完整word版,一元一次不等式典型例题

合集下载

一元一次不等式经典例题+习题

一元一次不等式经典例题+习题

可编写可改正【经典例题1】1、已知 a< b,则以下不等式中不正确的选项是()<4b+4 < b+4 C. ﹣ 4a<﹣ 4b﹣4<b﹣ 42、不等式3x+ 2< 2x+ 3 的解集在数轴上表示正确的选项是()3、实数 a,b,c 在数轴上对应的点以以下列图所示,则以下式子中正确的选项是()> bc B.|a–b| = a–b C. – a < – b < c D. – a–c > – b–c【经典例题2】4、若是不等式组恰有3个整数解,则 a 的取值范围是()≤﹣ 1<﹣1 C. ﹣ 2≤ a<﹣ 1 D. ﹣ 2< a≤﹣ 15、对于 x 的不等式组有四个整数解,则 a 的取值范围是()A. ﹣<a≤﹣B. ﹣≤ a<﹣C. ﹣≤ a≤﹣D. ﹣<a<﹣6、若对于的不等式组有三个负整数解,则的取值范围是().<a<-3<a ≤-2≤ a<-3≤ a≤ -2【经典例题3】7、某商品的进价为800 元 , 销售标价为1200 元, 后出处于该商品积压, 商铺准备打折销售,要保证收益率不低于5% , 该商品最多可打( )A.9 折折 C.7 折 D.6 折可编写可改正8、在抗震救灾中,某抢险地段需实行爆破. 操作人员点燃导火线后,要在炸药爆炸前跑到400 米以外的安全地区.已知导火线的焚烧速度是厘米/ 秒,操作人员跑步的速度是 5 米 / 秒 . 为了保证操作人员的安全,导火线的长度要高出()厘米厘米厘米厘米9、某大型商场从生产基地购进一批水果,运输过程中质量损失10%,假定不计商场其他费用,若是商场要想最少获得20%的收益,那么这种水果的售价在进价的基础上应最少提高()%%【经典例题4】10、不等式﹣ 3x﹣ 1< 7 的负整数解是_________.11、某种商品的进价为15 元,销售时标价是元。

由于市场不景气销售情况不好,商铺准备降价办理,但要保证收益率不低于10%,那么该店最多降价____________元销售该商品。

(完整版)一元一次不等式组含参数经典练习题(可编辑修改word版)

(完整版)一元一次不等式组含参数经典练习题(可编辑修改word版)

⎩⎩ ⎩⎪⎧2x + y = 1 + 3m ①一元一次不等式组练习题1、已知方程⎨x + 2y = 1 - m 满足x + y < 0 ,则( ) ② A. m > -1B. m > 1C. m < -1D. m < 1⎧x + 9 < 5x + 1 2、若不等式组⎨x > m + 1的解集为x > 2 ,则 m 的取值范围是( )A. m ≤ 2B. m ≥ 2C. m ≤ 1D. m > 1⎧a - x > 03、若不等式组⎨x + 1 > 0 无解,则 a 的取值范围是()A. a ≤ -1B. a ≥ -1C. a < -1D. a > -1⎧2x - 1 > 3(x - 2)4、如果不等式组⎨ ⎩x < m 的解集是 x <2,那么 m 的取值范围是()A 、m=2B 、m >2C 、m <2D 、m≥2⎧ x+ a ≥2 5、如果不等式组⎨ 2⎪⎩2x - b < 3的解集是0 ≤ x < 1 ,那么 a + b 的值为 .⎨⎩⎨⎩ 2>x -3 2x +2<x +a ⎧x + a ≥0, 6、若不等式组 ⎩1 - 2x > x - 2有解,则 a 的取值范围是( )A. a > -1B. a ≥ -1C. a ≤1D. a < 1⎧x > m -17、关于 x 的不等式组⎨x > m + 2 的解集是 x > -1 ,则 m =.⎧x - a ≥0, 8、已知关于 x 的不等式组 ⎩5 - 2x > 1只有四个整数解,则实数 a 的取值范围是⎧5 - 3x ≥0, 9、若不等式组⎨x - m ≥ 0有实数解,则实数m 的取值范围是( )A. m ≤ 5 3B. m < 5 3C. m > 5 3D. m ≥ 53{x +15 )3 14141414A. -5≤a≤-B. -5≤a<-C. -5<a≤-D. -5<a <-333 310、关于 x 的不等式组 只有 4 个整数解,则 a 的取值范围是 ( )⎩ ⎨ ⎨x - 2 y = 0 ⎨⎨x > m⎧x - a ≥ 0 11、已知关于 x 的不等式组⎨⎩有五个整数解,这五个整数是 ,a 的取值范围是。

解一元一次不等式专项练习50题有答案ok

解一元一次不等式专项练习50题有答案ok

解一元一次不等式专项练习50题〔有答案〕1.,2.﹣〔x﹣1〕≤1,3.﹣1>.4.x+2<,5..6.,7.≥,8.9.10.>,11.,12..13.,14. 3x ﹣,15.3〔x﹣1〕+2≥2〔x﹣3〕.16.,17.10﹣4〔x﹣4〕≤2〔x﹣1〕,18.﹣1<.19..20.≤.21.,22.,23.≥.24.>1.25..26.,27.≥,28.;29..30.≤31.,32.〔x+1〕≤2﹣x 33.2〔5x+3〕≤x﹣3〔1﹣2x〕34.≤+1.35.;36..37..38.4x+3≥3x+5.40.>x﹣141.2〔3﹣x〕<x﹣3.42.3〔x+2〕≤5〔x﹣1〕+7,43.1﹣≥44.2〔x+3〕﹣4x>3﹣x.45.2〔1﹣2x〕+5≤3〔2﹣x〕46.,47..48.2﹣>3+.49.4〔x+3〕﹣<2〔2﹣x〕﹣〔x ﹣〕50..解不等式50题参考答案:1.解:去分母得:3〔x+1〕>2x+6,去括号得:3x+3>2x+6,移项、合并同类项得:x>3,∴不等式的解集为x>32.解:去分母得:x+1﹣2〔x﹣1〕≤2,∴x+1﹣2x+2≤2,3.解:去分母得2〔x+4〕﹣6>3〔3x﹣1〕,去括号得2x+8﹣6>9x﹣3,移项得2x﹣9x>﹣3﹣8+6,合并同类项得﹣7x>﹣5,化系数为1得x <移项、合并同类项得:﹣x<1,不等式的两边都除以﹣1得:x>﹣1,∴不等式的解集是x>﹣15.解:去分母,得6x+2〔x+1〕≤6﹣〔x﹣14〕去括号,得6x+2x+2≤6﹣x+14…〔3分〕移项,合并同类项,得9x≤18 …〔5分〕两边都除以9,得x≤26.解:去分母得:2〔2x﹣3〕>3〔3x﹣2〕去括号得:4x﹣6>9x﹣6移项合并同类项得:﹣5x>0∴x<07.解:去分母得,3〔3x﹣4〕+30≥2〔x+2〕,去括号得,9x﹣12+30≥2x+4,移项,合并同类项得,7x≥﹣14,系数化为1得,x>﹣28.解:x﹣3<24﹣2〔3﹣4x〕,x﹣3<24﹣6+8x,x﹣8x<24﹣6+3,﹣7x<21,x>﹣39.解:化简原不等式可得:6〔3x﹣1〕≤〔10x+5〕﹣6,即8x≥﹣16,可求得x≥﹣210.解:去分母,得3〔x+1〕﹣8>4〔x﹣5〕﹣8x,去括号,得3x+3﹣8>4x﹣20﹣8x,移项、合并同类项,得7x>﹣15,系数化为1,得x >﹣11.解:去分母,得x+5﹣2<3x+2,移项,得x﹣3x<2+2﹣5,合并同类项,得﹣2x<﹣1,化系数为1,得x >12.解:去分母,得3〔x+1〕≥2〔2x+1〕+6,去括号,得3x+3≥4x+2+6,移项、合并同类项,得﹣x≥5,系数化为1,得x≤﹣513.解:去分母,得2〔2x﹣1〕﹣24>﹣3〔x+4〕,去括号,得4x﹣2﹣24>﹣3x﹣12,移项、合并同类项,得7x>14,两边都除以7,得x>214.解:去分母得,6x﹣1<2x+7,移项得,6x﹣2x<7+1,合并同类项得,4x<8,化系数为1得,x<215.解:3〔x﹣1〕+2≥2〔x﹣3〕,解得:x≥﹣516.解:去分母得:2〔x﹣1〕﹣3〔x+4〕>﹣12,去括号得:2x﹣2﹣3x﹣12>﹣12,移项得:2x﹣3x>﹣12+2+12,合并得:﹣x>2,解得:x<﹣217.解:去括号得:10﹣4x+16≤2x﹣2,移项合并得:﹣6x≤﹣28,解得:x≥18.解:去分母得,3〔x+5〕﹣6<2〔3x+2〕,去括号得,3x+15﹣6<6x+4,移项、合并同类项得,5<3x,把x的系数化为1得x >.19.解:∵∴3〔x+5〕﹣6<2〔3x+2〕∴3x+15﹣6<6x+4∴3x﹣6x<4﹣15+6∴﹣3x<﹣5∴x20.解:去分母得30﹣2〔2﹣3x〕≤5〔1+x〕,去括号得30﹣4+6x≤5+5x,移项得6x﹣5x≤5+4﹣30,合并得x≤﹣2121.解:去分母得,2〔2x﹣1〕﹣6x<3x+3,去括号得,4x﹣2﹣6x<3x+3,移项得,4x﹣6x﹣3x<3+2,合并同类项得,﹣5x<5,系数化为1得,x>﹣1.故此不等式的解集为:x>﹣122.解:去分母得,2〔2x﹣5〕>3〔3x+4〕+18,去括号得,4x﹣10>9x+12+18,移项得,4x﹣9x>12+18+10,合并同类项得,﹣5x>40,系数化为1得,x<﹣823.解:≥1﹣,去分母得:2〔2x﹣1〕≥6﹣3〔5﹣x〕,去括号得:4x﹣2≥6﹣15+3x,移项合并得:x≥﹣724.解:原不等式可变为:2〔x+4〕﹣3〔3x﹣1〕>6,2x+8﹣9x+3>6,﹣7x>﹣5,25.解:原不等式可化为,6〔2x﹣1〕≥10x+1,去分母得,12x﹣6≥10x+1,合并同类项得,2x≥7,把系数化为1得,x≥26.解:去分母得,2〔2x﹣1〕﹣6≤3〔5x﹣1〕,去括号得,4x﹣2﹣6≤15x﹣3,移项得,4x﹣15x≤﹣3+2+6,合并同类项得,﹣11x≤5,化系数为1得,x≥﹣27.解:去分母,得32﹣2〔3x﹣1〕≥5〔x+3〕+8;去括号,得32﹣6x+2≥5x+15+8;移项,得﹣6x﹣5x≥15+8﹣32﹣2;合并同类项,得﹣11x≥﹣11;系数化为1,得x≤128.解:〔1〕在不等式的左右两边同乘以2得,〔3﹣x〕﹣6≥0,解得:x≤﹣3,29. 〔2〕在不等式的左右两边同乘以12得,6〔2x﹣1〕﹣4〔2x+5〕<3〔6x﹣7〕,解得:x30.解:不等式两边都乘以8得,32﹣2〔3x﹣1〕≤5〔x+3〕+8,去括号得,32﹣6x+2≤5x+15+8,移项得,11≤6x+5x,∴x≥131.解:∵,∴12x﹣6﹣8x﹣20<18x﹣21﹣12,∴14x>7,∴32.解:不等式两边同时乘以2,得:x+1≤4﹣2x,移项,得:x+2x≤4﹣1,合并同类项,得:3x≤3,解得:x≤133.解:去括号得,10x+6≤x﹣3+6x,移项合并同类项得,3x≤﹣9,解得x≤﹣334.解:去分母,得3〔x+2〕≤4﹣x+6〔2分〕去括号,得3x+6≤4﹣x+6移项,得3x+x≤4+6﹣6〔4分〕合并同类项,得4x≤4两边同除以4,得x≤1移项,得5x﹣6x>2+5,合并同类项,得﹣x>7,系数化为1,得x<﹣7.36. 去分母,得5〔3x+1〕﹣3〔7x﹣3〕≤30+2〔x﹣2〕,去括号,得15x+5﹣21x+9≤30+2x﹣4,移项,得15x﹣21x﹣2x≤30﹣4﹣5﹣9,合并同类项,得﹣8x≤12,系数化为1,得x≥﹣1.537.解:原不等式的两边同时乘以4,并整理得x﹣7<3x﹣2,移项,得﹣2x<5,不等式的两边同时除以﹣2〔不等式的符号的方向发生改变〕,得x >,故原不等式的解集是x >38.4x+3≥3x+5.解:移项、合并得x≥2.39.解:2〔x+2〕≥4〔x﹣1〕+7,2x+4≥4x﹣4+7,2x﹣4x≥﹣4+7﹣4,﹣2x≥﹣1,40.解:去分母得1+2x>3x﹣3,移项得2x﹣3x>﹣3﹣1,合并同类项得﹣x>﹣4,解得x<441.解:去括号,得6﹣2x<x﹣3,移项、合并同类项,得﹣3x<﹣9,化系数为1,得x>342.解:去括号得,3x+6≤5x﹣5+7,移项得,3x﹣5x≤2﹣6,合并同类项得,﹣2x≤﹣4系数化为1,得x≥243.解:去分母,原不等式的两边同时乘以6,得6﹣3x+1≥2x+2,移项、合并同类项,得5x≤5,不等式的两边同时除以5,得x≤1合并同类项,得:﹣x>﹣6,那么x<645.解:去括号,得:2﹣4x+5≤6﹣3x,移项,得:﹣4x+3x≤6﹣2﹣5,合并同类项,得﹣x≤1,解得x≥﹣146.解;去分母得:x+1﹣6≤6x移项得:x﹣6x≤6﹣1合并同类项得:﹣5x≤5系数化1得:x≥﹣147.解:去分母得:7x+4﹣12>12〔x+1〕,去括号得:7x+4﹣12>12x+12,移项得:7x﹣12x>12+12﹣4,合并同类项得:﹣5x>20,系数化为1得:x<﹣448.解:去分母得:16﹣〔3x﹣2〕>24+2〔x﹣1〕16﹣3x+2>24+2x﹣2﹣3x﹣2x>24﹣2﹣16﹣2﹣5x>4x<﹣49.解;去括号得,4x+12﹣<4﹣2x﹣x+,移项合并同类项得,7x<﹣1,把x的系数化为1得,x<﹣,50.解:不等式的两边同时乘以12,得3〔x+1〕﹣2〔2x﹣3〕≤12,即﹣x+9≤12,不等式的两边同时减去9,得﹣x≤3,不等式的两边同时除以﹣1,得x≥﹣3,∴原不等式的解集是x≥﹣3。

