IGBT中频炉电源控制部分原理及优势
电磁炉igbt工作原理

电磁炉igbt工作原理
电磁炉使用了一种称为IGBT(绝缘栅双极性晶体管)的功率
半导体器件,其工作原理如下:
1. 电源输入:当电磁炉接通电源时,交流电会先经过整流器转换为直流电。
2. 电流变换:直流电经过逆变器,被转换为高频交流电。
逆变器的核心部件就是IGBT。
3. IGBT工作原理:IGBT由三个部分组成——NPN型晶体管(一个底面接收器和一个集电极)、PNP型晶体管(基极和
发射极)以及一个嵌入在P型层中的绝缘栅。
当控制信号施
加在绝缘栅上时,可以控制NPN型晶体管和PNP型晶体管之
间的电流传输。
4. 控制信号:控制信号根据设定的加热功率和温度需求,通过控制电路添加或减少,并传递给IGBT。
5. 高频电流输出:通过控制和调整IGBT的导通和关断时间,
高频电流被传送到线圈中。
线圈内的磁场产生了交变的磁通量。
6. 感应加热效应:当放置在电磁炉上的铁质或者感应层底部的铁质锅具进入磁场后,感应层内的铁质材料会形成涡流(感应电流)。
涡流会在锅底产生热量,进而加热食物。
7. 加热控制:电磁炉内的传感器会感知锅具的温度变化,通过
反馈传给控制电路。
控制电路会根据反馈信号和设定的加热功率,调整IGBT的控制信号来控制加热温度。
中频炉控制电路原理

中频炉控制电路原理
1.电源电路
电源电路是中频炉控制电路的基础,主要提供稳定的电源供给。
一般采用三相交流电源,通过三相变压器进行降压,并经过整流电路将交流电转换为直流电。
2.整流电路
整流电路将交流电信号转换为直流电信号,一般采用整流桥电路来实现。
整流桥电路由四个二极管组成,能够将传统交流电转换为具有一定脉动的直流电。
3.逆变电路
逆变电路将直流电信号转换为中频交流电信号,用于供给中频炉的感应线圈。
逆变电路一般采用全桥逆变电路,由四个可控硅组成。
4.功率控制电路
功率控制电路用于对中频炉的加热功率进行调节。
根据加热负荷的需求,通过调节电流引入的角度和脉宽,可以实现对功率的控制。
5.保护电路
保护电路用于对中频炉的工作状态进行监测和保护。
主要包括过电流保护、过压保护、欠压保护、温度保护等功能。
当检测到异常情况时,保护电路可以及时切断电源,避免对设备和人员的损害。
以上就是中频炉控制电路的主要原理。
通过电源电路、整流电路、逆变电路、功率控制电路和保护电路的配合工作,中频炉可以实现稳定的加
热功率和频率,并保证设备和人员的安全。
实际中频炉控制电路的设计还需要考虑到各种因素,比如系统的稳定性、控制的精度、安全性和可靠性等。
因此,设计中频炉控制电路需要综合考虑各种因素,并根据具体需求进行优化设计。
电磁炉igbt工作原理

电磁炉igbt工作原理电磁炉是一种使用电磁感应原理进行加热的厨房电器。
它使用高频电源产生的高频电流通过线圈产生交变磁场,使放在上面的锅具内部产生涡流,从而将锅具加热。
电磁炉内部主要由功率调节器、中频电路、线圈和悬浮感应电磁铁四个部分组成。
功率调节器是电磁炉控制功率输出的关键部分。
它通过检测锅具的温度和用户设定的加热功率,控制中频电路输出的电流大小,从而实现对加热功率的调节。
常见的功率调节方式有脉宽调制和频率调制。
脉宽调制是通过控制中频电路输出的脉冲波的占空比来调节加热功率大小。
频率调制则是通过改变中频电路的工作频率来实现功率调节。
中频电路是电磁炉的核心部件,它由功率管、IGBT(绝缘栅双极型晶体管)和其他电子元件组成。
中频电路负责将220V的交流电转换成数千赫兹甚至上百万赫兹的高频交流电。
高频交流电通过线圈产生交变磁场,进而在放在上面的锅具内部产生涡流,从而实现加热。
中频电路的关键部件是IGBT,它是一种功率管,具有高电压、高电流和高开关速度的特点。
IGBT通过开关控制电流的导通和切断,从而实现功率调节。
线圈是电磁炉用于产生交变磁场的部分,通常由铜导线绕成。
线圈中的电流随着中频电路的工作而变化,产生交变磁场,进而感应导体内部的涡流。
线圈的设计需要考虑电流的大小和频率,以及与锅具之间的磁耦合效应。
悬浮感应电磁铁是一种用于支撑锅具的装置。
它由导体和电磁铁组成,放在电磁炉的工作平台上。
电磁铁在通电时会产生磁场,通过磁感应定律感应导体内的涡流,从而使导体受到磁场的反作用力,从而支撑锅具。
利用这种原理,锅具可以悬浮在电磁炉上方,不直接接触电磁炉的表面,避免了传统炉灶的接触式加热,有效降低了热损失和热辐射,提高了加热效率。
总的来说,电磁炉利用高频电源产生的高频电流,通过线圈产生交变磁场,感应锅具内部的涡流,从而将锅具加热。
功率调节器用于控制加热功率的大小,中频电路实现电能的转换和放大,线圈产生交变磁场,悬浮感应电磁铁用于支撑锅具。
igbt中频电源节能优势完整

