积分第二次讲义
(高等数学)第二章 连续函数
周 世 国 讲 义第二章 连续函数第一节 连续函数一.连续函数的概念引:许多物理量都是随时间而连续变化的。
例如:自由落体的高度或冷却中固体的温度等。
通常我们说物理量()t f 随时间t 的变化而连续变化,其确切含义啥?那就是说,物理量()t f 在变化过程中不会突然发生跳跃,只要时间t 的改变量非常小,相应地量()t f 的改变也应该非常小.用极限的语言来说: ()()00l i m t t f t f t →=.推广上述的说法,就得到一般函数在一点处连续的概念.1.定义1.设函数()x f 在0x 的邻域()0U x 内有定义,如果()()00lim x x f x f x →=,则称()x f 在0x 点处连续,并称0x 点为函数()x f 的连续点. 注意:(1)由定义1可见,函数在0x 点处连续,则0x 点必属于()x f 的定义域,这()0lim x x f x A →=定义的前提有本质的区别;(2)如果()x f 在0x 点处连续,则函数()x f 在0x 点首先必有极限,而且极限值就 是函数()x f 在0x 点处的定义值,因此()x f 在连续点处的极限很好求; (3)如果()x f 在0x 点处连续,则()()lim x x x x f x f lim x →→=.2.连续的第一个等价定义:设函数()x f 在0x 的邻域()0U x 内有定义,如果对0,0>∃>∀δε,使当0x x ε-<时,就有()()0f x f x ε-<成立,称()x f 在0x 点处连续,并称0x 点为函数()x f 的连续点. 注意:定义中,不再象函数极限定义中那样,要求00x x <-(为何?) 函数在一点处连续还有第二种等价定义,为此要先介绍一个新概念----增量.3.定义2.若自变量从初始值0x 变化到终值x ,相应地函数值由()0f x 变化到()x f ,则称0x x -为自变量的增量,并计为0x x x ∆=-;而称()()0f x f x -为函数的增量,计为()()0y f x f x ∆=-.注意:显然()()0y f x f x ∆=-又可表示为:()()00y f x x f x ∆=+∆-由此可见()()0y f x f x ∆=-是0x x x ∆=-的函数.4.连续的第二种等价定义:设函数()x f 在0x 的邻域()0U x 内有定义,如果lim 0x y ∆→∆=,则称()x f 在0x 点处连续,并称0x 点为函数()x f 的连续点.二.左、右连续1.定义3.如果()()00lim x x f x f x -→=,则称()x f 在0x 点处左连续,并称0x 点为函数()x f 的左连续点;2.定义4.如果()()00lim x x f x f x +→=,则称()x f 在0x 点处右连续,并称0x 点为函数()x f 的右连续点.定理1.()x f 在x 0点处连续⇔()x f 在x 0点处既左连续又,右连续. 注意:连续函数的几何意义是:函数()x f y =的曲线在0x 点处没有断.三.函数在区间上连续定义5.若函数()x f 在开区间()b a ,内每一点0x 处都连续,则称函数()x f 在开区间()b a ,内连续;若函数()x f 在开区间()b a ,内每一点0x 处都连续,而且在点a 处右连续,在点b 处左连续则称函数()x f 在闭区间[]b a ,上连续.注意:在在闭区间[]b a ,上连续的函数的图形特征是曲线位于[]b a ,上方的一段是连续不间断的.例1.证明常值函数()c x f ≡在()+∞∞-,连续.证明:任取0x ()+∞∞-∈,,下证()x f 在0x 点处连续,即要证()()00lim x x f x f x →=,也就是要证: c c x x =→0lim .事实上,对,0>∀ε要使()()0||||0f x f x c c ε-=-=<,可取δ为任意正实数,则当0||x x ε-<时,就有 ()()0||f x f x ε-<成立。
微积分》第二篇第二章讲义定积分
dx
1 e4 1 x4 e 1 3e4 1 4 4 1 16
28
(4) 求定积分 2 xcos2xdx. 0
【解】
2
xcos2xdx
1
2 x(sin2x)dx
0
20
1 2
x
sin
2x
2 0
2 0
1
s
in
2
xdx
1 2
0
1 2
2 0
(c
os2
x)dx
1 2
0
1 cos2x 2
0 excosxdx 0 ex cosxdx
a
a
excosx 0 0 exsinxdx aa
1 eacosa 0 ex sinxdx a
37
即 0 excosxdx a
1 eacosa exsinx 0 0 excosxdx aa
1 eacosa 0 easina 0 excosxdx a
39
21
2 22 1
1 e2 1 4 24
【例7】求定积分 4 1 xex dx. 0
解: 原式
4
1dx
4 xexdx.
0
0
x 4
4
x
ex
dx.
0
0
4
xex
4 0
4 0
x
e
xdx
.
4 4e4 4 exdx 0
4 4e4 ex 4 5 5e4 0
25
课本P-274,题2,(1)—(4)
广义积分 f (x)dx收敛或存在. a 相反,如果极限 lim b f (x)dx不存在, b a
我们就称广义积分 f (x)dx发散或不存在. a 我们的目标:计算一些函数的广义积分
高数讲义第一节定积分的概念与性质(二)
1 ba
b
a f (x)d x
b
a f ( x)d x f ( ) (b a)
性质7(中值定理):如果 f (x) 在区间 [ a , b ]
上连续,则至少存在一点 [ a , b ] , 使得
b
a
f (x)d x
f ( )
(b a)
f ( )
1 ba
b
a
f
(x)d x
y
f ( )
y f (x)
例1:比较积分
2
1
ln x d x
和
2
1
(ln
x
)
2
d
x
的大小。
解: 因为在区间 [ 1 ,2 ] 上, 0 ln x 1
且除 x 1外, 恒有 ( ln x) 2 ln x ,
因此
2
1
(ln
x
)
2
d
x
2
1 ln x d x
推论2:
b
b
f (x)d x | f (x) |d x
(a b)
值两和边最同大除值以,b则-对a任(何注一意常到数bc-: ma >0c) M ,
至少存在一点m
1
b
[
a
b
aa,
bf
(]x,)d x使得M:
f ( ) = c
即常数
c 1 ba
b
a f (x)d x
介于 m 和 M 之间
由介值定理的推论,至少存在一点 [ a , b] , 使得
或写成
f ( )
(二)基本性质
性质1:代数和的积分等于积分的代数和,即
b
b
b
高等数学随堂讲义二重积分概念
二重积分的性质
即若把曲线 K 按 x x0 , x1 , , xn ,分成 n 个小段
则每一小段都能被以
xi 为宽, i 为高的小矩形所
覆盖. 由于这 n 个小矩形面积的总和
n
i xi
i1
b
a
n i1
xi
,
因此由定理21.1 的推论即得曲线 K 的面积为零.