一元一次不等式练习题(精华版)

一元一次不等式练习题(精华版)

一. 解下列不等式,并在数轴上表示出它们的解集.1. 8223-<+x x2. x x 4923+≥-3. )1(5)32(2+<+x x4. 0)7(319≤+-x5. 31222+≥+x x6. 223125+<-+x x7. 5223-<+x x8. 234->-x9. )1(281)2(3--≥-+y y10. 1213<--m m11. )2(3)]2(2[3-->--x x x x12. 215329323+≤---x x x13.41328)1(3--<++x x 14. )1(52)]1(21[21-≤+-x x x15. 22416->--x x 16. x x x 212416-≤--17. 7)1(68)2(5+-<+-x x 18. 46)3(25->--x x19.1215312≤+--x x 20. 31222-≥+x x二. 应用题1.爆破施工时,导火索燃烧的速度是s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m之外的安全地域,导火索至少需要多长?2.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,此刻要比原打算至少提早两天完成,则以后平均天天至少要比原打算多完成多少方土?3.已知李红比王丽大3岁,又知李红和王丽年龄之和大于30且小于33,求李红的年龄。

4.某工人打算在15天里加工408个零件,最初三天中天天加工24个,问以后天天至少要加工多少个零件,才能在规定的时刻内逾额完成任务?5.王凯家到学校千米,此刻需要在18分钟内走完这段路。

已知王凯步行速度为90米/ 分,跑步速度为210米/分,问王凯至少需要跑几分钟?6.某工程队打算在10天内修路6km,施工前2天修完后,打算发生转变,预备提早2天完成修路任务,以后几天内平均天天至少要修路多少千米?。

一元一次不等式选择方案问题及答案Microsoft Word 文档

一元一次不等式选择方案问题及答案Microsoft Word 文档

选择方案1、一种节能灯的功率为10瓦(即0.01千瓦)售价为60元,一种白炽灯功率为60瓦(即0.06千瓦)售价为3元。

两种灯的照明效果一样,使用寿命也相同(3000小时以上)如果电费价格为0.5元/千瓦·时,消费者选用哪种灯省钱?解:节能灯的总费用=0.5×0.01x+60白炽灯的总费用=0.5×0.06x+30.5×0.01x+60=0.5×0.06x+3x=22800.5×0.01x+60>0.5×0.06x+3x<22800.5×0.01x+60<0.5×0.06x+3x>2280答:当x=2280时选用两种灯总费用一样当x<2280时选用白炽灯总费用省当x>2280时选用节能灯总费用省2、某单位要制作一批宣传材料,甲公司提出,每份材料收费20元,另收3000元设计费;乙公司提出,每份材料收费30元,不收设计费。

问,哪家公司制作这批宣传材料比较合算?解:设制作材料x份,则甲公司所收费用=20x+3000乙公司所收费用=30x20x+3000=30xx=30020x+3000>30xx<30020x+3000<30xx>300答:当x=300时选用两公司总费用一样。

当x<300时选用乙公司总费用省。

当x>300时选用甲公司总费用省。

3、某中学需要刻录一批电脑光盘,若到电脑公司刻录,每张需8元(包括空白光盘费);若学校自刻,出租用刻录机需120元外,每张光盘还需成本4元(包括空白光盘费)。

问刻录这批电脑光盘,该校如何选择,才能使费用较少?解:设这批电脑光盘有x张,根据题意:到电脑公司刻录的费用为8x,学校自刻的费用为:120+4x①若8x=4x+120,x=30,当您刻录的光盘数等于30张光盘时花钱是一样的;②若8x>4x+120解得x>30。

当您刻录的光盘数多于30张时,学校自刻合算③若8x<4x+120解得x<30。

一元一次不等式练习题(含五篇)

一元一次不等式练习题(含五篇)

