多路输出开关电源设计
毕业设计38多路输出开关电源
1 前言作为带动产业规模扩大的直接动力,新增投资和新建项目一直是产业发展的风向标,多年以来,中国集成电路产业的竞争格局一直呈现国有和外资企业平分天下的态势。
但近几年来,随着外资和民间资本加速进入国内集成电路行业,以上产业格局正在发生根本性的改变,其总的趋势是外资企业开始占据主体地位,民营企业也开始发挥举足轻重的作用。
开关电源的设计通常选用PWM 集成芯片。
近年来,将PWM 控制电路、保护电路成到一块芯片上的开关电源集成控制器,由于其外围电路简单和高可靠性等优点,受到了电路设计人员的欢迎常见的PWM控制器分为电压控制型和电流控制型两种。
电压型PWM是通过反馈电压来调节输出脉宽.电流型PWM 是通过输出电感线圈的电流信号与误差放大器输出信号相比较来调节占空比,从而使电感峰值电流随误差电压变化而变化。
目前电流PWM 控制器是较理想的一种PWM 控制器。
下面介绍一种采用UC3844 高性能电流PWM控制器的反激式开关电源电路,该电路具有电流反馈和电压反馈双环控制的优点,电压调整率和负载调整率高。
其中光耦HI1A1和三端稳压管TL431 配合控制大大提高了电源电压的瞬态响应速度和调整率。
实验证明该电路具有良好的性能和很高的应用价值随着现代科技的高速发展,功率器件的,设计了一种多路输出的单端反激式开关电源电路。
该电源性能优良,具有稳压效果好,纹波小,负载调整率高等优点.可作为电机控制的电源模块,具有很高的应用价值。
由于其外围电路简单和高可靠性等优点,受到了电路设计人员的欢迎。
2系统方案设计2.1 方案比较方案一:图1.1 方案一方框图方案一中从220V交流电输入经过滤波稳压后得到一个相对稳定的电压,在经过变压器对起进行变压,然而在变压后其波中还有杂波,电压也不稳定在对起进行滤波稳压,但是当运用于输出负载是对其输出电压有冲击影响,所以使用反馈电路使其对电压进行调节来对输出稳压。
通过输出端的电压反馈和输入端的电流反馈使输出电压更加稳定。
多路输出单端反激式开关电源设计
设计要求本文设计的开关电源将作为智能仪表的电源,最大功率为10 W。
为了减少PCB的数量和智能仪表的体积,要求电源尺寸尽量小并能将电源部分与仪表主控部分做在同一个PCB 上。
考虑10W的功率以及小体积的因素,电路选用单端反激电路。
单端反激电路的特点是:电路简单、体积小巧且成本低。
单端反激电路由输入滤波电路、脉宽调制电路、功率传递电路(由开关管和变压器组成)、输出整流滤波电路、误差检测电路(由芯片TL431及周围元件组成)及信号传递电路(由隔离光耦及电阻组成)等组成。
本电源设计成表面贴装的模块电源,其具体参数要求如下:输出最大功率:10W输入交流电压:85~265V输出直流电压/电流:+5V,500mA;+12V,150mA;+24V,100mA纹波电压:≤120mV单端反激式开关电源的控制原理所谓单端是指TOPSwitch-II系列器件只有一个脉冲调制信号功率输出端一漏极D。
反激式则指当功率MOSFET导通时,就将电能储存在高频变压器的初级绕组上,仅当MOSFET关断时,才向次级输送电能,由于开关频率高达100kHz,使得高频变压器能够快速存储、释放能量,经高频整流滤波后即可获得直流连续输出。
这也是反激式电路的基本工作原理。
而反馈回路通过控制TOPSwitch器件控制端的电流来调节占空比,以达到稳压的目的。
TOPSwitch-Ⅱ系列芯片选型及介绍TOPSwitch-Ⅱ系列芯片的漏极(D)与内部功率开关器件MOSFET相连,外部通过负载电感与主电源相连,在启动状态下通过内部开关式高压电源提供内部偏置电流,并设有电流检测。
控制极(C)用于占空比控制的误差放大器和反馈电流的输入引脚,与内部并联稳压器连接,提供正常工作时的内部偏置电流,同时也是提供旁路、自动重起和补偿功能的电容连接点。
源极(S)与高压功率回路的MOSFET的源极相连,兼做初级电路的公共点与参考点。
内部输出极MOSFET的占空比随控制引脚电流的增加而线性下降,控制电压的典型值为5.7 V,极限电压为9 V,控制端最大允许电流为100 mA。
多路输出开关电源的设计和应用
多路输出开关电源的设计及应用原则1 引言对现代电子系统,即便是最简单的由单片机和单一I/O接口电路所组成的电子系统来讲,其电源电压一般也要由+5V,±15V或±12V等多路组成,而对较复杂的电子系统来讲,实际用到的电源电压就更多了。
目前主要由下述诸多电压组合而成:+3.3V,+5V,±15V,±12V,-5V,±9V,+18V,+24V、+27V、±60V、+135V、+300V、-200V、+600V、+1800V、+3000V、+5000V(包括一个系统中需求多个上述相同电压供电电源)等。
