核医学肿瘤显像

合集下载

核医学:肿瘤显像(MIBI)

核医学:肿瘤显像(MIBI)
温州医学院核医学教研室
18-F-FDG PET:The distribution of radioactivity decreased in nodule ,the changes after radiotherapy Stereotactic biopsy: No the tumor tissue
肿瘤显像
温州医学院核医学教研室
细胞
异 常 增 生
肿瘤


形态 结构
CT、MRI、超声、X线
功能 代谢↑
摄取异常物质↑,或丧失正常功能
供能物质↑ 构成成分
糖、脂肪、 蛋白质等
类脂、核酸 、糖蛋白等
细胞膜、细胞核、细胞 器结构与功能的异常
异常基因表达、产 生异常蛋白、受体
温州医学院核医学教研室
一 放射性核素肿瘤显像分类及其 结果判断方法
直接显像
特异性肿瘤阳性显像
肿瘤显像
非特异性肿瘤阳性显像
间接显像 非特异性肿瘤阴性显像
温州医学院核医学教研室
二、99Tcm-MIBI亲肿瘤显像
(一)原理
细胞摄取99mTc-MIBI与其亲脂性有关, 以被动扩散的形式进入细胞,和线粒体蛋白质 结合。其进入细胞的量与细胞膜及线粒体两侧 的膜电位差有关。
恶性肿瘤细ቤተ መጻሕፍቲ ባይዱ代谢旺盛,细胞膜两侧维持较 高的电位差。
温州医学院核医学教研室
温州医学院核医学教研室
温州医学院核医学教研室
(三 )临床应用
1、乳腺肿块良恶性鉴别诊断及淋巴结转 移:用于乳腺癌的早期诊断。对于乳腺癌, 99Tcm-MIBI在早期和延迟显像均呈现阳性 显像,乳腺癌淋巴结转移灶也表现为阳性 显像。尤其是99Tcm-MIB注射后1小时以内 的早期显像对乳腺癌的诊断有特别的意义。

重医大核医学习题集及答案12肿瘤显像

重医大核医学习题集及答案12肿瘤显像

第十二章肿瘤显像【学习目标】随着越来越多的临床医生接受并认可PET/CT显像,PET/CT肿瘤显像在肿瘤的诊断和指导治疗中发挥着越来越重要的作用,它已成为核素肿瘤显像的主要内容。

作为即将从事临床工作的医学生来说,掌握PET/CT肿瘤显像的像原理、特点、优势及常用的PET/CT肿瘤显像剂,有助于在以后的临床工作中更好的利用PET/CT显像进行诊断及指导临床治疗。

此外,医学生还应熟悉PET/CT肿瘤显像的准备和适用范围。

核素肿瘤显像除了目前应用广泛的PET/CT肿瘤葡萄糖代谢显像外,还有非特异性肿瘤显像,放射免疫显像、受体显像等,这些在临床中应用不多,属于了解内容。

【内容要点】肿瘤核医学是核医学一个分支,又是肿瘤学与核医学的交叉学科。

它是利用放射性药物发出的射线来研究肿瘤的诊断和治疗,其内容包括两方面:①肿瘤核素影像学,目前应用较多的肿瘤PET/CT诊断和SPECT/CT诊断;②肿瘤核素内照射治疗学。

本章属于肿瘤的核素影像学局部,其中PET/CT肿瘤显像是掌握的重点。

PET/CT图象是代谢图像和解剖结构图像的融合,目前应用最广泛的是18F-FDG PET/CT肿瘤显像,FDG是葡萄糖的类似物,它在体内的分布可以反映组织细胞的葡萄糖代谢程度、局部肿瘤细胞的增殖状况。

即-FDG PET/CT肿瘤显像原理:却-FDG静脉注射后,经细胞膜上的葡萄糖转运蛋白转入细胞,在己糖激酶催化下,生成6-P0.T8F-FDG。

因6-P04」8F-FDG与葡萄糖的结构不同而不能进一步代谢;在葡萄糖磷酸化酶催化下,重新转变为FDG,经葡萄糖转运蛋白进入组织间隙。

由于肿瘤细胞(特别是鳞状细胞等)基因代谢异常,引起葡萄糖转运蛋白高表达(尤其是葡萄糖转运蛋白1和3),己糖激酶高表达,葡萄糖磷酸化酶低表达,造成肿瘤细胞内积聚大量乍-FDG。