IGBT中频电源的节能优势我国是铸造大国,铸铁件年产量几年来均居世界各国之首位,而其能耗在成本中所占比例却比工业发达国家高出2—3倍,冲天炉的能耗占了其中的大部分。
主要原因是小容量冲天炉所占比例太大,而其中采用烟尘净化和余热回收装置的微乎其微,实现高水平熔炼和计算机控制的更少了。
我国铸铁生产车间一万多个,每个车间年平均产量不足1000t,冲天炉开炉时间短。
在冲天炉结构方面,由于我国铸造厂点过多,限制了大容量冲天炉的使用。
由于产量低,效益差,限制了性能优越的现代化冲天炉及其配套设备的采用。
操作不当不但对冲天炉性能造成不良影响,也是增加冲天炉能耗和环境污染的重要原因,在我国为数众多的小容量冲天炉上,更是普遍存在的现象。
中频技术应用于铸造行业给铸造推广高质量、高效率、节能环保、低碳的中、高频科技技术应用与中国的铸造行业,是保持中国铸造业可持续发展的一项重大举措。
与传统的冲天炉熔炼相比,中频技术应用于熔炼、精铸诠释了科技的力量。
中频感应电炉经历了两次根本的变革,第一次变革源于20世纪60年代后期开发的晶闸管静态变频电源,第二次源于20世纪70年代中期开发的逆变变频及其控制技术。
这样使中频感应电炉的优越性得以充分的发挥。
随着大功率晶闸管变频电源的开发和可靠性的提高,中频感应电炉正在逐步替代工频感应电炉而在铸造业获得愈来愈广泛的应用。
中频电源的基本工作原理,就是通过一个三相桥式整流电路,把50 Hz的工频交流电流整流成直流,再经过一个滤波器(直流电抗器)进行滤波,最后经逆变器将直流变为单相中频交流以供给负载,所以这种逆变器实际上是一只交流—直流—交流变换器,其基本线路如图:中频炉的感应加热原理,它是利用电磁感应原理将电能转变为热能,当交变电流i感应线圈时,感应线圈便产生交变磁通Φ,使感应中的工件受到电磁感应而产生感应电动势e。
感应电动势e = dΦ/dt如果磁通Φ是呈正弦变化的,即Φ = -Φm sinwt则 e = -dΦ/dt=-Φm sinwtE的有效值 E=4.44fΦM (伏)感应电动势E在工件中产生电流I, i使工件内部开始加热,其焦耳热为;Q=0.24I2RtI--工件中感应电流的有效值(安)R--工件电阻(欧);t—时间(秒)中频电源从最初的发展到今天应用于铸造行业,电源种类从原理上可以分为两类,一传统的可控硅中频电源,可控硅又分为并联和串联型(因串联可控硅的在现实实践中应用技术不成熟在这就不做分析),二是带有igbt(绝缘栅极型晶体管)串连谐振电源。
中频炉的工作原理

中频炉的工作原理
中频炉是一种利用电磁感应原理进行加热的设备,其工作原理如下:
1. 电源输入:中频炉通过电源将交流电输入设备,常见的电源频率为50Hz或60Hz。
2. 变压器:中频炉内部设有变压器,用于将电网供电的低频电压升高至中频炉所需的高电压。
通常,变压器使用铜线绕制的线圈来实现电能的传输。
3. 变流器:变压器将高电压输出到变流器。
变流器将高电压交流电通过全桥式的电子元件(例如IGBT)进行整流和换流,
将其转化为中频交流电。
4. 感应线圈:中频炉的感应线圈由多层绝缘线圈构成,线圈内绕有工件。
当中频电流流过感应线圈时,将产生强磁场。
5. 工件加热:当感应线圈通电时,由于电磁感应作用,磁场会穿透工件并在其内部产生涡流。
这些涡流会将电能转化为热能,从而使工件加热。
6. 淬火、退火和保温:中频炉还可以通过调节电流和时间来实现工件的淬火、退火和保温等不同的热处理过程。
7. 控制系统:中频炉一般配备有控制系统,用于监测和控制加热过程的温度、电压和电流等参数,以确保加热效果和工作安
全。
通过以上步骤,中频炉能够实现对金属工件的快速、高效加热,广泛应用于冶金、机械制造、建筑材料等领域。
通俗易懂讲解IGBT的工作原理和作用

通俗易懂讲解IGBT的工作原理和作用IGBT(Insulated Gate Bipolar Transistor)即绝缘栅双极晶体管,是一种常用的功率半导体器件,具有高电压、高电流和高开关速度的特点。
它广泛应用于交流调速、电源逆变、电机驱动等领域,具有重要的作用。
本文将通俗易懂地介绍IGBT的工作原理和作用。
一、IGBT的工作原理IGBT是由N沟道型MOS(Metal Oxide Semiconductor)场效应晶体管与PNP型双极晶体管组成。
它结合了MOSFET和双极晶体管的优点,在导通时具有较低的导通压降,而在关断时具有较高的击穿电压。
其工作原理如下:1. 导通状态:在IGBT导通状态下,当控制电压Ugs大于门极阈值电压Uth时,N沟道型MOSFET处于导通状态,形成通道,电流可以从集电极到源极流动。
由于N沟道型MOSFET的导通电阻较小,因此导通时的压降很小。
2. 关断状态:当控制电压Ugs小于门极阈值电压Uth时,N沟道型MOSFET无通道,不导电,IGBT进入关断状态。
此时,通过控制电压Uce(集电-发射极电压)可以实现IGBT的关断。
由于PNP型双极晶体管的存在,即使在较高的Uce下,IGBT也能承受较高的电压。
IGBT的工作原理可以用一个自锁开关的例子来解释。
N沟道型MOSFET相当于自锁开关的门锁,控制门锁的状态可以实现导通和关断;PNP型双极晶体管相当于自锁开关的钥匙,即使是在关断状态下,只要插入钥匙(提供较高的Uce),开关仍然可以打开。
二、IGBT的作用IGBT作为一种高性能的功率开关器件,其作用主要体现在以下几个方面:1. 电流调节:IGBT能够调节高电压和高电流,广泛应用于交流调速和电源逆变等领域。
在交流调速中,IGBT可以根据输入信号的变化,控制电机的转速和输出功率。
2. 电源逆变:IGBT可实现DC/AC逆变,将直流电源转换为交流信号,用于交流电源转换、逆变焊机等领域。
中频炉、中频电炉的优势特点

