高等数学期末复习习题-第十一章-无穷级数

合集下载

高数(二)期末复习题库

高数(二)期末复习题库

∫L xdy − 2 ydx = (
B
).
( D ) 4. xdy − ydx 2 2 2. 判断:若 L为正向单位圆周 x + y = 1, 则∫ = 2π .( ) 2 2 L x + y 3. 计算曲线积分 I = ∫ ( 2 xy − x 2 )dx + ( x + y 2 )dy , 其中L是由
2. 设f ( x )是周期为2π的周期函数,且
⎧ 0 , − π ≤ x < 0, 当x = π 时,它的傅里叶级数 f ( x) = ⎨ ⎩ x , 0 ≤ x < π.
收敛于:
π
2
第一型曲线积分
第10章 线面积分
⎧ x = ϕ ( t ), 1. 设f ( x , y )在曲线弧 L上连续, L的参数方程为 ⎨ ⎩ y = ψ ( t ), (α ≤ t ≤ β ), 其中ϕ ( t ),ψ ( t )在[α , β ]上具有一阶连续导数, 且ϕ ′ 2 ( t ) + ψ ′ 2 ( t ) ≠ 0,则曲线积分 ∫ f ( x , y )ds =
∞ n =1
( B ) 若交错级数 ∑ ( −1)n un收敛,则必为条件收敛 ; (C ) 当 lim un = 0时,级数 ∑ un一定收敛;
n→ ∞ n =1 ∞
( D ) 若对级数 ∑ un的项任意加括号后所成 的新级数发散,
n =1

则原级数一定发散 .
级数敛散性的判别
5. 下列命题正确的是 ( B )
L
( A) 1; ( B ) 3 ;
(C ) 2 ;

抛物线 y = x 2和x = y 2所围成的区域 D正向边界曲线 .

高等数学第十一章习题

高等数学第十一章习题
第十一章总习题
1. 填空题

∑ (1)
lim
n→∞
un
= 0 是级数 un 收敛的
n=1
必要
条件,
而不是
充分
条件;



(2) 若级数 ∑un 绝对收敛, 则级数 ∑un 必定 收敛 ; 若级数 ∑un 条件收敛,
n=1
n=1
n=1

则级数 ∑ un 必定 发散 ; n=1


(3) 级数 ∑un 按某一方式经添加括号后所得的级数收敛是级数 ∑un 收敛的
.
n=1 (n − 1)! 3
n=1 (n − 1)!
n=1 (n − 1)!
93
所以
S ( x)
=
x2 (
+
x
x
+ 1)e3
,
x ∈ (−∞, +∞) .
93
∑ ∑ (4) 令 t = x + 1, 则 ∞ (x + 1)n = ∞ tn . n=0 (n + 2)! n=0 (n + 2)!
设 an
−1)
,
而 lim un+1 n→∞ un
=
lim
n→∞
2(n + 1) 2n+1
−1 2n x2 2n −1
=
x2 2
,

x=±
2
时级数


2n

1
发散,
所 以 级 数 的 收 敛 区 间 为 (−
2,
2) .

n=1 2
∑ S ( x)
=
∞ n=1

高数 无穷级数练习

高数 无穷级数练习
班级
姓名
学号
第十一章
无穷级数
习题 11-1 1、用级数收敛与发散的定义判断下列级数的敛散性
(1)


1
n +1 + n n =1 解:设前 n 项部分和为 S n ,则
n →∞
lim S n = lim
n→∞

i =1
n
1
i +1 + i
= lim
n →∞
∑(
i =1
n
i + 1 − i ) = lim ( n + 1 − 1) = ∞
n →∞
由级数敛散性定义知:级数
(2)

n =1

1
n +1 + n
发散。
∑ (n + 1)!
n =1

n
解:设前 n 项部分和为 S n ,则
n →∞
lim S n = lim
n →∞
∑ (i + 1)! = lim ∑ (i + 1)! = lim ∑ ( i! − (i + 1)!) = lim (1 − (n + 1)!) = 1

解:因为
lim
n →∞
由比值审敛法知:级数 ∑ (−1) n
n =1
n! 收敛,且绝对收敛。 1 ⋅ 3 ⋅ 5 L (2n − 1)
59
班级
姓名
∞ n +1
学号
(3)
∑ (−1)
n =1
n 1 + n2 1 n > 2 n 1+ n
解:因为
(−1) n +1

(整理)第十一章无穷级数(答案)34872

(整理)第十一章无穷级数(答案)34872

第十一章 无穷级数一、选择题1、无穷级数∑∞=1n nu的部分和数列}{n S 有极限S ,是该无穷级数收敛的 C 条件。

A 、充分,但非必要B 、必要,但非充分C 、充分且必要D 、既不充分,又非必要 2、无穷级数∑∞=1n nu的一般项n u 趋于零,是该级数收敛的 C 条件。

A 、充分,但非必要B 、必要,但非充分C 、充分且必要D 、既不充分,又非必要 3、若级数∑∞=1n nu发散,常数0≠a ,则级数∑∞=1n nauBA 、一定收敛B 、一定发散C 、当0>a 收敛,当0<a 发散D 、当1<a 收敛,当1>a 发散。

4、若正项级数∑∞=1n nu收敛,则下列级数必定收敛的是 AA 、∑∞=+1100n n uB 、∑∞=+1)100(n nuC 、∑∞=-1)100(n n u D 、∑∞=-1)100(n n u5、若级数∑∞=1n na 收敛,∑∞=1n nb发散,λ为正常数,则级数∑∞=-1)(n n nb aλ BA 、一定收敛B 、一定发散C 、收敛性与λ有关D 、无法断定其敛散性 6、设级数∑∞=1n nu的部分和为n S ,则该级数收敛的充分条件是 DA 、0lim =∞→nn u B 、1lim1<=+∞→r u u nn nC 、21n u n≤D 、n n S ∞→lim 存在7、设q k 、为非零常数,则级数∑∞=-11n n qk收敛的充分条件是 CA 、1<qB 、1≤qC 、1>qD 、1≥q8、级数∑∞=+111n p n发散的充分条件是 AA 、0≤pB 、1-≤pC 、0>pD 、1->p9、级数∑∞=1n na收敛,是级数∑∞=1n na绝对收敛的 C 条件A 、充分,但非必要B 、必要,但非充分C 、充分必要D 、既不充分,又非必要10、交错级数∑∞=++-111)1(n p n n绝对收敛的充分条件是 A A 、0>p B 、0≥p C 、1>p D 、1≥p11、设常数0>k ,则级数∑∞=+-12)1(n n n n k BA 、绝对收敛B 、条件收敛C 、发散D 、敛散性与k 有关 12、设常数0>a ,则级数∑∞=12sin n naAA 、绝对收敛B 、条件收敛C 、发散D 、敛散性与a 有关13、级数∑∞=12!n nn 与∑∞=+-11)1(n nn 的敛散性依次是 、D A 、收敛,收敛 B 、发散,发散 C 、收敛,发散 D 、发散,收敛 14、下列级数中,为收敛级数的是 CA 、∑∞=131n n B 、∑∞=+111n n C 、∑∞=+121n nn D 、∑∞=+112n n n 15、下列级数中,为发散级数的是 BA 、∑∞=1!2n nn B 、∑∞=12!n nn C 、∑∞=+121n n n D 、∑∞=-12)1(n n n16、下列级数中,为绝对收敛级数的是 DA 、∑∞=+111n n B 、∑∞=+-11)1(n n n C 、∑∞=+-1212)1(n nn n D 、∑∞=-12)1(n nn17、下列级数中,为条件收敛级数的是 AA 、∑∞=+-121)1(n n n n B 、∑∞=+-11)1(n n n n C 、∑∞=+-121)1(n nnn D 、∑∞=-12!)1(n nn n 18、幂级数∑∞=+12)1(n nnn x 的收敛区间是 BA 、[-2,2]B 、[)2,2- C 、(-2,2) D 、(]2,2-19、幂级数∑∞=-+-111)1(n nn n x 的收敛域是 、DA 、(-1,1)B 、[-1,1]C 、[)1,1-D 、(]1,1-20、幂级数∑∞=+++-111)1()1(n n n n x 的收敛域是 CA 、[-2,0]B 、(-2,0)C 、(]0,2-D 、[)0,2-二、填空题21、当参数α满足条件 时,级数∑∞=--+111n n n n α收敛。

第十一章-无穷级数(习题及解答)

第十一章-无穷级数(习题及解答)

