P 的轨迹是( )A .椭圆B .线段C .不存在D .椭圆或线段 5.椭圆12222=+b y a x 和k b y a x =+2222()0>k 具有 ( )A .相同的离心率B .相同的焦点C .相同的顶点D .相同的长、短轴6.若椭圆两准线间的距离等于焦距的4倍,则这个椭圆的离心率为 ( ) A .41B .22C .42D . 217.已知P 是椭圆13610022=+y x 上的一点,若P 到椭圆右准线的距离是217,则点P 到左焦点的距离( )A .516B .566C .875D .877[:学|||||]8.椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是( )A .3B .11C .22D .109.在椭圆13422=+y x 内有一点P (1,-1),F 为椭圆右焦点,在椭圆上有一点M ,使|MP|+2|MF|的值最小,则这一最小值是 ( )A .25B .27C .3D .410.过点M (-2,0)的直线m 与椭圆1222=+y x 交于P1,P2,线段P1P2的中点为P ,设直线m 的斜率为1(01≠k ),直线OP 的斜率为2,则12的值为 ( )A .2B .-2C .21D .-2111.离心率21=e ,一个焦点是()3,0-F 的椭圆标准方程为 ___________ .12.与椭圆4 2 + 9 y 2 = 36 有相同的焦点,且过点(-3,2)的椭圆方程为_______________. 13.已知()y x P ,是椭圆12514422=+y x 上的点,则y x +的取值范围是________________ .14.已知椭圆E的短轴长为6,焦点F到长轴的一个端点的距离等于9,则椭圆E的离心率等于__________________.15.已知椭圆的对称轴为坐标轴,离心率32=e ,短轴长为58,求椭圆的方程.16.过椭圆4:),(148:220022=+=+y x O y x P y x C 向圆上一点引两条切线PA 、PB 、A 、B 为切点,如直线AB 与轴、y 轴交于M 、N 两点. (1)若0=⋅,求P 点坐标; (2)求直线AB 的方程(用00,y x 表示);(3)求△MON 面积的最小值.(O 为原点)17.椭圆12222=+b y a x (a >b >)0与直线1=+y x 交于P 、Q 两点,且OQ OP ⊥,其中O 为坐标原点.(1)求2211b a+的值; (2)若椭圆的离心率e 满足33≤e ≤22,求椭圆长轴的取值范围.18.一条变动的直线L 与椭圆42x +2y 2=1交于P 、Q 两点,M 是L 上的动点,满足关系|MP|·|MQ|=2.若直线L 在变动过程中始终保持其斜率等于1.求动点M 的轨迹方程,并说明曲线的形状.第2章 圆锥曲线与方程 §2.3双曲线重难点:建立并掌握双曲线的标准方程,能根据已知条件求双曲线的标准方程;掌握双曲线的简单几何性质,能运用双曲线的几何性质处理一些简单的实际问题.经典例题:已知不论b 取何实数,直线y=+b 与双曲线1222=-y x 总有公共点,试求实数的取值范围.[:.]当堂练习:1.到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹 ( ) A .椭圆 B .线段 C .双曲线D .两条射线2.方程11122=-++k y k x 表示双曲线,则k 的取值范围是 ( )A .11<<-kB .0>kC .0≥kD .1>k 或1-<k3. 双曲线14122222=--+m y m x 的焦距是( )A .4B .22C .8D .与m 有关4.已知m,n 为两个不相等的非零实数,则方程m -y+n=0与n2+my2=mn 所表示的曲线可能是A B C D 5. 双曲线的两条准线将实轴三等分,则它的离心率为 ( )A .23B .3C .34D . 3 6.焦点为()6,0,且与双曲线1222=-y x 有相同的渐近线的双曲线方程是 ( )A .1241222=-y xB .1241222=-x yC .1122422=-x yD .1122422=-y x7.