《一次函数》复习课.doc
数学八年级上《一次函数》复习课件
函数平移
例1、将直线 y x 2 向下平移3个单 位后得到的直线是 。 直线平移:
y kx
向上平移b个单位 y kx b 向下平移b个单位 y kx b
配套练习
函数平移
2x 2x 4 1、直线 y 是由 y 3 3
向 平移 个单位得到的。
配套练习
1 2、将直线 y x 2 平移后经过点 2 (-4,-1)。
-1 O
1
2
3
4
5
6
7
8
9
10 11 12
t /分
5、10千米龙舟比赛中,红队由于某些原因,晚 出发了。出发时蓝队已经划出了 500米,如图所示, ɭ和m分别表示蓝队和红队的行驶路程y(千米)和 时间x(分)之间的关系。 是哪个队获胜了?
y(千米) 8 6 4 2 0 5 10 15 20 25 x(分)
平行于 y = k x ,可由它平移而得
当k>0时,y随x的增大而增大; 当k<0时,y随x的增大而减小.
应 用
(1). 待定系数法; (2).实际问题的应用 (3). 解决方程,不等式,方程组的有关问题
二、范例。
例1 填空题: ②
③
y x4
, ④ y 4 x 3 。其中过原点的直
一 次 函 数 y=k x + b(k,b为常数,且k ≠0) k>0 y
k>0,b>0
k<0 y x
k<0,b>0
图 象
y o
y
o x
k>0,b<0
o
x
k<0,b<0
x
o
y o
《一次函数图象与性质 复习课》
《一次函数图象与性质 复习课》
翠园中学东晓校区 吴剑辉
一、学习目标:
1.会画出一次函数的图象;
2.掌握一次函数及其图象的基本性质;
3.会根据函数表达式求其图象与两坐标轴的交点坐标;
4.培养交流合作的意识,提高观察和分析问题的能力,养成良好的学习习惯.
二、学习重点:
一次函数的图象和性质的运用
三、学习难点:
根据一次函数表达式和图象解决与图形的平移和三角形的面积有关的综合问题.
四、教学方式:
小组合作与师生互动的“习本课堂”
五、教学流程:
课前习
课中习 课后习 六、教学环节:
(一)探究“一次函数的图象与性质”,并进行习题展示;
(二)探究“一次函数图象特殊点的坐标”,并进行习题展示;
(三)探究“一次函数图象的位置关系及平移问题”,并进行习题展示;
(四)应用习得知识解决综合应用题;
(五)归纳小结;
(六)课堂习题巩固;
完成课前习的
任务单。
完成习题任务单并进行习得
应用和成果展
示。
巩固练习,提高学生对于本节课知识的巩固
精品文档考试教学资料施工组织设计方案精品文档考试教学资料施工组织设计方案精品文档考试教学资料施工组织设计方案。
《一次函数》复习课(优质课件)精讲
入=
元,销售成本=
元。
(3)当销售量为6吨时,售收入
=
元,销售成本=
元。
(4)当销售量等于
吨时,销
售收入等于销售成本。
(5)当销售量
吨时,该
公司盈利(收入大于成本)。
当销售
吨时,该公司亏
损(收入小于成本)。
5.小聪上午8:00从家里出发,骑车去一家超市购物,然 后从这家超市返回家中。小聪离家的路程s(km)和所 经过的时间t(分)之间的函数关系如图所示,请根据图 象 (1回)答小下聪列去超问市题途: 中的速度是多少? 回家途中的速度是多少?
线是_____;函数y随x的增大而增大的是________; 函数y随x的增大而减小的是______;图象在第一、 二、三象限的是_____。 2.根据下列一次函数y=kx+b(k ≠ 0)的草图回 答出各图中k、b的符号:
k__0, b__0 k__0, b__0 k__0, b__0 k__0, b__0
(1)m n 1
(2) y 3
x2
(3)h 1 k k 1
(4)y 3 x5
被开方数(式)为非负数
分式的分母不为0
与实际问题有关系的,应使实际问题有 意义
三、正比例函数与一次函数的概念:
一次函数的概念: 函数y=_______ kx +b
(函k、数by为=_常__数_(k,__k____)_叫__做_)≠正叫0比做例一函次数函。数。当b_____时,
数关系.请根据图象填空:
出发的早,
早了
小时,
先到达,先到 小
时,电动自行车的速度为 度为 km/h.
km/h,汽车的速
第3题图
4.如图所示l1反映了该公司产品的销售成本与销售量
一次函数复习(校级公开课)
y1=k1x+b1 方程组 的解为 y2=k2x+b2
考点五:求一次函数的解析式
10. 一次函数的图象经过M(2,2),N(1,3)两 点. (1)求一次函数的解析式; (2)若一次函数与坐标轴的交点为A、B,求 △AOB的面积.