第十一章 无穷级数§11.1 级数的概念、性质一、单项选择题1. 若级数1n n aq ∞=∑收敛(a 为常数),则q 满足条件是( ). (A)1q =; (B)1q =-; (C)1q <; (D)1q >. 答(D).2. 下列结论正确的是( ).(A)若lim 0n n u →∞=,则1n n u ∞=∑收敛;(B)若1lim()0n n n u u +→∞-=,则1n n u ∞=∑收敛;(C)若1n n u ∞=∑收敛,则lim 0n n u →∞=;(D)若1n n u ∞=∑发散,则lim 0n n u →∞≠. 答(C).3. 若级数1n n u ∞=∑与1n n v ∞=∑分别收敛于12,S S ,则下述结论中不成立的是( ).(A)121()nn n u v S S ∞=±=±∑; (B)11nn ku kS ∞==∑;(C)21nn kvkS ∞==∑; (D)112nn nu S vS ∞==∑. 答(D). 4. 若级数1n n u ∞=∑收敛,其和0S ≠,则下述结论成立的是( ).(A)1()n n u S ∞=-∑收敛; (B)11n nu ∞=∑收敛; (C)11n n u∞+=∑收敛; (D)n ∞=收敛. 答(C).5. 若级数1n n a ∞=∑收敛,其和0S ≠,则级数121()n n n n a a a ∞++=+-∑收敛于( ).(A)1S a +; (B)2S a +; (C)12S a a +-; (D)21S a a +-.答(B).6. 若级数∑∞=1n na发散,∑∞=1n nb收敛则 ( ).(A)∑∞=+1)(n n nb a发散;(B)∑∞=+1)(n n nb a可能发散,也可能收敛;(C)∑∞=1n nn ba 发散; (D)∑∞=+122)(n n n b a发散. 答(A).二、填空题1. 设1a <,则().n n a ∞=-=∑答:11a +. 2. 级数0(ln 3)2nnn ∞=∑的和为.答:21ln 3-.3. 级数0n ∞=∑,其和是 . 答: 14.数项级数∑∞=+-1)12)(12(1n n n 的和为.答:12. 5*. 级数0212nn n ∞=-∑的和为. 答: 3.三、简答题1. 判定下列级数的敛散性(1)23238888(1)9999nn -+-++-+答: 收敛.解: (2) 11113693n+++++ 答: 发散.解:(3)1133n++ 答: 发散.解:(4) 232333332222n n +++++ 答: 发散.解:(5) 22331111111123232323n n ⎛⎫⎛⎫⎛⎫⎛⎫+++++++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭答: 收敛.解:§11.2 正项级数收敛判别法、P — 级数一、单项选择题1. 级数1n n u ∞=∑与1n n v ∞=∑满足0,(1,2,)n n u v n <≤=,则( ).(A)若1n n v ∞=∑发散,则1n n u ∞=∑发散;(B)若1n n u ∞=∑收敛,则1n n v ∞=∑收敛; (C)若1n n u ∞=∑收敛,则1n n v ∞=∑发散;(D)若1n n u ∞=∑发散,则1n n v ∞=∑发散. 答(D).2. 若10,(1,2,)n a n n≤<=,则下列级数中肯定收敛的是( ).(A)1nn a ∞=∑; (B)11()n n n a a ∞+=+∑;(C)21n n a∞=∑; (D)n ∞=. 答(C).3. 设级数 (1)12!nn n n n ∞=∑与 (2) 13!nn n n n ∞=∑,则( ). (A)级数(1)、(2)都收敛; (B) 级数(1)、(2)都发散;(C)级数(1)收敛,级数(2)发散; (D) 级数(1)发散,级数(2)收敛. 答(C).4. 设级数(1) n ∞=与 (2) 110!nn n ∞=∑, 则( ).(A)级数(1)、(2)都收敛; (B) 级数(1)、(2)都发散;(C)级数(1)收敛,级数(2)发散; (D) 级数(1)发散,级数(2)收敛. 答(D).5. 下列级数中收敛的是( ).(A)1n ∞= (B)11sin n n ∞=∑; (C)1(1)31nn n n ∞=--∑; (D)1121n n ∞=-∑. 答(A).6*. 若级数22116n n π∞==∑,则级数211(21)n n ∞==-∑( ). (A)24π; (B)28π; (C)212π; (D)216π. 答(B).7. 设1n n u ∞=∑与1n n v ∞=∑均为正项级数,若1lim=∞→nnn v u ,则下列结论成立的是( ).(A)1nn u ∞=∑收敛, 1n n v ∞=∑发散; (B) 1n n u ∞=∑发散, 1n n v ∞=∑收敛;(C)1nn u∞=∑与1n n v ∞=∑都收敛,或1n n u ∞=∑与1n n v ∞=∑都发散. (D)不能判别. 答(C).8. 设正项级数∑∞=1n nu收敛,则( ).(A)极限1limn n n u u +→∞≤1; (B) 极限1lim n n nuu +→∞<1;(C)极限1n; (D)无法判定. 答(A)9. 用比值法或根值法判定级数1n n u ∞=∑发散,则∑∞=1n nu( ).(A)可能发散; (B)一定发散;(C)可能收敛; (D)不能判定. 答(B)二、填空题1. 正项级数1n n u ∞=∑收敛的充分必要条件是部分和nS .答:有上界.2. 设级数1n n α∞=∑收敛,则α的范围是. 答:32α>. 3. 级数1n n u ∞=∑的部分和21n nS n =+,则n u =. 答:2(1)n n +. 4. 级数0212n n n ∞=+∑是收敛还是发散. 答:收敛.5. 若级数11sin p n n n π∞=∑收敛,则p 的范围是. 答:0p >.6. 级数13!n n n n n∞=∑是收敛还是发散 . 答:发散.三、简答题1. 用比较法判定下列级数的敛散性:(1) 2111n nn ∞=++∑; 答:发散. (2) 11(1)(2)n n n ∞=++∑; 答: 收敛.(3) 1sin2nn π∞=∑; 答:收敛. (4)11(0)1n n a a∞=>+∑.答1a >收敛;1a ≤发散.2. 用比值法判定下列级数的敛散性:(1) 132nnn n ∞=⋅∑; 答:发散. (2) 213n n n ∞=∑; 答: 收敛. 解:(3) 12!n n n n n ∞=⋅∑; 答: 收敛. (4)11tan2n n n π∞+=∑. 答: 收敛.解:3. 用根值法判定下列级数的敛散性:(1) 121nn n n ∞=⎛⎫ ⎪+⎝⎭∑; 答: 收敛. (2)11[ln(1)]nn n ∞=+∑; 答:收敛.解: 解:(3) 21131n n n n -∞=⎛⎫⎪-⎝⎭∑; 答:收敛.解:(4) 1nn n b a ∞=⎛⎫⎪⎝⎭∑其中,()n a a n →→∞,,,n a b a 均为正数.答:当b a <时收敛,当b a >时发散,当b a =时不能判断.§11.3 一般项级数收敛判别法一、单项选择题1. 级数1nn u∞=∑与1nn v∞=∑满足,(1,2,)n n u v n ≤=,则( ).(A) 若1n n v ∞=∑收敛,则1n n u ∞=∑发散;(B) 若1nn u∞=∑发散,则1nn v∞=∑发散;(C) 若1n n u ∞=∑收敛,则1n n v ∞=∑发散;(D) 若1n n v ∞=∑收敛,则1n n u ∞=∑未必收敛.答(D).2. 下列结论正确的是( ).(A) 1nn u∞=∑收敛,必条件收敛; (B) 1nn u∞=∑收敛,必绝对收敛;(C) 1nn u ∞=∑发散,则1nn u ∞=∑必条件收敛;(D)1n n u∞=∑收敛,则1nn u∞=∑收敛. 答(D) .2. 下列级数中,绝对收敛的是( ).(A) 1(1)31nn n n ∞=--∑; (B) 1211(1)n n n ∞-=-∑; (C) 111(1)ln(1)n n n ∞-=-+∑; (D) 111(1)n n n ∞-=-∑. 答(B) .3. 下列级数中,条件收敛的是( ).(A) 1(1)n n ∞-=-∑; (B) 112(1)3nn n ∞-=⎛⎫-⎪⎝⎭∑; (C) 1211(1)n n n ∞-=-∑; (D) 111(1)2n n n n ∞-=-⋅∑. 答(A) . 4. 设α为常数,则级数21sin n n n α∞=⎛- ⎝∑( ). (A) 绝对收敛; (B) 条件收敛;(C) 发散; (D)敛散性与α的取值有关. 答(C).5. 设),3,2,1()11ln(cos =+=n nn a n π,则级数( ).(A)∑∞=1n na与∑∞=12n na都收敛. (B)∑∞=1n na与∑∞=12n na都发散.(C)∑∞=1n na收敛,∑∞=12n na发散. (D)∑∞=1n na发散,∑∞=12n na收敛. 答(C).6.设),3,2,1(10 =<<n na n ,则下列级数中肯定收敛的是( ). (A)∑∞=1n n a . (B)∑∞=-1)1(n n na . (C) ∑∞=2ln n n n a . (D)∑∞=22ln n n n a . 答(D). 7.下列命题中正确的是( ).(A) 若∑∞=12n nu与∑∞=12n nv都收敛,则21)(n n nv u+∑∞=收敛.(B)若∑∞=1n nn v u收敛,则∑∞=12n n u 与∑∞=12n n v 都收敛.(C) 若正项级数∑∞=1n n u 发散,则nu n 1≥. (D)若),3,2,1( =<n v u n n ,且∑∞=1n nu发散,则∑∞=1n nv发散. 答(A).二、填空题1. 级数11(1)n n n α-∞=-∑绝对收敛,则α的取值范围是 . 答: 1.α> 2. 级数11sin 2n n nαπ∞=∑条件收敛,则α的取值范围是 . 答:0 1.α<≤3. 级数2n n a ∞=∑收敛,则0(1)nn n a n ∞=-∑是条件收敛还是绝对收敛 .答:绝对.收敛三、简答题1. 判定下列级数的敛散性,若收敛,是条件收敛还是绝对收敛?(1) 1(1)n n ∞-=-∑ 答: .条件收敛解: (2)111(1)3n n n n∞--=-∑; 答: .绝对收敛 解: (3)21sin (1)n n n α∞=+∑; 答: .绝对收敛 解: (4)111(1)32n nn ∞-=-⋅∑; 答: .绝对收敛 解: (5)111(1)ln(1)n n n ∞-=-+∑; 答: .条件收敛 解:(6) 2112(1)!n n n n ∞+=-∑ 答: .发散 解:§11.4 幂级数收敛判别法一、单项选择题1. 幂级数1nn x n∞=∑的收敛区间是( ).(A)[1,1]-; (B)(1,1)-; (C)[1,1)-; (D)(1,1]-. 答(C).2. 幂级数1(1)(1)2nnnn x n ∞=+-⋅∑的收敛区间是( ).(A)[2,2]-; (B)(2,2)-; (C)[2,2)-;(D)(2,2]-. 答(D).3. 幂级数2213nn n x n ∞=⋅∑的收敛半径是( ).(A)3R =; (B)R ; (C)13R =; (D)R = 答(B). (A ) (C)(B )(D)4. 若级数∑∞=+1)2(n nnx C 在4x =处是收敛的,则此级数在1x =处( ).(A)发散;(B)条件收敛; (C)绝对收敛; (D)收敛性不能确定. 答(C).5. 若级数∑∞=+1)2(n nnx C 在4x =-处是收敛的,则此级数在1x =处( ).(A)发散;(B)条件收敛; (C)绝对收敛; (D)收敛性不能确定. 答(D).6.若幂级数nn nx a)1(0-∑∞=在1-=x 处条件收敛,则级数∑∞=0n n a ( ).(A)条件收敛; (B)绝对收敛; (C)发散; (D)敛散性不能确定. 答(B).二、填空题1. 幂级数21nn x n∞=∑的收敛域是 . 答: [1,1].-2. 幂级数2123n n nn x nn ∞=⎛⎫+ ⎪⎝⎭∑的收敛域是. 答: 11,.33⎡⎤-⎢⎥⎣⎦3. 幂级数1211(1)(21)!n n n x n --∞=--∑的收敛半径R = ,和函数是 .答:,sin .R x =+∞4. 幂级数20(1)(2)!n nn x n ∞=-∑的收敛半径R = ,和函数是 .答:,cos .R x =+∞5. 设0nn n a x ∞=∑的收敛半径为R ,则20n n n a x ∞=∑的收敛半径为 .答:6. 设幂级数0nn n a x ∞=∑的收敛半径为4,则210n n n a x ∞-=∑的收敛半径为 .答:2.7. 幂级数1(23)(1)21nn n x n ∞-=---∑的收敛域是 . 答:(1,2].8. 幂级数∑∞=-02)1(n n nx a在处2=x 条件收敛,则其收敛域为 .答:]2,0[.一、简答题1. 求下列幂级数的收敛域. (1)1nn nx∞=∑; 答: (1,1).- (2)121(1)nn n x n ∞-=-∑; 答: [1,1].- (3) 13nnn x n ∞=⋅∑; 答:[3,3)-. (4) 2121n n n x n ∞=+∑; 答:11,22⎡⎤-⎢⎥⎣⎦.(5) nn ∞= 答:[4,6). (6)211(1)21n nn x n +∞=-+∑. 答:[1,1].-2. 用逐项求导或逐项积分,求下列幂级数的和函数.(1)11n n nx∞-=∑; 答:21(),(1,1)(1)S x x x =∈--. 