2018届天津市静海区静海一中高三文科数学模拟题(word版)无答案-精选教育文档
(完整word版)2018-2019高三第一次模拟试题文科数学
高三年级第一次模拟考试60分.在每小题给出的四个选项中,有且合 题目要畚考公式:样本败据x lt 鬲的标准差 尸¥门如一訝+他— 英叩丘为样車屮均数柱体的体积公式Y=*其中/为底!ftl 曲积・h 为海341(1)复数 I ~i = (A) 1+2i (B) 1-2i(C) 2-i (D) 2+i⑵函数的定义域为(A) (-1,2) (B) (0, 2] (C) (0, 2) (D) (-1,2] ⑶ 己知命题p :办I 砒+ llX ,则了为 锥体的体积公式v=*h 乩中$为底面面枳,h 为商 耶的親血祝*休枳公式$=4庆,評It 中月为球的半牲(A) (C)函数|;宀林匚阴的图象可以由函数'尸沁酬的图象 (A) 64 (B) 31 (C) 32 (D) 63(7) 已知某几何体的三视图如图所示,则其表面积为 (A)右+4观(B)「(C) 2 (D) 8一、选择题:本大题共12小题,毎小题5〕 分,共 只有一 项 符(B)(D)(A) (C)向左平移个单位得到JL个单位得到(B)向右平移3个单位得到 向左平移设变量x 、y 满足约束条件 ⑸ (A) 3 (B) 2 (C) 1 (D) 5(D)向右平移个单位得到g+2y —2 鼻(h[2x +工一7冬6则的最小值为(6)等比数列{an }的公比a>1,血,则-血+口 $+他"卜彌=(8) 算法如图,若输入 m=210,n= 119,则输出的n 为 (A) 2 (B) 3 (C) 7 (D) 11(9) 在 中,/恥C 权」,AB=2, AC=3,则 = (A) 10 (B)-10(C) -4 (D) 4(10) 点A 、B 、C D 均在同一球面上,其中 的体积为(11) 已知何m 2 '黑⑴-代2侧集合」「等于D |『工=对止卡(B)卜: (12) 抛物线 的焦点为F,点A 、B 、C 在此抛物线上,点A 坐标为(1,2).若点F 恰为 的重心,则直线 BC 的方程为 (A)龙卄一0 (B): tT '■(C)Ly=0 (D) | It \.■二、填空题:本大题共 4小题,每小题5分,共20分.(13) 班主任为了对本班学生的考试成绩进行分析,从全班 50名同学中按男生、女生用分层 抽样的方法随机地抽取一个容量为 10的样本进行分析•己知抽取的样本中男生人数为 6,则班内女生人数为 ________ .Lif ]町= :—(14) 函数.文+】(X 〉0)的值域是 _________ .(15) 在数列1禺1中,尙=1,如 厂% = 2门丨,则数列的通项 □」= _________ .—7 --- F ------(16) —P 尺的一个顶点P ( 7,12)在双曲线 产 3上,另外两顶点 F1、F2为该双曲线是正三角形,AD 丄平面 AD=2AB=6则该球(D)(C) 卜 j(—Ak 土(D)(A) (B) 15 (C)的左、右焦点,则屮八几的内心的横坐标为 __________ .三、解答题:本大题共 6小题,共70分.解答应写出文字说明、证明过程或演算步骤 (17) (本小题满分12分)在厶ABC 中,角A 、B C 的对边分别为a 、b 、c, A=2B,呦占」5 ' (I ) 求cosC 的值;[c\(II)求的值•(18) (本小题满分12分)某媒体对“男女同龄退休”这一公众关注的问题进行了民意调查, 右表是在某单位得到的数据(人数)•(I )能否有90%以上的把握认为对这一问题的看法与性别有关?(II)从反对“男女同龄退休”的甲、 乙等6名男士中选出2人进行陈述,求甲、乙至少有- 人被选出的概率.反对 合计|男 5 6 H 1 女II1 3 "14 合计 16925(19) (本小题满分12分)如图,在三棱柱.A 尅匚 "Q 中,CC1丄底面ABC 底面是边长为2的正三角形,M N 、G 分别是棱CC1 AB, BC 的中点. (I ) 求证:CN//平面AMB1 (II)若X 严2迄,求证:平面AMG.(20) (本小题满分12 分)X'设函数:「—L(I )当a=0时,求曲线在点(1, f(1))处的切线 方程;P(K 2^k) 0.25 Od U 0J0 kL323 2.072 2.706__ ,讯耐一比严 ____(a+附:(II )讨论f(x)的单调性•(21) (本小题满分12分)中心在原点0,焦点F1、F2在x 轴上的椭圆E 经过点C(2, 2),且 ―二◎土::(I) 求椭圆E 的方程;(II) 垂直于0C 的直线I 与椭圆E 交于A B 两点,当以AB 为直径的圆P 与y 轴相切时,求 直线I 的方程和圆P 的方程•请考生在第(22)、( 23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分 •作答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑 •(22) (本小题满分10分)选修4-1:几何证明选讲如图,AB 是圆0的直径,以B 为圆心的圆B 与圆0的一个交点为P.过点A 作直线交圆Q 于 点交圆B 于点M N. (I )求证:QM=QNi110(II)设圆0的半径为2,圆B 的半径为1,当AM= 时,求MN 的长.(23) (本小题满分10分)选修4-4:坐标系与参数 方程 以直角坐标系的原点 O 为极点,x 轴正半轴为极轴,.已知直线I 的参数方程为 (t 为参数,(I )求曲线C 的直角坐标方程;(II)设直线I 与曲线C 相交于A B 两点,当a 变化时,求|AB|的最小值.(24) (本小题满分10分)选修4-5:不等式选讲 设曲线C 的极坐标方程为2cos 0 L朋& *并在两种坐标系中取相同的长度单位(I) 求不等式的解集S;(II) 若关于x不等式应总=1我=;『;:纂釧有解,求参数t的取值范围(18) 解: 由此可知,有90%的把握认为对这一问题的看法与性别有关.…5分(H)记反对“男女同龄退休”的6男士为ai , i = 1, 2,…,6,其中甲、乙分别为a2,从中选出2人的不同情形为: a1a2, a1a3, a1a4, a1a5, a1a6, a2a3, a2a4, a2a5 , a2a6, a3a4, a3a5, a3a6 , a4a5, a4a6, a5a6,…9分共15种可能,其中甲、乙至少有1人的情形有9种,93 所求概率为P = .…12分(19)解:(I)设 AB1的中点为 P ,连结NP 、MP1 1•/ CM^ — A1 , NP^— A1 , • CM^ NP,2 2文科数学参考答案 一、 选择题: A 卷: ADCDC B 卷: BCDAB 二、 填空题: (13) 20 三、 解答题: (17)解:DACB ADDCAB(14) BB CA(-1,1)(15) n2(16) 1(I): B =(0,亍),••• cosB = 1— s in 2B =•/ A = 2B ,「.4si nA = 2si nBcosB = , cosA = cos2B = 1 — 2si n2B = 5 , ••• cosC = cos[ —(A + B)] = — cos(A + B) = si nAsi nB — cosAcosB =— 2.525 'sinC =1 — cos2C=11 .525 ,根据由正弦定理,c si nC 11b sinB 5…12分(I) K2= 25 X (5 X 3— 6 X11)216 X 9X 11 X 142.932 > 2.706 a1 ,• CNPK是平行四边形,• CN// MP•/ CN平面AMB1 MP平面AMB1 • CN//平面AMB1 …4分(n)v cc 仏平面 ABC •••平面 CC1B1E L 平面 ABC , •/ AG 丄 BC, • AGL 平面 CC1B1B • B1M L AG •/ CC1 丄平面 ABC 平面 A1B1C1 //平面 ABC •- CC L AC, CC1 丄 B1C1 ,在 Rt △ MCA 中 , AM k CM 即 AC2= 6. 同理,B1M=6.•/ BB1/ CC1, • BB1 丄平面 ABC •- BB1 丄 AB, • AB1= B1B2+ AB2= C1C2+ AB2= 2.3 , • AM2+ B1M2= AB2, • B1ML AM 又 AG A AM= A , • B1ML 平面 AMG (20)解:, , x2 x(x — 2) (I)当 a = 0 时,f(x) = , f (x)=—亠exex1 1f(i) =T ,f (i) =-^,曲线y = f(x)在点(1 , f(1))处的切线方程为(2x — a)ex — (x2 — ax 土 a)ex e2x(1 )若 a = 2,贝U f (x) w 0 , f(x)在(一a , +s )单调递减. …7 分(2 )若 a v 2,贝 U…10分 …12分1y =肓(x — 1) +(x — 2)(x — a)exA Bf (x)当x€ ( —a , a)或x€ (2 , +a )时,f (x) v 0,当x € (a , 2)时,f (x) > 0 , 此时f(x)在(—a , a)和(2 , +a )单调递减,在(a , 2)单调递增.(3)若a> 2,贝U当x€ ( —a , 2)或x€ (a , +a )时,f (x) v 0,当x € (2 , a)时,f (x) >0 , 此时f(x)在(—a , 2)和(a , +a )单调递减,在(2 , a)单调递增. …12分x2 y2(21)解:(I)设椭圆E的方程为02+ b2 = 1 (a>b> 0),贝y a2+ b2记c= ,a2—b2 ,不妨设F1( — c , 0) , F2(c , 0),则C f1= ( —c—2, —2) , C f2= (c —2, —2),则C f1 • C f2= 8 —c2 = 2 , c2 = 6,即a2 —b2= 6.由①、②得a2= 12, b2= 6. 当m= 3时,直线I 方程为y =— x + 3, 此时,x1 + x2 = 4,圆心为(2 , 1),半径为2,圆P 的方程为(x — 2)2 + (y — 1)2 = 4; 同理,当 m=— 3时,直线I 方程为y = — x — 3,圆P 的方程为(x + 2)2 + (y + 1)2 = 4. …12分 (22)解:(I)连结 BM BN BQ BP. •/ B 为小圆的圆心,••• BM= BN 又••• AB 为大圆的直径,• BQL MN , •- QM= QN …4 分 (n)v AB 为大圆的直径,•/ APB= 90 , • AP 为圆B 的切线,• AP2= AM- AN …6分 由已知 AB= 4, PB= 1 , AP2= AB2- PB2= 15,所以曲线C 的直角坐标方程为 y2= 2x .(n)将直线l 的参数方程代入 y2 = 2x ,得t2sin2 a — 2tcos a — 1= 0.所以椭圆E 的方程为 x2 y2 i2+ 6 = 1. (也可通过2a = iCFlI + |C ?2|求出a ) (n)依题意,直线 0C 斜率为1,由此设直线I 的方程为y = — X + m 代入椭圆 E 方程,得 3x2 — 4m 灶2m2- 12= 0. 由△= 16m2- 12(2m2 — 12) = 8(18 — m2),得 m2< 18. 4m 2m2— 12 记 A(x1 , y1)、B(x2 , y2),贝U x1 + x2=^ , x1x2 = -—. 3 3 x1 + x2 圆P 的圆心为(一_, y1 + y2 2 ),半径r = 当圆P 与y 轴相切时, x1 + x2 r = 1 2 1, 2x1x2 = (x1 + x2)2 4 2(2m2 — 12)= 3 = 4m2 —,m2= 9v 18. …10分 (I)由 2cos 0 p = sinr v ,得(p sin 0 )2 = 2 p cos 0, …6分 7 6设A、B两点对应的参数分别为t1、t2,则4C0S2 a 4 2 + = ------------------------ sin4 a sin2 a sin2 a当a =—亍时,|AB|取最小值2 .…10分 (24)解:—x + 3, x v — 3,(I) f(x) = — 3x — 3,— 3<x < 0,x — 3, x >0.如图,函数y = f(x)的图象与直线 y = 7相交于横坐标为 x1 =— 4,x2 = 10的两点, 由此得 S = [ — 4, 10].\ :I…6分(n)由(I )知,f (x )的最小值为一3,则不等式 f(x) + |2t —3| < 0有解必须且只需—3 + |2t — 3| < 0,解得0W t < 3,所以t 的取值范围是[0 , 3]. t1 + t2 = 2C0S a sin2 at1t2 sin2 a :.|AB| = |t1 - t2| = (t1 + t2)2 - 4t1t2 …10分。
天津市静海县第一中学2018届高三上学期期末终结性检测数学(文)试题 Word版缺答案
静海一中2017-2018第一学期高三数学(文)期末终结性检测试卷考生注意:1. 本试卷分第Ⅰ卷基础题(122分)和第Ⅱ卷提高题(28分)两部分,共150分。
2. 试卷书写规范工整,卷面整洁清楚,酌情减3-5分,并计入总分。
第Ⅰ卷 基础题(共122分) 一、选择题:(每小题 5 分,共 40 分)1.若全集为实数R ,集合{}213A x x =->,{B x y ⎫==, 则B A C R ⋂ =( ) A .}{12x x -≤≤B .}{12x x <≤C .}{12x x ≤≤ D .∅2.设x R ∈且0x ≠,则“1()12x>”是“11x<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 3.执行如图所示的程序框图,输出的S 值为( ) A .3 B .4C .5D .6 4. 已知,则的大小关系为( )5. 同时具有性质:“①最小正周期是π;②图象关于直线3x π=对称;③在区间5[,]6ππ上是单调递增函数”的一个函数可以是( ) A .cos(2)3y x π=-B .sin(2)6y x π=-C .5sin(2)6y x π=+D .sin()26x y π=+ 6. 已知在平面直角坐标系xoy 上的区域D由不等式组02x y x ⎧≤≤⎪≤⎨⎪≤⎩给定,若(),M x y D 为上的动点,点A的坐标为),则z OM OA =⋅的最大值为A. 4C. 37. 若双曲线()222210,0x y a b a b-=>>的渐近线与圆()2222x y -+=相交,则此双曲线的离心率的取值范围为A.)+∞B. (C. ()1,2D. ()2,+∞8. 已知,若[]2,1∈x 时,,则的取值范围是( )二、填空题(每题5 分,共 30 分) 9.复数的虚部为 .10.已知某三棱锥的三视图如图所示,则该三棱锥的最长棱的棱长是11.已知函数x y cos = 与sin(2)(0)y x ϕϕπ=+≤<,它们的图象有一个横坐标为3π的交点,则ϕ的值是 12.已知等差数列{}n a 中,371016,85a a S +==,则等差数列{}n a 公差为________;13.已知圆22:40c x y x +-=与直线y x b =+相交于M N 、两点,且CM CN ⊥满足(C为圆心),则实数b 的值为14.已知函数2(43)3,0()(01)log (1)1,0a x a x a x f x a a x x ⎧+-+<⎪=>≠⎨++≥⎪⎩且在R 上单调递减,且关于x 的方程|()|23xf x =-恰有两个不相等的实数解,则a 的取值范围是_________. 三、解答题(本大题共 6 题,共80 分) 15.(13分)在中,角所对的边分别为,已知.(1)求角的大小;(2)若,且,求边;(3)若,求周长的最大值.16.(13分)为了了解某市开展群众体育活动的情况,拟采用分层抽样的方法从C B A ,,三个区中抽取7个工厂进行调查,已知C B A ,,区中分别有18,27,18个工厂 (1)求从C B A ,,区中应分别抽取的工厂个数(2)若从抽得的7个工厂中随机地抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有一个来自A 区的概率 17.(13分)矩形 中,,,沿对角线将三角形 错误!未找到引用源。
2018届天津市静海县第一中学高三12月学生学业能力调研考试数学(文)试题word版含答案
2018届天津市静海县第一中学高三12月学生学业能力调研考试数学(文)试题1. 本试卷分第Ⅰ卷基础题(136分)第Ⅱ卷提高题(14分)两部分共150分。
2. 试卷书写规范工整,卷面整洁清楚,酌情减3-5分,并计入总分。
第I 卷 基础题(共136分)一、选择题(本大题共8个小题,每小题5分,共40分) 1. 已知i ii2=++b a (∈b a ,R ),其中i 为虚数单位,则b a +等于( ) (A )1- (B )1 (C )3- (D )32设变量y x ,满足约束条件⎪⎩⎪⎨⎧-+--+-,,022033,042y x y x y x 则y x z 23+=的最小值为( ) (A )12 (B )4 (C )3 (D )13.已知双曲线122=-by ax (0>a ,0>b )的一条渐近线为x y 2=,右焦点坐标为)0,3(,则该双曲线的离心率等于( ) (A )26(B )2 (C )3 (D )64.“a =5”是“直线ax -2y -1=0与直线5x -2y +c =0平行”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件 5.设集合,,函数,若x 0∈A ,且,则x 0的取值范围是( )A .(] B .(] C .D .()≥ ≥ ≤6.已知定义在R 上的函数x x x f cos )(+=,则三个数)1(f a =,)41(log 21f b =,)22(log 2f c =的大小关系为( )(A )c b a >> ( B )b c a >> (C )c a b >> (D )b a c >> 7.已知数列{}n a 满足:11a =,12nn n a a a +=+()n N *∈.若11(2)(1)n nb n a λ+=-⋅+()n N *∈,1b λ=-,且数列{}n b 是单调递增数列,则实数λ的取值范围是( ) A .23λ>B .32λ>C .32λ<D .23λ< 8.已知函数⎪⎩⎪⎨⎧>-+-=.1,ln ,1,34)(2x x x x xx f 若a x f +)(≥ax ,则a 的取值范围是( ). (A) ]02[,- (B) ]12[,- (C) ]2-∞-,( (D) ]0,(∞- 二.填空题:本大题共6小题,每小题5分,共30分.9. 设全集U R =,集合{}1|||2,|01A x x B x x ⎧⎫=≤=>⎨⎬-⎩⎭,则()U C A B =10.将函数)4sin(2πω-=x y (0>ω)的图象分别向左、向右各平移4π个单位长度后,所得的两个图象对称轴重合,则ω的最小值为S ABC -及其三视图中的正(主)视图和侧(左)视图如图所示,则棱SB 的长为___________.12.阅读如图所示的程序框图,若输入5i =,则输出的k 值为__________13. 若a ,b ∈R ,0ab >,则abb a 144++的最小值为______14.如图,在平行四边形ABCD 中,DB AE ⊥,垂足为E ,且3=AE ,若F 为CE 的中点,则=⋅ .三、解答题:本大题6小题,共DCBFEPBA CDO80分.解答应写出文字说明,证明过程或演算步骤 15.(本小题满分13分) 已知f (x )=.(Ⅰ)求函数f (x )的单调增区间;(Ⅱ)在△ABC 中,a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,且a=1,b+c=2,f (A )=1,求△ABC 的面积. 16.(本小题满分13分)某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[)40,50,[)50,60, ,[]90,100后得到如图的频率分布直方图.()1求图中实数a 的值;()2若该校高一年级共有学生640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;()3若从数学成绩在[)40,50与[]90,100两个分数段内的学生中随机选取两名学生,求这两名学生的数学成绩之差的绝对值不大于10的概率. 17.(本小题满分13分)如图四棱锥ABCD P -,三角形ABC 为正三角形,边长为2,DC AD ⊥,1=AD ,PO 垂直于平面ABCD 于O ,O 为AC 的中点. (1)证明BO PA ⊥; (2)证明//DO 平面PAB ;(3)若6=PD ,直线PD 与平面PAC 所成角的正切值. 18.(本小题满分13分) 已知椭圆2222:1(0)x yC a b a b +=>>过点(0,,且满足a b +=(Ⅰ) 求椭圆C 的方程; (Ⅱ) 若斜率为12的直线与椭圆C 交于两个不同点A ,B ,有坐标为(2,1)点M ,设直线MA 与MB 的斜率分别为1k ,2k ,试问21k k +是否为定值?并说明理由.19.(本小题满分14分)已知数列{}n b 的前n 项和(1)求数列{}n b 的通项公式;(2)设数列{}n a 的通项n n n n b a 2)1(1⋅-=+,求数列{}n a 的前n 项和n T . 20.(本小题满分14分)函数()()()()()ln ,212.f x x g x a x f x ==--- (I )当1a =时,求函数()g x 的单调区间;(II )设),(),(2211y x B y x A 是函数()y f x =图象上任意不同两点,线段AB 中点为C ()00,x y ,直线AB 的斜率为k.证明:()0k f x '>; (III )设()()()01b F x f x b x =+>+,对任意(]1212,0,2,x x x x ∈≠,都有()()12121F x F x x x -<--,求实数b 的取值范围.静海一中2017-2018第一学期高三数学(文12月)学生学业能力调研卷答题纸第Ⅰ卷二、填空题(每题5分,共30分)9._____ _ ___ 10.______ ___ 11.______ ____12._______ __ 13._______ ___ 14._________ __三、解答题(本大题共6题,共80分)15.(本小题满分13分)16.(本小题满分13分)17.(本小题满分13分)PBAC DO。