推论 1
参量方程 x (t ), y (t ) ( t ) 所表示的
I P 为 P 的外面积.
定义1
若平面图形 P 满足
I P = I P , 则称 P 为可求面积
的图形, 并把共同值 IP I P I P 作为 P 的面积.
§1二重积分概念
平面图形的面积
二重积分的定义及其存在性
二重积分的性质
定理20.1
平面有界图形 P 可求面积的充要条件是:
对任给的 0 , 总存在直线网 T,
所以也有 SK (T ) . 由上述推论, P 的边界K 的面积
为零.
§1二重积分概念
平面图形的面积
二重积分的定义及其存在性
二重积分的性质
定理21.3
若曲线 K 为定义在 [a , b] 上的连续函数
的图象, 则曲线 K 的面积为零.
f (x)
证 由于 f ( x) 在闭区间 [a , b]上连续, 所以它在
的网眼 (小闭矩形)
i 可分为三类:
(i) i 上的点都是 P 的内点;
(ii) i 上的点都是 P 的外点, 即
i
(iii) i 上含有 P 的边界点.
这时直线网 T
P ;
§1二重积分概念
平面图形的面积
二重积分的定义及其存在性
二重积分与二次积分ppt
a
j(x)
D
b
x= j2(y)
注:若左、右边界曲线中有分段曲线,比如左边界曲线是分段曲线:
x
=
j
(
y)
=
j1 j 2
( y) ( y)
a yc , c yb
D c
x= j1(y)
x= y(y)
则
f (x, y)d =
c
dy
y (x)
f (x, y)dx
b
dy
b
dx
y (x) f (x, y)dy 。
a
j(x)
DБайду номын сангаас
y
y= y(x)
D
Oa
y= j(x)
bx
首页
上页
返回
下页
结束
1.将二重积分化为先对y 后对x 的二次积分
第一步:根据已知条件画出积分区域D的图形。
第二步:将区域D向x轴投影,得到投影区间[a, b]。
第三步:确定区域D的上下边界曲线。
设下边界曲线为y= j(x),上边界曲线为y= y(x),且上、下边界曲线都不是分段曲线。
第四步:写出二次积分
y
f (x, y)d =
b
dx
y (x) f (x, y)dy 。
a
j(x)
D
注:若上、下边界曲线中有分段曲线,比如下边界曲线是分段曲线:
y
=
j
(x)
=
j1 (x) j 2 (x)
axc, c xb
则
f (x, y)d =
c
dx
1.将二重积分化为先对y 后对x 的二次积分
第一步:根据已知条件画出积分区域D的图形。
人教版数学高二选修2-2讲义1.5.3定积分的概念
1.5.3定积分的概念1.了解定积分的概念.(难点)2.理解定积分的几何意义.(重点、易混点)3.掌握定积分的几何性质.(重点、难点)[基础·初探]教材整理1 定积分的概念阅读教材P45内容,完成下列问题.如果函数f(x)在区间[a,b]上连续,用分点a=x0<x1<…<x i-1<x i<…<x n=b将区间[a,b]等分成n个小区间,在每个小区间[x i-1,x i]上任取一点ξi(i=1,2,…,n),作和式∑i=1nf(ξi)Δx=________________,当n→∞时,上述和式无限接近某个常数,这个常数叫做函数f(x)在区间[a,b]上的定积分,记作⎠⎛ab f(x)d x,即⎠⎛ab f(x)d x=__________.其中a与b分别叫做__________与__________,区间[a,b]叫做______,函数f(x)叫做____________,x叫做__________,f(x)d x叫做__________.【答案】∑i=1n b-an f(ξi)limn→∞∑i=1n b-an f(ξi)积分下限积分上限积分区间被积函数积分变量被积式⎠⎛12(x+1)d x的值与直线x=1,x=2,y=0,f(x)=x+1围成的梯形的面积有什么关系?【解析】由定积分的概念知:二者相等.教材整理2 定积分的几何意义阅读教材P46的内容,完成下列问题.从几何上看,如果在区间[a,b]上函数f(x)连续且恒有f(x)≥0,那么定积分⎠⎛ab f(x)d x表示由__________________所围成的曲边梯形的面积.这就是定积分⎠⎛ab f(x)d x的几何意义.【答案】直线x=a,x=b,y=0和曲线y=f(x)判断(正确的打“√”,错误的打“×”)(1)⎠⎛ab f(x)d x=⎠⎛ab f(t)d t.()(2)⎠⎛ab f(x)d x的值一定是一个正数.()(3)⎠⎛12x d x<⎠⎛22x d x()【答案】(1)√(2)×(3)√教材整理3定积分的性质阅读教材P47的内容,完成下列问题.1.⎠⎛ab kf(x)d x=________________________(k为常数).2.⎠⎛ab[f1(x)±f2(x)]d x=⎠⎛abf1(x)d x±__________________.3.⎠⎛ab f(x)d x=______________(其中a<c<b).【答案】 1.k⎠⎛ab f(x)d x 2.⎠⎛ab f2(x)d x 3.⎠⎛ac f(x)d x+⎠⎛cb f(x)d x填空:(1)由y=0,y=cos x,x=0,x=π2围成的图形的面积用定积分的形式表示为__________.(2)⎠⎛-11f(x)d x=⎠⎛-10f(x)d x+__________.(3)⎠⎛ab(x2+2x)d x=⎠⎛ab2x d x+________.