ansys结构优化设计
基于ansys结构优化
题目:基于ansys的悬臂梁机构优化专业:班级:学号:姓名:2014年1月绪论在钢结构工[程中,钢材的用量是非常巨大的,这其中不免会存在材料安全储备太高,过于浪费的情况。
如何在保证结构安全的情况下,减少钢材用量,降低成本,这正是本文研究的意义所在。
结构优化设计是在满足各种规范或某些特定要求的条件下,使结构的某种指标(如重量、造价、刚度或频率等)达到最佳的设计方法。
该方法最早应片j在航空工程中,随着计算机的快速发展,很快推广到机械、土木、水利等工程领域。
它的出现使没计者从被动的分析、校核进入主动的设计,这是结构设计上的一次飞跃。
ANSYS作为大型工程汁算软件,其模拟分析功能非常强大,掌握并使用ANSYS对结构进行模拟、计算、优化,对提高材料利用率、减少成本,是很有效的。
本文基于ANSYS的结构设计优化,在ansys workbench中对悬臂梁结构进行优化。
1问题描述一根悬臂梁长度为300mm,高度为15mm,宽度为40mm。
材料为结构钢,弹性模量E=200Gpa,泊松比u=0.3,屈服极限δ=250Mpa。
悬臂梁一端固定,另一端施加有垂直于悬臂梁90N的力。
假设悬臂梁高度10为变直径,垂直于悬臂梁的90N为变力进行优化设计,以得到尽量小的质量,同时合理的的安全系数。
几何模型如图1所示。
其中,悬臂梁高度及受力为变量,高度范围从10mm到20mm,力范围从70N到110N。
安全系数为2以上,悬臂梁质量尽可能小。
图1 几何模型图2 一端受固定约束图3 另一端受90N力2优化步骤2.1最初的分析结果最初的质量为1.413kg,最初的3张图显示当悬臂梁的高度为15mm,端部受力为90N的结果,明显安全系数过大。
图4等效应力图5总变形图6安全系数2.2设置输入输出参量2.2.1输入参量悬臂梁高度,悬臂梁端部受力悬臂梁高度和悬臂梁端部受力需要定义为变量。
首先从主界面打开Design Modeler,然后展开XYplane,接着点亮Sketch1。
基于ANSYS的结构优化设计方法
结构 的优化设计一直都是工程界 结构 设计理论和方法研究 领域 的热 门话题 。传统 的结构设 计方法是设计院根据经验和判 断提 出设计方案 , 随后用力学理论对选定 的方案进 行力学分析、 研 究和校核 。若方 案不满 足承载 能力极限状态或正常使用极 限 状态 ,再人工调整 设计变量 ,结构形式,重新进行分析 、研 究 和校核 ,效率低 下,并且得 到的结构往往只是可行方案 ,不是 最优设计 。 随着计算机技 术的发展,工程结构复杂性增加 ,传统 的设 计 方法 已经 不能满足 结构需要 。近 年来 ,基 因 ( 遗传 )算法 、 猴 王算法及 离散梯度法 等新型算法 又相继 引入优化设 计领域 , 扩大 了优 化设计的基础理论涉及面 。在优化设计 中引入计算 机 和 成熟 的商品软件 ,使 结构优化 设计的求解 程序化 、可视化 , 激 发设计人员的求解兴趣 ,使得传统 的优化设计增 添了新的活 力。本文介绍 了有 限元分析软件 ANS YS在结构优化设计 中的 应用 ,使概念更具体化和形象化 ,提 高了设计 人员分析 问题的 基本技能和计算机操作与软件应用 的能力 。 1优化设计的数学模型
公式 ( 1 ) j = 、 . 2 . . n
≤ ( x ) ≤ ,i =1 , 2 , …, F r /
2 A N S Y S的结构优化算法 A NS YS软 件将有 限元分析技 术与优 化方法相 结合 ,从而 构成 了基 于有 限元分析技术的优化设计 ,设计人 员只要 掌握涉 及 问题 的相 关工程背 景,能将工程 实际 问题 转化为优 化模型 , 就可 以利用 A NS YS软件 完成该 问题 的优化设计 ,从 而减 少 了 优化设计中的编程部分 ,大大减少 了优化设计 的时间与难度 。 A NS Y S提供 了两个优化 算法 : 零 阶方法 和一阶方法 。优 化设计的计算过程 中,需计算 目 标 函数 和状态变量的值 ,这些 函数值称为零阶值 ;目标 函数 和状态变量对设计变量 的一 次微 分值 ,称为 一阶值 。同理 ,二次微分值称为二阶值 。一个优化 算法如果 只用到零阶值则称为零阶方法 ( 只用到 因变量 ,而不 用 到它 的偏 导数 ) : 如果用 到一阶值 ( 但不会用到二阶值 ) ,则 称 为一阶方法 ;同理 ,如果会用到二阶值则称为 二阶方法 。在
ANSYS优化设计设计优化技术
ANSYS优化设计设计优化技术ANSYS优化设计是一种基于计算机仿真和数值分析的设计优化方法。
它利用ANSYS软件平台上的多物理场问题求解器和优化算法,对设计进行高效、全面的优化。
通过不断迭代求解和更新设计参数,最终达到设计性能的最优化。
ANSYS优化设计涵盖了多个领域的设计问题,例如结构优化、流体优化、电磁优化等。
在结构优化中,可以通过调整材料属性、几何形状和连接方式等设计参数,使结构在承受最大载荷的同时,尽可能地减少重量和成本。
在流体优化中,可以通过调整流体流动的速度、方向和阻力等设计参数,使流体系统的效率和性能得到最大化。
在电磁优化中,可以通过调整电磁场的分布和强度等设计参数,实现电磁设备的最佳性能。
ANSYS优化设计的核心是优化算法。
ANSYS提供了多种优化算法,包括遗传算法、进化算法、粒子群算法等。
这些算法可以根据设计问题的特点和约束条件选择合适的优化策略,并通过不断地试验和调整设计参数,逐步优化设计方案。
优化设计的目标通常是在一定的约束条件下,使设计满足最大化性能、最小化成本或达到特定的指标要求。