解:(2) 21121n n x n -∞=-∑. 答:11()ln ,(1,1)21xS x x x +=∈--.解:3*. 求级数112nn n ∞=⋅∑的和. 答:2ln 2. 解:§11.5 函数展开成幂级数一、单项选择题1. 函数2()x f x e -=展开成x 的幂级数是( ).(A) 46212!3!x x x ++++;(B) 46212!3!x x x -+-+;(C) 2312!3!x x x ++++ ; (D) 2312!3!x x x -+-+. 答(B).2. 如果()f x 的麦克劳林展开式为20n n n a x ∞=∑,则n a 是( ).()(0)(A)!n f n ;(2)(0)(B)!n f n ;(2)(0)(C)(2)!n f n ;()(0)(D)(2)!n f n . 答(A). 3. 如果()f x 在0x x =的泰勒级数为00()n n n a x x ∞=-∑,则n a 是( ).()0(A)()n f x ;(2)0()(B)!n fx n ;(2)0()(C)!n f x n ;()0()(D)!n f x n . 答(C). 4. 函数()sin 2f x x =展开成x 的幂级数是( ).357(A)3!5!7!x x x x -+-+; 224466222(B)12!4!6!x x x -+-+; 335577222(C)23!5!7!x x x x -+-+; 462(D)14!6!x x x -+-+. 答(C).二、填空题1. 函数()xf x a =的麦克劳林展开式为. 答: 0(ln ).!n nn a x n ∞=∑ 2. 函数12()3x f x +=的麦克劳林展开式为. 0ln 3.2!nn n xn ∞=⎛⎫ ⎪⎝⎭ 3. 幂级数2111(1)(21)!n n n x n -∞-=--∑的和函数是 . 答:sin .x4. 函数1()1f x x =-的麦克劳林级数为. 答:0.n n x ∞=∑5. 函数1()1f x x=+的麦克劳林级数为. 答:0(1).n n n x ∞=-∑6. 函数()ln(1)f x x =+的麦克劳林级数为.答: 11(1).nn n x n∞-=-∑ 7. 函数()xf x e =在1x =处的泰勒级数. 答:0(1).!n n ex n ∞=-∑8. 函数1()1f x x =+在1x =处的泰勒级数.答: 10(1)(1).2nnn n x ∞+=--∑ 9. 函数1()f x x=展开成3x -的幂级数为. 答: 1(3)(1).3nnn n x ∞+=--∑ 10. 函数2()cos f x x =展开成x 的幂级数为. 答:212012(1).2(2)!n nn n x n -∞=+-∑ 11. 级数0(1)(2)!nn n ∞=-∑的和等于. 答:cos1.三、简答题1. 将下列函数展开成x 的幂级数,并求展开式成立的区间. (1) ()ln(),(0)f x a x a =+>; 解:答:11ln()ln (1).nn nn x a x a n a ∞-=+=+-⋅∑ (2) 2()sin f x x =;解:答:2211(2)sin (1),(,).2(2)!nn n x x n ∞-==--∞+∞∑ (3) ()(1)ln(1)f x x x =++; 解:答:12(1)(1)ln(1),(1,1].(1)n nn x x x x n n -∞=-++=+--∑(4*) ()f x =;解:21212(2)!(1),[1,1].(!)2n nn n x x n +∞=⎛⎫=+-- ⎪⎝⎭∑(5). 2()23xf x x x =--.解:答:211221112(2)!(1),(1,1).2343(!)2n n nn n x n x x x x n +∞-=⎡⎤⎛⎫=-+-- ⎪⎢⎥--⎣⎦⎝⎭∑2. 将函数()cos f x x =展开成3x π⎛⎫+ ⎪⎝⎭的幂级数.解:答: 221011cos (1),(,).2(2)!33nn n nn x x x n ππ+∞=⎡⎤⎛⎫⎫=-+++-∞+∞⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎥⎣⎦∑3*. 将函数2()ln(3)f x x x =-在1x =展开成幂级数. 解:答: 2101(1)ln(3)ln 2(1),(0,2].2n n n n x x x n ∞-=-⎡⎤-=+--⎢⎥⎣⎦∑ 4*. 将函数21()32f x x x =++展开成4x +的幂级数.解:答: 2110111(4),(6,2).3223n n n n x x x ∞++=⎛⎫=-+-- ⎪++⎝⎭∑§11.6 2π为周期的傅里叶级数一、单项选择题1. 函数系{}1,cos ,sin ,cos 2,sin 2,,cos ,sin ,().x x x x nx nx(A) 在区间[,]ππ-上正交; (B) 在区间[,]ππ-上不正交;(C) 在区间[0,]π上正交; (D) 以上结论都不对. 答(A).2. 函数系{}1,sin ,sin 2,,sin ,().x x nx(A) 在区间[0,]π上正交; (B) 在区间[0,]π上不正交;(C) 不是周期函数; (D) 以上结论都不对. 答(B).3. 下列结论不正确的是( ).(A)cos cos d 0,()nx mx x n m ππ-=≠⎰;(B)sin sin d 0,()nx mx x n m ππ-=≠⎰; (C)cos sin d 0nx mx x ππ-=⎰; (D)cos cos d 0nx nx x ππ-=⎰. 答(D).4. ()f x 是以2π为周期的函数,当()f x 是奇函数时,其傅里叶系数为( ).(A)010,()sin d n n a b f x nx x ππ==⎰;(B)010,()cos d n n a b f x nx x ππ==⎰; (C)020,()sin d n n a b f x nx x ππ==⎰;(D)020,sin d n n a b nx x ππ==⎰.答(C).5. ()f x 是以2π为周期的函数,当()f x 是偶函数时,其傅里叶系数为( ).(A)010,()sin d n n b a f x nx x ππ==⎰;(B)020,()cos d n n b a f x nx x ππ==⎰; (C)010,()cos d n n b a f x nx x ππ==⎰;(D)020,cos d n n b a nx x ππ==⎰. 答(B).二、填空题1. ()f x 是以2π为周期的函数,()f x 傅里叶级数为.答:01(cos sin ).2n n n a a nx b nx ∞=++∑其中1()cos d ,0,1,2,,n a f x nx x n πππ-==⎰1()sin d ,1,2,.n b f x nx x n πππ-==⎰2. ()f x 是以2π为周期的偶函数,()f x 傅里叶级数为.答:01cos .2n n a a nx ∞=+∑ 02()cos d ,0,1,2,.n a f x nx x n ππ==⎰其中3. ()f x 是以2π为周期的奇函数,()f x 傅里叶级数为.答:1sin .n n b nx ∞=∑ 02()sin d ,1,2,.n b f x nx x n ππ==⎰其中4. 在(),()f x x x πππ=--≤≤的傅里叶级数中,sin x 的系数为 .答:2.5. 在()1,()f x x x ππ=+-<≤的傅里叶级数中,sin 2x 的系数为 .答: 1.-6. 在()1,()f x x x ππ=+-<≤的傅里叶级数中,cos2x 的系数为 .答:0.三、简答题1. 下列函数()f x 的周期为2π,试将其展开为傅里叶级数.(1) 2()31,()f x x x ππ=+-≤<;解:答: 221(1)()112cos ,(,).nn f x nx nπ∞=-=++-∞+∞∑(2) ,0(),0bx x f x ax x ππ-≤<⎧=⎨≤≤⎩;解:答:121[1(1)]()(1)()()()cos sin ,4n n n b a a b fx a b nx nx n n ππ-∞=⎧⎫----+=-++⎨⎬⎩⎭∑ (21).x k π≠+2. 将函数()2sin ()3xf x x ππ=-≤≤展开为傅里叶级数.解:答:121()(1)sin ,(,).91n n n f x nx n ππ∞+==---3. 将函数()cos ,()2x f x x ππ=-≤≤展开成傅里叶级数. 解:答:121241()(1)cos ,[,].41n n f x nx n ππππ∞+==+---∑4. 将函数(),(0)2xf x x ππ-=≤≤展开成正弦级数.解:答:1sin (),(0,].n nxf x n π∞==∑ 5. 将函数2()2,(0)f x x x π=≤≤展开成正弦级数和余弦级数.解:答:2331422()(1)sin ,[0,).n n f x nx n n n πππ∞=⎡⎤⎛⎫=---⎢⎥ ⎪⎝⎭⎣⎦∑ 2212(1)()8cos ,[0,].3nn f x nx nππ∞=-=+∑§11.7 一般周期函数的傅里叶级数一、单项选择题1. 下列结论不正确的是( ).(A)coscos d 0,()lln x m xx n m l l ππ-=≠⎰; (B)sin sin d 0,()l l n x m x x n m l l ππ-=≠⎰;(C)cos sin d 0l l n x m x x l l ππ-=⎰; (D)sin sin d 0l l n x n x x l lππ-=⎰. 答(D).2. ()f x 是以2l 为周期的函数,则()f x 的傅里叶级数为( ).(A)01cos n n n n x n x a a b l l ππ∞=⎛⎫++ ⎪⎝⎭∑;(B)01cos 2n n n a n x n x a b l l ππ∞=⎛⎫++ ⎪⎝⎭∑; (C)1nn n xb l π∞=∑; (D)01cos 2n n a n x a l π∞=+∑. 答(B). 3. ()f x 是以2l 为周期的函数,当()f x 是偶函数时,其傅里叶级数为( ).01(A)cos2n n a n x a l π∞=+∑; 01(B)cos n n n xa a l π∞=+∑; 1(C)sin n n n x b l π∞=∑; 01(D)sin 2n n a n xa l π∞=+∑. 答(A). 4. ()f x 是以2l 为周期的函数,当()f x 是奇函数时,其傅里叶级数为( ).01(A)sin 2n n b n x b l π∞=+∑; 01(B)cos n n n x b b l π∞=+∑1(C)sin n n n x b l π∞=∑; 1(D)cos n n n xb l π∞=∑. 答(C).二、填空题1. ()f x 是以2为周期的函数, ()f x 的傅里叶级数为.答:01cossin .222n n n a n n a x b x ππ∞=⎛⎫++ ⎪⎝⎭∑ 111()cos d ,0,1,2,,22n n a f x x x n π-==⎰其中111()sin d ,1,2,.22n n b f x x x n π-==⎰2. ()f x 是以2l 为周期的偶函数, ()f x 的傅里叶级数为.答:01cos .2n n a n a x l π∞=+∑ 02()cos d ,0,1,2,.l n n a f x x x n l lπ==⎰其中3. ()f x 是以2l 为周期的奇函数,()f x 的傅里叶级数为.答:1sin.n n n b x l π∞=∑ 02()sin d ,1,2,.n n b f x x x n l l ππ==⎰其中4. 设()f x 是以3为周期的函数,1,10(),02x x f x x x +-≤<⎧=⎨≤<⎩.又设()f x 的傅里叶级数的和函数为()S x ,则(0)S =,(3)S =.答:1(0)(3).2S S ==5. 设()f x 是以3为周期的函数,32,10(),01x f x x x -≤<⎧=⎨≤<⎩,则()f x 的傅里叶级数在1x =处收敛于.答:3.26. 设()f x 是以2为周期的函数,1,02()10,12x x f x x ⎧≤<⎪⎪=⎨⎪≤<⎪⎩,又设()S x 是()f x 的正弦级数的和函数,则74S ⎛⎫= ⎪⎝⎭.答: 71.44S ⎛⎫=- ⎪⎝⎭三、简答题1. 设周期函数在一个周期内的表达式为211()122f x x x ⎛⎫=--≤< ⎪⎝⎭,试将其展开为傅里叶级数.解:答: 121111(1)()cos(2)(,).122n n f x n x ππ=∞=-=+-∞+∞∑2. 设周期函数在一个周期内的表达式为21,30()1,03x x f x x +-≤<⎧=⎨≤<⎩,试将其展开为傅里叶级数.解:答: 1221166()[1(1)]cos(1)sin ,3(21).233n n n n n f x x x x k n n ππππ∞+=⎧⎫=-+--+-≠+⎨⎬⎩⎭∑ 3*. 将函数2(),(02)f x x x =≤≤分别展开成正弦级数和余弦级数.解:答: 123218(1)2[(1)1]sin ,0 2.2n n n n x x x n n πππ+∞=⎧⎫-=+--≤<⎨⎬⎩⎭∑ 2221416(1)cos ,0 2.32n n n x x x n ππ∞=-=+≤≤∑。