肿瘤组织FDG摄取的多少,反映肿瘤细胞代谢和增殖的快慢。

通过PET/CT扫描所C.透明细胞癌D.白血病细胞E.淋巴瘤细胞.关于肿瘤前哨淋巴显像,以下描述哪些是错误A.多用于对生活质量影响较大的器官的肿瘤B.目的是尽可能的保护脏器的功能C.多用于乳腺癌、阴茎癌、舌癌等D.前哨淋巴结即转移淋巴结E.前哨淋巴结即局部引流的第一站淋巴结.关于⑶「美罗华显像,以下说法错误的选项是A.属于肿瘤放射受体显像B.显示肿瘤病灶CD20靶点分布C.可以指导靶向治疗D.筛选适宜靶向治疗的患者E.有利于确定核素靶向治疗的剂量32.青年男性,近期发现右股骨下段疼痛,局部肿胀并运动障碍,已行X线检查,初步诊断为骨肉瘤,临床医生为确定手术部位,需进一步明确肿瘤与周围正常结构如肌肉、血管、神经等的关系,应建议行哪种影像学检查A.CTB.MRIC.PET/CTD.骨扫描E. B超33.老年男性,既往有乙肝病史,近期发现肝部不适,伴纳差,体重略减轻,无黄疸,但患者有碘过敏史,为进一步明确诊断,应首先建议他行哪种影像学检查A.CTB.MRIC.PET/CTD.血管造影E. X线.老年男性,近期出现与小脑占位性病变相关的神经系统体征,为进一步明确诊断,应首先建议他行哪种影像学检查A.CTB.MRIC.PET/CTD.骨扫描E.脑电图.女性患者,28岁,近期发现颈前区结节,质硬,无疼,应首选以下那种检查A.甲状腺彩超B.⑶I显像C.MRID.CTE.PET/CT.男性患者,以发现右面颊部肿胀1个月为主诉就诊;体检,右面部肿块,为明确肿块性质,首选那项检查A.CT引导下穿刺活检B.MRIC.PET/CTD.切除活检E.B超引导下活检.临床可疑嗜倍细胞瘤患者,以下那一种检查可作为定性诊断?A.B超检查B.CT扫描C.核素肾上腺皮质显像D.核素肾上腺髓质显像E. MRI检查38.老年男性,体检X线发现左下肺结节,大小约2X2cm,为明确病变性质,可以选择以下那种检查,除了A. CTB.MR IC.PET/CTD.支纤镜检E. B超.肝癌移植术后3天,为了解移植肝血流状况,应首先A.CTB.B超C.MRID.PET/CTE.肝脏血池显像.女性患者,孕10周,洗澡时无意发现左乳结节,质硬,无压痛,作为主管医生,为初步诊断病变性质,你应首选以下那项检查A.CTB.B超C.MRID.PET/CTE.铝靶X线四、多项选择题1. |'FDG- PET/CT显像在肺肿瘤应用中,正确的选项是A.可鉴别肿瘤的良恶性B.肿瘤分期C.评价治疗效果D.探查肿瘤复发E.活检定位2.目前,放射免疫显像不能常规用于临床的是A.消化道肿瘤(肝癌、结、直肠癌、胃癌)B.膀胱癌C.卵巢癌D.肺癌E.淋巴瘤.以下哪些方法可用于肺癌阳性显像A.67Ga-SPECTB.2O1T1-SPECTC."m Tc-MIBI-SPECTD.18F-FDG PET/CTE."m Tc-MAA-SPECT.分化性甲状腺癌患者全切术后行⑶I显像的目的是A.寻找远处转移灶8.了解癌细胞的NIS分布状况C.计算病灶的吸收剂量D.计算1311有效半衰期E.筛选适合1311治疗的病人.以下情况下,摄取FDG较高的是A.恶性肿瘤B.炎性假瘤C.晶状体D.紧张的肌肉E.棕色脂肪. 6,Ga肿瘤显像A.属于受体显像B.主要用于淋巴瘤分期C.可以指导放疗靶区勾画D.可用于炎症显像E,可用于肺癌的诊断.影响肿瘤摄取FDG的因素有A.肿瘤的组织类型6.肿瘤组织的血流灌注量C.肿瘤组织中肿瘤细胞的比例D.肿瘤细胞的增殖情况E.肿瘤的生长类型.乳腺癌患者雌激素受体显像A.显示肿瘤组织雌激素受体分布B.指导化疗C.属于靶向显像D.指导靶向放疗E.显示转移灶.以下哪种显像属于肿瘤乏氧显像A.FDG-PET/CTB.FMISO-PET/CTC.HL-91-SPECTD.FLT-PET/CTE.MIBI-SPECT.可用于甲状腺髓样癌淋巴结转移的检查方法是A.FDG-PET/CTB.FMISO-PET/CTC.0ctreot i de-SPECTD.⑶I-SPECTE.MIBI-SPECT.嗜铭细胞瘤患者,以下检查可以呈阳性结果的有A.FDG-PET/CTB.HED-PET/CTC.Octreotide-SPECTD.67Ga-SPECTE.131I-SPECT.关于肿瘤细胞的葡萄糖代谢特点描写正确的选项是A.糖酵解增强B.糖分解增强C.细胞外表葡萄糖转运体1和3等高表达D.细胞内已糖已酶高表达E.磷酸化酶大多数情况低表达13.关于骨转移瘤,在MDP-SPECT图像上,以下描述哪些是错误的A.破骨性病灶不摄取MDPB.仅成骨性病灶,MDP才浓聚C.孤立的异常放射性浓聚灶D.〃超级影像〃E.〃炸面圈〃影像14.对于非小细胞肺癌、淋巴瘤和肠癌等恶性肿瘤来说,FDG 摄取越多,A.细胞增殖能力越强B.细胞代谢能力越强C.细胞恶性程度越高D.细胞的乏氧情况越严重E.肿瘤越大.多发骨髓瘤的FDG-PET/CT特点是A.FDG以较高代谢为主B.〃穿凿〃样征像C.病灶多分布于扁骨D.无代谢E.癌组织集中于髓腔内.以下哪些方法可用于脑肿瘤显像A.MET-PET/CTB.CHO-PET/CTC.FDG-PET/CTD.ECD-SPECTE.67Ga-SPECT.鼻咽局灶性粘膜增厚,FDG-PET/CT示高代谢,可能是以下哪种情况A.鼻咽癌B.淋巴瘤C.坏死性肉芽肿D.鼻咽血管瘤E.腺样体增生. I'FDG-PET/CT示腹膜转移,常见于以下哪些肿瘤A.卵巢癌B.胃癌C.肾细胞癌D.恶性胃肠间质瘤E.结直肠癌.骨转移瘤诊断常用以下哪些功能影像方法A.18FDG-PET/CTB."m Tc-MDP-SPECTC.201TI-SPECTD.13I I-MIBG-SPECTE.18FLT-PET/CT.肝脏FDG-PET/CT检查示:肝右叶低密度影代谢略活跃,病灶可能是A.高分化型肝细胞癌B.肝腺瘤C.血管瘤D.肝局灶性增生E.肝囊肿五、填空题1.在叩-FDG PET/CT显像中,FDG是的类似物。

浅析18F-FDG PETCT肿瘤显像前应注意的几个问题

浅析18F-FDG PETCT肿瘤显像前应注意的几个问题

关键词】18F-FDG;PET/CT;肿瘤显像随着18F-FDG PET/CT显著的临床价值以及临床医生对18F-FDG PET/CT检查的认可,越来越多的肿瘤患者选择了18F-FDG PET/CT检查。

为了尽可能使行18F-FDG PET/CT肿瘤显像的患者感到检查的舒适性和无创性,并最大限度获得准确和高质量的影像结果,本文就患者行18F-FDG PET/CT肿瘤显像前的准备工作进行归纳综述。

1 预约登记行18F-FDG PET/CT检查的患者往往不只是本院的患者,加之该检查的特殊性,预约登记就显得尤为重要。

首先是给患者详细的介绍该检查的原理、方法、以及对患者有何帮助;PET/CT在中国是一个新生事物,很多人第一次作该种检查,恰当、实事求是的让患者了解该检查的作用,千万不可以把PET/CT“神话”成万能检查,可以避免不必要的医疗纠纷,和谐其它影像科室之间的关系。

