2017-2018学年高二数学上学期期中试题 (V).

合集下载

高二数学上学期期中文科试题

高二数学上学期期中文科试题

高二数学上学期期中文科试题可能对于很多文科生来说数学是很难的,大家不要放弃哦,今天小编就给大家分享一下高二数学,就给阅读哦高二数学上期中文科试题第I卷共60分一、选择题:本大题有12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求.1. 已知是等比数列, ( )A.4B.16C.32D. 642.若a>b>0,下列不等式成立的是( )A.a23. 在中,,则一定是( )A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形4.在△ABC内角A,B, C的对边分别是a,b,c,已知a= ,c= ,∠A= ,则∠C的大小为( )A. 或B. 或C.D.5.原点和点(1,1)在直线x+y﹣a=0两侧,则a的取值范围是( )A.0≤a≤2B.026.在中,已知 ,则角A等于( )A. B. C. D.7.若数列为等差数列且,则sin 的值为( )A. B. C. D.8.在中,分别是角的对边,且 , ,则的面积等于( )A. B. C. D.109.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按30天算,则每天增加量为( )A. 尺B. 尺C. 尺D. 尺10.若不等式组表示的平面区域是一个三角形,则的取值范围是( )A. 或B.C. 或D.11.等比数列的前n项的和分别为, ,则 ( )A. B. C. D.12.已知单调递增数列{an}满足an=3n﹣λ•2n(其中λ为常数,n∈N+),则实数λ的取值范围是( )A.λ≤3B.λ<3C.λ≥3D.λ>3第Ⅱ卷共90分二、填空题:本大题有4小题,每小题5分,共20分,把答案填在答卷的相应位置.13.已知关于x的不等式ax2﹣(a+1)x+b<0的解集是{x|114.设且 ,则的最小值为15.若数列的前n项的和为,且,则的通项公式为_________.16.若数列为等差数列,首项,则使前项和的最大自然数n是_________________.三、解答题:本大题有6题,共70分,解答应写出文字说明、证明过程或演算步骤.17、(本题满分10分)(1)设数列满足,写出这个数列的前四项;(2)若数列为等比数列,且求数列的通项公式18.(本题满分12分)已知函数 .(1)当时,解不等式 ;(2)若不等式的解集为,求实数的取值范围.19.(本题满分12分)的内角的对边分别为 ,已知 .(1)求(2)若 , 面积为2,求20.(本题满分12分)在中,角所对的边分别为,设为的面积,满足(I)求角的大小;(II)若边长,求的周长的最大值.21.(本小题满分12分)已知实数满足不等式组 .(1)求目标函数的取值范围;(2)求目标函数的最大值.22.(本小题满分12分)已知等比数列满足 , ,公比(1)求数列的通项公式与前n项和 ;(2)设,求数列的前n项和 ;(3)若对于任意的正整数,都有成立,求实数m的取值范围. 高二数学(文科)参考答案一、选择题:本大题有12小题,每小题5分,共60分1-12:C C C D B C B C C A B B二、填空题:本大题有4小题,每小题5分,共20分13. 14.8 15. 16. 4034三、解答题:17.(本小题满分10分)(1) …………5分,(2)由已知得,联立方程组解得得,即…………10分18.(本小题满分12分).……4分(2)若不等式的解集为,则①当m=0时,-12<0恒成立,适合题意; ……6分②当时,应满足由上可知,……12分19. (1)由题设及得,故上式两边平方,整理得解得……………6分(2)由,故又,由余弦定理及得所以b=2……………12分20.解:(1)由题意可知,……………2分12absinC=34•2abcosC,所以tanC=3. 5分因为0所以,所以,当时,最大值为4,所以△ABC的周长的最大值为6其他方法请分步酌情给分21.(本小题满分12分)解:(1)画出可行域如图所示,直线平移到点B时纵截距最大,此时z取最小值;平移到点C时纵截距最小,此时z取最大值.由得由得∴C(3,4);当x=3,y=4时,z最大值2.………………………8分(2) 表示点到原点距离的平方,当点M在C点时,取得最大值,且………………12分22. 解:(1)由题设知,,又因为, ,解得:,故an=3 = ,前n项和Sn= - .……4分(2)bn= = = ,所以 = ,所以== < ,………8分(3)要使恒成立,只需,即解得或m≥1. ………………12分高二文科数学上学期期中试卷一、选择题:(本大题共12小题,每小题5分;在每小题给出的四个选项中,只有一项是符合题目要求的.)1.命题“若,则”的逆否命题是 ( )A. 若,则B. 若,则C. 若,则D. 若,则2 .命题“ ”的否定是 ( )A. B. C. D.3.若中心在原点的椭圆C的右焦点为F(1,0),离心率等于12,则C的方程是 ( )A. x23+y24=1B. x24+y23=1C. x24+y22=1D. x24+y23=14. 表示的曲线方程为 ( )[A. B.C. D.5.抛物线的准线方程是 ( )A. B. C. D.6.若k∈R则“k>5”是“方程x2k-5-y2k+2=1表示双曲线”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知是椭圆的两焦点,过点的直线交椭圆于点,若 ,则 ( )A.9B.10C.11D.128.已知双曲线的离心率为3,焦点到渐近线的距离为,则此双曲线的焦距等于 ( )A. B. C. D.9.双曲线的一个焦点为,椭圆的焦距为4,则A.8B.6C.4D.210.已知双曲线的两个顶点分别为,,点为双曲线上除,外任意一点,且点与点,连线的斜率分别为、,若,则双曲线的离心率为 ( )A. B. C. D.11.如果是抛物线的点,它们的横坐标依次为,是抛物线的焦点,若 ,则 ( )A. B. C. D.12.已知点,是椭圆上的动点,且,则的取值范围是 ( )A. B. C. D.二、填空题:(本大题共4小题,每小题5分)13.若命题“ ”是假命题,则实数的取值范围是 .14.已知直线和双曲线的左右两支各交于一点,则的取值范围是 .15.已知过抛物线的焦点,且斜率为的直线与抛物线交于两点,则 .16.已知是抛物线上的动点,点是圆上的动点,点是点在轴上的射影,则的最小值是 .三、解答题(本大题共6小题,共70分,解答题应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设命题函数在单调递增;命题方程表示焦点在轴上的椭圆.命题“ ”为真命题,“ ”为假命题,求实数的取值范围.18.(本小题满分12分)(Ⅰ)已知某椭圆过点,求该椭圆的标准方程.(Ⅱ)求与双曲线有共同的渐近线,经过点的双曲线的标准方程.19.(本小题满分12分)已知抛物线的顶点在原点,焦点在轴的正半轴且焦点到准线的距离为2.(Ⅰ)求抛物线的标准方程;(Ⅱ)若直线与抛物线相交于两点,求弦长 .20.(本小题满分12分)已知双曲线的离心率为,虚轴长为 .(Ⅰ)求双曲线的标准方程;(Ⅱ)过点,倾斜角为的直线与双曲线相交于、两点,为坐标原点,求的面积.21.(本小题满分12分)已知椭圆,过点,的直线倾斜角为,原点到该直线的距离为 .(Ⅰ)求椭圆的标准方程;(Ⅱ)斜率大于零的直线过与椭圆交于E,F两点,若,求直线EF的方程.22.(本小题满分12分)已知分别为椭圆C:的左、右焦点,点在椭圆上,且轴,的周长为6.(Ⅰ)求椭圆的标准方程;(Ⅱ)E,F是椭圆C上异于点的两个动点,如果直线PE与直线PF的倾斜角互补,证明:直线EF的斜率为定值,并求出这个定值.数学(文科)学科参考答案第Ⅰ 卷 (选择题共60分)一、选择题:(本大题共12小题,每小题5分;在每小题给出的四个选项中,只有一项是符合题目要求的.)题号 1 2 3 4 5 6 7 8 9 10 11 12答案 B D D C A A C D C B B A第Ⅱ 卷 (非选择题共90分)二、填空题:(本大题共4小题,每小题5分. )(13) ; (14) ; (15) ; (16) .三、解答题:(解答应写出必要的文字说明,证明过程或演算步骤.)(17)(本小题满分10分)解:命题p:函数在单调递增命题q:方程表示焦点在轴上的椭圆……4分“ ”为真命题,“ ”为假命题,命题一真一假……6 分① 当真假时:② 当假真时:综上所述:的取值范围为……10分(18)(本小题满分12分)解:(Ⅰ)设椭圆方程为,解得,所以椭圆方程为. ……6分(Ⅱ)设双曲线方程为,代入点,解得即双曲线方程为. ……12分(19)(本小题满分12分)解:(Ⅰ) 抛物线的方程为:……5分(Ⅱ)直线过抛物线的焦点,设,联立,消得,……9分或……12分(20)(本小题满分12分)解:(Ⅰ)依题意可得,解得双曲线的标准方程为. ……4分(Ⅱ)直线的方程为联立,消得,设,,由韦达定理可得 , ,……7分则……9分原点到直线的距离为……10分的面积为……12分(21)(本小题满分12分)解:(Ⅰ)由题意,,,解得,所以椭圆方程是:……4分(Ⅱ)设直线:联立,消得,设,,则 ,……① ……② ……6分,即……③ ……9分由①③得由②得……11分解得或 (舍)直线的方程为:,即……12分(22)(本小题满分12分)解:(Ⅰ)由题意,,,的周长为,,椭圆的标准方程为. ……4分(Ⅱ)由(Ⅰ)知,设直线方程:,联立,消得……5分设,点在椭圆上,……7分又直线的斜率与的斜率互为相反数,在上式中以代,,……9分……10分即直线的斜率为定值,其值为. ……12分高二数学上期中文科联考试题第Ⅰ卷(共100分)一、选择题(本大题共11个小题,每小题5分,共55分)1.已知sin α=25,则cos 2α=A.725B.-725C.1725D.-17252.已知数列1,3,5,7,…,2n-1,…,则35是它的A.第22项B.第23项C.第24项D.第28项3.在△ABC中,角A,B,C的对边分别为a,b,c,若b=c=2a,则cos B=A.18B.14C.12D.14.△ABC中,角A,B,C所对的边分别为a,b,c,若cbA.钝角三角形B.直角三角形C.锐角三角形D.等边三角形5.已知点(a,b) a>0,b>0在函数y=-x+1的图象上,则1a+4b 的最小值是A.6B.7C.8D.96.《九章算术》中“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则从上往下数第6节的容积为A.3733B.6766C.1011D.23337.设Sn为等比数列{an}的前n项和, 27a4+a7=0,则S4S2=A.10B.9C.-8D.-58.已知数列{an}满足an+1+an=(-1)n•n,则数列{an}的前20项的和为A.-100B.100C.-110D.1109.若x,y满足约束条件x≥0,x+y-3≤0,x-2y≥0,则z=x+2y的最大值为A.3B.4C.5D.610.已知0A.13B.12C.23D.3411.已知等差数列{an}的公差d≠0,前n项和为Sn,若对所有的n(n∈N*),都有Sn≥S10,则A.an≥0B.a9•a10<0C.S2第Ⅰ卷选择题答题卡题号 1 2 3 4 5 6 7 8 9 10 11 得分答案二、填空题(本大题共3小题,每小题5分,共15分)12.在等比数列{an}中,a4•a6=2 018,则a3•a7= ________ .13.在△ABC中,a=3,b=1,∠A=π3,则cos B=________.14.对于实数a、b、c,有下列命题:①若a>b,则acbc2,则a>b;③若a ab>b2;④若c>a>b>0,则ac-a>bc-b;⑤若a>b,1a>1b,则a>0,b<0.其中正确的是________.(填写序号)三、解答题(本大题共3小题,共30分)15.(本小题满分8分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(acos B+bcos A)=c.(1)求角C;(2)若c=7,△ABC的面积为332,求△ABC的周长.16.(本小题满分10分)某厂拟生产甲、乙两种适销产品,每件销售收入分别为3 000元、2 000元. 甲、乙产品都需要在A、B两种设备上加工,在A、B设备上加工一件甲产品所需工时分别为1 h,2 h,加工一件乙产品所需工时分别为2 h,1 h,A、B两种设备每月有效使用台时数分别为400 h 和500 h,分别用x,y表示计划每月生产甲、乙产品的件数.(1)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(2)问每月分别生产甲、乙两种产品各多少件,可使月收入最大?并求出最大收入.17.(本小题满分12分)已知公差不为零的等差数列{an}满足:a3+a8=20,且a5是a2与a14的等比中项.(1)求数列{an}的通项公式;(2)设数列{bn}满足bn=1anan+1,求数列{bn}的前n项和Sn.第Ⅱ卷(共50分)一、选择题18.(本小题满分6分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点.若FP→=4FQ→,则|QF|等于( )A.72B.52C.3D.2二、填空题19.(本小题满分6分)如图,F1,F2是椭圆C1:x24+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2为矩形,则C2的离心率是__________.三、解答题20.(本小题满分12分)在等腰梯形ABCD中,E、F分别是CD、AB的中点,CD=2,AB=4,AD=BC=2.沿EF将梯形AFED折起,使得∠AFB=60°,如图.(1)若G为FB的中点,求证:AG⊥平面BCEF;(2)求二面角C-AB-F的正切值.21.(本小题满分13分)已知二次函数f(x)=x2-16x+q+3.(1)若函数f(x)在区间[-1,1]上存在零点,求实数q的取值范围;(2)是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且区间D的长度为12-t(视区间[a,b]的长度为b-a).22.(本小题满分13分)已知中心在坐标原点,焦点在x轴上的椭圆过点P(2,3),且它的离心率e=12.(1)求椭圆的标准方程;(2)与圆(x-1)2+y2=1相切的直线l:y=kx+t交椭圆于M,N两点,若椭圆上一点C满足OM→+ON→=λOC→,求实数λ的取值范围.参考答案第Ⅰ卷(共100分)一、选择题题号 1 2 3 4 5 6 7 8 9 10 11答案 C B B A D A A A B B D1.C 【解析】cos 2α=1-2sin2α=1-2×252=1725.故选C.2.B 【解析】由数列前几项可知an=2n-1,令an=2n-1=35得n=23.故选B.3.B4.A 【解析】由正弦定理可得sin C5.D 【解析】a+b=1,∴1a+4b=1a+4b(a+b)=5+ba+4ab≥9,当且仅当b=2a=23时取等号.故选D.6.A 【解析】根据题意,设该竹子自上而下各节的容积为等差数列{an},设其公差为d,且d>0,由题意可得:a1+a2+a3+a4=3,a7+a8+a9=4,则4a1+6d=3,3a1+21d=4,解可得a1=1322,d=766,则第6节的容积a6=a1+5d=7466=3733.故答案为A.7.A 【解析】由27a4+a7=0,得q=-3,故S4S2=1-q41-q2=1+q2=10.故选A.8.A 【解析】由an+1+an=(-1)n•n,得a2+a1=-1,a3+a4=-3,a5+a6=-5,…,a19+a20=-19.∴an的前20项的和为a1+a2+…+a19+a20=-1-3-…-19=-1+192×10=-100,故选A.9.B 【解析】由x,y满足约束条件x≥0,x+y-3≤0,x-2y≥0.作出可行域如图,由z=x+2y,得y=-12x+z2.要使z最大,则直线y=-12x+z2的截距最大,由图可知,当直线y=-12x+z2过点A时截距最大.联立x=2y,x+y=3解得A(2,1),∴z=x+2y的最大值为2+2×1=4.故答案为B.10.B 【解析】∵0∴x(3-3x)=3x(1-x)≤3•x+1-x22=34,当且仅当x=12时取等号.∴x(3-3x)取最大值34时x的值为12.故选B.11.D 【解析】由?n∈N*,都有Sn≥S10,∴a10≤0,a11≥0,∴a1+a19=2a10≤0,∴S19=19(a1+a19)2≤0,故选D.二、填空题12.2 01813.32 【解析】∵a=3,b=1,∠A=π3,∴由正弦定理可得:sin B=bsin Aa=1×323=12,∵b14.②③④⑤【解析】当c=0时,若a>b,则ac=bc,故①为假命题;若ac2>bc2,则c≠0,c2>0,故a>b,故②为真命题;若a ab且ab>b2,即a2>ab>b2,故③为真命题;若c>a>b>0,则cabc-b,故④为真命题;若a>b,1a>1b,即bab>aab,故a•b<0,则a>0,b<0,故⑤为真命题.故答案为②③④⑤.三、解答题15.【解析】(1)∵在△ABC中,0已知等式利用正弦定理化简得:2cos C(sin AcosB+sin Bcos A)=sin C,整理得:2cos Csin(A+B)=sin C,即2cos Csin(π-(A+B))=sin C,2cos Csin C=sin C,∴cos C=12,∴C=π3.4分(2)由余弦定理得7=a2+b2-2ab•12,∴(a+b)2-3ab=7,∵S=12absin C=34ab=332,∴ab=6,∴(a+b)2-18=7,∴a+b=5,∴△ABC的周长为5+7.8分16.【解析】(1)设甲、乙两种产品月产量分别为x,y件,约束条件是2x+y≤500,x+2y≤400,x≥0,y≥0,由约束条件画出可行域,如图所示的阴影部分.5分(2)设每月收入为z千元,目标函数是z=3x+2y,由z=3x+2y可得y=-32x+12z,截距最大时z最大.结合图象可知,直线z=3x+2y经过A处取得最大值由2x+y=500,x+2y=400可得A(200,100),此时z=800.故安排生产甲、乙两种产品的月产量分别为200,100件可使月收入最大,最大为80万元.10分17.【解析】(1)设等差数列{an}的公差为d,∵a3+a8=20,且a5是a2与a14的等比中项,∴2a1+9d=20,(a1+4d)2=(a1+d)(a1+13d),解得a1=1,d=2,∴an=1+2(n-1)=2n-1.6分(2)bn=1(2n-1)(2n+1)=1212n-1-12n+1,∴Sn=b1+b2+b3+…+bn=121-13+13-15+…+12n-1-12n+1=121-12n+1=n2n+1.12分第Ⅱ卷(共50分)一、选择题18.C 【解析】∵FP→=4FQ→,∴|FP→|=4|FQ→|,∴|PQ||PF|=34.如图,过Q作QQ′⊥l,垂足为Q′,设l与x轴的交点为A,则|AF|=4,∴|QQ′||AF|=|PQ||PF|=34,∴|QQ′|=3,根据抛物线定义可知|QF|=|QQ′|=3,故选C.二、填空题19.62 【解析】|F1F2|=23.设双曲线的方程为x2a2-y2b2=1.∵|AF2|+|AF1|=4,|AF2|-|AF1|=2a,∴|AF2|=2+a,|AF1|=2-a.在Rt△F1AF2中,∠F1AF2=90°,∴|AF1|2+|AF2|2=|F1F2|2,即(2-a)2+(2+a)2=(23)2,∴a=2,∴e=ca=32=62.三、解答题20.【解析】(1)因为AF=BF,∠AFB=60°,△AFB为等边三角形.又G为FB的中点,所以AG⊥FB.2分在等腰梯形ABCD中,因为E、F分别是CD、AB的中点,所以EF⊥AB.于是EF⊥AF,EF⊥BF,则EF⊥平面ABF,所以AG⊥EF.又EF与FB交于一点F,所以AG⊥平面BCEF.5分(2)连接CG,因为在等腰梯形ABCD中,CD=2,AB=4,E、F分别是CD、AB中点,G为FB的中点,所以EC=FG=BG=1,从而CG∥EF.因为EF⊥平面ABF,所以CG⊥平面ABF.过点G作GH⊥AB于H,连结CH,据三垂线定理有CH⊥AB,所以∠CHG为二面角C-AB-F的平面角.8分因为Rt△BHG中,BG=1,∠GBH=60°,所以GH=32.在Rt△CGB中,CG⊥BG,BG=1,BC=2,所以CG=1.在Rt△CGH中,tan∠CHG=233,故二面角C-AB-F的正切值为233.12分21.【解析】(1)∵函数f(x)=x2-16x+q+3的对称轴是x=8,∴f(x)在区间[-1,1]上是减函数.∵函数在区间[-1,1]上存在零点,则必有f(1)≤0,f(-1)≥0,即1-16+q+3≤0,1+16+q+3≥0,∴-20≤q≤12.6分(2)∵0≤t<10,f(x)在区间[0,8]上是减函数,在区间[8,10]上是增函数,且对称轴是x=8.①当0≤t≤6时,在区间[t,10]上,f(t)最大,f(8)最小,∴f(t)-f(8)=12-t,即t2-15t+52=0,解得t=15±172,∴t=15-172;9分②当6∴f(10)-f(8)=12-t,解得t=8;11分③当8∴f(10)-f(t)=12-t,即t2-17t+72=0,解得t=8,9,∴t=9.综上可知,存在常数t=15-172,8,9满足条件.13分22.【解析】(1)设椭圆的标准方程为x2a2+y2b2=1(a>b>0),由已知得:4a2+3b2=1,ca=12,c2=a2-b2,解得a2=8,b2=6,所以椭圆的标准方程为x28+y26=1.4分(2)因为直线l:y=kx+t与圆(x-1)2+y2=1相切,所以|t+k|1+k2=1?2k=1-t2t(t≠0),6分把y=kx+t代入x28+y26=1并整理得:(3+4k2)x2+8ktx+4t2-24=0,设M(x1,y1),N(x2,y2),则有x1+x2=-8kt3+4k2,y1+y2=kx1+t+kx2+t=k(x1+x2)+2t=6t3+4k2, 8分因为λOC→=(x1+x2,y1+y2),所以C-8kt(3+4k2)λ,6t(3+4k2)λ,又因为点C在椭圆上,所以,8k2t2(3+4k2)2λ2+6t2(3+4k2)2λ2=1?λ2=2t23+4k2=21t22+ 1t2+1,11分因为t2>0,所以1t22+1t2+1>1,所以0<λ2<2,所以λ的取值范围为(-2,0)∪(0,2).13分。