【答案】(1)⎠⎜⎛π2cos x d x(2)⎠⎛1f(x)d x(3)⎠⎛ab x2d x[小组合作型]利用定义求定积分利用定积分的定义,计算⎠⎛12(3x+2)d x的值.【精彩点拨】根据定积分的意义,分四步求解,即分割、近似代替、求和、取极限.【自主解答】令f(x)=3x+2.(1)分割在区间[1,2]上等间隔地插入n-1个分点,将区间[1,2]等分成n个小区间⎣⎢⎡⎦⎥⎤n+i-1n,n+in(i=1,2,…,n),每个小区间的长度为Δx=n+in-n+i-1n=1n.(2)近似代替、作和取ξi=n+i-1n(i=1,2,…,n),则S n=∑i=1nf⎝⎛⎭⎪⎫n+i-1n·Δx=∑i=1n⎣⎢⎡⎦⎥⎤3(n+i-1)n+2·1n=∑i=1n⎣⎢⎡⎦⎥⎤3(i-1)n2+5n=3n2[0+1+2+…+(n-1)]+5=32×n2-nn2+5=132-32n.(3)取极限⎠⎛12(3x+2)d x=limn→∞S n=limn→∞⎝⎛⎭⎪⎫132-32n=132.利用定义求定积分的步骤[再练一题]1.利用定积分的定义计算⎠⎛12(-x 2+2x )d x 的值.【解】 令f (x )=-x 2+2x . (1)分割在区间[1,2]上等间隔地插入n -1个分点,把区间[1,2]等分为n 个小区间⎣⎢⎡⎦⎥⎤1+i -1n ,1+i n (i =1,2,…,n ),每个小区间的长度为Δx =i n -i -1n =1n . (2)近似代替、作和取ξi =1+in (i =1,2,…,n ),则 S n =∑i =1nf ⎝ ⎛⎭⎪⎫1+i n ·Δx=∑i =1n⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫1+i n 2+2⎝ ⎛⎭⎪⎫1+i n ·1n =-1n 3[(n +1)2+(n +2)2+(n +3)2+…+(2n )2]+2n 2[(n +1)+(n +2)+(n +3)+…+2n ]=-1n 3⎣⎢⎡⎦⎥⎤2n (2n +1)(4n +1)6-n (n +1)(2n +1)6+2n 2·n (n +1+2n )2 =-13⎝ ⎛⎭⎪⎫2+1n ⎝ ⎛⎭⎪⎫4+1n +16⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫2+1n +3+1n . (3)取极限⎠⎛12(-x 2+2x )d x =lim n →∞S n =lim n →∞ ⎣⎢⎡-13⎝ ⎛⎭⎪⎫2+1n ⎝ ⎛⎭⎪⎫4+1n +16⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫2+1n +⎦⎥⎤3+1n=23.定积分的几何意义利用定积分的几何意义求下列定积分. (1)⎠⎛-33-39-x 2d x ;(2)⎠⎛03(2x +1)d x ; (3)⎠⎛-11-1(x 3+3x )d x . 【导学号:62952046】【精彩点拨】 对于本题(1)、(2)可先确定被积函数、积分区间,画出图形,然后用几何法求出图形面积,从而确定定积分的值;对于(3)可根据被积函数的奇偶性求解.【自主解答】 (1)曲线y =9-x 2表示的几何图形为以原点为圆心以3为半径的上半圆如图(1)所示.其面积为S =12·π·32=92π.由定积分的几何意义知⎠⎛-339-x 2d x =92π.(2)曲线f (x )=2x +1为一条直线.⎠⎛03(2x +1)d x 表示直线f (x )=2x +1,x =0,x=3围成的直角梯形OABC 的面积,如图(2).其面积为S =12(1+7)×3=12.根据定积分的几何意义知⎠⎛03(2x +1)d x =12.(3)∵y=x3+3x在区间[-1,1]上为奇函数,图象关于原点对称,∴曲边梯形在x轴上方部分面积与x轴下方部分面积相等.由定积分的几何意义知⎠⎛-11(x3+3x)d x=0.定积分的几何意义的应用(1)利用定积分的几何意义求⎠⎛ab f(x)d x的值的关键是确定由曲线y=f(x),直线x=a,x=b及y=0所围成的平面图形的形状.常见的图形有三角形、直角梯形、矩形、圆等可求面积的平面图形.(关键词:平面图形的形状)(2)不规则的图形常利用分割法将图形分割成几个容易求定积分的图形求面积,要注意分割点要确定准确.(关键词:分割)[再练一题]2.上例(1)中变为⎠⎜⎛-32329-x2d x,如何求解?【解】由y=9-x2,知x2+y2=9(y≥0),x∈⎣⎢⎡⎦⎥⎤-32,32,其图象如图所示:由定积分的几何意义,知⎠⎜⎛-32329-x2d x等于圆心角为60°的弓形C ED的面积与矩形ABC D的面积之和.S弓形=12×π3×32-12×3×332=6π-934,S矩形=|AB|×|BC|=2×32×9-⎝⎛⎭⎪⎫322=932,∴⎠⎜⎛-32329-x2d x=6π-934+932=6π+934.[探究共研型]定积分性质的应用探究1 【提示】 可先把每一段函数的定积分求出后再相加. 探究2 怎样求奇(偶)函数在区间[a ,b ]上的定积分?【提示】 ①若奇函数y =f (x )的图象在[-a ,a ]上连续,则⎠⎛-a a f (x )d x =0;②若偶函数y =g (x )的图象在[-a ,a ]上连续,则⎠⎛-aa g (x )d x =2⎠⎛0a g (x )d x .(1)f (x )=⎩⎨⎧x +1,0≤x <1,2x 2,1≤x ≤2,则⎠⎛02f (x )d x =( )A.