一元一次不等式练习题(含五篇)第一篇:一元一次不等式练习题一元一次不等式练习题解下列不等式,并把解集在数轴上表示出来:(1)3x-2>2x+1(2)3(x+3)<5(x-1)+7(3)2x-19<7x+3126(4)3x-2(9-x)>3(7+2x)-(11-6x).(5)2(3x-1)-3(4x+5)≤x-4(x-7)(6)2(x-1)-x>3(x-1)-3x-5.(7)3[y-2(y-7)]≤4yxx+1x-1x+43y+17y-32(y-2)-≥-2>1(8)15-(7+5x)≤2x+(5-3x).(9(10-1<+11+323515322x+1x-22x+1x-22x+1x-3->1(13)-(x+1)>-2(14)->-1(15)->2(12)23323-23--223-x)-(x+1)≤-2(18)-3>(16)-3>(17)(223(19)2x-x11x+1x-2x+1x-21-x≥-(20)4-2x≤--x(21)-≥-1(22)-≥-1 2222323417.求不等式8(1-x)≤5(4-x)+3的负整数解.一元一次不等式练习题解下列不等式,并把解集在数轴上表示出来:(1)3x-2>2x+1(2)3(x+3)<5(x-1)+7(3)2x-19<7x+3126(4)3x-2(9-x)>3(7+2x)-(11-6x).(5)2(3x-1)-3(4x+5)≤x-4(x-7)(6)2(x-1)-x>3(x-1)-3x-5.(7)3[y-2(y-7)]≤4yxx+1x-1x+43y+17y-32(y-2)-≥-2>1(8)15-(7+5x)≤2x+(5-3x).(9(10-1<+11+323515322x+1x-22x+1x-22x+1x-3->1(13)-(x+1)>-2(14)->-1(15)->2(12)23323-23--223-x)-(x+1)≤-2(18)-3>(16)-3>(17)(223(19)2x-x11x+1x-2x+1x-21-x≥-(20)4-2x≤--x(21)-≥-1(22)-≥-1 2222323417.求不等式8(1-x)≤5(4-x)+3的负整数解.第二篇:解一元一次不等式练习题1、判断下列式子是否一元一次不等式:(是的打√,否的打╳)(1)7>4(2)3x ≥ 2x+1(3)2>0(4)x+y>1(5)x2+3>2xx1、解下列的一元一次不等式(并在数轴上表示出来,自己画数轴)(1)x-5<0(2)x+3 ≥ 4(3)3x > 2x+1(4)-2x+3 >-3x+1(1)2x > 1(2)–2x ≤ 1(3)2x >-1(4)22x>2(5)-x>-2(6)-x>2 33(1)2(x+3)<7(2)3x-2(x+1)>0(3)3x-2(x-1)>0(4)-(x-1)>04、下列的一元一次不等式(1)xx+1xx2x+1x-2xx>1(3)->1(4)->1 >(2)+323223231、解下列不等式12(1)-x>-(2)-(x+1)>-2(3)-x>2+x232x+1x-2->-1(4)-(x+1)>-2(5)323-2x+1x-3->2(7)-3(6)-23> 2已知关于x的方程3k-5x=-9的解是非负数,求k的取值范围第三篇:一元一次不等式和分式练习题复习题(1)1、已知2-a和3-2a的值的符号相反,那么a的取值范围是:2、.当m________时,不等式(2-m)x<8的解集为x>82-m.3、生产某种产品,原需a小时,现在由于提高了工效,可以节约时间8%至15%,若现在所需要的时间为b小时,则____________< b <_____________.4、若干学生分宿舍,每间 4 人余 20 人,每间 8 人有一间不空也不满,则宿舍有()间.A、5B、6C、7D、85、x为何值时,代数式-6、设关于x的不等式组⎨⎧2x-m>2⎩3x-2m<-13(x+1)的值比代数式-3的值大.无解,求m的取值范围.7、某公司经营甲、乙两种商品,每件甲种商品进价12万元,•售价14.5万元.每件乙种商品进价8万元,售价10万元,且它们的进价和售价始终不变.•现准备购进甲、乙两种商品共20件,所用资金不低于190万元不高于200万元.(1)该公司有哪几种进货方案?(2)该公司采用哪种进货方案可获得最大利润?最大利润是多少?8、当x时,分式1a1bxx-4x+2无意义;当x时,分式x-4x+2的值为零.9、已知-=3,求2a+3ab-2ba-2ab-b的值。

一元一次不等式试题(大全5篇)

一元一次不等式试题(大全5篇)

一元一次不等式试题(大全5篇)第一篇:一元一次不等式试题10.(2012湖北随州4分)若不等式组⎨⎧x-b<0⎩x+a>0的解集为2A.-2,3B.2,-3C.3,-2D.-3,2【答案】A。

【考点】解一元一次不等式组【分析】∵解不等式x-b<0得:x<b,解不等式x+a>0得:x >-a,∴不等式组的解集是:-a<x<b,∵不等式组⎨⎧x-b<0 ⎩x+a>0解集为2<x<3,∴-a=2,b=3,即a=-2,b=3。

故选A。

11.(2012湖北孝感3分)若关于x的一元一次不等式组⎨范围是【】⎧x-a>0⎩1-2x>x-2无解,则a的取值A.a≥1B.a>1C.a≤-1D.a<-1【答案】A。

【考点】解一元一次不等式组。

【分析】解出两个不等式,再根据“大大小小找不到”的原则解答即可:⎧x-a>0①,由①得:x>a,由②得:x<1。

⎨1-2x>x-2②⎩∵不等式组无解,∴a≥1。

故选A。

12.(2012湖北襄阳3分)若不等式组⎨⎧1+x>a⎩2x-4≤0有解,则a的取值范围是【】A.a≤3B.a<3C.a<2D.a≤2【答案】B。

【考点】解一元一次不等式组。

【分析】先求出不等式的解集,再不等式组有解根据“同大取大,同小取小,大小小大中间找,大大小小解不了(无解)”即可得到关于a的不等式,求出a的取值范围即可:由1+x>a得,x>a﹣1;由2x-4≤0得,x≤2。

∵此不等式组有解,∴a﹣1<2,解得a<3。

故选B。

20.(2012四川凉山4分)设a、b、c表示三种不同物体的质量,用天枰称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是【】A.c<b<aB.b<c<aC.c<a<bD.b<a<c【答案】A。

30.(2012山东淄博4分)若a>b,则下列不等式不一定成立的是【】(A)a+m>b+m(B)a(m2+1)>b(m2+1)(C)-a2<-b2(D)a2>b2x+2⎧4+x>⎪32的解集为x<2,则a的取值范9.(2012湖北鄂州3分)若关于x的不等式组⎪⎨⎪x+a<0⎪⎩2围是▲.12.(2012四川广安3分)不等式2x+9≥13.(2012四川达州3分)若关于x、y的二元一次方程组⎨⎧2x+y=3k-1⎩x+2y=-2的解满足x+y>1,则k的取值范围是▲.3(x+2)的正整数解是14.(2012四川绵阳4分)如果关于x的不等式组:⎨⎧3x-a≥0⎩2x-b≤0,的整数解仅有1,2,那么适合这个不等式组的整数a,b组成的有序数对(a,b)共有▲个。

解一元一次不等式专项练习50题(有答案)-不等式去分母的题

解一元一次不等式专项练习50题(有答案)-不等式去分母的题

解一元一次不等式专项练习50题(有答案)-不等式去分母的题1.解:去分母得 3(x+1)。

2x+6,去括号得 3x+3.2x+6,移项合并同类项得 x。

3,因此不等式的解集为 x。

3.2.解:去分母得 x+1-2(x-1) ≤ 2,化简得 -x ≤ -1,两边同乘-1得x ≥ 1,因此不等式的解集为x ≥ 1.3.解:去分母得 2(x+4)-6.3(3x-1),化简得 2x+8-6.9x-3,移项合并同类项得 -7x。

-5,化系数为1得 x < 5/7.4.解:去分母得 3x+6.-1,因此不等式的解集为 x。

-1.5.解:去分母得6x+2(x+1) ≤ 6-(x-14),化简得8x+8 ≤ 20-x,移项合并同类项得9x ≤ 12,因此不等式的解集为x ≤ 4/3.6.解:去分母得 2(2x-3)。

3(3x-2),化简得 4x-6.9x-6,移项合并同类项得 -5x。

0,化系数为1得 x < 0.7.解:去分母得 3(3x-4)+30 ≥ 2(x+2),化简得 9x-12+30 ≥2x+4,移项合并同类项得7x ≥ -14,化系数为1得x ≥ -2.8.解:将原不等式化简得:x-3<24-2(3-4x)。

x-3<24-6+8x。

x<21。

x>-3.9.解:将原不等式化简得:6(3x-1)<(10x+5)-6。

8x>=-16。

x>=-2.10.解:将原不等式化简得:3(x+1)-8>4(x-5)-8x。

3x+3-8>4x-20-8x。

7x>-15。

x>-15/7.11.解:将原不等式化简得:x+5-2<3x+2。

x-3x<2+2-5。

2x<-1。

x>1/2.12.解:将原不等式化简得:3(x+1)>=2(2x+1)+6。

3x+3>=4x+2+6。

x>=5。

x<=-5.13.解:将原不等式化简得:2(2x-1)-24>-3(x+4)。

解一元一次不等式专项练习 (80题,附答案)

解一元一次不等式专项练习 (80题,附答案)