福建省厦门第一中学2017-2018学年高二上学期期中考试数学理试题

福建省厦门第一中学2017-2018学年高二上学期期中考试数学理试题

福建省厦门第一中学2017—2018学年度上期中考高二年理科数学试卷满分为150分,考试时间120分钟.一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.在答题卷上的相应题目的答题区域内作答.1.如果0a b <<,那么下列各式一定成立的是 ( )A .0>-b aB .bc ac <C .22b a >D .ba 11<2.已知命题p :“若ab =1,则a +b ≥2”,则下列说法正确的是 ( ) A .命题p 的逆命题是“若ab ≠1,则a +b <2” B .命题p 的逆命题是“若a +b <2,则ab ≠1” C .命题p 的否命题是“若ab ≠1,则a +b <2” D .命题p 的否命题是“若a +b ≥2,则ab =1”3.已知数列{}n a 满足:11112n n a a ++=+,且22a =,则4a 等于 ( )A. B. 11 C. 12 D. 234. {}n a 是公差不为0的等差数列,满足22224567a a a a +=+,则该数列的前10项和10S =( )A.-10B. -5C. 0D. 55. 如图,一艘船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这艘船航行的速度为 ( )A.1762海里/时 B .346海里/时C.1722海里/时D .342海里/时6. ABC ∆的内角A 、B 、C 的对边分别为.,,c b a 若c b a ,,成等比数列,且c=2a ,则cosB=( )A.41 B.43C.42D.327.已知命题p :x 2+2x -3>0;命题q :x >a ,且⌝q 的一个充分不必要条件是⌝p ,则a 的取值范围是( )A .[1,+∞)B .(-∞,1]C .[-1,+∞)D .(-∞,-3]8.已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值 范围是 ( )A. 2(,0)2-B. 3(,0)2- C. 32(,)22-- D. 22(,)22-9. 已知()20{,|20}360x y D x y x y x y +-≤⎧⎪=-+≤⎨⎪-+≥⎩,给出下列四个命题:()1:,,0;P x y D x y ∀∈+≥ ()2,,210;P x y D x y ∀∈-+≤:()31:,,4;1y P x y D x +∃∈≤-- ()224,,2;P x y D x y ∃∈+≥: 其中真命题的是 ( )A. 12,P PB. 23,P PC. 34,P PD. 24,P P10.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且BC ,则c bb c+的最大值是 ( )D. 411.已知等差数列{}n a 满足20152017201620170,0a a a a +>+<,12323412n n n n T a a a a a a a a a ++=+++,若对任意正整数n ,恒有n k T T ≤,则正整数k 的值是 ( )A .2014B .2015C .2016D .201712.已知各项都为整数的数列{}n a 中, 12a =,且对任意的*N n ∈,满足1122n n n a a +-<+, 2n n a a +- 321n >⨯-,则2017a = ( )A. 201732⋅B. 20172+2 C. 20172+1 D. 20172二、填空题:本大题共4小题,每小题5分,共20分.在答题卷上的相应题目的答题区域内作答.13. 命题p 的否定是“对∀x ∈(0,+∞),x >x +1”,则命题p 是 . 14. 用一根长为12的钢筋焊接一个正三棱柱形状的广告牌支架,则该三棱柱的侧面积的最大值是__________.15.在△ABC 中,B =60°,AC ,则AB +2BC 的最大值为 .16.已知数列{}n a 的前n 项和为n S ,若11a =, 2n n a n a =-, 211n n a a +=+,则100S =__________.(用数字作答)三、解答题:本大题共6小题,共70分,解答题应写出文字说明,证明过程或演算步骤,在答题卷上相应题目的答题区域内作答.17.已知2()2f x ax bx =++,关于x 的不等式()0f x >的解集为()1,2-. (1)求函数()f x 的解析式;(2)若0m >,解关于x 的不等式23(1)2()m m x m f x -+-++<18. 已知a R ∈,命题[]2:1,2,-0p x x a ∀∈≥,命题2q :22,-0x R x ax a ∃∈++=.(1)若命题“p q ∧”为真命题,求实数a 的取值范围;(2)若命题“p q ∨”为真命题,命题“p q ∧”为假命题,求实数a 的取值范围.19. 若ABC ∆的内角,,A B C 所对的边分别为,,a b c ,且满足sin cos 0a B A =(1)求A ;(2)当2a b ==时, 求ABC ∆的面积.20. 设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且满sin sin [cos cos()]sin A B A B C π+=--⋅.(1)试判断ABC ∆的形状,并说明理由;(2)若1a b c ++=ABC ∆面积的最大值.21. 已知数列{}n a 的前n 项和21n n S a =-.{}n b 是公差不为0的等差数列,其前三项和为3,且3b 是25,b b 的等比中项.(1)求,n n a b ; (2)若()112222n n a b a b a b n t +++≥-+,求实数t 的取值范围.22. 已知数列{}n a 与{}n b 的前n 项和分别为n A 和n B ,且对任意n *∈N ,112()n n n n a a b b ++-=-恒成立. (1)若21,2n A n b ==,求n B ; (2)若对任意n *∈N ,都有n n a B =及3124122334113n n n b b b b a a a a a a a a ++++++<成立,求正实数1b 的取值范围; (3)若12,a =2n n b =,是否存在两个互不相等的整数,s t (1)s t <<,使11,,s ts tA A AB B B 成等差数列?若存在,求出,s t 的值;若不存在,请说明理由.福建省厦门第一中学2017—2018学年度上期中考高二年理科数学试卷答 案 卷一、选择题:1-5.CCBCA 6-10.BAADD 11-12.CD211sin 22S bc A ===,即2sin a A =,222222cos 2cos 4sin()4,63c b b c a a a A A A A A b c bc bc ππ+-++==+=+=+≤=取等.11. 由20152017201620a a a +=>得20160a >,由201620170a a +<得20170a <,所以等差数列{}n a 的公差0d <,故2016n ≤时0n a >,2017n ≥时0n a <,所以2014n ≤时120n n n a a a ++>, 2015201620170a a a <,2016201720180a a a >,当2017n ≥时120n n n a a a ++<,又()2015201620172016201720182016201720152018a a a a a a a a a a +=+()2016201720162017a a a a =+>0,所以2016n =时n T 最大,12. 12211112232122n n n n n n n n n a a a a a a +++++--<+++=⋅=-++,即 2321321n n n n a a +⋅<-<⋅+-,又2n n Z a a +-∈,则有232n n n a a +=-⋅.则320152017201713120172015()()23(222)2a a a a a a =+-++-=++++=二、填空题13. 00(0,1x x ∃∈+∞>+ 14. 615. 16. 130615. 由正弦定理可知,sin(120),sin ,sin sin AC ACAB A BC A B B=-= 则有AB +2BC =2sin(120)4sin 5sin )A A A A A ϕ-+=+=+≤.16. 由题设可得2211n n a a n ++=+,取1,2,3,,49n =⋅⋅⋅可得23456798992,3,4,,50a a a a a a a a +=+=+=⋅⋅⋅+=,将以上49个等式两边分别相加可得23456798992504912742a a a a a a a a +++++++⋅⋅⋅++=⨯=;又3163126251250251005012,31,65,16,2519,5031a a a a a a a a a a a a =+==-==-==+==-==-=,所以10011274311306S =++=.三、解答题17. 解:(1)根据题意得220ax bx ++=的两根为2,121=-=x x ,且0a < 由根与系数的关系可求得1,1a b =-=所以2()2f x x x =-++. (2)原不等式可化为23(1)2()m m x m f x -++++<,即223()0x m m x m -++<,即2()()0x m x m --<,又0m >,所以当2m m <,即01m <<时,2m x m <<; 当2=m m ,即1m =时,原不等式的解集为∅; 当2m m >,即1m >时,2m x m <<.综上所述,当01m <<时,原不等式的解集为{}2x m x m <<,当1m =时,原不等式的解集为∅,当1m >时,原不等式的解集为{}2x m x m <<.18.解:(1)命题p 为真命题时:令()2-f x x a =,根据题意,只要[]1,2x ∈时,()min 0f x ≥即可,也就是1-01a a ≥⇒≤;命题q 为真命题时,()24420a a ∆=--≥,解得2a ≤-或1a ≥;“p q ∧”为真命题,即,p q 都为真命题,则有(,2]{1}21a a a a ≤⎧⇒∈-∞-⎨≤-≥⎩1或. (2)由(1)可知,当命题p 为真命题时,1a ≤,因为命题“p q ∨”为真命题,命题“p q ∧”为假命题,所以命题p 与q 一真一假,当命题p 为真,命题q 为假时,12121a a a ≤⎧⇒-<<⎨-<<⎩,当命题p为假,命题q 为真时,1121或a a a a >⎧⇒>⎨≤-≥⎩.综上:(2,1)(1,)a ∈-⋃+∞19.解:(1)由正弦定理可得:sin cos 0sin sin cos 0a B A A B B A =⇔=,又sin 0B >,则有sin 0A A =,即tan A =又(0,),A π∈则有3A π=.(2)由余弦定理,得2222cos a b c bc A =+-,而2a b ==, 3A π=,得2742c c =+-,即2230c c --=,因为三角形的边0c >,所以3c =,则ABC S ∆=1sin 2bc A =.20.解:(1)依题意得sin sin (cos cos )sin A B A B C +=+法一:由正余弦定理可得:222222()22b c a a c b a b c bc ac+-+-+=+.化简整理可得:222()()()a b a b a b c ++=+,又0a b +>,则22290a b c C +=⇒=︒,即为直角三角形.法二:由正弦定理知:sin()sin()cos sin cos sin B C A C A C B C +++=+,展开化简得(sin sin )cos 0A B C +=,又sin sin 0A B +>,则cos 090C C =⇒=︒,即为直角三角形.(2)1a b c a b =++=+≥,当且仅当a b =时取等,≤1124ABC S ab ∆=≤,即ABC ∆面积的最大值为14,当且仅当a b =时取等.21.解:(1)1n =时,1111211a S a a ==-⇒=,1n >时111222n n n n n n n a S S a a a a ---=-=-⇒=,所以{}n a 是以1为首项,2为公比的等比数列,即12n n a -=.设{}n b 的公差为0d ≠,依题意有1231333b b b b d ++=+=,2253,b b b ⋅=即21111()(4)(2)0b d b d b d b d +⋅+=+⇒=,解得10,1b d ==,即1n b n =-.(2)由(1),可知, 12,1n n n a b n -==-,从而()112n n n a b n -=-⨯,令1122n n n T a b a b a b =+++,即()()122112222212n n n T n n --=⨯+⨯++-⨯+-⨯,③×2,得()()231212222212n n n T n n -=⨯+⨯++-⨯+-⨯,④ -④,得()231222212n n n T n --=++++--⨯()()221222212n n n n n -=--⨯=--⨯--, 即(2)22nn T n =-+,故题设不等式可化为()22(2)nt n n -≥-,(*)当1n =时,不等式(*)可化为2t -≥-,解得2t ≥; 当2n =时,不等式(*)可化为00≥,此时t R ∈;当3n ≥时,不等式(*)可化为2n t ≤,因为数列{}2n 是递增数列,所以8t ≤, 综上, t 的取值范围是[]2,8.22.解:(1)1n =时,111a S ==,1n >时121n n n a S S n -=-=-,所以*21()n a n n N =-∈. 则有11n n b b +-=,即{}n b 是以2为首项,1为公比的等差数列,即1n b n =+,(1)(3)222n n n n n B n -+=+=. (2)依题意得112(),n n n n B B b b ++-=-即112()n n n b b b ++=-,即12n nb b +=,且111b B a == {}n b 是以1b 为首项,2为公比的等比数列,112n n b b -=, 11(12)(21)12n n n b B b -==--, 所以111111111n n n n n n n n n n n n b b B B a a B B B B B B +++++++-===-, 则31211223112231111111111111111(1)21n n n n n n n b b b a a a a a a B B B B B B B B b b ++++++++=-+-++-=-=-<-, 则111,3b ≤即13b ≥(3)由112()n n n n a a b b ++-=-得:112n n n a a ++-=,所以当2n ≥时,11232211()()()()n n n n n a a a a a a a a a a ---=-+-++-+-+132********n n n -+=+++++=-,当1n =时,上式也成立,则21242,22n n n n A n B ++=--=-,所以2124222221n n n n n A n nB ++--==---. 法一:假设存在两个互不相等的整数,s t (1)s t <<,使11,,s ts tA A AB B B 成等差数列,即 111122212121212121t t s s s t t s A A A t s s tB B B +=⇔+=⇔=+-----. 又有2112121s t s t =+>--,即2120s s --<,设*()221,2,s f s s s s N =--≥∈.则有(1)()220sf s f s +-=->,即数列{()}f s 单调递增, 又(2)10f =-<,(3)10f =>,则有()0f s <⇒ 2.s =当2s =时,21121213t s t s =-=--,即2310,3t t t --=≥.同理可证当3t ≥数列{231}tt --递增,当3t =时2312t t --=-舍去,当4t ≥时4231212130t t --≥--=>,即2310tt --=无解,综上所述,不存在两个互不相等的整数,s t (1)s t <<,使11,,s ts tA A AB B B 成等差数列.法二:11111(1)2102121(21)(21)n n n n n n n n n A A n n n B B +++++-+-=-=>----,即数列{}n n A B 单调递增. 2[1,2)21n n n A nB =-∈-,又111123()222s t s t A A A B B B +=+<=, 又123312431131,,3272A A A B B B ==<=>,则2,s =所以11523t s t s A A A B B B =-= 又3434115265,73153A AB B =<=>,34t ⇒<<,则这样的t 不存在. 综上所述,不存在两个互不相等的整数,s t (1)s t <<,使11,,s ts tA A AB B B 成等差数列.。

福建省莆田市第七中学2017-2018学年高二上学期期中考试数学试题(245班)

福建省莆田市第七中学2017-2018学年高二上学期期中考试数学试题(245班)

莆田七中2017-18学年上高二数学期中试卷(2,4,5班)命题:薛伟平;审题:高二数学备课组。

(时间120分钟;满分150)一、选择题(每题5分,共60分)1.在△ABC 中,060=C ,045=B ,35=c ,则b 的值为( )A. 35 B. 25 C. 5 D.102.在△ABC 中,已知2=b ,1=c ,B=045,则=a ( ) A. 2 B.226+ C.226± D. 226- 3.已知数列{}n a 的通项公式为43n a n =-,则3a 的值是( )A .9 B .13 C .17 D .214.已知数列{}n a 的通项公式是nn a n 12+=,那么数列{}n a 是( ). A .递增数列 B.递减数列 C.常数列 D.摆动数列5. 在数列{}n a 中,233,311+==+n n a a a 则100a 的值为 ( )A.68B.69C.70D.716. 3211++-a ,a ,a 成等差数列,则a 的值为( ) A .1 B .-1 C .0 D .27.等比数列,,22,2,2,1 则28可以作为这个数列的( ).A.第六项B.第七项C.第八项D.第九项8. 等比数列{}n a 中,已知221=+a a ,443=+a a ,则=+65a a ( )A. 4B. 6C. 8D.109.已知集合{}20<≤=x x M ,{}0322<--=x x x N ,则N M =( ) A 、{{}10<≤x x B 、{{}20<≤x x C 、{{}10≤≤x x D 、{{}20≤≤x x10. 完成一项装修工程,需木工和瓦工的比例为2∶3,请木工需付工资每人50元,请瓦工需付工资每人40元,现有工资预算2000元,设请木工x 人,瓦工y 人,则请工人数的限制条件是( ) A. B. C. D.11.若a >b >0,则下列不等式成立的是( )A .a >b >a +b 2>abB .a >a +b 2>ab >bC .a >a +b 2>b >abD .a >ab >a +b 2>b12. 等差数列前n 项和为n S ,103013S S =,1403010=+S S ,则20S 等于( ).A .60B .50C .40D .30二、填空题(每题4分,共16分)13.6和12的等差中项是________.14.在ABC ∆中,若222a c b ab -+=,则角C 等于________.15. 已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩则z x y =+的最小值是 .16.若x >0,y >0,且x +y =18,则xy 的最大值是_____ ___.三、解答题(第17题10分,第18、19、20题每题12分,第21、22题每题14分,共74分)17. 在△ABC 中,a*cosB=b*cosA,判断三角形形状。

顺义二中2017-2018上学期高二数学期中考试答题纸

顺义二中2017-2018上学期高二数学期中考试答题纸
4.保持卡面清洁,不装订,不要折叠,不要破损。
填涂样例
正确填涂
错误填涂
一.选择题
1abcd
2abcd
3abcd
4abcd
5abcd
6abcd
7abcd
8abcd
二.填空题(30分)9,;1源自;;11;12,;
13;
14。
15.(13分)
(1)
(2)
(3)
16.(13分)
(1)
(2)
17.(13分)
(1)
顺义二中2017-2018学年第二学期期中考试
高一数学试卷
姓名
准考证号
条形码粘贴区(居中)
缺考
违纪
注意事项
1.答题前,考生先将自己的姓名、准考证号填写清楚,并认真在规定位置贴好条形码。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米及以上黑色字迹的签字笔书写,要求字体公整,笔记清楚。
3.严格按照题号在相应的答题区域内作答,超出答题区域书写的答案无效;
(2)
18、(14分)
(1)
(2)
(3)
19.(14分)
(1)
(2)
(3)
20.(13分)
(1)
(2)
(3)

【学期】山东省潍坊市学年高二上学期期中考试数学理试题Word版含答案

【学期】山东省潍坊市学年高二上学期期中考试数学理试题Word版含答案

【关键字】学期2017-2018学年度第一学期模块监测高二数学(理科)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知,,那么下列不等式一定正确的是()A.B.C.D.2.设是等差数列的前项和,若,则()A.5 B.7 C.9 D.113.若的三个内角满足,则()A.一定是锐角三角形B.一定是直角三角形C.一定是钝角三角形D.可能是锐角三角形,也可能是钝角三角形4.设是等比数列,下列说法一定正确的是()A.成等比数列B.成等比数列C. 成等比数列D.成等比数列5.若关于的不等式的解集为,则实数的值是()A.1 B.2 C.3 D.46.《莱茵德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的是较小的两份之和,则最小的一份为()A.B. C. D.7.若变量满足约束条件,则的最大值为()A. 4 B.3 C. 2 D.18.设是等差数列,下列结论中正确的是()A.若,则B.若,则C.若,则D.若,则9.在等腰中,内角所对应的边分别为,,,则此三角形的外接圆半径和内切圆半径分别是()A.4和2 B.4和 C. 2和D.2和10.若是函数的两个不同的零点,且这三个数依次成等比数列,这三个数依次成等差数列,则()A.4 B.5 C. 9 D.2011.设,,若,,,则下列关系式中正确的是()A.B. C. D.12.已知两个等差数列和的前项和分别为,,且,则使得为整数的正整数的个数是()A. 2 B.3 C. 4 D.5第Ⅱ卷(共90分)2、填空题(每题5分,满分20分,将答案填在答题纸上)13.函数的最小值为.14.已知数列是递减等比数列,且,,则数列的通项公式.15.已知中,满足,的三角形有两解,则边长的取值范围为.16.寒假期间,某校家长委员会准备租赁两种型号的客车安排900名学生到重点高校进行研究旅行,两种客车的载客量分别为36人和60人,租金分别为1200元/辆和1800元/辆,家长委员会为节约成本,要求租车总数不超过21辆,且型车不多于型车7辆,则租金最少为 元.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 解下列关于的不等式:(1);(2).18. 已知的内角所对应的边分别为,且满足.(1)判断的形状;(2)若,,为角的平分线,求的面积.19. 设是等差数列的前项和,已知,,.(1)求;(2)若数列,求数列的前项和.20. 已知的内角所对应的边分别为,且.(1)求;(2)若,求的取值范围.21. 潍坊文化艺术中心的观光塔是潍坊市的标志性建筑,某班同学准备测量观光塔的高度(单位:米),如图所示,垂直放置的标杆的高度米,已知,.(1)该班同学测得βα,一组数据:31.1tan ,35.1tan ==βα,请据此算出H 的值;(2)该班同学分析若干测得的数据后,发现适当调整标杆到观光塔的距离d (单位:米),使α与β的差较大,可以提高测量精确度,若观光塔高度为136米,问d 为多大时,)tan(βα-的值最大?22. 已知数列}{n a 的前n 项和为n S ,n n S n 22+=. (1)求数列}{n a 的通项公式;(2)令n nn a b 2=,设数列}{n b 的前n 项和为n T ,求n T ; (3)令π)1cos(1+=+n a a c n n n ,若221tn c c c n ≥+++ 对*N n ∈恒成立,求实数t 的取值范围.试卷答案一、选择题:1-5 D A C D A 6-10 ABBCD 11-12 B C二、填空题:13. 5 14.n -73 15. 16. 27600三、解答题17.(本小题满分10分)解:(I )将原不等式化为0272≤--x x ,即),2(0)2)(72(≠≤--x x x ,272 ≤<∴x 所以原不等式的解集7{2}2x x <≤ . (II )当0a =时,不等式的解集为{0};当0a ≠时,原不等式等价于()(2)0x a x a +-≤,因此 当0a >时,2a a -<, 2,a x a ∴-≤≤当0a <时,2a a ->, 2,a x a ∴≤≤-综上所述,当0a =时,不等式的解集为{0},当0a >时,不等式的解集为,{2}x a x a -≤≤,当0a <时,不等式的解集{2}.x a x a ≤≤-18. (本小题满分12分)解:(I )由B A B A sin sin 2)cos(=-,得 B A B A B A sin sin 2sin sin cos cos =+,0sin sin cos cos =-∴B A B A ,0)cos( =+∴B A . ︒=∴90C , 故ABC ∆为直角三角形.(II)由(I )知︒=90C ,又6,3==c a ,∴3322=-=a c b ,︒=∠︒=105,30ADC A , 由正弦定理得ADC AC A CD ∠=sin sin ,26329214263330sin 105sin 33 -=⨯+=︒⨯︒=∴CD ,19. (本小题满分12分)解:(I )设数列}{n a 的公差为d ,则{112221510575a d a d +=-+=,即 {1111510575a d a d +=-+=, …2分解得{211-==a d , 所以9989(2)1182S ⨯=⨯-+⨯=.(也可利用等差数列的性质解答)(II)由(I )知21(1)3n a n n =-+⋅-=-,2111)2)(1(1)4)(4(11+-+=++=++=+n n n n a a b n n n ,20. (本小题满分12分)解:(I )由已知及正弦定理得B AC C A B sin )cos sin cos (sin cos 2=+,即B C A B sin )sin(cos 2=+,B B B sin sin cos 2 =∴, 在ABC ∆中, 可得,21cos =B 所以3π=B .(II )∵1a c +=,即1c a =-,1cos 2B =,∴由余弦定理得:2222cos b a c ac B=+-⋅,即2222()313(1)b a c ac a c ac a a =+-=+-=--∵01a <<,∴211,4b ≤<则11.2b ≤<21. (本小题满分12分)解:(I )由αtan H AB =,βtan h BD =,βtan HAD =,及AD BD AB =+, 得ββαtan tan tan Hh H =+,解得tan 4 1.35135tan tan 1.35 1.31h H ααβ⨯===--, 因此算出观光塔的高度H 是135m.(II )由题设知AB d =,得d H =αtan ,由ββtan tan h H BD AD AB -=-=得d h H -=βtan ,所以)(2)(tan tan 1tan tan )tan(h H H h d h H H d h -≤-+=+-=-βαβαβα.当且仅当d d H H d )(-=,即()136(1364)41122()d H H d m =-=⨯-=时, 上式取等号,所以当m d 11224=时)tan(βα-最大. 22.(本小题满分12分)解:(I)当2≥n 时,,12)]1(2)1[(2221+=-+--+=-=-n n n n n S S a n n n 当1=n 时,31=a ,适合上式,∴12+=n a n (*∈N n ).(II)n n n b 212+=,则n n n T 21221322122211232++++⨯++⨯++⨯= ,143221221)1(2213221222112 21++++-⨯+++⨯++⨯++⨯=n n n n n T ,-得 1322122222222321++-++++=n n n n T ,125225++-=n n .n n n T 2525 +-=∴ . (III)ππ)1cos()32)(12()1cos(1+++=+=+n n n n a a c n n n ,当n 为奇数时,1)1cos(=+πn ,=+⨯+++⨯-⨯+⨯-⨯=+++)32()12(11997755321n n c c c n当n 为偶数时,1)1cos(-=+πn ,综上所述, 5.t ≤-2017—2018学年度第一学段模块监测高二数学(理科)参考答案一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1-5 D A C D A 6-10 ABBCD 11-12 B C二、填空题:本大题共4个小题,每小题5分,共20分)答案填写在答题卡相应的位置上.13. 5 14.n -7315. 16. 27600三、解答题(本大题包括6小题,共70分,解答应写出必要的文字说明,证明过程或演算步骤,把正确答案填在答题卡中的对应位置上).17.(本小题满分10分)解:(I )将原不等式化为0272≤--x x , … …………………2分即),2(0)2)(72(≠≤--x x x ,272 ≤<∴x ……………………………4分 所以原不等式的解集7{2}2x x <≤ . ………… …………………5分 (II )当0a =时,不等式的解集为{0}; ……………………6分当0a ≠时,原不等式等价于()(2)0x a x a +-≤,因此 当0a >时,2a a -<, 2,a x a ∴-≤≤当0a <时,2a a ->, 2,a x a ∴≤≤- ……………………9分综上所述,当0a =时,不等式的解集为{0},当0a >时,不等式的解集为,{2}x a x a -≤≤,当0a <时,不等式的解集{2}.x a x a ≤≤- ……………………10分18. (本小题满分12分)解:(I )由B A B A sin sin 2)cos(=-,得 B A B A B A sin sin 2sin sin cos cos =+, … ………………2分0sin sin cos cos =-∴B A B A ,0)cos( =+∴B A . ……… …………4分 ︒=∴90C , 故ABC ∆为直角三角形. …………………………6分 (II)由(I )知︒=90C ,又6,3==c a ,∴3322=-=a c b ,︒=∠︒=105,30ADC A , … …………8分 由正弦定理得ADC AC A CD ∠=sin sin ,26329214263330sin 105sin 33 -=⨯+=︒⨯︒=∴CD , ………………10分.439274sin 32632921sin 21 -=⋅⋅-⋅=∠⋅⋅⋅=∴πBCD a CD S ………12分19. (本小题满分12分)解:(I )设数列}{n a 的公差为d ,则{112221510575a d a d +=-+=,即{1111510575a d a d +=-+=, …2分 解得{211-==a d , ……………………………………4分 所以9989(2)1182S ⨯=⨯-+⨯=. ……………………………………6分 (也可利用等差数列的性质解答)(II)由(I )知21(1)3n a n n =-+⋅-=-, ……… ………… ………7分 2111)2)(1(1)4)(4(11+-+=++=++=+n n n n a a b n n n , ………………9分 .422121+=+-=n n n ……………… ………………12分20. (本小题满分12分)解:(I )由已知及正弦定理得B AC C A B sin )cos sin cos (sin cos 2=+,即B C A B sin )sin(cos 2=+,B B B sin sin cos 2 =∴, 在ABC ∆中,可得,21cos =B 所以3π=B . …………6分(II )∵1a c +=,即1c a =-,1cos 2B =,∴由余弦定理得:2222cos b a c ac B =+-⋅,即2222()313(1)b a c ac a c ac a a =+-=+-=--∵01a <<,∴211,4b ≤<则1 1.2b ≤< …………………………12分21. (本小题满分12分)解:(I )由αtan H AB =,βtan h BD =,βtan H AD =, ………………2分 及AD BD AB =+, 得ββαtan tan tan H h H =+, …………………………3分 解得tan 4 1.35135tan tan 1.35 1.31h H ααβ⨯===--, ………… ………………5分 因此算出观光塔的高度H 是135m. ………………6分 (II )由题设知AB d =,得d H =αtan , 由ββtan tan h H BD AD AB -=-=得d h H -=βtan , ………………8分 所以)(2)(tan tan 1tan tan )tan(h H H h d h H H d h -≤-+=+-=-βαβαβα.………………10分 当且仅当d d H H d )(-=,即)d m ==时, 上式取等号,所以当m d 11224=时)tan(βα-最大. ………………12分 22.(本小题满分12分)解:(I)当2≥n 时,,12)]1(2)1[(2221+=-+--+=-=-n n n n n S S a n n n …………2分当1=n 时,31=a ,适合上式,∴12+=n a n (*∈N n ). ………………………………………3分 (II)n n n b 212+=,则n n n T 21221322122211232++++⨯++⨯++⨯= ,……………4分 143221221)1(2213221222112 21++++-⨯+++⨯++⨯++⨯=n n n n n T , ………5分-得 1322122222222321++-++++=n n n n T , ………………………6分125225++-=n n .n n n T 2525 +-=∴ . ………… ………………………………………7分(III)ππ)1cos()32)(12()1cos(1+++=+=+n n n n a a c n n n , ………………8分 当n 为奇数时,1)1cos(=+πn ,=+⨯+++⨯-⨯+⨯-⨯=+++)32()12(11997755321n n c c c n,75)731(7267 22++=++≤∴n n n t 2.t ∴≤ ………………………10分 当n 为偶数时,1)1cos(-=+πn ,综上所述, 5.t ≤- ………………………………………12分此文档是由网络收集并进行重新排版整理.word 可编辑版本!。