不同的电子系统,不仅对上述各种电压组合有严格的要求,而且对这些电源电压的诸多电特性也有较严格的要求,如电压精度,电压的负载能力(输出电流),电压的纹波和噪声,起动延迟,上升时间,恢复时间,电压过冲,断电延迟时间,跨步负载响应,跨步线性响应,交叉调整率,交叉干扰等。
2 多路输出电源对于电源应用者来讲,一般都希望其所选择的电源产品为“傻瓜型”的,即所选择的电源电压只要负载不超过电源最大值,无论系统的各路负载特性如何变化,而各路电源电压依然精确无误。
仅就这一点来讲,目前绝大多数的多路输出电源是不尽人意的。
为了更进一步说明多路输出电源的特性,首先从图1所示多路输出开关电源框图讲起。
从图1可以看到,真正形成闭环控制的只有主电路Vp,其它Vaux1、Vaux2等辅电路都处在失控之中。
从控制理论可知,只有Vp无论输入、输出如何变动(包括电压变动,负载变动等),在闭环的反馈控制作用下都能保证相当高的精度(一般优于0.5%),也就是说Vp在很大程度上只取决于基准电压和采样比例。
对Vaux1,Vaux2而言,其精度主要依赖以下几个方面:1)T1主变器的匝比,这里主要取决于Np1:Np2或Np1:Np32)辅助电路的负载情况。
3)主电路的负载情况。
注:如果以上3点设定后,输入电压的变动对辅电路的影响已经很有限了。
一款多路输出单端反激式开关电源的电路设计方案
多路输出电源对于电源应用者来讲,一般都希望其所选择的新巨电源产品为“傻瓜型”的,即所选择的电源电压只要负载不超过电源最大值,无论系统的各路负载特性如何变化,而各路电源电压依然精确无误。
仅就这一点来讲,目前绝大多数的多路输出电源是不尽人意的。
为了更进一步说明多路输出电源的特性,首先从图1所示多路输出开关电源框图讲起。
从图1可以看到,真正形成闭环控制的只有主电路Vp,其它Vaux1、Vaux2等辅电路都处在失控之中。
从控制理论可知,只有Vp无论输入、输出如何变动(包括电压变动,负载变动等),在闭环的反馈控制作用下都能保证相当高的精度(一般优于0.5%),也就是说Vp在很大程度上只取决于基准电压和采样比例。
对Vaux1,Vaux2而言,其精度主要依赖以下几个方面:1)T1主变器的匝比,这里主要取决于Np1:Np2或Np1:Np32)辅助电路的负载情况。
3)主电路的负载情况注:如果以上3点设定后,输入电压的变动对辅电路的影响已经很有限了。
图1在以上3点中,作为一个具体的开关电源变换器,主变压器匝比已经设定,所以影响辅助电路输出电压精度最大的因素为主电路和辅电路的负载情况。
在开关电源产品中,有专门的技术指标说明和规范电源的这一特性,即就是交叉负载调整率。
为了更好地讲述这一问题,先将交叉负载调整率的测量和计算方法讲述如下。
电源变换器多路输出交叉负载调整率测量与计算步骤1)测试仪表及设备连接。
2)调节被测电源变换器的输入电压为标称值,合上开关S1、S2…Sn,调节被测电源变换器各路输出电流为额定值,测量第j路的输出电压Uj,用同样的方法测量其它各路输出电压。
3)调节第j路以外的各路输出负载电流为最小值,测量第j路的输出电压ULj。
4)按式(1)计算第j路的交叉负载调整率SIL。
SIL=×100%(1)式中:ΔUj为当其它各路负载电流为最小值时,Uj与该路输出电压ULj之差的绝对值;Uj为各路输出电流为额定值时,第j路的输出电压。
基于DM0265的多路输出开关电源设计
轻; ③稳压范围广 ; ④性能灵活, 驱动能力强 ; ⑤可靠性
0 引 言
随着变 频调 速技 术 的发 展 , 频 器 在交 流 电机调 变
谷 利 飞 , 敏 明 , 海鹏 顾 潘
( 江理工 大学 机械 与 自动控制 学 院 , 浙 浙江 杭州 30 1 ) 108
摘要: 开关电源设计是变频器硬件设计 的核心 内容之一 , 其性能 的好坏 直接影响变频调 速系统 的整体工作 性能。针对变频器 内部
电路 多 种 电压 等 级 供 电的 需 要 , 计 了一 种 基 于 F i h d公 司 的 D 0 6 片 的反 激 式 多路 输 出 隔 离 型 开 关 电源 。介 绍 了 该 电 源 设 a ci r l M 2 5芯
GU L — i i e ,GU Mi — n f n mig,P AN lp n Ha — e g
( aut o Meh ncl n ier ga dA tm t ot l hj n c T c nvrt , a gh u3 0 1 ,C ia F c l f c aia E g ei n uo a cC nr ,Z ei gS i ehU i sy H nzo 10 8 hn ) y n n i o a — ei