其次,填写申请单,很重要的是必须表明患者的住址、常用的联系电话及家人的电话,以便日后的随访以及有事情能随时联系;如果其他医院以及科室写的申请单有时候很乱以及用其他申请单代替的,PET/CT预约医生必须更换申请单;最后就是让患者填写预约通知单并签字,督促患者准时按预约前来检查,因为核医学显像需要使用会衰变的核素,超过时间过长因显像剂会衰变失效,不仅需要重新预约时间检查,而且浪费患者预先购买的显像剂。

此外,还必须注意交待一下事项:最好在检查前一天下午再逐个电话通知再次提醒和交待注意事项。

有特殊情况需要改期检查,必须提前一天与核医学科联系,因为检查所需要的显像剂已提前一天预定购买,失效的显像剂难以退还。

特别需要注意:由于正电子显像剂18F-FDG衰变失效快,购买显像剂的费用昂贵,患者最好提前30分钟到核医学科等待和准备,以便减少显像剂衰变过多,影响显像质量和效果。

未能按预约前来检查患者,过期需要重新预约,未事先与核医学科联系者,因购买的显像剂衰变失效,不能退还显像剂费用。

放射医学的核医学显像技术

放射医学的核医学显像技术

放射医学的核医学显像技术放射医学的核医学显像技术是一种利用放射性同位素进行影像诊断的方法。

通过核医学显像技术,医生可以获取患者体内器官和组织的代谢、功能以及病变情况,从而辅助诊断疾病、制定治疗方案。

核医学显像技术在肿瘤学、心血管疾病、神经系统疾病等多个领域有着重要的应用。

本文将介绍核医学显像技术的原理、常见的技术和其在临床中的应用。

一、核医学显像技术的原理核医学显像技术主要利用放射性同位素发出的γ射线进行成像。

患者在进行核医学检查时,会通过口服或静脉注射的方式摄入含放射性同位素的示踪剂。

这些放射性同位素会在体内特定器官或组织中富集,发出γ射线并被显像设备捕获。

根据γ射线的分布情况,医生可以观察到患者内部器官或组织的代谢状态和异常情况。

二、核医学显像技术的常见技术核医学显像技术包括单光子发射计算机体层摄影(SPECT)和正电子发射体层摄影(PET)两种主要技术。

1. 单光子发射计算机体层摄影(SPECT)SPECT是核医学常用的一种成像技术,其原理是通过探测器捕获γ射线并转化为数字信号,再通过计算机重建成三维影像。

SPECT在心脏、肿瘤、骨骼等疾病的诊断和评估中有着广泛的应用。

2. 正电子发射体层摄影(PET)PET技术是一种高灵敏度、高分辨率的核医学成像技术,通过检测正电子放射性同位素与电子相遇产生的γ射线来实现成像。

PET在肿瘤筛查、神经系统疾病和心血管疾病的诊断中具有重要作用。

三、核医学显像技术在临床中的应用1. 肿瘤学核医学显像技术在肿瘤学中有着广泛的应用,可以进行肿瘤的早期筛查、定位、分期和评估治疗效果。

PET-CT联合成像技术可以提高肿瘤诊断的准确性,指导个体化治疗。

2. 心血管疾病核医学显像技术可以用于心肌灌注显像、心脏功能评估、心肌代谢评估等方面,对心血管疾病的诊断和治疗具有重要的临床意义。

3. 神经系统疾病核医学显像技术在神经系统疾病的诊断、鉴别诊断、病情评估和治疗监测中有着独特的价值。

核医学显像技术的应用现状及发展趋势

核医学显像技术的应用现状及发展趋势

核医学显像技术的应用现状及发展趋势核医学显像技术是一种以放射性同位素为探针,探测人体器官和组织代谢、血流动力学、分布等方面的特征的技术。

近年来,随着医学领域的不断发展,核医学显像技术的应用范围越来越广泛,对于疾病的诊断和治疗都发挥着重要作用。

本文将分析核医学显像技术的应用现状及未来的发展趋势。

一、核医学显像技术的现状核医学显像技术主要包括正电子发射断层扫描(PET)、单光子发射计算机断层扫描(SPECT)以及放射性同位素疗法等。

目前PET是最先进、最准确的一种显像技术。

通过注射放射性同位素,PET扫描可以揭示人体各组织器官的代谢情况,可以及时发现细胞功能异常,诊断疾病和评价疗效,特别是在肿瘤治疗方面有着独特的优势。

SPECT是另一种应用广泛的显像技术,主要用于疾病的诊断和治疗。

这种技术使用放射性同位素的放射线所探测到的样本立体影像来描绘体内器官和组织的代谢和功能情况,如心脏、肝脏、肾脏、脑等。

在其他领域也有广泛应用。

例如在生科学领域,核医学显像技术可以揭示不同性质和不同结构的物质在组织中的分布和代谢规律,有助于了解生命活动在细胞水平上的机理、发现生物化学反应的病理变化等等。

在临床医学中,核医学显像技术是一种非侵入性的诊断手段,它相对比较安全,无创伤,成像效果较好,对于疑难杂症的诊断较为有利,如肺癌、乳腺癌、淋巴瘤等的早期诊断和精准治疗方面都有广泛的应用。

二、核医学显像技术的未来发展趋势核医学显像技术的未来发展趋势主要涉及三方面,一是技术的进一步发展,二是实现与其他医学技术的有机结合,三是应用领域的扩大和深化。

技术方面,新技术的出现和代表性技术的改进是核医学显像技术未来发展的重要方向。

其中最具有前景的是通过以人工智能和大数据为代表的新技术进行辅助诊断。

通过基于人工智能的图像分析,可以加快核医学显像技术的处理和分析速度,从而解决现有技术的一些不足之处。

在实现与其它医学技术的有机结合方面,核医学显像技术的应用与电脑辅助诊断技术相结合,原则上可以发挥这些技术更大的作用。

【核医学】肿瘤显像(18F-FDG)