解一元一次不等式专项练习(80 题、附答案)(1)3(x+2)﹣8≥1﹣2(x﹣1);(2)x ﹣≤2﹣.(3)2(x﹣1)+2<5﹣3(x+1)(4).(5)﹣<1;(6)3﹣(3y﹣1)≥(3+y)(7)x ﹣≥﹣1(8)﹣>﹣1 (9)﹣1≤.(10)﹣3x+2≤8.(11)﹣3x﹣4≥6x+2.(12)﹣8x﹣6≥4(2﹣x)+3.(13)(14)(15).(16)2(x﹣1)<﹣3(1﹣x)(17)≤﹣1 (18)10﹣3(x﹣2)≤2(x+1)(19)﹣2≤.(20)﹣3x>2(21)x >﹣x﹣2(22)3(x+1)<4(x﹣2)﹣3 (23)≤1.(24)≥;(25)﹣>﹣2.(26)5x﹣4>3x+2(27)4(2x﹣1)>3(4x+2)(28)≤(29)﹣2≥.(30)4(x﹣1)+3≥3x;(31)2x﹣3<;(32)≤1.(33)3[x﹣2(x﹣2)]>6+3 (34)(35)(36).(37)3(x+2)﹣8≥1﹣2(x﹣1);(38)>;(39)≤;(40)<.(41)3(2x﹣3)≥2(x﹣4)(42)≥0(43)7(1﹣2x)>10﹣5(4x﹣3)(44).(45)﹣<0;(46)1﹣≤﹣x.(47)5x﹣12≤2(4x﹣3);(48)≥x﹣2.(49)4x﹣2(3+x)<0 (50)﹣≥0.(51)3x﹣2<﹣4(x﹣5);(52)﹣1<<2.(53);(54).(55)5x+15>4x﹣13(56)≤.(57)7(4﹣x)﹣2(4﹣3x)<4x;(58)10﹣4(x﹣3)≥2(x﹣1);(59)3[x﹣2(x﹣2)]>x﹣3(x﹣3);(60)(2x﹣1)+x﹣1+(1﹣2x)≤0;(61)﹣y ﹣;(62).(63)x(x+1)>(x﹣2)2;(64).(65)3(y﹣3)<7y﹣4(66)﹣21<6﹣3x≤9.(67);(68);(69)0.5x+3(1﹣0.2x)≥0.4x﹣0.6;(70)x ﹣<1﹣;(71)2[x﹣(x﹣1)+2]<1﹣x;(72).(73)3x﹣7<5x﹣3;(74).(75)(76)(77)≤.(78)3x﹣9≤0;(79)2x﹣5<5x﹣2;(80)2(﹣3+x)>3(x+2);参考答案:(1)3(x+2)﹣8≥1﹣2(x﹣1),3x+6﹣8≥1﹣2x+2,3x+2x≥1+2﹣6+8,5x≥5,x≥1;(2)x ﹣≤2﹣,6x﹣3(x﹣1)≤12﹣2(x+2),6x﹣3x+3≤12﹣2x﹣4,3x+2x≤8﹣3,5x≤5,x≤1(3)2(x﹣1)+2<5﹣3(x+1)2x﹣2+2<5﹣3x﹣3,2x+3x<5﹣3+2﹣2,5x<2,x,(4),3(1+x)≤2(2x﹣1)+6,3+3x≤4x﹣2+6,3x﹣4x≤﹣2+6﹣3,﹣x≤1,x≥﹣1(5)去分母得,2x﹣3(x﹣1)<6,去括号得,2x﹣3x+3<6,移项、合并同类项得,﹣x<3,把x的系数化为1得,x>﹣3.(6)去分母得,24﹣2(3y﹣1)≥5(3+y),去括号得,24﹣6y+2≥15+5y,移项、合并同类项,﹣11y≥﹣11,把x的系数化为1得,y≤1(7)去分母得,6x﹣2(2x﹣1)≥3(2+x)﹣6去括号得,6x﹣4x+2>6+3x﹣6,移项得,6x﹣8x﹣3x>6﹣6﹣2,合并同类项得,﹣5x>﹣2,把x的系数化为1得,x <﹣,(8)去分母得,6(2x﹣1)﹣4(2x+5)>3(6x﹣1),去括号得,12x﹣6﹣8x﹣20>18x﹣3,移项得,12x﹣8x﹣18x>﹣3+6+20,合并同类项得,﹣14x>23,把x的系数化为1得,x <﹣,(9)分子与分母同时乘以10得,﹣1≤,去分母得,2(2x﹣1)﹣6≤3(5x+2),去括号得,4x﹣2﹣6≤15x+6,移项得,4x﹣15x≤6+2+6,合并同类项得,﹣11x≤14,把x的系数化为1得,x ≥﹣(10)移项合并得:﹣3x≤6,解得:x≥﹣2,(11)移项合并得:9x≤﹣6,解得:x ≤﹣,(12)去括号得:﹣8x﹣6≥8﹣4x+3,移项合并得:﹣4x≥17,解得:x ≤﹣(13)去分母得:4x﹣8>6x+2,移项合并得:﹣2x>10,解得:x<﹣5;(14)去分母得:2x﹣4x+1<3,移项合并得:﹣2x<2,解得:x>﹣1;(15)去分母得:12+3x﹣6≥8x+8,移项合并得:5x≥﹣2,解得:x ≤﹣(16)去括号得,2x﹣2≤﹣3+3x,移项得,2x﹣3x≤﹣3+2,合并同类项得,﹣x≤﹣1把x的系数化为1得,x≥1,(17)去分母得,3(2﹣3x)≤2x﹣1﹣6,去括号得,6﹣9x≤3x﹣7,移项得,﹣9x﹣3x≤﹣7﹣6,合并同类项得,﹣12x≤13,x的系数化为1得,x ≥﹣,(18)去括号得,10﹣3x+6≤2x+2,移项得,﹣3x﹣2x≤2﹣10﹣6,合并同类项得,﹣5x≤﹣24把x的系数化为1得,x ≥﹣,(19)去分母得,2(1﹣5x)﹣24≤3(3﹣x)去括号得,2﹣10x﹣24≤9﹣3x,移项得,﹣10x+3x≤9﹣2+24,合并同类项得,﹣7x≤31,x的系数化为1得,x ≥﹣(20)﹣3x>2,解得:x <﹣;(21)去分母得:x>﹣2x﹣6,解得:x>﹣2;(22)去括号得:3x+3<4x﹣8﹣3,解得:x>14;(23)去分母得:2(2x﹣1)﹣3(5x+1)≤6,去括号得: 4x﹣2﹣15x﹣3≤6,解得: x≥﹣1(24)去分母得,3(x+4)≥﹣2(2x+1),去括号得,3x+12≥﹣4x﹣2,移项、合并同类项得,7x≥﹣14,把x的系数化为1得,x ≥﹣.(25)去分母得,4(x﹣1)﹣3(2x+5)>﹣24,去括号得,4x﹣4﹣6x﹣15>﹣24,移项、合并同类项得,﹣2x>﹣5,把x的系数化为1得,x <(26)移项得,5x﹣3x>2+4,合并同类项得,2x>6,把x的系数化为1得,x>3.(27)去括号得,8x﹣4>12x+6,移项得,8x﹣12x>6+4,合并同类项得,﹣4x>10,把x的系数化为1得,x<﹣.(28)去分母得,3(4x﹣1)≤1﹣5x,去括号得,12x﹣3≤1﹣5x,移项得,12x+5x≤1+3,合并同类项得,17x≤4,把x的系数化为1得,x ≤.(29)去分母得,2(5x+1)﹣24≥3(x﹣5),去括号得,10x+2﹣24≥3x﹣15,移项得,10x﹣3x≥﹣15﹣2+24,合并同类项得,7x≥7,把x的系数化为1得,x≥1(30)去括号得,4x﹣4+3≥3x,移项得,4x﹣3x≤4﹣3,合并同类项得,x≤1,(31)去分母得,3(2x﹣3)<x+1,去括号得,6x﹣9<x+1,移项得,6x﹣x<1+9,合并同类项得,5x<10,x的系数化为1得,x<2,(32)去分母得,2(2x﹣1)﹣(9x+2)≤6,去括号得,4x﹣2﹣9x﹣2≤6,移项得,4x﹣9x≤6+2+2,合并同类项得,﹣5x≤10,x的系数化为1得,x≥﹣2(33)3[x﹣2(x﹣2)]>6+3x解:去小括号,3[x﹣3x+4]>6+3x合并,3[﹣x+4]>6+3x去中括号,﹣3x+12>6+3x移项,合并,﹣6x>﹣6化系数为1,x<1.(34)解:去分母,2(2x﹣5)≤3(3x+1)﹣8x去括号,4x﹣10≤9x+3﹣8x移项合并,3x≤13化系数为1,x ≤.(35)解:去分母,3(2﹣x)﹣3(x﹣5)>2(﹣4x+1)+8 去括号,6﹣9x﹣3x+15>﹣8x+2+8移项合并,﹣4x>﹣11化系数为1,x <.(36)解:利用分数基本性质化小数分母为整数去括号,4x﹣1﹣10x+7>2﹣4x移项合并,﹣2x>﹣4化系数为1,x<2(37)去括号,得:3x+6﹣8≥1﹣2x+2,移项、合并同类项,得:5x≥5,系数化成1得:x≥1;(38)去分母,得:3(x﹣3)﹣6>2(x﹣5),去括号,得:3x﹣9﹣6>2x﹣10,移项、合并同类项得:x>5;(39)去分母,得:6x﹣3(x﹣1)≤12﹣2(x+2),去括号,得:6x﹣3x+3≤12﹣2x﹣4,移项、合并同类项得:5x≤5系数化成1得:x≤1;(40)去分母,得:6x﹣3x<6+x+8﹣2(x+1),去括号,得:6x﹣3x<6+x+8﹣2x﹣2,移项得:6x﹣3x﹣x+2x<6﹣2+8合并同类项得:4x<12系数化成1得:x<3(41)去括号,得6x﹣9≥2x﹣8,移项,得6x﹣2x≥﹣8+9,合并同类项,得4x≥1,两边同除以4,得x ≥,(42)去分母,得4﹣8x≥0,移项得﹣8x≥﹣4,两边同除以﹣8,得x ≤,(43)去括号,得7﹣14x>10﹣20x+15,移项,得﹣14x+20x>10+15﹣7,合并同类项得6x>18,两边同除以6得x>3,(44)去分母,得2x+6<﹣6x﹣3(x+10),去括号,得2x+6<﹣6x﹣3x﹣30,移项,得2x+6x+3x<﹣30﹣6,合并同类项,得11x<﹣36,两边同除以11得x <﹣(45)去分母得:2(2x+1)﹣(5﹣2x)<0,去括号得:4x+2﹣5+2x<0,移项合并得:6x<3,解得:x <,表示在数轴上,如图所示:;(46)去分母得:6﹣2(x﹣1)≤3(2x+3)﹣6x,去括号得:6﹣2x+2≤6x+9﹣6x,移项合并得:﹣2x≤1,解得:x ≥﹣(47)去括号得,5x﹣12≤8x﹣6,移项得,5x﹣8x≤﹣6+12,合并同类项得,﹣3x≤6,x的系数化为1得,x≥﹣2;(48)去分母得,x﹣3≥2(x﹣2),去括号得,x﹣3≥2x﹣4,移项得,x﹣2x≥﹣4+3,合并同类项得,﹣x≥﹣1,x的系数化为1得,x≤1(49)去括号得4x﹣6﹣2x<0,移项、合并同类项得2x<6,系数化为1得x<3;这个不等式的解集在数轴上表示如图1:(50)去分母得3(2x﹣3)﹣4(x﹣2)≥0,去括号得6x﹣9﹣4x+8≥0,移项、合并同类项得2x≥1,系数化为1得x≥0.5(51)3x﹣2<﹣4(x﹣5);去括号得3x﹣2<﹣4x+20,移项得3x+4x<20+2合并同类项得7x<22未知项的系数化为1得x <,(52)﹣1<<2,去分母得﹣3<2﹣x<6,移项得﹣3﹣2<﹣x<6﹣2,合并同类项得﹣5<﹣x<4未知项的系数化为1得﹣4<x<5(53)去分母得,2(x﹣1)﹣3(x+4)>﹣12,去括号得,2x﹣2﹣3x﹣12>﹣12,移项、合并同类项得﹣x<2,化系数为1得x<﹣2.(54)去分母得,(x﹣2)﹣3(x﹣1)<3,去括号得,x﹣2﹣3x+3<3,移项、合并同类项得﹣2x<2,化系数为1得x>﹣120.解:(55)移项,得:5x﹣4x>﹣13﹣15,合并同类项,得:x>﹣28;(56)去分母,得:2(2x﹣1)≤3x﹣4,去括号,得:4x﹣2≤3x﹣4,移项,得:4x﹣3x≤﹣4+2,合并同类项,得:x≤﹣2(57)去括号得,28﹣7x﹣8+6x<4x,移项得,﹣7x+6x﹣4x<8﹣28,合并同类项得,﹣5x<﹣20,系数化为1得,x>4.(58)去括号得,10﹣4x+12≥2x﹣2,移项得,﹣4x﹣2x≥﹣2﹣10﹣12,合并同类项得,﹣6x≥﹣24,系数化为1得,x≤4.(59)去括号得,3x﹣6x+12>x﹣3x+9,移项得,x﹣6x﹣x+4x>9﹣12,合并同类项得,﹣3x>﹣3,系数化为1得,x<1.(60)去分母得,(2x﹣1)+3x﹣3+(1﹣2x)≤0,去括号得,2x﹣1+3x﹣3+1﹣2x≤0,移项得,2x+3x﹣2x≤3+1﹣1,合并同类项得,3x≤3,系数化为1得,x>1.(61)去分母得,﹣10y﹣5(y﹣1)≥20﹣2(y+2),去括号得,﹣10y﹣5y+5≥20﹣2y﹣4,移项得,﹣10y﹣5y+2y≥20﹣4﹣5,合并同类项得,﹣13y≥11,系数化为1得,y ≤﹣.(62)去分母得,2(3x+2)﹣(7x﹣3)>16,去括号得,6x+4﹣7x+3>16,移项得,6x﹣7x>16﹣4﹣3,合并同类项得,﹣x>9,系数化为1得,x<﹣9(63)由原不等式,得x2+x>x2﹣4x+4,移项、合并同类项,得5x>4,不等式两边同时除以5,得x >,即原不等式的解集是x >;(64)由原不等式,得﹣17x+1<12﹣10x,移项、合并同类项,得﹣7x<11,不等式两边同时除以﹣7(不等号的方向发生改变),得x >﹣,即原不等式的解集是x >﹣(65)去括号,得:3y﹣9<7y﹣4,移项,得:3y﹣7y<9﹣4,即﹣4y<5,;(66)﹣21<6﹣3x≤9两边同时减去6再除以﹣3,不等号的方向改变,得:﹣1≤x<9(67)去分母得,2(1﹣2x)≥4﹣3x,去括号得,2﹣4x≥4﹣3x,移项得,﹣4x+3x≥4﹣2,合并同类项得,﹣x≥2,化系数为1得,x≤﹣2;(68)去分母得,2(x+4)﹣3(3x﹣1)<6,去括号得,2x+8﹣9x+3<6,移项得,2x﹣9x<6﹣8﹣3,合并同类项得,﹣7x<﹣5,化系数为1得,x >;(69)去括号得,0.5x+3﹣0.6x≥0.4x﹣0.6,移项得,0.5x﹣0.6x﹣0.4x≥﹣0.6﹣3,合并同类项得,﹣0.5x≥﹣3.6,化系数为1得,x≤7.2.(70)去分母得,6x﹣3x﹣(x+8)<6﹣2(x+1),去括号得,6x﹣3x﹣x﹣8<6﹣2x﹣2,移项得,6x﹣3x﹣x+2x<6﹣2+8,合并同类项得,4x<12,化系数为1得,x<3;(71)去括号得,2x﹣2x+2+4<1﹣x,移项得,2x﹣2x+x<1﹣2﹣4,合并同类项得,x<﹣5;(72)去分母得,2(2x﹣1)﹣3(5x+1)≤6,去括号得,4x﹣2﹣15x﹣3≤6,移项得,4x﹣15x≤6+2+3,合并同类项得,﹣11x≤11,化系数为1得,x≥﹣1(73)移项合并得:﹣2x<4,解得:x>﹣2;(74)去分母得:3(x+5)﹣2(2x+3)≥12,去括号得:3x+15﹣4x﹣6≥12,移项合并得:﹣x≥3,解得:x≤﹣3(75)原不等式的两边同时乘以6,得2x+6>21﹣3x,移项,合并同类项,得5x>15,不等式的两边同时除以5,得x>3,∴原不等式的解集是x>3.(76)原不等式的两边同时乘以6,得8x+2≤14﹣x,移项,合并同类项,得9x≤16,不等式的两边同时除以9,得x≤;所以,原不等式的解集是x≤;(77)原不等式的两边同时乘以6,得8﹣2x≤9,移项,合并同类项,得﹣2x≤1,不等式的两边同时除以﹣2,得x≥﹣,所以,原不等式的解集是x≥﹣(78)移项得,3x≤9,x的系数化为1得,x≤3.(79)移项得,2x﹣5x<﹣2+5,合并同类项得,﹣3x<3,把x的系数化为1得,x>﹣1.。