中频炉、中频电炉的优势特点中频炉是一种将工频50HZ交流电转变为中频(300HZ以上至1000HZ)的电源装置,把三相工频交流电,整流后变成直流电,再把直流电变为可调节的中频电流,供给由电容和感应线圈里流过的中频交变电流,在感应圈中产生高密度的磁力线,并切割感应圈里盛放的金属材料,在金属材料中产生很大的涡流。
由于中频感应加热的原理为电磁感应,其热量在工件内自身产生,普通工人用中频电炉上班后十分钟即可进行锻造任务的连续工作,不需烧炉专业工人提前进行烧炉和封炉工作。
由于该加热方式升温速度快,所以氧化极少,中频加热锻件的氧化烧损仅为0.5%,煤气炉加热的氧化烧损为2%,燃煤炉达到3%,中频加热工艺节材,每吨锻件和烧煤炉相比至少节约钢材原材料20-50千克。
中频炉加热速度快、中频炉生产效率高、中频炉氧化脱炭少、中频炉延长模具寿命、中频炉工作环境优越、中频炉提高工人劳动环境和公司形象、中频炉无污染、中频炉低耗能、中频炉熔炼速度快、中频炉节电效果好、烧损少、能耗低、中频炉自搅拌功能、熔炼温度及金属成分均匀、中频炉电加热作业环境好、中频炉启动性能好,空炉、满炉均可达到100%启动。
中频炉的节约特点●加热速度快、生产效率高、氧化脱炭少、节省材料与成本、延长模具寿命由于中频感应加热的原理为电磁感应,其热量在工件内自身产生,普通工人用中频电炉上班后十分钟即可进行锻造任务的连续工作,不需烧炉专业工人提前进行烧炉和封炉工作。
由于该加热方式升温速度快,所以氧化极少,中频加热锻件的氧化烧损仅为0.5%,煤气炉加热的氧化烧损为2%,燃煤炉达到3%,中频加热工艺节材,每吨锻件和烧煤炉相比至少节约钢材原材料20-50千克。
其材料利用率可达95%。
由于该加热方式加热均匀,芯表温差极小,所以在锻造方面还大大的增加了锻模的寿命,锻件表面的粗糙度也小于50um工艺节能,中频加热比重油加热节能31.5%~ 54.3%,比煤气加热节能5%~40%。
中频炉详细工作原理

中频炉详细工作原理中频炉是一种利用电磁感应原理加热金属的设备。
它主要由电源系统、感应线圈、电容器、水冷系统和控制系统组成。
工作原理如下:1. 电源系统:中频炉通常使用大功率的交流电源,将电能转换为中频电能供给炉体。
电源系统会将电网交流电经过整流、滤波和变压处理,输出所需的中频电流。
2. 感应线圈:感应线圈是中频炉的核心零件,一般采用圆环状线圈。
当中频电流通过感应线圈时,会产生一个交变磁场。
3. 电容器:为了提高电能的利用率,中频炉通常会加入电容器。
电容器和感应线圈组成谐振回路,使得电流和炉料之间形成高频电磁感应,从而实现加热。
4. 水冷系统:由于中频炉在工作过程中需要承受较大的电流和电压,因此需要采用水冷系统冷却感应线圈和电容器,以确保设备的安全和稳定工作。
5. 控制系统:中频炉还配备了先进的控制系统,用于调节和监控炉体的温度、功率、频率等参数。
通过对控制系统的设置,可以实现对加热过程的精确控制和自动化操作。
具体工作过程如下:1. 开始工作时,将待加热的金属材料放入中频炉的感应线圈内。
2. 接通电源后,电流通过感应线圈,产生一个交变磁场。
3. 由于金属材料对磁场的敏感性,磁场的变化导致对金属材料内部的涡流感应。
4. 金属材料内部的涡流会产生额外的电阻,使得材料发热。
5. 材料的发热使温度升高,达到所需的加热效果。
6. 控制系统可以根据需要对电源的频率、功率和温度进行调节,以实现对加热过程的精确控制。
总结起来,中频炉利用电磁感应原理,通过感应线圈产生的交变磁场,使金属材料内部产生涡流,达到加热的目的。
通过控制系统的设置,可以对加热过程进行精确控制。
igbt感应加热电源的原理和优势