使用ANSYS进行优化设计需要以下几个步骤。
首先,确定优化目标和约束条件。
这包括定义设计的性能要求、约束条件、可变参数范围等。
其次,建立数学模型。
将设计问题转化为数学方程组,并确定相关参数之间的关系。
然后,选择合适的优化算法。
根据设计问题的特点和约束条件,选择合适的优化算法进行求解。
最后,进行多次迭代求解。
根据优化算法的要求,通过不断地更新设计参数,逐步接近最优解。
ANSYS优化设计具有以下优势。
首先,通过仿真和数值分析,可以提前发现并解决设计中的问题,减少试错成本。
其次,可以在多个设计方案中比较和选择最优解,提高设计性能。
第三,使用计算机仿真和优化算法,可以大大缩短设计周期,提高设计效率。
最后,ANSYS提供了丰富的优化设计工具和资源,使设计工程师可以更好地应用和掌握优化设计技术。
总之,ANSYS优化设计是一种基于计算机仿真和数值分析的设计优化方法。
3_ANSYS结构优化设计
结构优化设计方法
结构类型优化 结构类型选为设计变量,如结构选为桁架、 刚架、悬索等
优 化 难 度 大
优 化 效 益 高
拓扑布局优化
拓扑:杆件(离散)或结构子域(连续)的有元 布局:截面、节点、拓扑皆考虑
节点位置优化
节点位置(杆件)或结构形状(连续体) 优 化 难 度 小 优 化 效 益 低
截面优化
该步骤是由OPT处理器来完成,其命令为:/OPT。
3.4 声明优化变量
该步骤指定哪些参数是设计变量,哪些参数是状态参数, 哪些参数是目标函数,允许有不超过60个设计变量和不超 过100个状态变量,但只能有一个目标函数。
3.5 选择优化工具或优化方法
ANSYS提供了一些优化工具和方法,默认方法是单次循 环,指定后续优化的工具和方法的命令为:OPTYPE。
3.8 查看设计序列结果
优化循环结束后,可以用命令或相应的GUI路径来查看 设计序列。如:OPLIST、STATUS、POST1和POST26等。
优化数据流向
4 Ansys优化分析例子
上图是一个两端固定的矩形断面钢梁,其弹性模量E = 200 Gpa,梁的宽度b=100 mm,梁的厚度需要优化设计,设计的 目标是使梁的重量最轻。梁的上表面必须维持水平,但是梁 厚度是可以沿着长度变化的(即梁底的曲线是可以变化的), 但是梁厚度不得低于100 mm也不得超过800 mm。负载方面 考虑一集中载重F、均布力p和自重。另一限制条件是弯曲应 力不能够超过100 MPa。
杆件截面尺寸或杆件性质(如弹性模量)
1 什么是优化设计
1.1 优化设计的数学模型
优化设计简单地来说就是由计算机自动地去计算得到设计参 数,并且同时符合两个要求:第一是限制条件(constraints), 譬如结构物的应力不得超过容许值;第二是某个特定的目标 值(如结构物的总重量、面积、体积、费用)必须最小化或最 大化。可以用下列数学模式来表示优化设计的目的。
基于ANSYS_强度仿真与动力学测试的包装结构优化设计
第44卷第21期包装工程2023年11月PACKAGING ENGINEERING·253·基于ANSYS强度仿真与动力学测试的包装结构优化设计雷鸣1,吴颖1*,彭芳1,王卫华1,张士强1,许诚2(1.苏州城市学院,江苏苏州215104;2.苏州市计量测试院,江苏苏州215100)摘要:目的在保障机械结构强度的前提下,对消费量大的某泵用木包装结构进行优化设计,对机械强度进行CAE有限元仿真,并进行振动跌落冲击测试,以降低成本提高产品价值。
方法首先分析产品的使用功能,设计新型包装方案,将原有铁底板支撑结构优化改为用材更少的V型木质支撑结构,建立力学模型,进行底强度分析以及稳定性计算;然后运用SolidWorks建立3D模型,运用ANSYS Workbench 进行仿真评估;最后生产出新型包装,并根据包装测试标准进行了测试。
结果新的包装结构用V型木质取代了铁底板支撑,节约了100%的铁质包装材料,并通过了冲击振动跌落测试。
优化设计的新包装型式能满足运输过程中的冲击振动跌落等产品保护要求,满足运输稳定性的功能要求。
结论本文以价值工程理念为指导,优化设计的新包装结构,在满足产品功能的同时节约了成本,是价值工程在包装优化领域极好的运用,为机械工程领域包装工程师提供了设计参考和解决方案。
关键词:包装设计;力学强度仿真;优化设计;样品测试;价值工程中图分类号:TH122;TH140.8 文献标识码:A 文章编号:1001-3563(2023)21-0253-07DOI:10.19554/ki.1001-3563.2023.21.031Optimization Design of Packaging Structure Based on Strength Analysis of ANSYS andDynamic Testing VerificationLEI Ming1, WU Ying1*, PENG Fang1, WANG Wei-hua1, ZHANG Shi-qiang1, XU Cheng2(1. Suzhou City University, Jiangsu Suzhou 215104, China; 2. Suzhou Institute of Metrology, Jiangsu Suzhou 215100, China)ABSTRACT: The work aims to optimize the design of wooden packaging structure with a large consumption in a certain type of pump on the premise of ensuring the