2017-2018年山西省太原市高二上学期期中数学试卷及参考答案

2017-2018年山西省太原市高二上学期期中数学试卷及参考答案

2017-2018学年山西省太原市高二(上)期中数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)已知点A(1,0),B(﹣1,1),则直线AB的斜率为()A.B.C.﹣2 D.22.(3分)下列平面图形中,通过围绕定直线l旋转可得到下图所示几何体的是()A.B.C.D.3.(3分)圆(x﹣1)2+(y﹣2)2=4的圆心坐标和半径分别为()A.(﹣1,﹣2),4 B.(1,2),4 C.(﹣1,﹣2),2 D.(1,2),24.(3分)直线y=x﹣1与圆x2+y2=1的位置关系是()A.相离B.相交C.相切D.不确定5.(3分)已知m,n是两条不同直线,α是一个平面,则下列结论正确的是()A.若m∥α,n⊂α,则m∥n B.若m∥α,n∥α,则m∥nC.若m∥α,m⊥n,则n⊥αD.若m∥n,m⊥α,则n⊥α6.(3分)直线x+y﹣1=0与直线2x+2y+1=0的距离是()A.B.C.D.7.(3分)如图,△O'A'B'是△OAB用斜二测画法画出来的直观图,其中O'B'=4,A'C'=6,A'C'∥y',则△OAB的面积()A.6 B.12 C.24 D.488.(3分)已知实数x,y满足条件,则z=x﹣2y的最大值为()A.8 B.6 C.﹣8 D.9.(3分)若直线m2x+(m2﹣m)y+1=0与2x﹣y﹣1=0互相垂直,则实数m=()A.﹣1 B.0 C.﹣1或0 D.110.(3分)已知某几何体的三视图如图所示,则该几何体的表面积为()A.B.C. D.11.(3分)若关于x的方程有两个不同实数根,则实数m的取值范围是()A.B.(﹣1,1)C.D.12.(3分)已知圆O和圆M是球O的大圆和小圆,其公共弦长为球O半径的倍,且圆O和圆M所在平面所成的二面角是30°,OM=1,则圆O的半径为()A.B.2 C.D.4二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3分)已知空间直角坐标系中点P(1,2,3),Q(3,2,1),则|PQ|=.14.(3分)已知一圆锥的侧面展开图是半径为2的半圆,则该圆锥的体积为.15.(3分)已知经过点M(2,1)作圆C:(x+1)2+y2=1的两条切线,切点分别为A,B两点,则直线AB的方程为.16.(3分)如图,三棱锥P﹣ABC中,PA,PB,PC两两垂直,PA=PB=PC=2,设点K是△ABC内一点,现定义f(K)=(x,y,z),其中x,y,z分别是三棱锥K ﹣PAB,K﹣PBC,K﹣PAC的体积,若,则的最小值为.三、解答题(本大题共7小题,共52分.解答应写出文字说明、证明过程或演算步骤.)17.已知△ABC的三个顶点坐标分别是A(﹣2,﹣1),B(2,1),C(1,3).(Ⅰ)求边AB高所在直线的点斜式方程;(Ⅱ)求边AB上的中线所在直线的一般式方程.18.如图,在棱长为a的正方体ABCD﹣A1B1C1D1中,点M,N分别是BD1,B1C 的中点,(1)求证:MN⊥B1C;(2)求三棱锥B1﹣BCD1的体积.19.已知圆C1:x2+y2﹣4x=0与圆C2:x2+y2+2my+n=0关于直线y=x对称.(Ⅰ)求实数m,n的值;(Ⅱ)求经过圆C1与圆C2的公共点以及点P(﹣1,1)的圆的方程.20.如图,在四棱锥P﹣ABCD中,AB⊥AC,AB⊥PA,AB∥DC,点E,F,G,M,N分别是PB,AB,BC,PD,PC的中点(1)求证:AN∥平面EFG;(2)求证:平面MNE⊥平面EFG.21.如图,在四棱锥P﹣ABCD中,AB⊥AC,AB⊥PA,AB∥DC,点E、F、G、M、N分别是PB,AB,BC,PD,PC的中点.(Ⅰ)若AB=2CD,求证:CE∥平面PAD(Ⅱ)求证:MN⊥平面EFG.22.已知圆C1:x2+y2=4与圆C2:(x﹣4)2+(y﹣2)2=4,点A在圆C1上,点B 在圆C2上.(Ⅰ)求|AB|的最小值;(Ⅱ)直线x=3上是否存在点P,满足经过点P由无数对相互垂直的直线l1和l2,它们分别与圆C1和圆C2相交,并且直线l1被圆C1所截得的弦长等于直线l2被圆C2所截得的弦长?若存在,求出点P的坐标;若不存在,请说明理由.23.已知圆C1:x2+(y+2)2=4与圆C2:(x﹣4)2+y2=4(1)若直线mx﹣y+(m﹣1)=0(m∈R)与圆C1相交于A,B两个不同点,求|AB|的最小值;(2)直线x=3上是否存在点P,满足经过点P有无数对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,并且直线l1被圆C1所截得的弦长等于直线l2被圆C2所截得的弦长?若存在,求出点P的坐标;若不存在,请说明理由.2017-2018学年山西省太原市高二(上)期中数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)已知点A(1,0),B(﹣1,1),则直线AB的斜率为()A.B.C.﹣2 D.2【解答】解:直线AB的斜率k==﹣.故选:A.2.(3分)下列平面图形中,通过围绕定直线l旋转可得到下图所示几何体的是()A.B.C.D.【解答】解:几何体是由两个圆锥和一个圆柱组合而成的,由旋转体的性质得选项B中梯形绕下底旋转,形成的几何体是由两个圆锥和一个圆柱组合而成,故选:B.3.(3分)圆(x﹣1)2+(y﹣2)2=4的圆心坐标和半径分别为()A.(﹣1,﹣2),4 B.(1,2),4 C.(﹣1,﹣2),2 D.(1,2),2【解答】解:∵圆C的方程为(x﹣1)2+(y﹣2)2=4,则圆C的圆心坐标为(1,2),半径r=2,故选:D.4.(3分)直线y=x﹣1与圆x2+y2=1的位置关系是()A.相离B.相交C.相切D.不确定【解答】解:圆心(0,0)到直线y=x﹣1的距离d==<1,∴直线与圆相交.故选:B.5.(3分)已知m,n是两条不同直线,α是一个平面,则下列结论正确的是()A.若m∥α,n⊂α,则m∥n B.若m∥α,n∥α,则m∥nC.若m∥α,m⊥n,则n⊥αD.若m∥n,m⊥α,则n⊥α【解答】解:对于A,m∥α,n⊂α,则m∥n或m,n异面,所以A错误;对于B,若m∥α,n∥α,则m与n相交、平行或异面,故B错误;对于C,若m∥α,m⊥n,则n、α可能相交,故错;对于D,若m∥n,m⊥α,则n⊥α,正确.故选:D.6.(3分)直线x+y﹣1=0与直线2x+2y+1=0的距离是()A.B.C.D.【解答】解:直线2x+2y+1=0化为:x+y+=0.∴平行直线x+y﹣1=0与直线2x+2y+1=0的距离d==.故选:A.7.(3分)如图,△O'A'B'是△OAB用斜二测画法画出来的直观图,其中O'B'=4,A'C'=6,A'C'∥y',则△OAB的面积()A.6 B.12 C.24 D.48【解答】解:由已知中的直观图可得:△OAB中OB=4,AC=12,AC⊥OB,故△OAB的面积S=×12×4=24,故选:C.8.(3分)已知实数x,y满足条件,则z=x﹣2y的最大值为()A.8 B.6 C.﹣8 D.【解答】解:由实数x,y满足条件作出可行域如图,化目标函数z=x﹣2y为y=﹣,由图可知,当直线y=﹣过A时,z取得最大值,由解得A(2,﹣2)时,直线在y轴上的截距最小,z有最大值为2﹣2×(﹣2)=6.故选:B.9.(3分)若直线m2x+(m2﹣m)y+1=0与2x﹣y﹣1=0互相垂直,则实数m=()A.﹣1 B.0 C.﹣1或0 D.1【解答】解:∵直线m2x+(m2﹣m)y+1=0与2x﹣y﹣1=0互相垂直,∴2m2﹣m2+m=0,解得m=﹣1或m=0,当m=0时,m2x+(m2﹣m)y+1=0不成立,故选:A.10.(3分)已知某几何体的三视图如图所示,则该几何体的表面积为()A.B.C. D.【解答】解:由三视图还原原几何体如图:该几何体为三棱锥,底面三角形ABC为直角三角形,侧棱PA⊥底面ABC,由AB=1,BC=3,得AC=,由PA=2,AB=1,得PB=,则S=1,,,,△PAB∴该几何体的表面积为1+=.故选:A.11.(3分)若关于x的方程有两个不同实数根,则实数m的取值范围是()A.B.(﹣1,1)C.D.【解答】解:∵方程,∴设函数y=x+b,和y=,则﹣1≤x≤1,由y=得x2+y2=1,∵﹣1≤x≤1,∴函数y=为圆的上半部分.作出函数y=的图象如图:当直线x﹣y+b=0与圆相切时,圆心到直线的距离d=,即|b|=,解得b=,由图象可知b>0,即b=.当直线经过点(﹣1,0)时,直线满足﹣1+b=0,即b=1,∴要使x的方程有两个不同的实数解,则满足1,故选:D.12.(3分)已知圆O和圆M是球O的大圆和小圆,其公共弦长为球O半径的倍,且圆O和圆M所在平面所成的二面角是30°,OM=1,则圆O的半径为()A.B.2 C.D.4【解答】解:设两圆的公共弦长为AB,C为AB的中点,连结MC、OC,则OC⊥AB,MC⊥AB,∴∠MCO就是圆O与圆K所在的平面所成的二面角的平面角,即∠MCO=30°∵Rt△MOC中,OM=1,∴OC==2,Rt△AOC中,OA2=OC2+AC2,即R2=4+()2,解得R=4.故选:D.二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3分)已知空间直角坐标系中点P(1,2,3),Q(3,2,1),则|PQ|=2.【解答】解:|PQ|==2,故答案为:2.14.(3分)已知一圆锥的侧面展开图是半径为2的半圆,则该圆锥的体积为.【解答】解:设圆锥的底面半径为r,母线长为l,则,解得r=1,l=2.∴圆锥的高h==.∴圆锥的体积V=πr2h=.故答案为.15.(3分)已知经过点M(2,1)作圆C:(x+1)2+y2=1的两条切线,切点分别为A,B两点,则直线AB的方程为3x+y+2=0.【解答】解:(x+1)2+y2=1的圆心为C(﹣1,0),半径为1,以M(2,1)、C(﹣1,0)为直径的圆的方程为(x﹣)2+(y﹣)2=,将两圆的方程相减可得公共弦AB的方程3x+y+2=0,故答案是:3x+y+2=0.16.(3分)如图,三棱锥P﹣ABC中,PA,PB,PC两两垂直,PA=PB=PC=2,设点K是△ABC内一点,现定义f(K)=(x,y,z),其中x,y,z分别是三棱锥K ﹣PAB,K﹣PBC,K﹣PAC的体积,若,则的最小值为.【解答】解:∵PA、PB、PC两两垂直,且PA=PB=PC=2,∴V P=××2×2×2==a++b,﹣ABC∴a+b=1.则==()(a+b)=4+,由题意可得a>0,b>0,且a+b=1,∴=4+,当且仅当b=时,上式“=”成立.∴的最小值为.故答案为:4+2.三、解答题(本大题共7小题,共52分.解答应写出文字说明、证明过程或演算步骤.)17.已知△ABC的三个顶点坐标分别是A(﹣2,﹣1),B(2,1),C(1,3).(Ⅰ)求边AB高所在直线的点斜式方程;(Ⅱ)求边AB上的中线所在直线的一般式方程.【解答】解:(Ⅰ)AB边上的高所在的直线为直线CH,H为垂足,由已知A(﹣2,﹣1),B(2,1),得:,而k AB k CH=﹣1,则k CH=﹣2,而C(1,3),所以直线CH的方程为y﹣3=﹣2(x﹣1);(Ⅱ)AB边上的中线所在的直线为直线CE,E为AB中点,由已知A(﹣2,﹣1),B(2,1)得:E(0,0),而C(1,3),得:,所以直线CE的方程为y=3x即3x﹣y=0.18.如图,在棱长为a的正方体ABCD﹣A1B1C1D1中,点M,N分别是BD1,B1C 的中点,(1)求证:MN⊥B1C;(2)求三棱锥B1﹣BCD1的体积.【解答】证明:(1)取BD,CD的中点为P,Q,连接PQ,MP,NQ,在△ADD1中,,同理在△BCB1中,又BB 1=DD1,BB1∥DD1,所以MP=NQ,MP∥NQ,所以四边形MNQP是平行四边形,所以MN∥PQ,又PQ∥DC,DC⊥平面BCC1B1,所以PQ⊥平面BCC1B1,所以PQ⊥B1C,所以MN⊥B1C;解:(2)三棱锥B1﹣BCD1的体积:.19.已知圆C1:x2+y2﹣4x=0与圆C2:x2+y2+2my+n=0关于直线y=x对称.(Ⅰ)求实数m,n的值;(Ⅱ)求经过圆C1与圆C2的公共点以及点P(﹣1,1)的圆的方程.【解答】解:(Ⅰ)圆的标准方程为(x﹣2)2+y2=4,圆心C1(2,0),半径r1=2,圆的标准方程为x2+(y+m)2=m2﹣n,圆心C2(0,﹣m),半径∵圆C1与圆C2关于直线y=x对称,所以,解得.(Ⅱ)解得,或,即圆C1与圆C2的交点为(0,0),(2,2).令O(0,0),Q(2,2),又OP⊥OQ,∴所求圆的圆心为线段PQ的中点,即;半径,∴所求圆的方程为:.20.如图,在四棱锥P﹣ABCD中,AB⊥AC,AB⊥PA,AB∥DC,点E,F,G,M,N分别是PB,AB,BC,PD,PC的中点(1)求证:AN∥平面EFG;(2)求证:平面MNE⊥平面EFG.【解答】解:(1)在△PAB中,E,F分别是PB,AB的中点,所以EF∥PA,所以EF∥平面PAC在△ACB中,F,G分别是AB,BC的中点,所以FG∥AC,所以FG∥平面PAC又EF∩FG=F,所以平面PAC∥平面EFG,所以AN∥平面EFG(2)∵E、F分别是PB、AB中点,∴EF∥PA又AB⊥PA,∴AB⊥EF同理可证AB⊥FG.又EF∩FG=F,EF、FG⊂面EFG,故AB⊥EFG.又M、N分别为PD、PC中点,∴MN∥CD,又AB∥CD,故MN∥AB,∴MN⊥EFG,∵MN⊂EMN,∴EFG⊥EMN.21.如图,在四棱锥P﹣ABCD中,AB⊥AC,AB⊥PA,AB∥DC,点E、F、G、M、N分别是PB,AB,BC,PD,PC的中点.(Ⅰ)若AB=2CD,求证:CE∥平面PAD(Ⅱ)求证:MN⊥平面EFG.【解答】解:(Ⅰ)连结CF,∵E、F分别是PB、AB的中点,∴EF是△PAB的中位线,∴EF∥PA,又∵AB∥DC,AB=2DC,∴AF∥DC,AF=DC,∴四边形ADCF是平行四边形,∴CF∥AD,又∵EF∩EC=E,PA∩AD=A,∴平面EFC∥平面PAD,∵CE⊂平面EFC,∴CE∥平面PAD.(Ⅱ)∵AB⊥AC,AB⊥PA,∴AB⊥平面PAC,又∵E、F、G分别是PB、AB、CB的中点,∴EF∥PA,EG∥AC,∴平面EFG∥平面PAC,∴AB⊥平面EFG,又∵M、N分别是PD、PC的中点,∴MN∥DC∥AB,∴MN⊥平面EFG.22.已知圆C1:x2+y2=4与圆C2:(x﹣4)2+(y﹣2)2=4,点A在圆C1上,点B 在圆C2上.(Ⅰ)求|AB|的最小值;(Ⅱ)直线x=3上是否存在点P,满足经过点P由无数对相互垂直的直线l1和l2,它们分别与圆C1和圆C2相交,并且直线l1被圆C1所截得的弦长等于直线l2被圆C2所截得的弦长?若存在,求出点P的坐标;若不存在,请说明理由.【解答】解:(Ⅰ)两圆的圆心距为|C1C2|==2>2+2=4,∴圆C1与圆C2外离,∴|AB|的最小值为2﹣4.(Ⅱ)设P(3,a),当直线l1斜率不存在时,显然不符合题意,舍去;当直线l1斜率存在且不为0时,设直线l1:y=k(x﹣3)+a,即kx﹣y+a﹣3k=0,直线,即x+ky﹣ak﹣3=0,∴两圆圆心到直线l1,l2的距离分别为:∵两圆半径相等,弦长相等,∴d1=d2,即,化简得:(a2﹣4a﹣5)k2+4(a+1)k+1﹣a2=0,∴上式对任意k≠0恒成立,故,解得a=﹣1.故存在点P(3,﹣1)满足题意.23.已知圆C1:x2+(y+2)2=4与圆C2:(x﹣4)2+y2=4(1)若直线mx﹣y+(m﹣1)=0(m∈R)与圆C1相交于A,B两个不同点,求|AB|的最小值;(2)直线x=3上是否存在点P,满足经过点P有无数对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,并且直线l1被圆C1所截得的弦长等于直线l2被圆C2所截得的弦长?若存在,求出点P的坐标;若不存在,请说明理由.【解答】解:(1)直线mx﹣y+(m﹣1)=0(m∈R)过定点M(﹣1,﹣1),∴当AB⊥C1M时,|AB|取得最小值,∵,∴|AB|的最小值为2=2.(2)设P(3,a),当直线l1斜率为0或斜率不存在时不符合题意,舍去;当直线l1斜率存在且不为0时,设直线l1:y=k(x﹣3)+a,即kx﹣y+a﹣3k=0,设直线,即x+ky﹣ak﹣3=0,则C1到直线l1的距离为d1=,C2到直线l2的距离为d2=,∵两圆半径相等,弦长相等,∴,化简得:(9﹣a2)k2﹣(12+4a)k+a2+4a+3=0,∴上式对任意k≠0恒成立,故,解得a=﹣3.故存在点P(3,﹣3)满足题意.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。