待定系数法的步骤:设、代、求、写. 导学案:40页13题
五、综合应用
导学案:39页7(2)
考点四:一次函数与不等式的关系
8. 一次函数y=2x+2的图象如图所示 当x >-1 时,y>0. 当x <-1 时,y<0. 9. 如图所示当x 1 y1>y2.当x < 2
1 > 2
y1=k1x+b1
时, 时, y1<y2.
1 x= 2 y=3
1 2
y2=k2x+b2 .
11. 一次函数经过A(-2,-源自),B(1,3)两点. (1)求该一次函数的解析式; (2)求tan∠OCD的值. (3)求△AOB的面积.
1、一次函数的图象和性质
2、一次函数与方程(组)不等式的关系
3、求一次函数的解析式
数学思想:数形结合法
导学案:40页9、10、12、13 导学案:41页18、20、21
一次函数的解析式
y kx b(k 0)
当b=0时,为正比例函数.
y kx(k 0)
y=kx+b(k≠0)过点 (0,b) y=kx(k≠0)过点 (0,0) , ,
考点一:一次函数的图象和性质 b>0
b=0 b<0
k>0
当k>0时,y随x的 增大而增大.
考点一:一次函数的图象和性质 b>0 当k<0时,y随x的 b=0 增大而减小. b<0
一次函数的复习课件(很好用)
A、第一象限
B、第二象限
C、第三象限
D、第四象限
2、(2008.天津)已知一次函数y=kx-k,若y随着x的增大而 减小,则该图象经过( )
A、第一、二、三象限 B、第一、二、四象限
C、第二、三、四象限 D、第一、三、四象限
3、一次函数图象经过点(1,2),且y随着x的增大而增大, 则这个函数的表达式为(任写一个):
• 例线3y=:-(x+11)上点,A则(y51,与yy12)的和关B系(是2,(yD2))都在直
•
A、y1≥ y2
B、y1= y2
•
C、y1<y2
D、y1>y2
(2)把y=2x+1的图像向下平移2个单位的图像
解析式是 y=2x-1 ;
例 3:为美化深圳市景,园林部门决定利用现有的 3 490 盆甲 种花卉和 2 950 盆乙种花卉搭配 A、B 两种园艺造型共 50 个摆放在 迎宾大道两侧,已知搭配一个 A 种造型需甲种花卉 80 盆,乙种花 卉 40 盆,搭配一个 B 种造型需甲种花卉 50 盆,乙种花卉 90 盆.
(4)y= -2x-2中相互平行的有
_______ y=x+3和y=x-2
和_____ y= -2x+1和y= -2x-2
3、关于一次函数的图象与性质
(3)y一次函数y=kx+y b(k≠0)的图象与y k,b关系
x 0 k > 0, b > 0
y
x 0
k > 0, b =0 y
x 0
k > 0, b <0
解:设搭配 A 种造型 x 个,则 B 种造型为(50-x)个,
依题意,得
80x50(50 x)3 40x90(50 x) 2
(精品课件)一次函数复习
A
L甲
D
12
8
L乙
K甲=AB K乙=CD
C B
1
O
x(kg)
11.下图表示甲、乙两名选手在一次自行车 越野赛中,路程y(km)时间x(min)变化的图 象(全程).根据图象回答下列问题:
(1)求比赛开始多 少分钟,两人第一 次相遇; 24分钟 12
(2)求这次比赛全 程是多少千米. 12千米
22.一次函数的图象过点 ,且与两坐 (2,1) 标轴围成的三角形面积为 9,求一次函数 4 的解析式.
1 3 y x 或y 2 x 3 8 4
一次函数复习
一.知识要点:
kx +b 、b为常数 1.一次函数的概念:函数y=_______(k 0 k______) 叫做一次函数。当b___时= ,函数 ≠0 ≠0 叫做正比例函数。 kx y=____(k____) 2.正比例函数y=kx(k≠0)的图象是过点 1,k 的_________ 一条直线 。 (_____ 0,0 ),(______)
在平面直角坐标系中,如果点(X,4) 变形1: 在连结点(0,8)和(-4,0)的 线段上,求x的值. 变形2:若已知A(2004,-4006),B(2,-2), C(0,2),试判断A、B、C三点是否在同一条 直线上?