【核医学】肿瘤显像(18F-FDG)
影像学三阶段
分子影像学 解剖功能图像
现代影像学 数字断层图像
常规影像学 模拟图像
分子影像学技术
1、正电子电脑断层(PET或SPECT) 2、核磁共振谱(MRS) 3、近红外线荧光成像(NIRF,Near-
infrared Fluorescent) 4、光学相干断层(OCT,Optical
coherence tomography)
合成
5、18F-L-多巴---帕金森等神经精神疾病
Glucose
ቤተ መጻሕፍቲ ባይዱFDG
glucose
Oxygen
2-deoxy-2fluoro-glucose
Carbon
Fluorine
11C标记的PET药物
1、11C-蛋氨酸---氨基酸的转运、吸收利用和癌细胞的
代谢活性
2、11C-胆碱---磷脂代谢显像剂,参与细胞膜的合成 3、11C-乙酸盐---脂肪酸代谢显像剂,主要用于心肌活
正电子核素显像原理
正电子发射核素衰变产生的β+粒子丧失 动能后即与物质中的自由电子结合,转化 为一对运动方向相反、能量均0.511MeV的 γ光子;
β+粒子与自由电子自身消失,这种现象 称为湮没反应(Annihilation),所产生的γ 光子称湮没辐射。
Positron Annihilation (湮没)
二、寻找肿瘤原发灶
某些恶性肿瘤早期,原发肿瘤部位无明 显症状,而以转移灶为首发表现,或者是 体检血液检查发现肿瘤标志物异常增高, 而原发灶比较隐蔽,这种情况一般检查没 有针对性,难以寻找肿瘤原发病灶,18FFDG PET/CT全身肿瘤显像可全身探测肿瘤 病灶,减少许多不必要的重复检查,提高 临床诊断效能。

核医学显像在肿瘤方面的应用

核医学显像在肿瘤方面的应用

• 对于伴阻塞性肺炎、肺不张、胸膜受侵和 胸腔积液者,CT 确定肿瘤边界有一定困难, 但PET 却能较好地鉴别肿瘤组织与正常组 织,因而能更精确地进行T分期,可明显缩 小照射野,减少正常组织受照射量;对于 受呼吸运动、心脏搏动影响较大的肿瘤, PET能提供精确的三维模拟图象,从而能据 以制定出个体化的放疗计划。
• PET的定位依赖于图象融合技术,PET/CT 同机融合更准确。
2.预测、评估治疗效果,检测复发,预后评价。
(1)病灶FDG摄取率高的患者其预后也较病灶FDG摄 取率低的患者差。
(2)FDG高摄取与肿瘤细胞的增殖有关。由于肿瘤的 高摄取状态与肿瘤的增生快、恶性程度高度相关, 以此指导要采用更高的剂量、更短的时间加速放疗。
PET显像技术的独特优势
1.对疾病进行早期诊断:作为灵敏而准确的 代谢显像方法,PET检查可对疾病进行早 期诊断。
2. 与X-CT和MR的不同:CT及MR主要着重 于形态结构变化,属于结构显像;而PET 则用于探测人体脏器代谢与功能的动态变 化,属于功能显像。在许多情况下,三种 检查方法的优势互补可大大提高诊断的准 确性。
• 18F-FDG PET显像对脑转移瘤放、化疗效果的 判断、检测手术后残余病灶等均有重要价值。
脑胶质瘤复发
MRI影像,右颞叶T2高信号影, 无法鉴别肿瘤复发与治疗后改变
脑胶质瘤复发
MIBI肿瘤阳性显像,右颞叶相 应部位可见异常放射性浓聚,为 肿瘤复发
正常所见
全身骨骼显影清晰, 左右对称 颅骨、胸骨、肋骨、 椎骨、骨盆、长骨 干骺端放射性增高 长骨干放射性减低 肾脏显影,软组织 影淡
F18-FDG显像的生理性摄取
回盲部、升结肠生理性摄取.1
F18-FDG显像的生理性摄取

13-肿瘤显像

13-肿瘤显像

第二部分
间碘苄胍 (MIBG)显像
123I
或131I 标记的MIBG已广泛用于嗜铬细
胞瘤及副神经节瘤的定位诊断,是目前最灵
敏又特异的方法。MIBG是一种去甲肾上腺素
的功能结构类似物,能利用胺前体摄取机制
进入胞质中的小囊泡或神经分泌颗粒。
第二部分
血管活性肠肽受体显像 (VIPRS)
主要用于胃肠胰道的神经内分泌 肿瘤的显像诊断 。(广义上,也是 神经内分泌肿瘤显像的一类)
霍 奇 金 病 患 者 右 纵 膈 淋 巴 结 显 影
发及残留组织,同时监测病人对放 化疗的反应。通过67Ga显像可决定 是否需进一步治疗、二线化疗或大 剂量化疗和骨髓移植。
X 胸 片
67Ga
显像
非霍奇金淋巴瘤腹部肠系 膜和腹膜后淋巴结显影
2.恶性黑色素瘤
大部分黑色素瘤(Melanoma)及其转移灶都与67Ga 有亲和力。67Ga显像已经用于探测和观察正在接受化疗 或免疫治DG 氨基酸代谢显像:11C-MET,18F-FET等 磷脂代谢显像: 11C-choline等 核酸代谢显像: 18F-FLT等 乏氧显像:18F-MISO,99mTc-HL91 凋亡显像:18F-Annexin V 99mTc-Annexin V
18F-FDG是目前临床和研究应用最广泛、最成熟的肿
C
D
18F-FDG
脑肿瘤
A
B
脑肿瘤放射治疗后坏死 。 A: MR T1加权图象,病灶边缘呈增强征象。 B: PET 图象显示病灶无FDG摄取
18F-FDG肿瘤代谢显像的临床应用
• 恶性肿瘤的临床分期与再分期 • 恶性肿瘤放化疗的疗效预测和评估 • 肿块良恶性的鉴别诊断,指导对可能产 生诊断信息的肿块区域进行活检 • 肿瘤标志物水平连续动态增高时、转移 灶不明时寻找原发灶 • 肿瘤放化疗后残余或复发病灶的鉴别 • 指导肿瘤放射治疗计划

核医学科ect显像

核医学科ect显像

核医学科ect显像
核医学ECT一般可以检查骨骼系统、心血管系统,以及全身各个器官,如脑、脾脏、甲状腺、肾脏等,ECT是发射型计算机断层显像的英文缩写,是核医学独特的检查项目,比如SPECT-CT和PET-CT都属于核医学ECT检查范畴。