(完整版)一元一次不等式应用题附答案

(完整版)一元一次不等式应用题附答案

郭氏数学内部资料一元一次不等式应用题〔1〕附答案修筑高速公路经过某村,需搬迁一批农户,为了节约土地资源和保持环境,政府统一规划搬迁建房区域,规划要求区域内绿色环境占地面积不得低于区域总面积的20%,假设搬迁农民建房每户占地150m2,那么绿色环境面积还占总面积的40%;政府又鼓励其他有积蓄的农户到规划区域建房,这样又有20户参加建房,假设仍以每户占地150m2计算,那么这时绿色环境面积只占总面积的15%,为了符合规划要求,又需要退出局部农户。

〔1〕最初需搬迁的农户有多少户?政府规划的建房区域总面积是多少?〔2〕为了保证绿色环境占地面积不少于区域总面积的 20%,至少需要退出农户几户?某公司为了扩大经营,决定购进6台机器用于生产某种活塞。

现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示。

经过预算,本次购置机器所耗资金不能超过34万元。

甲乙价格〔万元/台〕 7 5每台日产量〔个〕100 60〔1〕按该公司要求可以有几种购置方案?〔2〕假设该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种方案?3.有10名菜农,每人可种甲种蔬菜3亩或乙种蔬菜2亩,甲种蔬菜每亩可收入万元,乙种蔬菜每亩可收入万元,假设使总收入不低于万,那么最多只能安排多少人种甲种蔬菜?4.小杰到学校食堂买饭,看到A、B两窗口前面排队的人一样多〔设为a人,a>8〕,就站到A窗口队伍的后面.过了2分钟,他发现A窗口每分钟有4人买了饭离开队伍,B窗口每分钟有6人买了饭离开队伍,且B窗口队伍后面每分钟增加5人.〔1〕此时,假设小杰继续在A窗口排队,那么他到达窗口所花的时间是多少〔用含a的代数式表示〕?〔2〕此时,假设小杰迅速从A窗口队伍转移到B窗口队伍后面重新排队,且到达B窗口所花1郭氏数学内部资料的时间比继续在A窗口排队到达A窗口所花的时间少,求a的取值范围〔不考虑其他因素〕.A B小明在上午8:20分步行出发去春游,10:20小刚在同一地骑自行车出发,小明每小时走4千米,小刚要在11点前追上小明,小刚的速度应至少是多少?某厂原定方案年产某种机器1000台,现在改良了技术,准备力争提前超额完成,但开始的三个月内,由于工人不熟悉新技术,只生产100台机器,问以后每个月至少要生产多少台?学校图书馆有15万册图书需要搬迁,原准备每天在一个班级的劳动课上,安排一个小组同学帮助搬运图书,两天共搬了万册。

一元一次不等式典型例题

一元一次不等式典型例题

一元一次不等式典型例题类型一:一元一次不等式的解集问题1.若不等式﹣3x+n>0的解集是x<2,则不等式﹣3x+n<0的解集是.2.已知实数x、y满足2x﹣3y=4,并且x≥﹣1,y<2,现有k=x﹣y,则k的取值范围是.3.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为________4.若关于x的一元一次方程x﹣m+2=0的解是负数,则m的取值范围是_______ 类型二:一元一次不等式组无解的情况1.若关于x的一元一次不等式组无解,则a的取值范围是.2.已知不等式组无解,则a的取值范围是3.已知关于x的不等式组无解,则a的取值范围是类型三:明确一元一次不等式组的解集求范围1.若不等式的解集为x>3,则a的取值范围是2.若关于x的不等式的解集为x<2,则a的取值范围是.3.若关于x的一元一次不等式组的解集是x<5,则m的取值范围是________4.若不等式组的解集为﹣1<x<1,那么(a+1)(b﹣1)的值等于5.已知不等式组的解集为﹣1<x<2,则(m+n)2008=类型四:一元一次不等式组有解求未知数的范围1.若有解,则a的取值范围是2.若关于x的不等式组有实数解,则a的取值范围是3._______类型五:一元一次不等式组有整数解求范围1.不等式组有3个整数解,则m的取值范围是.2.不等式组有3个整数解,则m的取值范围是.3.已知关于x的不等式组仅有三个整数解,则a的取值范围是.4.关于x的不等式组的所有整数解的和是﹣7,则m的取值范围是.5.关于x的不等式组的解集中至少有5个整数解,则正数a的最小值是______6.已知关于x的不等式组恰好有两个整数解,求实数a的取值范围.7.已知关于x的不等式组有四个整数解,求实数a的取值范围.类型六:一元一次不等式(组)应用题1.分配问题(1)学校现有若干个房间分配给初三(1)班的男生住宿,已知该班男生不足50人,若每间住4人,则余15人无住处;若每间住6人,则恰有一间不空也不满(其余均住满).那么该班的男生人数是多少人.2.一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若每人分4件,则最后一人最多分3件,问小朋友的人数至少有多少人。