静海区高中2018-2019学年高三上学期11月月考数学试卷含答案
静海区高中2018-2019学年高三上学期11月月考数学试卷含答案班级__________ 姓名__________ 分数__________一、选择题1. 记集合{}22(,)1A x y x y =+?和集合{}(,)1,0,0B x y x y xy =+3?表示的平面区域分别为Ω1,Ω2,若在区域Ω1内任取一点M (x ,y ),则点M 落在区域Ω2内的概率为( ) A .12p B .1p C .2pD .13p【命题意图】本题考查线性规划、古典概型等基础知识,意在考查数形结合思想和基本运算能力. 2. 阅读如下所示的程序框图,若运行相应的程序,则输出的S 的值是( )A .39B .21C .81D .1023. 已知f (x )在R 上是奇函数,且满足f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2015)=( ) A .2B .﹣2C .8D .﹣84. 已知函数f (x )=lg (1﹣x )的值域为(﹣∞,1],则函数f (x )的定义域为( ) A .[﹣9,+∞) B .[0,+∞) C .(﹣9,1) D .[﹣9,1)5. 对一切实数x ,不等式x 2+a|x|+1≥0恒成立,则实数a 的取值范围是( )A .(﹣∞,﹣2)B . D .上是减函数,那么b+c ( )A .有最大值B .有最大值﹣C .有最小值D .有最小值﹣6. 有一学校高中部有学生2000人,其中高一学生800人,高二学生600人,高三学生600人,现采用分层抽样的方法抽取容量为50的样本,那么高一、高二、高三年级抽取的人数分别为( ) A .15,10,25 B .20,15,15 C .10,10,30 D .10,20,207. 执行如图所示的程序框图,若a=1,b=2,则输出的结果是( )A .9B .11C .13D .158. 若复数满足71i i z+=(为虚数单位),则复数的虚部为( ) A .1 B .1- C . D .i -9. “x ≠0”是“x >0”是的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件10.直线x ﹣2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为( )A .B .C .D .11.设全集U={1,2,3,4,5,6},设集合P={1,2,3,4},Q={3,4,5},则P ∩(∁U Q )=( ) A .{1,2,3,4,6} B .{1,2,3,4,5} C .{1,2,5} D .{1,2}12.过直线3x ﹣2y+3=0与x+y ﹣4=0的交点,与直线2x+y ﹣1=0平行的直线方程为( )A .2x+y ﹣5=0B .2x ﹣y+1=0C .x+2y ﹣7=0D .x ﹣2y+5=0二、填空题13.已知i 是虚数单位,且满足i 2=﹣1,a ∈R ,复数z=(a ﹣2i )(1+i )在复平面内对应的点为M ,则“a=1”是“点M 在第四象限”的 条件(选填“充分而不必要”“必要而不充分”“充要”“既不充分又不必要”)14.已知函数f(x)=x3﹣ax2+3x在x∈[1,+∞)上是增函数,求实数a的取值范围.15.设函数f(x)=的最大值为M,最小值为m,则M+m=.16.椭圆C:+=1(a>b>0)的右焦点为(2,0),且点(2,3)在椭圆上,则椭圆的短轴长为.17.若圆与双曲线C:的渐近线相切,则_____;双曲线C的渐近线方程是____.18.下列说法中,正确的是.(填序号)①若集合A={x|kx2+4x+4=0}中只有一个元素,则k=1;②在同一平面直角坐标系中,y=2x与y=2﹣x的图象关于y轴对称;③y=()﹣x是增函数;④定义在R上的奇函数f(x)有f(x)•f(﹣x)≤0.三、解答题19.设函数.(1)若x=1是f(x)的极大值点,求a的取值范围.(2)当a=0,b=﹣1时,函数F(x)=f(x)﹣λx2有唯一零点,求正数λ的值.20.设函数.(Ⅰ)求函数的最小正周期;(Ⅱ)求函数在上的最大值与最小值.21.为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行抽样检查,测得身高情况的统计图如下:(Ⅰ)估计该校男生的人数;(Ⅱ)估计该校学生身高在170~185cm之间的概率;(Ⅲ)从样本中身高在180~190cm之间的男生中任选2人,求至少有1人身高在185~190cm之间的概率.22.如图,过抛物线C:x2=2py(p>0)的焦点F的直线交C于M(x1,y1),N(x2,y2)两点,且x1x2=﹣4.(Ⅰ)p的值;(Ⅱ)R,Q是C上的两动点,R,Q的纵坐标之和为1,RQ的垂直平分线交y轴于点T,求△MNT的面积的最小值.23.(本小题满分12分) 设函数mx x x x f -+=ln 21)(2(0>m ). (1)求)(x f 的单调区间; (2)求)(x f 的零点个数;(3)证明:曲线)(x f y =没有经过原点的切线.24.(本题满分12分) 已知数列{a n }满足a 1=1,a n+1=2a n +1. (1)求数列{a n }的通项公式;(2)令b n =n (a n +1),求数列{b n }的前n 项和T n .静海区高中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】A【解析】画出可行域,如图所示,Ω1表示以原点为圆心, 1为半径的圆及其内部,Ω2表示OAB D及其内部,由几何概型得点M 落在区域Ω2内的概率为112P ==p 2p,故选A.2. 【答案】] 【解析】试题分析:第一次循环:2,3==n S ;第二次循环:3,21==n S ;第三次循环:4,102==n S .结束循环,输出102=S .故选D. 1 考点:算法初步. 3. 【答案】B【解析】解:∵f (x+4)=f (x ), ∴f (2015)=f (504×4﹣1)=f (﹣1), 又∵f (x )在R 上是奇函数, ∴f (﹣1)=﹣f (1)=﹣2.故选B .【点评】本题考查了函数的奇偶性与周期性的应用,属于基础题.4. 【答案】D【解析】解:函数f (x )=lg (1﹣x )在(﹣∞,1)上递减, 由于函数的值域为(﹣∞,1], 则lg (1﹣x )≤1, 则有0<1﹣x ≤10,解得,﹣9≤x <1. 则定义域为[﹣9,1), 故选D .【点评】本题考查函数的值域和定义域问题,考查函数的单调性的运用,考查运算能力,属于基础题.5. 【答案】B【解析】解:由f (x )在上是减函数,知 f ′(x )=3x 2+2bx+c ≤0,x ∈,则⇒15+2b+2c ≤0⇒b+c ≤﹣.故选B .6. 【答案】B【解析】解:每个个体被抽到的概率等于=,则高一、高二、高三年级抽取的人数分别为800×=20,600×=15,600×=15,故选B .【点评】本题主要考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数,属于基础题.7. 【答案】C【解析】解:当a=1时,不满足退出循环的条件,故a=5, 当a=5时,不满足退出循环的条件,故a=9, 当a=9时,不满足退出循环的条件,故a=13, 当a=13时,满足退出循环的条件, 故输出的结果为13, 故选:C【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.8. 【答案】A 【解析】试题分析:42731,1i i i i i ==-∴==-,因为复数满足71i i z +=,所以()1,1i i i i z i z+=-∴=-,所以复数的虚部为,故选A.考点:1、复数的基本概念;2、复数代数形式的乘除运算.9.【答案】B【解析】解:当x=﹣1时,满足x≠0,但x>0不成立.当x>0时,一定有x≠0成立,∴“x≠0”是“x>0”是的必要不充分条件.故选:B.10.【答案】A【解析】直线x﹣2y+2=0与坐标轴的交点为(﹣2,0),(0,1),直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点;故.故选A.【点评】本题考查了椭圆的基本性质,只需根据已知条件求出a,b,c即可,属于基础题型.11.【答案】D【解析】解:∵U={1,2,3,4,5,6},Q={3,4,5},∴∁U Q={1,2,6},又P={1,2,3,4},∴P∩(C U Q)={1,2}故选D.12.【答案】A【解析】解:联立,得x=1,y=3,∴交点为(1,3),过直线3x﹣2y+3=0与x+y﹣4=0的交点,与直线2x+y﹣1=0平行的直线方程为:2x+y+c=0,把点(1,3)代入,得:2+3+c=0,解得c=﹣5,∴直线方程是:2x+y﹣5=0,故选:A.二、填空题13.【答案】充分不必要【解析】解:∵复数z=(a﹣2i)(1+i)=a+2+(a﹣2)i,∴在复平面内对应的点M的坐标是(a+2,a﹣2),若点在第四象限则a+2>0,a﹣2<0,∴﹣2<a<2,∴“a=1”是“点M在第四象限”的充分不必要条件,故答案为:充分不必要.【点评】本题考查条件问题,考查复数的代数表示法及其几何意义,考查各个象限的点的坐标特点,本题是一个基础题.14.【答案】(﹣∞,3].【解析】解:f′(x)=3x2﹣2ax+3,∵f(x)在[1,+∞)上是增函数,∴f′(x)在[1,+∞)上恒有f′(x)≥0,即3x2﹣2ax+3≥0在[1,+∞)上恒成立.则必有≤1且f′(1)=﹣2a+6≥0,∴a≤3;实数a的取值范围是(﹣∞,3].15.【答案】2.【解析】解:函数可化为f(x)==,令,则为奇函数,∴的最大值与最小值的和为0.∴函数f(x)=的最大值与最小值的和为1+1+0=2.即M+m=2.故答案为:2.16.【答案】.【解析】解:椭圆C:+=1(a>b>0)的右焦点为(2,0),且点(2,3)在椭圆上,可得c=2,2a==8,可得a=4,b2=a2﹣c2=12,可得b=2,椭圆的短轴长为:4.故答案为:4.【点评】本题考查椭圆的简单性质以及椭圆的定义的应用,考查计算能力.17.【答案】,【解析】【知识点】圆的标准方程与一般方程双曲线【试题解析】双曲线的渐近线方程为:圆的圆心为(2,0),半径为1.因为相切,所以所以双曲线C的渐近线方程是:故答案为:,18.【答案】②④【解析】解:①若集合A={x|kx2+4x+4=0}中只有一个元素,则k=1或k=0,故错误;②在同一平面直角坐标系中,y=2x与y=2﹣x的图象关于y轴对称,故正确;③y=()﹣x是减函数,故错误;④定义在R上的奇函数f(x)有f(x)•f(﹣x)≤0,故正确.故答案为:②④【点评】本题以命题的真假判断与应用为载体,考查了集合,指数函数的,奇函数的图象和性质,难度中档.三、解答题19.【答案】【解析】解:(Ⅰ)f(x)的定义域为(0,+∞),,由f'(1)=0,得b=1﹣a.∴.…①若a≥0,由f'(x)=0,得x=1.当0<x<1时,f'(x)>0,此时f(x)单调递增;当x>1时,f'(x)<0,此时f(x)单调递减.所以x=1是f(x)的极大值点.…②若a<0,由f'(x)=0,得x=1,或x=.因为x=1是f(x)的极大值点,所以>1,解得﹣1<a<0.综合①②:a的取值范围是a>﹣1.…(Ⅱ)因为函数F(x)=f(x)﹣λx2有唯一零点,即λx2﹣lnx﹣x=0有唯一实数解,设g(x)=λx2﹣lnx﹣x,则.令g'(x)=0,2λx2﹣x﹣1=0.因为λ>0,所以△=1+8λ>0,方程有两异号根设为x1<0,x2>0.因为x>0,所以x1应舍去.当x∈(0,x2)时,g'(x)<0,g(x)在(0,x2)上单调递减;当x∈(x2,+∞)时,g'(x)>0,g(x)在(x2,+∞)单调递增.当x=x2时,g'(x2)=0,g(x)取最小值g(x2).…因为g(x)=0有唯一解,所以g(x2)=0,则即因为λ>0,所以2lnx2+x2﹣1=0(*)设函数h(x)=2lnx+x﹣1,因为当x>0时,h(x)是增函数,所以h(x)=0至多有一解.因为h(1)=0,所以方程(*)的解为x2=1,代入方程组解得λ=1.…【点评】本题考查函数的单调性、极值、零点等知识点的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.20.【答案】【解析】【知识点】三角函数的图像与性质恒等变换综合【试题解析】(Ⅰ)因为.所以函数的最小正周期为.(Ⅱ)由(Ⅰ),得.因为,所以,所以.所以.且当时,取到最大值;当时,取到最小值.21.【答案】【解析】解:(Ⅰ)样本中男生人数为2+5+13+14+2+4=40,由分层抽样比例为10%估计全校男生人数为=400;(Ⅱ)∵样本中身高在170~185cm之间的学生有14+13+4+3+1=35人,样本容量为70,∴样本中学生身高在170~185cm之间的频率,故可估计该校学生身高在170~180cm之间的概率p=0.5;(Ⅲ)样本中身高在180~185cm之间的男生有4人,设其编号为①,②,③,④,样本中身高在185~190cm之间的男生有2人,设其编号为⑤,⑥,从上述6人中任取2人的树状图为:∴从样本中身高在180~190cm之间的男生中任选2人得所有可能结果数为15,求至少有1人身高在185~190cm之间的可能结果数为9,∴所求概率p2=.【点评】抽样过程中每个个体被抽到的可能性相同,这是解决一部分抽样问题的依据,样本容量、总体个数、每个个体被抽到的概率,这三者可以知二求一.这是一个统计综合题,可以作为一个解答题出在文科的试卷中.22.【答案】【解析】解:(Ⅰ)由题意设MN:y=kx+,由,消去y得,x2﹣2pkx﹣p2=0(*)由题设,x1,x2是方程(*)的两实根,∴,故p=2;(Ⅱ)设R(x3,y3),Q(x4,y4),T(0,t),∵T在RQ的垂直平分线上,∴|TR|=|TQ|.得,又,∴,即4(y3﹣y4)=(y3+y4﹣2t)(y4﹣y3).而y3≠y4,∴﹣4=y3+y4﹣2t.又∵y3+y4=1,∴,故T(0,).因此,.由(Ⅰ)得,x1+x2=4k,x1x2=﹣4,=.因此,当k=0时,S△MNT有最小值3.【点评】本题考查抛物线方程的求法,考查了直线和圆锥曲线间的关系,着重考查“舍而不求”的解题思想方法,考查了计算能力,是中档题.23.【答案】【解析】(1)()f x 的定义域为(0,)+∞,211()x mx f x x m x x-+'=+-=. 令()0f x '=,得210x mx -+=.当240m ≤∆=-,即02m ≤<时,()0f x ≥',∴()f x 在(0,)+∞内单调递增.当240m ∆=->,即2m >时,由210x mx -+=解得1x =,2x =120x x <<, 在区间1(0,)x 及2(,)x +∞内,()0f x '>,在12(,)x x 内,()0f x '<,∴()f x 在区间1(0,)x 及2(,)x +∞内单调递增,在12(,)x x 内单调递减.(2)由(1)可知,当02m ≤<时,()f x 在(0,)+∞内单调递增,∴()f x 最多只有一个零点.又∵1()(2)ln 2f x x x m x =-+,∴当02x m <<且1x <时,()0f x <; 当2x m >且1x >时,()0f x >,故()f x 有且仅有一个零点. 当2m >时,∵()f x 在1(0,)x 及2(,)x +∞内单调递增,在12(,)x x 内单调递减,且211(()(lnm m m m f x =+-=22204m m -+-<<, 4014<=<=(∵2m >), ∴1()0f x <,由此知21()()0f x f x <<,又∵当2x m >且1x >时,()0f x >,故()f x 在(0,)+∞内有且仅有一个零点. 综上所述,当0m >时,()f x 有且仅有一个零点. (3)假设曲线()y f x =在点(,())x f x (0x >)处的切线经过原点,则有()()f x f x x '=,即21ln 2x x mx x+-1x m x =+-, 化简得:21ln 102x x -+=(0x >).(*) 记21()ln 12g x x x =-+(0x >),则211()x g x x x x-'=-=, 令()0g x '=,解得1x =.当01x <<时,()0g x '<,当1x >时,()0g x '>,∴3(1)2g =是()g x 的最小值,即当0x >时,213ln 122x x -+≥. 由此说明方程(*)无解,∴曲线()y f x =没有经过原点的切线.24.【答案】解:(1)∵a n+1=2a n +1,∴a n+1+1=2(a n +1),又∵a 1=1,∴数列{a n +1}是首项、公比均为2的等比数列,∴a n +1=2n ,∴a n =﹣1+2n ; 6分(2)由(1)可知b n =n (a n +1)=n •2n =n •2n ﹣1,∴T n =1•20+2•2+…+n •2n ﹣1,2T n =1•2+2•22…+(n ﹣1)•2n ﹣1+n •2n ,错位相减得:﹣T n =1+2+22…+2n ﹣1﹣n •2n=﹣n •2n=﹣1﹣(n ﹣1)•2n ,于是T n =1+(n ﹣1)•2n . 则所求和为12nn - 6分。
天津市静海县第一中学2018届高三9月学生学业能力调研考试数学(文)试题Word版含答案
静海一中2017-2018第一学期高三数学(文9月)学生学业能力调研卷1. 本试卷分第Ⅰ卷基础题(136分)第Ⅱ卷提高题(14分)两部分共150分。
2. 试卷书写规范工整,卷面整洁清楚,酌情减3-5分,并计入总分。
第I 卷 基础题(共136分)一、选择题(本大题共8个小题,每小题5分,共40分)1. 集合U ={0,1,2,3,4},A ={1,2},B ={x ∈Z|x 2-5x +4<0},则∁U (A ∪B )=( )A .{0,1,3,4}B .{1,2,3}C .{0,4}D .{0}2.设函数f (x )=⎩⎨⎧3x -b ,x <1,2x ,x ≥1.若))65((f f =4,则b =( )A .1 B.78 C.34D.123. 设a =log π2,b =40.3,c =ln 2,则a ,b ,c 的大小关系为( )A .a <b <cB .a <c <bC .c <a <bD .b <c <a4.设0>x ,R y ∈,则“y x >”是“||y x >”的条件( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .46.已知定义域为R 的函数f (x )是奇函数,当x ≥0时,f (x )=|x -a 2|-a 2,且对x∈R ,恒有f (x +1)≥f (x ),则实数a 的取值范围为( ) A .[0,2] B.⎣⎢⎡⎦⎥⎤-12,12 C .[-1,1] D .[-2,0]7.设函数1()21x x x f x x λ-+<⎧=⎨≥⎩,,,(λ∈R ),若对任意的a ∈R 都有()(())2f a f f a =成立,则λ的取值范围是( )(A )(0,2] (B )[0,2] (C )[2,)+∞ (D )(,2)-∞ 8.直线y =x 与函数f (x )=⎩⎨⎧2,x >m ,x 2+4x +2,x ≤m 的图象恰有三个公共点,则实数m 的取值范围是( )A .[-1,2)B .[-1,2]C .[2,+∞)D .(-∞,-1]二.填空题:本大题共6小题,每小题5分,共30分.9. 已知数列{a n }的通项公式为a n =⎩⎨⎧1-3n ,n 为偶数,2n -1,n 为奇数,则其前10项和为______10. 一个几何体的三视图如图所示,则该几何体的体积_________11.已知()[][]⎩⎨⎧-∉-∈=1,1,1,1,2x x x x f 若2))((=x f f ,则x 的取值范围是 _________12.已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π6-1(ω>0)的图象向右平移2π3个单位后与原图象重合,则ω的最小值是________ 13. 若0,y 0x >>,且1222x y x y+=++,则43x y +的最小值为 . 14.D 为ABC ∆的BC 边上一点,2DC DB =-,过D 点的直线分别交直线AB AC 、于E F 、,若,AE AB AF AC == λμ,其中0,0λμ>>,则21+=λμ__三、解答题:本大题6小题,共80分.解答应写出文字说明,证明俯视图过程或演算步骤15.(本小题满分13分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知tan ⎝ ⎛⎭⎪⎫π4+A =2.(1)求sin 2Asin 2A +cos 2A的值;(2)若B =π4,a =3,求△ABC 的面积.16.(本小题满分13分)某食堂以面食和米食为主食,员工良好的日常饮食应该至少需要碳水化合物5个单位,蛋白质6个单位,脂肪6个单位,每份面食含有7个单位的碳水化合物,7个单位的蛋白质,14个单位的脂肪,花费28元;而每份米食含有7个单位的碳水化合物,14个单位的蛋白质,7个单位的脂肪,花费21元.