(完整版)无穷级数习题及答案.doc

(完整版)无穷级数习题及答案.doc

第十一章 无穷级数(A)用定义判断下列级数的敛散性1. n 2n 1; .1;3. 11 。

2n 1 2n 2n2n 13 n5 nn 1判断下列正项级数的敛散性.n! ;5. n e; 6.n 1;7. 2n 3;8. n 4 ;n 1 e n1 2nn 1 n n 3 n 1 n! n 1 100 n nn nn1 n9.;10.3n n 12n。

n 11求下列任意项级数的敛散性,收敛时要说明条件收敛或绝对收敛.1n 1n 1 ; 12.1n1; 13.1.1 1.01 1.001 1.0001;112 nln nn 1n 214.122 2 3 1 4 1 ;21 32 4 2求下列幂级数的收敛半径和收敛区间.3n x n;16.1 n x n ; 17.n! xn; .1 n;n n n 1 2n n n 1 n n 1n 119.1 2n 1; 20. n 2n;1 2 n 1xn 1 3 n xn求下列级数的和函数21. n 1 nxn 1; 22. n 1 21n 1 x2n 1;将下列函数展开成 x x 0 的幂的级数23. shx e xe x , x 00 ;24. cos 2 x , x 00 ;225. 1 x ln 1 x , x 00 ; 26. 1, x 0 3 ;x将下列函数在区间, 上展开为付里叶级数27. A xcos x,x。

28. f x 2t , x22x , 3x t 029.将函数 f x, 0 t 3 展开成付里叶级数。

xx, 0 xl2分别展开成正弦级数和余弦级数。

30.将函数 f xllx , x l2(B)用定义判断下列级数的敛散性1.1;2.1; 3.n 2 2 n 2n 03n 1 3n4n 1n n 1 n2n 1判断下列正项级数的敛散性2n n!2n2n3n na n. ; 5.;6. ,( a 0 );4n3n 12n nn 1nn1n 11nb7.,其中 a na ( n), a n , b , a 均为正数;n 1a n11x8.n,( a 0);9. n 42x ;1 n 1 0 1 x n 1 1判断下列任意项级数的敛散性,收敛时要说明条件收敛或绝对收敛n 12 n 2n 1ln 2110.1;11.n 1;12.1n 1 nn!12 n 13n 2 3nn 1n 1nn 1求下列幂级数的收敛半径和收敛域.nx 2 n;14.x n ,( a 0 ,b 0 ); 1312n!n 1 anb nn 115.n12 n 1; 16. 3n2 nn;12 n4 n x 5x 1 n 1n 1n求下列级数的和函数17. nx 2n ;18.2n 1x 2 n ; 19. n 2 x n ;n 1n 1n ! n 120.求证: ln 21;n ;; 2将下列函数展开成 xx 0 的幂的级数21.f x21,x 0 0 ;22.f x12 ,x 01;23. x ,x 0 0 ; 2x3x 1x1 x 224.证明偶函数的付里叶级数数仅含余弦项;25.写出函数 f x1 x 2k , x2k 1 , 2k1 , k 0, 1, 2,的2付里叶级数,并讨论收敛情况。

[整理]11无穷级数习题与答案

[整理]11无穷级数习题与答案

第十一章 无穷级数A1、根据级数发散与收敛性定义与性质判断级数收敛性1)()∑∞=-+11n n n2)...12)(12(1...751531311++-++⋅+⋅+⋅n n3)) (6)sin(...)62sin()6sin(πππn +++2、用比较法或极限形式的比较法判定级数收敛性。

1) )2sin()2sin()2sin(32n πππ+++2)∑∞=+111n n a ()1>a3)∑∞=++1)4)(1(1n n n4) ...11 (3131212112)22n n +++++++++3、用比值审敛法判定级数收敛性1)∑∞=+112tan n n n π2)∑∞=123n n n3)∑∞=132n n n n4、用根值法判定级数收敛性1)n n n n ∑∞=+1)13(2)[]∑∞=+1)1ln(1n n n5、下列级数是否收敛,若收敛是绝对收敛还是条件收敛 1)...4131211+-+-2)∑∞=--113)1(n n nn3)∑∞=⋅-1231)1(n nn6、求下列幂级数的收敛性半径和收敛域域。

1) ...)1(...21222nx x x n n -+++-2)∑∞=--122212n n n x n3)∑∞=-1!21)1(n n n nx n7、利用逐项求导或积分求级数的和函数. 1)∑∞=++11414n n n x2)∑∞=-11n n nx8、将函数展开成x 的 幂级数并求收敛区间.1)2xx e e shx --=2)x a3)x 2sinB1、判断积数收敛性 1) ∑∞=1!.2n n n n n2) ∑∞=-1!2)1(2n n n n2、利用逐项求导或积分求级数∑∞=+0212n nn x 的和函数.3、求幂级数∑∞=--1)5()1(n nn n x 的收敛域.4、将x cos 展开成3π+x 的幂级数.5、将函数231)(2++=x x x f 展开成4+x 的幂级数.C1、求 ∑∞=-1n nx ne的收敛域. 2、求 ∑∞=+022!1n n n x n n 的和函数. 3、)(x f 是周期为2的周期函数,且在区间[]2,0上定义为:⎩⎨⎧≤<≤≤=21,010,)(x x x x f 求傅里叶展开式. 4 利用3题结果证明用结果证明,∑∞==12261n n π第十一章 无穷级数答案习 题 答 案A1、1)发散 2) 收敛 3) 发散2、1) 收敛 2) 收敛 3)收敛 4)发散3、1) 收敛 2)收敛 3)收敛4、1) 收敛 2)收敛5、1) 条件收敛 2) 绝对收敛 3) 绝对收敛6、1) 收敛半径1=R ,收敛区间:[]1,1-2) 收敛半径2=R ,收敛区间为:()2,2- 3) 收敛半径∞=R , 收敛区间为:()∞∞-,7、1)∑∞=++11414n n n x x x x x --++=11ln 41arctan 21 )1(<x 2)211)1(1x nx n n -=∑∞=- )1(<x 8、1)∑∞=---=-=112)!12(2n n x x n x e e shx ()+∞∞-∈,x 2)n n n a x x x n a e a ∑∞===0ln !ln ()+∞∞-∈,x 3)x 2sin =)!2(4)1(21212cos 212120n x x n n nn ∑∞=--=- ()+∞∞-∈,x B1、1) 解:1111)1(2lim )1()!1(2!.2lim lim -∞→--∞→-∞→-=--=n n n n n n n n nn n n n n n n u u 12)11(lim 21.<=-+=---∞→e n n n n n 由比值法,级数∑∞=1!.2n n n nn 收敛2) 解: 12lim )!1(2!2lim lim 12)1(122>∞==-=-∞→-∞→-∞→n n n u u n n n n n n n n 由比值法,级数∑∞=-1!2)1(2n n nn 发散 2、解:dx x x n x x n x x n n n n n n ⎰∑∑∑∞=∞=+∞==+=+00201202112112 dx x x x ⎰-=02111 x x x -+=11ln 21 )1(<x3、解:11lim lim1=-==∞→-∞→n n a a n n n n ρ,收敛半径11==ρr 6=x 时级数()∑∞=-111n n n 为交错级数收敛4=x 时级数为∑∞=11n n 发散,所以:收敛域为:(]6,44、)3sin(3sin )3cos(3cos )33(cos cos ππππππ+++=-+=x x x x ∑∑∞=+∞=++-++-=01202)!12()3()1(23)!2()3()1(21n n nn n n n x n x ππ 或者直接展开为:n n x n n )3(!)23cos(0πππ∑∞=++- 5、将函数231)(2++=x x x f 展开成4+x 的幂级数 解:设4+=x t 则4-=t x1121341)24(1)(---=+--+-=t t t t x f t t -+--=112121∑∑∞=∞=+-=002)2(21n n n t t )2(<t 所以231)(2++=x x x f =∑∑∞=∞=+-=002)2(21n n n t t C1、解:x xn nx n n n n e e n ne u u ----∞→-∞→=-=)1(1)1(lim lim 当0>x 时1<-x e;0<x 时1>-x e ;0=x 时∑∑∞=∞=-=11n n nx n ne 发散所以:收敛域:()∞∈,0x2、解:令t x =2 ∑∑∑∞=∞=∞=+=+02002!!2!1n n n n n n n t n n n t x n n n n t t n n e ∑∞=-+-+=1)!1(11n n n n t t n t n e ∑∑∞=∞=-+-+=211)2(1)!1(1t t t e t te e 2++=)421(22x x e x++= 3、解2121)(00210200====⎰⎰x xdx dx x f a⎰⎰==2010c o s c o s )(x d x n x x d x n x f a n ππx d x n n x n x n x d x n xd n ⎰⎰-==101010sin 1sin 1sin 1ππππππ[]1)1()(1cos )(12102--==n n x n n πππ xdx n x xdx n x f b n ππsin sin )(1020⎰⎰==xdx n n x n x n xdx n xd n ⎰⎰+-=-=101010cos 1cos 1cos 1ππππππ 1102)1(1sin )(1)1(1+-=+--=n n n x n n n ππππ所以: []x n n x n n x f n n n ππππsin )1(1)12cos()12(1241)(1112+∞=∞=-+---=∑∑ 当1=x 时:收敛于21 4、由⎩⎨⎧≤<≤≤=21,010,)(x x x x f[]x n n x n n x f n n n ππππsin )1(1)12cos()12(1241)(1112+∞=∞=-+---=∑∑(1≠x )[]∑∞==--=120)12(1241)0(n n f π 8)12(1212π=-∑∞=n n ,记48)2(1)12(112121212s n n ns n n n +=+-==∑∑∑∞=∞=∞=π 所以:683412212ππ=⋅==∑∞=n n s。