strength of mechanical structure, simulate the mechanical strength by CAE finite element method and carry out the vibration drop impact test to reduce the cost and improve the product value.Firstly, the use function of the product was analyzed and a new packaging scheme was designed. The original steel support structure was optimized to V-shaped wooden support structure and a mechanical model was established to analyze the bottom strength and calculate the stability. Then, SolidWorks was used to construct a 3D model and ANSYS Workbench was adopted for simulation and evaluation. Finally, a new packaging was produced and tested according to the packaging test standards. The new packaging structure replaced the iron baseboard support with V-shaped wood, saving the cost of iron packaging material 100%, and passed the impact, vibration and drop tests. The optimized design of the new packaging type could meet the protection requirements of the impact and vibration drop during the transportation process and satisfy the functional requirements of transportation stability. Guided by the value engineering, the optimized design of the new packaging structure reduces the cost while achieving the required function, which is an excellent application of value engineering in packaging optimization and provides design reference and solutions for packaging收稿日期:2023-01-10基金项目:2022年教育部高等学校科学研究发展中心中国高校产学研创新基金项目(2022BL082);2022年江苏省高校实验室研究会立项资助研究课题(GS2022BZZ36);2021年度江苏省高等学校基础科学(自然科学)研究面上项目(21KJD460006)·254·包装工程2023年11月engineers in mechanical engineering field.KEY WORDS: packaging design; mechanical strength simulation; optimization design; sample test; value engineering包装在机械制造领域使用量特别大,对包装结构进行优化设计可以极大地节约成本[1]。
基于ANSYS的结构优化设计方法
ωL 1
≤ω1
≤ωU1
( 12 )
因此 ,不但要对结构进行静力分析 ,还要进行模态分析
并判断其一阶固有频率是否满足式 ( 12) 。利用 ANSYS经过
44次迭代 ,得到较理想的结果 。优化过程如表 4所示 。
(下转第 150页 )
四川建筑 第 29 卷 3 期 200 9. 0 6
147
·工 程 结 构 ·
【关键词 】 结构优化 ; 桁架系统 ; 动力优化
【中图分类号 】 TU311. 41 【文献标识码 】 B
在钢结构工程中 ,钢材的用量是非常巨大的 ,这其中不 免会存在材料安全储备太高 ,过于浪费的情况 。如何在保证 结构安全的情况下 ,减少钢材用量 ,降低成本 ,这正是本文研 究的意义所在 。结构优化设计是在满足各种规范或某些特 定要求的条件下 ,使结构的某种指标 (如重量 、造价 、刚度或 频率等 )达到最佳的设计方法 。该方法最早应用在航空工程 中 ,随着计算机的快速发展 ,很快推广到机械 、土木 、水利等 工程领域 。它的出现使设计者从被动的分析 、校核进入主动 的设计 ,这是结构设计上的一次飞跃 [1 ] 。ANSYS作为大型 工程计算软件 ,其模拟分析功能非常强大 ,掌握并使用 AN2 SYS对结构进行模拟 、计算 、优化 ,对提高材料利用率 、减少 成本 ,是很有效的 。
265
341
466
306
59. 2 41. 9 26. 1 0. 01 0. 20 0. 29 0. 17 31. 6 262
264
341
464
296