⎠⎛02(x +1)d xB.⎠⎛022x 2d x C.⎠⎛01(x +1)d x +⎠⎛122x 2d x D.⎠⎛122x d x +⎠⎛02(x +1)d x (2)已知⎠⎛02f (x )d x =8,则⎠⎛02[f (x )-2x ]d x =________.【自主解答】 (1)∵f (x )在[0,2]上是连续的,由定积分的性质(3)得⎠⎛02f (x )d x=⎠⎛01f (x )d x +⎠⎛12f (x )d x =⎠⎛01(x +1)d x +⎠⎛122x 2d x . (2)由定积分的性质(2)可得⎠⎛02[f (x )-2x ]d x =⎠⎛02f (x )d x -⎠⎛022x d x =⎠⎛02f (x )d x -2⎠⎛02x d x . 又∵⎠⎛02f (x )d x =8,⎠⎛02x d x =12×2×2=2,∴⎠⎛2[f(x)-2x]d x=⎠⎛2f(x)d x-2⎠⎛2x d x=8-2×2=4.【答案】(1)C(2)4利用定积分的性质求定积分的技巧灵活应用定积分的性质解题,可以把比较复杂的函数拆成几个简单函数,把积分区间分割成可以求积分的几段,进而把未知的问题转化为已知的问题,在运算方面更加简洁.应用时注意性质的推广:(1)⎠⎛ab[f1(x)±f2(x)±…±f n(x)]d x=⎠⎛ab f1(x)d x±⎠⎛ab f2(x)d x±…±⎠⎛ab f n(x)d x;(2)⎠⎛ab f(x)d x=⎠⎜⎛ac1f(x)d x+⎠⎜⎛c1c2f(x)d x+…+⎠⎜⎛c nb f(x)d x(其中a<c1<c2<…<c n<b,n∈N*).[再练一题]3.已知⎠⎛e x d x=e22,⎠⎛e x2d x=e33,求下列定积分的值.(1)⎠⎛e(2x+x2)d x;(2)⎠⎛e(2x2-x+1)d x.【解】(1)⎠⎛e(2x+x2)d x=2⎠⎛e x d x+⎠⎛e x2d x=2×e22+e33=e2+e33.(2)⎠⎛e(2x2-x+1)d x=2⎠⎛e x2d x-⎠⎛e x d x+⎠⎛e1d x,因为已知⎠⎛e x d x=e22,⎠⎛e x2d x=e33,又由定积分的几何意义知:⎠⎛0e 1d x 等于直线x =0,x =e ,y =0,y =1所围成的图形的面积,所以⎠⎛0e 1d x =1×e =e ,故⎠⎛0e (2x 2-x +1)d x =2×e 33-e 22+e =23e 3-12e 2+e.1.下列等式不成立的是( )A.⎠⎛a b [mf (x )+ng (x )]d x =m ⎠⎛a b f (x )d x +n ⎠⎛a b g (x )d xB.⎠⎛a b [f (x )+1]d x =⎠⎛ab f (x )d x +b -a C.⎠⎛a b f (x )g (x )d x =⎠⎛a b f (x )d x ·⎠⎛ab g (x )d x D.⎠⎛-2π2πsin x d x =⎠⎛-2π0sin x d x +⎠⎛02πsin x d x【解析】 利用定积分的性质可判断A ,B ,D 成立,C 不成立. 例如⎠⎛02x d x =2,⎠⎛022d x =4,⎠⎛022x d x =4,即⎠⎛022x d x ≠⎠⎛02x d x ·⎠⎛022d x . 【答案】 C2.图1-5-3中阴影部分的面积用定积分表示为( )图1-5-3A.⎠⎛012x dxB.⎠⎛01(2x -1)d xC.⎠⎛01(2x +1)d xD.⎠⎛01(1-2x )d x 【解析】 根据定积分的几何意义,阴影部分的面积为⎠⎛012x d x -⎠⎛011d x =⎠⎛01(2x-1)d x.【答案】 B3.由y=sin x,x=0,x=π2,y=0所围成图形的面积写成定积分的形式是________.【导学号:62952047】【解析】∵0<x<π2,∴sin x>0.∴y=sin x,x=0,x=π2,y=0所围成图形的面积写成定积分的形式为⎠⎜⎛π2sin x d x.【答案】⎠⎜⎛π2sin x d x4.若⎠⎛ab[f(x)+g(x)]d x=3,⎠⎛ab[f(x)-g(x)]d x=1,则⎠⎛ab[2g(x)]d x=________.【解析】⎠⎛ab[2g(x)]d x=⎠⎛ab[(f(x)+g(x))-(f(x)-g(x))]d x=⎠⎛ab[f(x)+g(x)]d x-⎠⎛ab[f(x)-g(x)]d x=3-1=2.【答案】 25.用定积分的几何意义求⎠⎛-114-x2d x.【解】由y=4-x2可知x2+y2=4(y≥0),其图象如图.⎠⎛-114-x2d x等于圆心角为60°的弓形C E D的面积与矩形ABCD的面积之和.S弓形=12×π3×22-12×2×2sinπ3=2π3- 3.S矩形=|AB|·|BC|=2 3.高中数学-打印版 精心校对完整版 ∴⎠⎛-114-x 2d x =23+2π3-3=2π3+ 3.。
陈省身的微积分讲义chapter II
(2.4)
0. (2.5) , d2 0. ,
d(d(ω)) = 0. . ω , d, 0 (x1 , · · · , xn ). ∂f , ∂xi dxi . , fij dxi , dxj . f , , xi d ω, , . : ,d , . , n , dxj ∧ dxi . 0 ,
, (2.6) . d
,
. , ω (k − 1) ∆ , ω , k−1 dω =
∆
k . dω ∆
ω, ω
∂∆
. .