高数各章综合测试题与答案

高数各章综合测试题与答案

第十一章 无穷级数测试题一、单项选择题一、单项选择题 1、若幂级数1(1)nn n a x ¥=+å在1x =处收敛,则该幂级数在52x =-处必然( ) (A) 绝对收敛; (B) 条件收敛; (C) 发散;(D) 收敛性不定.2、下列级数条件收敛的是(). (A) 1(1);210nn nn ¥=-+å (B) 131(1);n n n-¥=-å(C) 111(1)();2nn n ¥-=-å(D) 113(1).n n n¥-=-å3、若数项级数1nn a¥=å收敛于S ,则级数()121nn n n aa a ¥++=++=å() (A) 1;S a + (B) 2;S a + (C) 12;S a a +-(D) 21.S a a +- 4、设a 为正常数,则级数21sin 3n na n n ¥=éù-êúëûå( ). (A) 绝对收敛; (B) 条件收敛; (C) 发散; (D) 收敛性与a 有关. 5、设2(),01f x x x =<≤,而1()sin π,n n S x b n x x ¥==-¥<<+¥å,其中102()sin π,(1,2,)n b f x n x n ==ò,则1()2S -等于() (A) 1;2- (B) 1;4- (C) 1;4(D) 12.二、填空题二、填空题 1、 设14nn u¥==å,则111()22n n n u ¥=-=å() 2、 设()111n n n a x ¥+=-å的收敛域为[)2,4-,则级数()11nn n na x ¥=+å的收敛区间为() 3、 设32,10(),01x f x x x -<ì=í<î≤≤,则以2为周期的傅里叶级数在1x =处收敛于( ) 4、 设2()π,ππf x x x x =+-<<的傅里叶级数为()01cos sin ,2n n n a a nx b nx ¥=++å则3b =()5、级数()1(1)221!n n n n ¥=-+å的和为( ) 三、计算与应用题三、计算与应用题 1、求级数()113;3nnn x n ¥=-×å的收敛域的收敛域2、求()21112n n n ¥=-×å的和的和 3、将函数()2()ln 12f x x x =--展开为x 的幂级数,并求()(1)0n f +4、求2012!nn n n x n ¥=+å的和函数的和函数 5、 已知()n f x 满足1()()e n x n n f x f x x -¢=+,n 为正整数,且e (1)nf n=,求函数项级数()1n n f x ¥=å的和函数.6、 设有方程10nx nx +-=,其n 中为正整数,证明此方程存在唯一正根0x ,并证明当1a >时,级数1n n x a¥=å收敛. 四、证明题四、证明题设π4tan d nn a x x =ò(1) 求()211n n n a a n ¥+=+å (2) 试证:对任意常数0l >,级数1n n a nl¥=å收敛收敛提示:()()2111n n a a n n n ++=+,()2111n n n a a n¥+=+=å.因为211n na an ++=+,所以111n a n n <<+,1111nn n a n n l l ¥¥+==<åå第十一章 无穷级数测试题答案与提示一、1、A ;2、D ;3、B ;4、C ;5、B. 二、二、1、1;2、()4,2-;3、32;4、2π3;5、cos1sin1-. 三、三、1、答案:[)0,6.2、答案:53ln 284-提示:原式为级数()211n n x n¥=-å的和函数在12x =点的值. 而()22221121211nn nn n n x x xn n n ¥¥¥====--+-ååå,分别求出2121n n x n ¥=-å和2121n n x n ¥=+å的和函数即可.3、答案:11(1)211(),,122n n n n f x xx n +¥+=--éö=Î-÷ê+ëøå()1(1)(1)20!1n nn f nn ++--=×+. 提示:()()()2()ln 12ln 12ln 1f x x xx x =--=-++4、答案:222011e 1,2!42x n n n n x x x x n ¥=æö+=++--¥<<+¥ç÷èøå 提示:()2011112!1!2!2n nn n n n n n nx x x n n n ¥¥¥===+æöæö=+ç÷ç÷-èøèøååå, 而()1011e ,e 1!!xn x n nn x x x n n ¥¥====-åå5、答案:()()[)1e ln 1,1,1xn n f x x x ¥==--Î-å提示:先解一阶线性微分方程,求出特解为()e xn x f x n=()111e e x xn n n n x x f x n n ¥¥¥=====ååå,记1()n x S x n¥==å,则可得()ln(1)S x x =--6、提示:设()1n n f x x nx =+-,则()()0,0n f x x ¢>>,故()n f x 在()0,+¥内最多有一个正根.而(0)10,(1)0nn f f n =-<=>,所以有唯一正根0x .由方程10n x nx +-=知,110nx x nn-<=<,故当1a > 时,级数1nn x a ¥=å收敛.四、提示:()()2111n n a a nn n ++=+,()2111n n n a a n¥+=+=å.因为211n n a a n ++=+,所以111n a n n <<+,1111nn n a n nl l ¥¥+==<åå第十章 曲线积分与曲面积分测试题一、单项选择题一、单项选择题1、已知()()2d d x ay x y y x y +++为某二元函数的全微分,则a 等于( ) (A) 1;- (B) 0; (C) 1;(D) 2. 2、设闭曲线c 为1x y +=的正向,则曲线积分d d cy x x yx y-++ò的值等于() (A) 0; (B) 2; (C) 4; (D) 6. 3、设S 为封闭柱面()22203x y az +=≤≤,其向外的单位法向量为{}c o s ,c o s,c o s n a b g =,则()cos cos cos d x y z s a b g S++òò等于( ) (A) 29π;a (B) 26π;;a (C) 23π;a(D) 0. 4、设曲线c 为22220x y z a x y z ì++=í++=î,则d c x s ò等于( ) (A) 23;a (B) 0; (C) 2;a(D) 213a . 5、设S 为下半球222z a x y =---的上侧,W 是由S 和0z =所围成的空间闭区域,则d d z x y åòò不等于()(A) d ;v W -òòò(B) 2π220d d aa r r r q -òò;(C) 2π22d d ;aa r r r q--òò(D) ()d d z x y x y å++òò.二、填空题二、填空题1、设c 是圆周222x y a +=,则()2d cx y s -=ò() 2、设质点在力()()32F y x i y x j =++-的作用下沿椭圆2244x y +=的逆时针方向运动一周,则F 所做的功等于() 3、设S 是平面6x y z ++=被圆柱面221x y +=所截下的部分,则d z s åòò等于() 4、设S 是球面2221x y z ++=的外侧,则()23222d d xy z xy zS++òò等于() 5、设22()d ()d 1cxf x y x f x yx -++ò与路径无关,其中()f x ¢连续且(0)0f =,则()f x =( ) 三、计算与应用题三、计算与应用题 1、求()()xysin d cos d LI e y b x y x e y ax y éù=-++-ëûò,其中,a b 为正常数,L 为从点()2,0A a 沿曲线22y ax x =-到点()0,0O 的弧.2、计算2d LI y s =ò,其中L 为圆周22220x y z a x y z ì++=í++=î.3、在变力F y z i z x j x y =++的作用下,质点由原点沿直线运动到椭球面2222221x y z a bc++=上第一卦挂线的点(),,M x h z ,问,,x h z 取何值时,力F 所做的功W 最大?并求出W 最大值.4、设S 为椭球面222122x y z ++=的上半部分,点(),,P x y z S Î,π为S 在点P 处的切平面,(),,x y z r 为点()0,0,0O 到平面π的距离,求()d ,,Sz s x y z r òò.5、求d d 2d d 3d d I xz y z zy z x xy x y S=++òò,其中S 为曲面()221014y z xx =--≤≤的上侧.6、设对于半空间0x >内任意光滑有向闭曲面S ,都有,,都有,2()d d ()d d e d d 0x Sxf x y z xyf x z x z x y --=òò,其中函数()f x 在()0,+¥内具有连续的一阶导数,且0lim ()1x f x +®=,求()f x . 答案:()e ()e 1xxf x x=-提示:由题设和高斯公式得提示:由题设和高斯公式得220()d d ()d d e d d ()()()e d xxSxf x y z xyf x z x z x y xf x f x xf x v W¢éù=--=±+--ëûòòòòò由S 的任意性,知2()()()e 0xxf x f x xf x ¢+--=,解此微分方程即可.四、证明题四、证明题 已知平面区域(){},0π,0πD x y x x =≤≤≤≤,L 为D 的正向边界,试证:的正向边界,试证:(1)sin sin sin sine d e d e d e d y x y xLLx y y x x y y x ---=-òò;(2)2sin sin 5πe d e d 2y x Lx y y x --ò≤第十章 曲线积分与曲面积分测试题答案与提示一、一、1、D ;2、C ;3、A ;4、B ;5、B. 二、二、1、3πa -;2、4π-;3、63π;4、4π3;5、211x +.三、三、1、答案:23ππ222I a b a æö=+-ç÷èø. 提示:添加从()0,0O 沿0y =到点()2,0A a 的有向直线段1L ,然后用格林公式. 2、答案:32π3I a =. 提示:利用变量“对等性”22231d d d d 3L L L LI y s x s z s a s ====òòòò.3、答案:,,333a b c x h z ===m a x 39W a b c =.提示:直线段:,,OM x t y t z t x h z ===,t 从0变到1,功W 为120d d d 3dOM W yz x zx y xy z t t xhz xhz =++==òò 再求W xhz =在条件2222221x y z a b c++=下的最大值即可.4、答案:、答案:()3d π,,2Szs x y z r =òò.提示:曲面S 在点(),,P x y z 处的法向量为{},,2x y z ,切平面方程为:022xyX Y zZ ++=, 点()0,0,0O 到平面π的距离()12222,,44x yx y z zr -æö=++ç÷èø.5、答案:d d 2d d 3d d πI xz y z zy z x xy x y S=++=òò.提示:添加曲面1S 为平面xoy 上被椭圆()221014y x x +=≤≤所围的下侧,在S 和1S 所围封闭曲面上用高斯公式. 注意到在1d d 2d d 3d d I xz y z zy z x xy x y S =++òò的积分等于3d d Dxy x y òò为0.6、提示:、提示:(1) 左边=()ππsinsinsin sin 0π0πed πed πe +e d yxx xy x x ---=òòò,同理,,同理,右边=()πsin sin 0πe+e d xx xx -ò(2) 由(1)得s i n s i n ed ed yxLx y y x --ò=()πsin sin 0πe+ed x xx -ò,而由sin ex 和sin ex-泰勒展开式知道式知道()π20π2sin d x x +ò≤()πsin sin 0πe +e d x x x -ò,而()π2205π2sin d π2x x +=ò.第九章 重积分测试题一、选择题一、选择题1、若区域D 是xoy 平面上以(1,1),(1,1)-和(1,1)--为顶点的三角形区域,1D 是D 在第一象限中的部分,则(cos sin )Dxy x y dxdy +=òò(). (A) 12cos sin D x ydxdy òò;(B) 2cos sin Dx ydxdy òò(C) 14(cos sin )D xy x y dxdy +òò(D) 0 2、设(,)f x y 连续,且(,)(,)d d Df x y xy f x y x y =+òò,其中D 是xoy 平面上由20,y y x ==和1x =所围区域,则(,)f x y 等于().(A) xy ;(B) 2xy ; (C) 1xy + ; (D) 18xy +3、设2222222123cos d d ,cos()d d ,cos()d d ,DDDI x y x y I x y x y I x y x y =+=+=+òòòòòò其中(){}22,1D x y xy =≤+,则(). (A) 321I I I >>;(B) 123I I I >>; (C) 213I I I >> ; (D) 312I I I >> 4、设空间闭区域W 由2221x y z ++≤及z 0≤确定,1W 为W 在第一挂限的部分,则( ). (A) 1d 4d x v x v WW =òòòòòò; (B)1d 4d y v y v WW =òòòòòò;(C)1d 4d z v z v WW =òòòòòò; (D) 1d 4d xyz v xyz v WW =òòòòòò5、设空间闭区域(){}2222,,2z x y zx y x yW =-≤≤+-,d I z v W=òòò,则下列将I化为累次积分中不正确的是( ). (A) 222π120d d d r r I r r z z q -=òòò; (B) π2π224000d d cos sin d I q j r j r j r =×òòò; (C) 12221πd π(2)d I z z z z z =+-òò;(D) 22222112004d d d y x y x yI x y z z --++=òòò二、填空题二、填空题1、设区域D 为222x y R +≤,则2222d d D x y I x y a b æö=+ç÷èøòò的值等于() 2、设(){}22,1D x y xy=≤+,则2221lim ln(1)d d πx y r Dex y x yr-®++òò的值等于() 3、积分222d e d yx I x y -=òò的值等于() 4、积分2222222()d x y z R I f x y z v ++=++òòò≤可化为定积分0()d Rx x j ò,则()x j 等于() 5、积分22221()d x y z I ax by v ++=+òòò≤的值等于() 三、计算与应用题三、计算与应用题 1、求()22d d DI x y y x y =++òò,其中D 是由圆224x y +=和22(1)1x y ++=所围的平面区域.2、求{}22max,ed d x y DI x y =òò,其中(){},1,1D x y x y =≤≤≤≤00.3、计算22()d I x y z v W =++òòò,其中W 由曲线220y zx ì=í=î绕z 轴旋转一周而成的旋转曲面与平面4z =所围的立体.4、计算()d I x z v W=+òòò,W 由22x y z +=及224x y z --=确定.5、计算112111224d e d d e d yyyyx x y I y x y x =+òòòò.6、设有一高度为()h t (t 为时间)的雪堆在融化过程中,其侧面满足方程222()()()x y z h t h t +=-(设长度单位为厘米,时间单位为小时),已知体积减少的速率与侧面积成正比(比例系数为0.9),问高度为130cm 的雪堆全部融化需多少小时?的雪堆全部融化需多少小时?四、证明题四、证明题设函数()f x 在[]0,1上连续,并设1()d f x x A =ò,证明11201d ()()d 2xI x f x f y y A ==òò.第九章 重积分测试题答案与提示一、一、1、A ;2、D ;3、A ;4、C ;5、B. 二、二、1、22222πR 4x y a b æö+ç÷èø;2、1;3、()411e 2--;4、224π()x f x ;5、()224π+15a b . 三、三、 1、答案:()163π-29I =.提示:将D 看成两个圆域的差,再考虑到奇偶对称性,利用极坐标计算便可. 2、答案:e 1I =-提示:为确定{}22max ,x y ,必须将D 分成两个区域,再考虑到积分次序的选取问题即可. 3、答案:256π3I =提示:旋转曲面的方程为222x y z +=,用柱面坐标计算22π2242002d d ()d r I r r r z z q =+òòò即可.4、答案:π8I =. 提示:d 0x v W=òòò,ππ122400d 4d d cos sin d z v q j r j r j r W=×òòòòòò.5、答案:3e e 82I =-. 提示:交换积分次序. 6、答案:100t =小时小时提示:先利用三重积分求出雪堆的体积222()31()()2πd d d ()4h t x y h t h t zV zx y h t éù+-ëû==òòò≤; 再求出雪堆的侧面积2222221()21313ππ1d d ()12xy x y h t S z z x y h t +=++=òò≤;由题意d 0.9d V S t=-,所以d ()13d 10h t t =-,解出()h t 并令其等于0,则可得结果.四、提示:交换积分次序,四、提示:交换积分次序,并利用11111d ()()d d ()()d d ()()d 2yxy f x f y x x f x f y y xf x f y y ==òòòòòò.第八章 多元函数微分法及应用测试题一、选择题一、选择题1、已知函数()f x 在[]1,1-上连续,那么sin cos ()x y f t dt x ¶=¶ò(). (A)(sin )(cos )f x f y - (B)(sin )cos (cos )sin f x x f y y - (C) (sin )cos f x x ; (D) (cos )sin f y y2、在矩形域00:,D x x y y d d -<-<内,(,)(,)0x y f x y f x y =º是(,)f x y c º(常数)的(的(). (A) 充要条件;充要条件; (B)充分条件;充分条件; (C) 必要条件; (D).既非充分又非必要条件既非充分又非必要条件 3、若函数(,)f x y 在区域D 内的二阶偏导数都存在,则(内的二阶偏导数都存在,则() (A ) (,)(,)xy yx f x y f x y =在D 内成立;内成立; (B )(,),(,)x yf x y f x y 在D 内连续; (C ) (,)f x y 在D 内可微分;内可微分; (D )以上结论都不对)以上结论都不对 4、42002lim 3x y xyx y ®®+的值为( ) (A)¥ ; (B) 不存在;不存在; (C) 23;(D) 0. 5、设有三元函数ln e 1xzxy z y -+=,据隐函数存在定理,存在点()0,1,1的一个邻域,在此邻域内该方程(). (A )只能确定一个具有连续偏导的隐函数(),z z x y =;(B )可确定两个具有连续偏导的隐函数(),z z x y =和(),y y x z =; (C )可确定两个具有连续偏导的隐函数(),z z x y =和(),x x y z =; (D )可确定两个具有连续偏导的隐函数(),x x y z =和(),y y x z =.二、填空题二、填空题1、设(,)cos()(1)arctan2xy x f x y e x y yp=+-,则(1,1)x f 的值为( ). 2、设(,)f x y 具有连续偏导数,且(1,1)1,(1,1),(x yf f a f b ¢¢===,令[]{}(),,(,)x f x f x f x x j =,则(1)j ¢的值为( ). 3、设2(,,)xf x y z e yz =,其中(,)z z x y =是由0x y z xyz +++=确定的隐函数,则(0,1,1)x f ¢-=( ).4、曲线222320x y z x y z ì++=í-+=î在点()1,1,1M 处的切线方程为( ).5、函数22223326u x y z xy x y z =++++--在点()0,0,0O 处沿( )方向的方向导数最大?)方向的方向导数最大? 三、三、 计算和应用题计算和应用题 1、设()()3222cos d 1sin 3d axy y x x by x x y y-+++为某一函数(,)f x y 的全微分,求a 和b 的值的值2、设()()ky x g y x y x f z +++-=,,g f ,具有二阶连续偏导数,且0º/¢¢g ,如果222222242fy z y x z x z ¢¢=¶¶+¶¶¶+¶¶,求常数k 的值. 3、在椭球2222221x y z a b c++=内嵌入一中心在原点的长方体,问长宽高各是多少时长方体的体积最大?4、设(,)y g x z =,而z 是由方程(,)0f x z xy -=所确定的,x y 的函数,求d d zx5、设),(y x f 有二阶连续偏导数, ),(),(22y x e f y x g xy+=, 且))1((1),(22y x o y x y x f +-+--=, 证明),(y x g 在)0,0(取得极值取得极值, ,判断此极值是极大值还是极小值极大值还是极小值, , 并求出此极值并求出此极值. .6、设有一小山,取它的底面所在的平面为xoy 坐标面,其底部所占的区域为(){}22,75D x y xy xy =≤+-,小山的高度函数为22(,)75h x y x y xy =--+(1) 设()000,M x y 为区域D 上一点,问(,)h x y 在该点沿平面上什么方向的方向导数最大?