热分析在含能材料中的应用

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热分析技术在含能材料中的应用

[摘要]:研究炸药热分解机理随研究炸药的化学稳定性、热爆炸等有重要的意义。本次用ARC测试结果和测试曲线,得到了绝热分解特性参数,并作了简单对比分析。乳化炸药的典型组分对乳化炸药和硝酸铵的热分解的影响,具有很大的相似性; 连续相和油相组分对硝酸铵的影响显著,而对乳化炸药的影响有所下降,乳化剂对乳化炸药的影响则表现明显等。

[关键词]:炸药热分解 ARC测试

1.1炸药热分解的一般规律

工业炸药从制备后到使用时需要经历一定的储存时间,在这段储存期内如何保证炸药的稳定性,这涉及到炸药的安定性问题。炸药的安定性是指在一定的条件下,保持其物理、化学和爆炸性质不发生明显变化的能力。一般分为物理安定性和化学安定性。物理安定性是指在一定的条件下,炸药保持其物理性质不发生明显变化的能力。化学安定性是炸药保持其化学性质不发生明显变化的能力。

炸药的化学安定性主要是指炸药的热安定性,炸药在贮存条件下的化学变化,就是炸药自身的热分解,也就是炸药热分解的性质和速度。炸药的热分解,是指在炸药的发火温度下,由于热作用,其分子发生分解的现象和过程。研究炸药热分解机理随研究炸药的化学稳定性、热爆炸等有重要的意义。

就凝聚炸药而言,热分解动力学过程可分为以下三个阶段: 1)分解初期:分解很缓慢,几乎觉察不出反应的存在,生成的气态产

物也很少,这个阶段称为分解延滞期或感应期;

2)分解加速期:延滞期结束后,分解速度逐渐加快,在某一时刻速度可达到最大值,这个结算称为加速期:

3)降速期:当炸药量较少时,反应速度达到最大值后急剧下降,直到分解结束,这个阶段称为降速期。

但是当炸药量较多时,反应速度也可能一直增长直至爆炸。上述阶段的划分是按照动力学曲线的性质划分的,没有涉及炸药热分解的微观机理。炸药分子在分解时,并不是立即形成最终产物,而是分部分段进行的。

在一般化学反应过程中,随着原始物质浓度下降,反应速度程下降趋势,但是炸药热分解是个放热过程,尽管原始物质不断减少,反应速度随着分解温度的升高而加速。

动力学实验结果表明,大多数炸药热分解的初始反应速度常数只受温度的影响,它与温度的关系可用Arrhenius 方程表示:(1-1)式

式中:k 为一定温度下,初始反应速度常数(1s -);A 为指前因子;T 为温度;R 为普适气体常量(11kJ K mol -- ) ; E 为分解反应的活化能(1kJ mol - )。

对(1-1)式微分,得(1-2)式

对(1-2)式可见,lnk 随温度的变化率与E 值成正比。活化能表

示炸药热分解的难易程度,炸药热分解的活化能高,热分解反应速度的温度系数增大。

1.2炸药热分解研究方法

在热分析方法中,Le-Chatelier于1887年首先提出差热分析(Quantitative Differential Thermal Analysis,简称DTA)。直到20世纪SO年代中期,差热分析才被应用于炸药的热安定性研究中。目前,许多国家已将它作为筛选混合炸药配方的标准方法。类似于差热分析的差示扫描量热仪(Differential Scanning Calorimetry,简称DSC)于1964年首先由Watson研制出来,该方法的试样用量少,灵敏度高,可直接测定热焓变化,从而使定性的差热分析发展到定量差热分析。放出气体分析法始于20世纪初,Farmer于1920年提出真空安定性实验方法(Vacuum Stability Testing,简称VST),英美等国家将该法相继作为筛选混合炸药配方的标准方法,虽然该方法的原理、仪器操作都非常简单,且作为“标准”的理论依据不是很充分,但大量的实验数据证明了这种方法的可靠性。20世纪20年代初期,镰式玻璃薄膜压力计方法在前苏联首先应用于炸药的热分解研究中。著名的前苏联科学家K.K.Andreev应用此法研究了大量的炸药热分解规律和热解反应动力学,并在此领域做出了卓越的贡献。

热重(Thermal Gravimetry,简称TG)是测定物质质量随温度变化的方法,1915年首先由日本东京大学本多光太郎发表论文,设计了第一台简易热天平。由于测定的时间较长,且仪器的稳定性受到限制,热天平没有得到普遍应用。而后随着热分析技术的不断完善。上

述量气方法和热失重方法只能直接或间接地测出释放的气体和挥发的总量,以及研究其唯象反应动力学,但是不能定性和定量地测出气体中组分以及含量,也不能阐明反应进行的机理。在气相色谱法基础上发展起来的化学反应性实验方法( Chemical Reactivity Test ,简称CRT),于20世纪60年代初期在美国Pantex 工厂首先被用来取代真空安定性实验方法.这种方法不但可以准确地测定释放气体的总量,而且能快速地测定222,,,,N O C O H O C O N O 等组分的含量。

20世纪70年代初发展起来的化学发光法,主要用来测定在较低温度下炸药发生热分解反应生成NOx 的含量,其灵敏度可达到ppb 级。这对于测定贮存温度下炸药的热安定性和相容性、预测贮存寿命具有重要的意义。

热分析技术中“控制转化率热分析”( Controlled Transformation Rate Thermal Analysis ,简称CRTA)。它是通过控制反应过程中气体的溢出速率(一般保持常数)为不是通过控制温升速率来控制反应速率。因此适合有气体生成的固体的分解反应。CRTA 法有很多优点,与传统的TA 法比较,它不必考虑升温速率是否是常数,在确定相互交叠的反应步骤和合适的反应机理函数,f (a)时很有效。此外还可以明显降低传热传质的影响。

温度调制技术(Temperature Modulation)被引入到热分析中,产生了如MDSC ,TMTG 这样的热分析技术。它们在热分析过程中也发挥了重要的作用。另外,Paulik 等人开发的准定温和准等压TA 技术都是很有前途的热分析方法。

相关文档
最新文档