(2.2)
Stokes ,
. . 2
. , ) ω , 2 , Stokes 2 .
1 ω
,Leabharlann 1 b ,, ( a
, ω a b , . .
(1 ) Green
: (2.3) Green , Green . Stokes ,
, dβ
,
.
III
. , , , , . (logarithm fun ction).
1 n+1 , n+1 x
, , . , , , .
,
. (exponential function) ? (n + 1)xn , xn
,
. n + 1 = 0,
xn+1
d n+1 x = (n + 1)xn → dx n , −1, , . x = 0, n = −1 ,
, k d=0 , , close
,
}, C k = {ω|ω ∈ Γk , dω = 0}. . close . k−1 (quotient). H k = C k /dΓk . k−1 . Ck k , d
大学数学(高数微积分)专题五第2讲椭圆双曲线(课堂讲义)
热点分类突破
(2)设∠F1PF2=θ,
本
由||PPFF11||- =4|P|PFF2|2=| 2a,
得|PF1|=83a, |PF2|=23a,
讲 栏 目
由余弦定理得cos θ=17a82-a2 9c2=187-98e2.
开
关 ∵θ∈(0,180°],∴cos θ∈[-1,1),-1≤187-98e2<1,
|x|≥a
本
讲 栏
几
顶点
(±a,0),(0,±b)
(±a,0)
目 开
何 对称性
关于x轴,y轴和原点对称
关 性 焦点
(±c,0)
x≥0
(0,0) 关于x轴对称
(p2,0)
质
长轴长2a,短轴 实轴长2a,
轴
长2b
虚轴长2b
主干知识梳理
几 离心率 e=ac=
1-ba22 e=ac=
1+ba22 e=1
本
3 2.
热点分类突破
∴|AC|=|y2-y1|= 3.
因此菱形的面积S=12|OB|·|AC|=12×2× 3= 3.
(2)假设四边形OABC为菱形.
讲 栏 目
又 x1+x2=-43m,x1x2=2m23-2,
开 关
∴y1y2=(x1+m)(x2+m)=x1x2+m(x1+x2)+m2
=2m23-2-4m3 2+m2=m23-2.
又F为△MPQ的垂心,连接PF,则PF⊥MQ, ∴P→F·M→Q=0,
热点分类突破
又P→F=(1-x1,-y1),M→Q=(x2,y2-1), ∴P→F·M→Q=x2+y1-x1x2-y1y2 =x2+x1+m-x1x2-y1y2
5
2019-2020年北师大版数学选修2-2讲义:第4章+§2 微积分基本定理及答案
§2 微积分基本定理1.微积分基本定理如果连续函数f (x )是函数F (x )的导函数,即f (x )=F ′(x ),则有⎠⎛a bf (x )d x =F (b )-F (a ).2.定积分和曲边梯形面积的关系设曲边梯形在x 轴上方的面积为S 上,x 轴下方的面积为S 下,则(1)(1)当曲边梯形的面积在x 轴上方时,如图(1),则⎠⎛a bf (x )d x =S 上.(2)当曲边梯形的面积在x 轴下方时,如图(2),则⎠⎛ab f (x )d x =-S 下.(2) (3)(3)当曲边梯形的面积在x 轴上方、x 轴下方均存在时,如图(3),则⎠⎛abf (x )d x =S上-S 下,若S 上=S 下,则⎠⎛abf (x )d x =0.1.下列定积分的值等于1的是( ) A.⎠⎛01x d x B.⎠⎛01(x +1)d xC.⎠⎛011d x D.⎠⎛0112d x C [选项A ,因为⎝ ⎛⎭⎪⎫x 22′=x ,所以⎠⎛01x d x =x 22⎪⎪⎪1=12;选项B ,因为⎝ ⎛⎭⎪⎫x 22+x ′=x +1,所以⎠⎛01(x +1)d x =⎝ ⎛⎭⎪⎫x 22+x ⎪⎪⎪10=32;选项C ,因为x ′=1,所以⎠⎛011d x =x ⎪⎪⎪1=1;选项D ,因为⎝ ⎛⎭⎪⎫12x ′=12,所以⎠⎛0112d x =12x ⎪⎪⎪1=12.]2.⎠⎛02π(-sin x )d x 等于( )A .0B .2C .-2D .4A [⎠⎛02π(-sin x )d x =cos x |2π0=cos 2π-cos 0=0.]3.⎠⎛12⎝ ⎛⎭⎪⎫x +1x d x =________.ln 2+32 [根据题意得⎠⎛12⎝ ⎛⎭⎪⎫x +1x d x =⎝ ⎛⎭⎪⎫ln x +12x 2⎪⎪⎪21=ln 2+2-⎝ ⎛⎭⎪⎫0+12=ln 2+32.](1)⎠⎛12(x 2+2x +3)d x ;(2)⎠⎛-π(cos x -e x )d x ;(3)⎠⎛122x 2+x +1xd x ;(4) ⎠⎜⎛0π2sin 2x 2d x . 思路探究:(1)、(2)先求被积函数的一个原函数F (x ),然后利用微积分基本定理求解;(3)、(4)则需先对被积函数变形,再利用微积分基本定理求解.[解] (1)⎠⎛12(x 2+2x +3)d x=⎠⎛12x 2d x +⎠⎛122x d x +⎠⎛123d x =x 33⎪⎪⎪ 21+x 2⎪⎪⎪21+3x ⎪⎪⎪21=253.