若记此方向导数的最大值为00(,)g x y ,试写出00(,)g x y 的表达式.(2) 现利用此小山开展攀岩活动,为此需在山脚下寻找一上山坡度最大的点作为攀登的起点,试确定攀登起点的位置. 四、证明题四、证明题设(,)F u v 可微,试证曲面(,)0x a y b F z c z c--=--上任一点处的切平面都通过定点上任一点处的切平面都通过定点. .第八章 多元函数微分法及应用测试题答案与提示一、一、1、C ;2、A ;3、D ;4、B ;5、D.二、二、1、πe 2-;2、23(1)a b b b +++;3、1;4、111101x y z ---==-;5、326ogradu i j k =--. 三、三、1、答案:2,2a b ==-.提示:提示:利用xy yx f f ¢¢¢¢=这一条件. 2、答案:1k =-.提示: g f f xz ¢+¢+¢=¶¶21,g k f f yz ¢+¢+¢-=¶¶21,g f f f x z ¢¢+¢¢+¢¢+¢¢=¶¶221211222,g k f f f yz ¢¢+¢¢+¢¢-¢¢=¶¶2221211222, g k f f y x z ¢¢+¢¢+¢¢-=¶¶¶22112,()g k k f y z y x z xz ¢¢+++¢¢=¶¶+¶¶¶+¶¶222222222142, 又因为0º/¢¢g ,所以0212=++k k ,1-=k .3、答案:232323,,333a b c .提示:设所嵌入的长方体在第一挂线的顶点坐标为(),,x y z ,则求体积8V xyz =在条件2222221x y z a b c ++=下的极值就可. 4、答案:1221122d d f yf xf g z xf xfg ¢¢¢¢++=¢¢¢-.5、答案:故0)0,1()0,0(==f g 是极大值.提示:由全微分的定义知提示:由全微分的定义知0)0,1(=f 1)0,1()0,1(-=¢=¢yx f f x f y e f g xy x 221×¢+×¢=¢ y f x e f g xy y 221×¢+×¢=¢ 0)0,0(=¢x g 0)0,0(=¢y g 2222121121122)2()2(2f x x f y e f y e f y e x f y e f g xyxy xy xy x ¢+×¢¢+×¢¢+×¢+×¢¢+×¢¢=¢¢ x y f x e f e xy e f y e y f x e f g xy xy xy xy xy xy 2)2()()2(222111211×¢¢+×¢¢++×¢+×¢¢+×¢¢=¢¢ 2222121121122)2()2(2f y y f x e f x e f x e y f x e f g xy xy xy xy y ¢+×¢¢+×¢¢+×¢+×¢¢+×¢¢=¢¢ A=2)0,1(2)0,0(22-=¢=¢¢f g x 1)0,1()0,0(1-=¢=¢¢=f g B xy2)0,1(2)0,0(22-=¢=¢¢=f g C y032>=-B AC , 且0<A , 故0)0,1()0,0(==f g 是极大值. 6、答案: ()()22220000000000(,)22558g x y y x x y x y x y =-+-=+-攀登起点的位置: ()()125,5,5,5M M --.提示提示: : 沿梯度方向的方向导数最大沿梯度方向的方向导数最大,,方向导数的最大值即为梯度的模方向导数的最大值即为梯度的模. . 然后再求(,)g x y 在条件22750x y xy --+=下的极大值点就可下的极大值点就可. . 四、答案四、答案: :通过定点(),,M a b c . 第六章 微分方程测试题一、选择题一、选择题1、设()y f x =是240y y y ¢¢¢-+=的解,若0()0f x >且0()0f x ¢=,则在0x 点()f x ( ). (A) 取极大值; (B) 取极小值; (C) 在0x 某邻域内单增; (D) 在0x 某邻域内单减.2、微分方程2448xy y y e¢¢¢-+=的一个特解应具有形式的一个特解应具有形式( ) (,,,a b c d 为常数). (A) 2;xce (B) 22;xdx e (C) 2;xcxe (D) 22().x bx cx e + 3、微分方程21sin y y x x ¢¢+=++的特解形式可设为(). (A) (A) *2(sin ecos );y ax bx c x d x x =++++ (B) *2(sin ecos );y x ax bx c d x x =++++ (C) *2sin ;y ax bx c d x =+++(D) *2ecos .y ax bx c x =+++ 4、设线性无关的函数123,,y y y 都是非齐次线性微分方程()()()y p x y q x y f x ¢¢¢++=的解,12,c c 是任意常数,则该方程的通解为(). (A) (A) 11223;c y c y y ++ (B) ()1122123;c y c y c c y +-+ (C) ()11221231;c y c y c c y +---(D) ()11221231.c y c y c c y ++--5、方程0xy y ¢+=满足(1)2y =的特解为(). (A) 21;xy = (B) 22;x y = (C) 2;xy = (D) 1.xy = 二、填空题二、填空题1、已知微分方程23e xy y y -¢¢¢--=有一个特解1e 4x y x *-=-,则其通解为(). 2、以12e ,ex xy y x --==为特解的二阶常系数齐次微分方程是(). 3、若连续函数()f x 满足()()e xf t f x dt =ò,则()f x 等于(). 4、已知函数()y y x =在任意点x 处的增量21y x y xa D D =++,其中a 是比x D (0)x D ®高阶的无穷小,且(0)πy =,则(1)y 等于(). 5、2e xy y y x ¢¢¢++=的通解为(). 三、计算和应用题三、计算和应用题1、 设2e (1)e xxy x =++是二阶常系数线性微分方程e xy y y a b g ¢¢¢++=的一个特解,求该微分方程的通解. 2、 设函数()y y x =在(),-¥+¥内具有二阶导数,且()0,y x x y ¢¹=是()y y x =的反函数.(1)(1)试将()x x y =所满足的微分方程()322d d sin 0d d x x y x y y æö++=ç÷èø变换为()y y x =所满足的微分方程;(2)(2)求变换后的微分方程满足条件3(0)0,(0)2y y ¢==的解.3、已知22123e e ,e e ,e e e x x x x x x x y x y x y x --=+=+=+-都是某二阶常系数非齐次线性微分方程的解,试求此微分方程分方程的解,试求此微分方程4、 已知连续函数()f x 满足320()()d e 3xx tf x f t =+ò,求()f x .5、 已知连续函数()f x 满足()100()()d e2()d xxf x x u f u u x f xu u +-=+òò,求()f x .6、设函数()f x 在[)1,+¥上连续恒正,若曲线()y f x =,直线()1,1x x t t ==>与x 轴所围成的平面图形绕x 轴旋转一周所成的旋转体的体积为2π()(1)3t f t f éù-ëû,试求()y f x =所满足的微分方程,并求该方程满足2(2)9f =的特解.四、证明题四、证明题证明方程()y y f x ¢¢+=(其中()f x 连续)的通解为连续)的通解为()120cos sin ()sin d xy c x c x f t x t t =++-ò,其中为任意常数,其中为任意常数.. 第六章 微分方程测试题答案与提示一、一、1、A ;2、B ;3、A ;4、D ;5、C. 二、 1、3121ee e 4xxxc c x --+-;2、20y y y ¢¢¢++=;3、ln(1)x +;4、π4πe ;5、()()121e 1e 4x xy c c x x -=++-.三、三、1、答案:2212e e e (1)e x x xx c c x ++++. 提示:将2e(1)e xxy x =++代入原方程,比较同类项系数,求出,,a b g 的值,然后再去求解微分方程.2、答案、答案: (1): (1)sin y y x ¢¢-=; (2) 1e e sin 2x x y x -=--.3、答案、答案: :2e 2e x x y y y x ¢¢¢--=-.提示:21312e ,=e xxy y y y --=-是对应齐次微分方程的特解,从而可得出对应齐次微分方程为20y y y ¢¢¢--=, 设非齐次线性微分方程为2()y y y f x ¢¢¢--=,再将其中任意个非齐次特解代入,得出()e 2e x x f x x =-.4、答案、答案: : 32()3e 2e x x f x =-.5、答案、答案: : 21()12e 2xf x xx æö=++ç÷èø. 提示:作代换xu t =,则12()d 2()dt xx f xu u f t =òò.6、答案、答案:: 3()1x f x x =+. 提示:依题意可得:221π()(1)π()d 3tt f t f f x x éù-=ëûò,然后两边求导.四、略四、略. . 第五章 定积分及应用测试题一、选择题一、选择题1、设()f x 连续,0()d ,0,0stI tf tx x t s =>>ò,则I 的值是(). (A ) 依赖于s 和t ; (B )是一个常数;)是一个常数; (C )不依赖于s 但依赖于t ; (D )依赖于s 但不依赖于t . 2、下列积分中,等于零的是( ). (A)12212cos ln(1)d x x x -+ò(B) 233(1)e d x x x -+ò(C) 4222sin cos d 1x xx x p p-+ò(C) 2121(1)d x x x --+ò3、设在[],a b 上()0,()0,()0f x f x f x ¢¢¢><>, 令()[]()1231()d ,(),()()2ba S f x x S fb b a S f a f b b a ==-=+-ò,则().(A) 321S S S >>;(B) 312S S S >>; (C) 213S S S >> ; (D) 132S S S >>. 4、已知sin πd 2x x x +¥=ò,则220sin d x x x +¥ò的值等于( ). (A) π;2(B) π; (C) 2π;4(D) π-1. 5、设()f x 在0处可导,且(0)0f =,则极限02()dt limxx f x t x ®-ò的值等于(). (A)不存在;不存在; (B) 0; (C) (0);f ¢ (D) 1(0).2f ¢ 二、填空题二、填空题1、设()f x 连续,310()dt x f t x -=ò,则(7)f 等于(). 2、定积分3π43π4(1arctan )1cos 2d x x x -++ò的值为(). 3、定积分11()e d xx x x -+ò的值为(). 4、若积分(21)d 4aax x --=-ò,则常数a 的值等于(). 5、曲线322y x x x =-++与x 轴所围成的面积值等于( ). 三、计算和应用题三、计算和应用题1、已知(π)1f =,且[]0()()sin d 3f x f x x x p ¢¢+=ò,求(0)f .2、计算21212(e e )d 11xxx x x x --+++-ò3、设2π20sin ()d 12cos tf x t x t x =++ò,求(1)(0)f f4、 计算π320sin d sin cos x x x x+ò.5、设3e e()ln ()d xf x x f x x =+ò,求()f x .6、设()f x 可导,(0)1f =,且[]1()()d f x xf xt t +ò与x 无关,求()f x .四、证明题四、证明题设函数()f x 在[],a b 上连续,在(),a b 内()0f x ¢>,证明存在唯一的(),a b x Î使曲线()y f x =和(),y f x a x ==所围面积1S 是()y f x =和(),y f x b x ==所围面积2S 的3倍.第五章 定积分及应用测试题答案与提示一、一、1、D ;2、C ;3、B ;4、A ;5、D. 二、二、 1、112;2、422-;3、2;4、2;5、3712.三、三、1、答案:(0)2f =. 提示:用分部积分提示:用分部积分. .2、答案:4π-.提示:利用奇偶对称性提示:利用奇偶对称性. . 3、答案:、答案:1. 1.提示:分别求出(0)f 和(1)f 的值即可. 4、答案:()1π14-. 提示:πππ33332220sin cos 1sin cos d d d sin cos sin cos 2sin cos x x x x x x x x xx xx x+==+++òòò.5、答案:ln 4()x f x x x=-. 6、答案:()e xf x -=.提示:令()[]11()()d ()()d ()()d xF x f x xf xt t f x x f xt t f x xf u u =+=+=+òòò,由()0F x ¢=得()()0f x f x ¢+=,所以e ()0x f x ¢éù=ëû. 四、提示:()()()10,,()()d tt a b S t t a f t f x x "Î=--ò,()()2()d ,bt S t f x x b t =--ò令()()12()3t S t S t j =-,用零点定理和单调性证明即可.第一章综合测试题一、单项选择题一、单项选择题1、()f x 当0x x ®时的左极限和右极限都存在且相等是0lim ()x x f x ®存在的()条件. (A) 充分; (B) 必要; (C) 充要; (D) 无关. 2、设22212lim()n n n n n®¥+++= ( ). (A) 22212lim lim lim 0n n n nn n n®¥®¥®¥+++=; (B) ¥;(C) 21+2+1lim 2n n n ®¥+=;(D) 极限不存在. 3、设()=232x xf x +-,则当0x ®,有,有( ). (A) ()f x 与x 是等价无穷小; (B) ()f x 与x 是同阶但非等价无穷小; (C) ()f x 是比x 高阶的无穷小;(D) ()f x 是比x 低阶的无穷小. 4、设11e 1()e 1xxf x -=+,则0x =是()f x 的(). (A) 可去间断点; (B) 跳跃间断点; (C) 第二类间断点;(D) 连续点.5、方程410x x --=至少有一个根的区间是( ).(A) 1(0,)2; (B) 1(,1)2; (C) (1,2); (D) (2,3).二、填空题二、填空题7、 若2211()3f x x xx+=++,则()f x =(). 8、 已知函数2(cos ), 0() , 0x x x f x a x -ì¹ï=í=ïî在0x =连续,则a = ( ). 9、 lim(3)1=n n n n ®¥+--().10、 设2013sin coslim(1cos )(e 1)xx x x xx ®+=+-( ). 5、已知25lim 232n a bn n ®¥++=-,则a =( ),b = ( ).三、计算与应用题三、计算与应用题1、设0,0(), 0x f x x x ì=í>î≤,20, 0(), 0x g x x x ì=í->î≤,求函数项级数[()]f f x ,[()],g g x [()],[()]f g x g f x .2、设21sin ,0(),0x x f x x a x x ì>ï=íï+î≤,要使()f x 在(,)-¥+¥内连续,应当怎样选择数a ? 3、设11e , 0()ln(1),10x x f x x x -ìï>=íï+-<î≤,求()f x 的间断点,并说明间断点所属类型.的间断点,并说明间断点所属类型. 4、计算极限tan π2lim(sin )xx x ®.5、计算极限123lim()21x x x x +®¥++6、设()f x 的定义域是[0,1],求函数11()()22f x f x ++-的定义域.四、证明题四、证明题证明方程sin 10x x ++=在开区间ππ(,)22-内至少有一个根.第一章综合测试题答案与提示一、一、1、C ;2、C ;3、B ;4、B ;5、C. 二、二、1、21x +;2、1;3、32;4、32;5、任意常数,6. 三、三、1、答案:[()] = (),f f x f x[()]0,g g x = [()]0,f g x =[()]()g f x g x =. 2、答案:0a =.3、答案: 0x =是第一类间断点,1x =是第二类间断点.是第二类间断点.4、答案:、答案: 1.5、答案:e .6、答案: 12x =.四、提示:利用零点定理.四、提示:利用零点定理.第二章综合测试题一、单项选择题一、单项选择题1、若 e , 0()sin 2, 0axx f x b x x ì<=í+î≥在0x =处可导,则a b 、的值应为( ). (A) 2,1a b ==; (B) 1,2a b ==; (C) 2,1a b =-=;(D)2,1a b ==-. 2、设222, 1() 1 , 1x x x f x x ì-+>=íî≤ (). (A)不连续; (B)连续,但不可导; (C)连续,且有一阶导数; (D) 有任意阶导数 3、若()f x 为(,)l l -内的可导奇函数,则()f x ¢ (). (A) 必为(,)l l -内的奇函数; (B) 必为(,)l l -内的偶函数;(C) 必为(,)l l -内的非奇非偶函数; (D) 在(,)l l -内,可能为奇函数,也可能为偶函数. 4、()f x 在0x 处可导,则000()()limx f x x f x x D ®-D -=D( ). (A) 02()f x ¢; (B)0()f x ¢-; (C) 0()f x ¢;(D) 0()f x ¢-.5、设()sin cos 2x f x x =+,则(15)(π)f = (). (A) 0; (B) 15112+; (C) 1-; (D) 1512-.二、填空题二、填空题 11、()f x 在点0x 可导是()f x 在点0x 连续的(连续的( 充分充分)条件,()f x 在点0x 可导是()f x 在点0x 可微的(可微的( )条件.)条件.12、 设()(1)(2)() (2)f x x x x x n n =+++≥,则(0)f ¢=( ). 13、 设()f x 为可微函数,则当0x D ®时,在点x 处的d y y D -是关于x D 的()无穷小.14、 已知(cos sin )(sin cos )x a t t t y a t t t =+ìí=-î,则3π4d d t x y== ( 1- ),223π4d d t x y == ( ) . 15、 设函数()y f x =由方程23ln()sin x y x y x +=+确定,则d d yx= ( ). 三、计算与应用题三、计算与应用题1、讨论函数1sin , 0 0 , 0x x y x x ì¹ï=íï=î在0x =处的连续性和可导性. 2、已知22e 1,0() 1 ,0x x f x x x ì-ï¹=íï=î,求 ()f x ¢. 3、设()(e )e x f x y f =且()f x ¢存在,求d dyx . 4、设7777xy x =++,求微分2d x y =.5、用对数求导法计算函数452(3)(1)x x y x +×-=+的导数的导数6、求函数2cos y x =的n 阶导数. 四、证明题四、证明题设)(x f 在),(+¥-¥内有定义,且,(,)x y "Î-¥+¥,恒有()()()f x y f x f y +=×,()1()f x xg x =+,其中0lim ()1x g x ®=,证明()f x 在),(+¥-¥内处处可导.第二章综合测试题答案与提示一、一、1、A ;2、C ;3、B ;4、D ;5、B . 二、二、1、充要;2、!n ;3、高阶;4、823πa -;5、1.三、三、1、答案:连续不可导.2、答案:223(22)e 2, 0() 0 ,0x x x f x x x ì-+ï¹¢=íï=î. 3、答案:()d e [(e )e (e )()]d f x x x xy f f f x x ¢¢=+.4、答案:67211d [7ln 7()]d 7xy xx x-=+-;7227d (ln 7)d 144x y x ==-×.5、答案:452(3)145[](1)2(2)31x x y x x x x +×-¢=×+-++-+.6、答案: ()1π2cos(2)2n n n yx -=+.四、提示: ,(,)x y "Î-¥+¥,有()[()1]()()y f x f x f x x g x =-=××,()limlim ()()().x x y f x f x g x f x x®®D ¢==×=D第三章综合测试题一、单项选择题一、单项选择题1、下列函数在[1,e]上满足拉格朗日定理条件的是上满足拉格朗日定理条件的是( ). (A) ln(ln )x ; (B) ln x ; (C) 1ln x;(D) ln(2)x -. 2、设00()()0f x f x ¢¢¢== ,0()0f x ¢¢¢>,则(). (A) 0()f x ¢是()f x ¢的极大值;(B) 0()f x 是()f x 的极大值; (C)0()f x 是()f x 的极小值;(D) 00(,())x f x 是曲线()y f x =的拐点。