解一元一次不等式专项练习50题有答案ok

解一元一次不等式专项练习50题有答案ok

解一元一次不等式专项练习50题〔有答案〕1.,2.﹣〔*﹣1〕≤1,3.﹣1>.4.*+2<,5..6.,7.≥,8.9.10.>,11.,12..13.,14. 3*﹣,15.3〔*﹣1〕+2≥2〔*﹣3〕.16.,17.10﹣4〔*﹣4〕≤2〔*﹣1〕,18.﹣1<.19..20.≤.21.,22.,23.≥.24.>1.25..26.,27.≥,28.;29..30.≤31.,32.〔*+1〕≤2﹣*33.2〔5*+3〕≤*﹣3〔1﹣2*〕34.≤+1.35.;36..37..38.4*+3≥3*+5.39.2〔*+2〕≥4〔*﹣1〕+7.40.>*﹣141.2〔3﹣*〕<*﹣3.42.3〔*+2〕≤5〔*﹣1〕+7,43.1﹣≥44.2〔*+3〕﹣4*>3﹣*.45.2〔1﹣2*〕+5≤3〔2﹣*〕46.,47..48.2﹣>3+.49.4〔*+3〕﹣<2〔2﹣*〕﹣〔*﹣〕50..解不等式50题参考答案:1.解:去分母得:3〔*+1〕>2*+6,去括号得:3*+3>2*+6,移项、合并同类项得:*>3,∴不等式的解集为*>32.解:去分母得:*+1﹣2〔*﹣1〕≤2,∴*+1﹣2*+2≤2,移项、合并同类项得:﹣*≤﹣1,不等式的两边都除以﹣1得:*≥13.解:去分母得2〔*+4〕﹣6>3〔3*﹣1〕,去括号得2*+8﹣6>9*﹣3,移项得2*﹣9*>﹣3﹣8+6,合并同类项得﹣7*>﹣5,化系数为1得*<4.解;*+2<,去分母得:3*+6<4*+7,移项、合并同类项得:﹣*<1,不等式的两边都除以﹣1得:*>﹣1,∴不等式的解集是*>﹣15.解:去分母,得6*+2〔*+1〕≤6﹣〔*﹣14〕去括号,得6*+2*+2≤6﹣*+14…〔3分〕移项,合并同类项,得9*≤18 …〔5分〕两边都除以9,得*≤26.解:去分母得:2〔2*﹣3〕>3〔3*﹣2〕去括号得:4*﹣6>9*﹣6移项合并同类项得:﹣5*>0∴*<07.解:去分母得,3〔3*﹣4〕+30≥2〔*+2〕,去括号得,9*﹣12+30≥2*+4,移项,合并同类项得,7*≥﹣14,系数化为1得,*>﹣28.解:*﹣3<24﹣2〔3﹣4*〕,*﹣3<24﹣6+8*,*﹣8*<24﹣6+3,﹣7*<21,*>﹣39.解:化简原不等式可得:6〔3*﹣1〕≤〔10*+5〕﹣6,即8*≥﹣16,可求得*≥﹣210.解:去分母,得3〔*+1〕﹣8>4〔*﹣5〕﹣8*,去括号,得3*+3﹣8>4*﹣20﹣8*,移项、合并同类项,得7*>﹣15,系数化为1,得*>﹣11.解:去分母,得*+5﹣2<3*+2,移项,得*﹣3*<2+2﹣5,合并同类项,得﹣2*<﹣1,化系数为1,得*>12.解:去分母,得3〔*+1〕≥2〔2*+1〕+6,去括号,得3*+3≥4*+2+6,移项、合并同类项,得﹣*≥5,系数化为1,得*≤﹣513.解:去分母,得2〔2*﹣1〕﹣24>﹣3〔*+4〕,去括号,得4*﹣2﹣24>﹣3*﹣12,移项、合并同类项,得7*>14,两边都除以7,得*>214.解:去分母得,6*﹣1<2*+7,移项得,6*﹣2*<7+1,合并同类项得,4*<8,化系数为1得,*<215.解:3〔*﹣1〕+2≥2〔*﹣3〕,去括号得:3*﹣3+2≥2*﹣6,移项得:3*﹣2*≥﹣6+3﹣2,解得:*≥﹣516.解:去分母得:2〔*﹣1〕﹣3〔*+4〕>﹣12,去括号得:2*﹣2﹣3*﹣12>﹣12,移项得:2*﹣3*>﹣12+2+12,合并得:﹣*>2,解得:*<﹣217.解:去括号得:10﹣4*+16≤2*﹣2,移项合并得:﹣6*≤﹣28,解得:*≥18.解:去分母得,3〔*+5〕﹣6<2〔3*+2〕,去括号得,3*+15﹣6<6*+4,移项、合并同类项得,5<3*,把*的系数化为1得*>.19.解:∵∴3〔*+5〕﹣6<2〔3*+2〕∴3*+15﹣6<6*+4∴3*﹣6*<4﹣15+6∴﹣3*<﹣5∴*20.解:去分母得30﹣2〔2﹣3*〕≤5〔1+*〕,去括号得30﹣4+6*≤5+5*,移项得6*﹣5*≤5+4﹣30,合并得*≤﹣2121.解:去分母得,2〔2*﹣1〕﹣6*<3*+3,去括号得,4*﹣2﹣6*<3*+3,移项得,4*﹣6*﹣3*<3+2,合并同类项得,﹣5*<5,-系数化为1得,*>﹣1.故此不等式的解集为:*>﹣122.解:去分母得,2〔2*﹣5〕>3〔3*+4〕+18,去括号得,4*﹣10>9*+12+18,移项得,4*﹣9*>12+18+10,合并同类项得,﹣5*>40,系数化为1得,*<﹣823.解:≥1﹣,去分母得:2〔2*﹣1〕≥6﹣3〔5﹣*〕,去括号得:4*﹣2≥6﹣15+3*,移项合并得:*≥﹣724.解:原不等式可变为:2〔*+4〕﹣3〔3*﹣1〕>6,2*+8﹣9*+3>6,﹣7*>﹣5,*<25.解:原不等式可化为,6〔2*﹣1〕≥10*+1,去分母得,12*﹣6≥10*+1,合并同类项得,2*≥7,把系数化为1得,*≥26.解:去分母得,2〔2*﹣1〕﹣6≤3〔5*﹣1〕,去括号得,4*﹣2﹣6≤15*﹣3,移项得,4*﹣15*≤﹣3+2+6,合并同类项得,﹣11*≤5,化系数为1得,*≥﹣27.解:去分母,得32﹣2〔3*﹣1〕≥5〔*+3〕+8;去括号,得32﹣6*+2≥5*+15+8;移项,得﹣6*﹣5*≥15+8﹣32﹣2;合并同类项,得﹣11*≥﹣11;系数化为1,得*≤128.解:〔1〕在不等式的左右两边同乘以2得,〔3﹣*〕﹣6≥0,解得:*≤﹣3,29. 〔2〕在不等式的左右两边同乘以12得,6〔2*﹣1〕﹣4〔2*+5〕<3〔6*﹣7〕,解得:*30.解:不等式两边都乘以8得,32﹣2〔3*﹣1〕≤5〔*+3〕+8,去括号得,32﹣6*+2≤5*+15+8,移项得,11≤6*+5*,∴*≥131.解:∵,∴12*﹣6﹣8*﹣20<18*﹣21﹣12,∴14*>7,∴32.解:不等式两边同时乘以2,得:*+1≤4﹣2*,移项,得:*+2*≤4﹣1,合并同类项,得:3*≤3,解得:*≤133.解:去括号得,10*+6≤*﹣3+6*,移项合并同类项得,3*≤﹣9,解得*≤﹣334.解:去分母,得3〔*+2〕≤4﹣*+6〔2分〕去括号,得3*+6≤4﹣*+6移项,得3*+*≤4+6﹣6〔4分〕合并同类项,得4*≤4两边同除以4,得*≤135.解:〔1〕去分母,得5〔*﹣1〕>2〔3*+1〕,去括号,得5*﹣5>6*+2,移项,得5*﹣6*>2+5,合并同类项,得﹣*>7,系数化为1,得*<﹣7.36. 去分母,得5〔3*+1〕﹣3〔7*﹣3〕≤30+2〔*﹣2〕,去括号,得15*+5﹣21*+9≤30+2*﹣4,移项,得15*﹣21*﹣2*≤30﹣4﹣5﹣9,合并同类项,得﹣8*≤12,系数化为1,得*≥﹣1.537.解:原不等式的两边同时乘以4,并整理得*﹣7<3*﹣2,移项,得﹣2*<5,不等式的两边同时除以﹣2〔不等式的符号的方向发生改变〕,得*>,故原不等式的解集是*>38.4*+3≥3*+5.解:移项、合并得*≥2.39.解:2〔*+2〕≥4〔*﹣1〕+7,2*+4≥4*﹣4+7,2*﹣4*≥﹣4+7﹣4,﹣2*≥﹣1,40.解:去分母得1+2*>3*﹣3,移项得2*﹣3*>﹣3﹣1,合并同类项得﹣*>﹣4,解得*<441.解:去括号,得6﹣2*<*﹣3,移项、合并同类项,得﹣3*<﹣9,-化系数为1,得*>342.解:去括号得,3*+6≤5*﹣5+7,移项得,3*﹣5*≤2﹣6,合并同类项得,﹣2*≤﹣4系数化为1,得*≥243.解:去分母,原不等式的两边同时乘以6,得6﹣3*+1≥2*+2,移项、合并同类项,得5*≤5,不等式的两边同时除以5,得*≤144.解:去括号,得:2*+6﹣4*>3﹣*,移项,得:2*﹣4*+*>﹣6,合并同类项,得:﹣*>﹣6,则*<645.解:去括号,得:2﹣4*+5≤6﹣3*,移项,得:﹣4*+3*≤6﹣2﹣5,合并同类项,得﹣*≤1,解得*≥﹣146.解;去分母得:*+1﹣6≤6*移项得:*﹣6*≤6﹣1合并同类项得:﹣5*≤5系数化1得:*≥﹣147.解:去分母得:7*+4﹣12>12〔*+1〕,去括号得:7*+4﹣12>12*+12,移项得:7*﹣12*>12+12﹣4,合并同类项得:﹣5*>20,系数化为1得:*<﹣448.解:去分母得:16﹣〔3*﹣2〕>24+2〔*﹣1〕16﹣3*+2>24+2*﹣2﹣3*﹣2*>24﹣2﹣16﹣2﹣5*>4*<﹣49.解;去括号得,4*+12﹣<4﹣2*﹣*+,移项合并同类项得,7*<﹣1,把*的系数化为1得,*<﹣,50.解:不等式的两边同时乘以12,得3〔*+1〕﹣2〔2*﹣3〕≤12,即﹣*+9≤12,不等式的两边同时减去9,得﹣*≤3,不等式的两边同时除以﹣1,得*≥﹣3,∴原不等式的解集是*≥﹣3。