核医学ECT等放射性核素显像的原理,是建立在器官组织血流、功能和代谢变化的基础上,不仅能够显示脏器和病变的位置、形态、大小等解剖结构,更重要的是可以同时提供有关脏器、组织的血流、代谢等方面的信息,甚至是分子水平的代谢和生化信息,对于异常病变探测的灵敏度高,可以在疾病早期尚未发生形态结构改变时诊断疾病。

因此,核医学ECT可以检查的疾病很多,可以检查骨骼系统,进行全身骨扫描,检查有没有出现骨转移瘤,以及骨肿瘤的累及范围,还可以用于检查心血管疾病,心脏显像可以评估心肌缺血的情况,另外核医学ECT还可以用于脑血流的显像、脾脏显像、甲状腺显像以及肾脏显像等,可以适用的范围比较广。

核医学常用的显像及其应用

核医学常用的显像及其应用

核医学常用的显像及其应用核医学是一门结合放射性同位素技术、显像技术和医学影像诊断技术的学科,主要应用于体内病理生理过程的研究以及用于临床诊断和治疗的医学领域。

核医学显像技术通过注射放射性同位素追踪剂来标记特定分子或改变生物体内组织结构的物质,再通过高灵敏度的电子探测器或摄像机系统记录并分析放射性同位素的信号。

这里将详细介绍核医学常用的显像及其应用。

一、正电子发射断层扫描(PET)PET是一种非侵入性、功能性核医学影像学方法,它通过注射具有较短半衰期的放射性标记的生物活性物质(如葡萄糖标记氟-18)到体内,通过探测系统记录体内释放的正电子与负电子湮灭反应的产生的γ射线,并以此数据初步推测标记物在人体内的浓度、分布及代谢情况,从而获得体内器官、组织及细胞层次的纳米级分辨率图像。

PET显像广泛应用于肿瘤学、神经科学、心血管疾病、免疫学等领域。

例如,PET 可以检测肿瘤的发生、分化和转移,评估肿瘤治疗效果,筛查疾病早期信号;在神经科学中,PET可以用于研究神经系统的功能和代谢活动,研究脑发育和老化等问题;在心血管疾病中,PET可以评估冠状动脉供血,研究心脏功能和代谢改变等。

二、单光子发射计算机断层扫描(SPECT)SPECT是一种基于单光子发射的核医学显像方法,通过注射放射性同位素追踪剂到体内,再以摄像机记录体内同位素的γ射线发射情况,通过旋转摄像记录各个方位的γ射线刺激密度数据,并利用计算机重建成三维断层图像,从而获得患者体内器官、组织的功能、代谢、结构等信息。

SPECT显像被广泛应用于心脏病、神经疾病、肝疾病等领域。

例如,在心脏病领域,SPECT可以评估冠状动脉疾病、心肌供血状况,帮助研究冠状动脉搭桥手术效果等;在神经疾病领域,SPECT可以用于诊断脑卒中、癫痫、脑肿瘤等疾病,评估神经疾病的治疗效果;在肝疾病领域,SPECT可以评估肝功能、肝纤维化等。

三、放射性核素骨密度测定(DEXA)DEXA是一种特殊的X射线技术,主要用于测量人体或动物骨骼的密度,通过特定的设备利用不同能量的X射线照射患者体部,进而通过计算机图像处理系统测定不同部位骨骼的X线吸收程度,从而反映骨骼的密度和钙盐的含量。

第十六章肿瘤显像 核医学

第十六章肿瘤显像 核医学
细胞。在细胞内通过己糖激酶(HK)的作用磷酸化生 成6-磷酸脱氧葡萄糖,而进入葡萄糖代谢途径。 ➢FDG-6P不能进一步代谢,滞留、堆积在细胞内。 ➢它进入细胞的量与糖酵解速度成正比。 ➢葡萄糖代谢增加是恶性细胞的一个特征。
温州医学院核医学教研室 李焕斌
15
血管
肿瘤细胞
Glycogen
18FDG
18FDG-1-P
温州医学院核医学教研室 李焕斌
18
大脑皮层代谢主要以葡萄糖为底物,因此FDG浓聚较高。心 肌利用何种底物依赖于激素水平和代谢状态。禁食情况下心肌 主要利用游离脂肪酸;饭后或给予葡萄糖后,葡萄糖利用率和 FDG摄取增加。因此,进行心肌研究时,静脉内注射葡萄糖可 促进心脏摄取FDG。但肿瘤显像时必须禁食,因为血中葡萄糖 水平升高会与FDG形成竞争,导致肿瘤摄取减少。
温州医学院核医学教研室 李焕斌
46
67Ga-枸橼酸在血循环中与转铁蛋白结合,通过转铁蛋白受体进入 细胞。注射后24h内肾脏排泄15%~25%,24h之后主要从结肠排 泄。67Ga的清除速度很慢,生物半衰期为25天,给药后2天仍有75 %残留在体内。67Ga在肝脏摄取最高,其次是唾液腺、脾、骨髓和 泪腺。泪腺摄取是由于和乳铁蛋白结合所致。67Ga也通过乳汁排泌。
➢ 标准化摄取值(SUV)=局部感兴趣区平均放射性浓度(MBq/g) 注入放射性活度MBq/体重Kg
温州医学院核医学教研室 李焕斌
10
肿瘤代谢显像
(tumor metabolism imaging)
温州医学院核医学教研室 李焕斌
11
肿瘤代谢显像的基础:
➢ 机体正常组织细胞的结构完整性和生理功能维持主要是通过糖、蛋白 质及核酸等物质的不断合成和分解过程即新陈代谢来进行。