若a k <<0,双曲线12222=+--k b y k a x 与双曲线12222=-b y a x 有( )A .相同的虚轴B .相同的实轴C .相同的渐近线D . 相同的焦点8.过双曲线191622=-y x 左焦点F1的弦AB 长为6,则2ABF ∆(F2为右焦点)的周长是( )A .28B .22C .14D .129.已知双曲线方程为1422=-y x ,过P (1,0)的直线L 与双曲线只有一个公共点,则L的条数共有 ( )A .4条B .3条C .2条D .1条10.给出下列曲线:①4+2y -1=0; ②2+y2=3; ③1222=+y x ④1222=-y x ,其中与直线y=-2-3有交点的所有曲线是 ( )A .①③B .②④C .①②③D .②③④11.双曲线17922=-y x 的右焦点到右准线的距离为__________________________.12.与椭圆1251622=+y x 有相同的焦点,且两准线间的距离为310的双曲线方程为____________.13.直线1+=x y 与双曲线13222=-y x 相交于B A ,两点,则AB =__________________.14.过点)1,3(-M 且被点M 平分的双曲线1422=-y x 的弦所在直线方程为 .15.求一条渐近线方程是043=+y x ,一个焦点是()0,4的双曲线标准方程,并求此双曲线的离心率.16.双曲线()0222>=-a a y x 的两个焦点分别为21,F F ,P 为双曲线上任意一点,求证:21PF PO PF 、、成等比数列(O 为坐标原点).17.已知动点P 与双曲线2-y2=1的两个焦点F1,F2的距离之和为定值,且cos ∠F1PF2的最小值为-13.(1)求动点P 的轨迹方程; (2)设M(0,-1),若斜率为(≠0)的直线l 与P 点的轨迹交于不同的两点A 、B ,若要使|MA|=|MB|,试求的取值范围.18.某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4s. 已知各观测点到该中心的距离都是1020m. 试确定该巨响发生的位置.(假定当时声音传播的速度为340m/ s :相关各点均在同一平面上).第2章 圆锥曲线与方程 §2.4抛物线重难点:建立并掌握抛物线的标准方程,能根据已知条件求抛物线的标准方程;掌握抛物线的简单几何性质,能运用抛物线的几何性质处理一些简单的实际问题.经典例题:如图, 直线y=21与抛物线y=812-4交于A 、B 两点, 线段AB 的垂直平分线与直线y=-5交于Q 点. (1)求点Q 的坐标;(2)当P 为抛物线上位于线段AB 下方(含A 、B )的动点时, 求ΔOPQ 面积的最大值.当堂练习:[:学**]1.抛物线22x y =的焦点坐标是 ( )A .)0,1(B .)0,41(C .)81,0(D .41,0(2.已知抛物线的顶点在原点,焦点在y 轴上,其上的点)3,(-m P 到焦点的距离为5,则抛物线方程为( )A .y x 82=B .y x 42= C .y x 42-= D .y x 82-=3.抛物线xy 122=截直线12+=x y 所得弦长等于 ( )A .15B .152C .215D .154.顶点在原点,坐标轴为对称轴的抛物线过点(-2,3),则它的方程是 ( )A .yx 292-=或x y 342= B .x y 292-=或y x 342= C .y x 342=D .x y 292-=5.点)0,1(P 到曲线⎩⎨⎧==t y t x 22(其中参数R t ∈)上的点的最短距离为( )A .0B .1C .2D .26.抛物线)0(22>=p px y 上有),,(),,(2211y x B y x A ),(33y x C 三点,F 是它的焦点,若CF BF AF ,,成等差数列,则 ( ) A .321,,x x x 成等差数列 B .231,,x x x 成等差数列 C .321,,y y y 成等差数列 D .231,,y y y 成等差数列7.若点A 的坐标为(3,2),F 为抛物线x y 22=的焦点,点P 是抛物线上的一动点,则PF PA +取得最小值时点P 的坐标是( )A .(0,0)B .