(2)⎠⎛-π0(cos x -e x )d x =⎠⎛-π0cos x d x -⎠⎛-π0e x d x =sin x ⎪⎪⎪0-π-e x ⎪⎪⎪-π=1e π-1.(3)2x 2+x +1x =2x +1+1x ,而(x 2+x +ln x )′=2x +1+1x .∴⎠⎛122x 2+x +1x d x =(x 2+x +ln x )⎪⎪⎪21=4+ln 2.(4)原式=⎠⎜⎛0π212(1-cos x )d x =12⎠⎜⎛0π2(1-cos x )d x =12⎠⎜⎛0π21d x -12⎠⎜⎛0π2cos x d x =x 2⎪⎪⎪⎪ π20-sin x 2⎪⎪⎪⎪π2=π-24.求简单的定积分应注意两点:1.掌握基本函数的导数以及导数的运算法则,正确求解被积函数的原函数,当原函数不易求时,可将被积函数适当变形后再求解;2.精确定位积分区间,分清积分下限与积分上限.1.⎠⎛12x -1x 2d x =________. ln 2-12 [⎠⎛12x -1x 2d x =⎠⎛12⎝ ⎛⎭⎪⎫1x -1x 2d x=⎝ ⎛⎭⎪⎫ln x +1x | 21 =⎝ ⎛⎭⎪⎫ln 2+12-(ln 1+1)=ln 2-12.](1)f (x )=⎩⎪⎨⎪⎧sin x ,0≤x <π2,1,π2≤x ≤2,x -1,2<x ≤4,求⎠⎛04f (x )d x ; (2)⎠⎛02|x 2-1|d x . 思路探究:(1)按f (x )的分段标准,分成⎣⎢⎡⎭⎪⎫0,π2,⎣⎢⎡⎦⎥⎤π2,2,(2,4]三段求定积分,再求和.(2)先去掉绝对值号,化成分段函数,再分段求定积分.[解] (1)⎠⎛04f (x )d x =⎠⎜⎛0π2sin x d x +⎠⎜⎛π221d x +⎠⎛24(x -1)d x =(-cos x )⎪⎪⎪⎪ π20+x ⎪⎪⎪⎪2π2+⎝ ⎛⎭⎪⎫12x 2-x ⎪⎪⎪42=1+⎝ ⎛⎭⎪⎫2-π2+(4-0)=7-π2.(2)⎠⎛02|x 2-1|d x =⎠⎛01(1-x 2)d x +⎠⎛12(x 2-1)d x =⎝ ⎛⎭⎪⎫x -13x 3⎪⎪⎪10+⎝ ⎛⎭⎪⎫13x 3-x ⎪⎪⎪21=2.分段函数的积分问题1.本例(2)中被积函数f (x )含有绝对值号,可先求函数f (x )的零点,结合积分区间,分段求解.2.分段函数在区间[a ,b ]上的定积分可分成n 段定积分和的形式,分段的标准可按照函数的分段标准进行.3.带绝对值号的解析式,可先化为分段函数,然后求解.2.计算定积分:⎠⎛-33(|2x +3|+|3-2x |)d x .[解] 设f (x )=|2x +3|+|3-2x |,x ∈[-3,3],则f (x )=⎩⎪⎨⎪⎧-4x ,-3≤x <-32,6,-32≤x ≤32,4x ,32<x ≤3.所以⎠⎛-33(|2x +3|+|3-2x |)d x1.满足F ′(x )=f (x )的函数F (x )唯一吗?[提示] 不唯一,它们相差一个常数,但不影响定积分的值. 2.如何求对称区间上的定积分?[提示] 在求对称区间上的定积分时,应首先考虑函数性质和积分的性质,使解决问题的方法尽可能简便.【例3】 (1)设函数f (x )=ax 2+c(a ≠0),若⎠⎛01f (x )d x =f (x 0),0≤x 0≤1,求x 0的值;(2)已知f (x )是一次函数,其图像过点(3,4),且⎠⎛01f (x )d x =1,求f (x )的解析式.思路探究:(1)先利用微积分基本定理求出定积分⎠⎛01f (x )d x ,然后列出关于x 0的方程,求出x 0的值.(2)设出f (x )的解析式,再根据已知条件列方程组求解. [解] (1)∵f (x )=ax 2+c(a ≠0), 且⎝ ⎛⎭⎪⎫a 3x 3+c x ′=ax 2+c , ∴⎠⎛01f (x )d x =⎠⎛01(ax 2+c)d x =⎝ ⎛⎭⎪⎫a 3x 3+c x ⎪⎪⎪1=a 3+c =ax 20+c , 解得x 0=33或x 0=-33(舍去). (2)依题意设一次函数f (x )的解析式为 f (x )=kx +b (k ≠0).∵函数图像过点(3,4),∴3k +b =4.①∵⎠⎛01f (x )d x =⎠⎛01(kx +b )d x =⎝ ⎛⎭⎪⎫k 2x 2+bx |10=k 2+b , ∴k2+b =1.②由①②得,k =65,b =25, ∴f (x )=65x +25.1.含有参数的定积分可以与方程、函数或不等式综合起来考查,先利用微积分基本定理计算定积分是解决此类综合问题的前提.2.计算含有参数的定积分,必须分清积分变量与被积函数f (x )、积分上限与积分下限、积分区间与函数F (x )等概念.3.若函数f (x )=ax 2+bx +c(a ≠0)且f (1)=4,f ′(1)=1,⎠⎛01f (x )d x =316,求函数f (x )的解析式.[解] 由题意知f (1)=a +b +c =4, ① f ′(1)=2a +b =1,②又由⎠⎛01f (x )d x =⎠⎛01(ax 2+bx +c)d x =316,知a 3+b 2+c =316.③①②③联立,解得a =-1,b =3,c =2, 所以函数f (x )的解析式为f (x )=-x 2+3x +2.1.