9.小明的父亲饭后出去散步,从家中走20分 钟到一个离家900米的报亭看10分钟报纸后, 用15分钟返回家里,下图表示小明的父亲离 家的时间与距离之间的关系的是( A )
2 x A ( ,0) k
20.一次函数的图象过点 ,且与两坐 (0,3) 标轴围成的三角形面积为 9 ,求一次函数 4 的解析式.
y=2x+3 或 y=-2x+3
一次函数图像与性质复习课
如果一次函数的b值增大或减小,图像会在y轴方向上平移。b值增大,图像向 上平移;b值减小,图像向下平移。
左平移与右平移
如果一次函数的k值增大或减小,图像会在x轴方向上平移。k值增大,图像向右 平移;k值减小,图像向左平移。
03 一次函数的性质
一次函数的单调性
一次函数的单调性取决于其斜率。如果斜率大于0,函数在定义域内单调 递增;如果斜率小于0,函数在定义域内单调递减。
利用一次函数解决数学问题
代数问题
通过一次函数可以解决代数问题,如求方程的根、求解不等 式等。
几何问题
一次函数与几何图形结合,可以解决一些几何问题,如求三 角形面积、求直线交点等。
一次函数与其他数学知识的综合应用
与二次函数的结合
一次函数和二次函数结合,可以解决一些更复杂的数学问题,如求函数的极值、判断函数的单调性等 。
上。
提高练习题
提高练习题是在基础练习题的基础上,进一步加深对一次函数性质的理解和应用。
题目类型包括计算题、作图题和解答题,难度适中,适合大部分学生练习。
示例题目:求函数$y = -x + 4$与坐标轴围成的三角形面积;作出函数$y = x - 3$ 的图像,并求出与直线$y = 2x$的交点坐标。
描点作图
在坐标系上标出这些点的 位置,用平滑的曲线连接 这些点,得到一次函数的 图像。
一次函数图像的特点
直线性
一次函数的图像是一条直线。
正斜率与负斜率
当一次函数的斜率为正时,图像从左下到右上上 升;当斜率为负时,图像从左上到右下下降。
截距
一次函数与y轴的交点称为截距,截距可以是正数、 负数或零。
一次函数图像的平移
一次函数的截距在解决实际问题中具有 重要意义,例如在预测销售量时,可以 通过一次函数的截距来预测当销售额为
优秀公开课:八年级数学《一次函数》复习课
第19章一次函数(复习)学习目标1.掌握变量与函数、一次函数、用函数观点看方程与不等式3个版块的相关知识,并借此解决一次函数的相关问题。
2.通过独立思考,自主探究,体会数学建模、数形结合、分类讨论、转化等数学思想方法在一次函数问题中的运用。
复习过程一、知识梳理二、知识巩固◆知识点1 变量与函数【例题1】下列各图给出了变量x与y之间的函数的是()◆知识点2 自变量取值数学思想方法:①_________②_________③_________④_________【例题2】(1)(2019·甘肃天水)函数2-=x y 中,自变量x 的取值范围是_______ (2)(2019·黑龙江哈尔滨)在函数323-=x xy 中,自变量x 的取值范围是_______◆ 知识点3 函数的图象【例题3】(2017•齐齐哈尔)已知等腰三角形的周长是10,底边长y 是腰长x 的函数,则下列图象中,能正确反映y 与x 之间函数关系的图象是( )A .B .C .D .◆ 知识点4 函数的图象与性质一次函数)0,(≠+=k b k b kx y 为常数,图象及性质 形状 一条________。
画法根据两点确定一条直线,一般选(___,___)和(___,___)两点比较简便。
大致图象 k>0K<0 b>0b=0 b<0 b>0b=0 b<0走势图象是从左到右_______的 图象是从左到右_______的经过象限____________象限 ____________象限 ____________象限____________象限 ____________象限 ____________象限k 越大,图象越陡(即越靠近y 轴)。
增减性y 随x 的增大而_________。
y 随x 的增大而_________。
【例题4】(1)(一次函数的概念)下列函数①y=3x ;②y=2x-1;③y=1x ;④y=2-1-3x ;⑤y=x 2-1;⑥y=—x ;⑦x y =;⑧y=—5x+2中,是正比例函数的有__________,是一次函数的有 。
第19章一次函数复习课
C
B
15.已知点M(m,2 )和点N(4,n)都在直线y=2x-4上, 则m=___,n=____ 请在x轴上找一点P,使点P到点M和点N的距离之 和最小,并求出点P的坐标。
N M
P
M’
1.下列函数中,y随x的增大而减小的有(C )
① y 2x 1 ② y 6 x
③y 1 x 33
④ y (1 2 )x
函数的最大值是3,最小值是-3,求此一 次函数的解析式
分类讨论思想
10.根据图象回答:当x为何值时,y=0, y>0, y<0? 当x为何值时,直线y=2x-4上的点在第四象限?
数形结合思想
11.已知直线y1=2x- 4与直线y2=- x+5,当x为 何值时,y1=y2, y1>y2, y1<y2 ?
(填“在”或“不在”)
6.请问:直线y=2x-4与直线y=2x有什么位置关系?直线 y=2x+4与直线y=2x-4又有什么位置关系?
平行
7.若将直线y=2x 向左平移3个单位 长度,得到的直线解析式是
__y_=_2_x_+_6__
8.直线y=kx+b与直线y= 2x-4 平行,且经过(2,1),则
仔细思考,认真判断
2.下列函数关系式中,哪些是一次函数? 哪些是正比例函数?