(1,1)C .(2,2)D .)1,21(8.已知抛物线)0(22>=p px y 的焦点弦AB 的两端点为),(11y x A ,),(22y x B ,则关系式2121x x y y 的值一定等于 ( )A .4pB .-4pC .p2D .-p9.过抛物线)0(2>=a ax y 的焦点F 作一直线交抛物线于P ,Q 两点,若线段PF 与FQ 的长分别是q p ,,则qp 11+ ( )A .a 2B .a21C .a 4D .a410.若AB 为抛物线y2=2p (p>0)的动弦,且|AB|=a (a>2p),则AB 的中点M 到y 轴的最近距离是 ( )A .21aB .21pC .21a +21pD .21a -21p 11.抛物线xy =2上到其准线和顶点距离相等的点的坐标为 ______________.12.已知圆7622=--+x y x ,与抛物线)0(22>=p px y 的准线相切,则=p___________.13.如果过两点)0,(aA和),0(aB的直线与抛物线322--=xxy没有交点,那么实数a的取值范围是.14.对于顶点在原点的抛物线,给出下列条件;(1)焦点在y轴上;(2)焦点在轴上;(3)抛物线上横坐标为1的点到焦点的距离等于6;(4)抛物线的通径的长为5;(5)由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).其中适合抛物线y2=10的条件是(要求填写合适条件的序号)______.15.已知点A(2,8),B(1,y1),C(2,y2)在抛物线pxy22=上,△ABC的重心与此抛物线的焦点F重合(如图)(1)写出该抛物线的方程和焦点F的坐标;(2)求线段BC中点M的坐标;(3)求BC所在直线的方程.16.已知抛物线y=a2-1上恒有关于直线+y=0对称的相异两点,求a的取值范围.[:学]17.抛物线2=4y的焦点为F,过点(0,-1)作直线L交抛物线A、B两点,再以AF、BF 为邻边作平行四边形FARB,试求动点R的轨迹方程.18.已知抛物线C :2742++=x x y ,过C 上一点M ,且与M 处的切线垂直的直线称为C在点M 的法线.(1)若C 在点M 的法线的斜率为21-,求点M 的坐标(0,y0);(2)设P (-2,a )为C 对称轴上的一点,在C 上是否存在点,使得C 在该点的法线通过点P ?若有,求出这些点,以及C 在这些点的法线方程;若没有,请说明理由.[:学]第2章 圆锥曲线与方程 §2.5圆锥曲线单元测试1)如果实数y x ,满足等式3)2(22=+-y x ,那么x y的最大值是( ) A 、21 B 、33 C 、23D 、32)若直线01)1(=+++y x a 与圆0222=-+x y x 相切,则a 的值为( ) A 、1,1- B 、2,2- C 、1 D 、1-3)已知椭圆125222=+y ax )5(>a 的两个焦点为1F 、2F ,且8||21=F F ,弦AB 过点1F ,则△2ABF的周长为( ) (A )10 (B )20 (C )241(D ) 4144)椭圆13610022=+y x 上的点P 到它的左准线的距离是10,那么点P 到它的右焦点的距离是( )(A )15 (B )12 (C )10 (D )85)椭圆192522=+y x 的焦点1F 、2F ,P 为椭圆上的一点,已知21PF PF⊥,则△21PF F 的面积为( )(A )9 (B )12 (C )10 (D )86)椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是( )(A )3(B )11(C )22(D )107)以坐标轴为对称轴、渐近线互相垂直、两准线间距离为2的双曲线方程是( )(A )222=-y x (B )222=-x y (C )422=-y x 或422=-x y (D )222=-y x 或222=-x y8)双曲线191622=-y x 右支点上的一点P 到右焦点的距离为2,则P 点到左准线的距离为( )(A )6 (B )8 (C )10 (D )129)过双曲线822=-y x 的右焦点F2有一条弦PQ ,|PQ|=7,F1是左焦点,那么△F1PQ 的周长为( )(A )28 (B )2814-(C )2814+(D )2810)双曲线虚轴上的一个端点为M,两个焦点为F1、F2,︒=∠12021MF F ,则双曲线的离心率为( )(A )3(B )26(C )36(D )33[:++.]11)过抛物线2y ax =(a>0)的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别为p 、q ,则11p q +等于( )(A )2a (B )12a (C )4a(D )4a12) 如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( )(A )02=-y x (B )042=-+y x (C )01232=-+y x (D )082=-+y x13)与椭圆22143x y +=具有相同的离心率且过点(2,14)离心率35=e ,一条准线为3=x 的椭圆的标准方程是 。
2011届高考数学文科类单元专项复习18
1.某市现有从事第二产业人员100万人,平均每人每年创造 产值a万元(a为正常数),现在决定从中分流x万人去加强第三 产业.分流后,继续从事第二产业的人员平均每人每年创造产 值可增加2x%(0<x<100),而分流出的从事第三产业的人员,平 均每人每年可创造产值1.2a万元.在保证第二产业的产值不减 少的情况下,分流出多少人,才能使该市第二、三产业的总产 值增加最多?
2.解函数应用问题的步骤(四步八字) (1)审题 :弄清题意,分清条件和结论,理顺数量关系,初 步选择数学模型; (2)建模 :将自然语言转化为数学语言,将文字语言转化为 符号语言,利用数学知识,建立相应的数学模型; (3)求模 :求解数学模型,得出数学结论; (4)还原 :将数学问题还原为实际问题的意义. 以上过程用框图表示如下:
W= x2·3a+ ×0.4×(0.4-x)×2a +[0.16- x2- ×0.4×(0.4-x)]a =a(x2-0.2x+0.24) =a[(x-0.1)2+0.23](0<x<0.4), 由a>0,当x=0.1时,W有最小值,即总费用最省. 当CE=CF=0.1米时,总费用最省. 【方法点评】 1.在实际问题中,有很多问题的两变量之间的 关系是一次函数模型,其增长特点是直线上升(自变量的系数大于 0)或直线下降(自变量的系数小于0); 2.有些问题的两变量之间是二次函数关系,如面积问题、利润 问题、产量问题等.一般利用函数图象的开口方向和对称轴与单调 性解决,但一定要注意函数的定义域,否则极易出错.
【答案】 B
4.某种商品降价10%后,欲恢复原价,则应提价________. 【解析】 设商品原价为a,应提价为x, 则有a(1-10%)(1+x)=a,
【答案】 11.11%
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011届备考高考数学基础知识训练(18)
一、填空题(每题5分,共70分)
1 .满足的集合的个数为___________
2 .已知复数,,则复数
3 .若,则的值为_________________;
4 .若命题p的逆命题是q,命题q的逆否命题是r,则p与r的关系是____.
5 .观察下列等式:
13=12
13+23=32
13+23+33=62
13+23+33+43=102
………………
则第n(n∈N*)个式子可能为 .
6 .程序框图如下:
如果上述程序运行的结果为S=132,那么判断框中应填入
(注:框图中的符号“”为赋值符号,也可以写成“”或“”)
7 .已知,则按从小到大顺序排列
为 .
8 .将一个各个面上均涂有颜色的正方体锯成27个同样大小的小正方体,从这些小正方体中任取一个,其中恰有两面涂有颜色的概率是____________
9 .有下列命题
①若,则;
②直线的倾斜角为45°,纵截距为-1;
③直线与直线平行的充要条件是且;
④当且时,;
⑤到坐标轴距离相等的点的轨迹方程为;
其中真命题的是_______________
10.一个长方体的各顶点均在同一球的球面上,且过同一个顶点的三条棱的长分别为1,2,3,则此球的表面积为.