第2 7卷 第 9期
21 0 0年 9月
机
电
工
程
V0. 7 No 9 12 . Se 2 0 p. 01
J u n l fMe h nc l& E e tia gn e n o r a c a ia o l cr l c En ie r g i
基 于 D 2 5的 多 路 输 出开 关 电 源 设 计 M0 6
文章 编 号 : 0 ~ 5 1 2 1 )9— 10— 4 I 1 4 5 (0 0 0 00 0 O
多路输出开关电源的设计及应用原则
多路输出开关电源的设计及应用原则多路输出开关电源是一种电力电子设备,它可以从交流电源中提供多个不同电压和电流的直流电输出。
在设计和应用多路输出开关电源时,有几个重要的原则需要考虑。
1. 选定合适的开关电源拓扑结构:多路输出开关电源可以采用多种拓扑结构,例如非隔离型Buck、Boost、Buck-Boost和隔离型Flyback、Forward等。
选择合适的拓扑结构需要考虑输出电压、输出功率和成本等因素。
2. 合理设计输出电压和电流的等级:多路输出开关电源通常需要提供不同电压和电流级别的输出。
在设计时,应根据实际需求合理确定输出电压和电流的等级,并确保满足负载的功率需求。
3. 增加输出电压和电流的调节功能:多路输出开关电源应具备电压和电流的调节功能,以满足不同负载的需求。
可以通过采用可调电压稳压器(例如LM317)或数字控制芯片(例如TL494)来实现。
4. 合理设计电源滤波电路:多路输出开关电源需要具备良好的电源滤波电路,以降低输入和输出端的电磁干扰。
可以采用电容、电感和磁珠等元件来设计滤波电路,并确保滤波效果良好。
5. 保证输出电压和电流的稳定性:输出电压和电流的稳定性是多路输出开关电源设计中的重要指标。
可以采用反馈控制回路和稳压芯片等来保证输出电压和电流的稳定性。
多路输出开关电源的应用范围广泛,常见应用包括:1. 电子设备:多路输出开关电源可以为电子设备提供不同电压和电流的直流电源,例如计算机、通信设备、工业自动化设备等。
2. 医疗设备:多路输出开关电源可以为医疗设备提供稳定、可靠的电源,例如医用仪器、电子监护设备等。
3. 光电设备:多路输出开关电源可以为光电设备提供适合的电压和电流,例如LED照明、激光器、光纤通信设备等。
4. 电源适配器:多路输出开关电源可以用作电源适配器,为各种便携电子设备充电,例如手机、平板电脑、笔记本电脑等。
需要注意的是,在使用多路输出开关电源时,应确保正确安装和连接,避免电气安全问题。
基于UC3902的多路输出开关电源均流设计
可靠 。
关键 词 : 开 关 电源 ;并联 ;均 流 ;U C 3 9 0 2
S h a r i n g De s i g n o f S wi t h P o we r S u p p l y wi t h Mu l t i o u t p u t s
b a s e d O i l UC3 9 0 2
Ke y wor ds : s wi t h p o we r s u pp l y;pa r a l l e l c o n n e c t i o n ;s a r i n g ;UC3 9 0 2
中图分类号 : T M 4 6 文献标识码 : A 文章编号 0 2 1 9 - 2 7 1 3 ( 2 0 1 5 ) 0 8 ~ 0 4 6 — 0 0 5
HA0 Yi
Ab s t r a c t : An s h a r i n g mo d e S w i t h S u p p l y wi t h Mu l t i o u t p u t s O i l U C3 9 0 2 i s d e g i n e d , t h e b a c k f l o w p r e v e n t i n g c i r c u i t i s d e g i n e d b y M OS t r a n s i s t o r .a n d p r o c i d e d e x p e r i me n t a l d a t a . T h e r e s u l t s s h o w t h a t , t h i s d e s i n e h a s t h e a d v a n t a g e s o f g o o d p r e c i s i o n , s i mp l e p e r i p h e r a l c i r c u i t , r e l i a b l e s h a r i n g p e f r o r ma n c e .