(1)y= x2-2x
(2)y=2πx
(3)y
-
x-1(4)y
2
4
x
(5)y=2x- 4
(6)y=kx+b
3.直线y=2x-4与轴x交点坐标是_(_2_,_0_)_;与y轴 交点坐标是_(_0_,_-_4_)
4.请在直角坐标系内画出
k1 2,
一次函数及其图象复习课
图象表示
通过绘制函数图象来表示一次函数。
一次函数的性质
斜率性
斜率 $a$ 的绝对值决定了函数的 增减速度。绝对值越大,增减速
度越快。
截距性
截距 $b$ 是函数与 $y$ 轴的交 点。当 $b > 0$ 时,交点在 $y$ 轴的正半轴上;当 $b < 0$ 时,
一次函数在物理学中的应用
在物理学中,一次函数可以用来描述物体的运动规律,例如速度与 时间之间的关系。
一次函数在统计学中的应用
在统计学中,一次函数可以用来描述数据的分布规律,例如平均值 与标准差之间的关系。
一次函数在数学问题中的应用
一次函数在代数问题中的应用
在代数问题中,一次函数可以用来解决方程和不等式问题。
04 一次函数的解析式与图象 的关系
解析式与图象的对应关系
一次函数解析式为 $y = kx + b$,其中 $k$ 和 $b$ 是常数, $k neq 0$。
函数图象是一条直线,该直线 在 $y$ 轴上的截距为 $b$,斜 率为 $k$。
解析式中的每一个值都有与之 对应的点在图象上,反之亦然。解Fra bibliotek式与图象的转换关系
交点在 $y$ 轴的负半轴上。
单调性
根据斜率 $a$ 的正负,可以判断 函数的单调性。当 $a > 0$ 时, 函数递增;当 $a < 0$ 时,函数
递减。
02 一次函数的图象
一次函数图象的绘制
01
02
03
确定函数表达式
根据题目给定的条件,确 定一次函数的表达式。
确定函数定义域
根据题目要求,确定函数 的定义域。
一次函数复习(第1课时)
知识结构图
变化的 建立数学模型 函数
世界
一次函数
再认识
应用
一元一次方程
一元一次不等式 二元一次方程组
图象 性质
知识联接
• 1、一列火车从A地前往B地,火车每小时 行驶90千米,在这一过程中变量有两个, 即___路_程_____和_时__间_______,我们可以把 ____路__程__看作__时__间___的函数,其中时间
(2)y _____不_是___(“是”“不是”)x的正比例函
数函数。
0≤X≤1250
(3)自变量X的取值范围是:线段
(4)函数的图象是一条:
5、弹簧挂上物体后会伸长,测得一弹簧的长 度y(cm)与所挂物体的质量x(kg)有下 面关系:那么弹簧总长y(cm)与所挂物 体质量x(kg)之间的函数关系式为
当销售量 小于4吨 时,该公司亏损(收入小于成本);
(5) l1对应的函数表达式是 y=1000x
,
l2对应的函数表达式是 y=500x+2000 。
y/元
6000
5000
l1 l2
4000
3000
2000
1000
O 1 23 4 5 6
x/ 吨
刘强的爸爸带回一张电信营业厅的资费表,上面有 A、B、C三种新的手机计费标准(打电话收费,接电话 不收费) 卡名 月租费 打出时每分钟通话费
(2)求这两个函数的图象与x轴围成的三角 形的面积。
例3. 如图,l1反映了某公司产品的销售收入与销售量 的关系,l2反映了该公司产品的销售成本与销售量的 关系,根据图意填空:
(1)当销售量为2吨时,销售收入= 2000 元, 销售成本= 3000 元;
第11讲 一次函数中考复习课件
2
2
2
+b2的图象的交点坐标值
上方时自变量x的取值
范围
考点 5
建立函数模
型解决实际
问题的步骤
一次函数的应用
第一步:审题,明确变量;
第二步:根据两变量间的等量关系,确定函数解析式;
第三步:确定自变量的取值范围,利用函数性质解决问题;
待定系数法
(1)一设:设出一次函数的解析式y=kx+b(k≠0);
一般
步骤
(2)二列:找出函数图象上的两个点,代入y=kx+b中,得到关
于k,b的二元一次方程组;
(3)三解:解这个二元一次方程组,得到k,b的值;
(4)四还原:将所求k,b的值代入所设的函数解析式
【知识拓展】若已知一次函数图象上两点(x1,y1),(x2,y2),则
5. [2021省卷5题]将直线y=5x向下平移2个单位长度,所得直线的表达式为
( A )
A.y=5x-2
B.y=5x+2
C.y=5(x+2) D.y=5(x-2)
命题点 3
一次函数与一元一次不等式(组)(省卷2018.16)
6. [2018省卷16题]如图,一次函数y=-x-2与y=2x+m的图象相交于点P