IGBT感应加热电源的原理和优势IGBT中频电源控制部分的原理和优势:解释:当总功率是2500KW的时候,每个炉体为2200KW,并且可以在300KW到2200KW 范围内随意调整,但是总功率不能超过2500KW.双变频器电气图纸1.串联谐振中频感应炉采用IGBT中频电源。
IGBT中频电源是一种新型的IGBT逆变器模块(绝缘栅双极型晶体管,德国生产)主要用来熔炼碳钢,合金钢,铸钢,有色金属。
IGBT中频电源具有加热速度快,节能环保的特点。
2.IGBT中频电源作为恒功率电源,即使添加少量的金属也可达到全功率输出,并且保持恒定不变,因此加热速度快。
采用串联谐振变压器,变压器电压高,所有的IGBT中频电源比可控硅电源节能。
IGBT采用频率调控系统调整频率,整流部分包括全桥整流器,感应器和电容滤波器,它在500v的条件下工作,因此IGBT中频电源产生极少的低次谐波,低网格污染。
3.IGBT中频电源比可控硅中频电源节约电能15%-25%,原因有以下几个方面:A.逆变器电压高,电流,电路损失低,这部分可以节约电能15%。
IGBT中频电源变压器的功率是2800v,传统的可控硅中频电源变压器的功率是750v,电流减小了四倍,线路损失降低了。
B.高功率因素,功率因素大于0.98,无功损耗小,这部分比可控硅中频电源节约电能3% -5%。
IGBT 采用全桥式整流,整流部分不调整可控硅传导角,所以整个过程的功率因素大于0.98,无功损耗小。
C.炉体热损耗小,同功率条件下,IGBT比可控硅每批次快15分钟。
在路出口的热损失占整个过程的3%。
因此这部分比可控硅中频电源节约3%的能量。
4.高次谐波干扰:当可控硅产生电压峰值的时候整流器的高次谐波调整电压。
电压电网会被严重污染导致其他的设备不能工作,IGBT中频电源整流器部分采用全桥整流器。
直流电压总是在最高程度工作,不需要调整传导角,因此不会产生高次谐波,不会污染电网,变压器,交换器不会被加热,不会干扰其他电子器件的工作。
变频器igbt工作原理和作用

变频器IGBT工作原理和作用变频器是一种能够改变电机供电频率以控制转速的电气设备,而IGBT (Insulated Gate Bipolar Transistor)作为变频器中核心的控制元件之一,发挥着重要的作用。
本文将介绍变频器IGBT的工作原理和作用。
一、IGBT的基本结构IGBT是一种三极型功率半导体器件,其结构包括P型区(汇流极)、N型区(发射极)和N+型区(栅极)。
通过控制栅极电压来控制其导通和截止状态,从而实现功率的调节和控制。
二、IGBT的工作原理1.导通状态:当在栅极施加正向电压时,形成导通的电场,使得P-N结之间的耗尽区扩展,IGBT导通。
此时电流可以顺利通过IGBT进行功率传递。
2.截止状态:当在栅极施加负向电压或零电压时,耗尽层恢复正常,IGBT截止,电流无法流经。
3.开关特性: IGBT具有开关速度快、损耗小的特点,可以进行高频开关控制,适用于变频器等高效能电源控制设备。
三、变频器中IGBT的作用1.频率调节:变频器通过控制IGBT导通和截止时间来改变输出频率,实现对电动机转速的调节,从而满足不同负载条件下的运行要求。
2.电流控制:通过控制IGBT的导通角度和导通时间,可以实现对输出电流的精确控制,保证电动机运行的稳定性和效率。
3.节能减耗:变频器利用IGBT进行电能调节,可以根据实际负载情况调节输出功率,实现节能减排的目的,提高电动机的使用效率。
结论IGBT作为变频器中的重要组成部分,通过控制其导通和截止状态,实现对电动机的频率和电流等参数进行精准调控,提高了电动机的效率和性能,同时也减少了能源的消耗。
深入了解变频器IGBT的工作原理和作用,有助于更好地应用和维护这一关键设备。
中频电源965igbt驱动模块原理

中频电源965igbt驱动模块原理
用途:
适用600V-1200V,20A-600A 的中频电源IGBT,驱动电流
原理框图:
管脚说明:
管脚名称说明
1PDA脉冲输入正端
2PDK脉冲输入负端
3FQC保护/故障输出光电三极管”C”端
4FQE保护/故障输出光电三极管”E”端
5VDD模块电源正端
6VSS模块电源负端
7ADJ短路保护动作时间调整
8VO电压源输出引脚,当模块用于电压源-电阻驱动方式时,
该引脚与第9 脚短接后作为电压源输出,通过驱动电阻连
接到IGBT 的栅极
9IO电流源输出引脚,当模块用于电流源驱动方式时,该引脚
直接连接到IGBT 的栅极,并连接一只电阻到8 脚,通过
调节该电阻阻值调节驱动电流大小
10EG中间电位引脚,由模块内部产生,连接到IGBT 的E 极,
因此IGBT 关断时,在栅极上产生一个负电位
11C直接连接到IGBT 的C 极,模块内部集成2000V 快恢复
二极管,用于IGBT 饱和检测以实现短路保护
说明:
1、模块内1-2 脚与3-4 脚之间是隔离的,可以不在一个电位水平,但建议两者的电位差不要超过48V。
2、脉冲输入采用高速光电耦合器隔离,内部串联一只 180Ω电阻,因此可直接输入TTL 电平,如输入脉冲电平高于5V,则需外接限流电阻。
典型电流源驱动应用电路:。
igbt工作原理电磁炉

igbt工作原理电磁炉
IGBT(绝缘栅双极型晶体管)是一种广泛应用于各种电子和
电力设备中的功率开关元件。
在电磁炉中,IGBT起到控制电
流和电压的重要作用。
以下是IGBT在电磁炉中的工作原理:
1. IGBT的基本结构主要由PN结、绝缘栅和PNP型继电器组成。
它具有MOSFET(金属氧化物半导体场效应晶体管)的
驱动优势,又具有BJT(双极型晶体管)的导通与截止能力。
2. 当线圈到达工作温度时,电磁炉控制电路会发送一个调节信号给IGBT。
这个信号通过绝缘栅控制器来控制绝缘栅。
绝缘
栅与源、漏极之间形成一个绝缘栅结,通过改变绝缘栅与源之间的电位差调节绝缘栅正向电压。
3. 当绝缘栅正向电压增大到临界值时,IGBT会开始导电。
此时,电流可以通过IGBT的漏极流到线圈中,产生强大的磁场,并加热锅底。
磁场与感应锅底的导电物质相互作用,产生涡流以加热锅底。
4. 当调节信号结束时,控制电路会发送一个截止信号给IGBT。
IGBT的绝缘栅电压降低,绝缘栅结会导致绝缘栅不再导电,
从而切断电流。
5. IGBT的优势在于其具有高电压和高功率的耐受能力,同时
具备低导通压降和高开关速度的特性。
这使得IGBT在电磁炉
的控制电路中可以高效地实现电流和电压的调节。
总之,IGBT的工作原理为通过控制绝缘栅的电压来实现电磁炉的开关控制,使电磁炉可以根据需要调节电流和电压,从而控制加热效果和温度。
中频炉的工作原理