2017-2018学年河南省洛阳市高二上学期期中数学试题(解析版)

2017-2018学年河南省洛阳市高二上学期期中数学试题(解析版)

2017-2018学年河南省洛阳市高二(上)期中数学试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x2﹣x﹣6<0},B={x|x2+2x﹣8>0},则A∪B=()A.{x|2<x<3}B.{x|﹣2<x<3}C.{x|x>﹣4或x>2}D.{x|x<﹣4或x >﹣2}2.(5分)△ABC中,==,则△ABC一定是()A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形3.(5分)若a,b,c∈R,且a>b,则下列不等式一定成立的是()A.>0 B.(a﹣b)c2>0 C.ac>bc D.a+c≥b﹣c4.(5分)在等比数列{a n}中,a n>0,已知a1=6,a1+a2+a3=78,则a2=()A.12 B.18 C.24 D.365.(5分)设正实数a,b满足2a+3b=1,则的最小值是()A.25 B.24 C.22 D.166.(5分)海中有一小岛,海轮由西向东航行,望见这岛在北偏东75°,航行8n mile以后,望见这岛在北偏东60°,海轮不改变航向继续前进,直到望见小岛在正北方向停下来做测量工作,还需航行()n mile.A.8 B.4 C.D.7.(5分)设等差数列{a n}的公差d≠0,且a2=﹣d,若a k是a6与a k+6等比中项,则k=()A.5 B.6 C.9 D.368.(5分)若函数f(x)=的定义域是R,则实数a的取值范围是()A.(﹣2,2)B.(﹣∞,﹣2)∪(2,+∞)C.(﹣∞,﹣2]∪[2,+∞)D.[﹣2,2]9.(5分)已知△ABC的内角A、B、C的对边分别为a、b、c.若a=bcosC+csinB,且△ABC的面积为1+.则b的最小值为()A.2 B.3 C.D.10.(5分)设等差数列{a n}的前n项和为S n,S15>0,a8+a9<0,则使<0成立的最小自然数n的值为()A.15 B.16 C.17 D.1811.(5分)在平而直角坐标系中,不等式组表示的平面区域面积为π,若x,y满足上述约束条件,则z=的最小值为()A.﹣1 B.C.D.12.(5分)已知数列{a n}中,a1=2,若a n+1﹣a n=a n2,设T m=,若T m<2018,则正整数m的最大值为()A.2019 B.2018 C.2017 D.2016二、填空题:本题共4个小题,每小题5分,共20分.x<0|2<x<3}B.{x|-2<x<3}C.{x|x>13.(5分)不等式组表示的平面区域内的整点坐标是.14.(5分)已知△ABC的内角A,B,C的对边分别为a,b,c,若a=2且sinA+cosA=2,则角C的大小为.15.(5分)如图所示,在圆内接四边形ABCD中,AB=6,BC=3,CD=4,AD=5,则四边形ABCD的面积为.16.(5分)已知数列{a n}中,a1=l,S n为其前n项和,当n≥2时,2a n+S n2=a n S n成立,则S10=.三、解答题:本大题共6个小题,共70分.解答应写出文字说明、证明过程或盐酸步骤.17.(10分)在△ABC中,角A,B,C所对的边分别为a,b,c,已知a2+c2﹣b2=﹣ac.(1)求B;(2)若,,求a,c.18.(12分)已知方程x2+2(a+2)x+a2﹣1=0.(1)当该方程有两个负根时,求实数a的取值范围;(2)当该方程有一个正根和一个负根时,求实数a的取值范围.19.(12分)已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列{a n}的通项公式;(2){b n}为各项非零的等差数列,其前n项和S n=n2,求数列的前n项和T n.20.(12分)某市园林局将一块三角形地块ABC的一个角AMN建设为小游园,已知A=120°,AB,AC的长度均大于400米,现要在边界AM,AN处建设装饰墙,沿MN建设宽1.5米的健康步道.(1)若装饰墙AM,AN的总长度为400米,AM,AN 的长度分别为多少时,所围成的三角形地块AMN的面积最大?(2)若AM段装饰墙墙髙1米,AN段装饰墙墙髙1.5米,AM段装饰墙造价为每平方米150元,AN段装饰墙造价为每平方米100元,建造装饰墙用了90000元.若建设健康步道每100米需5000元,AM,AN的长度分别为多少时,所用费用最少?21.(12分)已知△ABC为锐角三角形,角A,B,C的对边分别为a,b,c且(b2+c2﹣a2)tanA=bc.(1)求角A的大小;(2)若a=,求2b﹣c的取值范围.22.(12分)设数列{a n}的前n项和为S n,且S n=4﹣a n﹣.(1)令b n=2n﹣1•a n,证明数列{b n}为等差数列,并求{b n}的通项公式;(2)是否存在n∈N*,使得不等式成立,若存在,求出λ的取值范围,若不存在,请说明理由.2017-2018学年河南省洛阳市高二(上)期中数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x2﹣x﹣6<0},B={x|x2+2x﹣8>0},则A∪B=()A.{x|2<x<3}B.{x|﹣2<x<3}C.{x|x>﹣4或x>2}D.{x|x<﹣4或x >﹣2}【分析】解不等式得出集合A、B,根据并集的定义写出A∪B.【解答】解:集合A={x|x2﹣x﹣6<0}={x|(x+2)(x﹣3)<0}={x|﹣2<x<3},B={x|x2+2x﹣8>0}={x|(x+4)(x﹣2)>0}={x|x<﹣4或x>2},则A∪B={x|x<﹣4或x>﹣2}.故选:D.【点评】本题考查了解不等式与集合的运算问题,是基础题.2.(5分)△ABC中,==,则△ABC一定是()A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形【分析】由,利用正弦定理可得tanA=tanB=tanC,再利用三角函数的单调性即可得出.【解答】解:由正弦定理可得:=,又,∴tanA=tanB=tanC,又A,B,C∈(0,π),∴A=B=C=,则△ABC是等边三角形.故选:D.【点评】本题考查了正弦定理、三角函数的单调性,考查了推理能力与计算能力,属于中档题.3.(5分)若a,b,c∈R,且a>b,则下列不等式一定成立的是()A.>0 B.(a﹣b)c2>0 C.ac>bc D.a+c≥b﹣c【分析】对于A,根据不等式的性质即可判断,举反例即可判断B,C,D【解答】解:A、∵a﹣b>0,c2>0,∴>0B、∵a﹣b>0,∴(a﹣b)2>0,又c2≥0,∴(a﹣b)2c≥0,本选项不一定成立,C、c=0时,ac=bc,本选项不一定成立;D、当a=﹣1,b=﹣2,c=﹣3时,a+c=﹣4,b﹣c=1,显然不成立,本选项不一定成立;故选A【点评】此题考查了不等式的性质,利用了反例的方法,是一道基本题型.4.(5分)在等比数列{a n}中,a n>0,已知a1=6,a1+a2+a3=78,则a2=()A.12 B.18 C.24 D.36【分析】先求出公比q,即可求出答案.【解答】解:设公比为q,由a1=6,a1+a2+a3=78,可得6+6q+6q2=78,解得q=3或q=﹣4(舍去),∴a2=6q=18,故选:B【点评】本题考查了等比数列的通项公式,属于基础题.5.(5分)设正实数a,b满足2a+3b=1,则的最小值是()A.25 B.24 C.22 D.16【分析】直接利用函数的关系式及均值不等式求出函数的最小值.【解答】解:正实数a,b满足2a+3b=1,则=(2a+3b)()=+9≥13+12=25,故的最小值为25.故选:D.【点评】本题考查的知识要点:函数的关系式的恒等变换,均值不等式的应用.6.(5分)海中有一小岛,海轮由西向东航行,望见这岛在北偏东75°,航行8n mile以后,望见这岛在北偏东60°,海轮不改变航向继续前进,直到望见小岛在正北方向停下来做测量工作,还需航行()n mile.A.8 B.4 C.D.【分析】作出示意图,根据等腰三角形锐角三角函数的定义即可求出继续航行的路程.【解答】解:设海岛位置为A,海伦开始位置为B,航行8n mile后到达C处,航行到D处时,海岛在正北方向,由题意可知BC=8,∠ABC=15°,∠BCA=150°,∠ADC=90°,∠ACD=30°,∴∠BAC=15°,∴AC=BC=8,∴CD=AC•cos∠ACD=4.故选C.【点评】本题考查了解三角形的应用,属于基础题.7.(5分)设等差数列{a n}的公差d≠0,且a2=﹣d,若a k是a6与a k+6等比中项,则k=()A.5 B.6 C.9 D.36【分析】运用等差数列的通项公式,以及等比数列的中项的性质,化简整理解方程即可得到k的值.【解答】解:等差数列{a n}的公差d≠0,且a2=﹣d,可得a1=a2﹣d=﹣2d,则a n=a1+(n﹣1)d=(n﹣3)d,若a k是a6与a k+6的等比中项,即有a k2=a6a k+6,即为(k﹣3)2d2=3d•(k+3)d,由d不为0,可得k2﹣9k=0,解得k=9(0舍去).故选:C.【点评】本题考查等差数列的通项公式和等比数列中项的性质,考查化简整理的运算能力,属于基础题.8.(5分)若函数f(x)=的定义域是R,则实数a的取值范围是()A.(﹣2,2)B.(﹣∞,﹣2)∪(2,+∞)C.(﹣∞,﹣2]∪[2,+∞)D.[﹣2,2]【分析】要使函数有意义,则2﹣1≥0,解得即可.【解答】解:要使函数有意义,则2﹣1≥0,即x2+ax+1≥0,∴△=a2﹣4≤0,解得﹣2≤a≤2,故选:D【点评】本题考查了函数的定义域和不等式的解法,属于基础题.9.(5分)已知△ABC的内角A、B、C的对边分别为a、b、c.若a=bcosC+csinB,且△ABC的面积为1+.则b的最小值为()A.2 B.3 C.D.【分析】已知等式利用正弦定理化简,再利用诱导公式及两角和与差的正弦函数公式化简,求出tanB的值,确定出B的度数,利用三角形面积公式求出ac的值,利用余弦定理,基本不等式可求b的最小值.【解答】解:由正弦定理得到:sinA=sinCsinB+sinBcosC,∵在△ABC中,sinA=sin[π﹣(B+C)]=sin(B+C),∴sin(B+C)=sinBcosC+cosBsinC=sinCsinB+sinBcosC,∴cosBsinC=sinCsinB,∵C∈(0,π),sinC≠0,∴cosB=sinB,即tanB=1,∵B∈(0,π),∴B=,=acsinB=ac=1+,∵S△ABC∴ac=4+2,由余弦定理得到:b2=a2+c2﹣2accosB,即b2=a2+c2﹣ac≥2ac﹣ac=4,当且仅当a=c时取“=”,∴b的最小值为2.故选:A.【点评】此题考查了正弦、余弦定理,基本不等式以及三角形的面积公式,熟练掌握定理及公式是解本题的关键,属于中档题.10.(5分)设等差数列{a n}的前n项和为S n,S15>0,a8+a9<0,则使<0成立的最小自然数n的值为()A.15 B.16 C.17 D.18【分析】由于S15==15a8>0,a8+a9<0,可得a8>0,a9<0,进而得出.【解答】解:∵S15==15a8>0,a8+a9<0,∴a8>0,a9<0,∴S16==8(a8+a9)<0,则使<0成立的最小自然数n的值为16.故选:B.【点评】本题考查了等差数列的通项公式与求和公式及其性质、不等式的性质,考查了推理能力与计算能力,属于中档题.11.(5分)在平而直角坐标系中,不等式组表示的平面区域面积为π,若x,y满足上述约束条件,则z=的最小值为()A.﹣1 B.C.D.【分析】由约束条件作出可行域,由z==1+,而的几何意义为可行域内的动点与定点P(﹣3,2)连线的斜率.结合直线与圆的位置关系求得答案.【解答】解:∵不等式组(r为常数)表示的平面区域的面积为π,∴圆x2+y2=r2的面积为4π,则r=2.由约束条件作出可行域如图,由z==1+,而的几何意义为可行域内的动点与定点P(﹣3,2)连线的斜率.设过P的圆的切线的斜率为k,则切线方程为y﹣2=k(x+3),即kx﹣y+3k+2=0.由=2,解得k=0或k=﹣.∴z=的最小值为1﹣=﹣.故选:C.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.12.(5分)已知数列{a n}中,a1=2,若a n+1﹣a n=a n2,设T m=,若T m<2018,则正整数m的最大值为()A.2019 B.2018 C.2017 D.2016=a n2+a n=a n(a n+1)≥6,推导出=,从而【分析】a n+1,进而T m=m﹣(﹣)<m﹣,由此能求出正整数m的最大值.【解答】解:由a n﹣a n=a n2,得a n+1=a n2+a n=a n(a n+1)≥6,+1∴=,∴=﹣,∴++…+=(﹣)+(﹣)+…+(﹣)=﹣∈(0,),∵,∴T m==m﹣(﹣)=m﹣+<m﹣+=m﹣∵T m<2018,∴m﹣<2018,∴m<2018+∴正整数m的最大值为2018,故选:B【点评】本题考查了数列递推关系、放缩法,考查了推理能力与计算能力,属于中档题.二、填空题:本题共4个小题,每小题5分,共20分.x<0|2<x<3}B.{x|-2<x<3}C.{x|x>13.(5分)不等式组表示的平面区域内的整点坐标是(﹣1,1).【分析】先根据不等式组画出可行域,再验证哪些当横坐标、纵坐标为整数的点是否在可行域内.【解答】解:根据不等式组画出可行域如图:由图象知,可行域内的点的横坐标为整数时x=﹣1,纵坐标可能为﹣1或﹣2即可行域中的整点可能有(﹣1,1)、(﹣1,2),经验证点(﹣1,1)满足不等式组,(﹣1,2)不满足不等式组,∴可行域中的整点为(﹣1,1),故答案为:(﹣1,1),【点评】本题考查一元二次不等式表示的区域,要会画可行域,同时要注意边界直线是否能够取到,还要会判断点是否在可行域内(点的坐标满足不等式组时,点在可行域内).属简单题.14.(5分)已知△ABC的内角A,B,C的对边分别为a,b,c,若a=2且sinA+cosA=2,则角C的大小为.【分析】利用三角恒等变换求出A,再利用正弦定理得出C.【解答】解:∵sinA+cosA=2,即2sin(A+)=2,∵0<A<π,∴A+=,即A=,由正弦定理得:,即,∴sinC=,∴C=或C=(舍).故答案为:.【点评】本题考查了正弦定理,属于基础题.15.(5分)如图所示,在圆内接四边形ABCD 中,AB=6,BC=3,CD=4,AD=5,则四边形ABCD 的面积为 6.【分析】利用余弦定理可求BD 2=5﹣4cosA=25+24cosA ,解得cosA=,结合范围0<A <π,利用同角三角函数基本关系式可求sinA ,利用三角形面积公式即可计算得解.【解答】解:∵四边形ABCD 圆内接四边形, ∴∠A +∠C=π,∵连接BD ,由余弦定理可得BD 2=AB 2+AD 2﹣2AB•AD•cosA=36+25﹣2×6×5cosA=61﹣60cosA , 且BD 2=CB 2+CD 2﹣2CB•CD•cos (π﹣A ) =9+16+2×3×4cosA=25+24cosA , ∴61﹣60cosA=25+24cosA , ∴cosA= 又0<A <π, ∴sinA=.∴S 四边形ABCD =S △ABD +S △CBD =AB•AD•sinA +CD•CB•sin (π﹣A )=×6×5×+×3×4×=6,故答案为:6【点评】本题主要考查了余弦定理,同角三角函数基本关系式,三角形面积公式的应用,考查了转化思想和数形结合思想的应用,属于中档题.16.(5分)已知数列{a n}中,a1=l,S n为其前n项和,当n≥2时,2a n+S n2=a n S n成立,则S10=.S n=S n﹣1﹣S n,可得数列{}是首项为1,公差为的等【分析】由已知得S n﹣1差数列,从而能求【解答】解:∵2a n+S n2=a n S n,∴S n2=a n(S n﹣2),a n=S n﹣S n﹣1(n≥2),∴S n2=(S n﹣S n﹣1)(S n﹣2),S n=S n﹣1﹣S n,…①即S n﹣1•S n≠0,由题意S n﹣1•S n,得﹣=,将①式两边同除以S n﹣1∵a1=l,∴=1∴数列{}是首项为1,公差为的等差数列,∴=1+(n﹣1)=(n+1)∴S n=,∴S10=,故答案为:【点评】本题考查数列的递推公式和前n项和,属于中档题三、解答题:本大题共6个小题,共70分.解答应写出文字说明、证明过程或盐酸步骤.17.(10分)在△ABC中,角A,B,C所对的边分别为a,b,c,已知a2+c2﹣b2=﹣ac.(1)求B;(2)若,,求a,c.【分析】(1)直接利用关系式的恒等变换,转化为余弦定理的形式,进一步求出B的值.(2)利用正弦定理已知条件求出结果.【解答】解:(1)△ABC中,角A,B,C所对的边分别为a,b,c,已知a2+c2﹣b2=﹣ac.则:,由于:0<B<π,解得:B=.(2)由于,所以:a=2c,由及a2+c2﹣b2=﹣ac.得到:a2+c2+ac=7.解得:a=2,c=1.【点评】本题考查的知识要点:余弦定理的应用,正弦定理的应用.18.(12分)已知方程x2+2(a+2)x+a2﹣1=0.(1)当该方程有两个负根时,求实数a的取值范围;(2)当该方程有一个正根和一个负根时,求实数a的取值范围.【分析】(1)当方程有两个负根时,利用判别式△≥0和根与系数的关系求出a的取值范围;(2)根据方程有一个正根和一个负根时,对应二次函数满足f(0)<0,由此求出实数a的取值范围.【解答】解:方程x2+2(a+2)x+a2﹣1=0的判别式为△=4(a+2)2﹣4(a2﹣1)=16a+20,当△=16a+20≥0时,设方程x2+2(a+2)x+a2﹣1=0两个实数根为x1、x2,则x1+x2=﹣2(a+2),x1x2=a2﹣1;(1)∵方程x2+2(a+2)x+a2﹣1=0有两个负根,∴,解得,即a>1或﹣≤a<﹣1,∴实数a的取值范围是[﹣,﹣1)∪(1,+∞);(2)∵方程x2+2(a+2)x+a2﹣1=0有一个正根和一个负根,∴对应二次函数满足f(0)=a2﹣1<0,解得﹣1<a<1,∴实数a的取值范围是(﹣1,1).【点评】本题考查了一元二次方程根的分布情况以及判别式和根与系数的关系应用问题,是中档题.19.(12分)已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列{a n}的通项公式;(2){b n}为各项非零的等差数列,其前n项和S n=n2,求数列的前n项和T n.【分析】(1)设数列{a n}的公比为q,(q>0),由题意列方程组求得首项和公比,则数列{a n}的通项公式可求;(2)由{b n}的前n项和求得通项,代入,然后利用错位相减法求其前n项和T n.【解答】解:(1)设数列{a n}的公比为q,(q>0),由a1+a2=6,a1a2=a3,得,解得a1=q=2.∴;(2)当n=1时,b1=S1=1,当n≥2时,b n=S n﹣S n﹣1=n2﹣(n﹣1)2=2n﹣1,∴,∴,,∴=,∴.【点评】本题考查数列递推式,考查了错位相减法求数列的前n项和,是中档题.20.(12分)某市园林局将一块三角形地块ABC的一个角AMN建设为小游园,已知A=120°,AB,AC的长度均大于400米,现要在边界AM,AN处建设装饰墙,沿MN建设宽1.5米的健康步道.(1)若装饰墙AM,AN的总长度为400米,AM,AN 的长度分别为多少时,所围成的三角形地块AMN的面积最大?(2)若AM段装饰墙墙髙1米,AN段装饰墙墙髙1.5米,AM段装饰墙造价为每平方米150元,AN段装饰墙造价为每平方米100元,建造装饰墙用了90000元.若建设健康步道每100米需5000元,AM,AN的长度分别为多少时,所用费用最少?(1)设AM=x米,AN=y米,则x+y=400,△AMN的面积S=xysin120°=xy,【分析】利用基本不等式,可得结论;(2)由题意得,即x+y=600,要使竹篱笆用料最省,只需MN最短,利用余弦定理求出MN,即可得出结论.【解答】解:设AM=x米,AN=y米,则(1)x+y=400,A=120°,△AMN的面积S=xysin120°=xy≤,当且仅当x=y=200时取等号;(2)由题意得150x+1.5y•100=90000,即x+y=600,要使竹篱笆用料最省,只需MN最短,所以MN2=x2+y2﹣2xycos120°=x2+y2+xy=(x+y)2+y2﹣xy=360000﹣xy所以x=y=300时,MN有最小值300.∴AM=AN=300米时,所用费用最少为3×5000=15000元.【点评】本题考查利用数学知识解决实际问题,考查三角形面积的计算,余弦定理的运用,属于中档题.21.(12分)已知△ABC为锐角三角形,角A,B,C的对边分别为a,b,c且(b2+c2﹣a2)tanA=bc.(1)求角A的大小;(2)若a=,求2b﹣c的取值范围.【分析】(1)利用余弦定理列出关系式,代入已知等式变形求出sinA的值,即可确定出角A的大小;(2),由(1)可得A,由正弦定理可得,从而利用三角函数恒等变换的应用可得2b﹣c=2sin(B﹣),结合B的范围B,可得2b﹣c 取值范围.【解答】解:(1)由(b2+c2﹣a2)tanA=bc.及余弦定理b2+c2﹣a2=2bccosA,得sinA=∵△ABC为锐角三角形,∴A=.(2)由正弦定理可得,∴2b﹣c=4sinB﹣2sinC=4sinB﹣2sin()=3sinB﹣cosB=2sin(B﹣).∵△ABC为锐角三角形,∴,∴∴,2∴2b﹣c的取值范围为(0,3)【点评】本题主要考查了三角函数恒等变换的应用,考查了正弦定理,正弦函数的图象和性质在解三角形中的应用,属于中档题.22.(12分)设数列{a n}的前n项和为S n,且S n=4﹣a n﹣.(1)令b n=2n﹣1•a n,证明数列{b n}为等差数列,并求{b n}的通项公式;(2)是否存在n∈N*,使得不等式成立,若存在,求出λ的取值范围,若不存在,请说明理由.【分析】(1)由已知可得2a n=a n﹣1+,故2n﹣1•a n=2n﹣2•a n﹣1+1,进而可得数列{b n}为等差数列,并得到{b n}的通项公式;(2)存在n=1,使得不等式成立,且9≤λ≤10,利用对勾函数和反比例函数的图象性质,可得答案.【解答】解:(1)∵数列{a n}的前n项和为S n,且S n=4﹣a n﹣.∴当n=1时,a1=S1=4﹣a1﹣,即a1=1,=4﹣a n﹣1﹣.当n≥2时,S n﹣1则a n=S n﹣S n﹣1=a n﹣1﹣a n﹣,即2a n=a n﹣1+,故2n﹣1•a n=2n﹣2•a n﹣1+1,即2n﹣1•a n﹣2n﹣2•a n﹣1=1,∵b n=2n﹣1•a n,即{b n}是以1为首项,以1为公差的等差数列;即b n=n;(2)由(1)知:⇔,根据对勾函数的性质,可得:在n=3时取最小值,由反比例函数的性质,可得:在n=1时取最大值10;当n=1时,9≤λ≤10;当n=2时,6≤λ≤5,不存在满足条件的λ值;当n=3时,≤λ≤,不存在满足条件的λ值;当n≥4时,不存在满足条件的λ值;综上可得:存在n=1,使不等式成立,9≤λ≤10.【点评】本题考查的知识点是数列与不等式及函数的综合应用,难度中档.。