UC3843控制多路输出开关电源设计与实现
UC3843控制多路输出开关电源设计与实现王 正,朱兴动,张六 (海军航空工程学院青岛分院,山东青岛266041) 收稿日期:2004202205 作者简介:王 正(1970-),男,山东青岛人,讲师,主要研究方向为电力电子技术、航空维修技术、信息处理技术。
摘 要:介绍了采用UC3843控制器的单端反激式开关电源的设计与实现,讲述了UC3843控制器内部电路及其特点,通过具体的多路输出开关电源设计实例分析了设计的主要步骤以及实际设计中应注意的问题,并提出了抑制噪声的措施,最后给出了该电源的性能测试数据。
关键词:开关电源;高频变压器;UC3843控制器;抑制噪声;多路输出中图分类号:TP27315 文献标识码:A 文章编号:16712654X (2004)022*******引言开关电源是一种高频电源变换电路,采用直2交2直变换,能够高效率地产生一路或多路可调整的高品质的直流电压。
半导体技术高速发展所提供的高反压快速开关晶体管使无工频变压器的开关电源迅速实用化,而半导体技术的迅速发展又为开关电源控制电路的集成开关控制器奠定了基础,适用各类开关电源控制电路的集成开关控制器应时而生,并迅速发展,克服了以往采用分离元件控制电路的许多弊端,现在设计的开关电源大部分都采用集成开关控制器,其中Unitrode 公司生产的UC3843可编程PW M 控制器在实际设计中得到了广泛应用。
1 UC3843可编程PW M 控制器简介UC3843是一种单端输出电流控制型电路,其最大的优点是外接元器件极少,外电路装配非常简单,其原理方框图如图1所示,它有两个控制闭合环路,一个是输出电压反馈回误差放大器,用于同基准电压比较后产生误差电压;另一个是电感(变压器初级)中电流在反馈电阻(R S )上产生的电压与误差电压进行比较产生调制脉冲的脉宽,这些都是在时钟所限定的固定频率下工作。
由于误差信号实际控制着峰值电感电流,故称其为电流型脉宽调制器,其优点如下:1)线性调整率(电压调整率)非常好,可达0.01%/V 。
多路输出开关电源设计
设计创新科技创新与应用Technology Innovation and Application2018年11期多路输出开关电源设计王杰(上海海事大学,上海201306)摘要:安森美半导体公司的NCP1252是一款电流模式PWM控制器,它使用内部固定的定时器,可以不依赖于辅助电压来检测输出过载。
文章介绍了基于NCP1252芯片的多路输出开关电源设计,分析了开关电源的工作原理,给出了设计步骤。
该开关电源可提供软起动、短路保护、过流保护等功能,并将该电源成功用于某型雷达收发机,验证了分析、设计的有效性。
关键词:NCP1252芯片;多路输出;开关电源中图分类号:TN86 文献标志码:A 文章编号=2095-2945(2018)11-0086-02Abstract: The ON Semiconductor's NCP1252 is a current-mode PWM controller that uses internally fixed timers to detect output overload without relying on auxiliary voltages. This paper introduces the design of multi -output switching power supply based on NCP1252 chip, analyzes the working principle of switch power supply, and gives the design steps. The switching power supply can provide soft start, short circuit protection, over-current protection and so on. The power supply has been successfully used in a certain type of radar transceiver, which verifies the effectiveness of the analysis and design.Keywords: NCP1252 chip; multiplex output; switching power supply引言电源如同人的心脏,为各种电子设备提供电能,性能 优劣直接影响到整个电子系统的稳定性。
基于NCP1014芯片的多路输出开关电源设计
15江苏电器 (2008 No.12)0 引言随着电力仪器仪表向小型化、低成本的方向发展,其对电源提出了更高的要求。
电源就像是一个心脏,为整个系统提供动力,它的性能和成本直接制约着仪表的性价比。
目前常用的直流稳压电源分线性电源和开关电源两大类,线性电源使用的外围元件少,设计简单,具有纹波小、干扰少等优点,存在的缺点是随着输出功率的增加,工频变压器的体积不断增大,成本也随之增加,另外,还存在效率低、散热难等问题;开关电源由于其内部关键元器件工作在高频开关状态,本身消耗的能量很低,开关电源效率可达65%~85%,比普通线性稳压电源提高近一倍,此外开关电源还有功耗低、体积小、重量轻、稳压范围宽等优点,存在的不足是电路结构复杂,成本较高,但由于开关电源出色的性能,将得到越来越广泛的使用。
文中主要介绍了使用安森美半导体公司生产的NCP1014芯片设计独立两路开关电源,一路供通信使用,一路供控制芯片使用,应用于电力仪表,如多功能表等。
1 NCP101X性能特点及内部结构NCP101X系列构成非隔离式、需要外围元件较少的节能开关电源,与传统的解决方案相比,不仅具有比电容降压式线性稳压电源更高的效率,而且有更大的输出能力。
该开关电源具有可选择的开关频率(65,100,130kHz),抗干扰能力强,待机功耗低,并有频率抖动和动态自供电等功能;保护功能完善,具有短路自动重启、限流、过热、限制负载等保护线路。
主要功能介绍:基于NCP1014芯片的多路输出开关电源设计戚敏敏,戚莹(杭申控股集团有限公司,浙江 杭州 311234)Abstract: Introduction was made to switching power supply design based on NCP1014. The working principle of switching power supply was analyzed, main circuit output voltage ripple diagram given out after the system was debugged. The switching power supply could pro-vide soft start, frequency jitter, short-circuit protection, skip cycle, maximum peak current setting and dynamic self-supply. The test results show that the output power and voltage ripple of switching power supply meet design requirements of the system and it is small in volume, high in transform ef fi ciency and low in cost etc.Key words: NCP1014 chip; multiplex output switching power supply; voltage rippleQI Min-min , QI Ying(Hangshen Holding Group Co.,Ltd, Hangzhou 311234, China )Design of Multiplex Output Switching Power Supply Based on NCP1014摘 要:介绍了基于NCP1014芯片的开关电源设计,分析了开关电源的工作原理,给出了调试处理后的主电路输出电压纹波图。
多路输出反激式开关电源的反馈环路设计
多路输出反激式开关电源的反馈环路设计的输出是直流输入、占空比和负载的函数。
在开关电源设计中,反馈系统的设计目标是无论输入电压、占空比和负载如何变幻,输出电压总在特定的范围内,并具有良好的动态响应性能。
模式的开关电源有延续电流模式(CCM)和不延续电流模式(DCM)两种工作模式。
延续电流模式因为有右半平面零点的作用,反馈环在负载电流增强时输出电压有下降趋势,经若干周期后终于校正输出电压,可能造成系统不稳定。
因此在设计反馈环时要特殊注重避免右半平面零点频率。
当反激式开关电源工作在延续电流模式时,在最低输入电压和最重负载的工况下右半平面零点的频率最低,并且当输入电压上升时,传递函数的增益变幻不显然。
当因为输入电压增强或负载减小,开关电源从延续模式进入到不延续模式时,右半平面零点消逝从而使得系统稳定。
因此,在低输入电压和重输出负载的状况下,设计反馈环路补偿使得囫囵系统的传递函数留有足够的相位裕量和增益裕量,则开关电源无论在何种模式下都能稳定工作。
1 反激式开关电源典型设计图1是为变频器设计的反激式开关电源的典型,主要包括沟通输入整流电路,反激式开关电源功率级电路(有控制器、MOS管、及整流组成),RCD缓冲电路和反馈网络。
其中PWM控制芯片采纳UC2844。
UC2844是电流模式控制器,芯片内部具有可微调的(能举行精确的占空比控制)、温度补偿的参考基准、高增益误差、电流取样。
开关电源设计输入参数如下:三相380V工业沟通电经过整流作为开关电源的输入电压Udc,按最低直流输入电压Udcmin为250V举行设计;开关电源工作频率f为60kHz,输出功率Po为60W。
当系统工作在最低输入电压、负载最重、最大占空比的工作状况下,设计开关电源工作在延续电流模式(CCM),纹波系数为0.4。
设计的第1页共6页。
多路输出单端反激式开关电源设计
多路输出单端反激式开关电源设计
1.确定输出电压和电流要求:首先要确定每个输出端口所需的电压和
电流。
根据实际需求和应用场景确定输出要求。
2.选择开关电源IC:根据多路输出和高效能的要求,选择合适的开
关电源IC。
开关电源IC能够实现高效能和多路输出的设计。
根据输出要
求选择合适的IC。
3.设计适配器电路:根据所选的开关电源IC,设计适配器电路。
适
配器电路是将输入电压转换为适合开关电源IC的电压。
适配器电路通常
包括整流、滤波和调压等部分。
4.设计反激式变换器:反激式变换器是多路输出单端反激式开关电源
的核心部分。
反激式变换器能够将适配器电路输出的电压进行变换和调节,得到不同的输出电压和电流。
根据输出要求设计合适的反激式变换器。
5.设计输出电路:根据每个输出端口的电压和电流要求,设计合适的
输出电路。
输出电路通常包括滤波、调压和过载保护等部分。
6.进行仿真和优化:设计完成后,进行电路仿真和优化。
通过仿真可
以验证电路的正常运行和性能是否满足要求。
根据仿真结果进行优化和调整。
7.制作电路原型并测试:将设计的电路制作成原型,并进行测试。
测
试包括输入电压范围、输出电压和电流精度、效率和稳定性等方面的测试。
总结:。
多路输出反激式开关电源设计
多路输出反激式开关电源设计文章根据开关电源的具体要求,在阐述基于TOP-Switch系列芯片的单端反激式开关电源原理的基础上,详细介绍了一种用于轨道车辆电动塞拉门控制系统的小功率多路输出DC/DC开关电源的设计方法。
该电路主电路采用反激式电路,应用反馈手段和脉冲调制技术实现多路输出的稳压电源,最后,进行了总体设计,在轨道车辆电动门控制系统中有很好的应用前景。
标签:开关电源;反激式电路;高频变压器引言开关电源是综合现代电力电子、自动控制、电力变换等技术,通过控制开关管开通和关断的时间比率,来获得稳定输出电压的一种电源,因其具有体积小、重量轻、效率高、发热量低、性能稳定等优点,在现代电力电子设备中得到广泛应用,代表着当今稳压电源的发展方向,已成为稳压电源的主导产品。
文章设计了一种基于TOP-Switch系列芯片的小功率多路输出DC/DC的反激式开关电源。
1 电源设计要求文章设计的开关电源将用于轨道车辆电动门控制系统中,最大的功率为12W,分四路输出,具体设计参数如下:(1)输入电压Vin=110V;(2)开关频率fs=132kHz;(3)效率η=80%;(4)输出电压/电流48V/0.2A,15V/0.02A-15V/0.02A,5V/0.3A;(5)输出功率12W;(6)电压精度1%;(7)纹波率1%。
(8)负载调整率±3%,电源最小输入电压为Vimin=77V,最大输入电压为Vimax=138V。
考虑到设计要满足结构简单,可靠性高,经济性及电磁兼容性等要求,结合本设计输出功率小的特点,最终选用了单端反激式开关电源,它具有结构简单,所需元器件少,可靠性高,驱动电路简单的特点,适合多路输出场合。
2 单端反激式开关电源的基本原理单端反激式开关电源由功率MOS管,高频变压器,无源钳位RCD电路及输出整流电路组成。
其工作原理是当开关管Q被PWM脉冲激励而导通时,输入电压就加在高频变压器的初级绕组N1上,由于变压器次级整流二极管D1反接,次级绕组N2没有电流流过;当开关管关断时,次级绕组上的电压极性是上正下负,整流二极管正偏导通,开关管导通期间储存在变压器中的能量便通过整流二极管向输出负载释放。
基于TOPSwitch-GX多路输出开关电源的设计
般 地 , 关 电源 大 致 由输 入 电 路 、 换 器 、 制 开 变 控
… … … … … … … … … … … … … … … … … 一 … … … … … .