中频炉的工作原理中频炉是一种用于加热金属的工业设备,它采用了中频电磁感应加热的原理。
中频炉的工作原理可以简单地概括为将电能转化为热能,然后传递给金属材料,使其加热。
下面将详细介绍中频炉的工作原理。
1. 中频电磁感应加热原理中频电磁感应加热是利用电磁感应原理将电能转化为热能的一种加热方法。
当通过导体中通以交变电流时,会在导体周围产生交变磁场,这个交变磁场会穿透导体并在导体内部产生涡流。
这些涡流会导致导体发热,从而实现加热的目的。
中频电磁感应加热具有加热速度快、效率高、加热均匀等优点,因此被广泛应用于金属加热领域。
2. 中频炉的结构中频炉通常由电源系统、感应线圈、工作台、水冷系统等部分组成。
电源系统提供交变电流,感应线圈将电能转化为热能并传递给金属材料,工作台用于放置金属材料,水冷系统用于冷却感应线圈以及工作台。
这些部分共同协作,使中频炉能够正常工作。
3. 中频炉的工作过程中频炉的工作过程可以分为以下几个步骤:(1) 开机准备:首先将金属材料放置在工作台上,然后启动中频炉的电源系统。
(2) 加热阶段:电源系统提供交变电流,感应线圈将电能转化为热能并传递给金属材料,金属材料开始加热。
(3) 控温阶段:当金属材料达到设定温度时,可以通过控制电源系统的输出功率来控制金属材料的温度,以保持在设定温度范围内。
(4) 关机:当金属材料加热完成后,可以关闭中频炉的电源系统,完成加热工艺。
4. 中频炉的应用中频炉广泛应用于金属热处理、金属熔炼、金属锻造等工业领域。
由于中频炉具有加热速度快、效率高、加热均匀等优点,因此被广泛应用于需要对金属材料进行加热处理的工艺中。
综上所述,中频炉利用中频电磁感应加热原理将电能转化为热能,并将热能传递给金属材料,实现对金属材料的加热。
它具有加热速度快、效率高、加热均匀等优点,因此被广泛应用于金属加热领域。
2016-2017年IGBT中频炉电源控制部分原理及优势(总结)

IGBT中频炉电源控制部分原理及优势:(1)IGBT中频电源是一种采用串联谐振式的中频感应熔炼炉,它的逆变器件为一种新型IGBT模块(绝缘栅双极型晶体管,德国生产),它主要用于熔炼普通碳素钢、合金钢、铸钢、有色金属。
它具有熔化速度快、节能、高次谐波污染低等优点。
(2)IGBT中频电源为一种恒功率输出电源,加少量料即可达到满功率输出,并且始终保持不变,所以熔化速度快;因逆变部分采用串联谐振,且逆变电压高,所有IGBT中频比普通可控硅中频节能;IGBT中频采用调频调功,整流部分采用全桥整流,电感和电容滤波,且一直工作在500V,所以IGBT中频产生高次谐波小,对电网产生污染工低。
(3)节能型IGBT晶体管中频电源比传统可控硅中频电源可节能15%-25%,节能的主要原因有以下几下方面:A、逆变电压高,电流小,线路损耗小,此部分可节能15%左右,节能型IGBT 晶体管中频电源逆变电压为2800V,而传统可控硅中频电源逆变电压仅为750V,电流小了近4倍,线路损耗大大降低。
B、功率因数高,功率因数始终大于0.98,无功损耗小,此部分比可控硅中频电源节能3%-5%。
由于节能型IGBT晶体管中频电源采用了半可控整流方式,整流部分不调可控硅导通角,所以整个工作过程功率因数始终大于0.98,无功率损耗小。
B、炉品热损失小,由于节能型IGBT晶体管中频电源比同等功率可控硅中频电源一炉可快15分钟左右,15分钟的时间内炉口损失的热量可占整个过程的3%,所以此部分比可控硅中频可节能3%左右。
(4)高次谐波干扰:高次谐波主要来自整流部分调压时可控硅产生的毛刺电压,会严重污染电网,导致其他设备无法正常工作,而节能型IGBT晶体管中频电源的整流部分采用半可控整流方式,直流电压始终工作在最高,不调导通角,所以它不会产生高次谐波,不会污染电网、变压器,开关不发热,不会干扰工厂内其他电子设备运行。
(5)恒功率输出:可控硅中频电源采用调压调功,而节能型IGBT晶体管中频电源采用调频调功,它不受炉料多少和炉衬厚薄的影响,在整个熔炼过程中保持恒功率输出,尤其是生产不锈钢、铜、铝等不导磁物质时,更显示它的优越性,熔化速度快,炉料元素烧损少,降低铸造成本。
中频炉电源的工作原理