辽宁省实验中学2017-2018学年高二上学期期中考试数学试卷

辽宁省实验中学2017-2018学年高二上学期期中考试数学试卷

辽宁省实验中学2016-2017学年度上学期期中阶段测试高二数学试卷考试时间:120分钟 试题满分:150分命题人:刘铭 王志良1.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,将答案写在答题卡上,写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

第I 卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项 是符合题目要求的。

(1)下列说法正确的是 ( )(A )一个命题的逆命题为真,则它的否命题为假 (B )一个命题的逆命题为真,则它的逆否命题为真 (C )一个命题的否命题为真,则它的逆命题为真 (D )一个命题的否命题为真,则它的逆否命题为真(2)如果命题“()p q ⌝∨”是假命题,则正确的是 ( )(A ),p q 均为真命题 (B ),p q 中至少有一个为真命题 (C ),p q 均为假命题 (D ),p q 中至多有一个为真命题(3)命题“p :x ∃∈R ,使得2220x x -+≤”的否定是 ( )(A )x ∀∈R ,使得2220x x -+≤ (B )x ∀∈R ,使得2220x x -+< (C )x ∀∈R ,使得2220x x -+≥ (D )x ∀∈R ,使得2220x x -+>(4)“数列{}n a (*∈N n )满足1n n a a q +=⋅(其中q 为常数)”是“数列{}n a (*∈N n )是等比数列”的 ( ) (A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分又不必要条件 (5)数列}{n a 中,11=a ,22=a ,且数列}11{+n a 是等差数列,则3a 等于 ( ) (A )31(B )3 (C )15(D ) 5(6)已知数列9,,,121a a 是等差数列,数列9,,,,1321b b b 是等比数列,则212a ab +等于( )(A )107 (B )57 (C )103 (D )21 (7)下列命题中,正确命题的个数是 ( )①22bc ac b a >⇒>; ②22bc ac b a ≥⇒≥; ③bc ac cb c a >⇒>; ④bc ac c bc a ≥⇒≥;⑤0>⇒>>c bc ac b a 且; ⑥0≥⇒≥≥c bc ac b a 且; (A )2 (B )3 (C )4 (D )5 (8)函数421y x x =+-(12x >)的最小值是 ( )(A )12 (B )12 (C )12 (D )12(9)已知,+∈R a b ,若14=+b a ,则ba 11+的最小值是 ( ) (A )6 (B )3 (C )12 (D )9(10)已知平面区域D 由以)1,3(),3,5(),2,1(C B A 为顶点的三角形内部和边界组成.若在区域D 上有无穷多个点),(y x 可使目标函数z x my =+取得最大值,则m = ( ) (A )1- (B )2- (C )2 (D )4(11)已知,,+∈R a b c ,若ca bc b a b a c +<+<+,则c b a ,,的大小关系是 ( ) (A )c b a >> (B )a b c >> (C )c a b >> (D )b a c >>(12)某百货公司为了吸引顾客,采取“买满一百送五十,连环送”的酬宾方式,即顾客在店内消费满100元(这100元可以是现金,也可以是奖励券,或二者合计)就送50元奖励券;满200元,就送100元奖励券;以此类推. 一位顾客在此商店购物,他所获得的实际优惠 ( ) (A )一定高于%50(B )一定低于%50(C )可以达到%50(D )可以超过%50【说明】实际优惠按%1001⨯+-)获得的奖励券实际使用的现金实际使用的现金(计算.第Ⅱ卷二.填空题:本大题共4小题,每小题5分。

高二数学上学期期中模拟卷(空间向量与立体几何+直线与圆的方程+椭圆)(解析版

高二数学上学期期中模拟卷(空间向量与立体几何+直线与圆的方程+椭圆)(解析版

2023-2024学年高二数学上学期期中考试一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.“lg 0m >”是“方程()2211m x y m -+=-表示椭圆”的()A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件【答案】B【分析】根据充分条件和必要条件的定义判断即可.【详解】lg 0m >等价于1m >.若2m =,则方程()2211m x y m -+=-表示单位圆.若方程()2211m x y m -+=-表示椭圆,则椭圆方程可化为2211y x m +=-,则1m >且2m ≠.故“lg 0m >”是“方程()2211m x y m -+=-表示椭圆”的必要不充分条件.故选:B.2.直线()()()2212:110,:120l a x ay l a x a a y -+-=-+++=,若12//l l ,则实数a 的值不可能是()A .1-B .0C .1D .2-【答案】A【分析】根据平行列式,求得a 的值,进而确定正确答案.【详解】由于12//l l ,所以()()()2211a a a a a -⨯+=⨯-,()()()21110a a a a a +---=,()()()()()()22211112120a a a a a a a a a a ⎡⎤-+-=-+=-+=⎣⎦,解得0a =或1a =或2a =-.当0a =时,12:10,:20l x l x --=-+=,即12:1,:2l x l x =-=,两直线平行,符合题意.当1a =时,12:10,:220l y l y -=+=,即12:1,:1l y l y ==-,两直线平行,符合题意.当2a =-时,12:3210,:3220l x y l x y --=-++=,即12:3210,:3220l x y l x y --=--=,两直线平行,符合题意.所以a 的值不可能是1-.故选:A3.如图,在四面体OABC 中,,,OA a OB b OC c ===.点M 在OA 上,且2,OM MA N =为BC 中点,则MN等于()A .121232a b c-+ B .211322a b c-++C .111222a b c+- D .221332a b c+-【答案】B【分析】连接ON ,利用空间向量基本定理可得答案.【详解】连接()12211,23322ON MN ON OM OB OC OA a b c =-=+-=-++.故选:B.4.如图,已知正方体1111ABCD A B C D -的棱长为4,P 是1AA 的中点,若1AM AB AA λμ=+,[]0,1λ∈,[]0,1μ∈,若1D M CP ⊥,则BCM 面积的最小值为()A .4B .8C .855D .82【答案】C【分析】由题意知点M 在平面11ABB A 内,建立如图空间直角坐标系A xyz -,设(,0,)M a b ,根据空间向量的数量积的坐标表示可得24b a =-,取AB 的中点N ,连接1B N ,则点M 的轨迹为线段1B N ,过点B 作1BQ B N ⊥,结合线面垂直的性质即可求解.【详解】由1,[0,1]AM AB AA λμλμ=+∈、,知点M 在平面11ABB A 内,以1,,AB AD AA 所在直线为坐标轴建立如图空间直角坐标系A xyz -,则1(0,0,2),(4,4,0),(0,4,4)P C D ,设(,0,)M a b ,则1(,4,4),(4,4,2)D M a b CP =--=-- ,由1D M CP ⊥,得1416280D M CP a b ⋅=-++-=,即24b a =-,取AB 的中点N ,连接1B N ,则点M 的轨迹为线段1B N ,过点B 作1BQ B N ⊥,则4245525BQ ⨯==,又BC ⊥平面11ABB A ,故BC BQ ⊥,所以BCM S △的最小值为145854255QBC S =⨯⨯= .故选:C.5.在平面直角坐标系中,设军营所在区域为221x y +≤,将军从点()2,0A 出发,河岸线所在直线方程为4x y +=,假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程()A .101-B .251-C .25D .10【答案】B【分析】根据题意作出图形,然后求出()2,0A 关于直线4x y +=的对称点A ',进而根据圆的性质求出A '到圆上的点的最短距离即可.【详解】若军营所在区域为22:1x y Ω+≤,圆:221x y +=的圆心为原点,半径为1,作图如下:设将军饮马点为P ,到达营区点为B ,设(),A x y '为A 关于直线4x y +=的对称点,因为()2,0A ,所以线段AA '的中点为2,22x y +⎛⎫⎪⎝⎭,则2422x y ++=即60x y +-=,又12AA yk x '==-,联立解得:42x y =⎧⎨=⎩,即()4,2A ',所以总路程||||||||PB PA PB PA '+=+,要使得总路程最短,只需要||||PB PA '+最短,即点A '到圆22=1x y +上的点的最短距离,即为11OA OB OA ''-=-=.故选:B.6.在等腰直角三角形ABC 中,4AB AC ==,点P 是边AB 上异于,A B 的一点,光线从点P 出发,经,BC CA 发射后又回到原点P (如图).若光线QR 经过ABC 的重心,则QR 的长度等于()AB.9C.9D.9【答案】B【分析】建立平面直角坐标系,得出ABC 各顶点以及重心的坐标,设(),0P a ,04a <<.求出直线BC 的方程,根据光的反射原理得出点P 关于BC 以及y 轴的对称点的坐标,表示出RQ 的方程,代入重心坐标,求出a 的值,得出RQ 的方程.进而求出,R Q 的坐标,即可根据两点间的距离公式得出答案.【详解】如图,建立平面直角坐标系,则()0,0A ,()4,0B ,()0,4C ,ABC 的重心坐标为44,33⎛⎫⎪⎝⎭,BC 方程为40x y +-=,设(),0P a ,04a <<.根据光的反射原理以及已知可知,点P 关于BC 的对称点1P 在QR 的反向延长线上,点P 关于y 轴的对称点2P 在QR 的延长线上,即12,,,P P Q R 四点共线.由已知可得点()111,P x y 满足()11110422011a x y y x a++⎧+=⎪⎪⎨-⎪⨯-=--⎪⎩,解得1144x y a =⎧⎨=-⎩,所以()14,4P a -.易知()2,0P a -.因为12,,,P P Q R 四点共线,所以有直线QR 的斜率为()40444a ak a a ---==--+,所以,直线QR 的方程为()44ay x a a-=++.由于直线QR 过重心44,33⎛⎫⎪⎝⎭,所以有444343a a a -⎛⎫=+ ⎪+⎝⎭,整理可得2340a a -=,解得43a =或0a =(舍去),所以直线QR 的方程为44434343y x -⎛⎫=+⎪⎝⎭+,整理可得3640x y -+=.所以,R 点坐标为20,3⎛⎫⎪⎝⎭.联立QR 与BC 的方程364040x y x y -+=⎧⎨+-=⎩,解得209169x y ⎧=⎪⎪⎨⎪=⎪⎩,即2016,99Q ⎛⎫ ⎪⎝⎭,所以,QR ==.故选:B.7.正四面体的棱长为3,点M ,N 是它内切球球面上的两点,P 为正四面体表面上的动点,当线段MN 最长时,PM PN ⋅的最大值为()A .2B .94C .3D .52【答案】C【分析】设四面体ABCD 的内切球球心为O ,G 为BCD △的中心,E 为CD 的中点,连接,AG BE ,则O 在AG 上,连接BO ,根据题意求出内切球的半径,当MN 为内切球的直径时,MN 最长,再化简()()PM PN PO OM PO ON ⋅=+⋅+可求得其最大值.【详解】设正四面体ABCD 的内切球球心为O ,G 为BCD △的中心,E 为CD 的中点,连接,AG BE ,则O 在AG 上,连接BO ,则AO BO =.因为正四面体的棱长为3,所以22333BG BE ==所以AG ===r ,则()222AG r r BG -=+,)22rr =+,解得4r =,当MN 为内切球的直径时MN 最长,此时0+= OM ON,238OM ON ⋅=-=-⎝⎭ ,()()PM PN PO OM PO ON⋅=+⋅+()2238PO PO OM ON OM ON PO =+⋅++⋅=- ,因为P 为正四面体表面上的动点,所以当P 为正四体的顶点时,PO 最长,POPM PN ⋅的最大值为23348⎛⎫-= ⎪ ⎪⎝⎭.故选:C8.已知M 为椭圆:()222210x y a b a b+=>>上一点,1F ,2F 为左右焦点,设12MF F α∠=,21MF F β∠=,若sin sin cos 1sin cos sin 3ααββαβ-=+,则离心率e =()A .12B .13C .12D .23【答案】C【分析】设12||,||MF m MF n ==,12||2F F c =,结合三角恒等变换以及正余弦定理将sin sin cos 1sin cos sin 3ααββαβ-=+化为22243224c n m n m m c cm+--⋅=+,继而推出,,a b c 的关系,求得答案.【详解】设12||,||MF m MF n ==,12||2F F c =,则2m n a +=,由sin sin cos 1sin cos sin 3ααββαβ-=+得3sin 3sin cos sin cos sin ααββαβ-=+,即3sin 2sin cos sin sin cos cos sin sin sin()ααββαβαββαβ-=++=++,在12MF F △中,由正弦定理得1222sin sin sin sin()n m c cF MF αβαβ===∠+,故32cos 2n m m c β-=+,又2224cos 4c n mcmβ+-=,故22243224c n m n m m c cm+--⋅=+,即282(3)()()0c c m n m n n m +-++-=,即[4()][2()]0c m n c n m -+--=,即4c m n =+或2c n m =-,结合椭圆定义可知2m n c +>且||2m c -<,故4c m n =+,即142,2c c a e a =∴==,故选:C【点睛】关键点睛:本题是椭圆的离心率的求解问题,即求,,a b c 之间的关系,解答的关键是对于已知等式的化简,即利用三角恒等变换结合正余弦定理将sin sin cos 1sin cos sin 3ααββαβ-=+转化为三角形边之间的关系式,进而化简可得,,a b c 的关系,即可求解答案.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.直线20x y ++=分别与x 轴,y 轴交于,A B 两点,点P 在圆()2222x y -+=上,则ABP 面积可能是()A .1B .3C .4D .7【答案】BC【分析】根据给定条件,求出线段AB 长,点P 到直线AB 的距离范围,再利用三角形面积公式求解即得.【详解】依题意,点(2,0),(0,2)A B --,则||AB =圆()2222x y -+=的圆心(2,0)C ,半径2r =,则点C 到直线AB 的距离4222r =>,因此点P 到直线AB 的距离[2,32]d ∈,ABP 的面积1||2[2,6]2S AB d d =⋅=∈,显然BC 满足,AD 不满足.故选:BC10.已知圆2221:2100C x y mx y m ++-+=,圆222:450C x y y ++-=,则下列说法正确的是()A .若点()1,1在圆1C 的内部,则24m -<<B .若2m =,则圆12,C C 的公共弦所在的直线方程是41490x y -+=C .若圆12,C C 外切,则15m =±D .过点()3,2作圆2C 的切线l ,则l 的方程是3x =或724270x y -+=【答案】BCD【分析】根据点在圆的内部解不等式2112100m m ++-<+即可判断A 错误;将两圆方程相减可得公共弦所在的直线方程可知B 正确;利用圆与圆外切,由圆心距和两半径之和相等即可知C 正确;对直线l 的斜率是否存在进行分类讨论,由点到直线距离公式即可得D 正确.【详解】对于A ,由点(1,1)在圆1C 的内部,得2112100m m ++-<+,解得42m -<<,故A 错误;对于B ,若2m =,则圆221:41040C x y x y ++-+=,将两圆方程相减可得公共弦所在的直线方程是41490x y -+=,故B 正确;对于C ,圆1C 的标准方程为22()(5)25x m y ++-=,圆心为()1,5C m -,半径15r =,圆2C 的标准方程为22(2)9x y ++=,圆心为()20,2C -,半径23r =,若圆12,C C 外切,则1212C C r r =+,即24953m +=+,解得15m =±,故C 正确;对于D ,当l 的斜率不存在时,l 的方程是3x =,圆心2C 到l 的距离23d r ==,满足要求,当l 的斜率存在时,设l 的方程为()32y k x =-+,圆心2C 到l 的距离224331k d r k -===+,解得724k =,所以l 的方程是724270x y -+=,故D 正确.故选:BCD.11.如图,正方体1111ABCD A B C D -的棱长为2,E 为11A B 的中点,P 为棱BC 上的动点(包含端点),则下列结论正确的是()A .存在点P ,使11D P AC ⊥B .存在点P ,使1PE D E =C .四面体11EPCD 的体积为定值83D .二面角11P DE C --的余弦值的取值范围是23⎡⎢⎣⎦【答案】AB【分析】利用向量法,根据线面垂直,两点间的距离,几何体的体积,二面角等知识对选项进行分析,从而确定正确答案.【详解】建立如图所示空间直角坐标系,设()02CP a a =≤≤,则(),2,0P a ,()2,1,2E ,()()12,0,0,0,2,2A C ,()10,0,2D ,则()12,2,2AC =- ,()1,2,2D P a =-,112442D AC a a P ⋅=-+-=-,当0a =时,即P 点与C 点重合时,11D P AC ⊥,故A 正确.由1PE D E =2a =,此时P 点与B 点重合,故B 正确.111111111422223323E PC D P C D E C D E V V S --==⨯⋅=⨯⨯⨯⨯= 为定值,故C 错误.又()12,1,0D E = ,()1,2,2D P a =-,设平面1D EP 的法向量()1,,n x y z = ,由11112002200D E n x y D P n ax y z ⎧⋅=+==⎪⎨⋅=+-==⎪⎩,令1x =则=2y -,22a z =-,11,2,22a n ⎛⎫∴=-- ⎪⎝⎭ ,又平面11D EC 的法向量()20,0,2n =,12cos ,22n an ∴=-又02a ≤≤,122cos ,3n n ⎤∴∈⎣⎦,故D 错误.故选:AB12.已知椭圆222:12x y C m+=的焦点分别为()10,2F ,()20,2F -,设直线l 与椭圆C 交于M ,N 两点,且点11,22P ⎛⎫ ⎪⎝⎭为线段MN 的中点,则下列说法正确的是()A .26m =B.椭圆C C .直线l 的方程为320x y +-=D .2F MN的周长为【答案】AC【分析】先由题意求出2m 即可判断A ;再根据离心率公式即可判断B ;由点差法可以求出直线l 的斜率,由直线的点斜式化简即可判断C ;由焦点三角形的周长公式即可判断D.【详解】如图所示:根据题意,因为焦点在y 轴上,所以224m -=,则26m =,故选项A 正确;椭圆C的离心率为2636c e a ===,故选项B 不正确;不妨设()()1122,,,M x y N x y ,则2211126x y +=,2222126x y +=,两式相减得()()()()1212121226x x x x y y y y +-+-=-,变形得121212123y y x x x x y y -+=-⨯-+,又注意到点11,22P ⎛⎫⎪⎝⎭为线段MN 的中点,所以121212121221122P P x x x x x y y y y y ++====++,所以直线l 的斜率为121212123313l y y x k xx x y y ⨯=-+⨯--=-+=-=,所以直线l 的方程为11322y x ⎛⎫-=-- ⎪⎝⎭,即320x y +-=,故选项C 正确;因为直线l 过1F ,所以2F MN 的周长为()()22212122446F M F N MN F M F M F N F N a a a ++=+++=+==,故选项D 不正确.故选:AC .三、填空题:本题共4小题,每小题5分,共20分.13.在三棱锥-P ABC 中,PC ⊥底面,90,4,45ABC BAC AB AC PBC ∠∠==== ,则点C 到平面PAB 的距离是.【答案】463/463【分析】建立空间直角坐标系,设平面PAB 的一个法向量为(),,m x y z =,由点C 到平面PAB 的距离为PC m d m⋅=求解.【详解】解:建立如图所示的空间直角坐标系,则()()()()0,0,0,4,0,0,0,4,0,0,4,42A B C P ,所以()()()0,4,42,4,0,0,0,0,42AP AB PC ===-.设平面PAB 的一个法向量为(),,m x y z =,则0,0,m AP m AB ⎧⋅=⎪⎨⋅=⎪⎩ 即4420,40,y z x ⎧+=⎪⎨=⎪⎩令y 1z =-,所以()1m =-,所以点C 到平面PAB的距离为PC m d m⋅==14.若非零实数对(),a b满足关系式1771a b a b ++=-+=,则a b=.【答案】34-或43【分析】化简转化为点到直线的距离,利用直线的位置关系即可求解.【详解】由1771a b a b ++=-+=5==,()1,1A 到直线10ax by ++=的距离1d,()7,7B -到直线10ax by ++=的距离2d ,5==,所以125d d ==.因为10AB =,1210d d +=,所以当点A ,B 在直线10ax by ++=同侧时,直线AB 与直线10ax by ++=平行,当点A ,B 在直线10ax by ++=异侧时,A ,B 关于直线10ax by ++=对称,因为直线AB 的斜率174173k +==--,直线10ax by ++=的斜率为ab-,所以43a b -=-或413a b ⎛⎫⎛⎫-⨯-=- ⎪ ⎪⎝⎭⎝⎭,所以43a b =或34ab=-.故答案为:34-或43.15.过椭圆2222:1(0)x y C a b a b+=>>的右焦点F且与长轴垂直的弦的长为(2,1)P 且斜率为1-的直线与C 相交于,A B 两点,若P 恰好是AB 的中点,则椭圆C 上一点M 到F 的距离的最大值为.【答案】3/3+【分析】利用点差法可求基本量的关系,再结合通径的长可求基本量,故可求焦半径的最大值.我们也可以联立直线方程和椭圆方程,从而可用基本量表示中点,从而得到基本量的一个关系式,同样结合通径长可取基本量,故可求焦半径的最大值.【详解】法一:将x c =代入椭圆C 的方程得2b y a =±,所以22ba=,设()11,A x y ,()22,B x y ,则2222112222221,1x y x y a b a b+=+=,两式相减得()()()()12121212220x x x x y y y y a b -+-++=,又124x x +=,1212122,1y y y y x x -+==--,所以22210a b-=②,解①②得3a b ==,所以3c =,所以C 上的点M 到焦点F的距离的最大值为3a c +=.法二:将x c =代入椭圆C 的方程得2by a=±,所以22b a =,直线AB 的方程是1(2)y x -=--,即3y x =-,代入椭圆的方程并消去y 整理得()2222222690a b x a x a a b +-+-=,则()()()()22222222222490694a a b a a b a b a b ∆=--++-->=,设()11,A x y ,()22,B x y ,则2122264a x x a b+==+,即222a b =②,解①②得3a b ==,满足0∆>,所以3c =,所以C 上的点M 到焦点F的距离的最大值为3a c +=.故答案为:3.16.在平面直角坐标系xOy 中,已知()1,1A --,圆22:1O x y +=,在直线AO 上存在异于A 的定点Q ,使得对圆O 上任意一点P ,都有(PA PQλλ=为常数),则Q 的坐标为.【答案】11,22⎛⎫-- ⎪⎝⎭【分析】设00(,)Q x y ,(,)P x yλ=对圆O 上任意点(,)P x y 恒成立,从而得到202202(22)()320x x y x λλλ+++--=对任意[x y +∈恒成立,从而得到202220220320x x λλλ⎧+=⎨--=⎩,即可求出λ与0x ,从而得解.【详解】设00(,)Q x y ,(,)P x y ,则PA =PQ =若在直线AO 上存在异于A 的定点Q ,使得对圆O 上任意一点P ,都有(PA PQλλ=为常数),λ=对圆O 上任意点(,)P x y 恒成立,即22222200(1)(1)()()x y x x y y λλ+++=-+-,整理得222222022000(1)()(22)(22)2()0x y x x y y x y λλλλ-++++++-+=,因为点Q 在直线AO 上,所以00x y =,由于P 在圆O 上,所以221x y +=,故202202(22)()320x x y x λλλ+++--=恒成立,其中点(),P x y 在圆22:1O x y +=上,令x y m +=,则0x y m +-=,所以直线0x y m +-=与圆有交点,所以圆心到直线的距离小于等于半径,即1d ≤,解得m ≤≤[x y +∈,所以202220220320x x λλλ⎧+=⎨--=⎩,显然0λ≠,所以021x λ=-,故22230λλ--=,因为0λ>,解得λ=1λ=.当1λ=时,(1,1)Q --,此时,Q A 重合,舍去.当λ=11,22Q ⎛⎫-- ⎪⎝⎭,综上,存在满足条件的定点11,22Q ⎛⎫-- ⎪⎝⎭,此时λ=故答案为:11,22⎛⎫-- ⎪⎝⎭【点睛】关键点睛:本题解决的关键是利用题设条件,结合221x y +=与00x y =化简得202202(22)()320x x y x λλλ+++--=恒成立,从而得到关于0,x λ的方程组,由此得解.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)如图,在四棱锥P ABCD -中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD DC =,E ,F 分别是AB ,PB 的中点.(1)求证:EF CD ⊥.(2)已知点G 在平面PAD 内,且GF ⊥平面PCB ,试确定点G 的位置.【答案】(1)证明见解析(2)点G 为AD 的中点【分析】(1)以D 为坐标原点,DA ,DC ,DP 的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系,设AD a =,再根据0EF DC ⋅= 即可证明.(2)设(,0,)G x z ,根据GF ⊥平面PCB 得到0FG CB ⋅= ,0FG CP ⋅= ,即可得到答案.【详解】(1)以D 为坐标原点,DA ,DC ,DP 的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系(如图),设AD a =,则(0,0,0)D ,(,,0)B a a ,(0,,0)C a ,,,02a E a ⎛⎫ ⎪⎝⎭,(0,0,)P a ,,,222a a a F ⎛⎫ ⎪⎝⎭,所以,0,22a a EF ⎛⎫=- ⎪⎝⎭ ,(0),,0DC a = ,所以,0,(0,,0)022a a EF DC a ⎛⎫⋅=-⋅= ⎪⎝⎭ ,所以EF CD ⊥.(2)因为∈G 平面PAD ,设(,0,)G x z ,所以,,222a a a FG x z ⎛⎫=--- ⎪⎝⎭ .由(1),知(,0,0)CB a = ,(0,),CP a a =- .因为GF ⊥平面PCB ,所以,,(,0,0)()02222a a a a FG CB x z a a x ⎛⎫⋅=---⋅=-= ⎪⎝⎭ ,2,,(0,,)022222a a a a a FG CP x z a a a z ⎛⎫⎛⎫⋅=---⋅-=+-= ⎪ ⎪⎝⎭⎝⎭ ,所以2a x =,0z =,所以点G 的坐标为,0,02a ⎛⎫ ⎪⎝⎭,即点G 为AD 的中点.18.(12分)已知直线:1l y kx k =+-.(1)求证:直线l 过定点;(2)若当44x -<<时,直线l 上的点都在x 轴下方,求k 的取值范围;(3)若直线l 与x 轴、y 轴形成的三角形面积为1,求直线l 的方程.【答案】(1)证明见解析(2)11[,]35-(3)(21y x =+++(21y x =+【分析】(1)由直线方程观察得定点坐标即证;(2)由4x =±时对应点的纵坐标不小于0可得;(3)求出直线与坐标轴的交点坐标,再计算三角形面积从而得直线的斜率,即得直线方程.【详解】(1)由1y kx k =+-,得1(1)y k x +=+.由直线方程的点斜式可知,直线l 过定点(1,1)--;(2)若当44x -<<时,直线l 上的点都在x 轴下方,则410,410,k k k k -+-≤⎧⎨+-≤⎩解得1135k -≤≤,所以k 的取值范围是11[,35-;(3)设直线l 与x 轴的交点为A ,与y 轴的交点为B ,坐标原点为O .当0x =时,得||||1|OB k =-,当0y =时,得|1|||||k OA k -=,所以11|1||||||1|22||AOB k S OA OB k k -==-⨯△,即211|1|12||k k -⨯=,解得2k =2,所以直线l 的方程为(21y x =+(21y x =+19.(12分)如图所示,第九届亚洲机器人锦标赛VEX 中国选拔赛永州赛区中,主办方设计了一个矩形坐标场地ABCD (包含边界和内部,A 为坐标原点),AD 10米,在AB 边上距离A 点4米的F 处放置一只电子狗,在距离A 点2米的E v ,电子狗行走速度为2v ,若电子狗和机器人在场地内沿直线方向同时到达场地内某点M ,那么电子狗将被机器人捕获,点M 叫成功点.(1)求在这个矩形场地内成功点M 的轨迹方程;(2)若P 为矩形场地AD 边上的一点,若电子狗在线段FP 上都能逃脱,问:P 点应在何处?【答案】(1)2241640393x y x ⎛⎫⎛⎫+-=≤≤ ⎪ ⎪⎝⎭⎝⎭(2)P 的横坐标范围为⎤⎥⎝⎦即可逃脱.【分析】(1)分别以,AD AB 为,x y 轴,建立平面直角坐标系,由题意2MF ME v v =,利用两点间的距离公式可得答案.(2)利用三角函数得到极端情况时P 点的横坐标即可得到答案.【详解】(1)分别以AD ,AB 为x ,y 轴,建立平面直角坐标系,则()0,2E ,()0,4F ,设成功点(),M x y ,可得2MF ME v v ==化简得2241639x y ⎛⎫+-= ⎪⎝⎭,因为点M 需在矩形场地内,所以403x ≤≤,故所求轨迹方程为2241640393x y x ⎛⎫⎛⎫+-=≤≤ ⎪ ⎪⎝⎭⎝⎭.(2)当线段FP 与(1)中圆相切时,则413sin 4243AFP ∠==-,所以30AFP ∠=︒,所以4tan 30AP =︒=,若电子狗在线段FP 上都能逃脱,P点的横坐标取值范围是⎤⎥⎝⎦.20.(12分).如图,//AD BC 且2,,//AD BC AD CD EG AD =⊥且,//EG AD CD FG =且2,CD FG DG =⊥平面,2ABCD DA DC DG ===.(1)若M 为CF 的中点,N 为EG 的中点,求证://MN 平面CDE ;(2)求平面BCE 和平面BCF 夹角的正弦值;(3)若点P 在线段DG 上,且直线与平面ADGE 所成的角为45︒,求点P 到平面CDE 的距离.【答案】(1)证明见解析;(2)10;(3)2.【分析】(1)取GD 中点为Q ,连接NQ ,MQ ,通过证明平面//MQN 平面CDE ,可得//MN 平面CDE ;(2)如图,建立以D 为原点的空间直角坐标系,分别求出平面BCE 和平面BCF 夹角的法向量,即可得答案;(3)由(2),设()0,0,P t ,直线BP 与平面ADGE 所成的角为45︒可得点P 坐标,可得点P 到平面CDE 的距离.【详解】(1)取GD 中点为Q ,连接NQ ,MQ .因M 为CF 的中点,N 为EG 的中点,Q 为GD 中点,由三角形及梯形中位线定理,可得,NQ ED MQ DC .又注意到,,ED DC ⊂平面EDC ,,NQ MQ ⊄平面EDC ,,NQ MQ ⊂平面MNQ ,∩NQ MQ Q =,则平面//MQN 平面CDE .又MN ⊂平面MQN ,则//MN 平面CDE .(2)因DG ⊥平面ABCD ,,⊂DA DC 平面ABCD ,则,DG DC DG DA ⊥⊥,又AD DC ⊥,则如图建立以D 为原点的空间坐标系.则()()()()()()()000200020002120202012,,,,,,,,,,,,,,,,,,,,D A C G B E F .()()()100122112,,,,,,,,BC BE BF =-=-=--.设平面BCE 和平面BCF 的法向量分别为()()11112222,,,,,n x y z n x y z == .则1111110220BC n x BE n x y z ⎧⋅=-=⎪⎨⋅=-+=⎪⎩ ,取()10,1,1n = ;222222020BC n x BF n x y z ⎧⋅=-=⎪⎨⋅=--+=⎪⎩ ,取()20,2,1n = .设平面BCE 和平面BCF 夹角为θ,则1210cos cos ,θn n === .则平面BCE 和平面BCF夹角的正弦值为sin θ=(3)由(2),设()0,0,P t ,其中[]0,2t ∈,则()12,,BP t =-- 又由题可得,平面ADGE 的一个法向量可取()30,1,0n = .结合直线BP 与平面ADGE 所成的角为45︒,则32cos ,n BP t ==⇒=则(DP = ,()()020202,,,,,DC DE == .设平面CDE 法向量为()4444,,n x y z = ,则4444420220DC n y DE n x z ⎧⋅==⎪⎨⋅=+=⎪⎩ .取()4101,,n =- ,则点P 到平面CDE的距离442n DP d n ⋅=== .21.(12分)已知在平面直角坐标系xOy 中,已知A 、B 是圆O :228x y +=上的两个动点,P 是弦AB 的中点,且90AOB ∠=︒;(1)求点P 的轨迹方程;(2)点P 轨迹记为曲线τ,若C ,D 是曲线τ与x 轴的交点,E 为直线l :4x =上的动点,直线CE ,DE 与曲线τ的另一个交点分别为M ,N ,判断直线MN 是否过定点,若是,求出定点的坐标,若不是,请说明理由.【答案】(1)224x y +=(2)过定点()1,0Q .【分析】(1)设点(),P x y 为曲线上任意一点,根据几何关系得到2OP =,得到轨迹方程.(2)设()4,E t ()0t ≠,分别计算CE ,DE 的直线方程,联立圆方程得到交点坐标,考虑直线MN 斜率存在和不存在两种情况,计算直线方程得到答案.【详解】(1)设点(),P x y 为曲线上任意一点,P 是弦AB 的中点,且90AOB ∠=︒,圆O :228x y +=的半径r =122OP AB ===,故点P 的轨迹方程为:224x y +=.(2)不妨取()2,0C -,()2,0D ,设()4,E t ()0t ≠,则直线CE 的方程为()26t y x =+,直线DE 的方程为()22t y x =-,联立()22264t y x x y ⎧=+⎪⎨⎪+=⎩,得2222364440363636t t t x x +++-=,则224236M t x t -=-+,即2272236M t x t -=+,()2242636M M t t y x t =+=+,所以22272224,3636t t M t t ⎛⎫- ⎪++⎝⎭.联立()22224t y x x y ⎧=-⎪⎨⎪+=⎩,得22224404t x t x t +-+-=,则22424N t x t +=+,即22284N t x t -=+,()28224N N t t y x t -=-=+,所以222288,44t t N t t ⎛⎫-- ⎪++⎝⎭.①当t ≠±MN 的斜率222222224883647222812364MNt t t t t k t t t t t --++==----++,则直线MN 的方程为222288284124t t t y x t t t ⎛⎫---=- ⎪+-+⎝⎭,即()28112t y x t =--,直线过定点()1,0,所以()1,0Q ;②当t =±MN 垂直于x 轴,方程为1x =,也过定点()1,0Q .综上所述:直线MN 恒过定点()1,0Q .【点睛】关键点睛:本题考查了圆的轨迹方程,定点问题,意在考查学生的计算能力,转化能力和综合应用能力,其中设出E 的坐标,分别计算,M N 坐标再计算直线方程是解题的关键.22.(12分)如图所示,已知椭圆2219x y +=中()3,0A ,()0,1B ;P 在椭圆上且为第一象限内的点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N(1)求证:①||||AN BM ⋅为定值;②PMN 与PAB 面积之差为定值;(2)求MON △面积的最小值.【答案】(1)①证明见解析;②证明见解析(2)92+【分析】(1)①设00(,)P x y ,利用直线方程求出点,M N 坐标,从而可得||||AN BM ⋅的表达式,结合点在椭圆上化简,即可证明结论;②利用PMN 与PAB 面积之差为MAN BAN S S - ,利用三角形面积公式,结合①的定值即可证明结论;(2)利用三角形面积公式表示出MON △面积的表达式,利用(1)的定值结合基本不等式,即可求得答案.【详解】(1)证明:①设00(,)P x y ,()001,030x y <<<<,则220019x y +=,即220099x y +=,直线()0033:y PA y x x =--,令0x =,则0033M y y x =--,故003|||1|3y BM x =+-;直线0011:y PB y x x =+-,令0y =,则001N x x y -=-,故00|||3|1x AN y =+-;所以00000000003|||||3||1||33|||133331x y x y x y AN BM y x y x ⋅=+⋅+⋅-+----+()()()2220000000000000033996618||||3133x y x y x y x y x y x y x y +-+++--==----+000000001666183|38x y x y x y x y --++-==-,即||||AN BM ⋅为定值6;②PMN 与PAB 面积之差为11||||||||22MAN BAN S S AN OM AN OB -=⋅-⨯⋅ 1||||32AN BM =⨯⋅=,即PMN 与PAB 面积之差为定值3;(2)MON △面积()()11||||3||1||22OMN S ON OM AN BM =⋅=++ ()1||||||3||32AN BM AN BM =⋅+++()1966322+≥+=,当且仅当||3||AN BM =,结合||||6AN BM ⋅=,即|||AN BM ==时取等号,即MON △面积的最小值为92+.【点睛】关键点睛:解答本题的关键在于证明||||AN BM ⋅为定值,解答时要利用直线方程表示出||,||AN BM ,从而求得||||AN BM ⋅表达式,结合点在椭圆上化简即可证明结论.。