定积分的值可能取正值也可能取负值,还可能是0.(1)当对应的曲边梯形位于x 轴上方时,定积分的值取正值,且等于曲边梯形的面积.(2)当对应的曲边梯形位于x 轴下方时,定积分的值取负值,且等于曲边梯形的面积的相反数.2.定积分计算时常用的几个结论(1)⎠⎛a b f (x )d x =-⎠⎛baf (x )d x . (2)⎠⎛a bf (x )d x =⎠⎛a cf (x )d x +⎠⎛cbf (x )d x (a <c<b ),该结论称为定积分对积分区间的可加性,积分区间的可加性也可以推广:⎠⎛a b f (x )d x =⎠⎛a x 1f (x )d x +⎠⎜⎛x 1x 2f (x )d x +…+⎠⎛x n b f (x )d x ,其中a <x 1<…<x n <b .(3)若在区间[a ,b ]上,f (x )≥0,则⎠⎛abf (x )d x ≥0.推论1:若在区间[a ,b ]上,f (x )≤g(x ),则⎠⎛a bf (x )d x ≤⎠⎛a bg(x )d x .推论2:|⎠⎛a bf (x )d x |≤⎠⎛ab|f (x )|d x .(4)若函数f (x )为偶函数,则不含常数项的原函数F (x )为奇函数,⎠⎛-a af (x )d x =F (x )|a-a =F (a )-F (-a )=2F (a ); (5)若函数f (x )为奇函数,则不含常数项的原函数F (x )为偶函数,⎠⎛-a af (x )d x =F (x )|a -a =F (a )-F (-a )=0.1.判断(正确的打“√”,错误的打“×”)(1)微积分基本定理中,被积函数f (x )是原函数F (x )的导数.( )(2)应用微积分基本定理求定积分的值时,为了计算方便通常取原函数的常数项为0.( )(3)应用微积分基本定理求定积分的值时,被积函数在积分区间上必须是连续函数.( )[答案] (1)√ (2)√ (3)√2.⎠⎜⎜⎛-π2π2(sin x +cos x )d x 的值是( )A .0 B.π4 C .2 D .43.已知2≤⎠⎛12(kx +1)d x ≤4,则实数k 的取值范围为______.⎣⎢⎡⎦⎥⎤23,2 [⎠⎛12(kx +1)d x =⎝ ⎛⎭⎪⎫12kx 2+x ⎪⎪⎪21=(2k +2)-⎝ ⎛⎭⎪⎫12k +1=32k +1,所以2≤32k+1≤4,解得23≤k ≤2.]4.已知f (x )=ax +b ,且⎠⎛-11f 2(x )d x =1,求f (a )的取值范围.[解] 由f (x )=ax +b ,⎠⎛-11f 2(x )d x =1,得2a 2+6b 2=3,2a 2=3-6b 2≥0, 所以-22≤b ≤22,所以f (a )=a 2+b =-3b 2+b +32=-3⎝ ⎛⎭⎪⎫b -162+1912,所以-22≤f (a )≤1912.。
积分变换第二章 - 副本——复变函数与积分变换课件PPT
= 1 tes t 1 estdt
s
0 s0
1 s2
Re s 0
(t)
tu( t )
1 s2
Laplace变换存在定理
定理 设函数 f (t) 在 t 0 的任何有限区间 内分段连续, 并且当 t 时, f (t)的增长速度不 超过某一指数函数, 即存在常数 M 0 和 s0 0,
sint
s2
2
cost
s2
s
2
例5 求 f (t) tn (n 1)的Laplace变换.
解 如果n是正整数, 则有
L tn
n! sn1
(Re(s) 0).
tn
n! sn1
当 n 1 不是正整数时, 利用复变函数论的
方法, 可求出
L[tn]
第2章 Laplace变换
§2.1 Laplace变换的概念 §2.2 Laplace变换的性质 §2.3 Laplace 逆变换 §2.4 Laplace变换的应用
Fourier积分存在定理
若函数 f (t)在任何有限区间上满足狄氏条件: 即函数在任何有限区间上满足: (1)连续或只有有限个第一类间断点; (2)至多有有限个极值点;
并且在(-∞,+∞)上绝对可积则有:
f (t) 1
2
f
(
)e
j
d
e
j
t
d
f (t)
f (t
0)
f (t
0)
2
t 为连续点; t 为间断点.
在(, )绝对可积是指的
|
f (t) |dt
收敛。
Fourier变换在许多领域中发挥着重要的作用, 但是在通常意义下,Fourier变换存在的条件需要 实函数f (t)在(-,+)上绝对可积. 很多常见的初等 函数(例如,常数函数、多项式函数、正弦与余弦 函数等)都不满足这个要求. 另外,很多以时间t 为 为自变量的函数,当t<0时,往往没有定义,或者 不需要知道t<0的情况. 因此, Fourier变换在实际 应用中受到一些限制.
重积分的计算法第二次
f(x,y)dxdyf(co ,ssin )dd
D
D
从直角坐标到极坐标,要做哪些改变?
将直角坐标中的二重积分转化为极坐标系的二重积
分,只要将x,y分别变为 co , ssin ,并把dxdy变
为dd即可。
注意:现在仅仅是将直角坐标中的二重积分转化为 极坐标中的二重积分,为了计算极坐标系中的二重 积分还要进一步转为二次积分。怎么转化?