中频炉电源的工作原理1.整流整流管是指能够将电流只通过一个方向的电子元件,常用的整流管有硅二极管和功率电子器件IGBT。
在整流过程中,交流电源经过整流管变成了具有脉动的直流电,并且其波形还存在较多的谐波成分。
2.滤波在整流后的直流电中,还含有很多高频谐波成分,需要通过滤波装置去除这些高频谐波,以保证逆变桥路的电压稳定性。
滤波装置主要由滤波电容和滤波电感组成。
滤波电容的作用是将电压的脉动通过电容的恒流性,变成电压的脉动量小,稳定性好的直流电。
滤波电感的作用是在直流电路中产生储能的磁场,用以抵消电流脉动。
滤波的过程经常采用LC滤波器,也可以采用RLC滤波器。
LC滤波器主要由滤波电感和滤波电容串联组成,对于不同频率的谐波具有不同的阻抗作用,可以很好地去除谐波成分。
3.逆变将经过滤波的直流电转换为交流电是中频炉电源的主要功能。
逆变电路是实现这一过程的核心部分,其主要是通过变换器来实现上述转换。
变换器一般采用全控桥式逆变电路,也称为逆变桥路。
逆变桥路由四个功率管和四个二极管组成,根据输入的直流电压和输出的交流电压波形要求,控制功率管的导通和关断,从而控制输出的电压和频率。
逆变桥路有两种常见的工作方式,分别是全控方式和半控方式。
全控方式通过调整功率管的触发角来控制其导通时间,从而实现输出的电压和频率的控制;半控方式只通过调整直流侧的电弧电压来实现对输出电压的控制,频率则通过变压器比变实现。
逆变桥路的工作原理是将输入的直流电通过功率管的导通和关断,通过变压器的变比转换,并采用三相全桥连接的方式输出三相交流电。
综上所述,中频炉电源的工作原理主要包括整流、滤波和逆变三个步骤。
通过整流将交流电转换为直流电,通过滤波去除直流电中的高频谐波成分,最后通过逆变将直流电转换为交流电供给中频炉使用。
中频炉电源的工作原理有效地保证了中频炉的正常运行。
IGBT和可控硅的中频炉比较及优点

• 可控硅具有体积小、效率高、稳定性好、 工作可靠等优点。多用来作可控整流、逆 变、变频、调压、无触点开关等。家用电 器中的调光灯、调速风扇、空调机、电视 机、电冰箱、洗衣机、照相机、组合音响、 声光电路、定时控制器、玩具装置、无线 电遥控、摄像机及中频炉等工业控制等都 大量使用了可控硅器件。
• IGBT(Insulated Gate Bipolar Transistor),绝 缘栅双极型功率管,是由BJT和MOS组成的复合 全控型电压驱动式电力半导体器件, 兼有 MOSFET的高输入阻抗和GTR的低导通压降两方 面的优点。GTR饱和压降低,载流密度大,但驱 动电流大;MOSFET驱动功率很小,开关速度快, 但导通压降大,载流密度小。IGBT综合了以上两 种器件的优点,驱动功率小而饱和压降低。非常 适合应用于直流电压为600V及以上的变流系统如 交流电机、变频器、开关电源、照明电路、牵引 传动等领域。
IGBT和可控硅的中频炉比 较
• 可控硅整流元件的简称,亦称为晶闸管。是 一种具有三个PN 结的四层结构的大功率半 导体器件,一般由两晶闸管反向连接而成.它 的功用不仅是整流,还可以用作无触点开 关以快速接通或切断电路,实现将直流电 变成交流电的逆变,将一种频率的交流电 变成另一种频率的交流电等等。
200KW-IGBT中频感应加热设备应用说明

JZ-200/4:每小时加热产量:500kg;
JZ-300/3:每小时加热产量:750kg;
JZ-500/2:每小时加热产量:1250kg;
生产节拍(每小时加热件数)=每小时产量/工件单重。
(2)根据工件大小选频率
直径Φ20~Φ40mm 工件一般推荐频率为 4KHz;直径Φ40~Φ60mm 的工件推荐频率为
比亚特自动化焊接工艺
(3)电路特征:主器件采用 IGBT 模块,电路采用不控全桥整流,电容滤波,桥式逆
变,串联谐振输出。和老式中频采用可控硅并联谐振有根本的不同。
(4)节电原理:不可控整流,整流电路全导通。高功率因数,电压型串联谐振等,决
定了本设备大幅度省电。
二、比亚特自动化设备选型和参数确定
选型依据
各种因素综合起来,决定了本设备比可控硅中频节电 20%左右,节电效果好。
-5比亚特自动化焊接工艺
以上图片显示的是比亚特自动化焊接工艺以及设备
根据客户工件尺寸,可以做长形炉体,方形炉体,扁形炉体。 根据客户工件尺寸,产量高低,来匹配功率大小。
备注:以上说明仅供参考,具体结合实际生产情况来确定工艺
-6比亚特自动化焊接工艺
型号
进水温度
水压
出水温度
水流量
BS-N3
5-35℃
0.2-0.3MPa
≤55℃
16-28 m3/h
第三部分 比亚特自动化节能原理及实际效果 一、节电原理 首先是采用新型 IGBT 器件,不采用可控硅;IGBT 为自关断器件,本身比可控硅损耗小。再 一个就是采用串联谐振,串联谐振为电压型谐振,比并联谐振节电。采用前级不可控全桥整 流,省去了庞大的电抗器,不会在整流段引起波形的变形,没有关断角的削波现象,并且用 大电容滤波,因此谐波数小,降低了对电网的干扰,提高了功率因数。本设备功率因数很高, 高达 95%以上,无功很小。 1、IGBT 比可控硅节能 10%。 2、串联比并联节能 10%。 3、无变压器比有变压器节能, 4、全整流比半整流节能, 5、感应圈设计好更节能
中频炉电源的工作原理