电路 、 出 电路 四个 主 体 组 成 。 输 实 际 的开 关 电源 还 要有 保 护 电 路 、功 率 因 素 校 正 电路 、 同步 整 流 驱 动 电 路 及 其 它 一 些 辅 助 电 路 等 , 图 如
维普资讯
工 程 技 术
Engn er g ie i Te n o n ch olgy
三 、 OP wi h GX简 介 T S t — c
( ) 二 器件 管脚 功 能描 述
漏 极 管 脚 ( : 压 功 率 MOS E 漏 极 输 出 。通 过 D) 高 FT
T P w th G O " i — X系 列 。 S c
在 正 常 操 作 期 间通 过 连 接 至 内部 分 流 调 节 器 来 提 供 内
( ) 一 TOP wi h GX系列 的功 能特 点 S t - c
T P w th G O S i — X系 列 新 增 的 主 要 功 能 及 其 优 点 如 e 下 : 极 低 压 或 过 压 时 能 实 现 完 全 软 启 动 , 一 步 减 小 在 进
针 对 以 往 芯 片 存 在 的 一 些 不 足 , o e tgain 此 脚 从 高压 开 关 电 流 源 输 入 内 部启 动 偏 置 电 流 ;控 制 P w r ne rt s I o 公 司 优 化 了芯 片 的 内部 布 局 , 进 了 电路 功 能 , 出 了 管脚 ( : 于 调 节 占空 比 的误 差 放 大 器 电 流 输 入 脚 。 改 推 C) 用
多路输出反激式开关电源的设计与实现
多路输出反激式开关电源的设计与实现多路输出反激式开关电源的设计与实现一、引言开关电源是一种高效率、高可靠性、体积小、重量轻的电源设备,被广泛应用于电子产品中。
多路输出反激式开关电源是一种基于反激式开关电源拓扑结构,能够同时提供多个稳定电压输出的电源系统。
本文将针对这种电源系统进行设计与实现。
二、多路输出反激式开关电源原理多路输出反激式开关电源的基本原理是利用开关管进行高频开关,通过变压器传递能量,并通过整流和滤波电路获得稳定的输出电压。
其核心是控制开关管的导通时间,以实现不同输出电压的调节。
三、电路设计与元器件选择1. 输入电路设计:为了保护开关管和输入电源,应采用滤波电感和输入电容进行滤波处理,同时添加过流保护电路。
2. 变压器设计:根据输出电压和电流要求确定变压器的参数,选择合适的线性密度和电感,以获得理想的传输效果。
3. 输出电路设计:对于多路输出反激式开关电源,每个输出通道都要设计独立的整流和滤波电路,以确保稳定的输出电压。
4. 控制电路设计:采用反馈控制电路,通过对反馈信号的处理调节开关管的导通时间,实现多路输出电压的精确控制。
四、PCB板设计PCB板是电路实现的载体,其设计主要包括布局设计、走线设计和连接设计。
在多路输出反激式开关电源中,需要考虑分区布局,分别放置输入输出电路和控制电路,以最大限度地减小干扰。
同时,在走线设计中,应注意分离高频信号和低频信号,减少耦合。
五、电路调试与输出稳定性测试在完成电路设计与制作后,需要进行电路调试,并测试输出稳定性。
调试时可以通过示波器观察各个节点的波形,以确定是否存在异常。
并通过负载变化测试,验证输出电压是否能够保持稳定。
六、改进与优化在实际应用中,根据具体需求可以对多路输出反激式开关电源进行改进和优化。
常见的改进方法包括添加过压、欠压保护功能,提高电源的效率,降低输出纹波等。
七、结论多路输出反激式开关电源作为一种高效、可靠、稳定的电源系统,具有广泛应用前景。
多路输出开关电源的设计及应用
多路输出开关电源的设计及应用开关电源是一种将电能进行转换和调节的电源系统,其主要通过非线性元件(开关管、PWM调制器等)将输入电能快速开关控制,进而获得所需的输出电能。
多路输出开关电源则在此基础上实现了多个输出通道,用以满足不同电路的需求。
多路输出开关电源的设计主要包括如下几个步骤:1. 确定输出电压和电流需求:根据待供电的电路或设备的电压和电流要求,确定每个输出通道的电压和电流参数。
2. 计算输入功率和选择变压器:根据输出电压和电流参数,计算输入功率并选择适当的变压器。
变压器的主要作用是将输入电压转换为合适的中间电压,便于后续的开关和调节控制。
3. 设计开关和调节控制电路:根据每个输出通道的电压和电流要求,设计相应的开关管、PWM调制器等元件的参数和控制电路。
控制电路主要负责对开关管进行开关控制,通过调节开关频率和占空比,实现输出电压和电流的稳定调节。
4. 设计滤波电路和保护电路:设计适当的滤波电路,用以减少开关电源输出的纹波和噪声;设计相应的保护电路,用以保障开关电源和所供电路或设备的安全,如过载保护、短路保护等。