函数图象从左向右呈下降
k<0⇔ 趋势“\”
y随x的增大而② 减小
b决定函数图 b>0⇔交
b<0⇔交 b=0⇔
b>0⇔交 b<0⇔交 b=0⇔
象与y轴交点 点在正半
点在负半 交点即
点在正半 点在负半 交点即原
轴上
轴上
位置
轴上
原点
轴上
点
大致图象
一次函数的图像与性质复习课)
左、右平移
总结词
一次函数图像左右平移时,函数表达式中的x会发生变化。
详细描述
当一次函数图像左右平移时,函数表达式中的x会相应地增加或减少一定的值,而常数项保持不变。例如, 函数y=2x+1向左平移2个单位后变为y=2(x+2)+1,向右平移3个单位后变为y=2(x-3)+1。
函数图像的翻折
总结词
03 一次函数的图像变换
上、下平移
总结词
一次函数图像上下平移时,函数表达式中的常数项会发生变化。
详细描述
当一次函数图像上下平移时,函数表达式中的常数项会相应地增加或减少一定的值,而一次项的系数保持不变。 例如,函数y=2x+1向上平移2个单位后变为y=2x+3,向下平移3个单位后变为y=2x-2。
一次函数与三角函数的关系
三角函数(如正弦、余弦、正切)可以与一次函数结合,形成更为 复杂的数学模型。
一次函数与几何知识的关系
一次函数的图像是一条直线,可以与几何知识结合,用于解决几何 问题。
一次函数在数学竞赛中的应用
代数问题
在数学竞赛中,一次函数常用于 解决代数问题,如求解方程、不
等式等。
最值问题
基础习题3
已知函数$y = x - 5$,判 断该函数是否为一次函数, 并说明理由。
进阶习题
进阶习题1
已知函数$y = mx + b$的图像 经过点$(2,3)$和$( - 1, - 1)$,
求该函数的解析式。
进阶习题2
已知函数$y = ax + b$的图像与 直线$y = x + 1$平行,且与坐
一次函数图像翻折时,函数表达式中的系数会发生变化。
一次函数综合复习课
例1 已知一次函数
y = (3 − k ) x − 2k + 18
2
(1) k为何值时 它的图象经过原 点 为何值时,它的图象经过原 为何值时 (2)k 为何值时 它的图象经过点 —2) 为何值时,它的图象经过点 它的图象经过点(0, (3)k 为何值时 它的图象平行直线 y=2x+8 为何值时,它的图象平行直线 (4)k 为何值时 y随x的增大而小 为何值时, 随 的增大而小
3 1 例2 已知函数 y = x − 5 2
(1)当x=0时, y = 当 时
-0.5
(2 )当x=5时, y= 2.5 当 时 (3)当y=0时, x= 当 时 (4)当y>0时, x的取值范围 是 当 > 时 的取值范围 (5)当y<0.5 时, x的取值范围是 当 < 的取值范围是 (6)当-1≤y≤1时, x的取值范围 是 当 时 的取值范围
m2 −8
13、为了加强公民的节水意识,合理利用水资源,某城 、为了加强公民的节水意识,合理利用水资源, 市规定用水标准如下:每户每月用水量不超过 米 市规定用水标准如下:每户每月用水量不超过6米3时,水 费按0.6元 米 收费,每户每月用水量超过6米 费按 元/米3收费,每户每月用水量超过 米3时,超过的 部分按1元 米 设每户每月用水量为x米 应缴纳y元 部分按 元/米3。设每户每月用水量为 米3,应缴纳 元。 (1)写出每户每月用水量不超过 米3和每户每月用水量 )写出每户每月用水量不超过6米 超过6米3时,y与x之间的函数关系式,并判断它们是否为 之间的函数关系式, 超过 米 与 之间的函数关系式 一次函数? 一次函数 月份的用水量为9米 求该用户5月份的 (2)已知某户 月份的用水量为 米3,求该用户 月份的 )已知某户5月份的用水量为 水费。 水费。
苏科版八年级数学上册复习课:第六章一次函数课件
【总结】
通过本节复习课,你有什么收获? 你还有什么困惑?
【延伸】
已知一次函数y=kx-5的图像经过点 A(2,-1). (3)若该函数图像与x轴、y轴分别交于点 B、点C,求:经过点B且平分△OBC面积 的直线函数表达式.
y
A(1,2)
O
x
【做一做】 2 .两个点 一次函数y=kx+b(k≠0)
图像?性质?
y B(0,3)
A(1,2)
O
x
【做一做】
3 C与直线OA平行. C( 3 ,0)
2
k相等
平行
O
y B(0,3)
A(1,2)
x
b相等
与y轴交于同一点
【理一理】 数 学 实际问题 外部
初中数学 八年级(上册)
第6章《一次函数》复习课(1)
【想一想】
看到课题“《一次函数》复习课(1)”, 你能想到什么?