中频炉电源的工作原理中频电源的工作原理中频电源的工作原理为:采用三相桥式全控整流电路将交流电整流为直流电,经电抗器平波后,成为一个恒定的直流电流源,再经单相逆变桥,把直流电流逆变成一定频率(一般为1000至8000Hz)的单相中频电流。
负载由感应线圈和补偿电容器组成,连接成并联谐振电路。
一般情况下,可以把中频电源的故障按照故障现象分为完全不能起动和起动后不能正常工作两大类。
作为一般的原则,当出现故障后,应在断电的情况下对整个系统作全面检查,它包括以下几个方面:(一)电源:用万用表测一下主电路开关(接触器)和控制保险丝后面是否有电,这将排除这些元件断路的可能性。
(二)整流器:整流器采用三相全控桥式整流电路,它包括六个快速熔断器、六个晶闸管、六个脉冲变压器和一个续流二极管。
在快速熔断器上有一个红色的指示器,正常时指示器缩在外壳里边,当快熔烧断后它将弹出,有些快熔的指示器较紧,当快熔烧断后,它会卡在里面,所以为可靠起见,可以用万用表通断档测一下快熔,以判断它是否烧断。
测量晶闸管的简单方法是用万用表电阻挡(200Ω挡)测一下其阴极—阳极、门极—阴极电阻,测量时晶闸管不用取下来。
正常情况下,阳极—阴极间电阻应为无穷大,门极—阴极电阻应在10—50Ω之间,过大或过小都表明这只晶闸管门极失效,它将不能被触发导通。
脉冲变压器次边接在晶闸管上,原边接在主控板上,用万用表测量原边电阻约为50Ω。
续流二极管一般不容易出现故障,检查时用万用表二极管挡测其二端,正向时万用表显示结压降约有500mV,反向不通。
(三)逆变器:逆变器包括四只快速晶闸管和四只脉冲变压器,可以按上述方法检查。
(四)变压器:每个变压器的每个绕组都应该是通的,一般原边阻值约有几十欧姆,次极几欧姆。
应该注意:中频电压互感器的原边与负载并联,所以其电阻值为零。
(五)电容器:与负载并联的电容器可能被击穿,电容器一般分组安装在电容器架上,检查时应先确定被击穿电容器所在的组。
igbt中频电源节能优势完整

IGBT中频电源的节能优势我国是铸造大国,铸铁件年产量几年来均居世界各国之首位,而其能耗在成本中所占比例却比工业发达国家高出2—3倍,冲天炉的能耗占了其中的大部分。
主要原因是小容量冲天炉所占比例太大,而其中采用烟尘净化和余热回收装置的微乎其微,实现高水平熔炼和计算机控制的更少了。
我国铸铁生产车间一万多个,每个车间年平均产量不足1000t,冲天炉开炉时间短。
在冲天炉结构方面,由于我国铸造厂点过多,限制了大容量冲天炉的使用。
由于产量低,效益差,限制了性能优越的现代化冲天炉及其配套设备的采用。
操作不当不但对冲天炉性能造成不良影响,也是增加冲天炉能耗和环境污染的重要原因,在我国为数众多的小容量冲天炉上,更是普遍存在的现象。
中频技术应用于铸造行业给铸造推广高质量、高效率、节能环保、低碳的中、高频科技技术应用与中国的铸造行业,是保持中国铸造业可持续发展的一项重大举措。
与传统的冲天炉熔炼相比,中频技术应用于熔炼、精铸诠释了科技的力量。
中频感应电炉经历了两次根本的变革,第一次变革源于20世纪60年代后期开发的晶闸管静态变频电源,第二次源于20世纪70年代中期开发的逆变变频及其控制技术。
这样使中频感应电炉的优越性得以充分的发挥。
随着大功率晶闸管变频电源的开发和可靠性的提高,中频感应电炉正在逐步替代工频感应电炉而在铸造业获得愈来愈广泛的应用。
中频电源的基本工作原理,就是通过一个三相桥式整流电路,把50 Hz的工频交流电流整流成直流,再经过一个滤波器(直流电抗器)进行滤波,最后经逆变器将直流变为单相中频交流以供给负载,所以这种逆变器实际上是一只交流—直流—交流变换器,其基本线路如图:中频炉的感应加热原理,它是利用电磁感应原理将电能转变为热能,当交变电流i感应线圈时,感应线圈便产生交变磁通Φ,使感应中的工件受到电磁感应而产生感应电动势e。
感应电动势 e = dΦ/dt如果磁通Φ是呈正弦变化的,即Φ = -Φmsinwt则 e = -dΦ/dt=-ΦmsinwtE的有效值 E=4.44fΦM (伏)感应电动势E在工件中产生电流I, i使工件内部开始加热,其焦耳热为;Q=0.24I2RtI--工件中感应电流的有效值(安)R--工件电阻(欧);t—时间(秒)中频电源从最初的发展到今天应用于铸造行业,电源种类从原理上可以分为两类,一传统的可控硅中频电源,可控硅又分为并联和串联型(因串联可控硅的在现实实践中应用技术不成熟在这就不做分析),二是带有igbt(绝缘栅极型晶体管)串连谐振电源。
IGBT中频电源原理