(完整word版)一元一次不等式与一元一次不等式组典型例题

(完整word版)一元一次不等式与一元一次不等式组典型例题

一元一次不等式与一元一次不等式组的解法知识点回顾1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种: “≠”、 “〉” 、 “<" 、 “≥”、 “≤”.2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。

解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。

说明:不等式的解与一元一次方程的解是有区别的,不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值. 3.不等式的基本性质(重点)(1)不等式的两边都加上(或减去)同一个数或同一个整式.不等号的方向不变.如果a b >,那么__a c b c ±±(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.如果,0a b c >>,那么__ac bc (或___a b c c) (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.如果a b >,0c <那么__ac bc (或___a b c c) 说明:常见不等式所表示的基本语言与含义还有:①若a -b >0,则a 大于b ;②若a -b <0,则a 小于b ;③若a -b ≥0,则a 不小于b ;④若a -b ≤0,则a 不大于b ;⑤若ab >0或0a b>,则a 、b 同号;⑥若ab <0或0ab <,则a 、b 异号.任意两个实数a 、b 的大小关系:①a -b 〉O ⇔a>b;②a—b=O ⇔a=b;③a-b 〈O ⇔a<b .不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c 。

4.一元一次不等式(重点)只含有一个未知数,且未知数的次数是1.系数不等于0的不等式叫做一元一次不等式. 注:其标准形式:ax+b <0或ax+b ≤0,ax+b >0或ax+b ≥0(a ≠0). 5.解一元一次不等式的一般步骤(重难点)(1)去分母;(2)去括号;(3)移项; (4)合并同类项;(5)化系数为1.例:131321≤---x x 解不等式:6.一元一次不等式组含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组.说明:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多.7.一元一次不等式组的解集一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定.8. 不等式组解集的确定方法,可以归纳为以下四种类型(设a 〉b )(重难点)不等式组 图示解集x ax b >⎧⎨>⎩ bax a >(同大取大)x ax b <⎧⎨<⎩ b ax b <(同小取小)x ax b <⎧⎨>⎩ bab x a <<(大小交叉取中间)x ax b >⎧⎨<⎩ba无解(大小分离解为空)9.解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集; (2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.(三)常见题型归纳和经典例题讲解1。

一元一次不等式练习题(打印版)

一元一次不等式练习题(打印版)

一元一次不等式练习题(打印版)### 一元一次不等式练习题题目1:解下列不等式,并写出解集。

\[ 3x - 7 < 2x + 5 \]解答:\[ 3x - 2x < 5 + 7 \]\[ x < 12 \]题目2:解下列不等式,并写出解集。

\[ -4x + 9 > 3x - 6 \]解答:\[ -4x - 3x > -6 - 9 \]\[ -7x > -15 \]\[ x < \frac{15}{7} \]题目3:若不等式 \( ax > 3a \)(其中 \( a > 0 \)),求 \( x \) 的取值范围。

解答:\[ ax > 3a \]\[ x > 3 \](因为 \( a > 0 \))题目4:已知 \( x \) 满足 \( 2x + 1 \geq 5 \),求 \( x \) 的最小值。

解答:\[ 2x \geq 4 \]\[ x \geq 2 \]题目5:一个数的3倍减去5,结果大于这个数的2倍加10,用不等式表示这个关系。

解答:\[ 3x - 5 > 2x + 10 \]题目6:解下列不等式,并写出解集。

\[ \frac{5x}{4} \leq 10 \]解答:\[ 5x \leq 40 \]\[ x \leq 8 \]题目7:若 \( x \) 满足 \( -3x \geq 9 \),求 \( x \) 的取值范围。

解答:\[ -3x \geq 9 \]\[ x \leq -3 \]题目8:解下列不等式,并写出解集。

\[ 5 - 2x > 3x \]解答:\[ 5 > 5x \]\[ x < 1 \]题目9:一个数的一半加上3,结果小于或等于这个数的两倍减去6,用不等式表示这个关系。