11.命题①:关于x的不等式(a-2)x2+2(a-2)x-4<0对x R恒成立;命题②:f(x)=-(1-3a-a2)x是减函数.若命题①、②至少有一个为真命题,则实数a的取值范围是________.
12.已知向量满足,且的夹角为135°,的夹角为120°,,则______________;
13.在中,,,则∠A的大小是__________;
=_________.
14.有名同学在玩一个数字哈哈镜游戏,这些同学编号依次为:,在游戏中,除规定第k位同学看到的像用数对(其中)表示外,还规定:若编号为k的同学看到的像为,则编号为k+1的同学看到
的像为,,已知编号为1的同学看到的像为(4,5),则编号为5的同学看到的像是、编号为的同学看到的像
为.
二、解答题:本大题共6小题,共90
分.解答应写出文字说明、证明过程或演算步骤.
15.已知, 求及的值. 16.已知直线a,b是异面直线, 直线c//a, c与b不相交,
求证: b,c是异面直线.
17.如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30,相距10海里C处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B处救援
(角度精确到1)? (参考数据: sin41°=)
18.如图,设、分别为椭圆: ()的左、右焦点.
(1)设椭圆C上的点到F1、F2两点距离之和等于4,求椭圆C的方程和离心率;
(2)设点K是(1)中所得椭圆上的动点,求线段的中点的轨迹方程.
19.设数列的前项和为,且对任意正整数,。
(1)求数列的通项公式
(2)设数列的前项和为,对数列,从第几项起?20.已知:函数f(x)满足对任意实数x,y都有f(x+y)=f(x)+f(y)+xy+1,且f(-2)=-2.
(1)求f(1)的值;
(2)证明:对一切大于1的正整数t,恒有f(t)>t;
(3)试求满足f(t)=t的整数的个数,并说明理由.
参考答案
填空题
1 .
2 .
3 .
4 .互为否命题
5 .
6 .或
7 .
8 .
9 .②③
10.
11.(-3,2]
12.
13.45°
14.(14,19)、;
解答题
15.解: ,
.
.
16.反证法
17.解:连接BC,由余弦定理得BC2=202+102-2×20×10cos120°=700.
于是,BC=10。
∵,∴sin∠ACB=,
∵∠ACB<90°,∴∠ACB=41°。
∴乙船应朝北偏东71°方向沿直线前往B处救援。
18.解:(1),. ,.
椭圆的方程为,因为. 所以离心率.
(2)设的中点为,则点.
又点K在椭圆上,则中点的轨迹方程为.
19.(Ⅰ)当,当,相减得
数列为首项为16,公比为的等比数列
(Ⅱ),,
从13项起。
20.(1)解:令x=y=0,得f(0)=-1.
令x=y=-1,因f(-2)=-2,所以f(-1)=-2.
令x=1,y=-1,得f(0)=f(1)+f(-1),
所以f(1)=1.
(2)证明:令x=1,得f(y+1)-f(y)=y+2,
故当y∈N时,有f(y+1)-f(y)>0.
由f(y+1)>f(y),f(1)=1可知,
对一切正整数y都有f(y)>0.
当y∈N时,f(y+1)=f(y)+y+2=f(y)+1+y+1>y+1.
故对一切大于1的正整数,恒有f(t)>t.
(3)解:由f(y+1)-f(y)=y+2及(1)可知f(-3)=-1,f(-4)=1.
下面证明t≤-4时,f(t)>t.
∵t≤-4,∴-(t+2)≥2>0.
∵f(t)-f(t+1)=-(t+2)>0,
∴f(-5)-f(-4)>0,
同理可得f(-6)-f(-5)>0,f(t+1)-f(t+2)>0,f(t)-f(t+1)>0.
将各不等式相加得f(t)>f(-4)=1>-4.
∵t≤-4,∴f(t)>t.
综上所述,满足条件的整数只有两个:1和-2.。