【做一做】
1.A、B两地相距200km,一列火车以 120km/h的速度沿AB方向驶离A地,设x h后 这列火车离B地的距离为y(km),则 (1)y是x的函数的吗? (2)y与x之间的函数表达式为_________.
变式:一列火车以120km/h的速度沿AB方 向驶离A地,设x h后这列火车离A地的路程 为y(km),则y与x之间的函数表达式为 _________.
【理一理】 数 学 实际问题 化
一般 函数
一次函数 特殊
正比例函数
函数
一次函数
正比例函数
【做一做】 1 .一个点 正比例函数y=kx(k≠0)
图像?性质?
一次函数复习课
解:把x=1时, y=5;x=6时,y=0分别代入解析式,得
k b 5 6k b 0
k 1 解得 b 6
y= - x+6
∴此一次函数的解析式为
(2)利用一次函数解决实际问题。
基础题自测
1. 正比例函数y=(2a-4)x中,y随x的增大而增大,则a的取值 范围是a>2 2. 正比例函数的图象过(8,-16),则此函数的解析式为 y= -2x 3. 已知y+1与x-1成正比例,且比例系数为2,则y= 2x -3 4. 函数y=2x-8的图象与x轴交点坐标为 (4,0) , 与y轴交 点坐标为 (0, -8) , 它一定平行正比例函数 y=2x 的图象, y随x的增大而 增大 y=2x -10 5. 将函数y=2x-8的图象向下平移2个单位得到的解析式>,b___0 k___0 >
> ,b___0 < k___0
< ,b___0 > k___0
< ,b___0 < k___0
3.一次函数的性质
一次函数y=kx+b(k ≠ 0)的性质: 增大 ⑴当k>0时,y随x的增大而_________ 。 减小 ⑵当k<0时,y随x的增大而_________ 。
④ 。 过第二、三、四象限的是_____
2、一艘轮船和一艘快艇沿
相同路线从甲港到乙港,右 图中两条线段分别表示轮船 与快艇离开出发点的距离与 行驶时间的关系。根据图像 回答下列问题: 0.5 小时出发, (1)轮船比快艇早____ 1 小时; 快艇比轮船早到____ 40 千米; 1/3 小时,快艇行驶了____ (2)快艇追上轮船用____ 2.5小时。 (3)轮船从甲港到乙港行驶的时间是___
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《一次函数》复习课授课内容《一次函数》复习课优点1、教学目的明确,突出重点、基本完成教学任务。
作业新颖,适中。
2、教态自然大方,语言、表情亲切,面部表情丰富。
教师的声音应抑扬顿挫,有助于调动课堂气氛,引起学生的兴趣和注意。
情绪控制较好,能较好的组织教学,教师的基本功扎实,能较好的起到示范的作用。
3、选题有趣味性、针对性强。
选择贴近生活的中考题,并采用了灵活的形式组织教学,使整个教学过程充满活力。
4、学生自主且自信。
自主学习是建立在学生一定的知识基础上的较高层次的学习活动,更是一种学习态度的体现。
整个学习过程中学生的主动性较强,积极参与,积极表现,对自己的表现充满自信。
5、在讲授典型例题时,运用不同方式引导,重在启发引导,语言精确、形象,富于启发性,过渡流畅自然,板书加强了规范化要求;运用不同方式手段展示所学内容,生动而形象,化繁为简、使抽象变具体。
建议1、进一步加强近几年我省相邻地区和课改地区中考试题研究。
2、立足教材,夯实基础,落实好基础知识,面向全体。
备注在课堂中如何创设情景让孩子们感受到我们所学的知识与生活机有着密切的联系。
引导学生自由发挥他们的想象力,而不是一味的让以有的事物或形象局限了孩子们的想象力。
想象无限,创意无限,从而引出无穷乐趣,快乐的学习!如何让孩子在课堂中感受快乐,在课后的自学中找到快乐,如何让学习成为一种快乐的体验?授课内容《一次函数》复习课优点1、教学目的明确,突出重点、基本完成教学任务。
作业新颖,适中。
2、教态自然大方,语言、表情亲切,面部表情丰富。
教师的声音应抑扬顿挫,有助于调动课堂气氛,引起学生的兴趣和注意。
情绪控制较好,能较好的组织教学,教师的基本功扎实,能较好的起到示范的作用。
3、选题有趣味性、针对性强。
选择贴近生活的中考题,并采用了灵活的形式组织教学,使整个教学过程充满活力。
4、学生自主且自信。
自主学习是建立在学生一定的知识基础上的较高层次的学习活动,更是一种学习态度的体现。