多路输出开关电源的应用非常广泛,常见于工业控制系统、通信设备、计算机设备、医疗设备等领域。
多路输出能够满足不同电压和电流需求的同时,提供稳定的电能供应,保证设备的正常运行。
此外,开关电源具有高效率、小体积、轻量化等优点,可以满足现代电子设备对电源的高要求。
多路输出开关电源是现代电子设备中常用的一种电源系统,它通过将输入电能进行高效率的转换和调节,为多个输出通道提供稳定可靠的电源。
在电子设备设计中应用广泛,特别是在工业、通信、计算机等领域。
多路输出开关电源的设计非常重要,其关键是根据待供电设备的电压和电流需求,设计符合要求的输出通道。
首先,根据电路或设备的电压和电流要求,确定每个输出通道的电压和电流参数。
例如,工业控制系统中可能需要供应多个不同电压的直流电源,而通信设备可能需要同时提供5V和12V的电源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多路输出开关电源设计
安森美半导体公司的NCP1252是一款电流模式PWM控制器,它使用内部固定的定时器,可以不依赖于辅助电压来检测输出过载。
文章介绍了基于NCP1252芯片的多路输出开关电源设计,分析了开关电源的工作原理,给出了设计步骤。
该开关电源可提供软起动、短路保护、过流保护等功能,并将该电源成功用于某型雷达收发机,验证了分析、设计的有效性。
标签:NCP1252芯片;多路输出;开关电源
Abstract:The ON Semiconductor’s NCP1252 is a current-mode PWM controller that uses internally fixed timers to detect output overload without relying on auxiliary voltages. This paper introduces the design of multi-output switching power supply based on NCP1252 chip,analyzes the working principle of switch power supply,and gives the design steps. The switching power supply can provide soft start,short circuit protection,over-current protection and so on. The power supply has been successfully used in a certain type of radar transceiver,which verifies the effectiveness of the analysis and design.
Keywords:NCP1252 chip;multiplex output;switching power supply
引言
电源如同人的心脏,为各种电子设备提供电能,性能优劣直接影响到整个电子系统的稳定性。
目前常用的直流稳压电源根据调整管的工作状态分为线性电源和开关电源两大类,线性电源应用较早,电路简单,元器件少,但随着输出功率的增加,工频变压器的体积不断增大,而且,其效率低、散热难;开关电源的功率器件工作在高频开关状态,自身功耗小,转化效率高,此外开关电源还具有体积小、重量轻、稳压范围宽等优点,其不足之处就是电路复杂,对变压器要求很高。
由于开关电源优越的性能,势必将得到越来越广泛的应用。
本文围绕NCP1252芯片设计了一种多路输出开关电源,并应用在某型号导航雷达的收发机内,效率高,稳定性好。
1 NCP1252内部结构与功能特点
NCP1252是一款应用于正激和反激式的电流模式PWM控制器,适合于计算机ATX电源、交流适配器及其它任何要求低待机能耗的应用。
它集成固定的定时器,可在不依赖辅助电源时检测输出过载;具有跳周期模式,能够空载工作。
此外还可调节开关频率,增强设计的灵活性;带有闩锁过流保护功能,能够承受暂时的过载。
其它特性包括可调节软启动时长、内部斜坡补偿、自恢复输入欠压检测等。
2 实际应用电路设计
NCP1252构成直流隔离式多路输出开关电源框图如图1所示,输入直流20~36V,三路输出,分别是直流24V、±12V,且每路输出精度小于5%。
直流电输入经过滤波后直接连接高频变压器。
开关电源芯片是整个电源的核心,接收反馈信号,及时调整开关管的开关状态,使输出电压稳定。
图2是该多路输出电源实现方案。
其中,EMI电路针对来自输入电源的干扰,降低电磁干扰,采用由L1、C1、C2以及CY1、CY2构成典型的Π型滤波器。