IGBT 中频电源的原理工频加热技术与其它各种物理加热技术相比,确实具有较高的效率,但存在一些明显的不足。
在现代工业的金属熔炼、热处理、焊接等过程中,感应加热被广泛应用。
感应加热是根据电磁感应原理,利用工件中涡流产生的热量进行加热的,它加热效率高、速度快、可控性好,易于实现高温和局部加热[1]。
随着电力电子技术的不断 成熟,感应加热技术得到了迅速发展。
本文设计的70KW /500HZ 中频感应加热电源采用IGBT 串联谐振式逆变电路,能够实现频率自动,电路结构简单,高效节能。
2.1 整流电路的设计中频电源采用三相全控桥式整流电路,它的输出电压调节范围大而移相控制角的变化范围小,有利于系统的自动调节,输出电压的脉动频率较高可以减轻直流滤波环节的负担[2]。
根据设计要求:额定输出功率P =70KW ,输出频率f =500HZ ,进线电压U IN =380V ,取逆变器的变换效率η=0.9。
1) 确定电压额定值U RRM考虑到其峰值、波动、雷击等因I T(AV)=0.368×I d额定电压1600V ,额定电流200A 的整流模块。
2.2 逆变电路的设计逆变电路是由全控器件IGBT 构 成的串联谐振式逆变器,两组全控器件V 1、V 4和V 2、V 3交替导通,输出所需要的交流电压。
IGBT 的主要参数有最高集射极电压(额定电压)、集射极电流等[3]。
1) 确定电压额定值U CEPIGBT 的输入端与电容相并联,起到了缓冲波动和干扰的作用,因此安全系数不必取得很大,一般取安全系数α=1.1平波后的直流电压:E d =380V ×2×α=590V关断时的峰值电压:U CESP =(590×1.15+150)×α=912V式中1.15为电压保护系数, 150为L t i d d 引起的尖峰电压。
令U CEP ≥U CESP ,并向上靠拢IGBT 等级,取U CEP =1200V 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
IGBT中频炉电源控制部分原理及优势:
(1)IGBT中频电源是一种采用串联谐振式的中频感应熔炼炉,它的逆变器件为一种新型IGBT模块(绝缘栅双极型晶体管,德国生产),它主要用于熔炼普通碳素钢、合金钢、铸钢、有色金属。
它具有熔化速度快、节能、高次谐波污染低等优点。
(2)IGBT中频电源为一种恒功率输出电源,加少量料即可达到满功率输出,并且始终保持不变,所以熔化速度快;因逆变部分采用串联谐振,且逆变电压高,所有IGBT中频比普通可控硅中频节能;IGBT中频采用调频调功,整流部分采用全桥整流,电感和电容滤波,且一直工作在500V,所以IGBT中频产生高次谐波小,对电网产生污染工低。
(3)节能型IGBT晶体管中频电源比传统可控硅中频电源可节能15%-25%,节能的主要原因有以下几下方面:
A、逆变电压高,电流小,线路损耗小,此部分可节能15%左右,节能型IGBT 晶体管中频电源逆变电压为2800V,而传统可控硅中频电源逆变电压仅为750V,电流小了近4倍,线路损耗大大降低。
B、功率因数高,功率因数始终大于0.98,无功损耗小,此部分比可控硅中频电源节能3%-5%。
由于节能型IGBT晶体管中频电源采用了半可控整流方式,整流部分不调可控硅导通角,所以整个工作过程功率因数始终大于0.98,无功率损耗小。
B、炉品热损失小,由于节能型IGBT晶体管中频电源比同等功率可控硅中频电源一炉可快15分钟左右,15分钟的时间内炉口损失的热量可占整个过程的3%,所以此部分比可控硅中频可节能3%左右。
(4)高次谐波干扰:高次谐波主要来自整流部分调压时可控硅产生的毛刺电压,会严重污染电网,导致其他设备无法正常工作,而节能型IGBT晶体管中频电源的整流部分采用半可控整流方式,直流电压始终工作在最高,不调导通角,所以它不会产生高次谐波,不会污染电网、变压器,开关不发热,不会干扰工厂内其他电子设备运行。
(5)恒功率输出:可控硅中频电源采用调压调功,而节能型IGBT晶体管中频电源采用调频调功,它不受炉料多少和炉衬厚薄的影响,在整个熔炼过程中保持恒功率输出,尤其是生产不锈钢、铜、铝等不导磁物质时,更显示它的优越性,熔化速度快,炉料元素烧损少,降低铸造成本。
三、炉体优势及特点
1、厚壁感应圈将提供更多的熔炼能量
华信的厚壁感应圈与其它截面的感应线圈相比具有更大的载流截面,因此线圈电阻低,更多的能量可以用熔炼.并且由于四周管壁的厚度均匀,因此它的强度要比管壁
不均匀、一边管壁较薄的线圈结构的强度高.也就是说我们这种结构的线圈不易发生因电弧和膨胀而引起的损坏.
2、感应线圈的匝间开放空间提高了电效率,减少了水汽
经过反复实践思考,我们设计的感应线圈的匝间留有空间,这样能够士提高线圈载流的效率,并且可以让炉衬材料中的水汽很容易挥发.在无间隙式感应圈的炉体中,一
个通常的问题是线圈常受到邻近线圈磁场的影响,从面使得阻抗增加.
3、线圈设计原理
线圈是感应炉的心脏,感应线圈在电流的作用下产生强大的磁场,此磁场使炉膛内的金属产生涡流而发热。
线圈是电能转换成热能的关键所在,所以线圈的设计非常重要。
本炉的线圈是结合感应炉的实际使用情况,根据电磁场原理,通过计算机专业软件的计算而确定的较佳方案,采用最新线圈反并绕技术(双感应圈并联),更好的聚集磁场,提高磁场搅拌力,感应线圈的设计功率与实际运行功率的误差不大于5%,线圈的绝缘,特别是匝间绝缘采用先进的绝缘处理办法来保证,专用的夹紧技术能有效地减少线圈的轴向振动。
4、开放式的炉底减少了水汽
开放式的炉底设计易于通气,避免了水分的积聚.并且万一漏炉发生,能降低损坏
程度.
5、冷却环延长了炉衬的寿命
良好地冷却炉衬不仅能提供更好的绝热及阴热物性,而且可以提高炉衬的寿命.为了达到这种目的,荣泰在炉体设计时,在顶部和底部分别加了冷却环,这样水仅能够起到均匀炉衬温度的目的,而且降低了热膨胀.由于采用了低热耗,高强度的紫铜冷却环,大大提高了电炉的效率。