59. 2 41. 9 26. 1 0. 01 0. 08 0. 28 0. 17 31. 6 262
264
基于ANSYS的车架结构优化设计
基于ANSYS的车架结构优化设计车架结构在汽车工程中起着至关重要的作用,它是支撑整个车辆的骨架,承受着来自地面、悬挂系统和动力系统的力和扭矩。
为了满足车辆的性能要求,提高安全性和降低噪音振动,车架结构需要进行优化设计。
本文将通过使用ANSYS软件进行车架结构优化设计,并详细介绍整个优化设计过程。
第一步是建立车架的有限元模型。
有限元分析是一种以离散化方法来近似连续物体的一种数学方法。
在车架结构的有限元建模中,可以使用SOLID186单元来模拟车架的实体结构。
同时,还需要将汽车的质量、车轮的载荷等加载到有限元模型中。
第二步是进行静态结构分析。
静态结构分析是车架结构优化设计的基础,可以评估车架在不同载荷情况下的应力和变形情况。
在进行静态结构分析之前,需要根据汽车设计标准和车辆使用条件来确定适当的载荷情况。
采用ANSYS软件进行静态结构分析,可以得到车架的应力和变形分布情况。
第三步是进行优化设计。
优化设计是车架结构设计中的重要环节,可以通过调整车架的材料、形状和尺寸等参数来改善车架的性能。
在ANSYS 中,可以使用自动优化工具进行优化设计。
首先,需要定义优化目标函数和约束条件,例如最小化最大应力、最小化车架的质量等。
然后,可以选择不同的优化算法,如遗传算法、粒子群优化等,来最优解。
通过多次迭代和分析,可以逐步得到最优的车架结构。
第四步是验证优化结果。
在优化设计完成后,需要进行验证来确认优化结果的可行性和有效性。
可以对优化后的车架结构进行静态结构分析、模态分析和疲劳寿命分析等,来评估车架的性能和可靠性。
如果结果满足要求,就可以进行后续的制造和测试。
总之,基于ANSYS的车架结构优化设计可以帮助工程师更好地理解和改善车架的性能。
通过使用ANSYS软件进行有限元建模、静态结构分析、优化设计和验证,可以得到最优的车架结构,提高汽车的性能和安全性。
同时,车架结构优化设计还可以减少材料的使用和降低成本,对环境也有积极的意义。
如何用ansys进行优化设计
第一章优化设计什么是优化设计?优化设计是一种寻找确定最优设计方案的技术。
所谓“最优设计”,指的是一种方案可以满足所有的设计要求,而且所需的支出(如重量,面积,体积,应力,费用等)最小。
也就是说,最优设计方案就是一个最有效率的方案。
设计方案的任何方面都是可以优化的,比如说:尺寸(如厚度),形状(如过渡圆角的大小),支撑位置,制造费用,自然频率,材料特性等。
实际上,所有可以参数化的ANSYS选项都可以作优化设计。
(关于ANSYS参数,请参看ANSYS Modeling and Meshing Guide 第十四章。
)ANSYS程序提供了两种优化的方法,这两种方法可以处理绝大多数的优化问题。
零阶方法是一个很完善的处理方法,可以很有效地处理大多数的工程问题。
一阶方法基于目标函数对设计变量的敏感程度,因此更加适合于精确的优化分析。
对于这两种方法,ANSYS程序提供了一系列的分析——评估——修正的循环过程。
就是对于初始设计进行分析,对分析结果就设计要求进行评估,然后修正设计。
这一循环过程重复进行直到所有的设计要求都满足为止。
除了这两种优化方法,ANSYS程序还提供了一系列的优化工具以提高优化过程的效率。
例如,随机优化分析的迭代次数是可以指定的。
随机计算结果的初始值可以作为优化过程的起点数值。
基本概念在介绍优化设计过程之前,我们先给出一些基本的定义:设计变量,状态变量,目标函数,合理和不合理的设计,分析文件,迭代,循环,设计序列等。
我们看以下一个典型的优化设计问题:在以下的约束条件下找出如下矩形截面梁的最小重量:●总应力σ不超过σmax [σ≤σmax]●梁的变形δ不超过δ max[δ≤δmax]●梁的高度h不超过h max[h≤h max]图1-1 梁的优化设计示例设计变量(DVs)为自变量,优化结果的取得就是通过改变设计变量的数值来实现的。
每个设计变量都有上下限,它定义了设计变量的变化范围。
在以上的问题里,设计变量很显然为梁的宽度b和高度h。
基于ANSYS的机械结构强度计算及优化设计
基于ANSYS的机械结构强度计算及优化设计随着科技的不断发展,机械结构在各行各业中扮演着至关重要的角色。
为确保机械结构的安全性和可靠性,强度计算和优化设计成为了不可忽视的环节。
本文将介绍如何利用ANSYS软件进行机械结构的强度计算及优化设计,旨在提升产品的质量和性能。
1. 强度计算的基本原理强度计算是指通过数学方法和有限元分析等技术手段,预测机械结构在特定工况下的受力状态和应力分布,以评估其承载能力和强度情况。
ANSYS作为一款强大的有限元分析软件,提供了丰富的分析工具和模拟功能,可以高效准确地进行机械结构的强度计算。
2. 剖析ANSYS软件的应用ANSYS软件支持用户对机械结构模型进行网格划分、材料属性定义、加载条件设置等操作,并可以对结构进行静力、动力、热力学等方面的强度计算。
在进行强度计算之前,用户需要先建立准确的模型,并进行网格划分。
通过选择各个部件的材料属性和相应的加载条件,可以模拟出真实工况下机械结构的受力状态。
3. 强度计算结果的分析在进行强度计算后,ANSYS能够生成大量的数据和图形,如应力云图、位移变形图、应力分布图等。
通过这些图形和数据,用户可以直观地了解机械结构的受力情况,进而分析结构的强度和刚度情况。
根据实际需求,用户可以对强度计算结果进行进一步的优化设计。
4. 优化设计的思路和方法机械结构的优化设计是通过对结构形状、材料和参数等方面的调整,以达到优化目标的一种方法。