为了满足员工的日常饮食要求,同时使花费最低,需要同时采购面食和米食各多少份? 17.(本小题满分13分)如图,四边形ABCD 为矩形,四边形BCEF 为直角梯形,BF ∥CE ,BC BF ⊥,CE BF <,5,1,2===AD AB BF . (1)求证:AF BC ⊥; (2)求证:AF ∥平面DCE ;(3)若二面角A BC E --的大小为 120,求直线DF 与平面ABCD 所成的角.18.(本小题满分13分)已知数列{a n }的首项a 1=1,前n 项和为S n ,且数列⎩⎨⎧⎭⎬⎫S n n 是公差为2的等差数列.(1)求数列{a n }的通项公式;(2)若2)1(n n n a b -=,求数列{b n }的前n 项和n T 2 19.(本小题满分14分)已知函数是自然对数)e R a e ae x xf x x ,()(23∈--=(Ⅰ)的取值范围恒成立,求实数对任意a R x x f ∈≤0)( (Ⅱ)2:,,02121>+=-x x x x ae x x 求证有两个不同实数解若方程 第Ⅱ卷 提高题(共14分)20.(本小题满分14分)已知数列{}n a 的前n 项和为n S ,且满足21=a ,)1(1++=+n n S na n n . (1)求数列{}n a 的通项公式n a ; (2)设n T 为数列{n na 2}的前n 项和,求n T ; (3)设211++=n n n n a a a b ,证明:321321<++++n b b b b .静海一中2017-2018第一学期数学(文9月)学生学业能力调研卷答题纸第Ⅰ卷二、填空题(每题6分,共30分)9._________ 10._________ 11.___ _______12._________ 13.__________ 14.___________三、解答题(本大题共6题,共80分)15.(本小题满分13分)16.(本小题满分13分)17.(本小题满分13分)18.(本小题满分13分)19.(本小题满分14分)第Ⅱ卷提高题(共15分)20.(本小题满分14分)静海一中2017-2018第一学期高三数学(文)9月学生学业能力调研卷答案一、选择题(每题5分,共40分)二、填空题(每题6分,共30分)(9). 256 ( 10))3π(11)()[][]⎩⎨⎧-∉-∈=1,1,1,1,2x x x x f(12).3 (13).9/2 ( 14) 3 15.解:(1)由tan ⎝ ⎛⎭⎪⎫π4+A =2,得 tan A =13,所以sin 2A sin 2A +cos A =2tan A 2tan A +1=25.(2)由tan A =13,A ∈(0,π),得 sin A =1010,cos A =31010.又由a =3,B =π4及正弦定理a sin A =bsin B , 得b =3 5.由sin C =sin(A +B )=sin ⎝⎛⎭⎪⎫A +π4,得sin C =255. 9sin 21==c ab s16. 解:设每天购买面食x 份,米食y 份,花费为z ,由题意建立二元一次不等式组为 ①目标函数为z=28x+21y ,作出二元一次不等式组①所表示的平面区域,如图阴影部分即可行域,如图所示,当直线z=28x+21y 经过可行域上的点M 时,截距最小,即z 最小, 解方程组,得M 的坐标为(,),代入计算可得z min =28x+21y=16,∴每天购买面食份,米食份,既能够满足日常要求,又使花费最低,最低成本为16元.17.(1)∵四边形ABCD 为矩形,∴BC AB ⊥,又∵BC BF ⊥,BF AB ,是平面ABF 内的两条相交直线,∴⊥BC 平面ABF∵⊂AF 平面ABF ,∴AF BC ⊥ (2)在CE 上取一点M ,使BF CM=,连FM ,∵BF ∥CE,∴BF ∥CM∴四边形BCMF 为平行四边形∴四边形ADMF 为平行四边形∴AF ∥DM ,∵⊂DM 平面DCE ,⊄AF 平面DCE ,∴AF ∥平面DCE(3)∵BF BC AB BC ⊥⊥,,∴ABF ∠就是二面角A BC E --的平面角 ∴ABF ∠ 120= ∵5,1,2===AD AB BF ∴7cos 222=∠⋅-+=ABF BF AB BF AB AF∴在直角ADF ∆中,3222=+=AF AD DF 过F 作FN 与AB 的延长线垂直,N 是垂足,∴在直角FNB ∆中,3=FN∵⊥BC 平面ABF ,⊂BC 平面ABCD ,∴平面ABF ⊥平面ABCD ∴⊥FN 平面ABCD ,∴FDN ∠是直线DF 与平面ABCD 所成的角… 在直角FDN ∆中, 21323sin ===∠DF FN FDN ,∴ 30=∠FDN18.19.(1)解析:(1)由已知条件可得S n n=1+(n -1)×2=2n -1,∴S n =2n 2-n . 当n ≥2时,a n =S n -S n -1=2n 2-n -[2(n -1) 2-(n -1)]=4n -3, 当n =1时,a 1=S 1=1,而4×1-3=1,∴a n =4n -3.(2)n n T n83222-=20.。
天津市静海一中2018届高三一轮复习导数及其应用导学案无答案 word文档
导数及其应用(共用5课时)一、本单元片重要知识点及其内涵:知识点一:利用导数求函数的极值理解要点:求极值的基本步骤;注意事项:极值是一个局部概念应用形式:(1)求极值;(2)已知极值求参数的值知识点二:利用导数求函数的最值理解要点:求在[a,b]上最值的基本步骤;)?f(xy注意事项:最值要注意定义域的区间;应用形式:(1)恒成立;(2)求最值(3)两个函数恒成立,能成立问题二、本单元(片)重要问题和解决方法归纳:题型一:利用导数研究函数的极值.例题.已知函数,求的极值. )xxf(f(x)?xln fxx处连续时,在点( 一般地,当函数方法归纳:)0xfxfxfx)是极大值;,那么)>0,右侧′((1)如果在(附近的左侧′()<000xfxfxfx)是极小值.,右侧(′((2)如果在附近的左侧)>0′(,那么)<000题型二:求函数的最值.3?12x?x(x)?12f,求在上的最大值和最小值. 例题. 已知3,3][f(x)?方法归纳:abfxab]上必有最大值与最小值.在[),[]上连续的函数 (,(1)在闭区间fxabfafb)(,)]上单调递增,则为函数的最小值,(2)若函数((为函数的最大值;若函)在[fxabfafb)为函数的最小值.(( 数())在[为函数的最大值,,]上单调递减,则题型三:含参求极值、最值.12axaxxfxfax)的极值(+(1ln 设例题1. .>0,函数(=))(-.求函数+1)+2x kxfx. =()e例题2.已知函数(-)fx)的单调区间;(求(1)fx)在区间[0,1]上的最小值.求(2)(页 1 第方法归纳:(1)求极值、最值时,要求步骤规范、表格齐全;含参数时,要讨论参数的大小.(2)求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论.题型四:利用导数求参数的范围.12.1:已知例题xbxln?f(x)??2??上是减函数,求b的取值范围. 在(1)??2,)f(x??上存在单减区间,求b的取值范围. (2) 在??2,)(xf方法归纳:转化为恒成立问题、能成立问题.题型五:利用导数研究零点、方程的根、函数交点问题3axaxxf≠0. 1-3例题:已知函数(,)=-fx)的单调区间;((1)求fxxymyfxm的取的图象有三个不同的交点,处取得极值,直线(=求与(2)若)(=)在=-1值范围.方法归纳:函数零点或函数图象交点问题的求解,一般利用导数研究函数的单调性、极值等性质,并借助函数图象,根据零点或图象的交点情况,建立含参数的方程(或不等式)组求解,实现形与数的和谐统一.题型六:利用利用导数证明不等式122xbaafxxxaxg>0.设两曲=ln +2,其中,+()=例题:已知定义在正实数集上的函数(3)2yfxygx)有公共点,且在该点处的切线相同.=线= ((),abb的最大值;表示用(1),并求fxgxx>0).)≥ ((2)求证:)((方法归纳:(1)构造新函数,并求其单调区间;(2)判断区间端点函数值与0的关系;(3)判断定义域内函数值与0的大小关系,证不等式.三、本单元(片)课时及其教学内容规划页 2 第课时:一第导数求极值课件:第二课时:导数求最值课件:三第课时:合应用导数的综四、基本巩固训练题2x?y3lnx?0??y?m2x若1.,则切点坐标为。
天津市静海县第一中学高三数学学生学业能力调研试题文
静海一中2018-2019第一学期高三数学(文12月)学生学业能力调研试卷考生注意:1. 本试卷分第Ⅰ卷基础题(136分)和第Ⅱ卷提高题( 14分)两部分,共150分,考试时间为120分钟。
2. 试卷书写要求规范工整,卷面整洁清楚,否则酌情减3-5分,并计入总分。
一、选择题(本大题共8个小题,每小题5分,共40分) 1.设全集{}{}{}|6,1,3,5,4,5,6U x N x A B =∈≤==,则()U C A B 等于 ( )A .{}6,4B .{}5C .{}1,3 D .{}0,2 2. 已知函数23()log f x x x=-,(0,)x ∈+∞,则()f x 的零点所在的区间是 A .(0,1) B .(1,2) C .(2,3) D .(3,4)3. 设实数,x y 满足约束条件22010220x y x y x y +-≥⎧⎪-+≥⎨⎪--≥⎩,则z x y =+的最小值是( )A .85B .1C .2D .7 4. 执行如图所示的程序框图,若输入6n =,则输出的S =( ) A .13 B .25 C .37 D .495. 设,a b R ∈,则“a b >”是“22b a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件6.下图是函数()()R x x A y ∈+=ϕωsin 在区间⎥⎦⎤⎢⎣⎡-65,6ππ上的图象,为了得到这个函数的图象,只要将()R x x y ∈=sin 的图象上所有的点( ) A. 向左平移3π个单位长度,再把所得各点的横坐标缩短到原来的21倍,纵坐标不变 B. 向左平移3π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 C. 向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的21倍,纵坐标不变 D. 向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变7.已知)(x f 是定义在),0(+∞上的函数,对任意两个不相等的正数1x ,2x ,都有0)()(212112<--x x x f x x f x ,记5log )5(log 2.0)2.0(2)2(22222.02.0f c f b f a ===,,,则 ( ) A .c b a << B .c a b << C .b a c << D .a b c << 8.对于任意的实数[]1,x e ∈,总存在三个不同的实数[]1,4y ∈-,使得21ln 0yy xe ax x ---=成立,则实数a 的取值范围是( )A.3163,e e ⎡⎫⎪⎢⎣⎭ B .3160,e ⎛⎤ ⎥⎝⎦ C .23163,e e e ⎡⎫-⎪⎢⎣⎭ D .23161,e e e ⎡⎫-⎪⎢⎣⎭ 二、填空题(每题5 分,共 30 分) 9. 已知复数113iz i-=+,则复数z 的虚部是___________ 10. 已知抛物线x y 42=的准线过双曲线12222=-by a x )0,0(>>b a 的左焦点且与双曲线交于B A ,两点,O 为坐标原点,且AOB ∆的面积为32,则双曲线的离心率为________11. 若2223340a b c +-=,则直线0a x b y c ++=被圆221x y +=所截得的弦长为 ____________12. 已知,x y +∈R ,且21x y +=,则2242x y xy ++的最小值为___________.13. 已知定义在R 上的函数()f x 在(,1)-∞上是减函数,且(1)y f x =+是偶函数,则关于x的不等式(21)(1)0f x f x +--<的解集为_________14.在如图的平面图形中,已知1,2,120OM ON MON ==∠=,2,2,BM MA CN NA ==·BC OM 的值为____三、解答题(本大题共6题,共80分) 15.(13分)由于雾霾日趋严重,政府号召市民乘公交出行.但公交车的数量太多会造成资源的浪费,太少又难以满足乘客需求.为此,某市公交公司在某站台的60名候车乘客中进行随机抽样,共抽取15人进行调查反馈,将他们的候车时间作为样本分成5组,如下表所示(单位:min ):(Ⅰ)估计这60名乘客中候车时间少于10分钟的人数;(Ⅱ)若从上表第三、四组的7人中选2人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.16.(13分)在ABC ∆中,,,A B C 所对的边分别为,,a b c ,A 为钝角,23cosBsinC sinBcosC =+. (Ⅰ)求A ;(Ⅱ)若a =c b >,ABC ∆的面积为b 和c .17.(13分)如图,四棱锥ABCD S -中,BC ∥AD ,222===AD AB BC ,21=SD ,SD BD ⊥, 60=∠ABC ,E 为BC 的中点.(Ⅰ)求证:AD ∥平面SBC ;(Ⅱ)求证:SC BD ⊥;(Ⅲ)若二面角C BD S --为 60,求直线SE 与平面SDC 所成的角.18. (13)椭圆C :)0(12222>>=+b a by ax 的焦点为21,F F ,过左焦点1F 且垂直于椭圆长轴的直线交椭圆于B A ,两点(点A 在长轴的上方),2ABF ∆是边长为4的正三角形.(Ⅰ)求椭圆C 的方程;(Ⅱ)过点A 的直线l 交椭圆C 于点D ,若ABD ∆的面积为3316,求直线l 的方程. 19.(14分)已知数列{}n a 的前n 项和为*n S n ∈N (),23n n n S a +=,且11a =,{}n b 为等比数列,13454,1b a b a =-=+.(Ⅰ)求{}n a 和{}n b 的通项公式; (Ⅱ)设*1nn n n b c n a +⋅=∈N ,,数列{}n c 的前n 项和为n T ,若对n ∀∈*N 均满足n m2019T >,求整数m 的最大值.20.(14分)已知函数x x f ln )(= (1)求函数x x f x g -+=)1()(的最大值(2)若0,x ∀>不等式2()1f x ax x ≤≤+恒成立,求实数a 的取值范围SD EBA(3)若120x x >>,求证:122221212()()2f x f x xx x x x ->-+静海一中2018-2019第一学期高三数学(文9月)学生学业能力调研试卷答题纸第Ⅰ卷基础题(共125分)二、填空题(每题5分,共30分)9. 10.___ ____ 11. 12. 13. 14. 三、解答题(本大题共6题,共80分) 15. (13分)16.(13分)17.(13分)SDCEBA18.(13分)19. (14分)第Ⅱ卷提高题(共14分)20. (14分)。
天津市静海一中2018届高三12月学生学业能力调研数学文
2018-2018第一学期高三数学(文)(12月)学生学业能力调研试卷考生注意:1. 本试卷分第Ⅰ卷基础题(118分)和第Ⅱ卷提高题(48分)两部分,共150分,考试时间为120分钟。
2. 试卷书写要求规范工整,卷面整洁清楚,如不符合要求,酌情减3-5分,并第Ⅰ卷 基础题(共118分)一、选择题: 每小题5分,共30分.1. 设全集U =R ,集合{}(){}210,20A x x B x x x =-<=-≥,则U A B =I ?( ).A.{}10x x -<<B.{}01x x <<C.{}02x x <<D.{}02x x <≤2. 设变量,x y 满足约束条件10,210,1,x y x y x -+⎧⎪-+⎨⎪⎩≥≤≤则目标函数2z y x =-的最大值为( ). A. 2B. 1-C. 3-D. 33. 已知()f x 是定义在R 上的偶函数,且以2为周期,则“()f x 为[]0 1,上的增函数是“()f x 为[]3 4,上的减函数”的( ). A.既不充分也不必要条件 B.充分而不必要条件 C.必要而不充分条件 D.充要条件4. 阅读右边的程序框图,运行相应的程序,则输出的K 和S 的值分别为( ).A .49,9B .511,11俯视图侧视图正视图C .613,13D .715,155. 已知{}n a 为等差数列,其公差为2-,且7a 是3a 与9a 的等比中项,则3a 的值为( ).A. 16B. 16-C. 12D. 12-6. 已知,a b为单位向量,且+=-a b b ,则a 在+a b 上的投影为( ).A. 13B. 3-C. 3D. 3二、填空题:每小题5分,共20分.7.设i 为虚数单位,若()74,2ia bi ab i+=+∈-R ,则a b += . 8. 一个几何体的三视图如图所示,则这个几何体的体积为__________.9. 设公比为() 0q q >的等比数列{}n a 的前n 项和为n S ,若22443232S a S a =+=+,,则q =____________.10. 已知函数()()3,f x ax bx a b =+∈R在2x =处取得极值,则()2f = .三、 解答题(本大题共4题,共52分)11. 已知函数()()2πsin 22cos 16f x x x x ⎛⎫=-+-∈ ⎪⎝⎭.R(Ⅰ)求函数()f x 的最小正周期及对称轴方程;(Ⅱ)讨论()f x 在ππ,44⎡⎤-⎢⎥⎣⎦的单调性.12. 某家具厂有方木料390m ,五合板2600m ,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料30.1m 、五合板22m ;生产每个书橱需要方木料B 130.2m 、五合板21m .出售一张书桌可获利润80元,出售一个书橱可获利润120元,怎样安排生产可使所得利润最大?最大利润为多少?13. 如图,在直四棱柱1111ABCD A BC D -中,,1,BC AD AB CD ==P12AA AD BC ===,E F 为1,BC A B 的中点. (Ⅰ)证明:EF平面11A ACC ;(Ⅱ)证明:CD ⊥平面11A ABB ; (Ⅲ)求二面角11B A D A --的正切值.14.已知数列{}n a 前n 项和为n S ,且232,n n S a n n *=-∈N . (Ⅰ)求证:数列{}1n a +是等比数列; (Ⅱ)设n n b n a =⋅,求数列{}n b 的前n 项和n T .第Ⅱ卷 提高题(共48分)一、选择题: (每小题5分,共10分)15.已知P 是ABC △内的一点(不含边界),且 30AB AC BAC ⋅=∠=︒u u u r u u u r,若,,PAB PBC PCA △△△的面积分别是,,x y z ,记()149,,F x y z x y z=++,则(),,F x y z 的最小值为( ).A. 26B. 32C. 36D. 4816. 设定义域为R 的函数()l g 1,10,1x x f x x ⎧-≠⎪=⎨=⎪⎩,则关于x 的方程()()20f x b f x c ++=有7个不同实数解的充要条件是( )A .0b <且0c >B .0b >且0c <C .0b <且0c =D .0b ≥且0c =二、填空题:(每小题5分,共10分)17.如图,已知45CAB ∠=︒,15ACB ∠=︒,AC =CDBD = .A18.()()()22211,2,441ln 1,2x x x f x g x x x x x ⎧+⎛⎫∈-∞- ⎪⎪⎪⎝⎭==--⎨⎡⎫⎪+∈-+∞⎪⎢⎪⎣⎭⎩,对a ∀∈R ,存在b 使得()()0f a g b +=,则b 的取值范围为__________.三、解答题:(本大题共2小题,共28分)19. 已知椭圆()2222:10x y C a b a b +=>>的离心率为,椭圆的四个顶点所围成菱形的面积为4. (Ⅰ)求椭圆的方程;(Ⅱ)四边形ABCD 的顶点在椭圆C 上,且对角线,AC BD 均过坐标原点O ,若14AC BD k k ⋅=-(i )求OA OB ⋅u u r u u r的范围;(ii )求四边形ABCD 的面积.20. 已知函数()()ln f x x a x a =-∈R .(Ⅰ)当2a =时,求函数()y f x =的图象在()()1,1f 处的切线方程;(Ⅱ)设函数()()1ag x f x x +=+,求函数()y g x =的单调区间; (Ⅲ)设函数()1ah x x+=-,若[]01,e x ∃∈,使得()()00f x h x ≤成立,求实数a 的取值范围.B 12018-2018第一学期高三数学(文)(12月)学生学业能力调研试卷答题纸第Ⅰ卷基础题(共118分)二、填空题(每题5分,共20分)7._________ 8._________ 9.__________ 10.___________三、解答题(本大题共4题,共52分)11.12.13.14.第Ⅱ卷提高题(共48分)2题,共10分)二、填空题(本大题共2题,共10分)17.__________________ 18.______________三、解答题(本大题共2题,共28分)19.20.。
静海区高中2018-2019学年上学期高三数学期末模拟试卷含答案
1. 如图,AB 是半圆 O 的直径,AB=2,点 P 从 A 点沿半圆弧运动至 B 点,设∠AOP=x,将动点 P 到 A,B 两点的距离之和表示为 x 的函数 f(x),则 y=f(x)的图象大致为( )
求出 的长,若不存在,请说明理由.