高二数学上学期期中模拟试卷(空间向量与立体几何、直线与圆、椭圆)(解析版)

高二数学上学期期中模拟试卷(空间向量与立体几何、直线与圆、椭圆)(解析版)

高二数学上学期期中模拟试卷(试卷满分150分,考试用时120分钟)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.(2022·福建福州·高二期中)直线20x y --=的倾斜角是()A.30°B.45°C.60°D.75°【答案】B【解析】直线20x y --=的斜率为1,倾斜角为45°,故选:B.2.(2022·江苏·南京市大厂高级中学高二期中)已知圆22:68100C x y x y +---=,则()A.圆C 的圆心坐标为()3,4--B.圆C 的圆心坐标为()4,3C.圆C D.圆C 的半径为35【答案】C【解析】圆C 的方程可化为()()223435x y -+-=,则圆心坐标为()3,4C.3.(2022·安徽滁州·高二期中)已知椭圆221259x y +=的焦点为1F 、2F ,P 为椭圆上的一点,若1260F PF ∠=︒,则12F PF △的面积为()A.3B.9C.D.【答案】C【解析】根据椭圆的定义有1210,4PF PF c +==,①根据余弦定理得221212642cos 60PF PF PF PF =+-︒,②结合①②解得1212PF PF =,所以12F PF △的面积12113sin 6012222S PF PF =︒=⨯⨯=4.(2022·福建·柘荣县第一中学高二期中)如图,在平行六面体1111ABCD A B C D -中,M为11AC 与11B D 的交点,若AB a =,AD b =,1AA c =,则下列向量中与BM 相等的向量是()A.1122a b c-++B.1122++a b cC.1122--+a b c D.1122-+a b c【答案】A【解析】11BM BB B M =+,()1111112=+-AA A D A B ()112=+-AA AD AB ,1122a b c =-++,故选;A5.10y +-=与直线30my ++=平行,则它们之间的距离是()A.1B.54C.3D.4【答案】B10y +-=与直线30my ++=平行,可得0=,解之得2m =10y +-=与直线230y ++=54=,故选:B 6.(2022·江苏常州·高二期中)直三棱柱111ABC A B C -中,11111π,,,2BCA AC BC CC A M MB A N NC ∠=====,则BM 与AN 所成的角的余弦值为()A.10B.22C.110D.25【答案】A【解析】如图所示,以C 为原点,以1,,CA CB CC 分别为,,x y z 轴,建立空间直角坐标系,设12AC BC CC ===,可得()2,0,0A ,()0,2,0B ,()1,1,2M ,()1,0,2N .()1,0,2AN ∴=-,()1,1,2BM =-cos ,10AN BM AN BM AN BM⋅∴==故BM 与AN7.(2022·河南·洛宁县第一高级中学高二阶段练习)若直线y x b =+与曲线x =有一个公共点,则b 的取值范围是()A.⎡⎣B.⎡-⎣C.(-D.(]{1,1-⋃【答案】D【解析】由曲线x =2210x y x +=≥(),表示以原点为圆心,半径为1的右半圆,y x b =+是倾斜角为4π的直线与曲线x =一个公共点有两种情况:①直线与半圆相切,根据d r =,所以1d ==,结合图象可得b =②直线与半圆的上半部分相交于一个交点,由图可知11b -<≤.综上可知:11b -<≤或b =.故选:D.8.(2022·福建泉州·高二期中)已知椭圆22122:1(0)x y C a b a b +=>>与圆22224:5b C x y +=,若在椭圆1C 上存在点P ,使得由点P 所作的圆2C 的两条切线互相垂直,则椭圆1C 的离心率的取值范围是()A.⎛ ⎝⎭B.⎛ ⎝⎭C.⎫⎪⎪⎣⎭D.⎫⎪⎪⎣⎭【答案】D【解析】由题意,如图,若在椭圆1C 上存在点P ,使得由点P 所作的圆2C 的两条切线互相垂直则只需90APB ∠≤︒,即45APO α=∠≤︒,sin sin 45α=≤︒,即2285b a ≤,因为222a b c =+,解得:2238a c ≤.238e ∴≥,即e ≥,而01e <<,1e <,即e ⎫∈⎪⎪⎣⎭.故选:D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.(2022·江苏·连云港高中高二期中)给出下列命题,其中是真命题的是()A.若直线l 的方向向量()1,1,2a =-,直线m 的方向向量12,1,2⎛⎫=- ⎪⎝⎭r b ,则l 与m 垂直B.若直线l 的方向向量()0,1,1a =-,平面α的法向量()1,1,1n =--r,则l α⊥C.若平面α,β的法向量分别为()10,1,3=u r n ,()21,0,2=u u rn ,则αβ⊥D.若存在实数,,x y 使,=+MP xMA yMB 则点,,,P M A B 共面【答案】AD【解析】对于A:因为直线l 的方向向量()1,1,2a =-,直线m 的方向向量12,1,2⎛⎫=- ⎪⎝⎭r b ,且()12,1,21101,1,22a b ⎛⎫-=--= ⎪⎝⎭⋅=-⋅,所以a b ⊥,所以l 与m 垂直.故A 正确;对于B:因为直线l 的方向向量()0,1,1a =-,平面α的法向量()1,1,1n =--r,且a n λ≠,所以l α⊥不成立.故B 不正确;对于C:因为平面α,β的法向量分别为()10,1,3=u r n ,()21,0,2=u u rn ,且2100660n n =++≠⋅=,所以12,n n 不垂直,所以αβ⊥不成立.故C 不正确;对于D:若,MA MB 不共线,则可以取,MA MB 为一组基底,由平面向量基本定理可得存在实数,,x y 使,=+MP xMA yMB 则点,,,P M A B 共面;若,MA MB 共线,则存在实数,,x y 使,=+MP xMA yMB 所以,,,P M A B 共线,则点,,,P M A B 共面也成立.综上所述:点,,,P M A B 共面.故D 正确.故选:AD10.(2022·广东·汕头市潮南区陈店实验学校高二期中)已知直线:0l x y +=与圆22:(1)(1)4C x y -++=,则()A.直线l 与圆C 相离B.直线l 与圆C 相交C.圆C 上到直线l 的距离为1的点共有2个D.圆C 上到直线l 的距离为1的点共有3个【答案】BD【解析】由圆22:(1)(1)4C x y -++=,可知其圆心坐标为(1,1)-,半径为2,圆心(1,1)-到直线:0l x y +=的距离1d =,所以可知选项B,D 正确,选项A,C 错误.故选:BD11.(2022·湖北恩施·高二期中)如图,在棱长为1的正方体ABCD A B C D ''''-中,M 为BC 的中点,则下列结论正确的有()A.AM 与D B ''所成角的余弦值为10B.C 到平面DA C ''C.过点A ,M ,D ¢的平面截正方体ABCD A B C D ''''-所得截面的面积为92D.四面体A C BD ''内切球的表面积为π3【答案】ABD【解析】对于A,构建如图①所示的空间直角坐标系,则(0,0,1)A ,1(,1,1)2M ,(0,1,0)B ',(1,0,0)D ',1(,1,0)2AM ∴=,(1,1,0)D B ''=-,112cos ,10AM D B AM D B AM D B -+''⋅''∴=='',故A 正确;对于B,方法1:如图②,连接AC ,由正方体几何特征得://AC A C '',又AC ⊄面A C D '',A C ''⊂面A C D '',//AC ∴面A C D '',设C 到平面DA C ''的距离为d ,即点A 到平面A DC ''的距离,C A DC A DA C V V ''''--=,即11131113234⨯⨯⨯⨯=,求得33d =.方法2:根据图①,()1,0,1D ,()1,1,0C ',()1,0,1A D '∴=,()1,1,0A C ''=,设平面DA C ''的法向量(,,)m x y z =,则00A D m A C m '''⎧⋅=⎨⋅=⎩,即00x z x y +=⎧⎨+=⎩,令1z =-得:11x y =⎧⎨=-⎩,∴平面DA C ''的一个法向量为(1,1,1)m =--,(1,0,0)AD =,设C 到平面''DA C 的距离为d,则||AD m d m ⋅=B 正确;对于C,取CC '的中点N ,连接MN ,D N ',AD ',则MN //AD ',如图②所示,则梯形AMND '为过点A ,M ,D ¢的平面截正方体ABCD A B C D ''''-所得的截面,易知2MN =,AD '=2AM D N '==,可得梯形AMND '则梯形AMND '的面积1928S ==,故C 错误;对于D,易知四面体A C BD ''的体积111141323V =-⨯⨯⨯=,因为四面体A C BD ''1π4sin 23S =⨯=设四面体A C BD ''内切球的半径为r,则1133⨯=,解得r =所以四面体AMND '内切球的表面积为2π4π3r =,故D 正确.故选:ABD.12.(2022·江苏·淮阴中学高二期中)已知椭圆22:14x M y +=,若P 在椭圆M 上,1F 、2F 是椭圆M 的左、右焦点,则下列说法正确的有()A.若12PF PF =,则1230PF F ∠=B.12F PF △C.12PF PF -的最大值为D.满足12F PF △是直角三角形的点P 有4个【答案】ABC【解析】在椭圆M 中,2a =,1b =,c =12F F =对于A 选项,当12PF PF =时,则122PF PF a ===,由余弦定理可得222112212112cos 2PF F F PF PF F PF F F +-∠==⋅因为120180PF F <∠<,所以,1230PF F ∠=,A 对;对于B 选项,当点P 为椭圆M 的短轴顶点时,点P 到x 轴的距离最大,所以,12F PF △面积的最大值为122c b bc ⨯⨯==对;对于C 选项,因为2a c PF a c -≤≤+,即222PF ≤+所以,()12222222PF PF a PF a a c c -=-≤--==,C 对;对于D 选项,当112PF F F ⊥或212PF F F ⊥时,12PF F 为直角三角形,此时满足条件的点P 有4个,当P 为直角顶点时,设点()00,P x y ,则220044x y =-,()100F P x y =+,()200F P x y =-,222120003130F P F P x y y ⋅=-+=-=,所以,0y =,03x =±,此时,满足条件的点P 有4个,综上所述,满足12F PF △是直角三角形的点P 有8个,D 错.故选:ABC.三、填空题:本题共4小题,每小题5分,共20分13.(2022·全国·高二期中)已知直线1:20l ax y +=,直线()2:10l a x y --=,若12l l ⊥,则实数a 的值为______.【答案】2a =或1a =-【解析】因为12l l ⊥,所以(1)2(1)0a a -+⨯-=,解得2a =或1a =-,故答案为:2a =或1a =-14.(2022·江苏常州·高二期中)已知P 是ABC 所在平面外一点,2=PM MC ,且BM x AB y AC z AP =++,则实数x y z ++的值为____________.【答案】0【解析】因为2=PM MC ,则()2BM BP BC BM -=-,所以,()()121221333333BM BP BC AP AB AC AB AB AC AP =+=-+-=-++,所以,1x =-,23y =,13z =,因此,0x y z ++=.故答案为:0.15.(2022·上海金山·高二期中)求过点()13M -,的圆224x y +=的切线方程__________.【答案】y =+y =+【解析】过点()13M -,的斜率不存在的直线为:1x =-,圆心到直线的距离为1,与圆相交,不是切线;当斜率存在,设其为k ,则切线可设为()31y k x -=+.2=,解得:33k +=或33k -=.所以切线方程为:y =+y =+故答案为:y =+y =+.16.(2022·湖北恩施·高二期中)已知1F ,2F 分别是椭圆2222:1(0,0)x y C a b a b+=>>的左、右焦点,点P 在椭圆上,且在第一象限,过2F 作12F PF ∠的外角平分线的垂线,垂足为A ,O为坐标原点,若||OA =,则该椭圆的离心率为______.【答案】63【解析】如图所示:延长2F A ,交1PF 于点Q ,∵PA 是12F PF ∠的外角平分线,2||AQ AF ∴=,2||PQ PF =,又O 是12F F 的中点,1QF AO ∴∥,且12||QF OA ==.又1112||2QF PF PQ PF PF a =+=+=,2a ∴=,222233()a b a c ∴==-,∴离心率为c a四、解答题:本小题共6小题,共70分。