核医学显像在肿瘤方面的应用课件

核医学显像在肿瘤方面的应用课件
2 定量评估
核医学显像能够评估肿瘤的大小、位置和代谢活动,为疾病评估提供可靠依据。
3 多模态成像
结合其他医学成像技术,如CT、MRI等,可以提高肿瘤诊断的准确性。
肿瘤治疗中的核医学显像
1
放疗规划
核医学显像可帮助确定放疗的目标区域,并量化放疗前后的肿瘤代谢变化。
2
治疗监测
通过核医学显像,可以观察到肿瘤的治疗反应,指导后续治疗计划的调整。
核医学显像在肿瘤方面的应用 课件
欢迎大家来到这个关于核医学显像在肿瘤方面的应用课件。在本课件中,我 们将探讨核医学显像的原理、种类,以及在肿瘤诊断和治疗中的应用。
核医学显像的原理
核医学显像是利用放射性同位素向患者体内注射,并通过探测器捕捉由放射性同位素释放的射线来显示 不同组织或器官的功能和代谢情况。
重复性好
核医学显像的结果可以进行定量分析和重复 观察,对疾病的变化进行动态监测。
核医学显像技术的发展
• 显像设备的改进:分辨率提高,剂量减少。 • 新的放射性示踪剂:增强诊断效果,减少副作用。 • 结合人工智能技术:提高图像解读和分析的准确性色,随着技术的发展和创 新,相信其应用前景将更加广阔。
核医学显像的种类
• 正电子发射断层扫描(PET):可观察到肿瘤的代谢活动和生长状态。 • 单光子发射计算机断层扫描(SPECT):用于检测肿瘤的位置和大小。 • 闪烁靶区显像(Scintigraphy):对身体特定区域进行显像,例如骨骼、
肺部。
肿瘤诊断中的核医学显像
1 早期发现
通过核医学显像,可以发现早期肿瘤病灶,有助于及早制定治疗方案。
3
术后随访
核医学显像可用于评估手术后的肿瘤残留和复发情况,以及引导进一步的治疗。

核医学PPT课件 肿瘤PET显像【82页】

核医学PPT课件 肿瘤PET显像【82页】

EORTC PET研究组 关于PET放化疗的疗效评价标准
治疗疗效
视觉评价
肿瘤SUV的变化
出现新转移灶的摄取 病变进展 或肿瘤摄取范围增大
长径增加>20%
升高>25%
病变稳定
肿瘤摄取范围无明显变化 长径增加<20%
降低<15% 或升高<25%
部分缓解 肿瘤摄取范围不一定缩小
化疗1周期降低15%~ 25% 第2周期降低>25%
显像原理
正常组织通过糖、蛋白质、脂肪及核酸等 物质的不断合成和分解来维持结构的稳定 和生理功能;
肿瘤细胞无限增殖,DNA合成增多,氨基 酸、葡萄糖等代谢物质消耗增加,与正常 组织之间有明显差异。
18F-脱氧葡萄糖(18F-FDG )
显像原理
显像仪器
PET-CT Hybrid PET (双探头符合线路SPECT-CT)
完全缓解
肿瘤放射性摄取与周围正常组织 无明显差别
SUV与周围组织接近
European Organization for Research and Treatment of Cancer
女,40岁,右侧乳腺弥漫型大B细胞性NHL,治疗前右侧乳腺SUV =21.8(A)。 CHOP方案化疗6个疗程,并应用Zevalin治疗,PET/CT复查右侧乳腺SUV =3.9(B), 较治疗前SUV下降81%
肿瘤显像
肿瘤显像分类
肿瘤代谢显像 肿瘤非特异性阳性显像
67Ga肿瘤显像 201Tl和99mTc-MIBI肿瘤显像 99mTc(V)-DMSA肿瘤显像
肿瘤特异性显像
肿瘤免疫显像 肿瘤受体显像 肿瘤基因显像
前哨淋巴结显像 ……
肿瘤代谢显像
18F-脱氧葡萄糖(18F-FDG )葡萄糖代谢 18F-氟胸腺嘧啶(18F-FLT )核酸代谢 11C-胸腺嘧啶(11C-TdR)核酸代谢 11C-蛋氨酸(11C-MET)氨基酸代谢 18F-酪氨酸(18F-FET )氨基酸代谢 11C-胆碱(11C-choline)磷脂代谢

简述肿瘤受体显像原理

简述肿瘤受体显像原理

简述肿瘤受体显像原理
肿瘤受体显像是一种用于检测肿瘤存在和分布的方法。

它利用放射性同位素标记的特定配体与肿瘤细胞表面上特定的受体结合,通过核医学显像技术观察放射性同位素的分布情况,从而确定肿瘤的位置和大小。

肿瘤细胞在表面上通常会过度表达一些特定的受体,这些受体与正常细胞的受体有所不同,如表皮生长因子受体(EGFR)、雌激素受体(ER)、前列腺特异性膜抗原(PSMA)等。


瘤受体显像利用这些受体的高表达特点,通过靶向性的放射性配体与受体结合,实现对肿瘤的可视化。

在肿瘤受体显像过程中,通常会选择适当的核素进行标记,例如碘-123、碘-131、铼-188等具有良好生物分布和核素衰变特
性的放射性同位素。

这些同位素被标记在具有高亲和力的配体上,通过体内注射的方式被引入到机体内。

一旦放射性配体进入机体,它会寻找和结合与其亲和力相匹配的受体,而这些受体通常过度表达在肿瘤细胞的表面上。

配体与受体结合后,放射性同位素会被肿瘤细胞摄取,并在其内部发出放射性辐射。

核医学显像技术被用来检测和记录放射性同位素的分布情况。

例如,正电子发射断层扫描(PET)和单光子发射计算机体层
摄影(SPECT)是常用的核医学显像技术。

通过检测放射性
同位素发射的伽马射线或正电子,显像仪可以生成肿瘤组织的分布图像,从而确定肿瘤存在和位置。

总而言之,肿瘤受体显像利用放射性同位素标记的特定配体与肿瘤细胞表面上的受体结合,通过核医学显像技术观察放射性同位素的分布情况,从而实现对肿瘤的可视化和定位。

这种方法在肿瘤的诊断、分期和治疗监测等方面具有重要的应用价值。

肿瘤显像的原理

肿瘤显像的原理

肿瘤显像的原理肿瘤显像是一种医学检查技术,可以通过使用放射性物质或者荧光染料等方法,将肿瘤的位置及大小等信息可视化,提供给医生作为诊断和治疗的重要依据。

本文将从肿瘤显像的原理、分类及应用等方面展开探讨。

肿瘤显像的原理是利用放射性同位素或荧光染料等物质的特殊性质,来实现对肿瘤的显影。

放射性同位素显像中,检查过程中患者会被注射一种放射性药物,这种药物会被肿瘤组织吸收,放射性废物将在体外排泄,从而较为精确地描绘出肿瘤组织的位置和大小,有助于医生判断病情和治疗方案。