在进行优化设计时,考虑到机械结构的复杂性和多变性,我们可以采用基于ANSYS软件的仿真和优化技术。
通过设置设计变量、约束条件和优化目标,可以对机械结构进行参数优化和拓扑优化,从而改善结构的性能。
5. 优化设计案例分析以一个机械零部件的优化设计为例,首先在ANSYS中建立机械结构的有限元模型并进行强度计算。
然后,设定设计变量和约束条件,以降低结构的重量和提高承载能力为优化目标,利用优化算法进行设计迭代。
通过多次迭代计算和评估,最终获得一个满足设计要求的优化结构。
基于Ansys的框架结构优化设计
基于Ansys的框架结构优化设计摘要:在实际工程问题中,经常遇到各种框架结构的优化问题,大多基于Ansys分析软件求解已知载荷、稳定条件下的框架结果最小体积,即最小质量以减少施工材料控制最优成本。
本文通过对一常见的矩形截面的四边框架结构进行优化设计分析,提高了对Ansys分析软件的运用能力,加深了对起运行机制的认识,为以后熟练地运用该软件打下基础。
关键词:框架结构矩形截面优化设计Ansys软件1.工程背景框架结构由于具有自重轻、造价较低和施工简单等诸多优点,在包括大型工业厂房在内的工程领域得到了广泛的应用[1].随着对设计质量要求的不断提高,人们一直在探索如何在保证框架结构安全的前提下,减少材料用量,降低成本,以满足经济性的要求。
框架结构的优化设计思想从MICHELL[2]框架理论的出现至今已有近百年历史,BENDSOE等[3]提出的多工况拓扑优化方法标志着对优化设训一研究进入了新的阶段。
国内学者也在该领域进行了大量的研究,如隋允康等对框架结构离散变量的优化问题进行了研究,通过函数变换找到了满应力的映射解,并结合框架拓扑优化特点提出了ICM(独立、连续、映射)方法[4]。
随着计算机技术的发展,人们开始利用ANSYS等软件对工程结构进行有限元分桁和优化设计。
APDL是ANSYS参数化设计语言,它是一种通过参数化变量方式建立分桁模型的脚本语言[5-6], ANSYS提供了两种优化方法即零阶方法和一阶方法。
除此之外,用户还可以利用自己开发的优化算法替代ANSYS本身的优化方法进行优化设计。
本文利用APDL优化设计模块编制用户程序,对一个实际框架进行了结构优化。
结果表明运用ANSYS进行框架结构优化设训一可以有效提高设计质量,具有广泛的运用前景。
2.框架结构模型假设在工程应用中,实际的析架结构形式和各杆件之间的联结以及所用的材料是多种多样的,实际受力情况复杂,要对它们进行精确的分析是困难的。
但根据对析架的实际工作情况和对析架进行结构实验的结果表明,由于大多数的常用析架是由比较细长的杆件所组成,而且承受的荷载大多数都是通过其他杆件传到节点上,这就使得析架节点的刚性对杆件内力的影响可以大大的减小,接近于铰的作用,结构中所有的杆件在荷载作用下,主要承受轴向力,而弯矩和剪力很小,可以忽略不计。
(完整版)ANSYSWorkbench结构线性静力学分析与优化设计解析
要求:运用适当的网格划分方法,阶梯 和圆角处网格细化;求解结果显示模型的 整体变形和等效应力。
截图:材料添加,网格划分效果,受拉 伸载荷的变形、应力,受弯曲载荷的变形、 应力,受扭转载荷的变形、应力。共15张 截图。
要求:运用适当的网格划分方法,网格 大小均匀一致不得少于60万个节点(或者 运用膨胀层网格划分方法);求解结果显 示模型的整体变形和等效应力。
截图:材料添加,网格划分效果,结果 的整体变形、等效应力以及径向变形和应 力的网格显示图、矢量线时图、等值线图。 共8张截图。
西安嘉业航空科技有限公司
作业7
截图:材料添加,网格划分效果,结果 的整体变形、等效应力以及径向变形和应 力的网格显示图、矢量线时图、等值线图。 共8张截图。
西安嘉业航空科技有限公司
作业6 问题描述:如右图模型(螺旋桨),其
材料为聚乙烯,模型如图所示方向的 1000rad/s的角加速度惯性载荷;模型内圈 用圆柱面约束且轴向为0,径向和周向为 free;螺旋桨面施加压力载荷0.5MPa。
西安嘉业航空科技有限公司
作业3 问题描述:如右图模型(连接件),其
材料为不锈钢,模型两个小孔固定,一个 大孔上施加轴承载荷500N,另一个大孔上 施加力载荷800N,且耳内侧受静水压力 5MPa。
要求:运用适当的网格划分方法,两个 小孔和两个大孔处网格细化(或者运用多 区域网格划分方法);求解结果显示模型 的整体变形和等效应力。
1、材料的变形范围在弹性范围,且材料的变形量较小, 方便建立静力学方程; 2、对于塑性变形或大变形,必须考虑材料非线性和几 何非线性。
西安嘉业航空科技有限公司
基于ANSYS的结构优化设计
t h e e f f i c i e n c y o f m o d e l i n g a n d a c c u r a c y f o r t h e p r a c t i c a l p r o j e c t a n d a n ly a z i n g s e r v i e e . S o me p m me t e r s o f t r a d i t i o n a l a n ly a t i c mo d e l w h i c h
优化 求 解 过 程封 装 入 大 和求解 工作 【 3 ] 。这样 工程 师
此这种方法只是若干种方案中最优者p 。与传统设 计方法不 同,基于有 限元的结构优化设计方法是
在解决工程设计 问题时 ,通过使用相关软件 ,可 以从无数设计方案中找 到最优或者是尽可能完善 的设计方 案 ,从 而大 大提高设 计效率 和设 计质 量。在大型有 限元商业软件中 ,A N S Y S 是现代产 品设计中的高级 C A E 工具之一 。本文介绍一种基