整个学习过程中学生的主动性较强,积极参与,积极表现,对自己的表现充满自信。
5、在讲授典型例题时,运用不同方式引导,重在启发引导,语言精确、形象,富于启发性,过渡流畅自然,板书加强了规范化要求;运用不同方式手段展示所学内容,生动而形象,化繁为简、使抽象变具体。
建议1、进一步加强近几年我省相邻地区和课改地区中考试题研究。
2、立足教材,夯实基础,落实好基础知识,面向全体。
备注在课堂中如何创设情景让孩子们感受到我们所学的知识与生活机有着密切的联系。
引导学生自由发挥他们的想象力,而不是一味的让以有的事物或形象局限了孩子们的想象力。
想象无限,创意无限,从而引出无穷乐趣,快乐的学习!如何让孩子在课堂中感受快乐,在课后的自学中找到快乐,如何让学习成为一种快乐的体验?授课内容《一次函数》复习课优点1、教学目的明确,突出重点、基本完成教学任务。
作业新颖,适中。
2、教态自然大方,语言、表情亲切,面部表情丰富。
教师的声音应抑扬顿挫,有助于调动课堂气氛,引起学生的兴趣和注意。
情绪控制较好,能较好的组织教学,教师的基本功扎实,能较好的起到示范的作用。
3、选题有趣味性、针对性强。
选择贴近生活的中考题,并采用了灵活的形式组织教学,使整个教学过程充满活力。
4、学生自主且自信。
自主学习是建立在学生一定的知识基础上的较高层次的学习活动,更是一种学习态度的体现。
整个学习过程中学生的主动性较强,积极参与,积极表现,对自己的表现充满自信。
5、在讲授典型例题时,运用不同方式引导,重在启发引导,语言精确、形象,富于启发性,过渡流畅自然,板书加强了规范化要求;运用不同方式手段展示所学内容,生动而形象,化繁为简、使抽象变具体。
建议1、进一步加强近几年我省相邻地区和课改地区中考试题研究。
2、立足教材,夯实基础,落实好基础知识,面向全体。
备注在课堂中如何创设情景让孩子们感受到我们所学的知识与生活机有着密切的联系。
引导学生自由发挥他们的想象力,而不是一味的让以有的事物或形象局限了孩子们的想象力。
想象无限,创意无限,从而引出无穷乐趣,快乐的学习!如何让孩子在课堂中感受快乐,在课后的自学中找到快乐,如何让学习成为一种快乐的体验?授课内容《一次函数》复习课优点1、教学目的明确,突出重点、基本完成教学任务。
作业新颖,适中。
2、教态自然大方,语言、表情亲切,面部表情丰富。
教师的声音应抑扬顿挫,有助于调动课堂气氛,引起学生的兴趣和注意。
情绪控制较好,能较好的组织教学,教师的基本功扎实,能较好的起到示范的作用。
3、选题有趣味性、针对性强。
选择贴近生活的中考题,并采用了灵活的形式组织教学,使整个教学过程充满活力。
4、学生自主且自信。
自主学习是建立在学生一定的知识基础上的较高层次的学习活动,更是一种学习态度的体现。
整个学习过程中学生的主动性较强,积极参与,积极表现,对自己的表现充满自信。
5、在讲授典型例题时,运用不同方式引导,重在启发引导,语言精确、形象,富于启发性,过渡流畅自然,板书加强了规范化要求;运用不同方式手段展示所学内容,生动而形象,化繁为简、使抽象变具体。
建议1、进一步加强近几年我省相邻地区和课改地区中考试题研究。
2、立足教材,夯实基础,落实好基础知识,面向全体。
备注在课堂中如何创设情景让孩子们感受到我们所学的知识与生活机有着密切的联系。
引导学生自由发挥他们的想象力,而不是一味的让以有的事物或形象局限了孩子们的想象力。
想象无限,创意无限,从而引出无穷乐趣,快乐的学习!如何让孩子在课堂中感受快乐,在课后的自学中找到快乐,如何让学习成为一种快乐的体验?授课内容《一次函数》复习课优点1、教学目的明确,突出重点、基本完成教学任务。
作业新颖,适中。
2、教态自然大方,语言、表情亲切,面部表情丰富。
教师的声音应抑扬顿挫,有助于调动课堂气氛,引起学生的兴趣和注意。
情绪控制较好,能较好的组织教学,教师的基本功扎实,能较好的起到示范的作用。
3、选题有趣味性、针对性强。
选择贴近生活的中考题,并采用了灵活的形式组织教学,使整个教学过程充满活力。
4、学生自主且自信。
自主学习是建立在学生一定的知识基础上的较高层次的学习活动,更是一种学习态度的体现。
整个学习过程中学生的主动性较强,积极参与,积极表现,对自己的表现充满自信。
5、在讲授典型例题时,运用不同方式引导,重在启发引导,语言精确、形象,富于启发性,过渡流畅自然,板书加强了规范化要求;运用不同方式手段展示所学内容,生动而形象,化繁为简、使抽象变具体。