(3) 积分区域D:
()
02,0()
D
θ
f(co , ssin )dd o
A
0 D 2 d 0 ()f(c o ,ss i) n d
注 一般,在极坐标系下计算:
先对 再对 积分
极坐标系下区域的面积 dd
2()
D
()
1()
D
D
O
A
O
A
dd d 2()d
1()
D
1 2(2 2()12()d )
例 求两个底圆半径为R,且这两个圆柱面的方程
分别为 x2y2 R2及 x2z2R2z.求所围成的
立体的体积. 曲z 顶 R 2x2
解 V1f(x,y)d
D
R2x2d
o y
D
Rdx
R2x2 R2x2dy
00
2 R3 3
V
8V1
16R3 3
xy
y R2 x2
D
o Rx
0xR,0y Rx2
二、利用极坐标系计算二重积分
D1
O
R 2R x
ex2y2dxdy ex2y2dxdy ex2y2dxdy
D1
S
D2
ex2y2dxdy (1ea2 ) D:x2y2a2
大学数学高数微积分第五章二次型第二节课堂讲义
0 0 1 0 0 0
C1
P (1, i)
1
0
0
0
0
0
i行
0 0 0 0 1 0
0 0 0 0 0 1
i列
显然 矩阵
P( 1 , i )T = P( 1, i ) .
C1TAC1 = P( 1 , i ) A P( 1 , i ) 就是把 A 的第一行与第 i 行互换,再把第一列与第
z1 y1 y3 ,
再令
z
2
y2
,
即
z 3 y 3 ,
y1 y2
z1 z2
,
z3
,
y 3 z 3 ,
则
f( x 1 ,x 2 ,x 3 ) 2 z 1 2 2 z 2 2 8 z 2 z 3 2 z 3 2 2 z 1 2 2 (z 2 2 z 3 )2 8 z 3 2 2 z 3 2 2 z1 2 2 (z2 2 z3)2 6 z3 2.
x
2 3
8
x2
x3
2(
x1
x2
x3
)2
x
2 2
x
2 3
4
x
2
x3
三、配方法的矩阵形式
前面所讲的配方法的过程,可以用矩阵写出来.
我们按前面的每一种情况写出相应的矩阵.
情形一 a11 0
这时的变数替换为
x1 y1
n
a
1 11
a
1
j
x
j
,
x
2
y2
,
j2
x n y n ,
该变数替换的矩阵为
i 列互换的结果.
因此, C1TAC1 左上角第一个元
素就是 aii ,这样就归结到第一种情形.
《微积分》第一篇第二章讲义(1)极限
h( x ) f ( x) , 而且有:g ( x0 ) 0 g ( x)
这时就计算: ( x0 ) h
当h( x0 ) 0时,就有lim f ( x)
x x0
1 g ( x) g ( x0 ) 此时有 lim lim x x0 f ( x) x x0 h( x) h( x0 ) 0 0. lim f x . x x0 h( x0 )
3 2、求 lim 3 x x 0
2 3、求 lim x 0 x
(二)极限的运算
1、极限的四则运算法则(P-66) 设 lim f x A, g x B,那么 lim
(1) lim( f g ) lim f lim g A B;
(2) lim( f g ) lim f lim g AB;
当自变量x本身既可以取正值,也可以 取负值的时候,就可以当x趋于无穷的定义
定义2.2’’
x
(P-61)
f x A( x ).
lim f x A 或
称为:当 x 时,f ( x)以A为极限
由定义2.2知,在例2.1中,有 1 1 或 0 x lim 0 x x x
n
2.718
(二)函数的极限
数列是一类特殊的函数,它的定义 域是正整数,对于数列已经定义了极限。 那么如果是一般的函数呢?即自变 量是连续取值的函数,它的极限又是如何 定义的?
1、x 时,函数f ( x)的极限
2、x x0时,函数f ( x)的极限
1、x 时,函数f ( x)的极限
(3) lim( Cf ) C lim f CA, 其中C是常数 f lim f A (4)若B 0, 则lim . g lim g B
大学数学高数微积分二次型课堂讲义
解 设 f = XTAX , 则
A
1 2
12
,
X
x y
.
例 2 已知二次型
f (x1,x2,x3,x4 ) x12 3x22 x32 4x42
2x1x2 4x1x3 6x1x4
写出二次型的矩阵 A.
8x2 x3 4x2 x4,
解 设 f = XTAX , 则
a11x1 a12 x2 a1n xn
(x1, x2 ,
, xn ) a21x1 an1x1
a22 x2
an2 x2
a2n xn
ann xn
nn
aij xi x j .
i1 j 1
所以二次型可表示成
f (x1 , x2 , … , xn ) = XTAX .
这即为二次型的矩阵表示形式. 应该看到,二次型的矩阵 A 的元素,当 i j
的矩阵都是对称矩阵.
令
x1
X
x2 xn
,
因为
a11 a12
X
T AX
( x1 ,
x2 ,
,
xn
)
a21 an1
a22 an2
a1n x1 a2n x2 ann xn
a11 a12
X
T
AX
( x1 ,
x2 ,
,
xn
)
a21 an1
a22 an2
a1n x1 a2n x2 ann xn
c2n yn
,
(4)
xn cn1 y1 cn2 y2 cnn yn
称为由 x1 , x2 , … , xn 到 y1 , y2 , … , yn 的一个线性
清华大学微积分B2课程基础习题课讲义及习题答案
8p
)
@z @x
=
>>>>>><不2p|存yx| ,在,
>>>>>>:0,
p |y| p 2x
,
x > 0, x = 0且y 6= 0 x = 0, y = 0 x < 0.
y 6= 0 ,
y=0
3. 求下列偏导数:
(1)z
=
x+y xy
,求
@z @x
,
@z @y
;
(2)f (x,
y)
=
arctan
x2+y2 sin(x2+y2)
<
1 cos(x2+y2)
,即cos(x2
+ y2)
<
sin(x2+y2) x2+y2
<
1
* lim cos(x2 + y2) = 1 x!0 y!0
) lim f (x, y) = 1. x!0 y!0
(4)方法1:lim f (x, y) x!0
=
lim
x!0
1
cos(xy) x2+y2
y)
=
p x
ln(x
+
y);
(2)f (x, y) = ln(y
x2);
x
(3)f (x, y)
=
ey ;
xy
(4)f
(x,
y)
=
arcsin
x y
.
解:(1)由x 0, x + y > 0得该函数的定义域为{(x, y) | x
0且x + y > 0}.