所在平面成 角.若存在,
第 3 页,共 15 页
21.(本小题满分 12 分)1111]
已知函数 f x 1 a ln x a 0 ,a R .
x
(1)若 a 1,求函数 f x 的极值和单调区间; (2)若在区间 (0 ,e] 上至少存在一点 x0 ,使得 f x0 0 成立,求实数的取值范围.
第 5 页,共 15 页
静海区高中 2018-2019 学年上学期高三数学期末模拟试卷含答案(参考答案)
一、选择题
1. 【答案】
【解析】选 B.取 AP 的中点 M,
则 PA=2AM=2OAsin∠AOM
=2sin x,
2
PB=2OM=2OA·cos∠AOM=2cosx,
2
∴y=f(x)=PA+PB=2sinx+2cosx=2 2sin(x+π),x∈[0,π],根据解析式可知,只有 B 选项符合要求,
),则 O 点到直线 AB
三、解答题
19.(本小题满分 10 分)选修 4-4:坐标系与参数方程.
{ ) 在直角坐标系中,曲线
C1:
x=1+3cos α y=2+3sin α
(α
为参数),以坐标原点为极点,x
2018-2019学年天津市静海一中高三上学期期末联考文科数学试卷及答案
一、选择题(本题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设全集U ={−2,−1,0,1,2},集合A ={x|x2+x −2=0},B ={0,−2},则B ∩(∁UA )=( )A 、{0,1}B 、{−2,0}C 、{−1,−2}D 、{0}2.设x ∈R ,则“|x −2|<1”是“12-+x x >0”的( ) A 、充分不必要条件 B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件3.若变量x ,y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≥-+0420101y x y x y x ,则目标函数z =−2x −y 的最大值为( )A 、16B 、0C 、−2D 、不存在4.阅读如图所示的程序框图,则输出的数据为( )A 、21B 、58C 、141D 、3185.抛物线y 2=ax (a >0)的准线与双曲线C :82x −42y =1的两条渐近线所围成的三角形面积为22,则a 的值为( )A 、8B 、6C 、4D 、26.函数y =sin (2x +3π)的图象经下列怎样的平移后所得的图象关于点(−12π,0)中心对称( ) A 、向左平移12π B 、向右平移12π C 、向左平移6π D 、向右平移6π 7.已知定义在R 上的函数f (x )满足f (3−x )=f (3+x ),且对任意x 1,x 2∈(0,3)都有1212)()(x x x f x f --<0,若a =23-,b =log 23,c =e 4ln ,则下面结论正确的是( )A 、f (a )<f (b )<f (c )B 、f (c )<f (a )<f (b )C 、f (c )<f (b )<f (a )D 、f (a )<f (c )<f (b )8.边长为2的菱形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 相交于点F .若∠BAD =60°,则BE •EF =( )A 、1B 、41C 、1033D 、2021 二、填空题(本大题共6个小题,每小题5分,共30分.把答案填写在相应的横线上.)9.设复数z =12+i i ,则z +z =________. 10.已知正方体内切球的体积为36π,则正方体的体对角线长为_________.11.已知直线l :y =kx (k >0)为圆C :(x −3)2+y 2=1的切线,则k 为________.12.已知函数f (x )是定义在R 上的奇函数,f (1)=0,当x >0时,xf'(x )−f (x )>0,则不等式xx f )(>0的解集是_________. 13.已知a >1,b >1,若log a 2+log b 16=3,则log 2(ab )的最小值为_________.14.已知函数f (x )=⎪⎩⎪⎨⎧<++>0,210,ln x x x x x x ,若方程[f(x)]2+af(x)+241e =0有八个不等的实数根,则实数a 的取值范围是__________.三、解答题(本大题6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .cos (π−B )=32,c =1,asinB =6csinA .(Ⅰ)求边a 的值;(Ⅱ)求cos (2B +3π)的值.16.党的十九大明确把精准脱贫作为决胜全面建成小康社会必须打好的三大攻坚战之一.坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村真脱贫,坚持扶贫同扶智相结合,帮助贫困村中60户农民种植苹果、40户农民种植梨、20户农民种植草莓(每户仅扶持种植一种水果),为了更好地了解三种水果的种植与销售情况,现从该村随机选6户农民作为重点考察对象;(Ⅰ)用分层抽样的方法,应选取种植苹果多少户?(Ⅱ)在上述抽取的6户考察对象中随机选2户,求这2户种植水果恰好相同的概率.17.如图,在底面是直角梯形的四棱锥P −ABCD 中,AD ∥BC ,∠ABC =90°,PA ⊥面ABCD ,PA =AB =BC =2,AD =1.(Ⅰ)若M 为PC 的中点,求证DM ∥面PAB ;(Ⅱ)求证:面PAB ⊥面PBC ;(Ⅲ)求AC 与面PBC 所成角的大小.18.已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)令b n =(−1)1-n 12144+-+n n a a n n ,求数列{b n }的前n 项和T n 2; (Ⅲ)若对于∀n ∈N*,T n 2<λ2−2λ−2恒成立,求λ范围.19.已知椭圆22a x +22by =1(a >b >0)的左右焦点分别为F 1,F 2,左右顶点分别为A ,B ,过右焦点F 2且垂直于长轴的直线交椭圆于G ,H 两点,|GH|=3,△F 11GH 的周长为8.过A 点作直线l 交椭圆于第一象限的M 点,直线MF 2交椭圆于另一点N ,直线NB 与直线l 交于点P ;(Ⅰ)求椭圆的标准方程;(Ⅱ)若△AMN 的面积为7218,求直线MN 的方程; (Ⅲ)证明:点P 在定直线上.20.已知函数f (x )=2lnx −x 2.(Ⅰ)求f (x )在点P (2,f (2))处的切线方程;(Ⅱ)若函数y =f (x )与y =m 在[e1,e]内恰有一个交点,求实数m 的取值范围; (Ⅲ)令g (x )=f (x )−nx ,如果g (x )图象与x 轴交于A (x 1,0),B (x 2,0)(x 1<x 2),AB 中点为C (x 0,0),求证:g'(x 0)≠0.答案1-4 DABC 5-8 ABCB 9.2 10.36 11.22 12.),1()1,(+∞--∞ 13.3 14.)45,1(ee 15.(1)35 (2)181154- 16.(1)3户(2)154 17.(3)︒30 18.(1)12-=n a n(2)1411+-n (3)3≥λ或1-≤λ 19.(1)13422=+y x (2)01=--y x(3)定直线4=x20.(1)02ln 23=-+y x(2)}1{)12,2[22 e e ---。
静海区一中2018-2019学年上学期高三数学10月月考试题
静海区一中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知抛物线C :28y x =的焦点为F ,P 是抛物线C 的准线上的一点,且P 的纵坐标为正数,Q 是直线PF 与抛物线C 的一个交点,若PQ =,则直线PF 的方程为( )A .20x y --=B .20x y +-=C .20x y -+=D .20x y ++=2. 以下四个命题中,真命题的是( ) A .2,2x R x x ∃∈≤-B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .已知m ,n 表示两条不同的直线,α,β表示不同的平面,并且m α⊥,n β⊂,则“αβ⊥”是 “//m n ”的必要不充分条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力. 3. 若某程序框图如图所示,则该程序运行后输出的值是( ) A.7B.8C. 9D. 10【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是循环语句循环终止的条件. 4. 已知抛物线C :24y x =的焦点为F ,定点(0,2)A ,若射线FA 与抛物线C 交于点M ,与抛 物线C 的准线交于点N ,则||:||MN FN 的值是( )A .(52):5-B .2:5C .1:25D .5:(15)+ 5. 已知集合},052|{2Z x x x x M ∈<+=,},0{a N =,若∅≠N M ,则=a ( ) A .1- B . C .1-或 D .1-或2- 6. 如图,一个底面半径为R 的圆柱被与其底面所成角是30°的平面所截,截面是一个椭圆,则该椭圆的离心率是( )A .B .C .D .7. 设集合(){,|,,1A x y x y x y =--是三角形的三边长},则A 所表示的平面区域是( )A .B .C .D . 8. 设曲线2()1f x x =+在点(,())x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象可以为( )A .B . C. D .9. 函数f (x )的图象向右平移1个单位长度,所得图象与曲线y=e x 关于y 轴对称,则f (x )=( ) A .e x+1 B .e x ﹣1 C .e ﹣x+1 D .e ﹣x ﹣110.已知函数()2sin()f x x ωϕ=+(0)2πϕ<<与y 轴的交点为(0,1),且图像上两对称轴之间的最小距离为2π,则使()()0f x t f x t +--+=成立的t 的最小值为( )1111] A .6π B .3π C .2π D .23π11.1F ,2F 分别为双曲线22221x y a b-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅= ,若12PF F ∆ )C. 1D. 1【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.12.设,,a b c 分别是ABC ∆中,,,A B C ∠∠∠所对边的边长,则直线sin 0A x ay c ++= 与sin sin 0bx B y C -+= 的位置关系是( )A .平行B . 重合C . 垂直D .相交但不垂直二、填空题13.在下列给出的命题中,所有正确命题的序号为 . ①函数y=2x 3+3x ﹣1的图象关于点(0,1)成中心对称; ②对∀x ,y ∈R .若x+y ≠0,则x ≠1或y ≠﹣1;③若实数x ,y 满足x 2+y 2=1,则的最大值为;④若△ABC 为锐角三角形,则sinA <cosB .⑤在△ABC 中,BC=5,G ,O 分别为△ABC 的重心和外心,且•=5,则△ABC 的形状是直角三角形.14.如图,△ABC 是直角三角形,∠ACB=90°,PA ⊥平面ABC ,此图形中有 个直角三角形.15.已知直线l 的参数方程是(t 为参数),曲线C 的极坐标方程是ρ=8cos θ+6sin θ,则曲线C 上到直线l 的距离为4的点个数有 个.16.设幂函数()f x kx α=的图象经过点()4,2,则k α+= ▲ . 17.已知定义在R 上的奇函数()f x 满足(4)()f x f x +=,且(0,2)x ∈时2()1f x x =+,则(7)f 的值为 ▲ .三、解答题18.(本小题满分12分)某市拟定2016年城市建设,,A B C 三项重点工程,该市一大型城建公司准备参加这三个工程的竞标,假设这三个工程竞标成功与否相互独立,该公司对,,A B C 三项重点工程竞标成功的概率分别为a ,b ,14()a b >,已知三项工程都竞标成功的概率为124,至少有一项工程竞标成功的概率为34. (1)求a 与b 的值;(2)公司准备对该公司参加,,A B C 三个项目的竞标团队进行奖励,A 项目竞标成功奖励2万元,B 项目竞标成功奖励4万元,C 项目竞标成功奖励6万元,求竞标团队获得奖励金额的分布列与数学期望.【命题意图】本题考查相互独立事件、离散型随机变量分布列与期望等基础知识,意在考查学生的运算求解能力、审读能力、获取数据信息的能力,以及方程思想与分类讨论思想的应用.19.(本小题满分10分)选修4-5:不等式选讲 已知函数()()f x x a a R =-∈.(1)当1a =时,解不等式()211f x x <--;(2)当(2,1)x ∈-时,121()x x a f x ->---,求的取值范围.20.(本小题满分12分)设p :实数满足不等式39a ≤,:函数()()32331932a f x x x x -=++无极值点. (1)若“p q ∧”为假命题,“p q ∨”为真命题,求实数的取值范围;(2)已知“p q ∧”为真命题,并记为,且:2112022a m a m m ⎛⎫⎛⎫-+++> ⎪ ⎪⎝⎭⎝⎭,若是t ⌝的必要不充分条件,求正整数m 的值.21.如图的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm ).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结BC ′,证明:BC ′∥面EFG .22.如图所示,已知+=1(a >>0)点A (1,)是离心率为的椭圆C :上的一点,斜率为的直线BD 交椭圆C 于B 、D 两点,且A 、B 、D 三点不重合.(Ⅰ)求椭圆C 的方程; (Ⅱ)求△ABD 面积的最大值;(Ⅲ)设直线AB 、AD 的斜率分别为k 1,k 2,试问:是否存在实数λ,使得k 1+λk 2=0成立?若存在,求出λ的值;否则说明理由.23. (本题满分12分)在如图所示的几何体中,四边形ABCD 为矩形,直线⊥AF 平面ABCD ,AB EF //,12,2====EF AF AB AD ,点P 在棱DF 上.(1)求证:BF AD ⊥;(2)若P 是DF 的中点,求异面直线BE 与CP 所成角的余弦值; (3)若FD FP 31=,求二面角C AP D --的余弦值.24.设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c 2sin a b A =. (1)求角B 的大小;(2)若a =5c =,求.静海区一中2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1.【答案】B【解析】考点:抛物线的定义及性质.【易错点睛】抛物线问题的三个注意事项:(1)求抛物线的标准方程时一般要用待定系数法求p的值,但首先要判断抛物线是否为标准方程,若是标准方程,则要由焦点位置(或开口方向)判断是哪一种标准方程.(2)注意应用抛物线定义中的距离相等的转化来解决问题.(3)直线与抛物线有一个交点,并不表明直线与抛物线相切,因为当直线与对称轴平行(或重合)时,直线与抛物线也只有一个交点.2.【答案】D3.【答案】A【解析】运行该程序,注意到循环终止的条件,有n=10,i=1;n=5,i=2;n=16,i=3;n=8,i=4;n=4,i=5;n=2,i=6;n=1,i=7,到此循环终止,故选A.4. 【答案】D 【解析】考点:1、抛物线的定义; 2、抛物线的简单性质.【 方法点睛】本题主要考查抛物线的定义和抛物线的简单性质,属于难题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛物线上的点到准线距转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.本题就是将M 到焦点的距离转化为到准线的距离后进行解答的. 5. 【答案】D 【解析】试题分析:由{}{}1,2,025,0522--=⎭⎬⎫⎩⎨⎧∈<<-=∈<+=Z x x x Z x x x x M ,集合{}a N ,0=, 又φ≠N M ,1-=∴a 或2-=a ,故选D . 考点:交集及其运算. 6. 【答案】A【解析】解:因为底面半径为R 的圆柱被与底面成30°的平面所截,其截口是一个椭圆,则这个椭圆的短半轴为:R ,长半轴为:=,∵a 2=b 2+c 2,∴c=,∴椭圆的离心率为:e==. 故选:A .【点评】本题考查椭圆离心率的求法,注意椭圆的几何量关系的正确应用,考查计算能力.7. 【答案】A 【解析】考点:二元一次不等式所表示的平面区域. 8. 【答案】A【解析】试题分析:()()()()()2,cos 2cos ,,cos cos g x x g x x x x g x g x x x ==-=--= ,()cos y g x x ∴=为奇函数,排除B ,D ,令0.1x =时0y >,故选A. 1 考点:1、函数的图象及性质;2、选择题“特殊值”法. 9. 【答案】D【解析】解:函数y=e x 的图象关于y 轴对称的图象的函数解析式为y=e ﹣x ,而函数f (x )的图象向右平移1个单位长度,所得图象与曲线y=e x的图象关于y 轴对称,所以函数f (x )的解析式为y=e ﹣(x+1)=e ﹣x ﹣1.即f (x )=e ﹣x ﹣1.故选D .10.【答案】A 【解析】考点:三角函数的图象性质. 11.【答案】D【解析】∵120PF PF ⋅= ,∴12PF PF ⊥,即12PF F ∆为直角三角形,∴222212124PF PF F F c +==,12||2PF PF a -=,则222221212122()4()PF PF PF PF PF PF c a ⋅=+--=-,2222121212()()484PF PF PF PF PF PF c a +=-+⋅=-.所以12PF F ∆内切圆半径12122PF PF F F r c +-==,外接圆半径R c =.c =,整理,得2()4ca=+1e =,故选D. 12.【答案】C 【解析】试题分析:由直线sin 0A x ay c ++= 与sin sin 0bx B y C -+= ,则sin (sin )2sin sin 2sin sin 0A b a B R A B R A B ⋅+⋅-=-=,所以两直线是垂直的,故选C. 1 考点:两条直线的位置关系.二、填空题13.【答案】 :①②③【解析】解:对于①函数y=2x 3﹣3x+1=的图象关于点(0,1)成中心对称,假设点(x 0,y 0)在函数图象上,则其关于①点(0,1)的对称点为(﹣x 0,2﹣y 0)也满足函数的解析式,则①正确; 对于②对∀x ,y ∈R ,若x+y ≠0,对应的是直线y=﹣x 以外的点,则x ≠1,或y ≠﹣1,②正确;对于③若实数x ,y 满足x 2+y 2=1,则=,可以看作是圆x 2+y 2=1上的点与点(﹣2,0)连线的斜率,其最大值为,③正确;对于④若△ABC 为锐角三角形,则A ,B ,π﹣A ﹣B 都是锐角,即π﹣A ﹣B <,即A+B >,B >﹣A ,则cosB <cos (﹣A ),即cosB <sinA ,故④不正确.对于⑤在△ABC中,G,O分别为△ABC的重心和外心,取BC的中点为D,连接AD、OD、GD,如图:则OD⊥BC,GD=AD,∵=|,由则,即则又BC=5则有由余弦定理可得cosC<0,即有C为钝角.则三角形ABC为钝角三角形;⑤不正确.故答案为:①②③14.【答案】4【解析】解:由PA⊥平面ABC,则△PAC,△PAB是直角三角形,又由已知△ABC是直角三角形,∠ACB=90°所以BC⊥AC,从而易得BC⊥平面PAC,所以BC⊥PC,所以△PCB也是直角三角形,所以图中共有四个直角三角形,即:△PAC,△PAB,△ABC,△PCB.