而荧光染料显像则是将荧光染料通过注射、吞服或者涂敷等方式,让其被肿瘤组织吸收,不同颜色的光线被反射回来,在显微镜下可以看到肿瘤组织和正常组织的明显区别,更加清晰地显示出肿瘤组织。

根据不同的显像物质,肿瘤显像技术可分为核医学显像、荧光显像等多种类型。

其中核医学显像是应用最广泛的肿瘤显像技术之一,核医学显像用到的放射性药物有锝、铟、碘、钴等多种不同物质,可以有效地确定肿瘤的位置和范围,还可以评估治疗效果;而荧光显像则在美容、赛事反兴奋剂测试等领域有广泛应用。

肿瘤显像技术在肿瘤的早期筛查和定位方面有着重要应用。

通过肿瘤显像技术,医生可以更准确地检出肿瘤组织,早期诊断可以降低病死率和提高治疗效果,为康复提供有力保障。

此外,对于一些高危人群,如吸烟者、肝病等人群,用肿瘤显像技术进行定期的筛查也是非常重要的预防措施。

总之,肿瘤显像技术是一种简单、快捷、无创的检查方法,可以帮助医生更准确地进行诊断和治疗,对肿瘤病人的治疗效果有不可忽视的帮助。

未来,肿瘤显像技术将越来越成熟,有望成为早期肿瘤诊断和治疗的主要手段之一,更大程度地帮助人类提高健康水平和生活质量。

肿瘤的核素显像

肿瘤的核素显像
恶性 肠道恶性肿瘤累及骨骼时,骨骼病灶放射性摄取可降低。
放射性核素标记抗肿瘤药物显像
99mTc-PPM肿瘤显像
培谱利欧霉素(peplornycin,PPM)是博来 霉素的衍生物,国内称平阳霉素,具有较强的 抗肿瘤作用。研究证明,PPM进入体内后,主 要定位于肿瘤细胞核,并与其DNA结合其作用 模式为抑制DNA的合成和切断DNA链。
异常图象
病灶部位出现放射性异常浓聚
临床应用
骨和软组织肿瘤
Tc-MIBI被用于鉴别骨病变的良恶性。其灵敏度 为81%,特异性为87%。Tc-MIBI 可被用于评价 骨折和病理性骨折。病理性骨折摄取增加,而 非病理性骨折则不增加。假阳性可见于骨化性 肌炎、骨样骨瘤、非骨化性纤维瘤巨细胞瘤等。
甲状腺髓样癌
如见下颈部淋巴结转移表现,应考虑上纵隔探 查、清扫
术后见局部或邻近部位、上纵隔仍有局灶性放 射性异常浓聚,可诊断为残留、复发或转移, 但如见于锁骨、胸、肋骨手术断端部位,应首 先考虑为创伤所致。
诊断灵敏度大于80%,特异性100%
软组织肿瘤
四肢或躯干软组织肿块高度摄取放射性者,一 般考虑恶性,但个别良性者如胶原纤维瘤及具 恶性倾向的良性肿瘤如隆突性纤维瘤也可高度 摄取,弥漫性略高于本底者不能除外炎症可能 性
骨骼:可见脊柱、骨盆、长骨干骺和骨骺端有吸 收。儿童的肘、膝、髋关节等显示清楚。其他四 肢长骨呈对称、散在吸收
临床应用
肺癌
鳞状细胞癌>腺癌>未分化癌 对于鳞状细胞癌灵敏度为90% <1.5cm肿块难于发现
肝细胞癌
肝细胞性肝癌(86%~90%) 肝浓疡100%阳性
淋巴瘤
疗效监测 残留肿块的定性 预后观察 复发
放疗和化疗不会抑制201Tl 的摄取,但可以抑制67Ga的 摄取。