业信 息化
DOI : 1 0 . 3 9 6 9/ j . i s s n . 1 0 0 9 - 9 4 9 2 . 2 0 1 3 . 0 8 . 0 1 0
基于 A N S Y S 的结构优化设计
吴亚 明
( 黄石职业技术 学院 , 湖北黄石 4 3 5 0 0 3 )
摘要 :论述在基于有限元软件 A N S Y S 平台下 ,对结 构进行优 化的步骤。综 合应用 拓扑优化 ,参 数化 建模 , 形 状优 化的方 法对产 品设 计进行优化 。并 以应 力集 中力扩散结构设计为例 ,验 证了所提出的优化方 法的可行性 。为结构优化 提供 了一种有效方 法。 该方 法能够很好地 为实际工程设计与分析服务提高建模效率和准确性 ,并能够对传统解析模型难以分析的一些参数进行分析 。 关键 词:结构优化 ;A N S Y S ;A P D L
结构ansys优化的原理
结构ansys优化的原理ANSYS 是一个广泛使用的工程仿真软件,提供了许多优化工具和技术,以帮助工程师改进产品设计并满足特定的性能指标。
在 ANSYS 中进行优化的原理大致包括以下几个步骤:1. 建模与分析:首先,工程师需要在 ANSYS 中建立一个合适的模型,该模型描述了所需优化的系统或组件。
这可以是一个结构、一个流体系统、电气设备等等。
然后,通过施加特定的边界条件和加载来模拟实际工作条件,并进行仿真分析以获得模型的响应。
2. 定义优化目标和约束:在进行优化之前,需要明确定义优化的目标,例如最小化重量、最大化强度、优化流体流动的效率等。
同时,还需要确定可能的约束条件,如最大应力、最小挠度、特定的几何限制等。
3. 设计变量的定义:工程师需要确定哪些设计变量可以改变以实现优化目标。
这可能包括几何参数 如尺寸、形状)、材料特性、加载条件等。
这些变量的范围和约束条件也需要在此阶段定义。
4. 优化算法的选择:ANSYS 提供了多种优化算法,包括梯度法、遗传算法、粒子群优化等。
工程师需要根据问题的复杂性、设计空间的特点以及计算资源等因素选择合适的优化算法。
5. 执行优化和迭代:一旦设置好优化问题,工程师就可以让 ANSYS 开始执行优化计算。
软件会根据选定的优化算法,在设计空间中搜索最优解。
这通常需要进行多次迭代,每次迭代都会根据优化算法的结果更新设计变量,直到满足设定的优化目标和约束条件。
6. 结果分析:最后,工程师需要对优化后的结果进行分析。
他们会评估优化后的设计是否满足了设定的性能指标,并检查是否存在潜在的改进空间。
在确认最终结果后,可能会对优化后的设计进行验证和进一步的工程分析。
总的来说,ANSYS 中的优化原理涉及到建立模型、定义目标和约束、选择设计变量、选择优化算法、执行优化迭代和分析结果等多个步骤,以帮助工程师改进产品设计并实现特定的性能要求。
ANSYS优化设计
ANSYS优化设计ANSYS是一款广泛应用于工程设计和分析领域的计算机辅助工程分析软件。
其中的优化设计功能可以帮助工程师在设计过程中通过数值方法优化设计方案,以求得更优的设计结果。
本文将从优化设计的基本原理和流程、常用的优化设计方法以及ANSYS优化设计功能的使用方法等方面进行讨论。
优化设计的基本原理和流程优化设计的基本原理是通过对设计变量进行调整,使一些指标函数达到最优值,以达到满足设计要求的目标。
在优化设计流程中,首先需要明确设计目标和约束条件,例如最小化结构重量、最大化热交换效率等。
然后选择适当的优化方法并建立数学模型,通过计算求解得到最优设计方案。
常用的优化设计方法1.数学规划方法:包括线性规划、非线性规划等。
线性规划适用于目标函数和约束条件为线性关系的情况,非线性规划适用于目标函数和约束条件中包含非线性关系的情况。
2.遗传算法:模拟生物进化过程,通过基因组合、交叉和变异等操作,通过适应度评估得到最优解。
3.粒子群算法:模拟鸟群觅食行为,通过个体之间的位置和速度变化来逐步逼近最优解。
4.有限元法优化:通过建立有限元模型,通过改变设计变量来优化结构。
1. OptiStruct:OptiStruct是一种拥有高性能求解器的结构优化软件,能够处理多种优化问题。
在使用OptiStruct进行优化设计时,首先需要建立结构有限元模型,并设置设计变量、目标函数和约束条件。
然后通过OptiStruct的求解器求解得到最优设计方案。
2. DesignXplorer:DesignXplorer是ANSYS的参数化设计和优化软件,能够实现参数化建模、敏感性分析、Design of Experiments(DOE)等功能。
在使用DesignXplorer进行优化设计时,可以使用该软件提供的多种参数化建模工具进行建模,并通过设定设计变量的范围和目标函数来进行优化计算。
3. Workbench Optimization:Workbench Optimization是ANSYS Workbench的一个模块,可以对ANSYS Workbench中的各种分析模块进行全局优化。
ANSYS在结构优化设计中的应用
ANSYS在结构优化设计中的应用由于优化设计的基础理论涉及面较广,对设计人员的数学能力要求较高。
为了帮助设计人员更好地理解抽象的优化理论,提高其实际动手能力,本文介绍了如何利用有限元分析软件进行结构优化设计,建立了基于ANSYS的结构优化设计流程图。
最后通过一个工程实例加以说明。
一、引言优化设计是在数学规划的基础上发展起来的一门交叉学科,随着电子计算机的引入,它已迅速发展成为一种有效的新型工程设计方法。