故答案为:4【点评】本题考查空间几何体的结构特征,空间中点线面的位置关系,线面垂直的判定定理和性质定理的熟练应用是解答本题的关键.15.【答案】2【解析】解:由,消去t得:2x﹣y+5=0,由ρ=8cosθ+6sinθ,得ρ2=8ρcosθ+6ρsinθ,即x2+y2=8x+6y,化为标准式得(x﹣4)2+(y﹣3)2=25,即C是以(4,3)为圆心,5为半径的圆.又圆心到直线l的距离是,故曲线C上到直线l的距离为4的点有2个,故答案为:2.【点评】本题考查了参数方程化普通方程,考查了极坐标方程化直角坐标方程,考查了点到直线的距离公式的应用,是基础题.16.【答案】32【解析】试题分析:由题意得11,422k αα==⇒=∴32k α+=考点:幂函数定义 17.【答案】2- 【解析】1111]试题分析:(4)()T 4f x f x +=⇒=,所以(7)(1)(1) 2.f f f =-=-=- 考点:利用函数性质求值三、解答题18.【答案】【解析】(1)由题意,得11424131(1)(1)(1)44ab a b ⎧=⎪⎪⎨⎪----=⎪⎩,因为a b >,解得1213a b ⎧=⎪⎪⎨⎪=⎪⎩.…………………4分(Ⅱ)由题意,令竞标团队获得奖励金额为随机变量X , 则X 的值可以为0,2,4,6,8,10,12.…………5分而41433221)0(=⨯⨯==X P ;1231(2)2344P X ==⨯⨯=;1131(4)2348P X ==⨯⨯=; 1211135(6)23423424P X ==⨯⨯+⨯⨯=;1211(8)23412P X ==⨯⨯=; 1111(10)23424P X ==⨯⨯=;1111(12)23424P X ==⨯⨯=.…………………9分所以X 的分布列为:于是,11()012345644824122424E X =⨯+⨯+⨯+⨯+⨯+⨯+⨯12=.……………12分19.【答案】(1){}11x x x ><-或;(2)(,2]-∞-.【解析】试题解析:(1)因为()211f x x <--,所以1211x x -<--, 即1211x x ---<-,当1x >时,1211x x --+<-,∴1x -<-,∴1x >,从而1x >;当112x ≤≤时,1211x x --+<-,∴33x -<-,∴1x >,从而不等式无解; 当12x <时,1211x x -+-<-,∴1x <-,从而1x <-;综上,不等式的解集为{}11x x x ><-或.(2)由121()x x a f x ->---,得121x x a x a -+->--, 因为1121x x a x a x x a -+-≥-+-=--,所以当(1)()0x x a --≥时,121x x a x a -+-=--; 当(1)()0x x a --<时,121x x a x a -+->--记不等式(1)()0x x a --<的解集为A ,则(2,1)A -⊆,故2a ≤-, 所以的取值范围是(,2]-∞-.考点:1.含绝对值的不等式;2.分类讨论.20.【答案】(1){}125a a a <<≤或;(2)1m =. 【解析】(1)∵“p q ∧”为假命题,“p q ∨”为真命题,∴p 与只有一个命题是真命题. 若p 为真命题,为假命题,则2115a a a a ≤⎧⇒<⎨<>⎩或.………………………………5分若为真命题,p 为假命题,则22515a a a >⎧⇒<≤⎨≤≤⎩.……………………………………6分 于是,实数的取值范围为{}125a a a <<≤或.……………………………………7分考点:1、不等式;2、函数的极值点;3、命题的真假;4、充要条件.21.【答案】【解析】解:(1)如图(2)它可以看成一个长方体截去一个小三棱锥,设长方体体积为V1,小三棱锥的体积为V2,则根据图中所给条件得:V1=6×4×4=96cm3,V2=••2•2•2=cm3,∴V=v1﹣v2=cm3(3)证明:如图,在长方体ABCD﹣A′B′C′D′中,连接AD′,则AD′∥BC′因为E,G分别为AA′,A′D′中点,所以AD′∥EG,从而EG∥BC′,又EG⊂平面EFG,所以BC′∥平面EFG;2016年4月26日22.【答案】【解析】解:(Ⅰ)∵,∴a=c,∴b2=c2∴椭圆方程为+=1又点A(1,)在椭圆上,∴=1,∴c2=2∴a=2,b=,∴椭圆方程为=1 …(Ⅱ)设直线BD方程为y=x+b,D(x,y1),B(x2,y2),1与椭圆方程联立,可得4x2+2bx+b2﹣4=0△=﹣8b2+64>0,∴﹣2<b<2x1+x2=﹣b,x1x2=∴|BD|==,设d为点A到直线y=x+b的距离,∴d=∴△ABD面积S=≤=当且仅当b=±2时,△ABD的面积最大,最大值为…(Ⅲ)当直线BD过椭圆左顶点(﹣,0)时,k==2﹣,k2==﹣21此时k1+k2=0,猜想λ=1时成立.证明如下:k+k2=+=2+m=2﹣2=01当λ=1,k1+k2=0,故当且仅当λ=1时满足条件…【点评】本题考查直线与椭圆方程的综合应用,考查存在性问题的处理方法,椭圆方程的求法,韦达定理的应用,考查分析问题解决问题的能力.23.【答案】【解析】【命题意图】本题考查了线面垂直、线线垂直等位置关系及线线角、二面角的度量,突出考查逻辑推理能力及利用坐标系解决空间角问题,属中等难度.(3)因为⊥AB 平面ADF ,所以平面ADF 的一个法向量)0,0,1(1=n .由31=知P 为FD 的三等分点且此时)32,32,0(P .在平面APC 中,)32,32,0(=,)0,2,1(=AC .所以平面APC 的一个法向量)1,1,2(2--=n .……………………10分所以36|||||,cos |212121==><n n n n ,又因为二面角C AP D --的大小为锐角,所以该二面角的余弦值为36.……………………………………………………………………12分24.【答案】(1)6B π=;(2)b =【解析】1111](2)根据余弦定理,得2222cos2725457=+-=+-=,b ac ac B所以b=考点:正弦定理与余弦定理.。
静海区第一中学2018-2019学年上学期高三数学10月月考试题
静海区第一中学2018-2019学年上学期高三数学10月月考试题班级__________ 座号_____ 姓名__________ 分数__________ 一、选择题1.直线l过点P(2,﹣2),且与直线x+2y﹣3=0垂直,则直线l的方程为()A.2x+y﹣2=0 B.2x﹣y﹣6=0 C.x﹣2y﹣6=0 D.x﹣2y+5=02.已知命题1:0,2p x xx∀>+≥,则p⌝为()A.10,2x xx∀>+<B.10,2x xx∀≤+<C.10,2x xx∃≤+<D.10,2x xx∃>+<3.若集合,则= ( )ABCD4.函数f(x)=x2﹣2ax,x∈[1,+∞)是增函数,则实数a的取值范围是()A.R B.[1,+∞)C.(﹣∞,1] D.[2,+∞)5.已知函数f(x)是(﹣∞,0)∪(0,+∞)上的奇函数,且当x<0时,函数的部分图象如图所示,则不等式xf(x)<0的解集是()A.(﹣2,﹣1)∪(1,2)B.(﹣2,﹣1)∪(0,1)∪(2,+∞)C.(﹣∞,﹣2)∪(﹣1,0)∪(1,2)D.(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)6.已知AC⊥BC,AC=BC,D满足=t+(1﹣t),若∠ACD=60°,则t的值为()A.B.﹣C.﹣1 D.7.已知复合命题p∧(¬q)是真命题,则下列命题中也是真命题的是()A.(¬p)∨q B.p∨q C.p∧q D.(¬p)∧(¬q)8. 若方程x 2﹣mx+3=0的两根满足一根大于1,一根小于1,则m 的取值范围是( )A .(2,+∞)B .(0,2)C .(4,+∞)D .(0,4)9. 已知空间四边形ABCD ,M 、N 分别是AB 、CD 的中点,且4AC =,6BD =,则( ) A .15MN << B .210MN << C .15MN ≤≤ D .25MN << 10.某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单位:小时)间的关系为0e ktP P -=(0P,k 均为正常数).如果前5个小时消除了10%的污染物,为了消除27.1% 的污染物,则需要( )小时. A.8B.10C. 15D. 18【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用,体现“数学是有用的”的新课标的这一重要思想.11.在ABC ∆中,22tan sin tan sin A B B A =,那么ABC ∆一定是( )A .锐角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形 12.满足下列条件的函数)(x f 中,)(x f 为偶函数的是( )A.()||x f e x =B.2()x x f e e =C.2(ln )ln f x x = D.1(ln )f x x x=+【命题意图】本题考查函数的解析式与奇偶性等基础知识,意在考查分析求解能力.二、填空题13.已知圆22240C x y x y m +-++=:,则其圆心坐标是_________,m 的取值范围是________. 【命题意图】本题考查圆的方程等基础知识,意在考查运算求解能力. 14.设全集______.15.下列四个命题:①两个相交平面有不在同一直线上的三个公交点 ②经过空间任意三点有且只有一个平面 ③过两平行直线有且只有一个平面 ④在空间两两相交的三条直线必共面 其中正确命题的序号是 .16.计算:×5﹣1= .三、解答题17.(本小题满分12分)如图四棱柱ABCD -A 1B 1C 1D 1的底面为菱形,AA 1⊥底面ABCD ,M 为A 1A 的中点,AB =BD =2,且△BMC 1为等腰三角形.(1)求证:BD ⊥MC 1;(2)求四棱柱ABCD -A 1B 1C 1D 1的体积.18.(本题满分12分)为了了解某地区心肺疾病是否与性别有关,在某医院随机地对入院的50人进行了问 卷调查,得到了如下的22⨯(1(2)在上述抽取的6人中选2人,求恰有一名女性的概率.(3)为了研究心肺疾病是否与性别有关,请计算出统计量2K ,判断心肺疾病与性别是否有关? 下面的临界值表供参考:(参考公式:))()()(()(2d b c a d c b a bc ad n K ++++-=,其中d c b a n +++=)19.(本小题满分12分)已知过抛物线2:2(0)C y px p =>的焦点,斜率为11A x y (,) 和22B x y (,)(12x x <)两点,且92AB =. (I )求该抛物线C 的方程;(II )如图所示,设O 为坐标原点,取C 上不同于O 的点S ,以OS 为直径作圆与C 相交另外一点R , 求该圆面积的最小值时点S 的坐标.20.(本题满分14分)在ABC ∆中,角A ,B ,C 所对的边分别为c b a ,,,已知cos (cos )cos 0C A A B +=. (1)求角B 的大小;(2)若2=+c a ,求b 的取值范围.【命题意图】本题考查三角函数及其变换、正、余弦定理等基础知识,意在考查运算求解能力.21.中国高铁的某个通讯器材中配置有9个相同的元件,各自独立工作,每个元件正常工作的概率为p(0<p <1),若通讯器械中有超过一半的元件正常工作,则通讯器械正常工作,通讯器械正常工作的概率为通讯器械的有效率(Ⅰ)设通讯器械上正常工作的元件个数为X,求X的数学期望,并求该通讯器械正常工作的概率P′(列代数式表示)(Ⅱ)现为改善通讯器械的性能,拟增加2个元件,试分析这样操作能否提高通讯器械的有效率.22.已知函数且f(1)=2.(1)求实数k的值及函数的定义域;(2)判断函数在(1,+∞)上的单调性,并用定义加以证明.静海区第一中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1.【答案】B【解析】解:∵直线x+2y﹣3=0的斜率为﹣,∴与直线x+2y﹣3=0垂直的直线斜率为2,故直线l的方程为y﹣(﹣2)=2(x﹣2),化为一般式可得2x﹣y﹣6=0故选:B【点评】本题考查直线的一般式方程和垂直关系,属基础题.2.【答案】D【解析】考点:全称命题的否定.3.【答案】B【解析】4.【答案】C【解析】解:由于f(x)=x2﹣2ax的对称轴是直线x=a,图象开口向上,故函数在区间(﹣∞,a]为减函数,在区间[a,+∞)上为增函数,又由函数f(x)=x2﹣2ax,x∈[1,+∞)是增函数,则a≤1.故答案为:C5.【答案】D【解析】解:根据奇函数的图象关于原点对称,作出函数的图象,如图则不等式xf(x)<0的解为:或解得:x∈(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)故选:D.6.【答案】A【解析】解:如图,根据题意知,D在线段AB上,过D作DE⊥AC,垂足为E,作DF⊥BC,垂足为F;若设AC=BC=a,则由得,CE=ta,CF=(1﹣t)a;根据题意,∠ACD=60°,∠DCF=30°;∴;即;解得.故选:A.【点评】考查当满足时,便说明D,A,B三点共线,以及向量加法的平行四边形法则,平面向量基本定理,余弦函数的定义.7.【答案】B【解析】解:命题p∧(¬q)是真命题,则p为真命题,¬q也为真命题,可推出¬p为假命题,q为假命题,故为真命题的是p∨q,故选:B.【点评】本题考查复合命题的真假判断,注意p∨q全假时假,p∧q全真时真.8.【答案】C【解析】解:令f(x)=x2﹣mx+3,若方程x 2﹣mx+3=0的两根满足一根大于1,一根小于1,则f (1)=1﹣m+3<0, 解得:m ∈(4,+∞),故选:C .【点评】本题考查的知识点是方程的根与函数零点的关系,二次函数的图象和性质,难度中档.9. 【答案】A 【解析】试题分析:取BC 的中点E ,连接,ME NE ,2,3ME NE ==,根据三角形中两边之和大于第三边,两边之差小于第三边,所以15MN <<,故选A .考点:点、线、面之间的距离的计算.1【方法点晴】本题主要考查了点、线、面的位置关系及其应用,其中解答中涉及三角形的边与边之间的关系、三棱锥的结构特征、三角形的中位线定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,本题的解答中根据三角形的两边之和大于第三边和三角形的两边之差小于第三边是解答的关键,属于基础题. 10.【答案】15 【解析】11.【答案】D 【解析】试题分析:在ABC ∆中,22tan sin tan sin A B B A =,化简得22sin sin sin sin cos cos A BB A A B=,解得 sin sin sin cos sin cos cos cos B AA AB B A B=⇒=,即si n 2s i n 2A B =,所以22A B =或22A B π=-,即A B =或2A B π+=,所以三角形为等腰三角形或直角三角形,故选D .考点:三角形形状的判定.【方法点晴】本题主要考查了三角形形状的判定,其中解答中涉及到二倍角的正弦、余弦函数公式、以及同角三角函数基本关系的运用,其中熟练掌握三角恒等变换的公式是解答的关键,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中得出sin 2sin 2A B =,从而得到A B =或2A B π+=是试题的一个难点,属于中档试题. 12.【答案】D. 【解析】二、填空题13.【答案】(1,2)-,(,5)-∞.【解析】将圆的一般方程化为标准方程,22(1)(2)5x y m -++=-,∴圆心坐标(1,2)-, 而505m m ->⇒<,∴m 的范围是(,5)-∞,故填:(1,2)-,(,5)-∞. 14.【答案】{7,9}【解析】∵全集U={n ∈N|1≤n ≤10},A={1,2,3,5,8},B={1,3,5,7,9}, ∴(∁U A )={4,6,7,9 },∴(∁U A )∩B={7,9}, 故答案为:{7,9}。
静海区第一中学2018-2019学年高三上学期11月月考数学试卷含答案
静海区第一中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 如图,正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是AA 1,AD 的中点,则CD 1与EF 所成角为()A .0°B .45°C .60°D .90°2. 下列满足“∀x ∈R ,f (x )+f (﹣x )=0且f ′(x )≤0”的函数是( )A .f (x )=﹣xe |x|B .f (x )=x+sinxC .f (x )=D .f (x )=x 2|x|3. 二项式的展开式中项的系数为10,则( )(1)(N )nx n *+Î3x n =A .5B .6C .8D .10【命题意图】本题考查二项式定理等基础知识,意在考查基本运算能力.4. 某校通过随机询问100名性别不同的学生是否能做到“光盘”行动,得到所示联表:做不到“光盘”能做到“光盘”男4510女3015P (K 2≥k )0.100.050.01k 2.7063.8416.635附:K 2=,则下列结论正确的是()A .在犯错误的概率不超过1%的前提下,认为“该校学生能否做到‘光盘’与性别无关”B .有99%以上的把握认为“该校学生能否做到‘光盘’与性别有关”C .在犯错误的概率不超过10%的前提下,认为“该校学生能否做到‘光盘’与性别有关”D .有90%以上的把握认为“该校学生能否做到‘光盘’与性别无关”5. 如图,空间四边形ABCD 中,M 、G 分别是BC 、CD 的中点,则等()A .B .C .D .6. 两个随机变量x ,y 的取值表为x134班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________y 2.2 4.3 4.8 6.7若x,y具有线性相关关系,且=bx+2.6,则下列四个结论错误的是()y^A.x与y是正相关B.当y的估计值为8.3时,x=6C.随机误差e的均值为0D.样本点(3,4.8)的残差为0.657.已知直线l⊥平面α,直线m⊂平面β,有下面四个命题:(1)α∥β⇒l⊥m,(2)α⊥β⇒l∥m,(3)l∥m⇒α⊥β,(4)l⊥m⇒α∥β,其中正确命题是()A.(1)与(2)B.(1)与(3)C.(2)与(4)D.(3)与(4)8.数列﹣1,4,﹣7,10,…,(﹣1)n(3n﹣2)的前n项和为S n,则S11+S20=()A.﹣16B.14C.28D.309.点P是棱长为1的正方体ABCD﹣A1B1C1D1的底面A1B1C1D1上一点,则的取值范围是()A.[﹣1,﹣]B.[﹣,﹣]C.[﹣1,0]D.[﹣,0]10.函数y=x+cosx的大致图象是()A.B.C.D.11.已知△ABC中,a=1,b=,B=45°,则角A等于()A.150°B.90°C.60°D.30°12.过点P(﹣2,2)作直线l,使直线l与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l一共有()A.3条B.2条C.1条D.0条二、填空题13.已知数列的各项均为正数,为其前项和,且对任意N ,均有、、成等差数列,}{n a n S n ∈n *n a n S 2n a 则.=n a 14.若直线x ﹣y=1与直线(m+3)x+my ﹣8=0平行,则m= .15.长方体中,对角线与棱、、所成角分别为、、,1111ABCD A B C D -1A C CB CD 1CC αβ则 . 222sinsin sin αβγ++=16.等差数列中,,公差,则使前项和取得最大值的自然数是________.{}n a 39||||a a =0d <n S 17.