上海高二数学上学期期中试卷含答案(共3套)

上海高二数学上学期期中试卷含答案(共3套)

上海高二年级第一学期期中考试数学试卷(考试时间:120分钟 满分:150分)一.填空题(本大题满分56分)本大题共有14题,只要求直接填写结果,每个空格填对得4分,否则一律得零分.1. 直线230x y --= 关于x 轴对称的直线方程为________.2. 向量(3,4)a =在向量(1,0)b =方向上的投影为____ __.3. 已知向量(1,2),(,2)a b x =-=,若a b ⊥,则b =________.4. 已知一个关于y x ,的二元一次方程组的增广矩阵为112012-⎛⎫⎪⎝⎭,则x y -=_______.5. 若2021310x y -⎛⎫⎛⎫⎛⎫=⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭,则x y += .6. 若a 、b 、c 是两两不等的三个实数,则经过(,)P b b c +、(,)Q a c a +两点的直线的倾斜角 为__ ____.(用弧度制表示)7. 若行列式212410139xx =-,则=x .8. 直线Ax +3y +C =0与直线2x -3y +4=0的交点在y 轴上,则C 的值为________. 9. 已知平行四边形ABCD 中,点E 为CD 的中点,AM mAB =,AN nAD = (0m n ⋅≠), 若//MN BE ,则nm=______________. 10. 已知直线022=-+y x 和01=+-y mx 的夹角为4π,则m 的值为 .11. 下面结论中,正确命题的个数为_____________.①当直线l 1和l 2斜率都存在时,一定有k 1=k 2⇒l 1∥l 2. ②如果两条直线l 1与l 2垂直,则它们的斜率之积一定等于-1.③已知直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1、B 1、C 1、A 2、B 2、C 2为常数),若直线l 1⊥l 2,则A 1A 2+B 1B 2=0.④点P (x 0,y 0)到直线y =kx +b 的距离为|kx 0+b |1+k2.⑤直线外一点与直线上一点的距离的最小值就是点到直线的距离.⑥若点A ,B 关于直线l :y =kx +b (k ≠0)对称,则直线AB 的斜率等于-1k,且线段AB 的中点在直线l 上.12. 直线023cos =++y x θ的倾斜角的取值范围是_____________. 13. 如图,△ABC 的外接圆的圆心为O ,AB =2,AC =3,BC =7, 则AO →·BC →=________.14.设A 是平面向量的集合,a 是定向量,对A x ∈, 定义a x a x x f⋅⋅-=)(2)(.现给出如下四个向量:①)0,0(=a ,②⎪⎪⎭⎫ ⎝⎛=42,42a ,③⎪⎪⎭⎫ ⎝⎛=22,22a ,④⎪⎪⎭⎫ ⎝⎛-=23,21a . 那么对于任意x 、A y ∈ ,使y x y f x f ⋅=⋅)()(恒成立的向量a的序号是_______(写出满足条件的所有向量a的序号).二.选择题(本大题满分20分)本大题共有4题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有且只有一个结论是正确的.必须用2B 铅笔将正确结论的代号涂黑,选对得5分,不选、选错或者选出的代号超过一个,一律得零分.15. “2a =”是“直线210x ay +-=与直线220ax y +-=平行”的【 】 (A )充要条件(B )充分不必要条件(C )必要不充分条件 (D )既不充分也不必要条件16.已知关于x y 、的二元一次线性方程组的增广矩阵为111222a b c a b c ⎛⎫ ⎪⎝⎭,记12121(,),(,),(,)a a a bb bc c c ===,则此线性方程组有无穷多组解的充要条件是【 】 (A) 0a b c ++= (B) a b c 、、两两平行 (C) a b // (D) a b c 、、方向都相同 17.如图所示是一个循环结构的算法,下列说法不正确的是【 】 (A )①是循环变量初始化,循环就要开始 (B )②为循环体(C )③是判断是否继续循环的终止条件(D )输出的S 值为2,4,6,8,10,12,14,16,18.18.如图,由四个边长为1的等边三角形拼成一个边长为2的等边三角形,各顶点依次为6321,,,,A A A A ,则j i A A A A ⋅21,(}6,,3,2,1{, ∈j i )的值组成的集合为【 】)(A {}21012、、、、-- )(B ⎭⎬⎫⎩⎨⎧---212102112、、、、、、 )(C ⎭⎬⎫⎩⎨⎧---23121021123、、、、、、)(D ⎭⎬⎫⎩⎨⎧----2231210211232、、、、、、、、 三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须写出必要的步骤,答题务必写在答题纸上规定位置. 19.(本题满分12分)中秋节前几天,小毛所在的班级筹划组织一次中秋班会,热心的小毛受班级同学委托,去一家小礼品店为班级的三个小组分别采购三种小礼物:中国结、记事本和笔袋(每种礼物的品种和单价都相同). 三个小组给他的采购计划各不相同,各种礼物的采购数量及价格如下表所示:为了结账,小毛特意计算了各小组的采购总价(见上表合计栏),可是粗心的小毛却不慎抄错了其中一个数字.第二天,当他按照自己的记录去向各小组报销的时候,有同学很快发现其中有错.发现错误的同学并不知道三种小礼物的单价,那么他是如何作出判断的呢?请你用所学的行列式的知识对此加以说明.20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知ABC ∆的顶点(1,3)A ,AB 边上的中线所在的直线方程是1y =,AC 边上的高所在的直线方程是210x y -+=.求:(1)AC 边所在的直线方程; (2)AB 边所在的直线方程.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.在直角坐标系中,已知两点),(11y x A ,),(22y x B ;1x ,2x 是一元二次方程042222=-+-a ax x 两个不等实根,且A 、B 两点都在直线a x y +-=上. (1)求OA OB ;(2)a 为何值时与夹角为3π. 22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第,3小题满分6分. 已知O 为ABC ∆的外心,以线段OB OA 、为邻边作平行四边形,第四个顶点为D ,再以OD OC 、为邻边作平行四边形,它的第四个顶点为H .(1) 若,,,OA a OB b OC c OH h ====,试用a 、b 、c 表示h ; (2) 证明:AH BC ⊥;(3) 若ABC ∆的60A ∠=,45B ∠=,外接圆的半径为R ,用R 表示h .23.(本题满分18分)本题共有3个小题,每小题满分6分.如图,射线OA 、OB 所在的直线的方向向量分别为),1(1k d =、),1(2k d -=(0>k ),点P 在AOB∠内,OA PM ⊥于M ,OB PN ⊥于N . (1)若1=k ,⎪⎭⎫⎝⎛21,23P ,求||OM 的值; (2)若()1,2P ,△OMP 的面积为56,求k 的值; (3)已知k 为常数,M 、N 的中点为T ,且kS MON1Δ=, 当P 变化时,求||OT 的取值范围.x参考答案(考试时间:120分钟 满分:150分)一.填空题(本大题满分56分)本大题共有14题,只要求直接填写结果,每个空格填对得4分,否则一律得零分.1. 230x y +-=2. 33.. 2 5. 2 6. 4π7. 2或3- 8.-4 9. 2 10. 31-或3 11. 3 12. 50,[,)66πππ⎡⎤⎢⎥⎣⎦. 13. 52 14. ①③④ 二.选择题(本大题满分20分)本大题共有4题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有且只有一个结论是正确的.必须用2B 铅笔将正确结论的代号涂黑,选对得5分,不选、选错或者选出的代号超过一个,一律得零分. 15. B 16. B 17.18. D三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须写出必要的步骤,答题务必写在答题纸上规定位置. 19.(本题满分12分)解:设中国结每个x 元,记事本每本y 元,笔袋每个z 元,由题设有2103105230x y x y z y z +=⎧⎪++=⎨⎪+=⎩,因为2101310052D == ,则方程组有无穷多组解或无解, 又101010312003052x D ==≠,210011014000302y D ==-≠,2110131010000530z D ==≠,从而该方程组无解。

2017-2018年安徽省芜湖市中加学校高二(上)期中数学试卷及参考答案

2017-2018年安徽省芜湖市中加学校高二(上)期中数学试卷及参考答案

A. =﹣10x+200
11. (5 分)程序框图中矩形框的功能是( A.表示一个算法的起始与结束 B.表示一个算法输入和输出的信息 C.赋值、计算 D.判断某一条件是否成立
12. (5 分)若运行如图所示的程序,最后输出 y 的值为 7,那么输出的 t 的值为 ( )
第2页(共15页)
A.﹣3 B.3
第3页(共15页)
三.解答题: 18. (6 分)试画出下列几何体的三视图.
19. (9 分)某校共有 3200 名学生,其中高一、高二、高三学生的比例为 5:3: 2, 从所有学生中抽取一个容量为 400 的样本, 采用哪种抽样方法更合理?高一、 高二、高三学生应分别抽取多少? 20. (10 分)某射手平时的射击成绩统计如表: 环数 概率 <7 0.13 7 a 8 b 9 0.25 10 0.24
C.﹣3 或 3 D.3 或﹣3 或 5
二、填空题(共 5 小题,每小题 3 分,满分 15 分) 13. (3 分)将 79 转化为二进制数 . .
14. (3 分)217、527、713 的最大公约数为
15. (3 分)某校高一年级有 900 名学生,其中女生 400 名,按男女比例用分层 抽样的方法,从该年级学生中抽取一个容量为 45 的样本,则应抽取的男生人数 为 .
已知他射中 7 环及 7 环以下的概率为 0.29. (1)求 a,b 的值 (2)求命中 10 环或 9 环的概率 (3)求命中环数不足 9 的概率.
第4页(共15页)
2017-2018 学年安徽省芜湖市中加学校高二(上)期中数 学试卷
参考答案与试题解析
一.选择题: (在每题的四个选项中,只有一项是符合要求的,请将正确答案填入 下表格内) 1. (5 分)下列描述不是解决问题的算法的是( A.从中山到北京先坐汽车,再坐火车 B.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、化系数为 1 C.方程 x2﹣4x+3=0 有两个不等的实根 D.解不等式 ax+3>0 时,第一步移项,第二步讨论 【解答】解:A 选项:从中山到北京,先坐汽车,再坐火车,解决了怎样去的问 题,所以 A 错误; B 选项:解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化 为 1,解决了怎样接一元一次方程的问题,所以 B 错误; D 选项:解不等式 ax+3>0 时,第一步移项化为:ax>﹣3,第二步讨论 a 的符 号,进而根据不等式的基本性质,解出不等式的解集,解决了怎样求不等式解集 的问题,所以 D 错误; 故选:C. )