C1、C2用来滤除输入电源处的差模干扰,称其为X电容,此处取1μF;CY1、CY2是用来滤除共模干扰,称为Y 电容,在这里选用1nF的陶瓷电容。
另外,电感L1也是用来消除电路中产生的共模噪声干扰,又叫共模扼流圈。
这里采用双线并绕的16mH的共模电感。
当开关管关断时,由于变压器漏感的影响,高频变压器的初级绕组上会产生反射电压和尖峰电压,如果没有保护,将直接施加在开关管的漏极上,极易使其烧坏,加入由R4、C6、D6组成的RCD钳位电路来保护芯片。
3 高频变压器设计
高频变压器具有变压、电气隔离、磁耦合传递能量等作用,是开关电源中的重要部分。
高频变压器的设计是设计开关电源的关键,下面具体给出高频变压器的设计方法。
3.1 磁芯材料的选择
磁芯是高频变压器重要组成部分,设计时正确合理地选择磁芯材料、参数等,对变压器的使用性能和可靠性有着重要的作用。
高频变压器的磁芯只工作在磁滞回线的第一象限内,在开关管导通时储存能量,在关断的时向负载传递能量。
开关电源常用的磁芯材料由复合氧化物烧结制成的软磁铁氧体。
开关电源的高频变压器,可采用PQ系列的磁芯,最终选用型号为PQ32/30磁芯,材质则为PC44,该磁芯有效截面面积为161mm2。
3.2 初级线圈电感量的计算
本次设计的开关电源要求开关频率为50kHz,最大占空比为0.5,效率为0.9,输出功率为50W,输入最低电压为20V,最高输入电压为36V。
高频变压器初级线圈的电感值可由式(1)来确定
式中:Udcmin-输入最低电压;Dmax-最大占空比;f-开关频率;Ip-峰值电流。
將Udcmin=20V,最大占空比Dmax=0.5,峰值电流Ip=11.1A,开关频率
50kHz,代入式(1)中,计算得到L1=18μH。
3.3 计算初级线圈匝数
高频变压器初级线圈匝数N1:
将Bm=510mT,Ae=1.61cm2,带入式(2),得到N1=24.33,取25匝。
3.4 计算次级线圈匝数
初级线圈的匝数确定之后,根据式(3)可计算次级线圈的匝数:
其中,Uo为输出电压,UD为次级整流二极管正向导通时的管压降。
24V 输出采用的是STPS30150CT快恢复二极管,管压降取0.75V,可算出24V输出绕组需要的线圈匝数为N2=30.9,取31匝。
+12V输出使用的是MBR20100CT 肖特基二极管,管压降取0.95V,带入计算得N3=31.2,取32匝。
对于-12V输出,匝数则是24V输出线圈匝数的一半,取16匝。
4 关键部分设计
整个电源系统中几处关键部分,下面给出具体设计:
(1)开关频率设定。
NCP1252是固定频率控制器,但它也可灵活调节开关频率。
该芯片的4脚处接一个电阻就可设定开关频率在50~500kHz。
本设计的开关频率为50kHz,于是
由式(4)可得R17=85.8kΩ。
(2)电压反馈电路。
为了保证稳定输出直流电压,取两个输出电压24V和+12V作为反馈电压。
系统正常工作时,两路输出电压分别经过R21、R22和R25分压与TL431的基准电压2.5V比较,构成误差比较器,经过光耦PC817中发光二极管的工作电流发生线性变化,光电耦合器输出电流,控制芯片的1脚进而控制占空比。
(3)欠压保护电路。
NCP1252的2脚通过电阻R3的电压来判断直流输入电压是否降低到芯片不能正常工作的电压。
当2脚检测到电压低于1V时,会触发芯片自动关机。
(4)过流保护电路。
NCP1252的3脚和R19来监测初级线圈的电流以达到过流保护的目的。
R19为功率限制输出电阻,减小R19阻值就可以增大输出功率。
5 实验结果
根据以上的设计方法,设计出一种基于NCP1252的多路输出开关电源,并将开关电源的样机与直流电子负载仪连接来测试电源的输入特性和输出特性,各路输出电压纹波最大值不超过0.2V,过流保护和短路保护均能保护电源并切断输出电压,确保整个设备系统的安全。
另外将样机在某型号导航雷达收发机内进行了实际应用实验,效果良好。
6 结束语
NCP1252是一款多功能集成的PWM控制芯片。
基于该芯片设计的这款开关电源样机与基于其他芯片设计的开关电源相比,具有很好的负载调整率、低功耗特性以及各种保护性能,确保整个系统的可靠性,并在实际应用中表现良好。
参考文献:
[1]张占松,蔡宣三.开关电源的原理与设计[M].北京:电子工业出版社,2004.
[2]沙占友.新型单片开关电源设计与应用技术[M].北京:电子工业出版社,2004.
[3]NCP1252 data sheet[DB/OL].http://.
[4]安美森半導体.双开关正激转换器及其应用设计[J].电源世界,2010,8.。