设α为锐角, =(cos α,sin α),=(1,﹣1)且•=,则sin (α+)= .18.下列四个命题:①两个相交平面有不在同一直线上的三个公交点②经过空间任意三点有且只有一个平面③过两平行直线有且只有一个平面④在空间两两相交的三条直线必共面其中正确命题的序号是 . 三、解答题19.本小题满分10分选修:坐标系与参数方程选讲44-在直角坐标系中,直线的参数方程为为参数,在极坐标系与直角坐标系取相同的长xoy 3x y ⎧=⎪⎪⎨⎪=+⎪⎩xOy 度单位,且以原点为极点,以轴正半轴为极轴中,圆的方程为.O xC ρθ=Ⅰ求圆的圆心到直线的距离;C Ⅱ设圆与直线交于点,若点的坐标为,求.C A B 、P (3,PA PB +20.已知定义在区间(0,+∞)上的函数f (x )满足f ()=f (x 1)﹣f (x 2).(1)求f (1)的值;(2)若当x >1时,有f (x )<0.求证:f (x )为单调递减函数;(3)在(2)的条件下,若f (5)=﹣1,求f (x )在[3,25]上的最小值. 21.长方体ABCD﹣A1B1C1D1中,AB=2,AA1=AD=4,点E为AB中点.(1)求证:BD1∥平面A1DE;(2)求证:A1D⊥平面ABD1.22.已知函数f(x)的导函数f′(x)=x2+2ax+b(ab≠0),且f(0)=0.设曲线y=f(x)在原点处的切线l1的斜率为k1,过原点的另一条切线l2的斜率为k2.(1)若k1:k2=4:5,求函数f(x)的单调区间;(2)若k2=tk1时,函数f(x)无极值,且存在实数t使f(b)<f(1﹣2t)成立,求实数a的取值范围.23.如图,在长方体ABCD﹣A1B1C1D1中,AB=2,AD=1,A1A=1,(1)求证:直线BC1∥平面D1AC;(2)求直线BC1到平面D1AC的距离.24.已知等差数列{a n}满足a2=0,a6+a8=10.(1)求数列{a n}的通项公式;(2)求数列{}的前n项和.静海区第一中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】C【解析】解:连结A 1D 、BD 、A 1B ,∵正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是AA 1,AD 的中点,∴EF ∥A 1D ,∵A 1B ∥D 1C ,∴∠DA 1B 是CD 1与EF 所成角,∵A 1D=A 1B=BD ,∴∠DA 1B=60°.∴CD 1与EF 所成角为60°.故选:C .【点评】本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意空间思维能力的培养. 2. 【答案】A【解析】解:满足“∀x ∈R ,f (x )+f (﹣x )=0,且f ′(x )≤0”的函数为奇函数,且在R 上为减函数,A 中函数f (x )=﹣xe |x|,满足f (﹣x )=﹣f (x ),即函数为奇函数,且f ′(x )=≤0恒成立,故在R 上为减函数,B 中函数f (x )=x+sinx ,满足f (﹣x )=﹣f (x ),即函数为奇函数,但f ′(x )=1+cosx ≥0,在R 上是增函数,C 中函数f (x )=,满足f (﹣x )=f (x ),故函数为偶函数;D 中函数f (x )=x 2|x|,满足f (﹣x )=f (x ),故函数为偶函数,故选:A . 3. 【答案】B【解析】因为的展开式中项系数是,所以,解得,故选A .(1)(N )n x n *+Î3x 3C n 3C 10n =5n =4. 【答案】C【解析】解:由2×2列联表得到a=45,b=10,c=30,d=15.则a+b=55,c+d=45,a+c=75,b+d=25,ad=675,bc=300,n=100.代入K 2=,得k2的观测值k=.因为2.706<3.030<3.841.所以有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”.即在犯错误的概率不超过10%的前提下,认为“该校学生能否做到‘光盘’与性别有关”故选C.【点评】本题是一个独立性检验,我们可以利用临界值的大小来决定是否拒绝原来的统计假设,若值较大就拒绝假设,即拒绝两个事件无关,此题是基础题.5.【答案】C【解析】解:∵M、G分别是BC、CD的中点,∴=,=∴=++=+=故选C【点评】本题考查的知识点是向量在几何中的应用,其中将化为++,是解答本题的关键.6.【答案】^【解析】选D.由数据表知A是正确的,其样本中心为(2,4.5),代入=bx+2.6得b=0.95,即=0.95x+y^y2.6,当=8.3时,则有8.3=0.95x+2.6,∴x=6,∴B正确.根据性质,随机误差的均值为0,∴C正确.样y^e本点(3,4.8)的残差=4.8-(0.95×3+2.6)=-0.65,∴D错误,故选D.e^7.【答案】B【解析】解:∵直线l⊥平面α,α∥β,∴l⊥平面β,又∵直线m⊂平面β,∴l⊥m,故(1)正确;∵直线l⊥平面α,α⊥β,∴l∥平面β,或l⊂平面β,又∵直线m⊂平面β,∴l与m可能平行也可能相交,还可以异面,故(2)错误;∵直线l⊥平面α,l∥m,∴m⊥α,∵直线m⊂平面β,∴α⊥β,故(3)正确;∵直线l⊥平面α,l⊥m,∴m∥α或m⊂α,又∵直线m⊂平面β,则α与β可能平行也可能相交,故(4)错误;故选B.【点评】本题考查的知识点是空间中直线与平面之间的位置关系,其中熟练掌握空间中直线与平面位置关系的判定及性质定理,建立良好的空间想像能力是解答本题的关键.8.【答案】B【解析】解:∵a n=(﹣1)n(3n﹣2),∴S11=()+(a2+a4+a6+a8+a10)=﹣(1+7+13+19+25+31)+(4+10+16+22+28)=﹣16,S20=(a1+a3+…+a19)+(a2+a4+…+a20)=﹣(1+7+...+55)+(4+10+ (58)=﹣+=30,∴S11+S20=﹣16+30=14.故选:B.【点评】本题考查数列求和,是中档题,解题时要认真审题,注意分组求和法和等差数列的性质的合理运用. 9.【答案】D【解析】解:如图所示:以点D为原点,以DA所在的直线为x轴,以DC所在的直线为y轴,以DD1所在的直线为z轴,建立空间直角坐标系.则点A(1,0,0),C1(0,1,1),设点P的坐标为(x,y,z),则由题意可得0≤x≤1,0≤y≤1,z=1.∴=(1﹣x,﹣y,﹣1),=(﹣x,1﹣y,0),∴=﹣x(1﹣x)﹣y(1﹣y)+0=x2﹣x+y2﹣y=+﹣,由二次函数的性质可得,当x=y=时,取得最小值为﹣;故当x=0或1,且y=0或1时,取得最大值为0,则的取值范围是[﹣,0],故选D.【点评】本题主要考查向量在几何中的应用,两个向量的数量积公式,两个向量坐标形式的运算,属于中档题.10.【答案】B【解析】解:由于f(x)=x+cosx,∴f(﹣x)=﹣x+cosx,∴f(﹣x)≠f(x),且f(﹣x)≠﹣f(x),故此函数是非奇非偶函数,排除A、C;又当x=时,x+cosx=x,即f(x)的图象与直线y=x的交点中有一个点的横坐标为,排除D.故选:B.【点评】本题考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合的思维能力,属于中档题.11.【答案】D【解析】解:∵,B=45°根据正弦定理可知∴sinA==∴A=30°故选D.【点评】本题主要考查正弦定理的应用.属基础题.12.【答案】C【解析】解:假设存在过点P(﹣2,2)的直线l,使它与两坐标轴围成的三角形的面积为8,设直线l的方程为:,则.即2a﹣2b=ab直线l与两坐标轴在第二象限内围成的三角形面积S=﹣ab=8,即ab=﹣16,联立,解得:a=﹣4,b=4.∴直线l的方程为:,即x﹣y+4=0,即这样的直线有且只有一条,故选:C【点评】本题考查了直线的截距式、三角形的面积计算公式,属于基础题. 二、填空题13.【答案】n【解析】∵,,成等差数列,∴n a n S 2n a 22n n nS a a =+当时, 又 ∴1n =2111122a S a a ==+10a >11a =当时,,2n ≥2211122()n n n n n n n a S S a a a a ---=-=+--∴,2211()()0n n n n a a a a ----+=∴, 111()()()0n n n n n n a a a a a a ---+--+=又,∴,10n n a a -+>11n n a a --=∴是等差数列,其公差为1,{}n a ∵,∴.11a =*(N )n a n n =∈14.【答案】 .【解析】解:直线x ﹣y=1的斜率为1,(m+3)x+my ﹣8=0斜率为两直线平行,则=1解得m=﹣.故应填﹣. 15.【答案】【解析】试题分析:以为斜边构成直角三角形:,由长方体的对角线定理可得:1AC 1111,,AC D AC B AC A ∆∆∆.2222221111222111sin sin sin BC DC A C AC AC AC αβγ++=++2221212()2AB AD AA AC ++==考点:直线与直线所成的角.【方法点晴】本题主要考查了空间中直线与直线所成的角的计算问题,其中解答中涉及到长方体的结构特征、直角三角形中三角函数的定义、长方体的对角线长公式等知识点的考查,着重考查学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直角三角形中三角函数的定义和长方体的对角线长定理是解答的关键.16.【答案】或【解析】试题分析:因为,且,所以,所以,所以,所以0d <39||||a a =39a a =-1128a d a d +=--150a d +=,所以,所以取得最大值时的自然数是或.60a =0n a >()15n ≤≤n S 考点:等差数列的性质.【方法点晴】本题主要考查了等差数列的性质,其中解答中涉及到等差数列的通项公式以及数列的单调性等知识点的应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据数列的单调性,得出,所以是解答的关键,同时结论中自然数是或是结论的一个150a d +=60a =易错点.17.【答案】:.【解析】解:∵•=cos α﹣sin α=,∴1﹣sin2α=,得sin2α=,∵α为锐角,cos α﹣sin α=⇒α∈(0,),从而cos2α取正值,∴cos2α==,∵α为锐角,sin (α+)>0,∴sin (α+)====.故答案为:.18.【答案】 ③ .【解析】解:①两个相交平面的公交点一定在平面的交线上,故错误;②经过空间不共线三点有且只有一个平面,故错误;③过两平行直线有且只有一个平面,正确;④在空间两两相交交点不重合的三条直线必共面,三线共点时,三线可能不共面,故错误,故正确命题的序号是③,故答案为:③ 三、解答题19.【答案】【解析】Ⅰ∵ ∴:C ρθ=2:sin C ρθ=∴,即圆的标准方程为.22:0C x y +-=C 22(5x y +=直线的普通方程为.30x y +--=所以,圆.CⅡ由,解得或22(53x y y x ⎧+=⎪⎨=-⎪⎩12x y =⎧⎪⎨=⎪⎩21x y =⎧⎪⎨=+⎪⎩所以 20.【答案】【解析】解:(1)令x 1=x 2>0,代入得f (1)=f (x 1)﹣f (x 1)=0,故f (1)=0.…(4分)(2)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2,则>1,由于当x >1时,f (x )<0,所以f ()<0,即f (x 1)﹣f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数.…(8分)(3)因为f (x )在(0,+∞)上是单调递减函数,所以f (x )在[3,25]上的最小值为f (25).由f ()=f (x 1)﹣f (x 2)得,f (5)=f ()=f (25)﹣f (5),而f (5)=﹣1,所以f (25)=﹣2.即f (x )在[3,25]上的最小值为﹣2.…(12分)【点评】本题主要考查抽象函数的应用,利用赋值法以及函数单调性的定义是解决本题的关键. 21.【答案】【解析】证明:(1)连结A 1D ,AD 1,A 1D ∩AD 1=O ,连结OE ,∵长方体ABCD ﹣A 1B 1C 1D 1中,ADD 1A 1是矩形,∴O 是AD 1的中点,∴OE ∥BD 1,∵OE ∥BD 1,OE ⊂平面ABD 1,BD 1⊄平面ABD 1,∴BD 1∥平面A 1DE .(2)∵长方体ABCD ﹣A 1B 1C 1D 1中,AB=2,AA 1=AD=4,点E 为AB 中点,∴ADD 1A 1是正方形,∴A 1D ⊥AD 1,∵长方体ABCD ﹣A 1B 1C 1D 1中,AB ⊥平面ADD 1A 1,∴A 1D ⊥AB ,又AB ∩AD 1=A ,∴A 1D ⊥平面ABD 1.||||PA PB +==22.【答案】【解析】解:(1)由已知,k1=f'(0)=b,设l2与曲线y=f(x)的切点为(x0,y0)(x0≠0)则所以,即,则.又4k2=5k1,所以﹣3a2+4b=5b,即b=﹣3a2因此f'(x)=x2+2ax﹣3a2=(x+3a)(x﹣a)①当a>0时,f(x)的增区间为(﹣∞,﹣3a)和(a,+∞),减区间为(﹣3a,a).②当a<0时,f(x)的增区间为(﹣∞,a)和(﹣3a,+∞),减区间为(a,﹣3a).…(2)由(1)若k2=tk1,则,∵ab≠0,∴t≠1,于是,所以,由f(x)无极值可知,,即,所以由f(b)<f(1﹣2t)知,b<1﹣2t,即,就是3a2<4(1﹣t)(1﹣2t),而,故,所以,又a≠0,因此.…【点评】本题考查函数的导数的应用,函数的极值以及函数的单调性考查分类讨论以及转化思想的应用,考查计算能力.23.【答案】【解析】解:(1)因为ABCD﹣A1B1C1D1为长方体,故AB∥C1D1,AB=C1D1,故ABC1D1为平行四边形,故BC1∥AD1,显然B不在平面D1AC上,故直线BC1平行于平面DA1C;(2)直线BC1到平面D1AC的距离即为点B到平面D1AC的距离(设为h)以△ABC为底面的三棱锥D1﹣ABC的体积V,可得而△AD1C中,,故所以以△AD1C为底面的三棱锥B﹣﹣AD1C的体积,即直线BC1到平面D1AC的距离为.【点评】本题考查了线面平行的判定定理,考查线面的距离以及数形结合思想,是一道中档题. 24.【答案】【解析】解:(1)设等差数列{a n}的公差为d,∵a2=0,a6+a8=10.∴,解得,∴a n﹣1+(n﹣1)=n﹣2.(2)=.∴数列{}的前n项和S n=﹣1+0+++…+,=+0++…++,∴=﹣1++…+﹣=﹣2+﹣=,∴S n=.。
静海区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案
静海区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 若点O 和点F (﹣2,0)分别是双曲线的中心和左焦点,点P 为双曲线右支上的任意一点,则的取值范围为()A .B .C .D .2. 关于函数,下列说法错误的是( )2()ln f x x x=+(A )是的极小值点2x =()f x ( B ) 函数有且只有1个零点 ()y f x x =- (C )存在正实数,使得恒成立k ()f x kx >(D )对任意两个正实数,且,若,则12,x x 21x x >12()()f x f x =124x x +>3. 在△ABC 中,若a=2bcosC ,则△ABC 一定是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形4. 点P 是棱长为1的正方体ABCD ﹣A 1B 1C 1D 1的底面A 1B 1C 1D 1上一点,则的取值范围是()A .[﹣1,﹣]B .[﹣,﹣]C .[﹣1,0]D .[﹣,0]5. 如图,在正六边形ABCDEF 中,点O 为其中心,则下列判断错误的是()A . =B .∥C .D .6. 设M={x|﹣2≤x ≤2},N={y|0≤y ≤2},函数f (x )的定义域为M ,值域为N ,则f (x )的图象可以是()A .B .班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________C .D .7. 如图是一个多面体的三视图,则其全面积为()A .B .C .D .8. 在《张邱建算经》中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺,末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的( )A .33% B .49%C .62%D .88%9. 阅读如图所示的程序框图,运行相应的程序.若该程序运行后输出的结果不大于20,则输入的整数i 的最大值为()A .3B .4C .5D .610.已知定义域为的偶函数满足对任意的,有,且当R )(x f R x ∈)1()()2(f x f x f -=+时,.若函数在上至少有三个零点,则]3,2[∈x 18122)(2-+-=x x x f )1(log )(+-=x x f y a ),0(+∞实数的取值范围是( )111]A .B .C .D .22,0(33,0(55,0()66,0(11.设数集M={x|m ≤x ≤m+},N={x|n ﹣≤x ≤n},P={x|0≤x ≤1},且M ,N 都是集合P 的子集,如果把b ﹣a 叫做集合{x|a ≤x ≤b}的“长度”,那么集合M ∩N 的“长度”的最小值是( )A .B .C .D .12.已知双曲线,分别在其左、右焦点,点为双曲线的右支上2222:1(0,0)x y C a b a b-=>>12,F F P 的一点,圆为三角形的内切圆,所在直线与轴的交点坐标为,与双曲线的一条渐M 12PF F PM (1,0),则双曲线的离心率是( )CAB .2CD 二、填空题13.数列{ a n }中,a 1=2,a n +1=a n +c (c 为常数),{a n }的前10项和为S 10=200,则c =________.14.在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 是A 1D 1的中点,点P 在侧面BCC 1B 1上运动.现有下列命题:①若点P 总保持PA ⊥BD 1,则动点P 的轨迹所在曲线是直线;②若点P 到点A 的距离为,则动点P 的轨迹所在曲线是圆;③若P 满足∠MAP=∠MAC 1,则动点P 的轨迹所在曲线是椭圆;④若P 到直线BC 与直线C 1D 1的距离比为1:2,则动点P 的轨迹所在曲线是双曲线;⑤若P 到直线AD 与直线CC 1的距离相等,则动点P 的轨迹所在曲线是抛物丝.其中真命题是 (写出所有真命题的序号)15.椭圆C :+=1(a >b >0)的右焦点为(2,0),且点(2,3)在椭圆上,则椭圆的短轴长为 .16.已知一个算法,其流程图如图,则输出结果是 .17.已知奇函数f (x )的定义域为[﹣2,2],且在定义域上单调递减,则满足不等式f (1﹣m )+f (1﹣2m )<0的实数m 的取值范围是 . 18.直角坐标P (﹣1,1)的极坐标为(ρ>0,0<θ<π) .三、解答题19.如图,在四边形ABCD 中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四边形ABCD 绕AD旋转一周所成几何体的表面积.20.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知二次函数为偶函数且图象经过原点,()f x 其导函数的图象过点.()'f x ()12,(1)求函数的解析式;()f x (2)设函数,其中m 为常数,求函数的最小值.()()()'g x f x f x m =+-()g x 21.已知△ABC 的顶点A (3,2),∠C 的平分线CD 所在直线方程为y ﹣1=0,AC 边上的高BH 所在直线方程为4x+2y ﹣9=0.