肿瘤核医学名词解释

肿瘤核医学名词解释

肿瘤核医学名词解释
肿瘤核医学是一种利用放射性药物和核技术检测和治疗肿瘤的医学技术。

以下是一些常见的肿瘤核医学名词解释:
1. PET扫描:正电子发射断层扫描,是一种通过注射放射性药物来检测肿瘤的影像学技术。

2. SPECT扫描:单光子发射计算机断层扫描,是一种利用放射性药物来检测肿瘤的影像学技术。

3. 放射性同位素治疗:一种利用放射性同位素来杀死肿瘤细胞的治疗方法。

4. 核医学显像:一种利用放射性药物来显像肿瘤的影像学技术。

5. 活体生物体外荧光成像(IVIS):一种利用荧光标记的细胞来检测肿瘤的影像学技术。

6. 闪烁计数器:一种用于测量放射性药物的计数器。

7. 放射性同位素标记:一种将放射性同位素与药物结合在一起以便
于检测的技术。

8. 核医学治疗:一种利用放射性药物来杀死肿瘤细胞的治疗方法。

9. 放射性药物:一种含有放射性同位素的药物,用于检测和治疗肿瘤。

10. 放射性同位素扫描:一种利用放射性药物来检测肿瘤的影像学技术。

这些术语是肿瘤核医学中常见的术语,通过了解它们的含义,可以更好地理解和应用肿瘤核医学技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
临床医学八年制核医学教学幻灯
核医学肿瘤显像
正常细胞 突变细胞 突变细胞 突变细胞 恶性细胞
肿瘤的发生与发展
癌基因的 激活或抑 癌基因的 失活
良性
恶性
转录 翻译
DNA
mRNA
基因显像
proteins
分子显像
… structural ion channels enzymes receptors transport …
标记指数 S期细胞的比例
潜在倍增时间 细胞克隆的理论倍增时间
生长分数
增殖细胞比例
乏氧细胞比例 放射抗拒细胞比例
凋亡指数
修复系统之一,敏感性参数
修复能力
亚致死性、潜在致死性损伤修复
肿瘤生物调强与适形治疗
• 1959 日本提出适形放疗 • • 1970‘ 提出调强适形放疗 • • ,3 • 靶区概念 • • •
开始治疗
1
2
分期
早期反应
分期
ቤተ መጻሕፍቲ ባይዱ
预测治疗效果
治疗结束
3
晚期反应
肿瘤残余
化疗前 4.6
子宫内膜癌术后,肝转移。 化疗后,肝转移病灶消失。
化疗后
化疗前 5.3
胃窦癌术后,腹腔淋巴转移。 化疗后,肿瘤累及范围缩小
化疗后 4.2
第二节 肿瘤特异性显像
汪静
一、概念与原理
第一部分
放射免疫显像(,)
——以放射性核素标记肿瘤相关抗原的特异抗 体,以抗体作为核素的靶向载体,与肿瘤抗原结合, 是放射性核素浓聚于肿瘤组织,在体外对肿瘤进行显 像。
扁桃腺恶性肿瘤
头颈部肿瘤
33669 左颈部淋巴肿大,穿刺为腺癌,寻找原发病灶 :会厌部高代谢,提示恶性病灶,术后病理为鳞癌。
食道癌
恶性间皮瘤
用于健康体检
一代歌后梅艳芳40岁死于宫颈癌 拥有6800万家产
林黛玉的扮演者陈晓旭42岁死亡乳腺癌
年轻生命的陨落
中国巨富:均瑶集团老板
王均瑶38岁死于结肠癌 航空业、乳业、置业
18F-MISO
乏氧
18 & 葡萄糖
2 O
2 O
18F
2-182-脱氧葡萄糖
葡萄糖
葡萄糖代谢显像
糖酵解和肿瘤的关系:特征性表现
“优势进化解释了糖酵解现象在人类肿瘤 中令人惊奇的普遍性和即使在有氧状态下 肿瘤细胞仍维持糖酵解增强的现象”
2004
双侧
锁骨 上区
生理性摄取
结核球
隐球菌感染
病理状态
氨基酸代谢显像
H311C S
COO -
NH+3
[11C]
氨基酸转运体
18F
O
X
蛋白合成
COO NH+3
[18F]
转移酶蛋白降解
磷脂代谢显像
11
[11C]
膜磷脂
6
(激酶)
二、18 在肿瘤诊断中的应用
肺癌诊断
肺炎
肺癌
胸水患者的鉴别 肺结节良恶性鉴别
肺癌分期
肺癌伴纵隔淋巴结转移
surgery
胰腺炎
甲状腺瘤
乳腺纤维瘤
舌下腺腺样 囊性癌
细支气管肺泡 细胞癌
假阴性
生物学因素+物理学因素
原发性肝癌 肾透明细胞癌
前列腺癌
() () () ()
170 99 59-21
60 992
9991
乏氧显像剂
NN NO2
OH 18F
[18F]
18F
[18F]
O
HO
NO2
OH N
N
核苷酸代谢显像
18
,. 1998;4:1334-1336
二、显像方法
第一部分
元素名称 锝() 碘()
表1 常用的放射性核素
核素 符号
99
T1/2 主要γ光子 ()
6h 141
优缺点 价廉易得,显像清晰
123I
13h 159
显像清晰;价格昂贵
131I
8d 364(81%)
价廉易得;显像欠佳
第一部分
抗体的选择
特异性高 免疫原性低
多选择单克隆抗体() 或抗体片断(除去段的部分)
形态
生理
生化
第一节 肿瘤代谢显像
一、原理和方法
显像原理
11 ;13 ;15 ;18;124
ZAX N Z A1Y N 1 e +
15O –H2O
血管生成
11C –蛋氨酸
氨基酸转运增强
K1
K2
18FDG
糖酵解增加
肿瘤代谢显像 11C-胆碱
膜功能
18F-FLT
增殖
凋亡
18F –Annexin V
Some surgery No surgery
肺癌患者早期准确诊断和分期,是正确临床治疗决策的依据, 也是改善患者生存质量、提高生存率的唯一手段
乳腺癌
乳腺癌伴腋窝淋巴 结转移
乳腺癌
乳腺癌肝脏转移
一例乳腺癌跳过淋巴结直接转移至肝脏
• X线钼靶乳腺摄片敏感性高,但特异性低
• 致密乳腺组织和乳腺结构异常者易致漏诊或 误诊。
• 2. 减少免疫反应:单抗片段、

第二抗体结合
游离标记抗体、冷抗体

人源抗体
• 3. 亲和素-生物素系统预定位
一、概念与原理
第二部分
肿瘤受体显像
• 敏感性高,特异性低
• 针吸活检特异性高,敏感性低
• 敏感性82%~100%,特异性68%~100%

诊断效能不受乳腺组织密度影响,对于
不能触及的小病灶或乳腺致密或结构异常时病
变的鉴别,减少不必要的手术有帮助。
腹部肿瘤
胃癌
结肠癌
结肠癌
结肠癌伴肝转移
肝癌
胰头癌
鼻咽癌
头颈部肿瘤
甲状腺癌
甲状腺癌颈淋巴结及骨骼转移
远距离X线治疗 计划设计
模拟定位 多叶准直器
三维适形 调强放疗
生物适形、生物调强?
模拟 三维计划
放射治疗
新的放疗技术发展
:
20
12C
1n
1p

π- -

20 : 12

中子
質子
Π介子 電子 X線
γ光子
: 1 : 1 : 1/7 : 1/1800
(),
影响放射敏感性因素
细胞周期时间 平均细胞倍增时间
著名影星傅彪42岁死于肝癌
甲状腺乳头状癌
健康体检 F68,体检发现甲状腺病灶
三 与肿瘤生物调强和适形放疗
1899 s 1920 s 1940 s 1950 s 1970 s
1990 s
2010s
放射治疗的进展
镭针
开始放射治疗
X线机 电子感应加速器 钴60治疗机 模拟定位机 直线加速器
低能X线治疗 高能X线和电子治疗
三、临床应用
1
肿瘤的定性
2
肿瘤的分期
3 协助肿瘤标志物的应用
4
肿瘤疗效监测
第一部分
四、应用实例
第一部分
A:胃癌单抗放免显像
B:胃癌放免显像(与治疗)
(第四军医大学西京医院核医学科提供)
五、发展趋势
第一部分
• 存在问题:
• 1. 靶/非靶比值不理想 ;
• 2. 抗体的免疫原性。 • 进展:
• 1. 减本底技术 ;
肿瘤生物调强放疗的应用
• 根据肿瘤不同部位的活性使用不同的放疗剂量
(>20%) 77% (, , 2003)
➢与放射治疗计划 ➢与放射治疗疗效随访
疗效随访
评价放射治疗的时机也是目前争论较 多的问题。目前相当多的资料认为在辐射 治疗结束后4-6个月时建议通过进行评价。
四、与肿瘤早期治疗反应评估
相关文档
最新文档