上学期数学高二年级期中试题

上学期数学高二年级期中试题

上学期数学高二年级期中试题大家在学习的时候一定要结合题目来学习哦,今天小编就给大家分享一下高二数学,有喜欢的一起来参考一下吧高二数学上学期期中试卷阅读一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.过点,斜率是3的直线的方程是( )A. B. C. D.2.在正方体中,若是的中点,则直线垂直于( )A. B. C. D.3.在同一直角坐标系中,表示直线与正确的是( )A B C D4.若有直线、和平面、,下列四个命题中,正确的是( )A.若,,则B.若,,,,则C.若,,则D.若,,,则5.直线与的交点坐标为( )A. B. C. D.6.一个棱长为1的正方体被一个平面截去一部分后,剩余部分的三视图如图所示,则该几何体的体积为( )A. B. C. D.7.两圆和的位置关系是( )A. 相交B. 内切C. 外切D. 外离8.P、Q分别为与上任一点,则的最小值为( )A. B. C. 3 D. 69.已知,若直线过点与线段有公共点,则直线的斜率的取值范围是( )A. B. C. D.10圆上的点到直线的距离的最大值是( )A. B. C. D.11.正方体的全面积为,它的顶点都在球面上,则这个球的表面积是( )A. B. C. D.12.过点引直线与曲线交于A,B两点,O为坐标原点,当△AOB 的面积取最大值时,直线的斜率等于( )A. B. C. D.二、填空题(本大题共4小题,每小题5分,共20分.)13.直线过定点,定点坐标为.14.如图,正方形O'A'B'C'的边长为1,它是水平放置的一个平面图形的直观图,则原图形的面积是.15.已知 , .16.将正方形ABCD沿对角线BD折成直二面角A-BD-C,下面四个结论:(1)AC⊥BD;(2)△ACD是等边三角形;(3)二面角B-AC-D的余弦值为 ;(4)AB与CD所成的角为60°.则正确结论的序号为.三、解答题(本大题共6小题,共75分,解答时应写出文字说明、证明过程或解题步骤)17.(本小题满分10分)已知两直线,当为何值时,(1)直线∥ ;(2)直线 .18.(本小题满分12分)如图,直三棱柱中,,∠ACB=90°,AA1= ,D,F 分别是A1B1、BB1中点.(1)求证:C1D⊥AB1 ;(2)求证:AB1⊥平面C1DF.19.(本小题满分12分)如图1,在四棱锥中,底面,面为正方形,为侧棱上一点,为上一点.该四棱锥的正(主)视图和侧(左)视图如图2所示.(1)证明:∥平面 ;(2)证明:平面平面 .20.(本小题满分12分)已知圆的圆心坐标,直线:被圆截得弦长为.(1)求圆的方程;(2)从圆外一点向圆引切线,求切线方程.21. (本小题满分12分)如图,在直三棱柱中,是上的一点,,且.(1)求证:平面;(2)若,求点到平面的距离.22.(本小题满分12分)已知直线:,半径为4的圆与直线相切,圆心在轴上且在直线的右上方.(1)求圆C的方程;(2)过点M (2,0)的直线与圆C交于A,B两点(A在轴上方),问在轴正半轴上是否存在定点N,使得轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.高二数学答案一、选择题1-5 DBADD 6-10 DBCCB 11-12 BA二、填空题13、(0,-3) 14、 15、 16、(1)(2)(4)三、解答题17.解、(1)若l1∥l2,则……4分解之得m=-1.……5分(2)若l1⊥l2,则1•(m-2)+3m=0,……9分∴m= .……10分18. (1)证明:如图,∵ ABC—A1B1C1是直三棱柱,∴ A1C1=B1C1=1,且∠A1C1B1=90°.又 D是A1B1的中点,∴ C1D⊥A1B1. ………3分∵ AA1⊥平面A1B1C1,C1D 平面A1B1C1,∴ AA1⊥C1D,∴ C1D⊥平面AA1B1B.∴C1D⊥AB1 ………6分(2)证明:连结A1B,∵D,F分别是A1B1,BB1的中点,∴DF∥A1B.又直角三角形A1B1C1中,A1B12= A1C12+ B1C12,∴A1B1= ,∴A1B1= AA1,即四边形AA1B1B为正方形,∴A1B⊥AB1,即AB1⊥DF ………9分又(1)已证C1D⊥平面AA1B1B,∴C1D⊥AB1 ………10分又DF C1D=D,∴AB1⊥平面C1DF. ………12分19.解(1)证明:取中点,连结,. ………1分由正(主)视图可得为的中点,所以∥ ,.……2分又因为∥ ,,所以∥ , .所以四边形为平行四边形,所以∥ . ………………4分因为平面,平面,所以直线∥平面. ………………6分(2)证明:因为平面,所以 .因为面为正方形,所以 .所以平面.……………8分因为平面,所以 .因为,为中点,所以 .所以平面.……10分因为∥,所以平面. ………………11分因为平面,所以平面平面. ………………12分20.解(1)设圆的标准方程为:圆心到直线的距离:,………2分则………4分圆的标准方程:………6分(2)①当切线斜率不存在时,设切线:,此时满足直线与圆相切.………7分②当切线斜率存在时,设切线:,即………8分则圆心到直线的距离:………9分解得:………10分则切线方程为:………11分综上,切线方程为:………12分21.解(1)如图,连接,交于点,再连接,………1分据直棱柱性质知,四边形为平行四边形,为的中点………2分,∵当时,,∴是的中点,∴,………3分又平面,平面,∴平面.………4分(2)∵是中点,∴点到平面与点到平面距离相等,∵平面,∴点到平面的距离等于点到平面的距离,即等于点到平面距离相等,设距离为d.………6分………8分………12分22.解(1)设圆心,………1分则.………3分所以圆C的方程为x2+y2=16. ………4分(2)当直线AB⊥x轴时,x轴平分∠ANB.………5分当直线AB的斜率存在时,设直线AB的方程为y=k(x-2), (6)分假设符合题意,又设A(x1,y1),B(x2,y2),由得(k2+1) x2-4k2x+4k2-16=0,………7分所以………8分若x轴平分∠ANB,则kAN=-kBN ………9分即⇒2x1x2-(t+2)(x1+x2)+4t=0………11分所以存在点N为(8,0)时,能使得∠ANM=∠BNM总成立.………12分第一学期高二数学考试试卷题一. 选择题(共12小题,60分)1.在空间直角坐标系中,已知M(﹣1,0,2),N(3,2,﹣4),则MN的中点P到坐标原点O的距离为( )A. B. C.2 D.32.已知集合A={(x,y)|y=5x},B={(x,y)|x2+y2=5},则集合A∩B中元素的个数为( )A.0B.1C.2D.33.设a,b是空间中不同的直线,α,β是不同的平面,则下列说法正确的是( )A.a∥b,b⊂α,则a∥αB.a⊂α,b⊂β,α∥β,则a∥bC.a⊂α,b⊂α,b∥β,则a∥βD.α∥β,a⊂α,则a∥β4.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A.20πB.24πC.28πD.32π5.一个水平放置的三角形的斜二侧直观图是等腰直角三角形A′B′O′,若O′B′=1,那么原△ABO的面积是( )A. B.C. D.6.在下列图形中,G、H、M、N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH、MN是异面直线的图形有( )A.1个B.2个C.3个D.4个7.已知等比数列{an}中,各项都是正数,且,,成等差数列,则等于( )A.6B.7C.8D.98.下列函数在其定义域上既是奇函数又是减函数的是( )A.f(x)=﹣x|x|B.f(x)=log0.5xC.f(x)=﹣tanxD.f(x)=3x9.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|< )的图象如图所示,则tanφ=()A. B.C. D.10.已知函数f(x)的部分图象如图所示,则该函数的解析式可能是( )A.f(x)=B.f(x)=C.f(x)=D.f(x)=11.在三棱锥P﹣ABC中,△ABC为等边三角形,PA⊥平面ABC,且PA=AB,则二面角A﹣PB﹣C的平面角的正切值为( )A. B. C. D.12.已知Rt△ABC中,∠A=90°,AB=2,BC=4,若AM是BC边上的高,垂足为M,点P在△ABC内部或边界上运动,则的取值范围是( )A.[﹣4,0]B.[﹣3,0]C.[﹣2,0]D.[﹣1,0]二. 填空题(共4小题,20分)13.已知数列{an}的前n项和Sn=n2+n,那么它的通项公式为an= .14.若x>0,y>0,且log2x+log2y=2,则的最小值为.15.如图,四边形ABCD中 .将四边形ABCD沿对角线BD折成四面体A'﹣BCD,则四面体A'﹣BCD体积的最大值为.16.如图,正方体ABCD﹣A1B1C1D1,则下列四个命题:①P在直线BC1上运动时,三棱锥A﹣D1PC的体积不变;②P在直线BC1上运动时,直线AP与平面ACD1所成角的大小不变;③P在直线BC1上运动时,二面角P﹣AD1﹣C的大小不变;④M是平面A1B1C1D1上到点D和C1距离相等的点,则M点的轨迹是过D1点的直线;其中正确的命题编号是.三. 解答题(共6小题,70分)17.(10分)已知三角形ABC的顶点坐标为A(0,3),B(﹣2,1),C(4,3),M是BC边上的中点.(1)求BC边的中线所在的直线方程;(2)求点C关于直线AB对称点C’的坐标.18.(12分)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的正切值.19.(12分)锐角△ABC中内角A,B,C的对边分别为a,b,c,向量,,且∥ .(1)求B的大小;(2)如果b=2,求△ABC的面积S△ABC的最大值.20.(12分)如图,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC= ,AA1= ,BB1= ,点E和F分别为BC和A1C的中点.(1)求证:EF∥平面A1B1BA;(2)求证:平面AEA1⊥平面BCB1;(3)求直线A1B1与平面BCB1所成角的大小.21.(12分)已知过点A(0,1)且斜率为k的直线l与圆C:交于点M、N两点.(1)求k的取值范围;(2)若,其中O为坐标原点,求|MN|.22.(12分)已知函数y=f(x),x∈D,如果对于定义域D内的任意实数x,对于给定的非零常数m,总存在非零常数T,恒有f(x+T)>m•f(x)成立,则称函数f(x)是D上的m级类增周期函数,周期为T.若恒有f(x+T)=m•f(x)成立,则称函数f(x)是D上的m级类周期函数,周期为T.(1)试判断函数是否为(3,+∞)上的周期为1的2级类增周期函数?并说明理由;(2)已知T=1,y=f(x)是[0,+∞)上m级类周期函数,且y=f(x)是[0,+∞)上的单调递增函数,当x∈[0,1)时,f(x)=2x,求实数m的取值范围.参考答案1-6 ACDCCB 7-12DACCAB13. 2n 14. 15. 16. ①③④17.解:(1)x+y-3=0(2)设点C关于直线AB对称点C′的坐标为(a,b),则AB为线段CC′的垂直平分线,由直线AB的方程为:x﹣y+3=0,故,解得:a=0,b=7,即点C关于直线AB对称点C′的坐标为C’(0,7)18.解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V= == .(2)19.解:(1)∵ =(2sinB,﹣ ), =(cos2B,2cos2 ﹣1)且∥ ,∴2sinB(2cos2 ﹣1)=﹣ cos2B,∴2sinBcosB=﹣ cos2B,即sin2B=﹣ cos2B,∴tan2B=﹣,又B为锐角,∴2B∈(0,π),∴2B= ,则B= ;(2)当B= ,b=2时,由余弦定理cosB= 得:a2+c2﹣ac﹣4=0,又a2+c2≥2ac,代入上式得:ac≤4(当且仅当a=c=2时等号成立),∴S△ABC= acsinB= ac≤ (当且仅当a=c=2时等号成立),则S△ABC的最大值为 .20.(1)证明:连接A1B,在△A1BC中,∵E和F分别是BC和A1C的中点,∴EF∥A1B,又∵A1B⊂平面A1B1BA,EF⊄平面A1B1BA,∴EF∥平面A1B1BA;(2)证明:∵AB=AC,E为BC中点,∴AE⊥BC,∵AA1⊥平面ABC,BB1∥AA1,∴BB1⊥平面ABC,∴BB1⊥AE,又∵BC∩BB1=B,∴AE⊥平面BCB1,又∵AE⊂平面AEA1,∴平面AEA1⊥平面BCB1;(3)取BB1中点M和B1C中点N,连接A1M,A1N,NE,∵N和E分别为B1C和BC的中点,∴NE平行且等于 B1B,∴NE平行且等于A1A,∴四边形A1AEN是平行四边形,∴A1N平行且等于AE,又∵AE⊥平面BCB1,∴A1N⊥平面BCB1,∴∠A1B1N即为直线A1B1与平面BCB1所成角,在△ABC中,可得AE=2,∴A1N=AE=2,∵BM∥AA1,BM=AA1,∴A1M∥AB且A1M=AB,又由AB⊥BB1,∴A1M⊥BB1,在RT△A1MB1中,A1B1= =4,在RT△A1NB1中,sin∠A1B1N= = ,∴∠A1B1N=30°,即直线A1B1与平面BCB1所成角的大小为30°21.(1)由题意可得,直线l的斜率存在,设过点A(0,1)的直线方程:y=kx+1,即:kx﹣y+1=0.由已知可得圆C的圆心C的坐标(2,3),半径R=1.故由 <1,故当(2)设M(x1,y1);N(x2,y2),由题意可得,经过点M、N、A的直线方程为y=kx+1,代入圆C 的方程(x﹣2)2+(y﹣3)2=1,可得 (1+k2)x2﹣4(k+1)x+7=0,∴x1+x2= ,x1•x2= ,∴y1•y2=(kx1+1)(kx2+1)=k2x1x2+k(x1+x2)+1= •k2+k• +1= ,由• =x1•x2+y1•y2= =12,解得 k=1,故直线l的方程为 y=x+1,即 x﹣y+1=0.圆心C在直线l上,MN长即为圆的直径.所以|MN|=2.22.解:(1)∵(x+1﹣1)﹣(x﹣1)2=﹣(x2﹣3x+1)<0,即)(x+1﹣1)<(x﹣1)2,∴ > ,即 >2 ,即 f(x+1)>2f(x)对一切x∈(3,+∞)恒成立,故函数f(x)= 是(3,+∞)上的周期为1的2级类增周期函数.(2)∵x∈[0,1)时,f(x)=2x,∴当x∈[1,2)时,f(x)=mf(x﹣1)=m•2x﹣1,…当x∈[n,n+1)时,f(x)=mf(x﹣1)=m2f(x﹣2)=…=mnf(x﹣n)=mn•2x﹣n,即x∈[n,n+1)时,f(x)=mn•2x﹣n,n∈N*,∵f(x)在[0,+∞)上单调递增,∴m>0且mn•2n﹣n≥mn﹣1•2n﹣(n﹣1),即m≥2.高二上学期数学期中试题试卷第Ⅰ卷(选择题,共40分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知数列则是它的(A)第项 (B)第项 (C)第项 (D)第项2.已知命题,命题,则命题是命题成立的(A)充分必要条件 (B)充分不必要条件(C)必要不充分条件 (D)既不充分也不必要条件3.已知椭圆的两个焦点是,过点的直线交椭圆于两点,在中,若有两边之和是,则第三边的长度为(A)3 (B)4 (C)5 (D)64.已知是单调递增的等比数列,满足,则数列的前项和(A) (B)(C) (D)5.已知椭圆的两个焦点为,点在椭圆上,是直角三角形,则的面积为(A) (B) 或4 (C) (D) 或46.已知,且,则的最小值为(A)100 (B)10 (C)1 (D)7.已知双曲线的右焦点为,点在双曲线的渐近线上,是腰长为的等腰三角形( 为原点),,则双曲线的方程为(A) (B)(C) (D)8.设椭圆的左、右焦点分别为,点在椭圆的外部,点是椭圆上的动点,满足恒成立,则椭圆离心率的取值范围是(A) (B) (C) (D)第Ⅱ卷(非选择题,共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.设等差数列的前项和为,若,则 __________.10.已知数列满足,且,则 __________.11.设直线与双曲线相交于两点,分别过向轴作垂线,若垂足恰为双曲线的两个焦点,则实数 __________.12.已知,且,则的最小值为___________.13.已知数列满足,,,则 _______.14.已知椭圆与双曲线有公共焦点,为与的一个交点,,椭圆的离心率为,双曲线的离心率为,若,则 _______.三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)解关于的不等式 .16.(本小题满分13分)已知数列满足,且 .(Ⅰ)求证:数列是等比数列,并求的通项公式;(Ⅱ)求数列的前项和.17.(本小题满分13分)设各项均为正数的数列满足 .(Ⅰ)求的通项公式;(Ⅱ)设,,求的前n项和 .18.(本小题满分13分)已知椭圆的长轴长为,点在椭圆上.(Ⅰ)求椭圆的方程.(Ⅱ)设斜率为的直线与椭圆交于两点,线段的垂直平分线与轴交于点,且点的横坐标取值范围是,求的取值范围.19.(本小题满分14分)已知椭圆的右焦点为,离心率为 .(Ⅰ)求椭圆的方程;(Ⅱ)设直线与椭圆有且只有一个交点,且与直线交于点,设,且满足恒成立,求的值.20.(本小题满分14分)已知数列的前项和为,,且,为等比数列, .(Ⅰ)求和的通项公式;(Ⅱ)设,数列的前项和为,若对均满足,求整数的最大值.2018~2019学年度第一学期期中七校联考高二数学参考答案第Ⅰ卷(选择题,共40分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.第Ⅱ卷(非选择题,共80分)二、填空题:本大题共6小题,每小题5分,共30分.9.6 10. 11. 12. 13. 4 14.三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)解:(1)当时,有,即 (2)(2)当时, .①当,即时,. (4)②当,即时,且 (6)③当,即时,方程两根,,且,所以或 (9)综上,关于的不等式的解集为:当时,解集为当时,解集为且当时,解集为或当时,解集为 (13)16.(本小题满分13分)解:(Ⅰ)证明:由已知得,所以数列是等比数列, (2)公比为2,首项为所以 (4)(Ⅱ)数列的前项和即记,,则 (5)(1)(2)(1)-(2)得 (6) (8) (9) (11)所以数列的前项和 (13)17.(本小题满分13分)解:(Ⅰ)由题设知 . (1)当时,有 (3)整理可得因为数列各项均为正数, (5)所以数列是首项为1,公差为2的等差数列,所以的通项公式为 . (6)(Ⅱ)由, (9)所以 (11). (13)18.(本小题满分13分)解:(Ⅰ)椭圆的长轴长为4,则所以, (1)因为点在椭圆上,所以,所以. (3)故椭圆的标准方程为. (4)(Ⅱ)设直线的方程为,设,的中点为,由消去,得, (6)所以即 (7),故,,即 (9)所以线段的垂直平分线方程为, (10)故点的横坐标为,即所以符合式 (11)由 (12)所以 (13)19.(本小题满分14分)解:(Ⅰ)设椭圆的焦距为,由已知有 ,又由,得,故椭圆的标准方程为. (3)(Ⅱ)由消去得, (5)所以,即. (6)设,则,即. (8)因为,所以 (9)由恒成立可得,即恒成立, (11)故 (13)所以 . (14)20.(本小题满分14分)解:(Ⅰ)由题设知 .当时,有 (1)整理得 (2)故 (4)经检验时也成立,所以的通项公式为. (5)设等比数列的公比为 .由,可得,所以,故所以的通项公式为. (7)(Ⅱ)因为 (9) (11)因为所以,即单调递增 (12)故 (13)即,所以. (14)。

高二上学期期中考试数学试卷含答案(共5套)

高二上学期期中考试数学试卷含答案(共5套)

高二上学期期中考试数学试题本卷分Ⅰ(选择题)、Ⅱ卷(非选择题)两部分,其中Ⅰ卷1至2页,第二卷2至4页,共150分,考试时间120分钟。

第Ⅰ卷(选择题,共60分)一、单选题:本题共12个小题,每小题5分1.“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.有下列四个命题:(1)“若,则,互为倒数”的逆命题;(2)“面积相等的三角形全等”的否命题;(3)“若,则有实数解”的逆否命题;(4)“若,则”的逆否命题.其中真命题为()A.(1)(2)B.(2)(3)C.(4)D.(1)(2)(3)3.若则为()A.等边三角形 B.等腰直角三角形C.有一个内角为30°的直角三角形 D.有一个内角为30°的等腰三角形4.已知.若“”是真命题,则实数a的取值范围是A.(1,+∞)B.(-∞,3)C.(1,3)D.5.的内角,,的对边分别为,,,若,,,则的面积为A.B.C.D.6.已知中,,则等于()A.B.或C.D.或7.等差数列的前项和为,若,则等于()A.58B.54C.56D.528.已知等比数列中,,,则()A.2B.C.D.49.已知,则z=22x+y的最小值是A.1 B.16 C.8 D.410.若关于的不等式的解集为,则的取值范围是()A.B.C.D.11.当a>0,关于代数式,下列说法正确的是()A.有最小值无最大值B.有最大值无最小值C.有最小值也有最大值D.无最小值也无最大值12.在△ABC中,AB=2,C=,则AC+BC的最大值为A.B.3C.4D.2第Ⅱ卷(非选择题,共90分)二、填空题:共4个小题,每小题5分,共20分13.命题的否定是______________.14.已知的三边长构成公差为2的等差数列,且最大角的正弦值为,则这个三角形的周长为________.15.已知数列{a n}的前n项和为S n,a1=1,当n≥2时,a n+2S n-1=n,则S2 017的值____ ___ 16.已知变量满足约束条件若目标函数的最小值为2,则的最小值为__________.三、解答题:共6题,共70分,解答应写出必要的文字说明、证明过程或演算步骤。

高二数学上学期期中考试试题

高二数学上学期期中考试试题

高二数学上学期期中考试试题第I 卷一.选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的,并将答案填涂在答题卡上.1.已知ABC ∆中,31sin ,2,3===B AC AB .则=C ( )A. 30B. 60C. 30或 150D. 60或 1202.设11a b >>>-,则下列不等式中恒成立的是 ( )Aba11<Bba11>C 2a b >D 22a b >3.若 x ,x+1,x+2是钝角三角形的三边,则实数 x 的取值范围是 ( ). A .0<x<3 B.1<x<3 C.3<x<4 D.4<x<64. 已知三个数a ,b ,c ,则ac b =2是a ,b ,c ,成等比数列的 ( ) A .充分非必要条件 B.必要非充分条件 C.充要条件 D 既不充分也不必要条件 5.如果正数a b c d ,,,满足4a b cd +==,那么 ( ) A .ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D.ab c d +≥,且等号成立时a b c d ,,,的取值不唯一6.命题:“若220(,)a b a b R +=∈,则0a =且0b =”的逆否命题是 ( )A.若0,0(,)a b a b R ≠≠∈或,则220a b +≠B.若0(,)a b a b R =≠∈,则220a b +≠C.若0,0(,)a b a b R ≠≠∈且,则220a b +≠D. 若0(,)a b a b R ≠≠∈,则7.若直线022=+-by ax ),(R b a ∈始终平分圆22(1)(2)4x y ++-=的周长,则ab 的最大值是 ( ) A.1 B.14C.12D.不存在最大值8.等比数列{}n a 的首项1a =1,公比为q ,前n 项和是n S ,则数列⎭⎬⎫⎩⎨⎧n a 1的前n 项和是( ) A .1-nS B .nn qS - C .nn qS -1 D .11--n n qS9.下列四个命题:①”“b a >是”22“b a >成立的充要条件; ②”“b a =是"lg lg "a b =成立的充分不必要条件;③函数)()(2R x bx ax x f ∈+=为奇函数的充要条件是”0“=a④定义在R 上的函数)(x f y =是偶函数的必要条件是”1)()(“=-x f x f .其中真命题的序号是( ) A. ①② B. ①③ C. ①②③ D. ①②③④10则在第 行第 列 ) A .第 251 行第 5 列 B .第 251 行第 1 列C .第 250 行第 3 列D .第 251 行第 5 列或第 252 行第 5二.填空题:本大题共4小题,每小题5分,满分20分.11.已知数列{}n a 的前n 项的和为212343n s n n =++,则这个数列的通项公式为________12.若对于一切正实数x 不等式xx224+>a 恒成立,则实数a 的取值范围是13.周长为1的直角三角形面积的最大值为_________ 14.若x<0,则函数x1x x1x )x (f 22--+=的最小值是___________;二.填空题:共4小题;每小题5分,共20分(第14小题第一问3分,第二问2分)11.____________________________. 12.__________________________. 13.____________________________. 14.____________; ___________.第II 卷三.解答题(共6个小题,共80分;解答应写出文字说明,证明过程或演算步骤)15.已知数列{}n a 是等差数列,{}n b 是等比数列,且112a b ==,454b =, 12323a a a b b ++=+, (I)求数列{}n b 的通项公式; (II )求数列{}n a 的前10项和10S .16.设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,2sin a b A =(Ⅰ)求B 的大小; (Ⅱ)若a =,5c =,求b班级___________ 姓名____________ 考号___________密 封 线 内 禁 止 答 题17.关于x 的不等式组()⎩⎨⎧<+++>--055220222k x k x x x 的整数解的集合为{}2-,求k 的取值范围。

高二数学上期期中试题[上学期]湘教版

高二数学上期期中试题[上学期]湘教版

做题考前须知:请将答案填在第一页右下方做题卡上,否那么无成绩.一、选择题:本大题共10小题,每题3分,共30分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的. 1、以下推导中,错误的选项是...... 〔 〕 A. a>b ⇒a-c>b-c B. a>b>0,c<d<0 ⇒ac<bd C. a>b, ab>0 ⇒b a 11< D. a>b, c>d ⇒ac>bd 2、 如果直线ax+2y+1=0与直线x+y-2=0互相垂直,那么a 的值等于( )A.1B.-31C. -32 D.-23、不等式)310)(31(<<-=x x x y 的最大值是 〔 〕A .2434B .121C .641D .7214、当x>0时,以下函数中最小值为2的是 〔 〕A 、y=x 2-2x +4B 、x4x y +=、2x 12x y 22+++= D 、x 1x y +=5、如果a<|x+1|+|x+9|对任意实数x 总成立,那么a 的取值范围是 ( )A. {a|a>8}B. {a|a<8}C.{a|a ≥8}D.{a|a ≤8}6、不等式03)4)(23(22≤+-+-x x x x 的解为 〔 〕A .-1<x ≤1或x ≥2B .x <-3或1≤x ≤2C .x =4或-3<x ≤1或x ≥2D .x =4或x <-3或1≤x ≤27、如果方程02)1(22=-+-+m x m x 的两个实根一个小于-1,另一个大于1,那么实数m 的取值范围是 〔 〕)10()12()02()22(,、,、,、,、D C B A ---8、△ABC 的三个顶点为A (2, 8), B (–4, 0), C (6, 0),那么过点B 将△ABC 的 面积平分的直线的方程为 〔 〕 A 、2x –y +4=0 B 、x +2y +4=0 C 、2x +y –4=0 D 、x –2y +4=09、过点M 〔-4,3〕和N 〔-2,1〕的直线方程 〔 〕 A .03=+-y x B .01=++y xC .01=--y xD .03=-+y x10、点P (a , b )与点Q (b +1, a –1)关于直线l 对称,那么直线l 的方程是〔 〕 A 、y =x –1 B 、y =x +1 C 、y =–x +1 D 、y =–x –1二、填空题〔每题4分,共20分〕11、不等式|x-2|+|x+3|>5的解集是_____12、假设实数b a ,满足2=+b a ,那么b a 33+的最小值是 .13、不等式lg(x 2+2x+2)<1的解集为____________ 14、如果一条直线经过点〔3,-5〕,且它的倾斜角等于直线x y --=250的倾斜角的2倍,求该直线方程.15、直线l 过点P 〔6,-2〕,且与坐标轴围成一个直角三角形的面积为3,求直线l 的方程.请将答案填在做题卡上 题号 1 2 3 4 56 7 8 9 10 答案11、 、12、 ,13、2022---2022年度 高二〔上〕数学期中测试 班级 姓名 号次…………密………………………………………封……………………………………线…………………………………………密 封 线 内 不 要 答 题 , 否 那么 不 给 分14、 ,15、 、〔每题10分,共50分〕16、求y x x =++2254的最小值.17、解不等式 21582>+-x x x18、假设a>b>c>0,求证b a -1+c b -1ca -≥419、过点P 〔1,2〕作直线l 交x ,y 轴的正半轴于A ,B 两点,求使∆AOB 面积取得最小值时,直线l 的方程.20、直线l 过点P 〔0,1〕, 并与直线l 1:x -3y+10=0和l 2:2x+y -8=0分别交于点A,B(如图), 假设线段AB 被点P 平分,求直线l 的方程.2022---2022年度 高二〔上〕数学期中测试 班级 姓名 号次…………密………………………………………封……………………………………线…………………………………………密 封 线 内 不 要 答 题 , 否 那么 不 给 分考 案2、解:两直线l 1:A 1x+B 1y+C 1=0,l 2:A 2x+B 2y+C 2=0,互相垂直的充要条件是 :A 1A 2+B 1B 2=0 ∴由题设得a ·1+2·1=0,从而a=-2. 应选D.11、(-∞,-3)∪(2,+∞) ,12、 6 ,13、{x|-4<x <2= ,14、43270x y --= , 15、 、14、 解:设直线x y --=250的倾斜角为α x y --=250∴所求直线方程为:()()y x --=-5433即:43270x y --= 、解:设所求方程为:x a y b +=1 ∴-==⎧⎨⎪⎪⎩⎪⎪∴-==⎧⎨⎩621123626a b a b b a ab ab ∴-==-⎧⎨⎩⇒-==⎧⎨⎩⇒==⎧⎨⎩=-=-⎧⎨⎩6266263261b a ab ab b a ab ab a b a b 无实解或或∴ 所求直线x y x y321611+=-+-=或 ∴ 即:2360660x y x y +-=++=或16、 〔错误解法:y x x x x x x x =++=++++=+++≥22222225444144142错在:当且仅当x x 22414+=+时,即x 241+=时取最值〕解法一: y x x x x x t t =++=++++=+222225444141()令t x t =+≥242() 那么t yt t 2102-+=≥()令f t t yt t ()()=-+≥212f ()01= 显然t yt 210-+=只有一个大于或等于2的根 ∴≤f ()20即f y y ()2421052=-+≤⇒≥ 即y x x =++2254的最小值是52解法二: y x x x x x t t =++=++++=+222225444141() 令t x t =+≥242()利用图象迭加,可得其图象〔如以下图〕 〔17〕∵21582>+-x x x∴0)5)(3()52)(6(<----x x x x ∴)6,5()3,25( ∈x ∴原不等式的解集为)6,5()3,25(19、解:设直线l 方程为:()x a yba b +=>>100, ∵P 〔1,2〕在直线l 上∴+=∴+=>>∴+≥∴≥∴≥∴≥121200222228822a ba b aba b a b ab ab ab a b abab ①,②①代入②③当且仅当2a b =时,②式中等号成立,即③式中等号成立.∴=2a b 时,ab 有最小值8, 此时∆AOB 的面积有最小值124ab =2824a b ab a b ==⎧⎨⎩⇒==⎧⎨⎩∴直线l 方程为:x y241+= 即:240x y +-=20. x+4y-4=0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档