建议1、进一步加强近几年我省相邻地区和课改地区中考试题研究。
2、立足教材,夯实基础,落实好基础知识,面向全体。
备注在课堂中如何创设情景让孩子们感受到我们所学的知识与生活机有着密切的联系。
引导学生自由发挥他们的想象力,而不是一味的让以有的事物或形象局限了孩子们的想象力。
想象无限,创意无限,从而引出无穷乐趣,快乐的学习!如何让孩子在课堂中感受快乐,在课后的自学中找到快乐,如何让学习成为一种快乐的体验?授课内容《一次函数》复习课优点1、教学目的明确,突出重点、基本完成教学任务。
作业新颖,适中。
2、教态自然大方,语言、表情亲切,面部表情丰富。
教师的声音应抑扬顿挫,有助于调动课堂气氛,引起学生的兴趣和注意。
情绪控制较好,能较好的组织教学,教师的基本功扎实,能较好的起到示范的作用。
3、选题有趣味性、针对性强。
选择贴近生活的中考题,并采用了灵活的形式组织教学,使整个教学过程充满活力。
4、学生自主且自信。
自主学习是建立在学生一定的知识基础上的较高层次的学习活动,更是一种学习态度的体现。
整个学习过程中学生的主动性较强,积极参与,积极表现,对自己的表现充满自信。
5、在讲授典型例题时,运用不同方式引导,重在启发引导,语言精确、形象,富于启发性,过渡流畅自然,板书加强了规范化要求;运用不同方式手段展示所学内容,生动而形象,化繁为简、使抽象变具体。
建议1、进一步加强近几年我省相邻地区和课改地区中考试题研究。
2、立足教材,夯实基础,落实好基础知识,面向全体。
备注在课堂中如何创设情景让孩子们感受到我们所学的知识与生活机有着密切的联系。
引导学生自由发挥他们的想象力,而不是一味的让以有的事物或形象局限了孩子们的想象力。
想象无限,创意无限,从而引出无穷乐趣,快乐的学习!如何让孩子在课堂中感受快乐,在课后的自学中找到快乐,如何让学习成为一种快乐的体验?授课内容《一次函数》复习课优点1、教学目的明确,突出重点、基本完成教学任务。
作业新颖,适中。
2、教态自然大方,语言、表情亲切,面部表情丰富。
教师的声音应抑扬顿挫,有助于调动课堂气氛,引起学生的兴趣和注意。
情绪控制较好,能较好的组织教学,教师的基本功扎实,能较好的起到示范的作用。
3、选题有趣味性、针对性强。
选择贴近生活的中考题,并采用了灵活的形式组织教学,使整个教学过程充满活力。
4、学生自主且自信。
自主学习是建立在学生一定的知识基础上的较高层次的学习活动,更是一种学习态度的体现。
整个学习过程中学生的主动性较强,积极参与,积极表现,对自己的表现充满自信。
5、在讲授典型例题时,运用不同方式引导,重在启发引导,语言精确、形象,富于启发性,过渡流畅自然,板书加强了规范化要求;运用不同方式手段展示所学内容,生动而形象,化繁为简、使抽象变具体。
建议1、进一步加强近几年我省相邻地区和课改地区中考试题研究。
2、立足教材,夯实基础,落实好基础知识,面向全体。
备注在课堂中如何创设情景让孩子们感受到我们所学的知识与生活机有着密切的联系。
引导学生自由发挥他们的想象力,而不是一味的让以有的事物或形象局限了孩子们的想象力。
想象无限,创意无限,从而引出无穷乐趣,快乐的学习!如何让孩子在课堂中感受快乐,在课后的自学中找到快乐,如何让学习成为一种快乐的体验?授课内容《一次函数》复习课优点1、教学目的明确,突出重点、基本完成教学任务。
作业新颖,适中。
2、教态自然大方,语言、表情亲切,面部表情丰富。
教师的声音应抑扬顿挫,有助于调动课堂气氛,引起学生的兴趣和注意。
情绪控制较好,能较好的组织教学,教师的基本功扎实,能较好的起到示范的作用。
3、选题有趣味性、针对性强。
选择贴近生活的中考题,并采用了灵活的形式组织教学,使整个教学过程充满活力。
4、学生自主且自信。
自主学习是建立在学生一定的知识基础上的较高层次的学习活动,更是一种学习态度的体现。
整个学习过程中学生的主动性较强,积极参与,积极表现,对自己的表现充满自信。
5、在讲授典型例题时,运用不同方式引导,重在启发引导,语言精确、形象,富于启发性,过渡流畅自然,板书加强了规范化要求;运用不同方式手段展示所学内容,生动而形象,化繁为简、使抽象变具体。
建议1、进一步加强近几年我省相邻地区和课改地区中考试题研究。
2、立足教材,夯实基础,落实好基础知识,面向全体。