(完整版)无穷级数期末复习题高等数学下册(上海电机学院)

(完整版)无穷级数期末复习题高等数学下册(上海电机学院)

第十一章无穷级数一、选择题1.在下列级数当中,绝对收敛的级数是( C )(A)∑∞=+1121n n(B)()()2311nnn∑∞=-(C)()∑--nn3111(D)()nnnn111--∑∞=2.()∑∞=-2!1nnnnx在-∞<x<+∞的和函数()=xf(A )(A)e x2-(B) e x2(C) e x--2(D) e x2-3.下列级数中收敛的是( B )(A)∑+∞=11n nn(B)∑+∞=111n nn(C)()∑+∞=1121n n(D)()∑+∞=12111n n4.lim=∞→u nn是级数∑∞=1nnu收敛的( B )(A)充分条件(B) 必要条件(C) 充要条件(D) 无关条件5.级数∑∞=1nnu收敛的充分必要条件是( C )(A)lim=∞→u nn(B)1lim1<=+∞→ruunnn(C)s nn∞→lim存在(s n=u1+u2+…+u n)(D) nu n21≤6.下列级数中,发散的级数是( B )(A)∑∞=121n n(B)∑∞=11cosnn(C)()∑∞=131nn(D)()∑∞=-1132nn7.级数()()nx nnn51111-∑-∞=-的收敛区间是( B )(A)(0,2)(B)(]2,0 (C)[)2,0(D) [0,2]8.()+∞<<∞-∑∞=xnnnx1!的和函数是( B )(A)e x(B) 1-e x(C) 1+e x(D) x-119.下列级数中发散的是( A )(A)∑∞=12sinnnπ(B)()∑-∞=-1111nnn(C) ∑⎪⎭⎫⎝⎛∞=143nn(D)∑⎪⎭⎫⎝⎛∞=131n n10.幂级数()∑∞=-13nnx的收敛区间是( B )(A)()1,1-(B)()4,2(C) [)4,2(D)(]4,211.在下列级数中发散的是( D )(A)∑∞=123nn(B)()nnn1111∑∞=--(C) ∑∞=+1312n nn(D)∑∞=+13)1(1n nn12.幂级数()()xnnnn120!121+∞=∑+-的和函数是( D )(A)e x(B) xcos(C)()x+1ln(D) xsin13. 级数()()nx nn n 51111-∑-∞=-的收敛区间是(B )(A )(0,2) (B) (]2,0 (C) [)2,0 (D) [0,2]14. 在下列级数当中,绝对收敛的级数是( C )(A )∑∞=+1121n n (B)()()2311nn n∑∞=-(C)()∑--n n 3111 (D)()n n n n111--∑∞=15. 下列级数中不收敛的是( A ).A .∑∞=+-11)1(n nn n B .∑∞=-11)1(n n n C .∑∞=-1321)1(n n n D .∑∞=-121)1(n nn16.在下列级数中发散的是(C )(A )∑∞=131n n(B )Λ+++++321161814121 (C )Λ+++3001.0001.0001.0(D )()()()Λ+-+-53535353432 17.幂级数x n n nn ∑∞=++11)1ln(的收敛区间是(C ) (A )[]1,1- (B)(-1,1)(C) [)1,1- (D) (]1,1-18.下列级数中条件收敛的是( B )A .∑∞=--11)32()1(n n n B .∑∞=--11)1(n n nC .∑∞=--11)31()1(n nn D .∑∞=-+-1212)1(n n n n19.幂级数∑∞=++11)21(n nn x 的收敛区间是( C ) A .)2123(,- B .]2123[,- C .)2123[,-D .]2123(,-20.在下列级数中,条件收敛的是( B )(A )()111+∑-∞=n n n n(B) ()n n n 111∑-∞= (C)()∑-∞=1211n nn (D)∑∞=11n n21.级数∑⎪⎭⎫⎝⎛∞=+1152n n 的和S=( D )(A )23 (B) 35 (C) 52 (D) 3222. 设f(x)是周期为π2的周期函数,他在),[ππ-上的表达式为f(x)=x, 若f(x)的傅立叶级数 展开式为∑∞=++1)sin cos (2n n n nx b nx a a ,则=n a [D] A.1)1(2+-n n B.n n )1(2- C. 1)1(1+-n nD. 0 23. 设f(x)是周期为π2的周期函数,他在),[ππ-上的表达式为f(x)=2x , 若f(x)的傅立叶级数 展开式为∑∞=++1)sin cos (2n n n nx b nx a a ,则=n b [A] A. 0 B.n n)1(4- C. 1)1(2+-n n D. 1)1(4+-n n二、填空题 1.幂级数()∑∞=-02!1n nnn x的和函数是 e x 2-2.幂级数∑∞=02n nnx的收敛半径为21=R 。

ch11无穷级数典型例题.pptx

ch11无穷级数典型例题.pptx
n n=1
∑ ∑ ∴

(−1)n

=
1 发散,
n=1 n − ln n n=1 n − ln n
即原级数非绝对收敛.
∑∞ (−1)n 是交错级数, 由莱布尼茨定理:
n=1 n − ln n
lim ln n = lim ln x = lim 1 = 0,
n n→+∞
x x→+∞
x x→+∞
1

lim
n→+∞
n
1 − ln n
=
lim
n→+∞
1
n − ln n
=
0,
n
f ( x) = x − ln x ( x > 0),
f ′( x) = 1 − 1 > 0 ( x > 1), x
∴ 在 (1,+∞) 上单增, 即 1 单减, x − ln x
故 1 当 n > 1时单减, n − ln n
n=0
∑ 解 1
cos 2x − (1 + x)2

= an xn
n=0
∑ 根据co= s t

(−1)n
1
t 2n ,
n=0
(2n)!
∑ 则cos 2=x

(−1)n
1
22n x2n;
n=0
(2n)!
∑ 根据
1

= (−1)n xn ,
1+x n=0
∑ ∑ 则

1 (1+x)2
=( 1

)' =(
1 < n ln(n + 2) < n n,

无穷级数习题

无穷级数习题

1 时发散; 4 1 (C)在 x < 4 时绝对收敛; (D)在 x > 时发散. 2 3.将下列函数展开成 x 的幂级数,并求展开式成立的区间. (A)在 x < 2 时绝对收敛; (B)在 x > (1) ln(a + x) (a > 0) (2) sin 2 x (3) x2 (1 + x 2 ) 2
π 4.将 f ( x) = cos x 展开成 ( x + ) 的幂级数. 3
1 展开成 ( x − 3) 的幂级数. x 1 6.将函数 f ( x) = 2 展开成 ( x + 4) 的幂级数. x + 3x + 2 5.将 f ( x ) =
第七节
傅里叶级数
1 ( x + π )2 , −π ≤ x < 0 π ,写出 f ( x ) 的以 2π 为周期的傅里叶级数的和函 1.设 f ( x) = 1 x2 , 0 ≤ x ≤ π π 数 S ( x ) 在 [−π , π ] 上的表达式. 2.将 f ( x) = e 2 x (−π ≤ x < π ) ( f ( x ) 周期为 2π )展开成傅里叶级数. x + 1, 0 ≤ x ≤ π 3.将 f ( x ) = 展开为傅里叶级数. x , −π < x < 0 4.将函数 f ( x) = 2 x 2 (0 ≤ x ≤ π ) 展开成余弦级数. 5.将函数 f ( x ) = π−x (0 ≤ x ≤ π ) 展开成正弦级数. 2
8.利用级数收敛的必要条件证明 lim
第三节 1. 求下列幂级数的收敛域. (1) x x2 x3 xn + + + L + +L 1 ⋅ 3 2 ⋅ 32 3 ⋅ 33 n ⋅ 3n ( x − 5) n n n =1

无穷级数 期末复习题 高等数学下册 (上海电机学院)

无穷级数 期末复习题 高等数学下册 (上海电机学院)

第十一章无穷级数一、选择题1.在下列级数当中,绝对收敛的级数是( C )(A)∑∞=+1121n n(B)()()2311nnn∑∞=-(C)()∑--nn3111(D)()nnnn111--∑∞=2.()∑∞=-2!1nnnnx在-∞<x<+∞的和函数()=xf(A )(A)e x2-(B) e x2(C) e x--2(D) e x2-3.下列级数中收敛的是( B )(A)∑+∞=11n nn(B)∑+∞=111n nn(C)()∑+∞=1121n n(D)()∑+∞=12111n n4.lim=∞→u nn是级数∑∞=1nnu收敛的( B )(A)充分条件(B) 必要条件(C) 充要条件(D) 无关条件5.级数∑∞=1nnu收敛的充分必要条件是( C )(A)lim=∞→u nn(B)1lim1<=+∞→ruunnn(C)s nn∞→lim存在(s n=u1+u2+…+u n)(D) nu n21≤6.下列级数中,发散的级数是( B )(A)∑∞=121n n(B)∑∞=11cosnn(C)()∑∞=131nn(D)()∑∞=-1132nn7.级数()()nx nnn51111-∑-∞=-的收敛区间是( B )(A)(0,2)(B)(]2,0 (C)[)2,0(D) [0,2]8.()+∞<<∞-∑∞=xnnnx1!的和函数是( B )(A)e x(B) 1-e x(C) 1+e x(D) x-119.下列级数中发散的是( A )(A)∑∞=12sinnnπ(B)()∑-∞=-1111nnn(C) ∑⎪⎭⎫⎝⎛∞=143nn(D)∑⎪⎭⎫⎝⎛∞=131n n10.幂级数()∑∞=-13nnx的收敛区间是( B )(A)()1,1-(B)()4,2(C) [)4,2(D)(]4,211.在下列级数中发散的是( D )(A)∑∞=123nn(B)()nnn1111∑∞=--(C) ∑∞=+1312n nn(D)∑∞=+13)1(1nnn12.幂级数()()xnnnn120!121+∞=∑+-的和函数是( D )(A)e x(B) xcos(C)()x+1ln(D) xsin13. 级数()()nx nn n 51111-∑-∞=-的收敛区间是(B )(A )(0,2) (B) (]2,0 (C) [)2,0 (D) [0,2]14. 在下列级数当中,绝对收敛的级数是( C )(A )∑∞=+1121n n (B)()()2311nn n∑∞=-(C)()∑--n n 3111 (D)()nn n n111--∑∞=15. 下列级数中不收敛的是( A ).A .∑∞=+-11)1(n nn n B .∑∞=-11)1(n nnC .∑∞=-1321)1(n n nD .∑∞=-121)1(n nn16.在下列级数中发散的是(C )(A )∑∞=131n n(B )+++++321161814121(C ) +++3001.0001.0001.0(D )()()()+-+-5353535343217.幂级数x n n nn ∑∞=++11)1ln(的收敛区间是(C )(A )[]1,1- (B)(-1,1)(C) [)1,1- (D) (]1,1-18.下列级数中条件收敛的是( B )A .∑∞=--11)32()1(n nnB .∑∞=--11)1(n n nC .∑∞=--11)31()1(n nn D .∑∞=-+-1212)1(n n nn19.幂级数∑∞=++11)21(n nnx 的收敛区间是( C )A .)2123(,- B .]2123[,- C .)2123[,-D .]2123(,-20.在下列级数中,条件收敛的是( B )(A )()111+∑-∞=n nn n(B)()n n n111∑-∞=(C)()∑-∞=1211n nn (D)∑∞=11n n21.级数∑⎪⎭⎫ ⎝⎛∞=+1152n n 的和S=( D )(A )23(B) 35(C) 52(D) 3222. 设f(x)是周期为π2的周期函数,他在),[ππ-上的表达式为f(x)=x, 若f(x)的傅立叶级数 展开式为∑∞=++10)sin cos (2n n nnx b nx aa ,则=n a [D]A. 1)1(2+-n nB.nn)1(2- C.1)1(1+-n nD. 023. 设f(x)是周期为π2的周期函数,他在),[ππ-上的表达式为f(x)=2x , 若f(x)的傅立叶级数 展开式为∑∞=++10)sin cos (2n n nnx b nx aa ,则=nb [A]A. 0B.nn)1(4- C.1)1(2+-n nD. 1)1(4+-n n二、填空题1.幂级数()∑∞=-02!1n nnn x 的和函数是 e x 2-2.幂级数∑∞=02n nnx的收敛半径为21=R 。

大学高等数学各章节练习题

大学高等数学各章节练习题

第一章 极限与连续一、填空 1、设11()01x f x x ⎧≤⎪=⎨>⎪⎩ ,则[]()___________.f f x = 2、假设数列{}n x 收敛,则数列{}n x 肯定 。

3、假设0lim ()x x f x A →=,而0lim ()x x g x →不存在,则0lim(()())x x f x g x →+ 。

4、当0→x 时,1132-+ax 与1cos -x 为等价无穷小,则_______=a 5、设函数()f x 在点0x x =处连续,则()f x 在点0x x =处是否连续。

6、设21))((,sin )(x x f x x f -==ϕ,则)(x ϕ的定义域为_________7、如果⎪⎩⎪⎨⎧=≠-+=0,00,12sin )(2x x xe x xf ax 在),(+∞-∞内连续,则__=a8、 曲线22x e x y -=的渐近方程为__________________二、选择9、如果)(),(x g x f 都在0x 点处间断,那么〔 〕〔A 〕)()(x g x f +在0x 点处间断 〔B 〕)()(x g x f -在0x 点处间断 〔C 〕)()(x g x f +在0x 点处连续 〔D 〕)()(x g x f +在0x 点处可能连续。

10、设数列n x 与n y 满足lim 0n n n x y →∞=,则以下断言正确的选项是〔 〕〔A 〕假设n x 发散,则n y 必发散。

〔B 〕假设n x 无界,则n y 必有界 〔C 〕假设n x 有界,则n y 必为无穷小〔D 〕假设1nx 为无穷小,则n y 必为无穷小。

11、已知0()lim0x f x x→=,且(0)1f =,那么〔 〕〔A 〕()f x 在0x =处不连续。

〔B 〕()f x 在0x =处连续。

〔C 〕0lim ()x f x →不存在。

〔D 〕0lim ()1x f x →=12、设2()43x xf x x x+=- ,则0lim ()x f x →为〔 〕〔A 〕12 (B)13 (C) 14 (D)不存在13、设2(1)sin ()(1)x xf x x x-=-,那么0x =是函数的〔 〕〔A 〕无穷间断点。

第十一章 无穷级数(答案)

第十一章 无穷级数(答案)

第十一章 无穷级数一、选择题1、无穷级数∑∞=1n nu的部分和数列}{n S 有极限S ,是该无穷级数收敛的 C 条件。

A 、充分,但非必要B 、必要,但非充分C 、充分且必要D 、既不充分,又非必要 2、无穷级数∑∞=1n nu的一般项n u 趋于零,是该级数收敛的 C 条件。

A 、充分,但非必要B 、必要,但非充分C 、充分且必要D 、既不充分,又非必要 3、若级数∑∞=1n nu发散,常数0≠a ,则级数∑∞=1n nauBA 、一定收敛B 、一定发散C 、当0>a 收敛,当0<a 发散D 、当1<a 收敛,当1>a 发散。