(1)求顶点C 的坐标;(2)求△ABC 的面积.22.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点,求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面PAD.23.如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E ,OE交AD于点F.(1)求证:DE是⊙O的切线.(2)若,求的值.24.已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,0<φ<)图象如图,P是图象的最高点,Q为图象与x轴的交点,O为原点.且|OQ|=2,|OP|=,|PQ|=.(Ⅰ)求函数y=f(x)的解析式;(Ⅱ)将函数y=f(x)图象向右平移1个单位后得到函数y=g(x)的图象,当x∈[0,2]时,求函数h(x)=f (x)•g(x)的最大值.静海区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】B【解析】解:因为F (﹣2,0)是已知双曲线的左焦点,所以a 2+1=4,即a 2=3,所以双曲线方程为,设点P (x 0,y 0),则有,解得,因为,,所以=x 0(x 0+2)+=,此二次函数对应的抛物线的对称轴为,因为,所以当时,取得最小值=,故的取值范围是,故选B .【点评】本题考查待定系数法求双曲线方程,考查平面向量的数量积的坐标运算、二次函数的单调性与最值等,考查了同学们对基础知识的熟练程度以及知识的综合应用能力、运算能力. 2. 【答案】 C 【解析】,,且当时,,函数递减,当时,,22212'()x f x x x x-=-+='(2)0f =02x <<'()0f x <2x >'()0f x >函数递增,因此是的极小值点,A 正确;,2x =()f x ()()g x f x x =-221'()1g x x x=-+-,所以当时,恒成立,即单调递减,又,2217()24x x -+=-0x >'()0g x <()g x 11()210g e e e =+->,所以有零点且只有一个零点,B 正确;设,易知当2222()20g e e e =+-<()g x 2()2ln ()f x xh x x x x==+2x >时,,对任意的正实数,显然当时,,即,222ln 21112()x h x x x x x x x x =+<+<+=k 2x k >2k x <()f x k x<,所以不成立,C 错误;作为选择题这时可得结论,选C ,下面对D 研究,画出函数草()f x kx <()f x kx >图可看出(0,2)的时候递减的更快,所以124x x+>3.【答案】B【解析】解:由余弦定理得cosC=,把cosC代入a=2bcosC得:,∴a2=a2+b2﹣c2,∴c2=b2.又b和c都大于0,则b=c,即三角形为等腰三角形.故选B【点评】此题考查了余弦定理,以及三角形的形状判定,利用余弦定理表示出cosC是本题的突破点.4.【答案】D【解析】解:如图所示:以点D为原点,以DA所在的直线为x轴,以DC所在的直线为y轴,以DD1所在的直线为z轴,建立空间直角坐标系.则点A(1,0,0),C1(0,1,1),设点P的坐标为(x,y,z),则由题意可得0≤x≤1,0≤y≤1,z=1.∴=(1﹣x,﹣y,﹣1),=(﹣x,1﹣y,0),∴=﹣x(1﹣x)﹣y(1﹣y)+0=x2﹣x+y2﹣y=+﹣,由二次函数的性质可得,当x=y=时,取得最小值为﹣;故当x=0或1,且y=0或1时,取得最大值为0,则的取值范围是[﹣,0],故选D.【点评】本题主要考查向量在几何中的应用,两个向量的数量积公式,两个向量坐标形式的运算,属于中档题.5.【答案】D【解析】解:由图可知,,但不共线,故,故选D.【点评】本题考查平行向量与共线向量、相等向量的意义,属基础题.6.【答案】B【解析】解:A项定义域为[﹣2,0],D项值域不是[0,2],C项对任一x都有两个y与之对应,都不符.故选B.【点评】本题考查的是函数三要素,即定义域、值域、对应关系的问题.7.【答案】C【解析】解:由三视图可知几何体是一个正三棱柱,底面是一个边长是的等边三角形,侧棱长是,∴三棱柱的面积是3××2=6+,故选C.【点评】本题考查根据三视图求几何体的表面积,考查由三视图确定几何图形,考查三角形面积的求法,本题是一个基础题,运算量比较小.8.【答案】B【解析】9. 【答案】B【解析】解:模拟执行程序框图,可得s=0,n=0满足条件n <i ,s=2,n=1满足条件n <i ,s=5,n=2满足条件n <i ,s=10,n=3满足条件n <i ,s=19,n=4满足条件n <i ,s=36,n=5所以,若该程序运行后输出的结果不大于20,则输入的整数i 的最大值为4,有n=4时,不满足条件n <i ,退出循环,输出s 的值为19.故选:B .【点评】本题主要考查了循环结构的程序框图,属于基础题. 10.【答案】B 【解析】试题分析:,令,则,是定义在上的偶函数,()()1)2(f x f x f -=+ 1-=x ()()()111f f f --=()x f R .则函数是定义在上的,周期为的偶函数,又∵当时,()01=∴f ()()2+=∴x f x f ()x f R []3,2∈x ,令,则与在的部分图象如下图,()181222-+-=x x x f ()()1log +=x x g a ()x f ()x g [)+∞,0在上至少有三个零点可化为与的图象在上至少有三个交点,()()1log +-=x x f y a ()+∞,0()x f ()x g ()+∞,0在上单调递减,则,解得:故选A .()x g ()+∞,0⎩⎨⎧-><<23log 10a a 330<<a 考点:根的存在性及根的个数判断.【方法点晴】本题是一道关于函数零点的题目,关键是结合数形结合的思想进行解答.根据已知条件推导可得是周期函数,其周期为,要使函数在上至少有三个零点,等价于函数的()x f ()()1log +-=x x f y a ()+∞,0()x f 图象与函数的图象在上至少有三个交点,接下来在同一坐标系内作出图象,进而可得的()1log +=x y a ()+∞,0范围.11.【答案】C【解析】解:∵集M={x|m ≤x ≤m+},N={x|n ﹣≤x ≤n},P={x|0≤x ≤1},且M ,N 都是集合P 的子集,∴根据题意,M 的长度为,N 的长度为,当集合M ∩N 的长度的最小值时,M 与N 应分别在区间[0,1]的左右两端,故M ∩N 的长度的最小值是=.故选:C . 12.【答案】C 【解析】试题分析:由题意知到直线,得,则为等轴双曲()1,00bx ay -==a b =.故本题答案选C. 1考点:双曲线的标准方程与几何性质.【方法点睛】本题主要考查双曲线的标准方程与几何性质.求解双曲线的离心率问题的关键是利用图形中的几何条件构造的关系,处理方法与椭圆相同,但需要注意双曲线中与椭圆中的关系不同.求双曲,,a b c ,,a b c ,,a b c 线离心率的值或离心率取值范围的两种方法:(1)直接求出的值,可得;(2)建立的齐次关系式,,a c ,,a b c 将用表示,令两边同除以或化为的关系式,解方程或者不等式求值或取值范围.,a c 2a 二、填空题13.【答案】【解析】解析:由a 1=2,a n +1=a n +c ,知数列{a n }是以2为首项,公差为c 的等差数列,由S 10=200得10×2+×c =200,∴c =4.10×92答案:414.【答案】 ①②④ 【解析】解:对于①,∵BD 1⊥面AB 1C ,∴动点P 的轨迹所在曲线是直线B 1C ,①正确;对于②,满足到点A 的距离为的点集是球,∴点P 应为平面截球体所得截痕,即轨迹所在曲线为圆,②正确;对于③,满足条件∠MAP=∠MAC 1 的点P 应为以AM 为轴,以AC 1 为母线的圆锥,平面BB 1C 1C 是一个与轴AM 平行的平面,又点P 在BB 1C 1C 所在的平面上,故P 点轨迹所在曲线是双曲线一支,③错误;对于④,P到直线C1D1的距离,即到点C1的距离与到直线BC的距离比为2:1,∴动点P的轨迹所在曲线是以C1为焦点,以直线BC为准线的双曲线,④正确;对于⑤,如图建立空间直角坐标系,作PE⊥BC,EF⊥AD,PG⊥CC1,连接PF,设点P坐标为(x,y,0),由|PF|=|PG|,得,即x2﹣y2=1,∴P点轨迹所在曲线是双曲线,⑤错误.故答案为:①②④.【点评】本题考查了命题的真假判断与应用,考查了圆锥曲线的定义和方方程,考查了学生的空间想象能力和思维能力,是中档题.15.【答案】 .【解析】解:椭圆C:+=1(a>b>0)的右焦点为(2,0),且点(2,3)在椭圆上,可得c=2,2a==8,可得a=4,b2=a2﹣c2=12,可得b=2,椭圆的短轴长为:4.故答案为:4.【点评】本题考查椭圆的简单性质以及椭圆的定义的应用,考查计算能力.16.【答案】 5 .【解析】解:模拟执行程序框图,可得a=1,a=2不满足条件a2>4a+1,a=3不满足条件a2>4a+1,a=4不满足条件a2>4a+1,a=5满足条件a2>4a+1,退出循环,输出a的值为5.故答案为:5.【点评】本题主要考查了循环结构的程序框图,依次正确写出每次循环得到的a的值是解题的关键,属于基本知识的考查.17.【答案】 [﹣,] .【解析】解:∵函数奇函数f (x )的定义域为[﹣2,2],且在定义域上单调递减,∴不等式f (1﹣m )+f (1﹣2m )<0等价为f (1﹣m )<﹣f (1﹣2m )=f (2m ﹣1),即,即,得﹣≤m ≤,故答案为:[﹣,]【点评】本题主要考查不等式的求解,根据函数奇偶性将不等式进行转化是解决本题的关键.注意定义域的限制. 18.【答案】 .【解析】解:ρ==,tan θ==﹣1,且0<θ<π,∴θ=.∴点P 的极坐标为.故答案为:.三、解答题19.【答案】【解析】解:四边形ABCD 绕AD 旋转一周所成的几何体,如右图:S 表面=S 圆台下底面+S 圆台侧面+S 圆锥侧面=πr 22+π(r 1+r 2)l 2+πr 1l 1===20.【答案】(1);(2)()2f x x =1m -【解析】(2)据题意,,即()()()2'2g x f x f x m x x m =+-=+-()2222{22m x x m x g x mx x m x -+<=+-≥,,①若,即,当时,,故在上12m <-2m <-2m x <()()22211g x x x m x m =-+=-+-()g x 2m ⎛⎫-∞ ⎪⎝⎭,单调递减;当时,,故在上单调递减,在2m x ≥()()22211g x x x m x m =+-=+--()g x 12m ⎛⎫- ⎪⎝⎭,上单调递增,故的最小值为.()1-+∞,()g x ()11g m -=--②若,即,当时,,故在上单调递减;112m -≤≤22m -≤≤2m x <()()211g x x m =-+-()g x 2m ⎛⎫-∞ ⎪⎝⎭,当时,,故在上单调递增,故的最小值为2m x ≥()()211g x x m =+--()g x 2m ⎛⎫+∞ ⎪⎝⎭,()g x .224m m g ⎛⎫= ⎪⎝⎭③若,即,当时,,故在上单调递12m >2m >2m x <()()22211g x x x m x m =-+=-+-()g x ()1-∞,减,在上单调递增;当时,,故在上12m ⎛⎫ ⎪⎝⎭,2m x ≥()()22211g x x x m x m =+-=+--()g x 2m ⎛⎫+∞ ⎪⎝⎭,单调递增,故的最小值为.()g x ()11g m =-综上所述,当时,的最小值为;当时,的最小值为;当时,2m <-()g x 1m --22m -≤≤()g x 24m 2m >的最小值为.()g x 1m -21.【答案】【解析】解:(1)由高BH所在直线方程为4x+2y﹣9=0,∴=﹣2.∵直线AC⊥BH,∴k AC k BH=﹣1.∴,直线AC的方程为,联立∴点C的坐标C(1,1).(2),∴直线BC的方程为,联立,即.点B到直线AC:x﹣2y+1=0的距离为.又,∴.【点评】本题考查了相互垂直的直线斜率之间的关系、角平分线的性质、点到直线的距离公式、两点间的距离公式、三角形的面积计算公式,属于基础题.22.【答案】【解析】证明:(1)在△PAD中,因为E,F分别为AP,AD的中点,所以EF∥PD.又因为EF不在平面PCD中,PD⊂平面PCD所以直线EF∥平面PCD.(2)连接BD.因为AB=AD,∠BAD=60°.所以△ABD为正三角形.因为F是AD的中点,所以BF⊥AD.因为平面PAD⊥平面ABCD,BF⊂平面ABCD,平面PAD∩平面ABCD=AD,所以BF⊥平面PAD.又因为BF⊂平面EBF,所以平面BEF⊥平面PAD.【点评】本题是中档题,考查直线与平面平行,平面与平面的垂直的证明方法,考查空间想象能力,逻辑推理能力,常考题型.23.【答案】【解析】(I)证明:连接OD,可得∠ODA=∠OAD=∠DAC∴OD∥AE又AE⊥DE∴DE⊥OD,又OD为半径∴DE是的⊙O切线(II)解:过D作DH⊥AB于H,则有∠DOH=∠CAB设OD=5x,则AB=10x,OH=2x,∴AH=7x由△AED≌△AHD可得AE=AH=7x又由△AEF∽△DOF可得∴【点评】本题考查平面几何中三角形的相似和全等,辅助线的做法,是解题关键,本题是难题.24.【答案】【解析】解:(Ⅰ)由余弦定理得cos∠POQ==,…∴sin∠POQ=,得P点坐标为(,1),∴A=1,=4(2﹣),∴ω=.…由f()=sin(+φ)=1 可得φ=,∴y=f(x)的解析式为f(x)=sin(x+).…(Ⅱ)根据函数y=Asin(ωx+∅)的图象变换规律求得g(x)=sin x,…h(x)=f(x)g(x)=sin(x+)sin x=+sin xcos x=+sin=sin(﹣)+.…当x∈[0,2]时,∈[﹣,],∴当,即x=1时,h max(x)=.…【点评】本题主要考查由函数y=Asin(ωx+∅)的部分图象求函数的解析式,函数y=Asin(ωx+∅)的图象变换规律,正弦函数的定义域和值域,属于中档题.。
静海区第一中学校2018-2019学年高三上学期11月月考数学试卷含答案
静海区第一中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 如果对定义在R 上的函数)(x f ,对任意n m ≠,均有0)()()()(>--+m nf n mf n nf m mf 成立,则称 函数)(x f 为“H 函数”.给出下列函数: ①()ln25x f x =-;②34)(3++-=x x x f ;③)cos (sin 222)(x x x x f --=;④⎩⎨⎧=≠=0,00|,|ln )(x x x x f .其中函数是“H 函数”的个数为( ) A .1 B .2 C .3 D . 4【命题意图】本题考查学生的知识迁移能力,对函数的单调性定义能从不同角度来刻画,对于较复杂函数也要有利用导数研究函数单调性的能力,由于是给定信息题,因此本题灵活性强,难度大.2. 已知f (x )是定义在R 上的奇函数,且f (x ﹣2)=f (x+2),当0<x <2时,f (x )=1﹣log 2(x+1),则当0<x <4时,不等式(x ﹣2)f (x )>0的解集是( )A .(0,1)∪(2,3)B .(0,1)∪(3,4)C .(1,2)∪(3,4)D .(1,2)∪(2,3)3. 已知,A B 是球O 的球面上两点,60AOB ∠=︒,C 为该球面上的动点,若三棱锥O ABC -体积的最大值为O 的体积为( )A .81πB .128πC .144πD .288π【命题意图】本题考查棱锥、球的体积、球的性质,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.4. 从1、2、3、4、5中任取3个不同的数、则这3个数能构成一个三角形三边长的概率为( ) A.110 B.15 C.310 D.25 5. 在等差数列{}n a 中,11a =,公差0d ≠,n S 为{}n a 的前n 项和.若向量13(,)m a a =,133(,)n a a =-, 且0m n ?,则2163n n S a ++的最小值为( )A .4B .3 C.2 D .92【命题意图】本题考查等差数列的性质,等差数列的前n 项和,向量的数量积,基本不等式等基础知识,意在考查学生的学生运算能力,观察分析,解决问题的能力.6. 如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形.则该几何体表面积等于( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .12+B .12+23πC .12+24πD .12+π7. 已知函数1()1x f x ae x a -=+--有两个零点,则实数a 的取值范围是( ) A .[1,1]- B .[0,1] C .{1}(0,1]- D .{1}[0,1)-8. 函数f (x )=Asin (ωx+φ)(A >0,ω>0,)的部分图象如图所示,则函数y=f (x )对应的解析式为( )A .B .C .D .9. 已知F 1,F 2是椭圆和双曲线的公共焦点,M 是它们的一个公共点,且∠F 1MF 2=,则椭圆和双曲线的离心率的倒数之和的最大值为( )A .2B .C .D .410.把函数y=cos (2x+φ)(|φ|<)的图象向左平移个单位,得到函数y=f (x )的图象关于直线x=对称,则φ的值为( )A .﹣B .﹣C .D .11.如图所示的程序框图,若输入的x 值为0,则输出的y 值为( )A.B.0 C.1 D.或012.已知函数f(x)=e x+x,g(x)=lnx+x,h(x)=x﹣的零点依次为a,b,c,则()A.c<b<a B.a<b<c C.c<a<b D.b<a<c二、填空题13.正方体ABCD﹣A1B1C1D1中,平面AB1D1和平面BC1D的位置关系为.14.设全集U={0,1,2,3,4},集合A={0,1,2},集合B={2,3},则(∁U A)∪B=.15.在(2x+)6的二项式中,常数项等于(结果用数值表示).16.下列四个命题申是真命题的是(填所有真命题的序号)①“p∧q为真”是“p∨q为真”的充分不必要条件;②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等;③在侧棱长为2,底面边长为3的正三棱锥中,侧棱与底面成30°的角;④动圆P过定点A(﹣2,0),且在定圆B:(x﹣2)2+y2=36的内部与其相内切,则动圆圆心P的轨迹为一个椭圆.17.把函数y=sin2x的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为.k x-+有两个不等实根,则的取值范围是.18()23三、解答题19.设数列{a n}的前n项和为S n,a1=1,S n=na n﹣n(n﹣1).(1)求证:数列{a n}为等差数列,并分别求出a n的表达式;(2)设数列的前n项和为P n,求证:P n<;(3)设C n=,T n=C1+C2+…+C n,试比较T n与的大小.20.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,且990S =,15240S =. (1)求{}n a 的通项公式n a 和前n 项和n S ;(2)设(){}1nn n b a --是等比数列,且257,71b b ==,求数列{}n b 的前n 项和n T .【命题意图】本题考查等差数列与等比数列的通项与前n 项和、数列求和等基础知识,意在考查逻辑思维能力、运算求解能力、代数变形能力,以及分类讨论思想、方程思想、分组求和法的应用.21. (本题满分12分)在如图所示的几何体中,四边形ABCD 为矩形,直线⊥AF 平面ABCD ,AB EF //,12,2====EF AF AB AD ,点P 在棱DF 上.