机械结构设计应用优化设计方法较传统的设计方法一般可节省材料7~40%,并可获得最佳的结构尺寸。
近年来,基因(遗传)算法、猴王算法及模拟退火算法等新型算法又相继引入优化设计领域,扩大了优化设计的基础理论涉及面,对学生的数学基础要求也越来越高。
当设计人员在面对这些种类繁多而且抽象的优化理论时,普遍出现困难情绪。
在优化设计中引入计算机和成熟的商品软件,使结构优化设计的求解程序化、可视化,激发设计人员的求解兴趣,使得传统的优化设计增添了新的活力。
本文介绍了有限元分析软件ANSYS在结构优化设计中的应用,使概念更具体化和形象化,提高了设计人员分析问题的基本技能和计算机操作与软件应用的能力。
二、结构优化设计的数学模型一般说来,优化设计方法不仅要求设计人员要了解所求解间题的工程背景,将设计问题转化为某种优化模型,而且还要懂得利用一门计算机编程语言来实现某种算法,这样他才能够完成优化设计。
也正是这些问题的存在妨碍了学生自己动手应用优化技术解决工程实际问题,厌学情绪也就随之而来。
如何将工程问题转化为优化设计模型,这是机械优化设计首先要解决的关键问题。
建立数学模型的三个基本要素是:设计变量、约束条件以及目标函数。
其中,设计变量又称为自变量,通过其自身的选择和调整来实现优化结果的获取;约束条件又可分为边界约束和性能约束,边界约束一般是考虑设计变量的取值范围,性能约束是根据设计性能或指标要求而定的一种约束条件;目标函数是某个方案的评价指标,有时也是某个设计所要追求的目标函数。
ANSYS优化设计
2001年6月1日
7-5
目标函数与设计变量之间的关系可以用几何图形 形象地表示出来。例如,单变量时,目标函数是二维 平面上的一条曲线(图7.2a);双变量时,目标函数是 三维空间的一个曲面(图7.2b)。曲面上具有相同目标 函数值的点构成了曲线,该曲线称为等值线(或等高 线)。如 图7.2b所示,在等值线a上的所有点,其目标 函数值均为15,在等值线c上的各点(设计点),目 标函数值均为25等等。将其投影到设计空间是一族 近似的共心椭圆,他们共同的中心点就是最优点(图 7.2b 中的P点)。因此形象地说,优化设计就是近似 地求出这些共心椭圆的中心。若有n个设计变量时,目 标函数是n+1维空间中的超曲面,难于用平面图形表示。 例7-1中贮料箱优化设计的目标函数可表示为: minF(X) F(X)=F(l,w,h)=2 ( l h+w h)+l w (X=[l,w,h]T)
2001年6月1日
7-1
例7-2 设计一圆形截面悬臂梁(见图7.1)。该悬臂梁自由端作用 有集中载荷P=10000N;扭矩M=10N.m;悬臂伸出长度的允许取 值范围为50mm ≤ L ≤ 150mm,直径的允许取值范围为20mm ≤ d ≤ 100mm。要求在满足强度、刚度条件下,体积最小。其设计变 量是棒料直径d和悬臂长度 L 。
(7-2)
2001年6月1日
7-4
2.目标函数
优化设计是要在多种因素下寻求使人最满意、最 适宜的一组参数。这里的“最满意”是针对某一特定 目标而言的。根据特定目标建立起来的、以设计变量 为自变量的、一个可计算的函数称为目标函数,它是 设计方案评价的标准。 优化设计的过程实际上是寻求目标函数最小值或 最大值的过程。因为求目标函数的最大值可转换为求 负的最小值,故目标函数统一描述为: minF (X)=F (x1,x2,…xn) (7-3)
ANSYS 优化设计(含几个实例)
ANSYS 优化设计1.认识ANSYS优化模块1.1 什么时候我需要它的帮忙?什么是ANSYS优化?我想说明一个例子要比我在这里对你絮叨半天容易理解的多。
注意过普通的水杯吗?底面圆圆的,上面加盖的哪一种。
仔细观察一下,你会发现比较老式的此类水杯有一个共同特点:底面直径=水杯高度。
图1 水杯的简化模型为什么是这样呢?因为只有满足这个条件,才能在原料耗费最少的情况下使杯子的容积最大。
在材料一定的情况下,如果水杯的底面积大,其高度必然就要小;如果高度变大了,底面积又大不了,如何调和这两者之间的矛盾?其实这恰恰就反应了一个完整的优化过程。
在这里,一个水杯的材料是一定的,所要优化的变量就是杯子底面的半径r和杯子的高度h,在ANSYS的优化模块里面把这些需要优化的变量叫做设计变量(DV);优化的目标是要使整个水杯的容积最大,这个目标在ANSYS的优化过程里叫目标函数(OBJ);再者,对设计变量的优化有一定的限制条件,比如说整个杯子的材料不变,这些限制条件在ANSYS 的优化模块中用状态变量(SV)来控制。
下面我们就来看看ANSYS中怎么通过设定DV、SV、OBJ,利用优化模块求解以上问题。
首先参数化的建立一个分析文件(假设叫volu.inp),水杯初始半径为R=1,高度为H =1(DV),由于水杯材料直接喝水杯的表面积有关系,这里假设水杯表面积不能大于100,这样就有S=2πRH+2πR2<100(SV),水杯的容积为V=πR2H(OBJ)。
(用参数直接定义也可或者在命令栏内直接写)R=1H=1S=2*3.14*R*H+2*3.14*R*RV=10000/(3.14*R*R*H)然后再建一个优化分析文件(假设叫optvolu.inp),设定优化变量,并求解。
/clear,nostart/input,volu,inp/optopanl,volu,inpopvar,R,dv,1,10,1e-2opvar,H,dv,1,10,1e-2opvar,S,sv,,100,1e-2opvar,V,obj,,,1e-2opkeep,onoptype,subpopsave,optvolu,opt0opexec最后,打开Ansys6.1,在命令输入框中键入“/input,optvolu,inp”,整个优化过程就开始了。