解答:\[ \frac{1}{2}x + 3 \leq 2x - 6 \]题目10:解下列不等式,并写出解集。

(完整word版)(732)解一元一次不等式专项练习50题(有答案)ok

(完整word版)(732)解一元一次不等式专项练习50题(有答案)ok

(完整word版)(732)解一元一次不等式专项练习50题(有答案)ok 解一元一次不等式专项练习50题(有答案)1.,2.﹣(x﹣1)≤1,3.﹣1>.4.x+2<,5..6.,7.≥,8.9.10.>,11.,12..(完整word版)(732)解一元一次不等式专项练习50题(有答案)ok 13.,14. 3x ﹣,15.3(x﹣1)+2≥2(x﹣3).16.,17.10﹣4(x﹣4)≤2(x﹣1),18.﹣1<.19..20.≤.21.,22.,23.≥.24.>1.25..26.,(完整word版)(732)解一元一次不等式专项练习50题(有答案)ok 27.≥,28.;29..30.≤31.,32.(x+1)≤2﹣x33.2(5x+3)≤x﹣3(1﹣2x)34.≤+1.35.;36..37..38.4x+3≥3x+5.39.2(x+2)≥4(x﹣1)+7.(完整word版)(732)解一元一次不等式专项练习50题(有答案)ok 40.>x﹣141.2(3﹣x)<x﹣3.42.3(x+2)≤5(x﹣1)+7,43.1﹣≥44.2(x+3)﹣4x>3﹣x.45.2(1﹣2x)+5≤3(2﹣x)46.,47..48.2﹣>3+.49.4(x+3)﹣<2(2﹣x)﹣(x ﹣)50..解不等式50题参考答案:1.解:去分母得:3(x+1)>2x+6,去括号得:3x+3>2x+6,移项、合并同类项得:x>3,∴不等式的解集为x>32.解:去分母得:x+1﹣2(x﹣1)≤2,∴x+1﹣2x+2≤2,移项、合并同类项得:﹣x≤﹣1,不等式的两边都除以﹣1得:x≥13.解:去分母得2(x+4)﹣6>3(3x﹣1),去括号得2x+8﹣6>9x﹣3,移项得2x﹣9x>﹣3﹣8+6,合并同类项得﹣7x>﹣5,化系数为1得x <4.解;x+2<,去分母得:3x+6<4x+7,移项、合并同类项得:﹣x<1,不等式的两边都除以﹣1得:x>﹣1,∴不等式的解集是x>﹣15.解:去分母,得6x+2(x+1)≤6﹣(x﹣14)去括号,得6x+2x+2≤6﹣x+14…(3分)移项,合并同类项,得9x≤18 …(5分)两边都除以9,得x≤26.解:去分母得:2(2x﹣3)>3(3x﹣2)去括号得:4x﹣6>9x﹣6移项合并同类项得:﹣5x>0∴x<07.解:去分母得,3(3x﹣4)+30≥2(x+2),去括号得,9x﹣12+30≥2x+4,移项,合并同类项得,7x≥﹣14,系数化为1得,x>﹣28.解:x﹣3<24﹣2(3﹣4x),x﹣3<24﹣6+8x,x﹣8x<24﹣6+3,﹣7x<21,x>﹣39.解:化简原不等式可得:6(3x﹣1)≤(10x+5)﹣6,即8x≥﹣16,可求得x≥﹣210.解:去分母,得3(x+1)﹣8>4(x﹣5)﹣8x,去括号,得3x+3﹣8>4x﹣20﹣8x,移项、合并同类项,得7x>﹣15,系数化为1,得x >﹣11.解:去分母,得x+5﹣2<3x+2,移项,得x﹣3x<2+2﹣5,合并同类项,得﹣2x<﹣1,化系数为1,得x >12.解:去分母,得3(x+1)≥2(2x+1)+6,去括号,得3x+3≥4x+2+6,移项、合并同类项,得﹣x≥5,系数化为1,得x≤﹣513.解:去分母,得2(2x﹣1)﹣24>﹣3(x+4),去括号,得4x﹣2﹣24>﹣3x﹣12,移项、合并同类项,得7x>14,两边都除以7,得x>214.解:去分母得,6x﹣1<2x+7,移项得,6x﹣2x<7+1,合并同类项得,4x<8,化系数为1得,x<215.解:3(x﹣1)+2≥2(x﹣3),去括号得:3x﹣3+2≥2x﹣6,移项得:3x﹣2x≥﹣6+3﹣2,解得:x≥﹣516.解:去分母得:2(x﹣1)﹣3(x+4)>﹣12,去括号得:2x﹣2﹣3x﹣12>﹣12,移项得:2x﹣3x>﹣12+2+12,合并得:﹣x>2,解得:x<﹣217.解:去括号得:10﹣4x+16≤2x﹣2,移项合并得:﹣6x≤﹣28,解得:x≥18.解:去分母得,3(x+5)﹣6<2(3x+2),去括号得,3x+15﹣6<6x+4,移项、合并同类项得,5<3x,把x的系数化为1得x >.19.解:∵∴3(x+5)﹣6<2(3x+2)∴3x+15﹣6<6x+4∴3x﹣6x<4﹣15+6∴﹣3x<﹣5∴x20.解:去分母得30﹣2(2﹣3x)≤5(1+x),去括号得30﹣4+6x≤5+5x,移项得6x﹣5x≤5+4﹣30,合并得x≤﹣2121.解:去分母得,2(2x﹣1)﹣6x<3x+3,去括号得,4x﹣2﹣6x<3x+3,移项得,4x﹣6x﹣3x<3+2,合并同类项得,﹣5x<5,系数化为1得,x>﹣1.故此不等式的解集为:x>﹣122.解:去分母得,2(2x﹣5)>3(3x+4)+18,去括号得,4x﹣10>9x+12+18,移项得,4x﹣9x>12+18+10,合并同类项得,﹣5x>40,系数化为1得,x<﹣823.解:≥1﹣,去分母得:2(2x﹣1)≥6﹣3(5﹣x),去括号得:4x﹣2≥6﹣15+3x,移项合并得:x≥﹣724.解:原不等式可变为:2(x+4)﹣3(3x﹣1)>6,2x+8﹣9x+3>6,﹣7x>﹣5,x <25.解:原不等式可化为,6(2x﹣1)≥10x+1,去分母得,12x﹣6≥10x+1,合并同类项得,2x≥7,把系数化为1得,x≥26.解:去分母得,2(2x﹣1)﹣6≤3(5x﹣1),去括号得,4x﹣2﹣6≤15x﹣3,移项得,4x﹣15x≤﹣3+2+6,合并同类项得,﹣11x≤5,化系数为1得,x≥﹣27.解:去分母,得32﹣2(3x﹣1)≥5(x+3)+8;去括号,得32﹣6x+2≥5x+15+8;移项,得﹣6x﹣5x≥15+8﹣32﹣2;合并同类项,得﹣11x≥﹣11;系数化为1,得x≤128.解:(1)在不等式的左右两边同乘以2得,(3﹣x)﹣6≥0,解得:x≤﹣3,29. (2)在不等式的左右两边同乘以12得,6(2x﹣1)﹣4(2x+5)<3(6x﹣7),解得:x30.解:不等式两边都乘以8得,32﹣2(3x﹣1)≤5(x+3)+8,去括号得,32﹣6x+2≤5x+15+8,移项得,11≤6x+5x,∴x≥131.解:∵,∴12x﹣6﹣8x﹣20<18x﹣21﹣12,∴14x>7,∴32.解:不等式两边同时乘以2,得:x+1≤4﹣2x,移项,得:x+2x≤4﹣1,合并同类项,得:3x≤3,解得:x≤133.解:去括号得,10x+6≤x﹣3+6x,移项合并同类项得,3x≤﹣9,解得x≤﹣334.解:去分母,得3(x+2)≤4﹣x+6(2分)去括号,得3x+6≤4﹣x+6移项,得3x+x≤4+6﹣6(4分)合并同类项,得4x≤4两边同除以4,得x≤135.解:(1)去分母,得5(x﹣1)>2(3x+1),去括号,得5x﹣5>6x+2,移项,得5x﹣6x>2+5,合并同类项,得﹣x>7,系数化为1,得x<﹣7.36. 去分母,得5(3x+1)﹣3(7x﹣3)≤30+2(x ﹣2),去括号,得15x+5﹣21x+9≤30+2x﹣4,移项,得15x﹣21x﹣2x≤30﹣4﹣5﹣9,合并同类项,得﹣8x≤12,系数化为1,得x≥﹣1.537.解:原不等式的两边同时乘以4,并整理得x﹣7<3x﹣2,移项,得﹣2x<5,不等式的两边同时除以﹣2(不等式的符号的方向发生改变),得x >,故原不等式的解集是x >38.4x+3≥3x+5.解:移项、合并得x≥2.39.解:2(x+2)≥4(x﹣1)+7,2x+4≥4x﹣4+7,2x﹣4x≥﹣4+7﹣4,﹣2x≥﹣1,40.解:去分母得1+2x>3x﹣3,移项得2x﹣3x>﹣3﹣1,合并同类项得﹣x>﹣4,解得x<441.解:去括号,得6﹣2x<x﹣3,移项、合并同类项,得﹣3x<﹣9,化系数为1,得x>342.解:去括号得,3x+6≤5x﹣5+7,移项得,3x﹣5x≤2﹣6,合并同类项得,﹣2x≤﹣4系数化为1,得x≥243.解:去分母,原不等式的两边同时乘以6,得6﹣3x+1≥2x+2,移项、合并同类项,得5x≤5,不等式的两边同时除以5,得x≤144.解:去括号,得:2x+6﹣4x>3﹣x,移项,得:2x﹣4x+x>﹣6,合并同类项,得:﹣x>﹣6,则x<645.解:去括号,得:2﹣4x+5≤6﹣3x,移项,得:﹣4x+3x≤6﹣2﹣5,合并同类项,得﹣x≤1,解得x≥﹣146.解;去分母得:x+1﹣6≤6x移项得:x﹣6x≤6﹣1合并同类项得:﹣5x≤5系数化1得:x≥﹣147.解:去分母得:7x+4﹣12>12(x+1),去括号得:7x+4﹣12>12x+12,移项得:7x﹣12x>12+12﹣4,合并同类项得:﹣5x>20,系数化为1得:x<﹣448.解:去分母得:16﹣(3x﹣2)>24+2(x﹣1)16﹣3x+2>24+2x﹣2﹣3x﹣2x>24﹣2﹣16﹣2﹣5x>4x <﹣49.解;去括号得,4x+12﹣<4﹣2x﹣x+,移项合并同类项得,7x<﹣1,把x的系数化为1得,x <﹣,50.解:不等式的两边同时乘以12,得3(x+1)﹣2(2x﹣3)≤12,即﹣x+9≤12,不等式的两边同时减去9,得﹣x≤3,不等式的两边同时除以﹣1,得x≥﹣3,∴原不等式的解集是x≥﹣3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次不等式典型例题
类型一:一元一次不等式的解集问题
1.若不等式﹣3x+n>0的解集是x<2,则不等式﹣3x+n<0的解集是.
2.已知实数x、y满足2x﹣3y=4,并且x≥﹣1,y<2,现有k=x﹣y,则k的取值范围是.
3.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为________
4.若关于x的一元一次方程x﹣m+2=0的解是负数,则m的取值范围是_______类型二:一元一次不等式组无解的情况
1.若关于x的一元一次不等式组无解,则a的取值范围是.
2.已知不等式组无解,则a的取值范围是
3.已知关于x的不等式组无解,则a的取值范围是
类型三:明确一元一次不等式组的解集求范围
1.若不等式的解集为x>3,则a的取值范围是
2.若关于x的不等式的解集为x<2,则a的取值范围是.
3.若关于x的一元一次不等式组的解集是x<5,则m的取值范围是________
4.若不等式组的解集为﹣1<x<1,那么(a+1)(b﹣1)的值等于
5.已知不等式组的解集为﹣1<x<2,则(m+n)2008=
类型四:一元一次不等式组有解求未知数的范围
1.若有解,则a的取值范围是
2.若关于x的不等式组有实数解,则a的取值范围是
3._______
类型五:一元一次不等式组有整数解求范围
1.不等式组有3个整数解,则m的取值范围是.
2.不等式组有3个整数解,则m的取值范围是.
3.已知关于x的不等式组仅有三个整数解,则a的取值范围是.
4.关于x的不等式组的所有整数解的和是﹣7,则m的取值范围是.
5.关于x的不等式组的解集中至少有5个整数解,则正数a的最小值是______
6.已知关于x的不等式组恰好有两个整数解,求实数a的取值范围.
7.已知关于x的不等式组有四个整数解,求实数a的取值范围.
类型六:一元一次不等式(组)应用题
1.分配问题
(1)学校现有若干个房间分配给初三(1)班的男生住宿,已知该班男生不足50人,若每间住4人,则余15人无住处;若每间住6人,则恰有一间不空也不满(其余均住满).那么该班的男生人数是多少人.
2.一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若每人分4件,则最后一人最多分3件,问小朋友的人数至少有多少人。

3.把若干颗花生分给若干只猴子,如果每只猴子分3颗,则剩下8颗,如每只猴子分5颗,则最后一只猴子分到勒花生但不足5颗,问猴子有多少只,花生有多少颗。

2.积分问题
在一次“人与自然”知识竞赛中,竞赛试题共有25道题.每道题都给出4个答案,其中只有一个答案正确.要求学生把正确答案选出来.每道题选对得4分,不选或选错倒扣2分.如果一个学生在本次竞赛中的得分不低于60分,那么,他至少选对了多少道题.
3.打折利润问题
某商品进价为1000元,售价为1500元,由于销售情况不好,商店决定降价出售,但又要保证利润率不低于5%,那么商店最多降多少元出售此商品.
4.其他问题
1.2011年4月25日,全国人大常委会公布《中华人民共和国个人所得税法修正案(草案)》,向社会公开征集意见.草案规定,公民全月工薪不超过3000元的部分不必纳税,超过3000元的部分为全月应纳税所得额.此项税款按下表分段累进计算.
级数全月应纳税所得额税率
1不超过1500元的部分5%
10%
2超过1500元至4500元的部

20%
3超过4500元至9000元的部

………
依据草案规定,解答下列问题:
(1)李工程师的月工薪为8000元,则他每月应当纳税多少元?
(2)若某纳税人的月工薪不超过10000元,他每月的纳税金额能超过月工薪的8%吗?若能,请给出该纳税人的月工薪范围;若不能,请说明理由.
2.为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?
(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?
3.天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,(1)求购买A型和B型公交车每辆各需多少万元?
(2)预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?。

相关文档
最新文档