(1)求证:BF AD ⊥;(2)若P 是DF 的中点,求异面直线BE 与CP 所成角的余弦值; (3)若FD FP 31=,求二面角C AP D --的余弦值.22.△ABC 中,角A ,B ,C 所对的边之长依次为a ,b ,c ,且cosA=,5(a 2+b 2﹣c 2)=3ab .(Ⅰ)求cos2C 和角B 的值; (Ⅱ)若a ﹣c=﹣1,求△ABC 的面积.23.解不等式|3x ﹣1|<x+2.24.(本小题满分12分)已知向量,a b 满足:||1a =,||6b =,()2a b a ∙-=. (1)求向量与的夹角; (2)求|2|a b -.静海区第一中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B第2.【答案】D【解析】解:∵f(x)是定义在R上的奇函数,且f(x﹣2)=f(x+2),∴f(0)=0,且f(2+x)=﹣f(2﹣x),∴f(x)的图象关于点(2,0)中心对称,又0<x<2时,f(x)=1﹣log2(x+1),故可作出fx(x)在0<x<4时的图象,由图象可知当x∈(1,2)时,x﹣2<0,f(x)<0,∴(x﹣2)f(x)>0;当x∈(2,3)时,x﹣2>0,f(x)>0,∴(x﹣2)f(x)>0;∴不等式(x﹣2)f(x)>0的解集是(1,2)∪(2,3)故选:D【点评】本题考查不等式的解法,涉及函数的性质和图象,属中档题.3. 【答案】D【解析】当OC ⊥平面AOB 平面时,三棱锥O ABC -的体积最大,且此时OC 为球的半径.设球的半径为R ,则由题意,得211sin 6032R R ⨯⨯︒⋅=6R =,所以球的体积为342883R π=π,故选D . 4. 【答案】【解析】解析:选C.从1、2、3、4、5中任取3个不同的数有下面10个不同结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),能构成一个三角形三边的数为(2,3,4),(2,4,5),(3,4,5),故概率P =310.5. 【答案】A【解析】6. 【答案】C【解析】解:根据几何体的三视图,得; 该几何体是一半圆台中间被挖掉一半圆柱, 其表面积为S=[×(2+8)×4﹣2×4]+[×π•(42﹣12)+×(4π×﹣π×)+×8π]=12+24π. 故选:C .【点评】本题考查了空间几何体三视图的应用问题,也考查了空间想象能力与计算能力的应用问题,是基础题目.7. 【答案】D【解析】当1a =时,1()11x f x e x -=+--.当1x ≥时,1()2x f x ex -=+-为增函数,∴()(1)0f x f ≥=,有唯一零点1.当1x <时,1()x f x e x -=-,1()1x f x e -'=-. ∵1x <,∴()0f x '<,()f x 单调减,∴()(1)0f x f <=,没有零点, 综上: 1a =时,原函数只有一个零点,A B C.故不成立,从而排除,,8.【答案】A【解析】解:由函数的图象可得A=1,=•=﹣,解得ω=2,再把点(,1)代入函数的解析式可得sin(2×+φ)=1,结合,可得φ=,故有,故选:A.9.【答案】C【解析】解:设椭圆的长半轴为a,双曲线的实半轴为a1,(a>a1),半焦距为c,由椭圆和双曲线的定义可知,设|MF1|=r1,|MF2|=r2,|F1F2|=2c,椭圆和双曲线的离心率分别为e1,e2∵∠F1MF2=,∴由余弦定理可得4c2=(r1)2+(r2)2﹣2r1r2cos,①在椭圆中,①化简为即4c2=4a2﹣3r1r2,即=﹣1,②在双曲线中,①化简为即4c2=4a12+r1r2,即=1﹣,③联立②③得,+=4,由柯西不等式得(1+)(+)≥(1×+×)2,即(+)2≤×4=,即+≤,当且仅当e=,e2=时取等号.即取得最大值且为.1故选C.【点评】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键.难度较大.10.【答案】B【解析】解:把函数y=cos(2x+φ)(|φ|<)的图象向左平移个单位,得到函数y=f(x)=cos[2(x+)+φ]=cos(2x+φ+)的图象关于直线x=对称,则2×+φ+=kπ,求得φ=kπ﹣,k∈Z,故φ=﹣,故选:B.11.【答案】B【解析】解:根据题意,模拟程序框图的运行过程,如下;输入x=0,x>1?,否;x<1?,是;y=x=0,输出y=0,结束.故选:B.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论.12.【答案】B【解析】解:由f(x)=0得e x=﹣x,由g(x)=0得lnx=﹣x.由h(x)=0得x=1,即c=1.在坐标系中,分别作出函数y=e x ,y=﹣x,y=lnx的图象,由图象可知a<0,0<b<1,所以a<b<c.故选:B.【点评】本题主要考查函数零点的应用,利用数形结合是解决本题的关键.二、填空题13.【答案】平行.【解析】解:∵AB1∥C1D,AD1∥BC1,AB1⊂平面AB1D1,AD1⊂平面AB1D1,AB1∩AD1=AC1D⊂平面BC1D,BC1⊂平面BC1D,C1D∩BC1=C1由面面平行的判定理我们易得平面AB1D1∥平面BC1D故答案为:平行.【点评】本题考查的知识点是平面与平面之间的位置关系,在判断线与面的平行与垂直关系时,正方体是最常用的空间模型,大家一定要熟练掌握这种方法.14.【答案】{2,3,4}.【解析】解:∵全集U={0,1,2,3,4},集合A={0,1,2},∴C U A={3,4},又B={2,3},∴(C U A)∪B={2,3,4},故答案为:{2,3,4}15.【答案】240【解析】解:由(2x+)6,得=.由6﹣3r=0,得r=2.∴常数项等于.故答案为:240.16.【答案】①③④【解析】解:①“p∧q为真”,则p,q同时为真命题,则“p∨q为真”,当p真q假时,满足p∨q为真,但p∧q为假,则“p∧q为真”是“p∨q为真”的充分不必要条件正确,故①正确;②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等或互补;故②错误,③设正三棱锥为P﹣ABC,顶点P在底面的射影为O,则O为△ABC的中心,∠PCO为侧棱与底面所成角∵正三棱锥的底面边长为3,∴CO=∵侧棱长为2,∴在直角△POC中,tan∠PCO=∴侧棱与底面所成角的正切值为,即侧棱与底面所成角为30°,故③正确,④如图,设动圆P和定圆B内切于M,则动圆的圆心P到两点,即定点A(﹣2,0)和定圆的圆心B(2,0)的距离之和恰好等于定圆半径,即|PA|+|PB|=|PM|+|PB|=|BM|=6>4=|AB|.∴点P的轨迹是以A、B为焦点的椭圆,故动圆圆心P 的轨迹为一个椭圆,故④正确,故答案为:①③④17.【答案】 y=cosx .【解析】解:把函数y=sin2x的图象向左平移个单位长度,得,即y=cos2x 的图象,把y=cos2x 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=cosx 的图象; 故答案为:y=cosx .18.【答案】53,124⎛⎤⎥⎝⎦【解析】试题分析:作出函数y =()23y k x =-+的图象,如图所示,函数y =直线()23y k x =-+的图象恒过定点()2,3,结合图象,可知,当过点()2,0-时,303224k -==+,当直线()23y k x =-+2=,解得512k =,所以实数的取值范围是53,124⎛⎤ ⎥⎝⎦.111]考点:直线与圆的位置关系的应用.【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、两点间的斜率公式,以及函数的图像的应用等知识点的综合考查,着重考查了转化与化归思想和学生的分析问题和解答问题的能力,属于中档试题,本题的解答中把方程的根转化为直线与半圆的交点是解答的关键.三、解答题19.【答案】【解析】解:(1)证明:∵S n=na n﹣n(n﹣1)∴S n+1=(n+1)a n+1﹣(n+1)n…∴a n+1=S n+1﹣S n=(n+1)a n+1﹣na n﹣2n…∴na n+1﹣na n﹣2n=0∴a n+1﹣a n=2,∴{a n}是以首项为a1=1,公差为2的等差数列…由等差数列的通项公式可知:a n=1+(n﹣1)×2=2n﹣1,数列{a n}通项公式a n=2n﹣1;…(2)证明:由(1)可得,…=…(3)∴,=,两式相减得…=,=,=,=,∴…∴…∵n∈N*,∴2n >1,∴,∴…20.【答案】【解析】(1)设等差数列{}n a 的首项为1a ,公差为d ,则由990S =,15240S =,得119369015105240a d a d +=⎧⎨+=⎩,解得12a d ==,……………3分所以2(n 1)22n a n =+-⨯=,即2n a n =, (1)22(1)2n n n S n n n -=+⨯=+,即1n S n n =+().……………5分21.【答案】【解析】【命题意图】本题考查了线面垂直、线线垂直等位置关系及线线角、二面角的度量,突出考查逻辑推理能力及利用坐标系解决空间角问题,属中等难度.(3)因为⊥AB 平面ADF ,所以平面ADF 的一个法向量)0,0,1(1=n .由31=知P 为FD 的三等分点且此时)32,32,0(P .在平面APC 中,)32,32,0(=,)0,2,1(=AC .所以平面APC 的一个法向量)1,1,2(2--=n .……………………10分 所以36|||||,cos |212121==><n n n n ,又因为二面角C AP D --的大小为锐角,所以该二面角的余弦值为36.……………………………………………………………………12分 22.【答案】【解析】解:(I )由∵cosA=,0<A <π,∴sinA==,∵5(a 2+b 2﹣c 2)=3ab ,∴cosC==,∵0<C <π,∴sinC==,∴cos2C=2cos 2C ﹣1=,∴cosB=﹣cos (A+C )=﹣cosAcosC+sinAsinC=﹣×+×=﹣ ∵0<B <π,∴B=.(II )∵=,∴a==c ,∵a ﹣c=﹣1,∴a=,c=1,∴S=acsinB=××1×=. 【点评】本题主要考查了正弦定理和余弦定理的综合运用,两角和与差的正弦公式等知识.考查学生对基础知识的综合运用.23.【答案】【解析】解:∵|3x ﹣1|<x+2,∴,解得﹣.∴原不等式的解集为{x|﹣<x <}.24.【答案】(1)3π;(2) 【解析】试题分析:(1)要求向量,a b 的夹角,只要求得这两向量的数量积a b ⋅,而由已知()2a b a ∙-=,结合数量积的运算法则可得a b ⋅,最后数量积的定义可求得其夹角;(2)求向量的模,可利用公式22a a =,把考点:向量的数量积,向量的夹角与模. 【名师点睛】本题考查向量的数量积运算及特殊角的三角函数值,求解两个向量的夹角的步骤:第一步,先计算出两个向量的数量积;第二步,分别计算两个向量的模;第三步,根据公式cos ,a b a b a b ⋅<>=求得这两个向量夹角的余弦值;第四步,根据向量夹角的范围在[0,]π内及余弦值求出两向量的夹角.。
静海区一中2018-2019学年高三上学期11月月考数学试卷含答案
15.已知 tan( ) 3 , tan(
4
) 2 ,那么 tan
.
16.在棱长为 1 的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去 8 个三棱锥后,剩下的 凸多面体的体积是 . 17.已知定义在 R 上的奇函数 f ( x) 满足 f ( x 4) f ( x) ,且 x (0, 2) 时 f ( x) x 2 1 ,则 f (7) 的值为 ▲ . 18.当下社会热议中国人口政策,下表是中国人民大学人口预测课题组根据我过 2000 年第五次人口普查预测 的 15﹣64 岁劳动人口所占比例: 2030 2035 年份 年份代号 t 所占比例 y 1 68 2 65 2040 3 62 2045 4 62 2050 5 61
2 2
) )
A.
B. 2 1
C.
2 1 2
D. 2 2 1
7. 已知四个函数 f(x)=sin(sinx) ,g(x)=sin(cosx) ,h(x)=cos(sinx) ,φ(x)=cos(cosx)在 x∈[﹣π ,π]上的图象如图,则函数与序号匹配正确的是( )
A.f(x)﹣①,g(x)﹣②,h(x)﹣③,φ(x)﹣④ B.f(x)﹣①,φ(x)﹣②,g(x)﹣③,h(x) ﹣④ C.g(x)﹣①,h(x)﹣②,f(x)﹣③,φ(x)﹣④D.f(x)﹣①,h(x)﹣②,g(x)﹣③,φ(x)﹣④ 8. 有 30 袋长富牛奶,编号为 1 至 30,若从中抽取 6 袋进行检验,则用系统抽样确定所抽的编号为( ) A.3,6,9,12,15,18 B.4,8,12,16,20,24 C.2,7,12,17,22,27 D.6,10,14,18,22,26 9. 如图所示的程序框图,若输入的 x 值为 0,则输出的 y 值为( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页
1. 2019年春节,小红、小芳、小英、小丽四个同学相互发短信,小红不给小英发短信
的概率是
A.
41 B. 4
3
C.161
D.8180
2. 下列函数中,奇函数是()
A .()2x f x =
B .()2log f x x =
C .()sin tan f x x x =+
D .()sin 1f x x =+
3. 某人午睡醒来,发现表停了,他打开收音机,想听电台整点报时,他等待
的时间不多于15分钟的概率是() A .
12 B .13C .14 D .16
4. 在ABC ∆中,角A ,B ,C 的对边分别为,,a b c ,
若222a c b +-=,则角
B 的值为()
A .3
π
B .
6
π
C .56
6
或ππ
D .23
3
或ππ
5. 设,a b R ∈,则“()20a b a -<”是“a b <”的()
A .充分而不必要条件
B .必要而不充分条件
C .充要条件
D .既不充分也不必要条件
6. 设双曲线()222210,0-=>>x y a b a b
2
=-a x c (c 是双曲
线的半焦距)与抛物线24y x =的准线重合,则此双曲线的方程为()
A .2211224-=x y
B .22
12412
-=x y
C .22163-=x y
D .22
136
-=x y
7. 设()f x ,()g x 都是定义在实数集上的函数,定义函数()()f g x :R x ∀∈, ()()()f g x f g x =⎡⎤⎣⎦.若()2,0
,0x x f x x x >⎧=⎨≤⎩
,(),0ln ,0x e x g x x x ⎧≤=⎨>⎩,则()
A .()()()f
f x f x = B .()()()f
g x f x =
C .()()()g f x g x =
D .()()()
g g x g x =
8. 已知函数)2
||,0,0)(sin()(π
ϕωϕω<>>+=A x A x f ,则下面结论正确的是( )
A .函数)(x f 的最小正周期为
2π
B .函数)(x f 是偶函数
C .函数)(x f 的图象关于直线3
π=x 对称 D .函数)(x f 在区间]4,0[π
上是增函
数
二. 填空题:(本大题共6小题,每小题5分,共30分.请将答案填在答.......
题纸上...
!) 9i 是虚数单位,已知复数)31)(2(i i z +-=,其中i 是虚数单位,则复数z 在复平面上对应的点位于第象限.
10、
已知向量()3,4a =-,()1,b m =,若()
0a a b ⋅-=,则m =___________.
11、
三棱锥S ABC -及其三视图中的正(主)视图和侧(左)
视图如图所示,则棱SB 的长为___________.
12、
阅读如图所示的程序框图,若输入5i =,则输出的k 值为
___________.
13、 如图,过圆O 外一点P 分别做圆的切线和割线交圆于A,B 两点,
且PB=7,C 是圆上一点使得BC=5,BAC APB ∠=∠,则AB=. 13.在等比数列}{n a 中,前n 项和为n S ,5211-⋅=++n n m S ,404=a ,则
=+53a a .
14设()f x 是定义在R 上的偶函数,且()()[]222,0,当+=-∈-f x f x x 时,
(
)1=-⎝⎭
x
f x ,
若在区间()2,6-内关于x 的方程()()()log 200,a f x x a -+=>有4个不同的根,则a 的范围是__________.
三、解答题:(本答题共6小题,15至18小题每题13分,19至20小题每题14分,共80分.解答应写出文字说明、证明过程或演算步骤.) 15 (本小题满分13分)
已知函数()()2sin cos cos2R f x x x x x =+∈.
()1求()f x 的最小正周期和最大值;
第 3 页
()2若θ
为锐角,且8f πθ⎛⎫
+
= ⎪
⎝
⎭tan 2θ的值. 16(本小题满分13分)
某工厂生产甲乙两种产品。
已知生产甲种产品1t 需耗A 种矿石10t ,B 种矿石5t ,煤4t ,生产乙种产品1t 需耗A 种矿石4t ,B 种矿石4t ,煤9t 。
每1t 甲种产品的利润是600元,每1t 乙种产品利润是1000元。
工厂在生产这两种产品的计划中要求消耗A 种矿石不超过300t ,B 种矿石不超过200t 、煤不超过360t 。
甲、乙两种产品应各生产多少(精确到0.1t ),能使利润总额达到最大? 17、.如图,在四棱锥P -ABCD 中,底面ABCD 是菱形,∠DAB =60,PD ⊥平面ABCD ,PD =AD =1,点,E F 分别为AB 和PD 中点.
(1)求证:直线AF //平面PEC ; (2)求证:AC PBD ⊥面;
(3)求PE 与平面PDB 所成角的正弦值. (本小题满分13分)
18、已知椭圆C:22221x y a b +=(0a b >>
)的离心率为3
且过点⎫
⎪⎪
⎝⎭
. (1)求椭圆C 的标准方程;
(2)设直线l 过椭圆C 的右焦点F 且与椭圆C 交于A ,B 两点,在椭圆C
上是否存在点P ,使得当l 绕F 转到某一位置时,有OP =OA +OB 成立?若存在,求出所有的P 的坐标与l 的方程;若不存在,请说明理由. 18、(本小题满分14分)
已知函数()ln ,()()()a
f x x
g x f x a R x
==-∈.
(1)判断函数g(x)的单调性;
(2)是否存在实数m ,使得1
()(1)x f x f m m x
++->-对任意x≥1恒成立,若
存在,求出实数m 的取值范围;若不存在,请说明理由. 19、(本小题满分14分)
给定一个数列{a n },在这个数列里,任取m (m ≥3,m ∈N *)项,并且不改变它们在数列{a n }中的先后次序,得到的数列称为数列{a n }的一个m 阶子数列.
20、已知数列{a n }的通项公式为a n =1
n +a (n ∈N*,a 为常数),等差数列
a 2,a 3,a 6是数列{a n }的一个3阶子数列. (1)求a 的值;
(2)等差数列b 1,b 2,…,b m 是{a n }的一个m (m ≥3,m ∈N *) 阶子数列,
且b 1=1
k (k 为常数,k ∈N *,k ≥2),求证:m ≤k +1;
(3)等比数列c 1,c 2,…,c m 是{a n }的一个m (m ≥3,m ∈N *) 阶子数列,
求证:c 1+c 2+…+c m ≤2-
1
2
m -1.
21、设R ∈a ,函数()ln f x x ax =-.
(Ⅰ)讨论函数()f x 的单调区间和极值;
(Ⅱ)已知e x =1(e 是自然对数的底数)和2x 是函数()f x 的两个不同的零点,求a 的值
并证明:32
2x e >.。