第五章ANSYS优化设计
第五章ANSYS 优化设计拓扑优化拓扑优化是指形状优化,也称为外形优化,其目的是寻找载荷作用下的物体最佳材料分配方案,最大刚度设计。
拓扑优化的原理是在满足结构体积缩减量的条件下使结构的柔度极小化。
极小化的结构柔度实际就是要求结构的刚度最大化。
ANSYS提供的拓扑优化技术用于确定系统的最佳几何形状,其原理是系统材料发挥最大利用率,同时确保诸如整体刚度、自振频率等在满足工程要求的条件下获得极大或极小值。
优化参数:不需要人工定义优化参数,而是自动将材料分布当作优化参数。
目标函数:是在满足给定的实际约束条件下(如体积减小等)需要极大或极小化的参数,通常采用的目标函数是结构柔量能量(the energy of structure compliance)极小化和基频最大等。
支持的单元类型:二维实体单元:PLANE2、PLANE82,用于平面应力或轴对称问题;三维实体单元:SOLID92、SOLID95;壳单元:SHELL93。
特别提醒:1、ANSYS程序只对单元类型编号等于1的单元部分进行拓扑优化,对于单元类型编号等于或大于2的单元网格不进行拓扑优化。
2、(1)拓扑优化只能基于线性结构静力分析或模态分析,其它分析类型暂时还不支持。
(2)ANSYS实际提供的拓扑优化为基于线性结构静力分析的最大静态刚度拓扑优化设计和基于模态分析的最大动态刚度优化设计,同时需要达到体积最小化目的。
(3)采用单载荷步或多载荷步的线性结构静力分析时,施加相应的载荷和边界条件。
采用模态频率分析,仅仅施加边界条件。
3、拓扑优化的结果对网格划分密度非常敏感,较细密的网格可以产生更加清晰、确定的拓扑结果,但计算会随着单元规模的增加而需要更多的收敛时间;相反,较粗的网格会生成模糊、不确定的拓扑结果。
另外,拓扑优化结果对载荷情况十分敏感,有时很小的载荷变化将导致拓扑优化结果的巨大差异。
优化设计1. 简介举例:如何在原材料消耗最少情况下,使水杯的容积最大。
ANSYS中的优化设计
21.图形显示各参量的优化曲线 Main Menu—Design Opt—Design Sets--List
4.定义实常数
5.创建关键点(从略,注意:用参量输入) 创建直线
6.划分网格 meshtool—size control—lines—set—NDIV取50
7.施加约束和载荷 在K1和K2两点约束UX和UY。
Main menu—solution—define loads—apply --structural—pressure—on beam
ANSYS中的优化设计
均布载荷p=5000N/m,跨度L=1m,试确定该梁的高度h 和宽度b,要求梁的高度h不超过100mm,宽度b不低 于50mm,挠度不超过0.2mm,使梁质量最小。
1.定义参数
H=0.006 B=0.006 L=1
2.设定单元类型
3.材料属性 EX=2e11 PRXY=0.3
11.提取最大挠度 utility menu—parameters—get scalar data
取挠度的绝对值 utility menu—parameters—scalar parameters
12.生成优化分析文件 utility menu—file—write DB log file
13.进入优化处理器,指定分析文件
14.定义优化设计变量
15.定义状态变量
16.定义目标函数
17.存储优化数据库 18.指定优化方法
单步法 随机探索法 乘子评估法 最优梯度法 扫描法 子问题近似法 一阶方法
19.运行优化 Main Menu—Design Opt--Run
20.列出优化方案 Main Menu—Design Oຫໍສະໝຸດ t—Design Sets--List
ANSYS结构拓扑优化设计
三、客车车身有限元分析
车身骨架作为客车的关键总成,其结构必须有足够的强度和静刚度以保证其疲劳寿命、装配和使用的要求,同时还应有合理的动态特性以达到控制振动与噪声的目的。应用实践证明[5],用有限元法对车身结构进行分析,可在设计图纸变成产品前就对其刚度、强度、固有频率及振型等有充分认识,以了解车身的应力和变形情况,对不足之处及时改进,使产品在设计阶段就可保证满足使用要求,从而缩短设计试验周期,节省大量的试验和生产费用,它是提高产品可靠性既经济又适用的方法之一。
二、拓扑优化设计数学模型
2.1优化方法的选择
目前常用的连续体结构的拓扑优化方法有:变厚度法、变密度法及均匀化方法。变厚度法的数学模型简单,但优化对象受到很大的限制。变密度法是人为的建立一种材料密度与材料特性之间的关系,拓扑优化计算以后得到单元的密度值为0或1,拓扑优化结构比较清晰[2,3]。均匀化方法是最为流行的方法,拓扑优化后单元的密度值是介于0~1之间的连续值,得到的是一种比较模糊的拓扑结构。最优拓扑结构形式只考虑到结构的强度,结构的设计还需要满足制造工艺、装配关系等设计要求,人们需要在拓扑优化的基础上进行结构设计,模糊的拓扑结构提供的是一个取值范围,更利于后续设计。
ANSYS结构拓扑优化设计
潘震来源:e-works
关键字:客车车顶结构拓扑优化设计ansys
本文用ANSYS软件对某客车车身进行静态有限元分析。在此基础上,采用均匀化方法,以车架总柔度为目标函数,以体积作为约束条件,对几种工况下的车顶进行了拓扑优化设计。探讨了拓扑优化设计过程中,基本模型建立、优化区域选择、优化过程控制及优化结果分析与应用等问题。实现了拓扑优化在汽车结构的初始设计过程中的应用。