4、若正项级数∑∞=1n nu收敛,则下列级数必定收敛的是 AA 、∑∞=+1100n n uB 、∑∞=+1)100(n nuC 、∑∞=-1)100(n n u D 、∑∞=-1)100(n n u5、若级数∑∞=1n na收敛,∑∞=1n nb发散,λ为正常数,则级数∑∞=-1)(n n nb aλ BA 、一定收敛B 、一定发散C 、收敛性与λ有关D 、无法断定其敛散性 6、设级数∑∞=1n nu的部分和为n S ,则该级数收敛的充分条件是 DA 、0lim =∞→n n u B 、1lim1<=+∞→r u u nn nC 、21nu n ≤D 、n n S ∞→lim 存在7、设q k 、为非零常数,则级数∑∞=-11n n qk收敛的充分条件是 CA 、1<qB 、1≤qC 、1>qD 、1≥q 8、级数∑∞=+111n p n发散的充分条件是 AA 、0≤pB 、1-≤pC 、0>pD 、1->p 9、级数∑∞=1n n a 收敛,是级数∑∞=1n n a 绝对收敛的 C 条件A 、充分,但非必要B 、必要,但非充分C 、充分必要D 、既不充分,又非必要 10、交错级数∑∞=++-111)1(n p n n绝对收敛的充分条件是 AA 、0>pB 、0≥pC 、1>pD 、1≥p11、设常数0>k ,则级数∑∞=+-12)1(n nnn k BA 、绝对收敛B 、条件收敛C 、发散D 、敛散性与k 有关12、设常数0>a ,则级数∑∞=12sinn na AA 、绝对收敛B 、条件收敛C 、发散D 、敛散性与a 有关13、级数∑∞=12!n nn 与∑∞=+-11)1(n nn 的敛散性依次是 、DA 、收敛,收敛B 、发散,发散C 、收敛,发散D 、发散,收敛14、下列级数中,为收敛级数的是 CA 、∑∞=131n n B 、∑∞=+111n n C 、∑∞=+121n nn D 、∑∞=+112n nn15、下列级数中,为发散级数的是 BA 、∑∞=1!2n nn B 、∑∞=12!n nn C 、∑∞=+121n nn D 、∑∞=-12)1(n nn16、下列级数中,为绝对收敛级数的是 DA 、∑∞=+111n n B 、∑∞=+-11)1(n nn C 、∑∞=+-1212)1(n nn n D 、∑∞=-12)1(n nn17、下列级数中,为条件收敛级数的是 AA 、∑∞=+-121)1(n nn n B 、∑∞=+-11)1(n nn n C 、∑∞=+-121)1(n nn n D 、∑∞=-12!)1(n nnn18、幂级数∑∞=+12)1(n nnn x的收敛区间是 BA 、[-2,2]B 、[)2,2-C 、(-2,2)D 、(]2,2- 19、幂级数∑∞=-+-111)1(n nn n x的收敛域是 、DA 、(-1,1)B 、[-1,1]C 、[)1,1-D 、(]1,1- 20、幂级数∑∞=+++-111)1()1(n nn n x 的收敛域是 CA 、[-2,0]B 、(-2,0)C 、(]0,2-D 、[)0,2- 二、填空题21、当参数α满足条件 时,级数∑∞=--+111n nn n α收敛。

(完整版)无穷级数习题及答案.doc

(完整版)无穷级数习题及答案.doc

第十一章 无穷级数(A)用定义判断下列级数的敛散性1. n 2n 1; .1;3. 11 。

2n 1 2n 2n2n 13 n5 nn 1判断下列正项级数的敛散性.n! ;5. n e; 6.n 1;7. 2n 3;8. n 4 ;n 1 e n1 2nn 1 n n 3 n 1 n! n 1 100 n nn nn1 n9.;10.3n n 12n。

n 11求下列任意项级数的敛散性,收敛时要说明条件收敛或绝对收敛.1n 1n 1 ; 12.1n1; 13.1.1 1.01 1.001 1.0001;112 nln nn 1n 214.122 2 3 1 4 1 ;21 32 4 2求下列幂级数的收敛半径和收敛区间.3n x n;16.1 n x n ; 17.n! xn; .1 n;n n n 1 2n n n 1 n n 1n 119.1 2n 1; 20. n 2n;1 2 n 1xn 1 3 n xn求下列级数的和函数21. n 1 nxn 1; 22. n 1 21n 1 x2n 1;将下列函数展开成 x x 0 的幂的级数23. shx e xe x , x 00 ;24. cos 2 x , x 00 ;225. 1 x ln 1 x , x 00 ; 26. 1, x 0 3 ;x将下列函数在区间, 上展开为付里叶级数27. A xcos x,x。

28. f x 2t , x22x , 3x t 029.将函数 f x, 0 t 3 展开成付里叶级数。

xx, 0 xl2分别展开成正弦级数和余弦级数。

30.将函数 f xllx , x l2(B)用定义判断下列级数的敛散性1.1;2.1; 3.n 2 2 n 2n 03n 1 3n4n 1n n 1 n2n 1判断下列正项级数的敛散性2n n!2n2n3n na n. ; 5.;6. ,( a 0 );4n3n 12n nn 1nn1n 11nb7.,其中 a na ( n), a n , b , a 均为正数;n 1a n11x8.n,( a 0);9. n 42x ;1 n 1 0 1 x n 1 1判断下列任意项级数的敛散性,收敛时要说明条件收敛或绝对收敛n 12 n 2n 1ln 2110.1;11.n 1;12.1n 1 nn!12 n 13n 2 3nn 1n 1nn 1求下列幂级数的收敛半径和收敛域.nx 2 n;14.x n ,( a 0 ,b 0 ); 1312n!n 1 anb nn 115.n12 n 1; 16. 3n2 nn;12 n4 n x 5x 1 n 1n 1n求下列级数的和函数17. nx 2n ;18.2n 1x 2 n ; 19. n 2 x n ;n 1n 1n ! n 120.求证: ln 21;n ;; 2将下列函数展开成 xx 0 的幂的级数21.f x21,x 0 0 ;22.f x12 ,x 01;23. x ,x 0 0 ; 2x3x 1x1 x 224.证明偶函数的付里叶级数数仅含余弦项;25.写出函数 f x1 x 2k , x2k 1 , 2k1 , k 0, 1, 2,的2付里叶级数,并讨论收敛情况。

高数各章综合测试题与答案

高数各章综合测试题与答案

第十一章 无穷级数测试题一、单项选择题1、若幂级数1(1)nnn a x ∞=+∑在1x =处收敛,则该幂级数在52x =-处必然( ) (A) 绝对收敛; (B ) 条件收敛; (C) 发散; (D ) 收敛性不定。

2、下列级数条件收敛的是( ).(A ) 1(1);210n n nn ∞=-+∑(B) 11n n -∞= (C )111(1)();2nn n ∞-=-∑ (D) 11(1)n n ∞-=-∑ 3、若数项级数1nn a∞=∑收敛于S ,则级数()121nn n n aa a ∞++=++=∑( )(A) 1;S a + (B) 2;S a + (C) 12;S a a +- (D) 21.S a a +- 4、设a为正常数,则级数21sin n na n ∞=⎡⎢⎣∑( ).(A ) 绝对收敛; (B) 条件收敛; (C ) 发散; (D ) 收敛性与a 有关. 5、设2(),01f x x x =<≤,而1()sin π,nn S x bn x x ∞==-∞<<+∞∑,其中102()sin π,(1,2,)n b f x n x n ==⎰,则1()2S -等于( ) (A) 1;2- (B ) 1;4- (C) 1;4 (D) 12。

二、填空题1、 设14n n u ∞==∑,则111()22n nn u ∞=-=∑( ) 2、 设()111n n n a x ∞+=-∑的收敛域为[)2,4-,则级数()11nnn na x ∞=+∑的收敛区间为( )3、 设32,10(),01x f x x x -<⎧=⎨<⎩≤≤,则以2为周期的傅里叶级数在1x =处收敛于( ) 4、 设2()π,ππf x x x x =+-<<的傅里叶级数为()01cos sin ,2n n n a a nx b nx ∞=++∑ 则3b =( )5、级数()1(1)221!n n nn ∞=-+∑的和为( )三、计算与应用题 1、求级数()113;3nnn x n ∞=-⋅∑的收敛域 2、求()21112nn n ∞=-⋅∑的和 3、将函数()2()ln 12f x x x =--展开为x 的幂级数,并求()(1)0n f+4、求2012!nnn n x n ∞=+∑的和函数 5、 已知()n f x 满足1()()e n xn n f x f x x -'=+,n 为正整数,且e(1)n f n=,求函数项级数()1n n f x ∞=∑的和函数.6、 设有方程10n x nx +-=,其n 中为正整数,证明此方程存在唯一正根0x ,并证明当1α>时,级数1n n x α∞=∑收敛.四、证明题设π40tan d n n a x x =⎰(1) 求()211n n n a a n∞+=+∑ (2) 试证:对任意常数0λ>,级数1nn a n λ∞=∑收敛 提示:()()2111n n a a n n n ++=+,()2111n n n a a n∞+=+=∑。

微积分复习课件 无穷级数(1)

微积分复习课件  无穷级数(1)

则__________.
(A)

p
1 时, 2
级数 (1)n1un
n1
绝对收敛
(B)
当p
1 时, 2
级数 (1)n1un
n1
条件收敛
(C)
当0
p
1 时, 2
级数 (1)n1un
n1
绝对收敛
(D)
当0
p
1 时, 2
级数 (1)n1unn1发散来自3.对正项级数 un ,
n1
lim un1 =q<1 是该正项级数收敛的__________. u n
(A) 1
(B)
3
(C)
3
1
(D)
3
8.幂级数 1 x n 的收敛域为__________. n1 n
(A) [1, 1] (B) [1,1)
(C) (1, 1 ] (D) (1, 1)
9.若级数 an (x 3)n 在点 x=8 处收敛, 则此级数在点 x=1 处____. n1
(A) 发散 (B) 条件收敛 (C) 绝对收敛 (D) 敛散性不能确定
10.B
11.D
1.(1, 1),
1 (1 x)2
2.
e (x 1)n , (, +)
n0 n!
三、解答题
1.(1) 比较判别法(有理化)收敛
(2) 比值判别法 0<e 时, 收敛; =e, 收敛; >e, 发散.
2 . 由 f (x) 是 二 阶 可 导 的 偶 函 数 , 得 f (0)=0, x=0 是 驻 点 , 又 因 为
n
(A) 充分非必要条件 (C) 充分必要条件
(B) 必要非充分条件 (D) 即非充分又非必要条件

高数下册-级数复习题

高数下册-级数复习题

A. 1 + x2 + x4 + x6 + !; B. 1 − x2 + x4 − x6 + !;
2! 3!
2! 3!
C. 1 + x + x2 + x3 + !; D. 1 − x + x2 − x3 + !;
n=1
73、 求幂级数 x + x2 + x3 + !的收敛域;
3 3⋅5 3⋅5⋅7
74、

求幂级数 ∑ nxn−1(| x |< 1)在收敛区间内的和函数;
n=1
∑ 75、

求幂级数
x4n+1 (| x |< 1)在收敛区间内的和函数;
n=1 4n + 1
76、 函数 f (x) = e−x2 展开成 x 的幂级数为:( )
n=1
A.
un+1
≤ un(n = 1,2,!) ;
B.
lim
n→∞
un
= 0;
C.
un+1

un
(
n
=
1,2,
!)

lim
n→∞
un
= 0;
第十一章 级数复习题
51、
判别级数


n=1
⎜⎛ ⎝

3 4
n
⎞ ⎟ ⎠
的收敛性;
52、
∞ −1
判别级数 ∑ 2n+1 的收敛性;
n=1
53、
判别级数


n=1
⎜⎛ ⎝
1 5n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章 无穷级数
1. 下列级数中发散的是() A ...1 (312112)
22++++n B ...1)1(......312111+-++-+n n C ...!
2)1(......!32!222219
4+-+++-+n n n D ...!1......!31!211++++n 2. 级数n n x n n 21
!12∑∞=+的收敛区间是: A ),(+∞-∞ B ),0[+∞ C ]1,1[- D )1,1(-
3.若级数的一般项0lim =∞→n n u ,则级数
∑∞=1n n u ()
A 一定收敛
B 一定发散
C 一定条件收敛
D 可能收敛,也可能发散
4.若级数∑∞=1n n u
收敛,则下列结论正确的有( )
A 0lim 21=+++∞→)(n n u u u
B )(n n u u u +++∞
→ 21lim 存在但不一定等于0 C ∞→n n u lim 存在,但不等于0 D ∞
→n n u lim 不一定存在
5.幂级数 ++++7
537
53x x x x 的收敛区间是( ) A ]1,1[- B )1,1[- C ]1,1(- D )1,1(-
6.交错级数11131)
1(-∞
=-∑-n n n ()
A 绝对收敛
B 发散
C 条件收敛
D 无法确定
7.部分和函数}{n s 有界是正项级数∑∞=1n n u
收敛的
A 必要条件
B 充分条件
C 充分必要条件
D 既非充分也非必要条件
8.若∑∞
=-1)1(n n n x a 在1-=x 处收敛,则此级数在2=x 处
A 条件收敛
B 绝对收敛
C 发散
D 收敛性不能确定
10.函数x
+11 的麦克劳林级数是 。

11.幂级数n n n
x n n 21)1(4∑∞
=+的收敛半径是
12.。

要把函数)0()(π≤≤=x e x f x 展开成余弦级数则应对)(x f 作 延拓,若展开成正弦级数,则应作 延拓。

13.以π2为周期的周期函数
)(x f 的傅立叶级数的系数=n a ,=n b 。

14.函数
x e x f 2)(=关于x 的幂级数展开式是: 。

15.若级数
∑∞=1
n n u 收敛 ,则 =∞→n n u lim 。

16.求幂级数∑∞=11n n x n
的收敛区间以及和函数。

17.求下列幂级数的收敛区间以及和函数。

(1)∑
∞=--112)
121n n x n ( (2) ∑∞=++112)121n n x n ( 、(3)∑∞=-+11)12n n x n (
18.求幂级数120
)!12(1+∞
=∑+n n x n 的和函数)(x F 。

19.设⎩
⎨⎧<≤<≤-=ππx ax x bx x f 00)((a,b 为常数)是周期为π2的函数,将)(x f 展开成Fourier 级数。

20.用间接展开法把21)(2--=
x x x f ,展开成)3(-x 的幂级数,并写出其收敛区间。

21.将3
41)(2++=
x x x f 展开成)1(-x 的幂级数。

22.将函数
⎩⎨⎧≤≤<≤-=ππx x x f 0100)(展开成傅立叶级数
23.判断下列级数的敛散性:1) ∑∞
=1!2n n n n n 2 )∑∞=-+1]ln )1[ln(n n n
24.证明:1)如果级数∑∞=1n n a
收敛,则∑∞=1
n n a 也收敛。

证明:2)如果正项级数∑∞=1
n n u 收敛,则∑
∞=1n n n u 也收敛。

证明:3)如果正项级数∑∞=1n n u 收敛,则∑∞=12n n
u 也收敛。

相关文档
最新文档